inotify: report both events on parent and child with single callback
[linux-2.6-microblaze.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52
53 #include <asm/tlbflush.h>
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57
58 #include "internal.h"
59
60 /*
61  * migrate_prep() needs to be called before we start compiling a list of pages
62  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63  * undesirable, use migrate_prep_local()
64  */
65 int migrate_prep(void)
66 {
67         /*
68          * Clear the LRU lists so pages can be isolated.
69          * Note that pages may be moved off the LRU after we have
70          * drained them. Those pages will fail to migrate like other
71          * pages that may be busy.
72          */
73         lru_add_drain_all();
74
75         return 0;
76 }
77
78 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
79 int migrate_prep_local(void)
80 {
81         lru_add_drain();
82
83         return 0;
84 }
85
86 int isolate_movable_page(struct page *page, isolate_mode_t mode)
87 {
88         struct address_space *mapping;
89
90         /*
91          * Avoid burning cycles with pages that are yet under __free_pages(),
92          * or just got freed under us.
93          *
94          * In case we 'win' a race for a movable page being freed under us and
95          * raise its refcount preventing __free_pages() from doing its job
96          * the put_page() at the end of this block will take care of
97          * release this page, thus avoiding a nasty leakage.
98          */
99         if (unlikely(!get_page_unless_zero(page)))
100                 goto out;
101
102         /*
103          * Check PageMovable before holding a PG_lock because page's owner
104          * assumes anybody doesn't touch PG_lock of newly allocated page
105          * so unconditionally grabbing the lock ruins page's owner side.
106          */
107         if (unlikely(!__PageMovable(page)))
108                 goto out_putpage;
109         /*
110          * As movable pages are not isolated from LRU lists, concurrent
111          * compaction threads can race against page migration functions
112          * as well as race against the releasing a page.
113          *
114          * In order to avoid having an already isolated movable page
115          * being (wrongly) re-isolated while it is under migration,
116          * or to avoid attempting to isolate pages being released,
117          * lets be sure we have the page lock
118          * before proceeding with the movable page isolation steps.
119          */
120         if (unlikely(!trylock_page(page)))
121                 goto out_putpage;
122
123         if (!PageMovable(page) || PageIsolated(page))
124                 goto out_no_isolated;
125
126         mapping = page_mapping(page);
127         VM_BUG_ON_PAGE(!mapping, page);
128
129         if (!mapping->a_ops->isolate_page(page, mode))
130                 goto out_no_isolated;
131
132         /* Driver shouldn't use PG_isolated bit of page->flags */
133         WARN_ON_ONCE(PageIsolated(page));
134         __SetPageIsolated(page);
135         unlock_page(page);
136
137         return 0;
138
139 out_no_isolated:
140         unlock_page(page);
141 out_putpage:
142         put_page(page);
143 out:
144         return -EBUSY;
145 }
146
147 /* It should be called on page which is PG_movable */
148 void putback_movable_page(struct page *page)
149 {
150         struct address_space *mapping;
151
152         VM_BUG_ON_PAGE(!PageLocked(page), page);
153         VM_BUG_ON_PAGE(!PageMovable(page), page);
154         VM_BUG_ON_PAGE(!PageIsolated(page), page);
155
156         mapping = page_mapping(page);
157         mapping->a_ops->putback_page(page);
158         __ClearPageIsolated(page);
159 }
160
161 /*
162  * Put previously isolated pages back onto the appropriate lists
163  * from where they were once taken off for compaction/migration.
164  *
165  * This function shall be used whenever the isolated pageset has been
166  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
167  * and isolate_huge_page().
168  */
169 void putback_movable_pages(struct list_head *l)
170 {
171         struct page *page;
172         struct page *page2;
173
174         list_for_each_entry_safe(page, page2, l, lru) {
175                 if (unlikely(PageHuge(page))) {
176                         putback_active_hugepage(page);
177                         continue;
178                 }
179                 list_del(&page->lru);
180                 /*
181                  * We isolated non-lru movable page so here we can use
182                  * __PageMovable because LRU page's mapping cannot have
183                  * PAGE_MAPPING_MOVABLE.
184                  */
185                 if (unlikely(__PageMovable(page))) {
186                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
187                         lock_page(page);
188                         if (PageMovable(page))
189                                 putback_movable_page(page);
190                         else
191                                 __ClearPageIsolated(page);
192                         unlock_page(page);
193                         put_page(page);
194                 } else {
195                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
196                                         page_is_file_lru(page), -hpage_nr_pages(page));
197                         putback_lru_page(page);
198                 }
199         }
200 }
201
202 /*
203  * Restore a potential migration pte to a working pte entry
204  */
205 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
206                                  unsigned long addr, void *old)
207 {
208         struct page_vma_mapped_walk pvmw = {
209                 .page = old,
210                 .vma = vma,
211                 .address = addr,
212                 .flags = PVMW_SYNC | PVMW_MIGRATION,
213         };
214         struct page *new;
215         pte_t pte;
216         swp_entry_t entry;
217
218         VM_BUG_ON_PAGE(PageTail(page), page);
219         while (page_vma_mapped_walk(&pvmw)) {
220                 if (PageKsm(page))
221                         new = page;
222                 else
223                         new = page - pvmw.page->index +
224                                 linear_page_index(vma, pvmw.address);
225
226 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
227                 /* PMD-mapped THP migration entry */
228                 if (!pvmw.pte) {
229                         VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
230                         remove_migration_pmd(&pvmw, new);
231                         continue;
232                 }
233 #endif
234
235                 get_page(new);
236                 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
237                 if (pte_swp_soft_dirty(*pvmw.pte))
238                         pte = pte_mksoft_dirty(pte);
239
240                 /*
241                  * Recheck VMA as permissions can change since migration started
242                  */
243                 entry = pte_to_swp_entry(*pvmw.pte);
244                 if (is_write_migration_entry(entry))
245                         pte = maybe_mkwrite(pte, vma);
246                 else if (pte_swp_uffd_wp(*pvmw.pte))
247                         pte = pte_mkuffd_wp(pte);
248
249                 if (unlikely(is_zone_device_page(new))) {
250                         if (is_device_private_page(new)) {
251                                 entry = make_device_private_entry(new, pte_write(pte));
252                                 pte = swp_entry_to_pte(entry);
253                                 if (pte_swp_uffd_wp(*pvmw.pte))
254                                         pte = pte_mkuffd_wp(pte);
255                         }
256                 }
257
258 #ifdef CONFIG_HUGETLB_PAGE
259                 if (PageHuge(new)) {
260                         pte = pte_mkhuge(pte);
261                         pte = arch_make_huge_pte(pte, vma, new, 0);
262                         set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
263                         if (PageAnon(new))
264                                 hugepage_add_anon_rmap(new, vma, pvmw.address);
265                         else
266                                 page_dup_rmap(new, true);
267                 } else
268 #endif
269                 {
270                         set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
271
272                         if (PageAnon(new))
273                                 page_add_anon_rmap(new, vma, pvmw.address, false);
274                         else
275                                 page_add_file_rmap(new, false);
276                 }
277                 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
278                         mlock_vma_page(new);
279
280                 if (PageTransHuge(page) && PageMlocked(page))
281                         clear_page_mlock(page);
282
283                 /* No need to invalidate - it was non-present before */
284                 update_mmu_cache(vma, pvmw.address, pvmw.pte);
285         }
286
287         return true;
288 }
289
290 /*
291  * Get rid of all migration entries and replace them by
292  * references to the indicated page.
293  */
294 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
295 {
296         struct rmap_walk_control rwc = {
297                 .rmap_one = remove_migration_pte,
298                 .arg = old,
299         };
300
301         if (locked)
302                 rmap_walk_locked(new, &rwc);
303         else
304                 rmap_walk(new, &rwc);
305 }
306
307 /*
308  * Something used the pte of a page under migration. We need to
309  * get to the page and wait until migration is finished.
310  * When we return from this function the fault will be retried.
311  */
312 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
313                                 spinlock_t *ptl)
314 {
315         pte_t pte;
316         swp_entry_t entry;
317         struct page *page;
318
319         spin_lock(ptl);
320         pte = *ptep;
321         if (!is_swap_pte(pte))
322                 goto out;
323
324         entry = pte_to_swp_entry(pte);
325         if (!is_migration_entry(entry))
326                 goto out;
327
328         page = migration_entry_to_page(entry);
329
330         /*
331          * Once page cache replacement of page migration started, page_count
332          * is zero; but we must not call put_and_wait_on_page_locked() without
333          * a ref. Use get_page_unless_zero(), and just fault again if it fails.
334          */
335         if (!get_page_unless_zero(page))
336                 goto out;
337         pte_unmap_unlock(ptep, ptl);
338         put_and_wait_on_page_locked(page);
339         return;
340 out:
341         pte_unmap_unlock(ptep, ptl);
342 }
343
344 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
345                                 unsigned long address)
346 {
347         spinlock_t *ptl = pte_lockptr(mm, pmd);
348         pte_t *ptep = pte_offset_map(pmd, address);
349         __migration_entry_wait(mm, ptep, ptl);
350 }
351
352 void migration_entry_wait_huge(struct vm_area_struct *vma,
353                 struct mm_struct *mm, pte_t *pte)
354 {
355         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
356         __migration_entry_wait(mm, pte, ptl);
357 }
358
359 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
360 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
361 {
362         spinlock_t *ptl;
363         struct page *page;
364
365         ptl = pmd_lock(mm, pmd);
366         if (!is_pmd_migration_entry(*pmd))
367                 goto unlock;
368         page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
369         if (!get_page_unless_zero(page))
370                 goto unlock;
371         spin_unlock(ptl);
372         put_and_wait_on_page_locked(page);
373         return;
374 unlock:
375         spin_unlock(ptl);
376 }
377 #endif
378
379 static int expected_page_refs(struct address_space *mapping, struct page *page)
380 {
381         int expected_count = 1;
382
383         /*
384          * Device public or private pages have an extra refcount as they are
385          * ZONE_DEVICE pages.
386          */
387         expected_count += is_device_private_page(page);
388         if (mapping)
389                 expected_count += hpage_nr_pages(page) + page_has_private(page);
390
391         return expected_count;
392 }
393
394 /*
395  * Replace the page in the mapping.
396  *
397  * The number of remaining references must be:
398  * 1 for anonymous pages without a mapping
399  * 2 for pages with a mapping
400  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
401  */
402 int migrate_page_move_mapping(struct address_space *mapping,
403                 struct page *newpage, struct page *page, int extra_count)
404 {
405         XA_STATE(xas, &mapping->i_pages, page_index(page));
406         struct zone *oldzone, *newzone;
407         int dirty;
408         int expected_count = expected_page_refs(mapping, page) + extra_count;
409
410         if (!mapping) {
411                 /* Anonymous page without mapping */
412                 if (page_count(page) != expected_count)
413                         return -EAGAIN;
414
415                 /* No turning back from here */
416                 newpage->index = page->index;
417                 newpage->mapping = page->mapping;
418                 if (PageSwapBacked(page))
419                         __SetPageSwapBacked(newpage);
420
421                 return MIGRATEPAGE_SUCCESS;
422         }
423
424         oldzone = page_zone(page);
425         newzone = page_zone(newpage);
426
427         xas_lock_irq(&xas);
428         if (page_count(page) != expected_count || xas_load(&xas) != page) {
429                 xas_unlock_irq(&xas);
430                 return -EAGAIN;
431         }
432
433         if (!page_ref_freeze(page, expected_count)) {
434                 xas_unlock_irq(&xas);
435                 return -EAGAIN;
436         }
437
438         /*
439          * Now we know that no one else is looking at the page:
440          * no turning back from here.
