Merge tag 'fscrypt-for-linus' of git://git.kernel.org/pub/scm/fs/fscrypt/fscrypt
[linux-2.6-microblaze.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 #include <linux/numa.h>
73 #include <linux/perf_event.h>
74 #include <linux/ptrace.h>
75 #include <linux/vmalloc.h>
76
77 #include <trace/events/kmem.h>
78
79 #include <asm/io.h>
80 #include <asm/mmu_context.h>
81 #include <asm/pgalloc.h>
82 #include <linux/uaccess.h>
83 #include <asm/tlb.h>
84 #include <asm/tlbflush.h>
85
86 #include "pgalloc-track.h"
87 #include "internal.h"
88
89 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
91 #endif
92
93 #ifndef CONFIG_NEED_MULTIPLE_NODES
94 /* use the per-pgdat data instead for discontigmem - mbligh */
95 unsigned long max_mapnr;
96 EXPORT_SYMBOL(max_mapnr);
97
98 struct page *mem_map;
99 EXPORT_SYMBOL(mem_map);
100 #endif
101
102 /*
103  * A number of key systems in x86 including ioremap() rely on the assumption
104  * that high_memory defines the upper bound on direct map memory, then end
105  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
106  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
107  * and ZONE_HIGHMEM.
108  */
109 void *high_memory;
110 EXPORT_SYMBOL(high_memory);
111
112 /*
113  * Randomize the address space (stacks, mmaps, brk, etc.).
114  *
115  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
116  *   as ancient (libc5 based) binaries can segfault. )
117  */
118 int randomize_va_space __read_mostly =
119 #ifdef CONFIG_COMPAT_BRK
120                                         1;
121 #else
122                                         2;
123 #endif
124
125 #ifndef arch_faults_on_old_pte
126 static inline bool arch_faults_on_old_pte(void)
127 {
128         /*
129          * Those arches which don't have hw access flag feature need to
130          * implement their own helper. By default, "true" means pagefault
131          * will be hit on old pte.
132          */
133         return true;
134 }
135 #endif
136
137 static int __init disable_randmaps(char *s)
138 {
139         randomize_va_space = 0;
140         return 1;
141 }
142 __setup("norandmaps", disable_randmaps);
143
144 unsigned long zero_pfn __read_mostly;
145 EXPORT_SYMBOL(zero_pfn);
146
147 unsigned long highest_memmap_pfn __read_mostly;
148
149 /*
150  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
151  */
152 static int __init init_zero_pfn(void)
153 {
154         zero_pfn = page_to_pfn(ZERO_PAGE(0));
155         return 0;
156 }
157 core_initcall(init_zero_pfn);
158
159 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
160 {
161         trace_rss_stat(mm, member, count);
162 }
163
164 #if defined(SPLIT_RSS_COUNTING)
165
166 void sync_mm_rss(struct mm_struct *mm)
167 {
168         int i;
169
170         for (i = 0; i < NR_MM_COUNTERS; i++) {
171                 if (current->rss_stat.count[i]) {
172                         add_mm_counter(mm, i, current->rss_stat.count[i]);
173                         current->rss_stat.count[i] = 0;
174                 }
175         }
176         current->rss_stat.events = 0;
177 }
178
179 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
180 {
181         struct task_struct *task = current;
182
183         if (likely(task->mm == mm))
184                 task->rss_stat.count[member] += val;
185         else
186                 add_mm_counter(mm, member, val);
187 }
188 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
189 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
190
191 /* sync counter once per 64 page faults */
192 #define TASK_RSS_EVENTS_THRESH  (64)
193 static void check_sync_rss_stat(struct task_struct *task)
194 {
195         if (unlikely(task != current))
196                 return;
197         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
198                 sync_mm_rss(task->mm);
199 }
200 #else /* SPLIT_RSS_COUNTING */
201
202 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
203 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
204
205 static void check_sync_rss_stat(struct task_struct *task)
206 {
207 }
208
209 #endif /* SPLIT_RSS_COUNTING */
210
211 /*
212  * Note: this doesn't free the actual pages themselves. That
213  * has been handled earlier when unmapping all the memory regions.
