Merge git://oss.sgi.com:8090/oss/git/xfs-2.6
[linux-2.6-microblaze.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/init.h>
51
52 #include <asm/pgalloc.h>
53 #include <asm/uaccess.h>
54 #include <asm/tlb.h>
55 #include <asm/tlbflush.h>
56 #include <asm/pgtable.h>
57
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60
61 #ifndef CONFIG_NEED_MULTIPLE_NODES
62 /* use the per-pgdat data instead for discontigmem - mbligh */
63 unsigned long max_mapnr;
64 struct page *mem_map;
65
66 EXPORT_SYMBOL(max_mapnr);
67 EXPORT_SYMBOL(mem_map);
68 #endif
69
70 unsigned long num_physpages;
71 /*
72  * A number of key systems in x86 including ioremap() rely on the assumption
73  * that high_memory defines the upper bound on direct map memory, then end
74  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
75  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
76  * and ZONE_HIGHMEM.
77  */
78 void * high_memory;
79 unsigned long vmalloc_earlyreserve;
80
81 EXPORT_SYMBOL(num_physpages);
82 EXPORT_SYMBOL(high_memory);
83 EXPORT_SYMBOL(vmalloc_earlyreserve);
84
85 int randomize_va_space __read_mostly = 1;
86
87 static int __init disable_randmaps(char *s)
88 {
89         randomize_va_space = 0;
90         return 0;
91 }
92 __setup("norandmaps", disable_randmaps);
93
94
95 /*
96  * If a p?d_bad entry is found while walking page tables, report
97  * the error, before resetting entry to p?d_none.  Usually (but
98  * very seldom) called out from the p?d_none_or_clear_bad macros.
99  */
100
101 void pgd_clear_bad(pgd_t *pgd)
102 {
103         pgd_ERROR(*pgd);
104         pgd_clear(pgd);
105 }
106
107 void pud_clear_bad(pud_t *pud)
108 {
109         pud_ERROR(*pud);
110         pud_clear(pud);
111 }
112
113 void pmd_clear_bad(pmd_t *pmd)
114 {
115         pmd_ERROR(*pmd);
116         pmd_clear(pmd);
117 }
118
119 /*
120  * Note: this doesn't free the actual pages themselves. That
121  * has been handled earlier when unmapping all the memory regions.
122  */
123 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
124 {
125         struct page *page = pmd_page(*pmd);
126         pmd_clear(pmd);
127         pte_lock_deinit(page);
128         pte_free_tlb(tlb, page);
129         dec_page_state(nr_page_table_pages);
130         tlb->mm->nr_ptes--;
131 }
132
133 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
134                                 unsigned long addr, unsigned long end,
135                                 unsigned long floor, unsigned long ceiling)
136 {
137         pmd_t *pmd;
138         unsigned long next;
139         unsigned long start;
140
141         start = addr;
142         pmd = pmd_offset(pud, addr);
143         do {
144                 next = pmd_addr_end(addr, end);
145                 if (pmd_none_or_clear_bad(pmd))
146                         continue;
147                 free_pte_range(tlb, pmd);
148         } while (pmd++, addr = next, addr != end);
149
150         start &= PUD_MASK;
151         if (start < floor)
152                 return;
153         if (ceiling) {
154                 ceiling &= PUD_MASK;
155                 if (!ceiling)
156                         return;
157         }
158         if (end - 1 > ceiling - 1)
159                 return;
160
161         pmd = pmd_offset(pud, start);
162         pud_clear(pud);
163         pmd_free_tlb(tlb, pmd);
164 }
165
166 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
167                                 unsigned long addr, unsigned long end,
168                                 unsigned long floor, unsigned long ceiling)
169 {
170         pud_t *pud;
171         unsigned long next;
172         unsigned long start;
173
174         start = addr;
175         pud = pud_offset(pgd, addr);
176         do {
177                 next = pud_addr_end(addr, end);
178                 if (pud_none_or_clear_bad(pud))
179                         continue;
180                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
181         } while (pud++, addr = next, addr != end);
182
183         start &= PGDIR_MASK;
184         if (start < floor)
185                 return;
186         if (ceiling) {
187                 ceiling &= PGDIR_MASK;
188                 if (!ceiling)
189                         return;
190         }
191         if (end - 1 > ceiling - 1)
192                 return;
193
194         pud = pud_offset(pgd, start);
195         pgd_clear(pgd);
196         pud_free_tlb(tlb, pud);
197 }
198
199 /*
200  * This function frees user-level page tables of a process.
201  *
202  * Must be called with pagetable lock held.
203  */
204 void free_pgd_range(struct mmu_gather **tlb,
205                         unsigned long addr, unsigned long end,
206                         unsigned long floor, unsigned long ceiling)
207 {
208         pgd_t *pgd;
209         unsigned long next;
210         unsigned long start;
211
212         /*
213          * The next few lines have given us lots of grief...
214          *
215          * Why are we testing PMD* at this top level?  Because often
216          * there will be no work to do at all, and we'd prefer not to
217          * go all the way down to the bottom just to discover that.
218          *
219          * Why all these "- 1"s?  Because 0 represents both the bottom
220          * of the address space and the top of it (using -1 for the
221          * top wouldn't help much: the masks would do the wrong thing).
222          * The rule is that addr 0 and floor 0 refer to the bottom of
223          * the address space, but end 0 and ceiling 0 refer to the top
224          * Comparisons need to use "end - 1" and "ceiling - 1" (though
225          * that end 0 case should be mythical).
226          *
227          * Wherever addr is brought up or ceiling brought down, we must
228          * be careful to reject "the opposite 0" before it confuses the
229          * subsequent tests.  But what about where end is brought down
230          * by PMD_SIZE below? no, end can't go down to 0 there.
231          *
232          * Whereas we round start (addr) and ceiling down, by different
233          * masks at different levels, in order to test whether a table
234          * now has no other vmas using it, so can be freed, we don't
235          * bother to round floor or end up - the tests don't need that.
236          */
237
238         addr &= PMD_MASK;
239         if (addr < floor) {
240                 addr += PMD_SIZE;
241                 if (!addr)
242                         return;
243         }
244         if (ceiling) {
245                 ceiling &= PMD_MASK;
246                 if (!ceiling)
247                         return;
248         }
249         if (end - 1 > ceiling - 1)
250                 end -= PMD_SIZE;
251         if (addr > end - 1)
252                 return;
253
254         start = addr;
255         pgd = pgd_offset((*tlb)->mm, addr);
256         do {
257                 next = pgd_addr_end(addr, end);
258                 if (pgd_none_or_clear_bad(pgd))
259                         continue;
260                 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
261         } while (pgd++, addr = next, addr != end);
262
263         if (!(*tlb)->fullmm)
264                 flush_tlb_pgtables((*tlb)->mm, start, end);
265 }
266
267 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
268                 unsigned long floor, unsigned long ceiling)
269 {
270         while (vma) {
271                 struct vm_area_struct *next = vma->vm_next;
272                 unsigned long addr = vma->vm_start;
273
274                 /*
275                  * Hide vma from rmap and vmtruncate before freeing pgtables
276                  */
277                 anon_vma_unlink(vma);
278                 unlink_file_vma(vma);
279
280                 if (is_vm_hugetlb_page(vma)) {
281                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
282                                 floor, next? next->vm_start: ceiling);
283                 } else {
284                         /*
285                          * Optimization: gather nearby vmas into one call down
286                          */
287                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
288                                && !is_vm_hugetlb_page(next)) {
289                                 vma = next;
290                                 next = vma->vm_next;
291                                 anon_vma_unlink(vma);
292                                 unlink_file_vma(vma);
293                         }
294                         free_pgd_range(tlb, addr, vma->vm_end,
295                                 floor, next? next->vm_start: ceiling);
296                 }
297                 vma = next;
298         }
299 }
300
301 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
302 {
303         struct page *new = pte_alloc_one(mm, address);
304         if (!new)
305                 return -ENOMEM;
306
307         pte_lock_init(new);
308         spin_lock(&mm->page_table_lock);
309         if (pmd_present(*pmd)) {        /* Another has populated it */
310                 pte_lock_deinit(new);
311                 pte_free(new);
312         } else {
313                 mm->nr_ptes++;
314                 inc_page_state(nr_page_table_pages);
315                 pmd_populate(mm, pmd, new);
316         }
317         spin_unlock(&mm->page_table_lock);
318         return 0;
319 }
320
321 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
322 {
323         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
324         if (!new)
325                 return -ENOMEM;
326
327         spin_lock(&init_mm.page_table_lock);
328         if (pmd_present(*pmd))          /* Another has populated it */
329                 pte_free_kernel(new);
330         else
331                 pmd_populate_kernel(&init_mm, pmd, new);
332         spin_unlock(&init_mm.page_table_lock);
333         return 0;
334 }
335
336 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
337 {
338         if (file_rss)
339                 add_mm_counter(mm, file_rss, file_rss);
340         if (anon_rss)
341                 add_mm_counter(mm, anon_rss, anon_rss);
342 }
343
344 /*
345  * This function is called to print an error when a bad pte
346  * is found. For example, we might have a PFN-mapped pte in
347  * a region that doesn't allow it.
348  *
349  * The calling function must still handle the error.
350  */
351 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
352 {
353         printk(KERN_ERR "Bad pte = %08llx, process = %s, "
354                         "vm_flags = %lx, vaddr = %lx\n",
355                 (long long)pte_val(pte),
356                 (vma->vm_mm == current->mm ? current->comm : "???"),
357                 vma->vm_flags, vaddr);
358         dump_stack();
359 }
360
361 static inline int is_cow_mapping(unsigned int flags)
362 {
363         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
364 }
365
366 /*
367  * This function gets the "struct page" associated with a pte.
368  *
369  * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
370  * will have each page table entry just pointing to a raw page frame
371  * number, and as far as the VM layer is concerned, those do not have
372  * pages associated with them - even if the PFN might point to memory
373  * that otherwise is perfectly fine and has a "struct page".