441          */
442         newpage->index = page->index;
443         newpage->mapping = page->mapping;
444         page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
445         if (PageSwapBacked(page)) {
446                 __SetPageSwapBacked(newpage);
447                 if (PageSwapCache(page)) {
448                         SetPageSwapCache(newpage);
449                         set_page_private(newpage, page_private(page));
450                 }
451         } else {
452                 VM_BUG_ON_PAGE(PageSwapCache(page), page);
453         }
454
455         /* Move dirty while page refs frozen and newpage not yet exposed */
456         dirty = PageDirty(page);
457         if (dirty) {
458                 ClearPageDirty(page);
459                 SetPageDirty(newpage);
460         }
461
462         xas_store(&xas, newpage);
463         if (PageTransHuge(page)) {
464                 int i;
465
466                 for (i = 1; i < HPAGE_PMD_NR; i++) {
467                         xas_next(&xas);
468                         xas_store(&xas, newpage);
469                 }
470         }
471
472         /*
473          * Drop cache reference from old page by unfreezing
474          * to one less reference.
475          * We know this isn't the last reference.
476          */
477         page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
478
479         xas_unlock(&xas);
480         /* Leave irq disabled to prevent preemption while updating stats */
481
482         /*
483          * If moved to a different zone then also account
484          * the page for that zone. Other VM counters will be
485          * taken care of when we establish references to the
486          * new page and drop references to the old page.
487          *
488          * Note that anonymous pages are accounted for
489          * via NR_FILE_PAGES and NR_ANON_MAPPED if they
490          * are mapped to swap space.
491          */
492         if (newzone != oldzone) {
493                 struct lruvec *old_lruvec, *new_lruvec;
494                 struct mem_cgroup *memcg;
495
496                 memcg = page_memcg(page);
497                 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
498                 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
499
500                 __dec_lruvec_state(old_lruvec, NR_FILE_PAGES);
501                 __inc_lruvec_state(new_lruvec, NR_FILE_PAGES);
502                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
503                         __dec_lruvec_state(old_lruvec, NR_SHMEM);
504                         __inc_lruvec_state(new_lruvec, NR_SHMEM);
505                 }
506                 if (dirty && mapping_cap_account_dirty(mapping)) {
507                         __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
508                         __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
509                         __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
510                         __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
511                 }
512         }
513         local_irq_enable();
514
515         return MIGRATEPAGE_SUCCESS;
516 }
517 EXPORT_SYMBOL(migrate_page_move_mapping);
518
519 /*
520  * The expected number of remaining references is the same as that
521  * of migrate_page_move_mapping().
522  */
523 int migrate_huge_page_move_mapping(struct address_space *mapping,
524                                    struct page *newpage, struct page *page)
525 {
526         XA_STATE(xas, &mapping->i_pages, page_index(page));
527         int expected_count;
528
529         xas_lock_irq(&xas);
530         expected_count = 2 + page_has_private(page);
531         if (page_count(page) != expected_count || xas_load(&xas) != page) {
532                 xas_unlock_irq(&xas);
533                 return -EAGAIN;
534         }
535
536         if (!page_ref_freeze(page, expected_count)) {
537                 xas_unlock_irq(&xas);
538                 return -EAGAIN;
539         }
540
541         newpage->index = page->index;
542         newpage->mapping = page->mapping;
543
544         get_page(newpage);
545
546         xas_store(&xas, newpage);
547
548         page_ref_unfreeze(page, expected_count - 1);
549
550         xas_unlock_irq(&xas);
551
552         return MIGRATEPAGE_SUCCESS;
553 }
554
555 /*
556  * Gigantic pages are so large that we do not guarantee that page++ pointer
557  * arithmetic will work across the entire page.  We need something more
558  * specialized.
559  */
560 static void __copy_gigantic_page(struct page *dst, struct page *src,
561                                 int nr_pages)
562 {
563         int i;
564         struct page *dst_base = dst;
565         struct page *src_base = src;
566
567         for (i = 0; i < nr_pages; ) {
568                 cond_resched();
569                 copy_highpage(dst, src);
570
571                 i++;
572                 dst = mem_map_next(dst, dst_base, i);
573                 src = mem_map_next(src, src_base, i);
574         }
575 }
576
577 static void copy_huge_page(struct page *dst, struct page *src)
578 {
579         int i;
580         int nr_pages;
581
582         if (PageHuge(src)) {
583                 /* hugetlbfs page */
584                 struct hstate *h = page_hstate(src);
585                 nr_pages = pages_per_huge_page(h);
586
587                 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
588                         __copy_gigantic_page(dst, src, nr_pages);
589                         return;
590                 }
591         } else {
592                 /* thp page */
593                 BUG_ON(!PageTransHuge(src));
594                 nr_pages = hpage_nr_pages(src);
595         }
596
597         for (i = 0; i < nr_pages; i++) {
598                 cond_resched();
599                 copy_highpage(dst + i, src + i);
600         }
601 }
602
603 /*
604  * Copy the page to its new location
605  */
606 void migrate_page_states(struct page *newpage, struct page *page)
607 {
608         int cpupid;
609
610         if (PageError(page))
611                 SetPageError(newpage);
612         if (PageReferenced(page))
613                 SetPageReferenced(newpage);
614         if (PageUptodate(page))
615                 SetPageUptodate(newpage);
616         if (TestClearPageActive(page)) {
617                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
618                 SetPageActive(newpage);
619         } else if (TestClearPageUnevictable(page))
620                 SetPageUnevictable(newpage);
621         if (PageWorkingset(page))
622                 SetPageWorkingset(newpage);
623         if (PageChecked(page))
624                 SetPageChecked(newpage);
625         if (PageMappedToDisk(page))
626                 SetPageMappedToDisk(newpage);
627
628         /* Move dirty on pages not done by migrate_page_move_mapping() */
629         if (PageDirty(page))
630                 SetPageDirty(newpage);
631
632         if (page_is_young(page))
633                 set_page_young(newpage);
634         if (page_is_idle(page))
635                 set_page_idle(newpage);
636
637         /*
638          * Copy NUMA information to the new page, to prevent over-eager
639          * future migrations of this same page.
640          */
641         cpupid = page_cpupid_xchg_last(page, -1);
642         page_cpupid_xchg_last(newpage, cpupid);
643
644         ksm_migrate_page(newpage, page);
645         /*
646          * Please do not reorder this without considering how mm/ksm.c's
647          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
648          */
649         if (PageSwapCache(page))
650                 ClearPageSwapCache(page);
651         ClearPagePrivate(page);
652         set_page_private(page, 0);
653
654         /*
655          * If any waiters have accumulated on the new page then
656          * wake them up.
657          */
658         if (PageWriteback(newpage))
659                 end_page_writeback(newpage);
660
661         /*
662          * PG_readahead shares the same bit with PG_reclaim.  The above
663          * end_page_writeback() may clear PG_readahead mistakenly, so set the
664          * bit after that.
665          */
666         if (PageReadahead(page))
667                 SetPageReadahead(newpage);
668
669         copy_page_owner(page, newpage);
670
671         mem_cgroup_migrate(page, newpage);
672 }
673 EXPORT_SYMBOL(migrate_page_states);
674
675 void migrate_page_copy(struct page *newpage, struct page *page)
676 {
677         if (PageHuge(page) || PageTransHuge(page))
678                 copy_huge_page(newpage, page);
679         else
680                 copy_highpage(newpage, page);
681
682         migrate_page_states(newpage, page);
683 }
684 EXPORT_SYMBOL(migrate_page_copy);
685
686 /************************************************************
687  *                    Migration functions
688  ***********************************************************/
689
690 /*
691  * Common logic to directly migrate a single LRU page suitable for
692  * pages that do not use PagePrivate/PagePrivate2.
693  *
694  * Pages are locked upon entry and exit.
695  */
696 int migrate_page(struct address_space *mapping,
697                 struct page *newpage, struct page *page,
698                 enum migrate_mode mode)
699 {
700         int rc;
701
702         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
703
704         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
705
706         if (rc != MIGRATEPAGE_SUCCESS)
707                 return rc;
708
709         if (mode != MIGRATE_SYNC_NO_COPY)
710                 migrate_page_copy(newpage, page);
711         else
712                 migrate_page_states(newpage, page);
713         return MIGRATEPAGE_SUCCESS;
714 }
715 EXPORT_SYMBOL(migrate_page);
716
717 #ifdef CONFIG_BLOCK
718 /* Returns true if all buffers are successfully locked */
719 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
720                                                         enum migrate_mode mode)
721 {
722         struct buffer_head *bh = head;
723
724         /* Simple case, sync compaction */
725         if (mode != MIGRATE_ASYNC) {
726                 do {
727                         lock_buffer(bh);
728                         bh = bh->b_this_page;
729
730                 } while (bh != head);
731
732                 return true;
733         }
734
735         /* async case, we cannot block on lock_buffer so use trylock_buffer */
736         do {
737                 if (!trylock_buffer(bh)) {
738                         /*
739                          * We failed to lock the buffer and cannot stall in
740                          * async migration. Release the taken locks
741                          */
742                         struct buffer_head *failed_bh = bh;
743                         bh = head;
744                         while (bh != failed_bh) {
745                                 unlock_buffer(bh);
746                                 bh = bh->b_this_page;
747                         }
748                         return false;
749                 }
750
751                 bh = bh->b_this_page;
752         } while (bh != head);
753         return true;
754 }
755
756 static int __buffer_migrate_page(struct address_space *mapping,
757                 struct page *newpage, struct page *page, enum migrate_mode mode,
758                 bool check_refs)
759 {
760         struct buffer_head *bh, *head;
761         int rc;
762         int expected_count;
763
764         if (!page_has_buffers(page))
765                 return migrate_page(mapping, newpage, page, mode);
766
767         /* Check whether page does not have extra refs before we do more work */
768         expected_count = expected_page_refs(mapping, page);
769         if (page_count(page) != expected_count)
770                 return -EAGAIN;
771
772         head = page_buffers(page);
773         if (!buffer_migrate_lock_buffers(head, mode))
774                 return -EAGAIN;
775
776         if (check_refs) {
777                 bool busy;
778                 bool invalidated = false;
779
780 recheck_buffers:
781                 busy = false;
782                 spin_lock(&mapping->private_lock);
783                 bh = head;
784                 do {
785                         if (atomic_read(&bh->b_count)) {
786                                 busy = true;
787                                 break;
788                         }
789                         bh = bh->b_this_page;
790                 } while (bh != head);
791                 if (busy) {
792                         if (invalidated) {
793                                 rc = -EAGAIN;
794                                 goto unlock_buffers;
795                         }
796                         spin_unlock(&mapping->private_lock);
797                         invalidate_bh_lrus();
798                         invalidated = true;
799                         goto recheck_buffers;
800                 }
801         }
802
803         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
804         if (rc != MIGRATEPAGE_SUCCESS)
805                 goto unlock_buffers;
806
807         attach_page_private(newpage, detach_page_private(page));
808
809         bh = head;
810         do {
811                 set_bh_page(bh, newpage, bh_offset(bh));
812                 bh = bh->b_this_page;
813
814         } while (bh != head);
815
816         if (mode != MIGRATE_SYNC_NO_COPY)
817                 migrate_page_copy(newpage, page);
818         else
819                 migrate_page_states(newpage, page);
820
821         rc = MIGRATEPAGE_SUCCESS;
822 unlock_buffers:
823         if (check_refs)
824                 spin_unlock(&mapping->private_lock);
825         bh = head;
826         do {
827                 unlock_buffer(bh);
828                 bh = bh->b_this_page;
829
830         } while (bh != head);
831
832         return rc;
833 }
834
835 /*
836  * Migration function for pages with buffers. This function can only be used
837  * if the underlying filesystem guarantees that no other references to "page"
838  * exist. For example attached buffer heads are accessed only under page lock.