214  */
215 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
216                            unsigned long addr)
217 {
218         pgtable_t token = pmd_pgtable(*pmd);
219         pmd_clear(pmd);
220         pte_free_tlb(tlb, token, addr);
221         mm_dec_nr_ptes(tlb->mm);
222 }
223
224 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
225                                 unsigned long addr, unsigned long end,
226                                 unsigned long floor, unsigned long ceiling)
227 {
228         pmd_t *pmd;
229         unsigned long next;
230         unsigned long start;
231
232         start = addr;
233         pmd = pmd_offset(pud, addr);
234         do {
235                 next = pmd_addr_end(addr, end);
236                 if (pmd_none_or_clear_bad(pmd))
237                         continue;
238                 free_pte_range(tlb, pmd, addr);
239         } while (pmd++, addr = next, addr != end);
240
241         start &= PUD_MASK;
242         if (start < floor)
243                 return;
244         if (ceiling) {
245                 ceiling &= PUD_MASK;
246                 if (!ceiling)
247                         return;
248         }
249         if (end - 1 > ceiling - 1)
250                 return;
251
252         pmd = pmd_offset(pud, start);
253         pud_clear(pud);
254         pmd_free_tlb(tlb, pmd, start);
255         mm_dec_nr_pmds(tlb->mm);
256 }
257
258 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
259                                 unsigned long addr, unsigned long end,
260                                 unsigned long floor, unsigned long ceiling)
261 {
262         pud_t *pud;
263         unsigned long next;
264         unsigned long start;
265
266         start = addr;
267         pud = pud_offset(p4d, addr);
268         do {
269                 next = pud_addr_end(addr, end);
270                 if (pud_none_or_clear_bad(pud))
271                         continue;
272                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
273         } while (pud++, addr = next, addr != end);
274
275         start &= P4D_MASK;
276         if (start < floor)
277                 return;
278         if (ceiling) {
279                 ceiling &= P4D_MASK;
280                 if (!ceiling)
281                         return;
282         }
283         if (end - 1 > ceiling - 1)
284                 return;
285
286         pud = pud_offset(p4d, start);
287         p4d_clear(p4d);
288         pud_free_tlb(tlb, pud, start);
289         mm_dec_nr_puds(tlb->mm);
290 }
291
292 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
293                                 unsigned long addr, unsigned long end,
294                                 unsigned long floor, unsigned long ceiling)
295 {
296         p4d_t *p4d;
297         unsigned long next;
298         unsigned long start;
299
300         start = addr;
301         p4d = p4d_offset(pgd, addr);
302         do {
303                 next = p4d_addr_end(addr, end);
304                 if (p4d_none_or_clear_bad(p4d))
305                         continue;
306                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
307         } while (p4d++, addr = next, addr != end);
308
309         start &= PGDIR_MASK;
310         if (start < floor)
311                 return;
312         if (ceiling) {
313                 ceiling &= PGDIR_MASK;
314                 if (!ceiling)
315                         return;
316         }
317         if (end - 1 > ceiling - 1)
318                 return;
319
320         p4d = p4d_offset(pgd, start);
321         pgd_clear(pgd);
322         p4d_free_tlb(tlb, p4d, start);
323 }
324
325 /*
326  * This function frees user-level page tables of a process.
327  */
328 void free_pgd_range(struct mmu_gather *tlb,
329                         unsigned long addr, unsigned long end,
330                         unsigned long floor, unsigned long ceiling)
331 {
332         pgd_t *pgd;
333         unsigned long next;
334
335         /*
336          * The next few lines have given us lots of grief...
337          *
338          * Why are we testing PMD* at this top level?  Because often
339          * there will be no work to do at all, and we'd prefer not to
340          * go all the way down to the bottom just to discover that.
341          *
342          * Why all these "- 1"s?  Because 0 represents both the bottom
343          * of the address space and the top of it (using -1 for the
344          * top wouldn't help much: the masks would do the wrong thing).
345          * The rule is that addr 0 and floor 0 refer to the bottom of
346          * the address space, but end 0 and ceiling 0 refer to the top
347          * Comparisons need to use "end - 1" and "ceiling - 1" (though
348          * that end 0 case should be mythical).
349          *
350          * Wherever addr is brought up or ceiling brought down, we must
351          * be careful to reject "the opposite 0" before it confuses the
352          * subsequent tests.  But what about where end is brought down
353          * by PMD_SIZE below? no, end can't go down to 0 there.