374  *
375  * The way we recognize those mappings is through the rules set up
376  * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
377  * and the vm_pgoff will point to the first PFN mapped: thus every
378  * page that is a raw mapping will always honor the rule
379  *
380  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
381  *
382  * and if that isn't true, the page has been COW'ed (in which case it
383  * _does_ have a "struct page" associated with it even if it is in a
384  * VM_PFNMAP range).
385  */
386 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
387 {
388         unsigned long pfn = pte_pfn(pte);
389
390         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
391                 unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
392                 if (pfn == vma->vm_pgoff + off)
393                         return NULL;
394                 if (!is_cow_mapping(vma->vm_flags))
395                         return NULL;
396         }
397
398 #ifdef CONFIG_DEBUG_VM
399         if (unlikely(!pfn_valid(pfn))) {
400                 print_bad_pte(vma, pte, addr);
401                 return NULL;
402         }
403 #endif
404
405         /*
406          * NOTE! We still have PageReserved() pages in the page 
407          * tables. 
408          *
409          * The PAGE_ZERO() pages and various VDSO mappings can
410          * cause them to exist.
411          */
412         return pfn_to_page(pfn);
413 }
414
415 /*
416  * copy one vm_area from one task to the other. Assumes the page tables
417  * already present in the new task to be cleared in the whole range
418  * covered by this vma.
419  */
420
421 static inline void
422 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
423                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
424                 unsigned long addr, int *rss)
425 {
426         unsigned long vm_flags = vma->vm_flags;
427         pte_t pte = *src_pte;
428         struct page *page;
429
430         /* pte contains position in swap or file, so copy. */
431         if (unlikely(!pte_present(pte))) {
432                 if (!pte_file(pte)) {
433                         swap_duplicate(pte_to_swp_entry(pte));
434                         /* make sure dst_mm is on swapoff's mmlist. */
435                         if (unlikely(list_empty(&dst_mm->mmlist))) {
436                                 spin_lock(&mmlist_lock);
437                                 if (list_empty(&dst_mm->mmlist))
438                                         list_add(&dst_mm->mmlist,
439                                                  &src_mm->mmlist);
440                                 spin_unlock(&mmlist_lock);
441                         }
442                 }
443                 goto out_set_pte;
444         }
445
446         /*
447          * If it's a COW mapping, write protect it both
448          * in the parent and the child
449          */
450         if (is_cow_mapping(vm_flags)) {
451                 ptep_set_wrprotect(src_mm, addr, src_pte);
452                 pte = *src_pte;
453         }
454
455         /*
456          * If it's a shared mapping, mark it clean in
457          * the child
458          */
459         if (vm_flags & VM_SHARED)
460                 pte = pte_mkclean(pte);
461         pte = pte_mkold(pte);
462
463         page = vm_normal_page(vma, addr, pte);
464         if (page) {
465                 get_page(page);
466                 page_dup_rmap(page);
467                 rss[!!PageAnon(page)]++;
468         }
469
470 out_set_pte:
471         set_pte_at(dst_mm, addr, dst_pte, pte);
472 }
473
474 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
475                 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
476                 unsigned long addr, unsigned long end)
477 {
478         pte_t *src_pte, *dst_pte;
479         spinlock_t *src_ptl, *dst_ptl;
480         int progress = 0;
481         int rss[2];
482
483 again:
484         rss[1] = rss[0] = 0;
485         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
486         if (!dst_pte)
487                 return -ENOMEM;
488         src_pte = pte_offset_map_nested(src_pmd, addr);
489         src_ptl = pte_lockptr(src_mm, src_pmd);
490         spin_lock(src_ptl);
491
492         do {
493                 /*
494                  * We are holding two locks at this point - either of them
495                  * could generate latencies in another task on another CPU.
496                  */
497                 if (progress >= 32) {
498                         progress = 0;
499                         if (need_resched() ||
500                             need_lockbreak(src_ptl) ||
501                             need_lockbreak(dst_ptl))
502                                 break;
503                 }
504                 if (pte_none(*src_pte)) {
505                         progress++;
506                         continue;
507                 }
508                 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
509                 progress += 8;
510         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
511
512         spin_unlock(src_ptl);
513         pte_unmap_nested(src_pte - 1);
514         add_mm_rss(dst_mm, rss[0], rss[1]);
515         pte_unmap_unlock(dst_pte - 1, dst_ptl);
516         cond_resched();
517         if (addr != end)
518                 goto again;
519         return 0;
520 }
521
522 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
523                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
524                 unsigned long addr, unsigned long end)
525 {
526         pmd_t *src_pmd, *dst_pmd;
527         unsigned long next;
528
529         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
530         if (!dst_pmd)
531                 return -ENOMEM;
532         src_pmd = pmd_offset(src_pud, addr);
533         do {
534                 next = pmd_addr_end(addr, end);
535                 if (pmd_none_or_clear_bad(src_pmd))
536                         continue;
537                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
538                                                 vma, addr, next))
539                         return -ENOMEM;
540         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
541         return 0;
542 }
543
544 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
545                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
546                 unsigned long addr, unsigned long end)
547 {
548         pud_t *src_pud, *dst_pud;
549         unsigned long next;
550
551         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
552         if (!dst_pud)
553                 return -ENOMEM;
554         src_pud = pud_offset(src_pgd, addr);
555         do {
556                 next = pud_addr_end(addr, end);
557                 if (pud_none_or_clear_bad(src_pud))
558                         continue;
559                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
560                                                 vma, addr, next))
561                         return -ENOMEM;
562         } while (dst_pud++, src_pud++, addr = next, addr != end);
563         return 0;
564 }
565
566 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
567                 struct vm_area_struct *vma)
568 {
569         pgd_t *src_pgd, *dst_pgd;
570         unsigned long next;
571         unsigned long addr = vma->vm_start;
572         unsigned long end = vma->vm_end;
573
574         /*
575          * Don't copy ptes where a page fault will fill them correctly.
576          * Fork becomes much lighter when there are big shared or private
577          * readonly mappings. The tradeoff is that copy_page_range is more
578          * efficient than faulting.
579          */
580         if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
581                 if (!vma->anon_vma)
582                         return 0;
583         }
584
585         if (is_vm_hugetlb_page(vma))
586                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
587
588         dst_pgd = pgd_offset(dst_mm, addr);
589         src_pgd = pgd_offset(src_mm, addr);
590         do {
591                 next = pgd_addr_end(addr, end);
592                 if (pgd_none_or_clear_bad(src_pgd))
593                         continue;
594                 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
595                                                 vma, addr, next))
596                         return -ENOMEM;
597         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
598         return 0;
599 }
600
601 static unsigned long zap_pte_range(struct mmu_gather *tlb,
602                                 struct vm_area_struct *vma, pmd_t *pmd,
603                                 unsigned long addr, unsigned long end,
604                                 long *zap_work, struct zap_details *details)
605 {
606         struct mm_struct *mm = tlb->mm;
607         pte_t *pte;
608         spinlock_t *ptl;
609         int file_rss = 0;
610         int anon_rss = 0;
611
612         pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
613         do {
614                 pte_t ptent = *pte;
615                 if (pte_none(ptent)) {
616                         (*zap_work)--;
617                         continue;
618                 }
619
620                 (*zap_work) -= PAGE_SIZE;
621
622                 if (pte_present(ptent)) {
623                         struct page *page;
624
625                         page = vm_normal_page(vma, addr, ptent);
626                         if (unlikely(details) && page) {
627                                 /*
628                                  * unmap_shared_mapping_pages() wants to
629                                  * invalidate cache without truncating:
630                                  * unmap shared but keep private pages.
631                                  */
632                                 if (details->check_mapping &&
633                                     details->check_mapping != page->mapping)
634                                         continue;
635                                 /*
636                                  * Each page->index must be checked when
637                                  * invalidating or truncating nonlinear.
638                                  */
639                                 if (details->nonlinear_vma &&
640                                     (page->index < details->first_index ||
641                                      page->index > details->last_index))
642                                         continue;
643                         }
644                         ptent = ptep_get_and_clear_full(mm, addr, pte,
645                                                         tlb->fullmm);
646                         tlb_remove_tlb_entry(tlb, pte, addr);
647                         if (unlikely(!page))
648                                 continue;
649                         if (unlikely(details) && details->nonlinear_vma
650                             && linear_page_index(details->nonlinear_vma,
651                                                 addr) != page->index)
652                                 set_pte_at(mm, addr, pte,
653                                            pgoff_to_pte(page->index));
654                         if (PageAnon(page))
655                                 anon_rss--;
656                         else {
657                                 if (pte_dirty(ptent))
658                                         set_page_dirty(page);
659                                 if (pte_young(ptent))
660                                         mark_page_accessed(page);
661                                 file_rss--;
662                         }
663                         page_remove_rmap(page);
664                         tlb_remove_page(tlb, page);
665                         continue;
666                 }
667                 /*
668                  * If details->check_mapping, we leave swap entries;
669                  * if details->nonlinear_vma, we leave file entries.