839  */
840 int buffer_migrate_page(struct address_space *mapping,
841                 struct page *newpage, struct page *page, enum migrate_mode mode)
842 {
843         return __buffer_migrate_page(mapping, newpage, page, mode, false);
844 }
845 EXPORT_SYMBOL(buffer_migrate_page);
846
847 /*
848  * Same as above except that this variant is more careful and checks that there
849  * are also no buffer head references. This function is the right one for
850  * mappings where buffer heads are directly looked up and referenced (such as
851  * block device mappings).
852  */
853 int buffer_migrate_page_norefs(struct address_space *mapping,
854                 struct page *newpage, struct page *page, enum migrate_mode mode)
855 {
856         return __buffer_migrate_page(mapping, newpage, page, mode, true);
857 }
858 #endif
859
860 /*
861  * Writeback a page to clean the dirty state
862  */
863 static int writeout(struct address_space *mapping, struct page *page)
864 {
865         struct writeback_control wbc = {
866                 .sync_mode = WB_SYNC_NONE,
867                 .nr_to_write = 1,
868                 .range_start = 0,
869                 .range_end = LLONG_MAX,
870                 .for_reclaim = 1
871         };
872         int rc;
873
874         if (!mapping->a_ops->writepage)
875                 /* No write method for the address space */
876                 return -EINVAL;
877
878         if (!clear_page_dirty_for_io(page))
879                 /* Someone else already triggered a write */
880                 return -EAGAIN;
881
882         /*
883          * A dirty page may imply that the underlying filesystem has
884          * the page on some queue. So the page must be clean for
885          * migration. Writeout may mean we loose the lock and the
886          * page state is no longer what we checked for earlier.
887          * At this point we know that the migration attempt cannot
888          * be successful.
889          */
890         remove_migration_ptes(page, page, false);
891
892         rc = mapping->a_ops->writepage(page, &wbc);
893
894         if (rc != AOP_WRITEPAGE_ACTIVATE)
895                 /* unlocked. Relock */
896                 lock_page(page);
897
898         return (rc < 0) ? -EIO : -EAGAIN;
899 }
900
901 /*
902  * Default handling if a filesystem does not provide a migration function.
903  */
904 static int fallback_migrate_page(struct address_space *mapping,
905         struct page *newpage, struct page *page, enum migrate_mode mode)
906 {
907         if (PageDirty(page)) {
908                 /* Only writeback pages in full synchronous migration */
909                 switch (mode) {
910                 case MIGRATE_SYNC:
911                 case MIGRATE_SYNC_NO_COPY:
912                         break;
913                 default:
914                         return -EBUSY;
915                 }
916                 return writeout(mapping, page);
917         }
918
919         /*
920          * Buffers may be managed in a filesystem specific way.
921          * We must have no buffers or drop them.
922          */
923         if (page_has_private(page) &&
924             !try_to_release_page(page, GFP_KERNEL))
925                 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
926
927         return migrate_page(mapping, newpage, page, mode);
928 }
929
930 /*
931  * Move a page to a newly allocated page
932  * The page is locked and all ptes have been successfully removed.
933  *
934  * The new page will have replaced the old page if this function
935  * is successful.
936  *
937  * Return value:
938  *   < 0 - error code
939  *  MIGRATEPAGE_SUCCESS - success
940  */
941 static int move_to_new_page(struct page *newpage, struct page *page,
942                                 enum migrate_mode mode)
943 {
944         struct address_space *mapping;
945         int rc = -EAGAIN;
946         bool is_lru = !__PageMovable(page);
947
948         VM_BUG_ON_PAGE(!PageLocked(page), page);
949         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
950
951         mapping = page_mapping(page);
952
953         if (likely(is_lru)) {
954                 if (!mapping)
955                         rc = migrate_page(mapping, newpage, page, mode);
956                 else if (mapping->a_ops->migratepage)
957                         /*
958                          * Most pages have a mapping and most filesystems
959                          * provide a migratepage callback. Anonymous pages
960                          * are part of swap space which also has its own
961                          * migratepage callback. This is the most common path
962                          * for page migration.
963                          */
964                         rc = mapping->a_ops->migratepage(mapping, newpage,
965                                                         page, mode);
966                 else
967                         rc = fallback_migrate_page(mapping, newpage,
968                                                         page, mode);
969         } else {
970                 /*
971                  * In case of non-lru page, it could be released after
972                  * isolation step. In that case, we shouldn't try migration.
973                  */
974                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
975                 if (!PageMovable(page)) {
976                         rc = MIGRATEPAGE_SUCCESS;
977                         __ClearPageIsolated(page);
978                         goto out;
979                 }
980
981                 rc = mapping->a_ops->migratepage(mapping, newpage,
982                                                 page, mode);
983                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
984                         !PageIsolated(page));
985         }
986
987         /*
988          * When successful, old pagecache page->mapping must be cleared before
989          * page is freed; but stats require that PageAnon be left as PageAnon.
990          */
991         if (rc == MIGRATEPAGE_SUCCESS) {
992                 if (__PageMovable(page)) {
993                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
994
995                         /*
996                          * We clear PG_movable under page_lock so any compactor
997                          * cannot try to migrate this page.
998                          */
999                         __ClearPageIsolated(page);
1000                 }
1001
1002                 /*
1003                  * Anonymous and movable page->mapping will be cleared by
1004                  * free_pages_prepare so don't reset it here for keeping
1005                  * the type to work PageAnon, for example.
1006                  */
1007                 if (!PageMappingFlags(page))
1008                         page->mapping = NULL;
1009
1010                 if (likely(!is_zone_device_page(newpage)))
1011                         flush_dcache_page(newpage);
1012
1013         }
1014 out:
1015         return rc;
1016 }
1017
1018 static int __unmap_and_move(struct page *page, struct page *newpage,
1019                                 int force, enum migrate_mode mode)
1020 {
1021         int rc = -EAGAIN;
1022         int page_was_mapped = 0;
1023         struct anon_vma *anon_vma = NULL;
1024         bool is_lru = !__PageMovable(page);
1025
1026         if (!trylock_page(page)) {
1027                 if (!force || mode == MIGRATE_ASYNC)
1028                         goto out;
1029
1030                 /*
1031                  * It's not safe for direct compaction to call lock_page.
1032                  * For example, during page readahead pages are added locked
1033                  * to the LRU. Later, when the IO completes the pages are
1034                  * marked uptodate and unlocked. However, the queueing
1035                  * could be merging multiple pages for one bio (e.g.
1036                  * mpage_readahead). If an allocation happens for the
1037                  * second or third page, the process can end up locking
1038                  * the same page twice and deadlocking. Rather than
1039                  * trying to be clever about what pages can be locked,
1040                  * avoid the use of lock_page for direct compaction
1041                  * altogether.
1042                  */
1043                 if (current->flags & PF_MEMALLOC)
1044                         goto out;
1045
1046                 lock_page(page);
1047         }
1048
1049         if (PageWriteback(page)) {
1050                 /*
1051                  * Only in the case of a full synchronous migration is it
1052                  * necessary to wait for PageWriteback. In the async case,
1053                  * the retry loop is too short and in the sync-light case,
1054                  * the overhead of stalling is too much
1055                  */
1056                 switch (mode) {
1057                 case MIGRATE_SYNC:
1058                 case MIGRATE_SYNC_NO_COPY:
1059                         break;
1060                 default:
1061                         rc = -EBUSY;
1062                         goto out_unlock;
1063                 }
1064                 if (!force)
1065                         goto out_unlock;
1066                 wait_on_page_writeback(page);
1067         }
1068
1069         /*
1070          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1071          * we cannot notice that anon_vma is freed while we migrates a page.
1072          * This get_anon_vma() delays freeing anon_vma pointer until the end
1073          * of migration. File cache pages are no problem because of page_lock()
1074          * File Caches may use write_page() or lock_page() in migration, then,
1075          * just care Anon page here.
1076          *
1077          * Only page_get_anon_vma() understands the subtleties of
1078          * getting a hold on an anon_vma from outside one of its mms.
1079          * But if we cannot get anon_vma, then we won't need it anyway,
1080          * because that implies that the anon page is no longer mapped
1081          * (and cannot be remapped so long as we hold the page lock).
1082          */
1083         if (PageAnon(page) && !PageKsm(page))
1084                 anon_vma = page_get_anon_vma(page);
1085
1086         /*
1087          * Block others from accessing the new page when we get around to
1088          * establishing additional references. We are usually the only one
1089          * holding a reference to newpage at this point. We used to have a BUG
1090          * here if trylock_page(newpage) fails, but would like to allow for
1091          * cases where there might be a race with the previous use of newpage.
1092          * This is much like races on refcount of oldpage: just don't BUG().
1093          */
1094         if (unlikely(!trylock_page(newpage)))
1095                 goto out_unlock;
1096
1097         if (unlikely(!is_lru)) {
1098                 rc = move_to_new_page(newpage, page, mode);
1099                 goto out_unlock_both;
1100         }
1101
1102         /*
1103          * Corner case handling:
1104          * 1. When a new swap-cache page is read into, it is added to the LRU
1105          * and treated as swapcache but it has no rmap yet.
1106          * Calling try_to_unmap() against a page->mapping==NULL page will
1107          * trigger a BUG.  So handle it here.
1108          * 2. An orphaned page (see truncate_complete_page) might have
1109          * fs-private metadata. The page can be picked up due to memory
1110          * offlining.  Everywhere else except page reclaim, the page is
1111          * invisible to the vm, so the page can not be migrated.  So try to
1112          * free the metadata, so the page can be freed.
1113          */
1114         if (!page->mapping) {
1115                 VM_BUG_ON_PAGE(PageAnon(page), page);
1116                 if (page_has_private(page)) {
1117                         try_to_free_buffers(page);
1118                         goto out_unlock_both;
1119                 }
1120         } else if (page_mapped(page)) {
1121                 /* Establish migration ptes */
1122                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1123                                 page);
1124                 try_to_unmap(page,
1125                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1126                 page_was_mapped = 1;
1127         }
1128
1129         if (!page_mapped(page))
1130                 rc = move_to_new_page(newpage, page, mode);
1131
1132         if (page_was_mapped)
1133                 remove_migration_ptes(page,
1134                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1135
1136 out_unlock_both:
1137         unlock_page(newpage);
1138 out_unlock:
1139         /* Drop an anon_vma reference if we took one */
1140         if (anon_vma)
1141                 put_anon_vma(anon_vma);
1142         unlock_page(page);
1143 out:
1144         /*
1145          * If migration is successful, decrease refcount of the newpage
1146          * which will not free the page because new page owner increased
1147          * refcounter. As well, if it is LRU page, add the page to LRU
1148          * list in here. Use the old state of the isolated source page to
1149          * determine if we migrated a LRU page. newpage was already unlocked
1150          * and possibly modified by its owner - don't rely on the page
1151          * state.
1152          */
1153         if (rc == MIGRATEPAGE_SUCCESS) {
1154                 if (unlikely(!is_lru))
1155                         put_page(newpage);
1156                 else
1157                         putback_lru_page(newpage);
1158         }
1159
1160         return rc;
1161 }
1162
1163 /*
1164  * Obtain the lock on page, remove all ptes and migrate the page
1165  * to the newly allocated page in newpage.