354          *
355          * Whereas we round start (addr) and ceiling down, by different
356          * masks at different levels, in order to test whether a table
357          * now has no other vmas using it, so can be freed, we don't
358          * bother to round floor or end up - the tests don't need that.
359          */
360
361         addr &= PMD_MASK;
362         if (addr < floor) {
363                 addr += PMD_SIZE;
364                 if (!addr)
365                         return;
366         }
367         if (ceiling) {
368                 ceiling &= PMD_MASK;
369                 if (!ceiling)
370                         return;
371         }
372         if (end - 1 > ceiling - 1)
373                 end -= PMD_SIZE;
374         if (addr > end - 1)
375                 return;
376         /*
377          * We add page table cache pages with PAGE_SIZE,
378          * (see pte_free_tlb()), flush the tlb if we need
379          */
380         tlb_change_page_size(tlb, PAGE_SIZE);
381         pgd = pgd_offset(tlb->mm, addr);
382         do {
383                 next = pgd_addr_end(addr, end);
384                 if (pgd_none_or_clear_bad(pgd))
385                         continue;
386                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
387         } while (pgd++, addr = next, addr != end);
388 }
389
390 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
391                 unsigned long floor, unsigned long ceiling)
392 {
393         while (vma) {
394                 struct vm_area_struct *next = vma->vm_next;
395                 unsigned long addr = vma->vm_start;
396
397                 /*
398                  * Hide vma from rmap and truncate_pagecache before freeing
399                  * pgtables
400                  */
401                 unlink_anon_vmas(vma);
402                 unlink_file_vma(vma);
403
404                 if (is_vm_hugetlb_page(vma)) {
405                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
406                                 floor, next ? next->vm_start : ceiling);
407                 } else {
408                         /*
409                          * Optimization: gather nearby vmas into one call down
410                          */
411                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
412                                && !is_vm_hugetlb_page(next)) {
413                                 vma = next;
414                                 next = vma->vm_next;
415                                 unlink_anon_vmas(vma);
416                                 unlink_file_vma(vma);
417                         }
418                         free_pgd_range(tlb, addr, vma->vm_end,
419                                 floor, next ? next->vm_start : ceiling);
420                 }
421                 vma = next;
422         }
423 }
424
425 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
426 {
427         spinlock_t *ptl;
428         pgtable_t new = pte_alloc_one(mm);
429         if (!new)
430                 return -ENOMEM;
431
432         /*
433          * Ensure all pte setup (eg. pte page lock and page clearing) are
434          * visible before the pte is made visible to other CPUs by being
435          * put into page tables.
436          *
437          * The other side of the story is the pointer chasing in the page
438          * table walking code (when walking the page table without locking;
439          * ie. most of the time). Fortunately, these data accesses consist
440          * of a chain of data-dependent loads, meaning most CPUs (alpha
441          * being the notable exception) will already guarantee loads are
442          * seen in-order. See the alpha page table accessors for the
443          * smp_rmb() barriers in page table walking code.
444          */
445         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
446
447         ptl = pmd_lock(mm, pmd);
448         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
449                 mm_inc_nr_ptes(mm);
450                 pmd_populate(mm, pmd, new);
451                 new = NULL;
452         }
453         spin_unlock(ptl);
454         if (new)
455                 pte_free(mm, new);
456         return 0;
457 }
458
459 int __pte_alloc_kernel(pmd_t *pmd)
460 {
461         pte_t *new = pte_alloc_one_kernel(&init_mm);
462         if (!new)
463                 return -ENOMEM;
464
465         smp_wmb(); /* See comment in __pte_alloc */
466
467         spin_lock(&init_mm.page_table_lock);
468         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
469                 pmd_populate_kernel(&init_mm, pmd, new);
470                 new = NULL;
471         }
472         spin_unlock(&init_mm.page_table_lock);
473         if (new)
474                 pte_free_kernel(&init_mm, new);
475         return 0;
476 }
477
478 static inline void init_rss_vec(int *rss)
479 {
480         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
481 }
482
483 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
484 {
485         int i;
486
487         if (current->mm == mm)
488                 sync_mm_rss(mm);
489         for (i = 0; i < NR_MM_COUNTERS; i++)
490                 if (rss[i])
491                         add_mm_counter(mm, i, rss[i]);
492 }
493
494 /*
495  * This function is called to print an error when a bad pte
496  * is found. For example, we might have a PFN-mapped pte in
497  * a region that doesn't allow it.