670                  */
671                 if (unlikely(details))
672                         continue;
673                 if (!pte_file(ptent))
674                         free_swap_and_cache(pte_to_swp_entry(ptent));
675                 pte_clear_full(mm, addr, pte, tlb->fullmm);
676         } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
677
678         add_mm_rss(mm, file_rss, anon_rss);
679         pte_unmap_unlock(pte - 1, ptl);
680
681         return addr;
682 }
683
684 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
685                                 struct vm_area_struct *vma, pud_t *pud,
686                                 unsigned long addr, unsigned long end,
687                                 long *zap_work, struct zap_details *details)
688 {
689         pmd_t *pmd;
690         unsigned long next;
691
692         pmd = pmd_offset(pud, addr);
693         do {
694                 next = pmd_addr_end(addr, end);
695                 if (pmd_none_or_clear_bad(pmd)) {
696                         (*zap_work)--;
697                         continue;
698                 }
699                 next = zap_pte_range(tlb, vma, pmd, addr, next,
700                                                 zap_work, details);
701         } while (pmd++, addr = next, (addr != end && *zap_work > 0));
702
703         return addr;
704 }
705
706 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
707                                 struct vm_area_struct *vma, pgd_t *pgd,
708                                 unsigned long addr, unsigned long end,
709                                 long *zap_work, struct zap_details *details)
710 {
711         pud_t *pud;
712         unsigned long next;
713
714         pud = pud_offset(pgd, addr);
715         do {
716                 next = pud_addr_end(addr, end);
717                 if (pud_none_or_clear_bad(pud)) {
718                         (*zap_work)--;
719                         continue;
720                 }
721                 next = zap_pmd_range(tlb, vma, pud, addr, next,
722                                                 zap_work, details);
723         } while (pud++, addr = next, (addr != end && *zap_work > 0));
724
725         return addr;
726 }
727
728 static unsigned long unmap_page_range(struct mmu_gather *tlb,
729                                 struct vm_area_struct *vma,
730                                 unsigned long addr, unsigned long end,
731                                 long *zap_work, struct zap_details *details)
732 {
733         pgd_t *pgd;
734         unsigned long next;
735
736         if (details && !details->check_mapping && !details->nonlinear_vma)
737                 details = NULL;
738
739         BUG_ON(addr >= end);
740         tlb_start_vma(tlb, vma);
741         pgd = pgd_offset(vma->vm_mm, addr);
742         do {
743                 next = pgd_addr_end(addr, end);
744                 if (pgd_none_or_clear_bad(pgd)) {
745                         (*zap_work)--;
746                         continue;
747                 }
748                 next = zap_pud_range(tlb, vma, pgd, addr, next,
749                                                 zap_work, details);
750         } while (pgd++, addr = next, (addr != end && *zap_work > 0));
751         tlb_end_vma(tlb, vma);
752
753         return addr;
754 }
755
756 #ifdef CONFIG_PREEMPT
757 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
758 #else
759 /* No preempt: go for improved straight-line efficiency */
760 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
761 #endif
762
763 /**
764  * unmap_vmas - unmap a range of memory covered by a list of vma's
765  * @tlbp: address of the caller's struct mmu_gather
766  * @vma: the starting vma
767  * @start_addr: virtual address at which to start unmapping
768  * @end_addr: virtual address at which to end unmapping
769  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
770  * @details: details of nonlinear truncation or shared cache invalidation
771  *
772  * Returns the end address of the unmapping (restart addr if interrupted).
773  *
774  * Unmap all pages in the vma list.
775  *
776  * We aim to not hold locks for too long (for scheduling latency reasons).
777  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
778  * return the ending mmu_gather to the caller.
779  *
780  * Only addresses between `start' and `end' will be unmapped.
781  *
782  * The VMA list must be sorted in ascending virtual address order.
783  *
784  * unmap_vmas() assumes that the caller will flush the whole unmapped address
785  * range after unmap_vmas() returns.  So the only responsibility here is to
786  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
787  * drops the lock and schedules.
788  */
789 unsigned long unmap_vmas(struct mmu_gather **tlbp,
790                 struct vm_area_struct *vma, unsigned long start_addr,
791                 unsigned long end_addr, unsigned long *nr_accounted,
792                 struct zap_details *details)
793 {
794         long zap_work = ZAP_BLOCK_SIZE;
795         unsigned long tlb_start = 0;    /* For tlb_finish_mmu */
796         int tlb_start_valid = 0;
797         unsigned long start = start_addr;
798         spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
799         int fullmm = (*tlbp)->fullmm;
800
801         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
802                 unsigned long end;
803
804                 start = max(vma->vm_start, start_addr);
805                 if (start >= vma->vm_end)
806                         continue;
807                 end = min(vma->vm_end, end_addr);
808                 if (end <= vma->vm_start)
809                         continue;
810
811                 if (vma->vm_flags & VM_ACCOUNT)
812                         *nr_accounted += (end - start) >> PAGE_SHIFT;
813
814                 while (start != end) {
815                         if (!tlb_start_valid) {
816                                 tlb_start = start;
817                                 tlb_start_valid = 1;
818                         }
819
820                         if (unlikely(is_vm_hugetlb_page(vma))) {
821                                 unmap_hugepage_range(vma, start, end);
822                                 zap_work -= (end - start) /
823                                                 (HPAGE_SIZE / PAGE_SIZE);
824                                 start = end;
825                         } else
826                                 start = unmap_page_range(*tlbp, vma,
827                                                 start, end, &zap_work, details);
828
829                         if (zap_work > 0) {
830                                 BUG_ON(start != end);
831                                 break;
832                         }
833
834                         tlb_finish_mmu(*tlbp, tlb_start, start);
835
836                         if (need_resched() ||
837                                 (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
838                                 if (i_mmap_lock) {
839                                         *tlbp = NULL;
840                                         goto out;
841                                 }
842                                 cond_resched();
843                         }
844
845                         *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
846                         tlb_start_valid = 0;
847                         zap_work = ZAP_BLOCK_SIZE;
848                 }
849         }
850 out:
851         return start;   /* which is now the end (or restart) address */
852 }
853
854 /**
855  * zap_page_range - remove user pages in a given range
856  * @vma: vm_area_struct holding the applicable pages
857  * @address: starting address of pages to zap
858  * @size: number of bytes to zap
859  * @details: details of nonlinear truncation or shared cache invalidation
860  */
861 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
862                 unsigned long size, struct zap_details *details)
863 {
864         struct mm_struct *mm = vma->vm_mm;
865         struct mmu_gather *tlb;
866         unsigned long end = address + size;
867         unsigned long nr_accounted = 0;
868
869         lru_add_drain();
870         tlb = tlb_gather_mmu(mm, 0);
871         update_hiwater_rss(mm);
872         end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
873         if (tlb)
874                 tlb_finish_mmu(tlb, address, end);
875         return end;
876 }
877
878 /*
879  * Do a quick page-table lookup for a single page.
880  */
881 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
882                         unsigned int flags)
883 {
884         pgd_t *pgd;
885         pud_t *pud;
886         pmd_t *pmd;
887         pte_t *ptep, pte;
888         spinlock_t *ptl;
889         struct page *page;
890         struct mm_struct *mm = vma->vm_mm;
891
892         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
893         if (!IS_ERR(page)) {
894                 BUG_ON(flags & FOLL_GET);
895                 goto out;
896         }
897
898         page = NULL;
899         pgd = pgd_offset(mm, address);
900         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
901                 goto no_page_table;
902
903         pud = pud_offset(pgd, address);
904         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
905                 goto no_page_table;
906         
907         pmd = pmd_offset(pud, address);
908         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
909                 goto no_page_table;
910
911         if (pmd_huge(*pmd)) {
912                 BUG_ON(flags & FOLL_GET);
913                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
914                 goto out;
915         }
916
917         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
918         if (!ptep)
919                 goto out;
920
921         pte = *ptep;
922         if (!pte_present(pte))
923                 goto unlock;
924         if ((flags & FOLL_WRITE) && !pte_write(pte))
925                 goto unlock;
926         page = vm_normal_page(vma, address, pte);
927         if (unlikely(!page))
928                 goto unlock;
929
930         if (flags & FOLL_GET)
931                 get_page(page);
932         if (flags & FOLL_TOUCH) {
933                 if ((flags & FOLL_WRITE) &&
934                     !pte_dirty(pte) && !PageDirty(page))
935                         set_page_dirty(page);
936                 mark_page_accessed(page);
937         }
938 unlock:
939         pte_unmap_unlock(ptep, ptl);
940 out:
941         return page;
942
943 no_page_table:
944         /*
945          * When core dumping an enormous anonymous area that nobody
946          * has touched so far, we don't want to allocate page tables.
947          */
948         if (flags & FOLL_ANON) {
949                 page = ZERO_PAGE(address);
950                 if (flags & FOLL_GET)
951                         get_page(page);
952                 BUG_ON(flags & FOLL_WRITE);
953         }
954         return page;
955 }
956
957 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
958                 unsigned long start, int len, int write, int force,
959                 struct page **pages, struct vm_area_struct **vmas)
960 {
961         int i;
962         unsigned int vm_flags;
963
964         /* 
965          * Require read or write permissions.
966          * If 'force' is set, we only require the "MAY" flags.
967          */
968         vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
969         vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
970         i = 0;
971
972         do {
973                 struct vm_area_struct *vma;
974                 unsigned int foll_flags;
975
976                 vma = find_extend_vma(mm, start);
977                 if (!vma && in_gate_area(tsk, start)) {
978                         unsigned long pg = start & PAGE_MASK;
979                         struct vm_area_struct *gate_vma = get_gate_vma(tsk);
980                         pgd_t *pgd;
981                         pud_t *pud;
982                         pmd_t *pmd;
983                         pte_t *pte;
984                         if (write) /* user gate pages are read-only */
985                                 return i ? : -EFAULT;
986                         if (pg > TASK_SIZE)
987                                 pgd = pgd_offset_k(pg);
988                         else
989                                 pgd = pgd_offset_gate(mm, pg);
990                         BUG_ON(pgd_none(*pgd));
991                         pud = pud_offset(pgd, pg);
992                         BUG_ON(pud_none(*pud));
993                         pmd = pmd_offset(pud, pg);
994                         if (pmd_none(*pmd))
995                                 return i ? : -EFAULT;
996                         pte = pte_offset_map(pmd, pg);
997                         if (pte_none(*pte)) {
998                                 pte_unmap(pte);
999                                 return i ? : -EFAULT;
1000                         }
1001                         if (pages) {
1002                                 struct page *page = vm_normal_page(gate_vma, start, *pte);
1003                                 pages[i] = page;
1004                                 if (page)
1005                                         get_page(page);
1006                         }
1007                         pte_unmap(pte);
1008                         if (vmas)
1009                                 vmas[i] = gate_vma;
1010                         i++;
1011                         start += PAGE_SIZE;
1012                         len--;
1013                         continue;
1014                 }
1015
1016                 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1017                                 || !(vm_flags & vma->vm_flags))
1018                         return i ? : -EFAULT;
1019
1020                 if (is_vm_hugetlb_page(vma)) {
1021                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1022                                                 &start, &len, i);
1023                         continue;
1024                 }
1025
1026                 foll_flags = FOLL_TOUCH;
1027                 if (pages)
1028                         foll_flags |= FOLL_GET;
1029                 if (!write && !(vma->vm_flags & VM_LOCKED) &&
1030                     (!vma->vm_ops || !vma->vm_ops->nopage))
1031                         foll_flags |= FOLL_ANON;
1032
1033                 do {
1034                         struct page *page;
1035
1036                         if (write)
1037                                 foll_flags |= FOLL_WRITE;
1038
1039                         cond_resched();
1040                         while (!(page = follow_page(vma, start, foll_flags))) {
1041                                 int ret;
1042                                 ret = __handle_mm_fault(mm, vma, start,
1043                                                 foll_flags & FOLL_WRITE);
1044                                 /*
1045                                  * The VM_FAULT_WRITE bit tells us that do_wp_page has
1046                                  * broken COW when necessary, even if maybe_mkwrite
1047                                  * decided not to set pte_write. We can thus safely do
1048                                  * subsequent page lookups as if they were reads.