1166  */
1167 static int unmap_and_move(new_page_t get_new_page,
1168                                    free_page_t put_new_page,
1169                                    unsigned long private, struct page *page,
1170                                    int force, enum migrate_mode mode,
1171                                    enum migrate_reason reason)
1172 {
1173         int rc = MIGRATEPAGE_SUCCESS;
1174         struct page *newpage = NULL;
1175
1176         if (!thp_migration_supported() && PageTransHuge(page))
1177                 return -ENOMEM;
1178
1179         if (page_count(page) == 1) {
1180                 /* page was freed from under us. So we are done. */
1181                 ClearPageActive(page);
1182                 ClearPageUnevictable(page);
1183                 if (unlikely(__PageMovable(page))) {
1184                         lock_page(page);
1185                         if (!PageMovable(page))
1186                                 __ClearPageIsolated(page);
1187                         unlock_page(page);
1188                 }
1189                 goto out;
1190         }
1191
1192         newpage = get_new_page(page, private);
1193         if (!newpage)
1194                 return -ENOMEM;
1195
1196         rc = __unmap_and_move(page, newpage, force, mode);
1197         if (rc == MIGRATEPAGE_SUCCESS)
1198                 set_page_owner_migrate_reason(newpage, reason);
1199
1200 out:
1201         if (rc != -EAGAIN) {
1202                 /*
1203                  * A page that has been migrated has all references
1204                  * removed and will be freed. A page that has not been
1205                  * migrated will have kept its references and be restored.
1206                  */
1207                 list_del(&page->lru);
1208
1209                 /*
1210                  * Compaction can migrate also non-LRU pages which are
1211                  * not accounted to NR_ISOLATED_*. They can be recognized
1212                  * as __PageMovable
1213                  */
1214                 if (likely(!__PageMovable(page)))
1215                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1216                                         page_is_file_lru(page), -hpage_nr_pages(page));
1217         }
1218
1219         /*
1220          * If migration is successful, releases reference grabbed during
1221          * isolation. Otherwise, restore the page to right list unless
1222          * we want to retry.
1223          */
1224         if (rc == MIGRATEPAGE_SUCCESS) {
1225                 put_page(page);
1226                 if (reason == MR_MEMORY_FAILURE) {
1227                         /*
1228                          * Set PG_HWPoison on just freed page
1229                          * intentionally. Although it's rather weird,
1230                          * it's how HWPoison flag works at the moment.
1231                          */
1232                         if (set_hwpoison_free_buddy_page(page))
1233                                 num_poisoned_pages_inc();
1234                 }
1235         } else {
1236                 if (rc != -EAGAIN) {
1237                         if (likely(!__PageMovable(page))) {
1238                                 putback_lru_page(page);
1239                                 goto put_new;
1240                         }
1241
1242                         lock_page(page);
1243                         if (PageMovable(page))
1244                                 putback_movable_page(page);
1245                         else
1246                                 __ClearPageIsolated(page);
1247                         unlock_page(page);
1248                         put_page(page);
1249                 }
1250 put_new:
1251                 if (put_new_page)
1252                         put_new_page(newpage, private);
1253                 else
1254                         put_page(newpage);
1255         }
1256
1257         return rc;
1258 }
1259
1260 /*
1261  * Counterpart of unmap_and_move_page() for hugepage migration.
1262  *
1263  * This function doesn't wait the completion of hugepage I/O
1264  * because there is no race between I/O and migration for hugepage.
1265  * Note that currently hugepage I/O occurs only in direct I/O
1266  * where no lock is held and PG_writeback is irrelevant,
1267  * and writeback status of all subpages are counted in the reference
1268  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1269  * under direct I/O, the reference of the head page is 512 and a bit more.)
1270  * This means that when we try to migrate hugepage whose subpages are
1271  * doing direct I/O, some references remain after try_to_unmap() and
1272  * hugepage migration fails without data corruption.
1273  *
1274  * There is also no race when direct I/O is issued on the page under migration,
1275  * because then pte is replaced with migration swap entry and direct I/O code
1276  * will wait in the page fault for migration to complete.
1277  */
1278 static int unmap_and_move_huge_page(new_page_t get_new_page,
1279                                 free_page_t put_new_page, unsigned long private,
1280                                 struct page *hpage, int force,
1281                                 enum migrate_mode mode, int reason)
1282 {
1283         int rc = -EAGAIN;
1284         int page_was_mapped = 0;
1285         struct page *new_hpage;
1286         struct anon_vma *anon_vma = NULL;
1287         struct address_space *mapping = NULL;
1288
1289         /*
1290          * Migratability of hugepages depends on architectures and their size.
1291          * This check is necessary because some callers of hugepage migration
1292          * like soft offline and memory hotremove don't walk through page
1293          * tables or check whether the hugepage is pmd-based or not before
1294          * kicking migration.
1295          */
1296         if (!hugepage_migration_supported(page_hstate(hpage))) {
1297                 putback_active_hugepage(hpage);
1298                 return -ENOSYS;
1299         }
1300
1301         new_hpage = get_new_page(hpage, private);
1302         if (!new_hpage)
1303                 return -ENOMEM;
1304
1305         if (!trylock_page(hpage)) {
1306                 if (!force)
1307                         goto out;
1308                 switch (mode) {
1309                 case MIGRATE_SYNC:
1310                 case MIGRATE_SYNC_NO_COPY:
1311                         break;
1312                 default:
1313                         goto out;
1314                 }
1315                 lock_page(hpage);
1316         }
1317
1318         /*
1319          * Check for pages which are in the process of being freed.  Without
1320          * page_mapping() set, hugetlbfs specific move page routine will not
1321          * be called and we could leak usage counts for subpools.
1322          */
1323         if (page_private(hpage) && !page_mapping(hpage)) {
1324                 rc = -EBUSY;
1325                 goto out_unlock;
1326         }
1327
1328         if (PageAnon(hpage))
1329                 anon_vma = page_get_anon_vma(hpage);
1330
1331         if (unlikely(!trylock_page(new_hpage)))
1332                 goto put_anon;
1333
1334         if (page_mapped(hpage)) {
1335                 /*
1336                  * try_to_unmap could potentially call huge_pmd_unshare.
1337                  * Because of this, take semaphore in write mode here and
1338                  * set TTU_RMAP_LOCKED to let lower levels know we have
1339                  * taken the lock.
1340                  */
1341                 mapping = hugetlb_page_mapping_lock_write(hpage);
1342                 if (unlikely(!mapping))
1343                         goto unlock_put_anon;
1344
1345                 try_to_unmap(hpage,
1346                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS|
1347                         TTU_RMAP_LOCKED);
1348                 page_was_mapped = 1;
1349                 /*
1350                  * Leave mapping locked until after subsequent call to
1351                  * remove_migration_ptes()
1352                  */
1353         }
1354
1355         if (!page_mapped(hpage))
1356                 rc = move_to_new_page(new_hpage, hpage, mode);
1357
1358         if (page_was_mapped) {
1359                 remove_migration_ptes(hpage,
1360                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, true);
1361                 i_mmap_unlock_write(mapping);
1362         }
1363
1364 unlock_put_anon:
1365         unlock_page(new_hpage);
1366
1367 put_anon:
1368         if (anon_vma)
1369                 put_anon_vma(anon_vma);
1370
1371         if (rc == MIGRATEPAGE_SUCCESS) {
1372                 move_hugetlb_state(hpage, new_hpage, reason);
1373                 put_new_page = NULL;
1374         }
1375
1376 out_unlock:
1377         unlock_page(hpage);
1378 out:
1379         if (rc != -EAGAIN)
1380                 putback_active_hugepage(hpage);
1381
1382         /*
1383          * If migration was not successful and there's a freeing callback, use
1384          * it.  Otherwise, put_page() will drop the reference grabbed during
1385          * isolation.
1386          */
1387         if (put_new_page)
1388                 put_new_page(new_hpage, private);
1389         else
1390                 putback_active_hugepage(new_hpage);
1391
1392         return rc;
1393 }
1394
1395 /*
1396  * migrate_pages - migrate the pages specified in a list, to the free pages
1397  *                 supplied as the target for the page migration
1398  *
1399  * @from:               The list of pages to be migrated.
1400  * @get_new_page:       The function used to allocate free pages to be used
1401  *                      as the target of the page migration.
1402  * @put_new_page:       The function used to free target pages if migration
1403  *                      fails, or NULL if no special handling is necessary.
1404  * @private:            Private data to be passed on to get_new_page()
1405  * @mode:               The migration mode that specifies the constraints for
1406  *                      page migration, if any.
1407  * @reason:             The reason for page migration.
1408  *
1409  * The function returns after 10 attempts or if no pages are movable any more
1410  * because the list has become empty or no retryable pages exist any more.
1411  * The caller should call putback_movable_pages() to return pages to the LRU
1412  * or free list only if ret != 0.
1413  *
1414  * Returns the number of pages that were not migrated, or an error code.
1415  */
1416 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1417                 free_page_t put_new_page, unsigned long private,
1418                 enum migrate_mode mode, int reason)
1419 {
1420         int retry = 1;
1421         int nr_failed = 0;
1422         int nr_succeeded = 0;
1423         int pass = 0;
1424         struct page *page;
1425         struct page *page2;
1426         int swapwrite = current->flags & PF_SWAPWRITE;
1427         int rc;
1428
1429         if (!swapwrite)
1430                 current->flags |= PF_SWAPWRITE;
1431
1432         for(pass = 0; pass < 10 && retry; pass++) {
1433                 retry = 0;
1434
1435                 list_for_each_entry_safe(page, page2, from, lru) {
1436 retry:
1437                         cond_resched();
1438
1439                         if (PageHuge(page))
1440                                 rc = unmap_and_move_huge_page(get_new_page,
1441                                                 put_new_page, private, page,
1442                                                 pass > 2, mode, reason);
1443                         else
1444                                 rc = unmap_and_move(get_new_page, put_new_page,
1445                                                 private, page, pass > 2, mode,
1446                                                 reason);
1447
1448                         switch(rc) {
1449                         case -ENOMEM:
1450                                 /*
1451                                  * THP migration might be unsupported or the
1452                                  * allocation could've failed so we should
1453                                  * retry on the same page with the THP split
1454                                  * to base pages.
1455                                  *
1456                                  * Head page is retried immediately and tail
1457                                  * pages are added to the tail of the list so
1458                                  * we encounter them after the rest of the list
1459                                  * is processed.
1460                                  */
1461                                 if (PageTransHuge(page) && !PageHuge(page)) {
1462                                         lock_page(page);
1463                                         rc = split_huge_page_to_list(page, from);
1464                                         unlock_page(page);
1465                                         if (!rc) {
1466                                                 list_safe_reset_next(page, page2, lru);
1467                                                 goto retry;
1468                                         }
1469                                 }
1470                                 nr_failed++;
1471                                 goto out;
1472                         case -EAGAIN:
1473                                 retry++;
1474                                 break;
1475                         case MIGRATEPAGE_SUCCESS:
1476                                 nr_succeeded++;
1477                                 break;
1478                         default:
1479                                 /*
1480                                  * Permanent failure (-EBUSY, -ENOSYS, etc.):
1481                                  * unlike -EAGAIN case, the failed page is
1482                                  * removed from migration page list and not
1483                                  * retried in the next outer loop.