498  *
499  * The calling function must still handle the error.
500  */
501 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
502                           pte_t pte, struct page *page)
503 {
504         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
505         p4d_t *p4d = p4d_offset(pgd, addr);
506         pud_t *pud = pud_offset(p4d, addr);
507         pmd_t *pmd = pmd_offset(pud, addr);
508         struct address_space *mapping;
509         pgoff_t index;
510         static unsigned long resume;
511         static unsigned long nr_shown;
512         static unsigned long nr_unshown;
513
514         /*
515          * Allow a burst of 60 reports, then keep quiet for that minute;
516          * or allow a steady drip of one report per second.
517          */
518         if (nr_shown == 60) {
519                 if (time_before(jiffies, resume)) {
520                         nr_unshown++;
521                         return;
522                 }
523                 if (nr_unshown) {
524                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
525                                  nr_unshown);
526                         nr_unshown = 0;
527                 }
528                 nr_shown = 0;
529         }
530         if (nr_shown++ == 0)
531                 resume = jiffies + 60 * HZ;
532
533         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
534         index = linear_page_index(vma, addr);
535
536         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
537                  current->comm,
538                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
539         if (page)
540                 dump_page(page, "bad pte");
541         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
542                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
543         pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
544                  vma->vm_file,
545                  vma->vm_ops ? vma->vm_ops->fault : NULL,
546                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
547                  mapping ? mapping->a_ops->readpage : NULL);
548         dump_stack();
549         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
550 }
551
552 /*
553  * vm_normal_page -- This function gets the "struct page" associated with a pte.
554  *
555  * "Special" mappings do not wish to be associated with a "struct page" (either
556  * it doesn't exist, or it exists but they don't want to touch it). In this
557  * case, NULL is returned here. "Normal" mappings do have a struct page.
558  *
559  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
560  * pte bit, in which case this function is trivial. Secondly, an architecture
561  * may not have a spare pte bit, which requires a more complicated scheme,
562  * described below.
563  *
564  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
565  * special mapping (even if there are underlying and valid "struct pages").
566  * COWed pages of a VM_PFNMAP are always normal.
567  *
568  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
569  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
570  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
571  * mapping will always honor the rule
572  *
573  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
574  *
575  * And for normal mappings this is false.
576  *
577  * This restricts such mappings to be a linear translation from virtual address
578  * to pfn. To get around this restriction, we allow arbitrary mappings so long
579  * as the vma is not a COW mapping; in that case, we know that all ptes are
580  * special (because none can have been COWed).
581  *
582  *
583  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
584  *
585  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
586  * page" backing, however the difference is that _all_ pages with a struct
587  * page (that is, those where pfn_valid is true) are refcounted and considered
588  * normal pages by the VM. The disadvantage is that pages are refcounted
589  * (which can be slower and simply not an option for some PFNMAP users). The
590  * advantage is that we don't have to follow the strict linearity rule of
591  * PFNMAP mappings in order to support COWable mappings.
592  *
593  */
594 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
595                             pte_t pte)
596 {
597         unsigned long pfn = pte_pfn(pte);
598
599         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
600                 if (likely(!pte_special(pte)))
601                         goto check_pfn;
602                 if (vma->vm_ops && vma->vm_ops->find_special_page)
603                         return vma->vm_ops->find_special_page(vma, addr);
604                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
605                         return NULL;
606                 if (is_zero_pfn(pfn))
607                         return NULL;
608                 if (pte_devmap(pte))
609                         return NULL;
610
611                 print_bad_pte(vma, addr, pte, NULL);
612                 return NULL;
613         }
614
615         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
616
617         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
618                 if (vma->vm_flags & VM_MIXEDMAP) {
619                         if (!pfn_valid(pfn))
620                                 return NULL;
621                         goto out;
622                 } else {
623                         unsigned long off;
624                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
625                         if (pfn == vma->vm_pgoff + off)
626                                 return NULL;
627                         if (!is_cow_mapping(vma->vm_flags))
628                                 return NULL;
629                 }
630         }
631
632         if (is_zero_pfn(pfn))
633                 return NULL;
634
635 check_pfn:
636         if (unlikely(pfn > highest_memmap_pfn)) {
637                 print_bad_pte(vma, addr, pte, NULL);
638                 return NULL;
639         }
640
641         /*
642          * NOTE! We still have PageReserved() pages in the page tables.