1049                                  */
1050                                 if (ret & VM_FAULT_WRITE)
1051                                         foll_flags &= ~FOLL_WRITE;
1052                                 
1053                                 switch (ret & ~VM_FAULT_WRITE) {
1054                                 case VM_FAULT_MINOR:
1055                                         tsk->min_flt++;
1056                                         break;
1057                                 case VM_FAULT_MAJOR:
1058                                         tsk->maj_flt++;
1059                                         break;
1060                                 case VM_FAULT_SIGBUS:
1061                                         return i ? i : -EFAULT;
1062                                 case VM_FAULT_OOM:
1063                                         return i ? i : -ENOMEM;
1064                                 default:
1065                                         BUG();
1066                                 }
1067                         }
1068                         if (pages) {
1069                                 pages[i] = page;
1070                                 flush_dcache_page(page);
1071                         }
1072                         if (vmas)
1073                                 vmas[i] = vma;
1074                         i++;
1075                         start += PAGE_SIZE;
1076                         len--;
1077                 } while (len && start < vma->vm_end);
1078         } while (len);
1079         return i;
1080 }
1081 EXPORT_SYMBOL(get_user_pages);
1082
1083 static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1084                         unsigned long addr, unsigned long end, pgprot_t prot)
1085 {
1086         pte_t *pte;
1087         spinlock_t *ptl;
1088
1089         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1090         if (!pte)
1091                 return -ENOMEM;
1092         do {
1093                 struct page *page = ZERO_PAGE(addr);
1094                 pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
1095                 page_cache_get(page);
1096                 page_add_file_rmap(page);
1097                 inc_mm_counter(mm, file_rss);
1098                 BUG_ON(!pte_none(*pte));
1099                 set_pte_at(mm, addr, pte, zero_pte);
1100         } while (pte++, addr += PAGE_SIZE, addr != end);
1101         pte_unmap_unlock(pte - 1, ptl);
1102         return 0;
1103 }
1104
1105 static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1106                         unsigned long addr, unsigned long end, pgprot_t prot)
1107 {
1108         pmd_t *pmd;
1109         unsigned long next;
1110
1111         pmd = pmd_alloc(mm, pud, addr);
1112         if (!pmd)
1113                 return -ENOMEM;
1114         do {
1115                 next = pmd_addr_end(addr, end);
1116                 if (zeromap_pte_range(mm, pmd, addr, next, prot))
1117                         return -ENOMEM;
1118         } while (pmd++, addr = next, addr != end);
1119         return 0;
1120 }
1121
1122 static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1123                         unsigned long addr, unsigned long end, pgprot_t prot)
1124 {
1125         pud_t *pud;
1126         unsigned long next;
1127
1128         pud = pud_alloc(mm, pgd, addr);
1129         if (!pud)
1130                 return -ENOMEM;
1131         do {
1132                 next = pud_addr_end(addr, end);
1133                 if (zeromap_pmd_range(mm, pud, addr, next, prot))
1134                         return -ENOMEM;
1135         } while (pud++, addr = next, addr != end);
1136         return 0;
1137 }
1138
1139 int zeromap_page_range(struct vm_area_struct *vma,
1140                         unsigned long addr, unsigned long size, pgprot_t prot)
1141 {
1142         pgd_t *pgd;
1143         unsigned long next;
1144         unsigned long end = addr + size;
1145         struct mm_struct *mm = vma->vm_mm;
1146         int err;
1147
1148         BUG_ON(addr >= end);
1149         pgd = pgd_offset(mm, addr);
1150         flush_cache_range(vma, addr, end);
1151         do {
1152                 next = pgd_addr_end(addr, end);
1153                 err = zeromap_pud_range(mm, pgd, addr, next, prot);
1154                 if (err)
1155                         break;
1156         } while (pgd++, addr = next, addr != end);
1157         return err;
1158 }
1159
1160 pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
1161 {
1162         pgd_t * pgd = pgd_offset(mm, addr);
1163         pud_t * pud = pud_alloc(mm, pgd, addr);
1164         if (pud) {
1165                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1166                 if (pmd)
1167                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1168         }
1169         return NULL;
1170 }
1171
1172 /*
1173  * This is the old fallback for page remapping.
1174  *
1175  * For historical reasons, it only allows reserved pages. Only
1176  * old drivers should use this, and they needed to mark their
1177  * pages reserved for the old functions anyway.
1178  */
1179 static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
1180 {
1181         int retval;
1182         pte_t *pte;
1183         spinlock_t *ptl;  
1184
1185         retval = -EINVAL;
1186         if (PageAnon(page))
1187                 goto out;
1188         retval = -ENOMEM;
1189         flush_dcache_page(page);
1190         pte = get_locked_pte(mm, addr, &ptl);
1191         if (!pte)
1192                 goto out;
1193         retval = -EBUSY;
1194         if (!pte_none(*pte))
1195                 goto out_unlock;
1196
1197         /* Ok, finally just insert the thing.. */
1198         get_page(page);
1199         inc_mm_counter(mm, file_rss);
1200         page_add_file_rmap(page);
1201         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1202
1203         retval = 0;
1204 out_unlock:
1205         pte_unmap_unlock(pte, ptl);
1206 out:
1207         return retval;
1208 }
1209
1210 /*
1211  * This allows drivers to insert individual pages they've allocated
1212  * into a user vma.
1213  *
1214  * The page has to be a nice clean _individual_ kernel allocation.
1215  * If you allocate a compound page, you need to have marked it as
1216  * such (__GFP_COMP), or manually just split the page up yourself
1217  * (see split_page()).
1218  *
1219  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1220  * took an arbitrary page protection parameter. This doesn't allow
1221  * that. Your vma protection will have to be set up correctly, which
1222  * means that if you want a shared writable mapping, you'd better
1223  * ask for a shared writable mapping!
1224  *
1225  * The page does not need to be reserved.
1226  */
1227 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
1228 {
1229         if (addr < vma->vm_start || addr >= vma->vm_end)
1230                 return -EFAULT;
1231         if (!page_count(page))
1232                 return -EINVAL;
1233         vma->vm_flags |= VM_INSERTPAGE;
1234         return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
1235 }
1236 EXPORT_SYMBOL(vm_insert_page);
1237
1238 /*
1239  * maps a range of physical memory into the requested pages. the old
1240  * mappings are removed. any references to nonexistent pages results
1241  * in null mappings (currently treated as "copy-on-access")
1242  */
1243 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1244                         unsigned long addr, unsigned long end,
1245                         unsigned long pfn, pgprot_t prot)
1246 {
1247         pte_t *pte;
1248         spinlock_t *ptl;
1249
1250         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1251         if (!pte)
1252                 return -ENOMEM;
1253         do {
1254                 BUG_ON(!pte_none(*pte));
1255                 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1256                 pfn++;
1257         } while (pte++, addr += PAGE_SIZE, addr != end);
1258         pte_unmap_unlock(pte - 1, ptl);
1259         return 0;
1260 }
1261
1262 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1263                         unsigned long addr, unsigned long end,
1264                         unsigned long pfn, pgprot_t prot)
1265 {
1266         pmd_t *pmd;
1267         unsigned long next;
1268
1269         pfn -= addr >> PAGE_SHIFT;
1270         pmd = pmd_alloc(mm, pud, addr);
1271         if (!pmd)
1272                 return -ENOMEM;
1273         do {
1274                 next = pmd_addr_end(addr, end);
1275                 if (remap_pte_range(mm, pmd, addr, next,
1276                                 pfn + (addr >> PAGE_SHIFT), prot))
1277                         return -ENOMEM;
1278         } while (pmd++, addr = next, addr != end);
1279         return 0;
1280 }
1281
1282 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1283                         unsigned long addr, unsigned long end,
1284                         unsigned long pfn, pgprot_t prot)
1285 {
1286         pud_t *pud;
1287         unsigned long next;
1288
1289         pfn -= addr >> PAGE_SHIFT;
1290         pud = pud_alloc(mm, pgd, addr);
1291         if (!pud)
1292                 return -ENOMEM;
1293         do {
1294                 next = pud_addr_end(addr, end);
1295                 if (remap_pmd_range(mm, pud, addr, next,
1296                                 pfn + (addr >> PAGE_SHIFT), prot))
1297                         return -ENOMEM;
1298         } while (pud++, addr = next, addr != end);
1299         return 0;
1300 }
1301
1302 /*  Note: this is only safe if the mm semaphore is held when called. */
1303 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1304                     unsigned long pfn, unsigned long size, pgprot_t prot)
1305 {
1306         pgd_t *pgd;
1307         unsigned long next;
1308         unsigned long end = addr + PAGE_ALIGN(size);
1309         struct mm_struct *mm = vma->vm_mm;
1310         int err;
1311
1312         /*
1313          * Physically remapped pages are special. Tell the
1314          * rest of the world about it:
1315          *   VM_IO tells people not to look at these pages
1316          *      (accesses can have side effects).