1484                                  */
1485                                 nr_failed++;
1486                                 break;
1487                         }
1488                 }
1489         }
1490         nr_failed += retry;
1491         rc = nr_failed;
1492 out:
1493         if (nr_succeeded)
1494                 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1495         if (nr_failed)
1496                 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1497         trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1498
1499         if (!swapwrite)
1500                 current->flags &= ~PF_SWAPWRITE;
1501
1502         return rc;
1503 }
1504
1505 #ifdef CONFIG_NUMA
1506
1507 static int store_status(int __user *status, int start, int value, int nr)
1508 {
1509         while (nr-- > 0) {
1510                 if (put_user(value, status + start))
1511                         return -EFAULT;
1512                 start++;
1513         }
1514
1515         return 0;
1516 }
1517
1518 static int do_move_pages_to_node(struct mm_struct *mm,
1519                 struct list_head *pagelist, int node)
1520 {
1521         int err;
1522
1523         err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1524                         MIGRATE_SYNC, MR_SYSCALL);
1525         if (err)
1526                 putback_movable_pages(pagelist);
1527         return err;
1528 }
1529
1530 /*
1531  * Resolves the given address to a struct page, isolates it from the LRU and
1532  * puts it to the given pagelist.
1533  * Returns:
1534  *     errno - if the page cannot be found/isolated
1535  *     0 - when it doesn't have to be migrated because it is already on the
1536  *         target node
1537  *     1 - when it has been queued
1538  */
1539 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1540                 int node, struct list_head *pagelist, bool migrate_all)
1541 {
1542         struct vm_area_struct *vma;
1543         struct page *page;
1544         unsigned int follflags;
1545         int err;
1546
1547         mmap_read_lock(mm);
1548         err = -EFAULT;
1549         vma = find_vma(mm, addr);
1550         if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1551                 goto out;
1552
1553         /* FOLL_DUMP to ignore special (like zero) pages */
1554         follflags = FOLL_GET | FOLL_DUMP;
1555         page = follow_page(vma, addr, follflags);
1556
1557         err = PTR_ERR(page);
1558         if (IS_ERR(page))
1559                 goto out;
1560
1561         err = -ENOENT;
1562         if (!page)
1563                 goto out;
1564
1565         err = 0;
1566         if (page_to_nid(page) == node)
1567                 goto out_putpage;
1568
1569         err = -EACCES;
1570         if (page_mapcount(page) > 1 && !migrate_all)
1571                 goto out_putpage;
1572
1573         if (PageHuge(page)) {
1574                 if (PageHead(page)) {
1575                         isolate_huge_page(page, pagelist);
1576                         err = 1;
1577                 }
1578         } else {
1579                 struct page *head;
1580
1581                 head = compound_head(page);
1582                 err = isolate_lru_page(head);
1583                 if (err)
1584                         goto out_putpage;
1585
1586                 err = 1;
1587                 list_add_tail(&head->lru, pagelist);
1588                 mod_node_page_state(page_pgdat(head),
1589                         NR_ISOLATED_ANON + page_is_file_lru(head),
1590                         hpage_nr_pages(head));
1591         }
1592 out_putpage:
1593         /*
1594          * Either remove the duplicate refcount from
1595          * isolate_lru_page() or drop the page ref if it was
1596          * not isolated.
1597          */
1598         put_page(page);
1599 out:
1600         mmap_read_unlock(mm);
1601         return err;
1602 }
1603
1604 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1605                 struct list_head *pagelist, int __user *status,
1606                 int start, int i, unsigned long nr_pages)
1607 {
1608         int err;
1609
1610         if (list_empty(pagelist))
1611                 return 0;
1612
1613         err = do_move_pages_to_node(mm, pagelist, node);
1614         if (err) {
1615                 /*
1616                  * Positive err means the number of failed
1617                  * pages to migrate.  Since we are going to
1618                  * abort and return the number of non-migrated
1619                  * pages, so need to incude the rest of the
1620                  * nr_pages that have not been attempted as
1621                  * well.
1622                  */
1623                 if (err > 0)
1624                         err += nr_pages - i - 1;
1625                 return err;
1626         }
1627         return store_status(status, start, node, i - start);
1628 }
1629
1630 /*
1631  * Migrate an array of page address onto an array of nodes and fill
1632  * the corresponding array of status.
1633  */
1634 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1635                          unsigned long nr_pages,
1636                          const void __user * __user *pages,
1637                          const int __user *nodes,
1638                          int __user *status, int flags)
1639 {
1640         int current_node = NUMA_NO_NODE;
1641         LIST_HEAD(pagelist);
1642         int start, i;
1643         int err = 0, err1;
1644
1645         migrate_prep();
1646
1647         for (i = start = 0; i < nr_pages; i++) {
1648                 const void __user *p;
1649                 unsigned long addr;
1650                 int node;
1651
1652                 err = -EFAULT;
1653                 if (get_user(p, pages + i))
1654                         goto out_flush;
1655                 if (get_user(node, nodes + i))
1656                         goto out_flush;
1657                 addr = (unsigned long)untagged_addr(p);
1658
1659                 err = -ENODEV;
1660                 if (node < 0 || node >= MAX_NUMNODES)
1661                         goto out_flush;
1662                 if (!node_state(node, N_MEMORY))
1663                         goto out_flush;
1664
1665                 err = -EACCES;
1666                 if (!node_isset(node, task_nodes))
1667                         goto out_flush;
1668
1669                 if (current_node == NUMA_NO_NODE) {
1670                         current_node = node;
1671                         start = i;
1672                 } else if (node != current_node) {
1673                         err = move_pages_and_store_status(mm, current_node,
1674                                         &pagelist, status, start, i, nr_pages);
1675                         if (err)
1676                                 goto out;
1677                         start = i;
1678                         current_node = node;
1679                 }
1680
1681                 /*
1682                  * Errors in the page lookup or isolation are not fatal and we simply
1683                  * report them via status
1684                  */
1685                 err = add_page_for_migration(mm, addr, current_node,
1686                                 &pagelist, flags & MPOL_MF_MOVE_ALL);
1687
1688                 if (err > 0) {
1689                         /* The page is successfully queued for migration */
1690                         continue;
1691                 }
1692
1693                 /*
1694                  * If the page is already on the target node (!err), store the
1695                  * node, otherwise, store the err.
1696                  */
1697                 err = store_status(status, i, err ? : current_node, 1);
1698                 if (err)
1699                         goto out_flush;
1700
1701                 err = move_pages_and_store_status(mm, current_node, &pagelist,
1702                                 status, start, i, nr_pages);
1703                 if (err)
1704                         goto out;
1705                 current_node = NUMA_NO_NODE;
1706         }
1707 out_flush:
1708         /* Make sure we do not overwrite the existing error */
1709         err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1710                                 status, start, i, nr_pages);
1711         if (err >= 0)
1712                 err = err1;
1713 out:
1714         return err;
1715 }
1716
1717 /*
1718  * Determine the nodes of an array of pages and store it in an array of status.
1719  */
1720 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1721                                 const void __user **pages, int *status)
1722 {
1723         unsigned long i;
1724
1725         mmap_read_lock(mm);
1726
1727         for (i = 0; i < nr_pages; i++) {
1728                 unsigned long addr = (unsigned long)(*pages);
1729                 struct vm_area_struct *vma;
1730                 struct page *page;
1731                 int err = -EFAULT;
1732
1733                 vma = find_vma(mm, addr);
1734                 if (!vma || addr < vma->vm_start)
1735                         goto set_status;
1736
1737                 /* FOLL_DUMP to ignore special (like zero) pages */
1738                 page = follow_page(vma, addr, FOLL_DUMP);
1739
1740                 err = PTR_ERR(page);
1741                 if (IS_ERR(page))
1742                         goto set_status;
1743
1744                 err = page ? page_to_nid(page) : -ENOENT;
1745 set_status:
1746                 *status = err;
1747
1748                 pages++;
1749                 status++;
1750         }
1751
1752         mmap_read_unlock(mm);
1753 }
1754
1755 /*
1756  * Determine the nodes of a user array of pages and store it in
1757  * a user array of status.
1758  */
1759 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1760                          const void __user * __user *pages,
1761                          int __user *status)
1762 {
1763 #define DO_PAGES_STAT_CHUNK_NR 16
1764         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1765         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1766
1767         while (nr_pages) {
1768                 unsigned long chunk_nr;
1769
1770                 chunk_nr = nr_pages;
1771                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1772                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1773
1774                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1775                         break;
1776
1777                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1778
1779                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1780                         break;
1781
1782                 pages += chunk_nr;
1783                 status += chunk_nr;
1784                 nr_pages -= chunk_nr;
1785         }
1786         return nr_pages ? -EFAULT : 0;
1787 }
1788
1789 /*
1790  * Move a list of pages in the address space of the currently executing
1791  * process.
1792  */
1793 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1794                              const void __user * __user *pages,
1795                              const int __user *nodes,
1796                              int __user *status, int flags)
1797 {
1798         struct task_struct *task;
1799         struct mm_struct *mm;
1800         int err;
1801         nodemask_t task_nodes;
1802
1803         /* Check flags */
1804         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1805                 return -EINVAL;
1806
1807         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1808                 return -EPERM;
1809
1810         /* Find the mm_struct */
1811         rcu_read_lock();
1812         task = pid ? find_task_by_vpid(pid) : current;
1813         if (!task) {
1814                 rcu_read_unlock();
1815                 return -ESRCH;
1816         }
1817         get_task_struct(task);
1818
1819         /*
1820          * Check if this process has the right to modify the specified
1821          * process. Use the regular "ptrace_may_access()" checks.
1822          */
1823         if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1824                 rcu_read_unlock();
1825                 err = -EPERM;
1826                 goto out;
1827         }
1828         rcu_read_unlock();
1829
1830         err = security_task_movememory(task);
1831         if (err)
1832                 goto out;
1833
1834         task_nodes = cpuset_mems_allowed(task);
1835         mm = get_task_mm(task);
1836         put_task_struct(task);
1837
1838         if (!mm)
1839                 return -EINVAL;
1840
1841         if (nodes)
1842                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1843                                     nodes, status, flags);
1844         else
1845                 err = do_pages_stat(mm, nr_pages, pages, status);
1846
1847         mmput(mm);
1848         return err;
1849
1850 out:
1851         put_task_struct(task);
1852         return err;
1853 }
1854
1855 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1856                 const void __user * __user *, pages,
1857                 const int __user *, nodes,
1858                 int __user *, status, int, flags)
1859 {
1860         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1861 }
1862
1863 #ifdef CONFIG_COMPAT
1864 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1865                        compat_uptr_t __user *, pages32,
1866                        const int __user *, nodes,
1867                        int __user *, status,
1868                        int, flags)
1869 {
1870         const void __user * __user *pages;
1871         int i;
1872
1873         pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1874         for (i = 0; i < nr_pages; i++) {
1875                 compat_uptr_t p;
1876
1877                 if (get_user(p, pages32 + i) ||
1878                         put_user(compat_ptr(p), pages + i))
1879                         return -EFAULT;
1880         }
1881         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1882 }
1883 #endif /* CONFIG_COMPAT */
1884
1885 #ifdef CONFIG_NUMA_BALANCING
1886 /*
1887  * Returns true if this is a safe migration target node for misplaced NUMA
1888  * pages. Currently it only checks the watermarks which crude
1889  */
1890 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1891                                    unsigned long nr_migrate_pages)
1892 {
1893         int z;
1894
1895         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1896                 struct zone *zone = pgdat->node_zones + z;
1897
1898                 if (!populated_zone(zone))
1899                         continue;
1900
1901                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1902                 if (!zone_watermark_ok(zone, 0,
1903                                        high_wmark_pages(zone) +
1904                                        nr_migrate_pages,
1905                                        ZONE_MOVABLE, 0))
1906                         continue;
1907                 return true;
1908         }
1909         return false;
1910 }
1911
1912 static struct page *alloc_misplaced_dst_page(struct page *page,
1913                                            unsigned long data)
1914 {
1915         int nid = (int) data;
1916         struct page *newpage;
1917
1918         newpage = __alloc_pages_node(nid,
1919                                          (GFP_HIGHUSER_MOVABLE |
1920                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
1921                                           __GFP_NORETRY | __GFP_NOWARN) &
1922                                          ~__GFP_RECLAIM, 0);
1923
1924         return newpage;
1925 }
1926
1927 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1928 {
1929         int page_lru;
1930
1931         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1932
1933         /* Avoid migrating to a node that is nearly full */
1934         if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
1935                 return 0;
1936
1937         if (isolate_lru_page(page))
1938                 return 0;
1939
1940         /*
1941          * migrate_misplaced_transhuge_page() skips page migration's usual
1942          * check on page_count(), so we must do it here, now that the page
1943          * has been isolated: a GUP pin, or any other pin, prevents migration.