643          * eg. VDSO mappings can cause them to exist.
644          */
645 out:
646         return pfn_to_page(pfn);
647 }
648
649 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
650 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
651                                 pmd_t pmd)
652 {
653         unsigned long pfn = pmd_pfn(pmd);
654
655         /*
656          * There is no pmd_special() but there may be special pmds, e.g.
657          * in a direct-access (dax) mapping, so let's just replicate the
658          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
659          */
660         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
661                 if (vma->vm_flags & VM_MIXEDMAP) {
662                         if (!pfn_valid(pfn))
663                                 return NULL;
664                         goto out;
665                 } else {
666                         unsigned long off;
667                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
668                         if (pfn == vma->vm_pgoff + off)
669                                 return NULL;
670                         if (!is_cow_mapping(vma->vm_flags))
671                                 return NULL;
672                 }
673         }
674
675         if (pmd_devmap(pmd))
676                 return NULL;
677         if (is_huge_zero_pmd(pmd))
678                 return NULL;
679         if (unlikely(pfn > highest_memmap_pfn))
680                 return NULL;
681
682         /*
683          * NOTE! We still have PageReserved() pages in the page tables.
684          * eg. VDSO mappings can cause them to exist.
685          */
686 out:
687         return pfn_to_page(pfn);
688 }
689 #endif
690
691 /*
692  * copy one vm_area from one task to the other. Assumes the page tables
693  * already present in the new task to be cleared in the whole range
694  * covered by this vma.
695  */
696
697 static unsigned long
698 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
699                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
700                 unsigned long addr, int *rss)
701 {
702         unsigned long vm_flags = vma->vm_flags;
703         pte_t pte = *src_pte;
704         struct page *page;
705         swp_entry_t entry = pte_to_swp_entry(pte);
706
707         if (likely(!non_swap_entry(entry))) {
708                 if (swap_duplicate(entry) < 0)
709                         return entry.val;
710
711                 /* make sure dst_mm is on swapoff's mmlist. */
712                 if (unlikely(list_empty(&dst_mm->mmlist))) {
713                         spin_lock(&mmlist_lock);
714                         if (list_empty(&dst_mm->mmlist))
715                                 list_add(&dst_mm->mmlist,
716                                                 &src_mm->mmlist);
717                         spin_unlock(&mmlist_lock);
718                 }
719                 rss[MM_SWAPENTS]++;
720         } else if (is_migration_entry(entry)) {
721                 page = migration_entry_to_page(entry);
722
723                 rss[mm_counter(page)]++;
724
725                 if (is_write_migration_entry(entry) &&
726                                 is_cow_mapping(vm_flags)) {
727                         /*
728                          * COW mappings require pages in both
729                          * parent and child to be set to read.
730                          */
731                         make_migration_entry_read(&entry);
732                         pte = swp_entry_to_pte(entry);
733                         if (pte_swp_soft_dirty(*src_pte))
734                                 pte = pte_swp_mksoft_dirty(pte);
735                         if (pte_swp_uffd_wp(*src_pte))
736                                 pte = pte_swp_mkuffd_wp(pte);
737                         set_pte_at(src_mm, addr, src_pte, pte);
738                 }
739         } else if (is_device_private_entry(entry)) {
740                 page = device_private_entry_to_page(entry);
741
742                 /*
743                  * Update rss count even for unaddressable pages, as
744                  * they should treated just like normal pages in this
745                  * respect.
746                  *
747                  * We will likely want to have some new rss counters
748                  * for unaddressable pages, at some point. But for now
749                  * keep things as they are.
750                  */
751                 get_page(page);
752                 rss[mm_counter(page)]++;
753                 page_dup_rmap(page, false);
754
755                 /*
756                  * We do not preserve soft-dirty information, because so
757                  * far, checkpoint/restore is the only feature that
758                  * requires that. And checkpoint/restore does not work
759                  * when a device driver is involved (you cannot easily
760                  * save and restore device driver state).