1317          *   VM_RESERVED is specified all over the place, because
1318          *      in 2.4 it kept swapout's vma scan off this vma; but
1319          *      in 2.6 the LRU scan won't even find its pages, so this
1320          *      flag means no more than count its pages in reserved_vm,
1321          *      and omit it from core dump, even when VM_IO turned off.
1322          *   VM_PFNMAP tells the core MM that the base pages are just
1323          *      raw PFN mappings, and do not have a "struct page" associated
1324          *      with them.
1325          *
1326          * There's a horrible special case to handle copy-on-write
1327          * behaviour that some programs depend on. We mark the "original"
1328          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1329          */
1330         if (is_cow_mapping(vma->vm_flags)) {
1331                 if (addr != vma->vm_start || end != vma->vm_end)
1332                         return -EINVAL;
1333                 vma->vm_pgoff = pfn;
1334         }
1335
1336         vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1337
1338         BUG_ON(addr >= end);
1339         pfn -= addr >> PAGE_SHIFT;
1340         pgd = pgd_offset(mm, addr);
1341         flush_cache_range(vma, addr, end);
1342         do {
1343                 next = pgd_addr_end(addr, end);
1344                 err = remap_pud_range(mm, pgd, addr, next,
1345                                 pfn + (addr >> PAGE_SHIFT), prot);
1346                 if (err)
1347                         break;
1348         } while (pgd++, addr = next, addr != end);
1349         return err;
1350 }
1351 EXPORT_SYMBOL(remap_pfn_range);
1352
1353 /*
1354  * handle_pte_fault chooses page fault handler according to an entry
1355  * which was read non-atomically.  Before making any commitment, on
1356  * those architectures or configurations (e.g. i386 with PAE) which
1357  * might give a mix of unmatched parts, do_swap_page and do_file_page
1358  * must check under lock before unmapping the pte and proceeding
1359  * (but do_wp_page is only called after already making such a check;
1360  * and do_anonymous_page and do_no_page can safely check later on).
1361  */
1362 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1363                                 pte_t *page_table, pte_t orig_pte)
1364 {
1365         int same = 1;
1366 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1367         if (sizeof(pte_t) > sizeof(unsigned long)) {
1368                 spinlock_t *ptl = pte_lockptr(mm, pmd);
1369                 spin_lock(ptl);
1370                 same = pte_same(*page_table, orig_pte);
1371                 spin_unlock(ptl);
1372         }
1373 #endif
1374         pte_unmap(page_table);
1375         return same;
1376 }
1377
1378 /*
1379  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1380  * servicing faults for write access.  In the normal case, do always want
1381  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1382  * that do not have writing enabled, when used by access_process_vm.
1383  */
1384 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1385 {
1386         if (likely(vma->vm_flags & VM_WRITE))
1387                 pte = pte_mkwrite(pte);
1388         return pte;
1389 }
1390
1391 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va)
1392 {
1393         /*
1394          * If the source page was a PFN mapping, we don't have
1395          * a "struct page" for it. We do a best-effort copy by
1396          * just copying from the original user address. If that
1397          * fails, we just zero-fill it. Live with it.
1398          */
1399         if (unlikely(!src)) {
1400                 void *kaddr = kmap_atomic(dst, KM_USER0);
1401                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1402
1403                 /*
1404                  * This really shouldn't fail, because the page is there
1405                  * in the page tables. But it might just be unreadable,
1406                  * in which case we just give up and fill the result with
1407                  * zeroes.
1408                  */
1409                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1410                         memset(kaddr, 0, PAGE_SIZE);
1411                 kunmap_atomic(kaddr, KM_USER0);
1412                 return;
1413                 
1414         }
1415         copy_user_highpage(dst, src, va);
1416 }
1417
1418 /*
1419  * This routine handles present pages, when users try to write
1420  * to a shared page. It is done by copying the page to a new address
1421  * and decrementing the shared-page counter for the old page.
1422  *
1423  * Note that this routine assumes that the protection checks have been
1424  * done by the caller (the low-level page fault routine in most cases).
1425  * Thus we can safely just mark it writable once we've done any necessary
1426  * COW.
1427  *
1428  * We also mark the page dirty at this point even though the page will
1429  * change only once the write actually happens. This avoids a few races,
1430  * and potentially makes it more efficient.
1431  *
1432  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1433  * but allow concurrent faults), with pte both mapped and locked.
1434  * We return with mmap_sem still held, but pte unmapped and unlocked.
1435  */
1436 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1437                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1438                 spinlock_t *ptl, pte_t orig_pte)
1439 {
1440         struct page *old_page, *new_page;
1441         pte_t entry;
1442         int ret = VM_FAULT_MINOR;
1443
1444         old_page = vm_normal_page(vma, address, orig_pte);
1445         if (!old_page)
1446                 goto gotten;
1447
1448         if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
1449                 int reuse = can_share_swap_page(old_page);
1450                 unlock_page(old_page);
1451                 if (reuse) {
1452                         flush_cache_page(vma, address, pte_pfn(orig_pte));
1453                         entry = pte_mkyoung(orig_pte);
1454                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1455                         ptep_set_access_flags(vma, address, page_table, entry, 1);
1456                         update_mmu_cache(vma, address, entry);
1457                         lazy_mmu_prot_update(entry);
1458                         ret |= VM_FAULT_WRITE;
1459                         goto unlock;
1460                 }
1461         }
1462
1463         /*
1464          * Ok, we need to copy. Oh, well..
1465          */
1466         page_cache_get(old_page);
1467 gotten:
1468         pte_unmap_unlock(page_table, ptl);
1469
1470         if (unlikely(anon_vma_prepare(vma)))
1471                 goto oom;
1472         if (old_page == ZERO_PAGE(address)) {
1473                 new_page = alloc_zeroed_user_highpage(vma, address);
1474                 if (!new_page)
1475                         goto oom;
1476         } else {
1477                 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1478                 if (!new_page)
1479                         goto oom;
1480                 cow_user_page(new_page, old_page, address);
1481         }
1482
1483         /*
1484          * Re-check the pte - we dropped the lock
1485          */
1486         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1487         if (likely(pte_same(*page_table, orig_pte))) {
1488                 if (old_page) {
1489                         page_remove_rmap(old_page);
1490                         if (!PageAnon(old_page)) {
1491                                 dec_mm_counter(mm, file_rss);
1492                                 inc_mm_counter(mm, anon_rss);
1493                         }
1494                 } else
1495                         inc_mm_counter(mm, anon_rss);
1496                 flush_cache_page(vma, address, pte_pfn(orig_pte));
1497                 entry = mk_pte(new_page, vma->vm_page_prot);
1498                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1499                 ptep_establish(vma, address, page_table, entry);
1500                 update_mmu_cache(vma, address, entry);
1501                 lazy_mmu_prot_update(entry);
1502                 lru_cache_add_active(new_page);
1503                 page_add_new_anon_rmap(new_page, vma, address);
1504
1505                 /* Free the old page.. */
1506                 new_page = old_page;
1507                 ret |= VM_FAULT_WRITE;
1508         }
1509         if (new_page)
1510                 page_cache_release(new_page);
1511         if (old_page)
1512                 page_cache_release(old_page);
1513 unlock:
1514         pte_unmap_unlock(page_table, ptl);
1515         return ret;
1516 oom:
1517         if (old_page)
1518                 page_cache_release(old_page);
1519         return VM_FAULT_OOM;
1520 }
1521
1522 /*
1523  * Helper functions for unmap_mapping_range().
1524  *
1525  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1526  *
1527  * We have to restart searching the prio_tree whenever we drop the lock,
1528  * since the iterator is only valid while the lock is held, and anyway
1529  * a later vma might be split and reinserted earlier while lock dropped.
1530  *
1531  * The list of nonlinear vmas could be handled more efficiently, using
1532  * a placeholder, but handle it in the same way until a need is shown.
1533  * It is important to search the prio_tree before nonlinear list: a vma
1534  * may become nonlinear and be shifted from prio_tree to nonlinear list
1535  * while the lock is dropped; but never shifted from list to prio_tree.
1536  *
1537  * In order to make forward progress despite restarting the search,
1538  * vm_truncate_count is used to mark a vma as now dealt with, so we can
1539  * quickly skip it next time around.  Since the prio_tree search only
1540  * shows us those vmas affected by unmapping the range in question, we
1541  * can't efficiently keep all vmas in step with mapping->truncate_count:
1542  * so instead reset them all whenever it wraps back to 0 (then go to 1).
1543  * mapping->truncate_count and vma->vm_truncate_count are protected by
1544  * i_mmap_lock.
1545  *
1546  * In order to make forward progress despite repeatedly restarting some
1547  * large vma, note the restart_addr from unmap_vmas when it breaks out:
1548  * and restart from that address when we reach that vma again.  It might
1549  * have been split or merged, shrunk or extended, but never shifted: so
1550  * restart_addr remains valid so long as it remains in the vma's range.
1551  * unmap_mapping_range forces truncate_count to leap over page-aligned
1552  * values so we can save vma's restart_addr in its truncate_count field.