1944          * The expected page count is 3: 1 for page's mapcount and 1 for the
1945          * caller's pin and 1 for the reference taken by isolate_lru_page().
1946          */
1947         if (PageTransHuge(page) && page_count(page) != 3) {
1948                 putback_lru_page(page);
1949                 return 0;
1950         }
1951
1952         page_lru = page_is_file_lru(page);
1953         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1954                                 hpage_nr_pages(page));
1955
1956         /*
1957          * Isolating the page has taken another reference, so the
1958          * caller's reference can be safely dropped without the page
1959          * disappearing underneath us during migration.
1960          */
1961         put_page(page);
1962         return 1;
1963 }
1964
1965 bool pmd_trans_migrating(pmd_t pmd)
1966 {
1967         struct page *page = pmd_page(pmd);
1968         return PageLocked(page);
1969 }
1970
1971 /*
1972  * Attempt to migrate a misplaced page to the specified destination
1973  * node. Caller is expected to have an elevated reference count on
1974  * the page that will be dropped by this function before returning.
1975  */
1976 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1977                            int node)
1978 {
1979         pg_data_t *pgdat = NODE_DATA(node);
1980         int isolated;
1981         int nr_remaining;
1982         LIST_HEAD(migratepages);
1983
1984         /*
1985          * Don't migrate file pages that are mapped in multiple processes
1986          * with execute permissions as they are probably shared libraries.
1987          */
1988         if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
1989             (vma->vm_flags & VM_EXEC))
1990                 goto out;
1991
1992         /*
1993          * Also do not migrate dirty pages as not all filesystems can move
1994          * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1995          */
1996         if (page_is_file_lru(page) && PageDirty(page))
1997                 goto out;
1998
1999         isolated = numamigrate_isolate_page(pgdat, page);
2000         if (!isolated)
2001                 goto out;
2002
2003         list_add(&page->lru, &migratepages);
2004         nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2005                                      NULL, node, MIGRATE_ASYNC,
2006                                      MR_NUMA_MISPLACED);
2007         if (nr_remaining) {
2008                 if (!list_empty(&migratepages)) {
2009                         list_del(&page->lru);
2010                         dec_node_page_state(page, NR_ISOLATED_ANON +
2011                                         page_is_file_lru(page));
2012                         putback_lru_page(page);
2013                 }
2014                 isolated = 0;
2015         } else
2016                 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2017         BUG_ON(!list_empty(&migratepages));
2018         return isolated;
2019
2020 out:
2021         put_page(page);
2022         return 0;
2023 }
2024 #endif /* CONFIG_NUMA_BALANCING */
2025
2026 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2027 /*
2028  * Migrates a THP to a given target node. page must be locked and is unlocked
2029  * before returning.
2030  */
2031 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2032                                 struct vm_area_struct *vma,
2033                                 pmd_t *pmd, pmd_t entry,
2034                                 unsigned long address,
2035                                 struct page *page, int node)
2036 {
2037         spinlock_t *ptl;
2038         pg_data_t *pgdat = NODE_DATA(node);
2039         int isolated = 0;
2040         struct page *new_page = NULL;
2041         int page_lru = page_is_file_lru(page);
2042         unsigned long start = address & HPAGE_PMD_MASK;
2043
2044         new_page = alloc_pages_node(node,
2045                 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2046                 HPAGE_PMD_ORDER);
2047         if (!new_page)
2048                 goto out_fail;
2049         prep_transhuge_page(new_page);
2050
2051         isolated = numamigrate_isolate_page(pgdat, page);
2052         if (!isolated) {
2053                 put_page(new_page);
2054                 goto out_fail;
2055         }
2056
2057         /* Prepare a page as a migration target */
2058         __SetPageLocked(new_page);
2059         if (PageSwapBacked(page))
2060                 __SetPageSwapBacked(new_page);
2061
2062         /* anon mapping, we can simply copy page->mapping to the new page: */
2063         new_page->mapping = page->mapping;
2064         new_page->index = page->index;
2065         /* flush the cache before copying using the kernel virtual address */
2066         flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2067         migrate_page_copy(new_page, page);
2068         WARN_ON(PageLRU(new_page));
2069
2070         /* Recheck the target PMD */
2071         ptl = pmd_lock(mm, pmd);
2072         if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2073                 spin_unlock(ptl);
2074
2075                 /* Reverse changes made by migrate_page_copy() */
2076                 if (TestClearPageActive(new_page))
2077                         SetPageActive(page);
2078                 if (TestClearPageUnevictable(new_page))
2079                         SetPageUnevictable(page);
2080
2081                 unlock_page(new_page);
2082                 put_page(new_page);             /* Free it */
2083
2084                 /* Retake the callers reference and putback on LRU */
2085                 get_page(page);
2086                 putback_lru_page(page);
2087                 mod_node_page_state(page_pgdat(page),
2088                          NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2089
2090                 goto out_unlock;
2091         }
2092
2093         entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2094         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2095
2096         /*
2097          * Overwrite the old entry under pagetable lock and establish
2098          * the new PTE. Any parallel GUP will either observe the old
2099          * page blocking on the page lock, block on the page table
2100          * lock or observe the new page. The SetPageUptodate on the
2101          * new page and page_add_new_anon_rmap guarantee the copy is
2102          * visible before the pagetable update.
2103          */
2104         page_add_anon_rmap(new_page, vma, start, true);
2105         /*
2106          * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2107          * has already been flushed globally.  So no TLB can be currently
2108          * caching this non present pmd mapping.  There's no need to clear the
2109          * pmd before doing set_pmd_at(), nor to flush the TLB after
2110          * set_pmd_at().  Clearing the pmd here would introduce a race
2111          * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2112          * mmap_lock for reading.  If the pmd is set to NULL at any given time,
2113          * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2114          * pmd.
2115          */
2116         set_pmd_at(mm, start, pmd, entry);
2117         update_mmu_cache_pmd(vma, address, &entry);
2118
2119         page_ref_unfreeze(page, 2);
2120         mlock_migrate_page(new_page, page);
2121         page_remove_rmap(page, true);
2122         set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2123
2124         spin_unlock(ptl);
2125
2126         /* Take an "isolate" reference and put new page on the LRU. */
2127         get_page(new_page);
2128         putback_lru_page(new_page);
2129
2130         unlock_page(new_page);
2131         unlock_page(page);
2132         put_page(page);                 /* Drop the rmap reference */
2133         put_page(page);                 /* Drop the LRU isolation reference */
2134
2135         count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2136         count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2137
2138         mod_node_page_state(page_pgdat(page),
2139                         NR_ISOLATED_ANON + page_lru,
2140                         -HPAGE_PMD_NR);
2141         return isolated;
2142
2143 out_fail:
2144         count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2145         ptl = pmd_lock(mm, pmd);
2146         if (pmd_same(*pmd, entry)) {
2147                 entry = pmd_modify(entry, vma->vm_page_prot);
2148                 set_pmd_at(mm, start, pmd, entry);
2149                 update_mmu_cache_pmd(vma, address, &entry);
2150         }
2151         spin_unlock(ptl);
2152
2153 out_unlock:
2154         unlock_page(page);
2155         put_page(page);
2156         return 0;
2157 }
2158 #endif /* CONFIG_NUMA_BALANCING */
2159
2160 #endif /* CONFIG_NUMA */
2161
2162 #ifdef CONFIG_DEVICE_PRIVATE
2163 static int migrate_vma_collect_hole(unsigned long start,
2164                                     unsigned long end,
2165                                     __always_unused int depth,
2166                                     struct mm_walk *walk)
2167 {
2168         struct migrate_vma *migrate = walk->private;
2169         unsigned long addr;
2170
2171         for (addr = start; addr < end; addr += PAGE_SIZE) {
2172                 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2173                 migrate->dst[migrate->npages] = 0;
2174                 migrate->npages++;
2175                 migrate->cpages++;
2176         }
2177
2178         return 0;
2179 }
2180
2181 static int migrate_vma_collect_skip(unsigned long start,
2182                                     unsigned long end,
2183                                     struct mm_walk *walk)
2184 {
2185         struct migrate_vma *migrate = walk->private;
2186         unsigned long addr;
2187
2188         for (addr = start; addr < end; addr += PAGE_SIZE) {
2189                 migrate->dst[migrate->npages] = 0;
2190                 migrate->src[migrate->npages++] = 0;
2191         }
2192
2193         return 0;
2194 }
2195
2196 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2197                                    unsigned long start,
2198                                    unsigned long end,
2199                                    struct mm_walk *walk)
2200 {
2201         struct migrate_vma *migrate = walk->private;
2202         struct vm_area_struct *vma = walk->vma;
2203         struct mm_struct *mm = vma->vm_mm;
2204         unsigned long addr = start, unmapped = 0;
2205         spinlock_t *ptl;
2206         pte_t *ptep;
2207
2208 again:
2209         if (pmd_none(*pmdp))
2210                 return migrate_vma_collect_hole(start, end, -1, walk);
2211
2212         if (pmd_trans_huge(*pmdp)) {
2213                 struct page *page;
2214
2215                 ptl = pmd_lock(mm, pmdp);
2216                 if (unlikely(!pmd_trans_huge(*pmdp))) {
2217                         spin_unlock(ptl);
2218                         goto again;
2219                 }
2220
2221                 page = pmd_page(*pmdp);
2222                 if (is_huge_zero_page(page)) {
2223                         spin_unlock(ptl);
2224                         split_huge_pmd(vma, pmdp, addr);
2225                         if (pmd_trans_unstable(pmdp))
2226                                 return migrate_vma_collect_skip(start, end,
2227                                                                 walk);
2228                 } else {
2229                         int ret;
2230
2231                         get_page(page);
2232                         spin_unlock(ptl);
2233                         if (unlikely(!trylock_page(page)))
2234                                 return migrate_vma_collect_skip(start, end,
2235                                                                 walk);
2236                         ret = split_huge_page(page);
2237                         unlock_page(page);
2238                         put_page(page);
2239                         if (ret)
2240                                 return migrate_vma_collect_skip(start, end,
2241                                                                 walk);
2242                         if (pmd_none(*pmdp))
2243                                 return migrate_vma_collect_hole(start, end, -1,
2244                                                                 walk);
2245                 }
2246         }
2247
2248         if (unlikely(pmd_bad(*pmdp)))
2249                 return migrate_vma_collect_skip(start, end, walk);
2250
2251         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2252         arch_enter_lazy_mmu_mode();
2253
2254         for (; addr < end; addr += PAGE_SIZE, ptep++) {
2255                 unsigned long mpfn = 0, pfn;
2256                 struct page *page;
2257                 swp_entry_t entry;
2258                 pte_t pte;
2259
2260                 pte = *ptep;
2261
2262                 if (pte_none(pte)) {
2263                         mpfn = MIGRATE_PFN_MIGRATE;
2264                         migrate->cpages++;
2265                         goto next;
2266                 }
2267
2268                 if (!pte_present(pte)) {
2269                         /*
2270                          * Only care about unaddressable device page special
2271                          * page table entry. Other special swap entries are not
2272                          * migratable, and we ignore regular swapped page.