761                  */
762                 if (is_write_device_private_entry(entry) &&
763                     is_cow_mapping(vm_flags)) {
764                         make_device_private_entry_read(&entry);
765                         pte = swp_entry_to_pte(entry);
766                         if (pte_swp_uffd_wp(*src_pte))
767                                 pte = pte_swp_mkuffd_wp(pte);
768                         set_pte_at(src_mm, addr, src_pte, pte);
769                 }
770         }
771         set_pte_at(dst_mm, addr, dst_pte, pte);
772         return 0;
773 }
774
775 /*
776  * Copy a present and normal page if necessary.
777  *
778  * NOTE! The usual case is that this doesn't need to do
779  * anything, and can just return a positive value. That
780  * will let the caller know that it can just increase
781  * the page refcount and re-use the pte the traditional
782  * way.
783  *
784  * But _if_ we need to copy it because it needs to be
785  * pinned in the parent (and the child should get its own
786  * copy rather than just a reference to the same page),
787  * we'll do that here and return zero to let the caller
788  * know we're done.
789  *
790  * And if we need a pre-allocated page but don't yet have
791  * one, return a negative error to let the preallocation
792  * code know so that it can do so outside the page table
793  * lock.
794  */
795 static inline int
796 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
797                   pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
798                   struct page **prealloc, pte_t pte, struct page *page)
799 {
800         struct mm_struct *src_mm = src_vma->vm_mm;
801         struct page *new_page;
802
803         if (!is_cow_mapping(src_vma->vm_flags))
804                 return 1;
805
806         /*
807          * What we want to do is to check whether this page may
808          * have been pinned by the parent process.  If so,
809          * instead of wrprotect the pte on both sides, we copy
810          * the page immediately so that we'll always guarantee
811          * the pinned page won't be randomly replaced in the
812          * future.
813          *
814          * The page pinning checks are just "has this mm ever
815          * seen pinning", along with the (inexact) check of
816          * the page count. That might give false positives for
817          * for pinning, but it will work correctly.
818          */
819         if (likely(!atomic_read(&src_mm->has_pinned)))
820                 return 1;
821         if (likely(!page_maybe_dma_pinned(page)))
822                 return 1;
823
824         new_page = *prealloc;
825         if (!new_page)
826                 return -EAGAIN;
827
828         /*
829          * We have a prealloc page, all good!  Take it
830          * over and copy the page & arm it.
831          */
832         *prealloc = NULL;
833         copy_user_highpage(new_page, page, addr, src_vma);
834         __SetPageUptodate(new_page);
835         page_add_new_anon_rmap(new_page, dst_vma, addr, false);
836         lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
837         rss[mm_counter(new_page)]++;
838
839         /* All done, just insert the new page copy in the child */
840         pte = mk_pte(new_page, dst_vma->vm_page_prot);
841         pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
842         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
843         return 0;
844 }
845
846 /*
847  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
848  * is required to copy this pte.
849  */
850 static inline int
851 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
852                  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
853                  struct page **prealloc)
854 {
855         struct mm_struct *src_mm = src_vma->vm_mm;
856         unsigned long vm_flags = src_vma->vm_flags;
857         pte_t pte = *src_pte;
858         struct page *page;
859
860         page = vm_normal_page(src_vma, addr, pte);
861         if (page) {
862                 int retval;
863
864                 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
865                                            addr, rss, prealloc, pte, page);
866                 if (retval <= 0)
867                         return retval;
868
869                 get_page(page);
870                 page_dup_rmap(page, false);
871                 rss[mm_counter(page)]++;
872         }
873
874         /*
875          * If it's a COW mapping, write protect it both
876          * in the parent and the child
877          */
878         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
879                 ptep_set_wrprotect(src_mm, addr, src_pte);
880                 pte = pte_wrprotect(pte);
881         }
882
883         /*
884          * If it's a shared mapping, mark it clean in
885          * the child
886          */
887         if (vm_flags & VM_SHARED)
888                 pte = pte_mkclean(pte);
889         pte = pte_mkold(pte);
890
891         /*
892          * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
893          * does not have the VM_UFFD_WP, which means that the uffd
894          * fork event is not enabled.