1553  */
1554 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1555
1556 static void reset_vma_truncate_counts(struct address_space *mapping)
1557 {
1558         struct vm_area_struct *vma;
1559         struct prio_tree_iter iter;
1560
1561         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1562                 vma->vm_truncate_count = 0;
1563         list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1564                 vma->vm_truncate_count = 0;
1565 }
1566
1567 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1568                 unsigned long start_addr, unsigned long end_addr,
1569                 struct zap_details *details)
1570 {
1571         unsigned long restart_addr;
1572         int need_break;
1573
1574 again:
1575         restart_addr = vma->vm_truncate_count;
1576         if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1577                 start_addr = restart_addr;
1578                 if (start_addr >= end_addr) {
1579                         /* Top of vma has been split off since last time */
1580                         vma->vm_truncate_count = details->truncate_count;
1581                         return 0;
1582                 }
1583         }
1584
1585         restart_addr = zap_page_range(vma, start_addr,
1586                                         end_addr - start_addr, details);
1587         need_break = need_resched() ||
1588                         need_lockbreak(details->i_mmap_lock);
1589
1590         if (restart_addr >= end_addr) {
1591                 /* We have now completed this vma: mark it so */
1592                 vma->vm_truncate_count = details->truncate_count;
1593                 if (!need_break)
1594                         return 0;
1595         } else {
1596                 /* Note restart_addr in vma's truncate_count field */
1597                 vma->vm_truncate_count = restart_addr;
1598                 if (!need_break)
1599                         goto again;
1600         }
1601
1602         spin_unlock(details->i_mmap_lock);
1603         cond_resched();
1604         spin_lock(details->i_mmap_lock);
1605         return -EINTR;
1606 }
1607
1608 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1609                                             struct zap_details *details)
1610 {
1611         struct vm_area_struct *vma;
1612         struct prio_tree_iter iter;
1613         pgoff_t vba, vea, zba, zea;
1614
1615 restart:
1616         vma_prio_tree_foreach(vma, &iter, root,
1617                         details->first_index, details->last_index) {
1618                 /* Skip quickly over those we have already dealt with */
1619                 if (vma->vm_truncate_count == details->truncate_count)
1620                         continue;
1621
1622                 vba = vma->vm_pgoff;
1623                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1624                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1625                 zba = details->first_index;
1626                 if (zba < vba)
1627                         zba = vba;
1628                 zea = details->last_index;
1629                 if (zea > vea)
1630                         zea = vea;
1631
1632                 if (unmap_mapping_range_vma(vma,
1633                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1634                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1635                                 details) < 0)
1636                         goto restart;
1637         }
1638 }
1639
1640 static inline void unmap_mapping_range_list(struct list_head *head,
1641                                             struct zap_details *details)
1642 {
1643         struct vm_area_struct *vma;
1644
1645         /*
1646          * In nonlinear VMAs there is no correspondence between virtual address
1647          * offset and file offset.  So we must perform an exhaustive search
1648          * across *all* the pages in each nonlinear VMA, not just the pages
1649          * whose virtual address lies outside the file truncation point.
1650          */
1651 restart:
1652         list_for_each_entry(vma, head, shared.vm_set.list) {
1653                 /* Skip quickly over those we have already dealt with */
1654                 if (vma->vm_truncate_count == details->truncate_count)
1655                         continue;
1656                 details->nonlinear_vma = vma;
1657                 if (unmap_mapping_range_vma(vma, vma->vm_start,
1658                                         vma->vm_end, details) < 0)
1659                         goto restart;
1660         }
1661 }
1662
1663 /**
1664  * unmap_mapping_range - unmap the portion of all mmaps
1665  * in the specified address_space corresponding to the specified
1666  * page range in the underlying file.
1667  * @mapping: the address space containing mmaps to be unmapped.
1668  * @holebegin: byte in first page to unmap, relative to the start of
1669  * the underlying file.  This will be rounded down to a PAGE_SIZE
1670  * boundary.  Note that this is different from vmtruncate(), which
1671  * must keep the partial page.  In contrast, we must get rid of
1672  * partial pages.
1673  * @holelen: size of prospective hole in bytes.  This will be rounded
1674  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
1675  * end of the file.
1676  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1677  * but 0 when invalidating pagecache, don't throw away private data.
1678  */
1679 void unmap_mapping_range(struct address_space *mapping,
1680                 loff_t const holebegin, loff_t const holelen, int even_cows)
1681 {
1682         struct zap_details details;
1683         pgoff_t hba = holebegin >> PAGE_SHIFT;
1684         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1685
1686         /* Check for overflow. */
1687         if (sizeof(holelen) > sizeof(hlen)) {
1688                 long long holeend =
1689                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1690                 if (holeend & ~(long long)ULONG_MAX)
1691                         hlen = ULONG_MAX - hba + 1;
1692         }
1693
1694         details.check_mapping = even_cows? NULL: mapping;
1695         details.nonlinear_vma = NULL;
1696         details.first_index = hba;
1697         details.last_index = hba + hlen - 1;
1698         if (details.last_index < details.first_index)
1699                 details.last_index = ULONG_MAX;
1700         details.i_mmap_lock = &mapping->i_mmap_lock;
1701
1702         spin_lock(&mapping->i_mmap_lock);
1703
1704         /* serialize i_size write against truncate_count write */
1705         smp_wmb();
1706         /* Protect against page faults, and endless unmapping loops */
1707         mapping->truncate_count++;
1708         /*
1709          * For archs where spin_lock has inclusive semantics like ia64
1710          * this smp_mb() will prevent to read pagetable contents
1711          * before the truncate_count increment is visible to
1712          * other cpus.
1713          */
1714         smp_mb();
1715         if (unlikely(is_restart_addr(mapping->truncate_count))) {
1716                 if (mapping->truncate_count == 0)
1717                         reset_vma_truncate_counts(mapping);
1718                 mapping->truncate_count++;
1719         }
1720         details.truncate_count = mapping->truncate_count;
1721
1722         if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1723                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1724         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1725                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1726         spin_unlock(&mapping->i_mmap_lock);
1727 }
1728 EXPORT_SYMBOL(unmap_mapping_range);
1729
1730 /*
1731  * Handle all mappings that got truncated by a "truncate()"
1732  * system call.
1733  *
1734  * NOTE! We have to be ready to update the memory sharing
1735  * between the file and the memory map for a potential last
1736  * incomplete page.  Ugly, but necessary.
1737  */
1738 int vmtruncate(struct inode * inode, loff_t offset)
1739 {
1740         struct address_space *mapping = inode->i_mapping;
1741         unsigned long limit;
1742
1743         if (inode->i_size < offset)
1744                 goto do_expand;
1745         /*
1746          * truncation of in-use swapfiles is disallowed - it would cause
1747          * subsequent swapout to scribble on the now-freed blocks.
1748          */
1749         if (IS_SWAPFILE(inode))
1750                 goto out_busy;
1751         i_size_write(inode, offset);
1752         unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1753         truncate_inode_pages(mapping, offset);
1754         goto out_truncate;
1755
1756 do_expand:
1757         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1758         if (limit != RLIM_INFINITY && offset > limit)
1759                 goto out_sig;
1760         if (offset > inode->i_sb->s_maxbytes)
1761                 goto out_big;
1762         i_size_write(inode, offset);
1763
1764 out_truncate:
1765         if (inode->i_op && inode->i_op->truncate)
1766                 inode->i_op->truncate(inode);
1767         return 0;
1768 out_sig:
1769         send_sig(SIGXFSZ, current, 0);
1770 out_big:
1771         return -EFBIG;
1772 out_busy:
1773         return -ETXTBSY;
1774 }
1775 EXPORT_SYMBOL(vmtruncate);
1776
1777 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
1778 {
1779         struct address_space *mapping = inode->i_mapping;
1780
1781         /*
1782          * If the underlying filesystem is not going to provide
1783          * a way to truncate a range of blocks (punch a hole) -
1784          * we should return failure right now.
1785          */
1786         if (!inode->i_op || !inode->i_op->truncate_range)
1787                 return -ENOSYS;
1788
1789         mutex_lock(&inode->i_mutex);
1790         down_write(&inode->i_alloc_sem);
1791         unmap_mapping_range(mapping, offset, (end - offset), 1);
1792         truncate_inode_pages_range(mapping, offset, end);
1793         inode->i_op->truncate_range(inode, offset, end);
1794         up_write(&inode->i_alloc_sem);
1795         mutex_unlock(&inode->i_mutex);
1796
1797         return 0;
1798 }
1799 EXPORT_SYMBOL(vmtruncate_range);
1800
1801 /* 
1802  * Primitive swap readahead code. We simply read an aligned block of
1803  * (1 << page_cluster) entries in the swap area. This method is chosen
1804  * because it doesn't cost us any seek time.  We also make sure to queue
1805  * the 'original' request together with the readahead ones...  
1806  *
1807  * This has been extended to use the NUMA policies from the mm triggering
1808  * the readahead.
1809  *
1810  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1811  */
1812 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1813 {
1814 #ifdef CONFIG_NUMA
1815         struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1816 #endif
1817         int i, num;
1818         struct page *new_page;
1819         unsigned long offset;
1820
1821         /*
1822          * Get the number of handles we should do readahead io to.
1823          */
1824         num = valid_swaphandles(entry, &offset);
1825         for (i = 0; i < num; offset++, i++) {
1826                 /* Ok, do the async read-ahead now */
1827                 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1828                                                            offset), vma, addr);
1829                 if (!new_page)
1830                         break;
1831                 page_cache_release(new_page);
1832 #ifdef CONFIG_NUMA
1833                 /*
1834                  * Find the next applicable VMA for the NUMA policy.
1835                  */
1836                 addr += PAGE_SIZE;
1837                 if (addr == 0)
1838                         vma = NULL;
1839                 if (vma) {
1840                         if (addr >= vma->vm_end) {
1841                                 vma = next_vma;
1842                                 next_vma = vma ? vma->vm_next : NULL;
1843                         }
1844                         if (vma && addr < vma->vm_start)
1845                                 vma = NULL;
1846                 } else {
1847                         if (next_vma && addr >= next_vma->vm_start) {
1848                                 vma = next_vma;
1849                                 next_vma = vma->vm_next;
1850                         }
1851                 }
1852 #endif
1853         }
1854         lru_add_drain();        /* Push any new pages onto the LRU now */
1855 }
1856
1857 /*
1858  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1859  * but allow concurrent faults), and pte mapped but not yet locked.