2273                          */
2274                         entry = pte_to_swp_entry(pte);
2275                         if (!is_device_private_entry(entry))
2276                                 goto next;
2277
2278                         page = device_private_entry_to_page(entry);
2279                         if (page->pgmap->owner != migrate->src_owner)
2280                                 goto next;
2281
2282                         mpfn = migrate_pfn(page_to_pfn(page)) |
2283                                         MIGRATE_PFN_MIGRATE;
2284                         if (is_write_device_private_entry(entry))
2285                                 mpfn |= MIGRATE_PFN_WRITE;
2286                 } else {
2287                         if (migrate->src_owner)
2288                                 goto next;
2289                         pfn = pte_pfn(pte);
2290                         if (is_zero_pfn(pfn)) {
2291                                 mpfn = MIGRATE_PFN_MIGRATE;
2292                                 migrate->cpages++;
2293                                 goto next;
2294                         }
2295                         page = vm_normal_page(migrate->vma, addr, pte);
2296                         mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2297                         mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2298                 }
2299
2300                 /* FIXME support THP */
2301                 if (!page || !page->mapping || PageTransCompound(page)) {
2302                         mpfn = 0;
2303                         goto next;
2304                 }
2305
2306                 /*
2307                  * By getting a reference on the page we pin it and that blocks
2308                  * any kind of migration. Side effect is that it "freezes" the
2309                  * pte.
2310                  *
2311                  * We drop this reference after isolating the page from the lru
2312                  * for non device page (device page are not on the lru and thus
2313                  * can't be dropped from it).
2314                  */
2315                 get_page(page);
2316                 migrate->cpages++;
2317
2318                 /*
2319                  * Optimize for the common case where page is only mapped once
2320                  * in one process. If we can lock the page, then we can safely
2321                  * set up a special migration page table entry now.
2322                  */
2323                 if (trylock_page(page)) {
2324                         pte_t swp_pte;
2325
2326                         mpfn |= MIGRATE_PFN_LOCKED;
2327                         ptep_get_and_clear(mm, addr, ptep);
2328
2329                         /* Setup special migration page table entry */
2330                         entry = make_migration_entry(page, mpfn &
2331                                                      MIGRATE_PFN_WRITE);
2332                         swp_pte = swp_entry_to_pte(entry);
2333                         if (pte_soft_dirty(pte))
2334                                 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2335                         if (pte_uffd_wp(pte))
2336                                 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2337                         set_pte_at(mm, addr, ptep, swp_pte);
2338
2339                         /*
2340                          * This is like regular unmap: we remove the rmap and
2341                          * drop page refcount. Page won't be freed, as we took
2342                          * a reference just above.
2343                          */
2344                         page_remove_rmap(page, false);
2345                         put_page(page);
2346
2347                         if (pte_present(pte))
2348                                 unmapped++;
2349                 }
2350
2351 next:
2352                 migrate->dst[migrate->npages] = 0;
2353                 migrate->src[migrate->npages++] = mpfn;
2354         }
2355         arch_leave_lazy_mmu_mode();
2356         pte_unmap_unlock(ptep - 1, ptl);
2357
2358         /* Only flush the TLB if we actually modified any entries */
2359         if (unmapped)
2360                 flush_tlb_range(walk->vma, start, end);
2361
2362         return 0;
2363 }
2364
2365 static const struct mm_walk_ops migrate_vma_walk_ops = {
2366         .pmd_entry              = migrate_vma_collect_pmd,
2367         .pte_hole               = migrate_vma_collect_hole,
2368 };
2369
2370 /*
2371  * migrate_vma_collect() - collect pages over a range of virtual addresses
2372  * @migrate: migrate struct containing all migration information
2373  *
2374  * This will walk the CPU page table. For each virtual address backed by a
2375  * valid page, it updates the src array and takes a reference on the page, in
2376  * order to pin the page until we lock it and unmap it.
2377  */
2378 static void migrate_vma_collect(struct migrate_vma *migrate)
2379 {
2380         struct mmu_notifier_range range;
2381
2382         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL,
2383                         migrate->vma->vm_mm, migrate->start, migrate->end);
2384         mmu_notifier_invalidate_range_start(&range);
2385
2386         walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2387                         &migrate_vma_walk_ops, migrate);
2388
2389         mmu_notifier_invalidate_range_end(&range);
2390         migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2391 }
2392
2393 /*
2394  * migrate_vma_check_page() - check if page is pinned or not
2395  * @page: struct page to check
2396  *
2397  * Pinned pages cannot be migrated. This is the same test as in
2398  * migrate_page_move_mapping(), except that here we allow migration of a
2399  * ZONE_DEVICE page.
2400  */
2401 static bool migrate_vma_check_page(struct page *page)
2402 {
2403         /*
2404          * One extra ref because caller holds an extra reference, either from
2405          * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2406          * a device page.
2407          */
2408         int extra = 1;
2409
2410         /*
2411          * FIXME support THP (transparent huge page), it is bit more complex to
2412          * check them than regular pages, because they can be mapped with a pmd
2413          * or with a pte (split pte mapping).
2414          */
2415         if (PageCompound(page))
2416                 return false;
2417
2418         /* Page from ZONE_DEVICE have one extra reference */
2419         if (is_zone_device_page(page)) {
2420                 /*
2421                  * Private page can never be pin as they have no valid pte and
2422                  * GUP will fail for those. Yet if there is a pending migration
2423                  * a thread might try to wait on the pte migration entry and
2424                  * will bump the page reference count. Sadly there is no way to
2425                  * differentiate a regular pin from migration wait. Hence to
2426                  * avoid 2 racing thread trying to migrate back to CPU to enter
2427                  * infinite loop (one stoping migration because the other is
2428                  * waiting on pte migration entry). We always return true here.
2429                  *
2430                  * FIXME proper solution is to rework migration_entry_wait() so
2431                  * it does not need to take a reference on page.
2432                  */
2433                 return is_device_private_page(page);
2434         }
2435
2436         /* For file back page */
2437         if (page_mapping(page))
2438                 extra += 1 + page_has_private(page);
2439
2440         if ((page_count(page) - extra) > page_mapcount(page))
2441                 return false;
2442
2443         return true;
2444 }
2445
2446 /*
2447  * migrate_vma_prepare() - lock pages and isolate them from the lru
2448  * @migrate: migrate struct containing all migration information
2449  *
2450  * This locks pages that have been collected by migrate_vma_collect(). Once each
2451  * page is locked it is isolated from the lru (for non-device pages). Finally,
2452  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2453  * migrated by concurrent kernel threads.
2454  */
2455 static void migrate_vma_prepare(struct migrate_vma *migrate)
2456 {
2457         const unsigned long npages = migrate->npages;
2458         const unsigned long start = migrate->start;
2459         unsigned long addr, i, restore = 0;
2460         bool allow_drain = true;
2461
2462         lru_add_drain();
2463
2464         for (i = 0; (i < npages) && migrate->cpages; i++) {
2465                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2466                 bool remap = true;
2467
2468                 if (!page)
2469                         continue;
2470
2471                 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2472                         /*
2473                          * Because we are migrating several pages there can be
2474                          * a deadlock between 2 concurrent migration where each
2475                          * are waiting on each other page lock.
2476                          *
2477                          * Make migrate_vma() a best effort thing and backoff
2478                          * for any page we can not lock right away.
2479                          */
2480                         if (!trylock_page(page)) {
2481                                 migrate->src[i] = 0;
2482                                 migrate->cpages--;
2483                                 put_page(page);
2484                                 continue;
2485                         }
2486                         remap = false;
2487                         migrate->src[i] |= MIGRATE_PFN_LOCKED;
2488                 }
2489
2490                 /* ZONE_DEVICE pages are not on LRU */
2491                 if (!is_zone_device_page(page)) {
2492                         if (!PageLRU(page) && allow_drain) {
2493                                 /* Drain CPU's pagevec */
2494                                 lru_add_drain_all();
2495                                 allow_drain = false;
2496                         }
2497
2498                         if (isolate_lru_page(page)) {
2499                                 if (remap) {
2500                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2501                                         migrate->cpages--;
2502                                         restore++;
2503                                 } else {
2504                                         migrate->src[i] = 0;
2505                                         unlock_page(page);
2506                                         migrate->cpages--;
2507                                         put_page(page);
2508                                 }
2509                                 continue;
2510                         }
2511
2512                         /* Drop the reference we took in collect */
2513                         put_page(page);
2514                 }
2515
2516                 if (!migrate_vma_check_page(page)) {
2517                         if (remap) {
2518                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2519                                 migrate->cpages--;
2520                                 restore++;
2521
2522                                 if (!is_zone_device_page(page)) {
2523                                         get_page(page);
2524                                         putback_lru_page(page);
2525                                 }
2526                         } else {
2527                                 migrate->src[i] = 0;
2528                                 unlock_page(page);
2529                                 migrate->cpages--;
2530
2531                                 if (!is_zone_device_page(page))
2532                                         putback_lru_page(page);
2533                                 else
2534                                         put_page(page);
2535                         }
2536                 }
2537         }
2538
2539         for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2540                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2541
2542                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2543                         continue;
2544
2545                 remove_migration_pte(page, migrate->vma, addr, page);
2546
2547                 migrate->src[i] = 0;
2548                 unlock_page(page);
2549                 put_page(page);
2550                 restore--;
2551         }
2552 }
2553
2554 /*
2555  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2556  * @migrate: migrate struct containing all migration information
2557  *
2558  * Replace page mapping (CPU page table pte) with a special migration pte entry
2559  * and check again if it has been pinned. Pinned pages are restored because we
2560  * cannot migrate them.
2561  *
2562  * This is the last step before we call the device driver callback to allocate
2563  * destination memory and copy contents of original page over to new page.
2564  */
2565 static void migrate_vma_unmap(struct migrate_vma *migrate)
2566 {
2567         int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2568         const unsigned long npages = migrate->npages;
2569         const unsigned long start = migrate->start;
2570         unsigned long addr, i, restore = 0;
2571
2572         for (i = 0; i < npages; i++) {
2573                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2574
2575                 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2576                         continue;
2577
2578                 if (page_mapped(page)) {
2579                         try_to_unmap(page, flags);
2580                         if (page_mapped(page))
2581                                 goto restore;
2582                 }
2583
2584                 if (migrate_vma_check_page(page))
2585                         continue;
2586
2587 restore:
2588                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2589                 migrate->cpages--;
2590                 restore++;
2591         }
2592
2593         for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2594                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2595
2596                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2597                         continue;
2598
2599                 remove_migration_ptes(page, page, false);
2600
2601                 migrate->src[i] = 0;
2602                 unlock_page(page);
2603                 restore--;
2604
2605                 if (is_zone_device_page(page))
2606                         put_page(page);
2607                 else
2608                         putback_lru_page(page);
2609         }
2610 }
2611
2612 /**
2613  * migrate_vma_setup() - prepare to migrate a range of memory
2614  * @args: contains the vma, start, and and pfns arrays for the migration
2615  *
2616  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2617  * without an error.
2618  *
2619  * Prepare to migrate a range of memory virtual address range by collecting all
2620  * the pages backing each virtual address in the range, saving them inside the
2621  * src array.  Then lock those pages and unmap them. Once the pages are locked
2622  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2623  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2624  * corresponding src array entry.  Then restores any pages that are pinned, by
2625  * remapping and unlocking those pages.