1860  * We return with mmap_sem still held, but pte unmapped and unlocked.
1861  */
1862 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
1863                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1864                 int write_access, pte_t orig_pte)
1865 {
1866         spinlock_t *ptl;
1867         struct page *page;
1868         swp_entry_t entry;
1869         pte_t pte;
1870         int ret = VM_FAULT_MINOR;
1871
1872         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
1873                 goto out;
1874
1875         entry = pte_to_swp_entry(orig_pte);
1876 again:
1877         page = lookup_swap_cache(entry);
1878         if (!page) {
1879                 swapin_readahead(entry, address, vma);
1880                 page = read_swap_cache_async(entry, vma, address);
1881                 if (!page) {
1882                         /*
1883                          * Back out if somebody else faulted in this pte
1884                          * while we released the pte lock.
1885                          */
1886                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1887                         if (likely(pte_same(*page_table, orig_pte)))
1888                                 ret = VM_FAULT_OOM;
1889                         goto unlock;
1890                 }
1891
1892                 /* Had to read the page from swap area: Major fault */
1893                 ret = VM_FAULT_MAJOR;
1894                 inc_page_state(pgmajfault);
1895                 grab_swap_token();
1896         }
1897
1898         mark_page_accessed(page);
1899         lock_page(page);
1900         if (!PageSwapCache(page)) {
1901                 /* Page migration has occured */
1902                 unlock_page(page);
1903                 page_cache_release(page);
1904                 goto again;
1905         }
1906
1907         /*
1908          * Back out if somebody else already faulted in this pte.
1909          */
1910         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1911         if (unlikely(!pte_same(*page_table, orig_pte)))
1912                 goto out_nomap;
1913
1914         if (unlikely(!PageUptodate(page))) {
1915                 ret = VM_FAULT_SIGBUS;
1916                 goto out_nomap;
1917         }
1918
1919         /* The page isn't present yet, go ahead with the fault. */
1920
1921         inc_mm_counter(mm, anon_rss);
1922         pte = mk_pte(page, vma->vm_page_prot);
1923         if (write_access && can_share_swap_page(page)) {
1924                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1925                 write_access = 0;
1926         }
1927
1928         flush_icache_page(vma, page);
1929         set_pte_at(mm, address, page_table, pte);
1930         page_add_anon_rmap(page, vma, address);
1931
1932         swap_free(entry);
1933         if (vm_swap_full())
1934                 remove_exclusive_swap_page(page);
1935         unlock_page(page);
1936
1937         if (write_access) {
1938                 if (do_wp_page(mm, vma, address,
1939                                 page_table, pmd, ptl, pte) == VM_FAULT_OOM)
1940                         ret = VM_FAULT_OOM;
1941                 goto out;
1942         }
1943
1944         /* No need to invalidate - it was non-present before */
1945         update_mmu_cache(vma, address, pte);
1946         lazy_mmu_prot_update(pte);
1947 unlock:
1948         pte_unmap_unlock(page_table, ptl);
1949 out:
1950         return ret;
1951 out_nomap:
1952         pte_unmap_unlock(page_table, ptl);
1953         unlock_page(page);
1954         page_cache_release(page);
1955         return ret;
1956 }
1957
1958 /*
1959  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1960  * but allow concurrent faults), and pte mapped but not yet locked.
1961  * We return with mmap_sem still held, but pte unmapped and unlocked.
1962  */
1963 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1964                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1965                 int write_access)
1966 {
1967         struct page *page;
1968         spinlock_t *ptl;
1969         pte_t entry;
1970
1971         if (write_access) {
1972                 /* Allocate our own private page. */
1973                 pte_unmap(page_table);
1974
1975                 if (unlikely(anon_vma_prepare(vma)))
1976                         goto oom;
1977                 page = alloc_zeroed_user_highpage(vma, address);
1978                 if (!page)
1979                         goto oom;
1980
1981                 entry = mk_pte(page, vma->vm_page_prot);
1982                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1983
1984                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1985                 if (!pte_none(*page_table))
1986                         goto release;
1987                 inc_mm_counter(mm, anon_rss);
1988                 lru_cache_add_active(page);
1989                 page_add_new_anon_rmap(page, vma, address);
1990         } else {
1991                 /* Map the ZERO_PAGE - vm_page_prot is readonly */
1992                 page = ZERO_PAGE(address);
1993                 page_cache_get(page);
1994                 entry = mk_pte(page, vma->vm_page_prot);
1995
1996                 ptl = pte_lockptr(mm, pmd);
1997                 spin_lock(ptl);
1998                 if (!pte_none(*page_table))
1999                         goto release;
2000                 inc_mm_counter(mm, file_rss);
2001                 page_add_file_rmap(page);
2002         }
2003
2004         set_pte_at(mm, address, page_table, entry);
2005
2006         /* No need to invalidate - it was non-present before */
2007         update_mmu_cache(vma, address, entry);
2008         lazy_mmu_prot_update(entry);
2009 unlock:
2010         pte_unmap_unlock(page_table, ptl);
2011         return VM_FAULT_MINOR;
2012 release:
2013         page_cache_release(page);
2014         goto unlock;
2015 oom:
2016         return VM_FAULT_OOM;
2017 }
2018
2019 /*
2020  * do_no_page() tries to create a new page mapping. It aggressively
2021  * tries to share with existing pages, but makes a separate copy if
2022  * the "write_access" parameter is true in order to avoid the next
2023  * page fault.
2024  *
2025  * As this is called only for pages that do not currently exist, we
2026  * do not need to flush old virtual caches or the TLB.
2027  *
2028  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2029  * but allow concurrent faults), and pte mapped but not yet locked.
2030  * We return with mmap_sem still held, but pte unmapped and unlocked.
2031  */
2032 static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2033                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2034                 int write_access)
2035 {
2036         spinlock_t *ptl;
2037         struct page *new_page;
2038         struct address_space *mapping = NULL;
2039         pte_t entry;
2040         unsigned int sequence = 0;
2041         int ret = VM_FAULT_MINOR;
2042         int anon = 0;
2043
2044         pte_unmap(page_table);
2045         BUG_ON(vma->vm_flags & VM_PFNMAP);
2046
2047         if (vma->vm_file) {
2048                 mapping = vma->vm_file->f_mapping;
2049                 sequence = mapping->truncate_count;
2050                 smp_rmb(); /* serializes i_size against truncate_count */
2051         }
2052 retry:
2053         new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
2054         /*
2055          * No smp_rmb is needed here as long as there's a full
2056          * spin_lock/unlock sequence inside the ->nopage callback
2057          * (for the pagecache lookup) that acts as an implicit
2058          * smp_mb() and prevents the i_size read to happen
2059          * after the next truncate_count read.
2060          */
2061
2062         /* no page was available -- either SIGBUS or OOM */
2063         if (new_page == NOPAGE_SIGBUS)
2064                 return VM_FAULT_SIGBUS;
2065         if (new_page == NOPAGE_OOM)
2066                 return VM_FAULT_OOM;
2067
2068         /*
2069          * Should we do an early C-O-W break?
2070          */
2071         if (write_access && !(vma->vm_flags & VM_SHARED)) {
2072                 struct page *page;
2073
2074                 if (unlikely(anon_vma_prepare(vma)))
2075                         goto oom;
2076                 page = alloc_page_vma(GFP_HIGHUSER, vma, address);
2077                 if (!page)
2078                         goto oom;
2079                 copy_user_highpage(page, new_page, address);
2080                 page_cache_release(new_page);
2081                 new_page = page;
2082                 anon = 1;
2083         }
2084
2085         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2086         /*
2087          * For a file-backed vma, someone could have truncated or otherwise
2088          * invalidated this page.  If unmap_mapping_range got called,
2089          * retry getting the page.
2090          */
2091         if (mapping && unlikely(sequence != mapping->truncate_count)) {
2092                 pte_unmap_unlock(page_table, ptl);
2093                 page_cache_release(new_page);
2094                 cond_resched();
2095                 sequence = mapping->truncate_count;
2096                 smp_rmb();
2097                 goto retry;
2098         }
2099
2100         /*
2101          * This silly early PAGE_DIRTY setting removes a race
2102          * due to the bad i386 page protection. But it's valid
2103          * for other architectures too.
2104          *
2105          * Note that if write_access is true, we either now have
2106          * an exclusive copy of the page, or this is a shared mapping,
2107          * so we can make it writable and dirty to avoid having to
2108          * handle that later.
2109          */
2110         /* Only go through if we didn't race with anybody else... */
2111         if (pte_none(*page_table)) {
2112                 flush_icache_page(vma, new_page);
2113                 entry = mk_pte(new_page, vma->vm_page_prot);
2114                 if (write_access)
2115                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2116                 set_pte_at(mm, address, page_table, entry);
2117                 if (anon) {
2118                         inc_mm_counter(mm, anon_rss);
2119                         lru_cache_add_active(new_page);
2120                         page_add_new_anon_rmap(new_page, vma, address);
2121                 } else {
2122                         inc_mm_counter(mm, file_rss);
2123                         page_add_file_rmap(new_page);
2124                 }
2125         } else {
2126                 /* One of our sibling threads was faster, back out. */
2127                 page_cache_release(new_page);
2128                 goto unlock;
2129         }
2130
2131         /* no need to invalidate: a not-present page shouldn't be cached */
2132         update_mmu_cache(vma, address, entry);
2133         lazy_mmu_prot_update(entry);
2134 unlock:
2135         pte_unmap_unlock(page_table, ptl);
2136         return ret;
2137 oom:
2138         page_cache_release(new_page);
2139         return VM_FAULT_OOM;
2140 }
2141
2142 /*
2143  * Fault of a previously existing named mapping. Repopulate the pte
2144  * from the encoded file_pte if possible. This enables swappable
2145  * nonlinear vmas.