2626  *
2627  * The caller should then allocate destination memory and copy source memory to
2628  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2629  * flag set).  Once these are allocated and copied, the caller must update each
2630  * corresponding entry in the dst array with the pfn value of the destination
2631  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2632  * (destination pages must have their struct pages locked, via lock_page()).
2633  *
2634  * Note that the caller does not have to migrate all the pages that are marked
2635  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2636  * device memory to system memory.  If the caller cannot migrate a device page
2637  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2638  * consequences for the userspace process, so it must be avoided if at all
2639  * possible.
2640  *
2641  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2642  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2643  * allowing the caller to allocate device memory for those unback virtual
2644  * address.  For this the caller simply has to allocate device memory and
2645  * properly set the destination entry like for regular migration.  Note that
2646  * this can still fails and thus inside the device driver must check if the
2647  * migration was successful for those entries after calling migrate_vma_pages()
2648  * just like for regular migration.
2649  *
2650  * After that, the callers must call migrate_vma_pages() to go over each entry
2651  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2652  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2653  * then migrate_vma_pages() to migrate struct page information from the source
2654  * struct page to the destination struct page.  If it fails to migrate the
2655  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2656  * src array.
2657  *
2658  * At this point all successfully migrated pages have an entry in the src
2659  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2660  * array entry with MIGRATE_PFN_VALID flag set.
2661  *
2662  * Once migrate_vma_pages() returns the caller may inspect which pages were
2663  * successfully migrated, and which were not.  Successfully migrated pages will
2664  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2665  *
2666  * It is safe to update device page table after migrate_vma_pages() because
2667  * both destination and source page are still locked, and the mmap_lock is held
2668  * in read mode (hence no one can unmap the range being migrated).
2669  *
2670  * Once the caller is done cleaning up things and updating its page table (if it
2671  * chose to do so, this is not an obligation) it finally calls
2672  * migrate_vma_finalize() to update the CPU page table to point to new pages
2673  * for successfully migrated pages or otherwise restore the CPU page table to
2674  * point to the original source pages.
2675  */
2676 int migrate_vma_setup(struct migrate_vma *args)
2677 {
2678         long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2679
2680         args->start &= PAGE_MASK;
2681         args->end &= PAGE_MASK;
2682         if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2683             (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2684                 return -EINVAL;
2685         if (nr_pages <= 0)
2686                 return -EINVAL;
2687         if (args->start < args->vma->vm_start ||
2688             args->start >= args->vma->vm_end)
2689                 return -EINVAL;
2690         if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2691                 return -EINVAL;
2692         if (!args->src || !args->dst)
2693                 return -EINVAL;
2694
2695         memset(args->src, 0, sizeof(*args->src) * nr_pages);
2696         args->cpages = 0;
2697         args->npages = 0;
2698
2699         migrate_vma_collect(args);
2700
2701         if (args->cpages)
2702                 migrate_vma_prepare(args);
2703         if (args->cpages)
2704                 migrate_vma_unmap(args);
2705
2706         /*
2707          * At this point pages are locked and unmapped, and thus they have
2708          * stable content and can safely be copied to destination memory that
2709          * is allocated by the drivers.
2710          */
2711         return 0;
2712
2713 }
2714 EXPORT_SYMBOL(migrate_vma_setup);
2715
2716 /*
2717  * This code closely matches the code in:
2718  *   __handle_mm_fault()
2719  *     handle_pte_fault()
2720  *       do_anonymous_page()
2721  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2722  * private page.
2723  */
2724 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2725                                     unsigned long addr,
2726                                     struct page *page,
2727                                     unsigned long *src,
2728                                     unsigned long *dst)
2729 {
2730         struct vm_area_struct *vma = migrate->vma;
2731         struct mm_struct *mm = vma->vm_mm;
2732         bool flush = false;
2733         spinlock_t *ptl;
2734         pte_t entry;
2735         pgd_t *pgdp;
2736         p4d_t *p4dp;
2737         pud_t *pudp;
2738         pmd_t *pmdp;
2739         pte_t *ptep;
2740
2741         /* Only allow populating anonymous memory */
2742         if (!vma_is_anonymous(vma))
2743                 goto abort;
2744
2745         pgdp = pgd_offset(mm, addr);
2746         p4dp = p4d_alloc(mm, pgdp, addr);
2747         if (!p4dp)
2748                 goto abort;
2749         pudp = pud_alloc(mm, p4dp, addr);
2750         if (!pudp)
2751                 goto abort;
2752         pmdp = pmd_alloc(mm, pudp, addr);
2753         if (!pmdp)
2754                 goto abort;
2755
2756         if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2757                 goto abort;
2758
2759         /*
2760          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2761          * pte_offset_map() on pmds where a huge pmd might be created
2762          * from a different thread.
2763          *
2764          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2765          * parallel threads are excluded by other means.
2766          *
2767          * Here we only have mmap_read_lock(mm).
2768          */
2769         if (pte_alloc(mm, pmdp))
2770                 goto abort;
2771
2772         /* See the comment in pte_alloc_one_map() */
2773         if (unlikely(pmd_trans_unstable(pmdp)))
2774                 goto abort;
2775
2776         if (unlikely(anon_vma_prepare(vma)))
2777                 goto abort;
2778         if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2779                 goto abort;
2780
2781         /*
2782          * The memory barrier inside __SetPageUptodate makes sure that
2783          * preceding stores to the page contents become visible before
2784          * the set_pte_at() write.
2785          */
2786         __SetPageUptodate(page);
2787
2788         if (is_zone_device_page(page)) {
2789                 if (is_device_private_page(page)) {
2790                         swp_entry_t swp_entry;
2791
2792                         swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2793                         entry = swp_entry_to_pte(swp_entry);
2794                 }
2795         } else {
2796                 entry = mk_pte(page, vma->vm_page_prot);
2797                 if (vma->vm_flags & VM_WRITE)
2798                         entry = pte_mkwrite(pte_mkdirty(entry));
2799         }
2800
2801         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2802
2803         if (check_stable_address_space(mm))
2804                 goto unlock_abort;
2805
2806         if (pte_present(*ptep)) {
2807                 unsigned long pfn = pte_pfn(*ptep);
2808
2809                 if (!is_zero_pfn(pfn))
2810                         goto unlock_abort;
2811                 flush = true;
2812         } else if (!pte_none(*ptep))
2813                 goto unlock_abort;
2814
2815         /*
2816          * Check for userfaultfd but do not deliver the fault. Instead,
2817          * just back off.
2818          */
2819         if (userfaultfd_missing(vma))
2820                 goto unlock_abort;
2821
2822         inc_mm_counter(mm, MM_ANONPAGES);
2823         page_add_new_anon_rmap(page, vma, addr, false);
2824         if (!is_zone_device_page(page))
2825                 lru_cache_add_active_or_unevictable(page, vma);
2826         get_page(page);
2827
2828         if (flush) {
2829                 flush_cache_page(vma, addr, pte_pfn(*ptep));
2830                 ptep_clear_flush_notify(vma, addr, ptep);
2831                 set_pte_at_notify(mm, addr, ptep, entry);
2832                 update_mmu_cache(vma, addr, ptep);
2833         } else {
2834                 /* No need to invalidate - it was non-present before */
2835                 set_pte_at(mm, addr, ptep, entry);
2836                 update_mmu_cache(vma, addr, ptep);
2837         }
2838
2839         pte_unmap_unlock(ptep, ptl);
2840         *src = MIGRATE_PFN_MIGRATE;
2841         return;
2842
2843 unlock_abort:
2844         pte_unmap_unlock(ptep, ptl);
2845 abort:
2846         *src &= ~MIGRATE_PFN_MIGRATE;
2847 }
2848
2849 /**
2850  * migrate_vma_pages() - migrate meta-data from src page to dst page
2851  * @migrate: migrate struct containing all migration information
2852  *
2853  * This migrates struct page meta-data from source struct page to destination
2854  * struct page. This effectively finishes the migration from source page to the
2855  * destination page.
2856  */
2857 void migrate_vma_pages(struct migrate_vma *migrate)
2858 {
2859         const unsigned long npages = migrate->npages;
2860         const unsigned long start = migrate->start;
2861         struct mmu_notifier_range range;
2862         unsigned long addr, i;
2863         bool notified = false;
2864
2865         for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2866                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2867                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2868                 struct address_space *mapping;
2869                 int r;
2870
2871                 if (!newpage) {
2872                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2873                         continue;
2874                 }
2875
2876                 if (!page) {
2877                         if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2878                                 continue;
2879                         if (!notified) {
2880                                 notified = true;
2881
2882                                 mmu_notifier_range_init(&range,
2883                                                         MMU_NOTIFY_CLEAR, 0,
2884                                                         NULL,
2885                                                         migrate->vma->vm_mm,
2886                                                         addr, migrate->end);
2887                                 mmu_notifier_invalidate_range_start(&range);
2888                         }
2889                         migrate_vma_insert_page(migrate, addr, newpage,
2890                                                 &migrate->src[i],
2891                                                 &migrate->dst[i]);
2892                         continue;
2893                 }
2894
2895                 mapping = page_mapping(page);
2896
2897                 if (is_zone_device_page(newpage)) {
2898                         if (is_device_private_page(newpage)) {
2899                                 /*
2900                                  * For now only support private anonymous when
2901                                  * migrating to un-addressable device memory.
2902                                  */
2903                                 if (mapping) {
2904                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2905                                         continue;
2906                                 }
2907                         } else {
2908                                 /*
2909                                  * Other types of ZONE_DEVICE page are not
2910                                  * supported.
2911                                  */
2912                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2913                                 continue;
2914                         }
2915                 }
2916
2917                 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2918                 if (r != MIGRATEPAGE_SUCCESS)
2919                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2920         }
2921
2922         /*
2923          * No need to double call mmu_notifier->invalidate_range() callback as
2924          * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2925          * did already call it.
2926          */
2927         if (notified)
2928                 mmu_notifier_invalidate_range_only_end(&range);
2929 }
2930 EXPORT_SYMBOL(migrate_vma_pages);
2931
2932 /**
2933  * migrate_vma_finalize() - restore CPU page table entry
2934  * @migrate: migrate struct containing all migration information
2935  *
2936  * This replaces the special migration pte entry with either a mapping to the
2937  * new page if migration was successful for that page, or to the original page
2938  * otherwise.
2939  *
2940  * This also unlocks the pages and puts them back on the lru, or drops the extra
2941  * refcount, for device pages.
2942  */
2943 void migrate_vma_finalize(struct migrate_vma *migrate)
2944 {
2945         const unsigned long npages = migrate->npages;
2946         unsigned long i;
2947
2948         for (i = 0; i < npages; i++) {
2949                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2950                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2951
2952                 if (!page) {
2953                         if (newpage) {
2954                                 unlock_page(newpage);
2955                                 put_page(newpage);
2956                         }
2957                         continue;
2958                 }
2959
2960                 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2961                         if (newpage) {
2962                                 unlock_page(newpage);
2963                                 put_page(newpage);
2964                         }
2965                         newpage = page;
2966                 }
2967
2968                 remove_migration_ptes(page, newpage, false);
2969                 unlock_page(page);
2970                 migrate->cpages--;
2971
2972                 if (is_zone_device_page(page))
2973                         put_page(page);
2974                 else
2975                         putback_lru_page(page);
2976
2977                 if (newpage != page) {
2978                         unlock_page(newpage);
2979                         if (is_zone_device_page(newpage))
2980                                 put_page(newpage);
2981                         else
2982                                 putback_lru_page(newpage);
2983                 }
2984         }
2985 }
2986 EXPORT_SYMBOL(migrate_vma_finalize);
2987 #endif /* CONFIG_DEVICE_PRIVATE */