2146  *
2147  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2148  * but allow concurrent faults), and pte mapped but not yet locked.
2149  * We return with mmap_sem still held, but pte unmapped and unlocked.
2150  */
2151 static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
2152                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2153                 int write_access, pte_t orig_pte)
2154 {
2155         pgoff_t pgoff;
2156         int err;
2157
2158         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2159                 return VM_FAULT_MINOR;
2160
2161         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2162                 /*
2163                  * Page table corrupted: show pte and kill process.
2164                  */
2165                 print_bad_pte(vma, orig_pte, address);
2166                 return VM_FAULT_OOM;
2167         }
2168         /* We can then assume vm->vm_ops && vma->vm_ops->populate */
2169
2170         pgoff = pte_to_pgoff(orig_pte);
2171         err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
2172                                         vma->vm_page_prot, pgoff, 0);
2173         if (err == -ENOMEM)
2174                 return VM_FAULT_OOM;
2175         if (err)
2176                 return VM_FAULT_SIGBUS;
2177         return VM_FAULT_MAJOR;
2178 }
2179
2180 /*
2181  * These routines also need to handle stuff like marking pages dirty
2182  * and/or accessed for architectures that don't do it in hardware (most
2183  * RISC architectures).  The early dirtying is also good on the i386.
2184  *
2185  * There is also a hook called "update_mmu_cache()" that architectures
2186  * with external mmu caches can use to update those (ie the Sparc or
2187  * PowerPC hashed page tables that act as extended TLBs).
2188  *
2189  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2190  * but allow concurrent faults), and pte mapped but not yet locked.
2191  * We return with mmap_sem still held, but pte unmapped and unlocked.
2192  */
2193 static inline int handle_pte_fault(struct mm_struct *mm,
2194                 struct vm_area_struct *vma, unsigned long address,
2195                 pte_t *pte, pmd_t *pmd, int write_access)
2196 {
2197         pte_t entry;
2198         pte_t old_entry;
2199         spinlock_t *ptl;
2200
2201         old_entry = entry = *pte;
2202         if (!pte_present(entry)) {
2203                 if (pte_none(entry)) {
2204                         if (!vma->vm_ops || !vma->vm_ops->nopage)
2205                                 return do_anonymous_page(mm, vma, address,
2206                                         pte, pmd, write_access);
2207                         return do_no_page(mm, vma, address,
2208                                         pte, pmd, write_access);
2209                 }
2210                 if (pte_file(entry))
2211                         return do_file_page(mm, vma, address,
2212                                         pte, pmd, write_access, entry);
2213                 return do_swap_page(mm, vma, address,
2214                                         pte, pmd, write_access, entry);
2215         }
2216
2217         ptl = pte_lockptr(mm, pmd);
2218         spin_lock(ptl);
2219         if (unlikely(!pte_same(*pte, entry)))
2220                 goto unlock;
2221         if (write_access) {
2222                 if (!pte_write(entry))
2223                         return do_wp_page(mm, vma, address,
2224                                         pte, pmd, ptl, entry);
2225                 entry = pte_mkdirty(entry);
2226         }
2227         entry = pte_mkyoung(entry);
2228         if (!pte_same(old_entry, entry)) {
2229                 ptep_set_access_flags(vma, address, pte, entry, write_access);
2230                 update_mmu_cache(vma, address, entry);
2231                 lazy_mmu_prot_update(entry);
2232         } else {
2233                 /*
2234                  * This is needed only for protection faults but the arch code
2235                  * is not yet telling us if this is a protection fault or not.
2236                  * This still avoids useless tlb flushes for .text page faults
2237                  * with threads.
2238                  */
2239                 if (write_access)
2240                         flush_tlb_page(vma, address);
2241         }
2242 unlock:
2243         pte_unmap_unlock(pte, ptl);
2244         return VM_FAULT_MINOR;
2245 }
2246
2247 /*
2248  * By the time we get here, we already hold the mm semaphore
2249  */
2250 int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2251                 unsigned long address, int write_access)
2252 {
2253         pgd_t *pgd;
2254         pud_t *pud;
2255         pmd_t *pmd;
2256         pte_t *pte;
2257
2258         __set_current_state(TASK_RUNNING);
2259
2260         inc_page_state(pgfault);
2261
2262         if (unlikely(is_vm_hugetlb_page(vma)))
2263                 return hugetlb_fault(mm, vma, address, write_access);
2264
2265         pgd = pgd_offset(mm, address);
2266         pud = pud_alloc(mm, pgd, address);
2267         if (!pud)
2268                 return VM_FAULT_OOM;
2269         pmd = pmd_alloc(mm, pud, address);
2270         if (!pmd)
2271                 return VM_FAULT_OOM;
2272         pte = pte_alloc_map(mm, pmd, address);
2273         if (!pte)
2274                 return VM_FAULT_OOM;
2275
2276         return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2277 }
2278
2279 EXPORT_SYMBOL_GPL(__handle_mm_fault);
2280
2281 #ifndef __PAGETABLE_PUD_FOLDED
2282 /*
2283  * Allocate page upper directory.
2284  * We've already handled the fast-path in-line.
2285  */
2286 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2287 {
2288         pud_t *new = pud_alloc_one(mm, address);
2289         if (!new)
2290                 return -ENOMEM;
2291
2292         spin_lock(&mm->page_table_lock);
2293         if (pgd_present(*pgd))          /* Another has populated it */
2294                 pud_free(new);
2295         else
2296                 pgd_populate(mm, pgd, new);
2297         spin_unlock(&mm->page_table_lock);
2298         return 0;
2299 }
2300 #else
2301 /* Workaround for gcc 2.96 */
2302 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2303 {
2304         return 0;
2305 }
2306 #endif /* __PAGETABLE_PUD_FOLDED */
2307
2308 #ifndef __PAGETABLE_PMD_FOLDED
2309 /*
2310  * Allocate page middle directory.
2311  * We've already handled the fast-path in-line.
2312  */
2313 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2314 {
2315         pmd_t *new = pmd_alloc_one(mm, address);
2316         if (!new)
2317                 return -ENOMEM;
2318
2319         spin_lock(&mm->page_table_lock);
2320 #ifndef __ARCH_HAS_4LEVEL_HACK
2321         if (pud_present(*pud))          /* Another has populated it */
2322                 pmd_free(new);
2323         else
2324                 pud_populate(mm, pud, new);
2325 #else
2326         if (pgd_present(*pud))          /* Another has populated it */
2327                 pmd_free(new);
2328         else
2329                 pgd_populate(mm, pud, new);
2330 #endif /* __ARCH_HAS_4LEVEL_HACK */
2331         spin_unlock(&mm->page_table_lock);
2332         return 0;
2333 }
2334 #else
2335 /* Workaround for gcc 2.96 */
2336 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2337 {
2338         return 0;
2339 }
2340 #endif /* __PAGETABLE_PMD_FOLDED */
2341
2342 int make_pages_present(unsigned long addr, unsigned long end)
2343 {
2344         int ret, len, write;
2345         struct vm_area_struct * vma;
2346
2347         vma = find_vma(current->mm, addr);
2348         if (!vma)
2349                 return -1;
2350         write = (vma->vm_flags & VM_WRITE) != 0;
2351         if (addr >= end)
2352                 BUG();
2353         if (end > vma->vm_end)
2354                 BUG();
2355         len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2356         ret = get_user_pages(current, current->mm, addr,
2357                         len, write, 0, NULL, NULL);
2358         if (ret < 0)
2359                 return ret;
2360         return ret == len ? 0 : -1;
2361 }
2362
2363 /* 
2364  * Map a vmalloc()-space virtual address to the physical page.
2365  */
2366 struct page * vmalloc_to_page(void * vmalloc_addr)
2367 {
2368         unsigned long addr = (unsigned long) vmalloc_addr;
2369         struct page *page = NULL;
2370         pgd_t *pgd = pgd_offset_k(addr);
2371         pud_t *pud;
2372         pmd_t *pmd;
2373         pte_t *ptep, pte;
2374   
2375         if (!pgd_none(*pgd)) {
2376                 pud = pud_offset(pgd, addr);
2377                 if (!pud_none(*pud)) {
2378                         pmd = pmd_offset(pud, addr);
2379                         if (!pmd_none(*pmd)) {
2380                                 ptep = pte_offset_map(pmd, addr);
2381                                 pte = *ptep;
2382                                 if (pte_present(pte))
2383                                         page = pte_page(pte);
2384                                 pte_unmap(ptep);
2385                         }
2386                 }
2387         }
2388         return page;
2389 }
2390
2391 EXPORT_SYMBOL(vmalloc_to_page);
2392
2393 /*
2394  * Map a vmalloc()-space virtual address to the physical page frame number.
2395  */
2396 unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2397 {
2398         return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2399 }
2400
2401 EXPORT_SYMBOL(vmalloc_to_pfn);
2402
2403 #if !defined(__HAVE_ARCH_GATE_AREA)
2404
2405 #if defined(AT_SYSINFO_EHDR)
2406 static struct vm_area_struct gate_vma;
2407
2408 static int __init gate_vma_init(void)
2409 {
2410         gate_vma.vm_mm = NULL;
2411         gate_vma.vm_start = FIXADDR_USER_START;
2412         gate_vma.vm_end = FIXADDR_USER_END;
2413         gate_vma.vm_page_prot = PAGE_READONLY;
2414         gate_vma.vm_flags = 0;
2415         return 0;
2416 }
2417 __initcall(gate_vma_init);
2418 #endif
2419
2420 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2421 {
2422 #ifdef AT_SYSINFO_EHDR
2423         return &gate_vma;
2424 #else
2425         return NULL;
2426 #endif
2427 }
2428
2429 int in_gate_area_no_task(unsigned long addr)
2430 {
2431 #ifdef AT_SYSINFO_EHDR
2432         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2433                 return 1;
2434 #endif
2435         return 0;
2436 }
2437
2438 #endif  /* __HAVE_ARCH_GATE_AREA */