895          */
896         if (!(vm_flags & VM_UFFD_WP))
897                 pte = pte_clear_uffd_wp(pte);
898
899         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
900         return 0;
901 }
902
903 static inline struct page *
904 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
905                    unsigned long addr)
906 {
907         struct page *new_page;
908
909         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
910         if (!new_page)
911                 return NULL;
912
913         if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
914                 put_page(new_page);
915                 return NULL;
916         }
917         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
918
919         return new_page;
920 }
921
922 static int
923 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
924                pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
925                unsigned long end)
926 {
927         struct mm_struct *dst_mm = dst_vma->vm_mm;
928         struct mm_struct *src_mm = src_vma->vm_mm;
929         pte_t *orig_src_pte, *orig_dst_pte;
930         pte_t *src_pte, *dst_pte;
931         spinlock_t *src_ptl, *dst_ptl;
932         int progress, ret = 0;
933         int rss[NR_MM_COUNTERS];
934         swp_entry_t entry = (swp_entry_t){0};
935         struct page *prealloc = NULL;
936
937 again:
938         progress = 0;
939         init_rss_vec(rss);
940
941         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
942         if (!dst_pte) {
943                 ret = -ENOMEM;
944                 goto out;
945         }
946         src_pte = pte_offset_map(src_pmd, addr);
947         src_ptl = pte_lockptr(src_mm, src_pmd);
948         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
949         orig_src_pte = src_pte;
950         orig_dst_pte = dst_pte;
951         arch_enter_lazy_mmu_mode();
952
953         do {
954                 /*
955                  * We are holding two locks at this point - either of them
956                  * could generate latencies in another task on another CPU.
957                  */
958                 if (progress >= 32) {
959                         progress = 0;
960                         if (need_resched() ||
961                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
962                                 break;
963                 }
964                 if (pte_none(*src_pte)) {
965                         progress++;
966                         continue;
967                 }
968                 if (unlikely(!pte_present(*src_pte))) {
969                         entry.val = copy_nonpresent_pte(dst_mm, src_mm,
970                                                         dst_pte, src_pte,
971                                                         src_vma, addr, rss);
972                         if (entry.val)
973                                 break;
974                         progress += 8;
975                         continue;
976                 }
977                 /* copy_present_pte() will clear `*prealloc' if consumed */
978                 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
979                                        addr, rss, &prealloc);
980                 /*
981                  * If we need a pre-allocated page for this pte, drop the
982                  * locks, allocate, and try again.
983                  */
984                 if (unlikely(ret == -EAGAIN))
985                         break;
986                 if (unlikely(prealloc)) {
987                         /*
988                          * pre-alloc page cannot be reused by next time so as
989                          * to strictly follow mempolicy (e.g., alloc_page_vma()
990                          * will allocate page according to address).  This
991                          * could only happen if one pinned pte changed.
992                          */
993                         put_page(prealloc);
994                         prealloc = NULL;
995                 }
996                 progress += 8;
997         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
998
999         arch_leave_lazy_mmu_mode();
1000         spin_unlock(src_ptl);
1001         pte_unmap(orig_src_pte);
1002         add_mm_rss_vec(dst_mm, rss);
1003         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1004         cond_resched();
1005
1006         if (entry.val) {
1007                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1008                         ret = -ENOMEM;
1009                         goto out;
1010                 }
1011                 entry.val = 0;
1012         } else if (ret) {
1013                 WARN_ON_ONCE(ret != -EAGAIN);
1014                 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1015                 if (!prealloc)
1016                         return -ENOMEM;
1017                 /* We've captured and resolved the error. Reset, try again. */
1018                 ret = 0;
1019         }
1020         if (addr != end)
1021                 goto again;
1022 out:
1023         if (unlikely(prealloc))
1024                 put_page(prealloc);
1025         return ret;
1026 }
1027
1028 static inline int
1029 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1030                pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1031                unsigned long end)
1032 {
1033         struct mm_struct *dst_mm = dst_vma->vm_mm;
1034         struct mm_struct *src_mm = src_vma->vm_mm;
1035         pmd_t *src_pmd, *dst_pmd;
1036         unsigned long next;
1037
1038         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1039         if (!dst_pmd)
1040                 return -ENOMEM;
1041         src_pmd = pmd_offset(src_pud, addr);
1042         do {
1043                 next = pmd_addr_end(addr, end);
1044                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1045                         || pmd_devmap(*src_pmd)) {
1046                         int err;
1047                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1048                         err = copy_huge_pmd(dst_mm, src_mm,
1049                                             dst_pmd, src_pmd, addr, src_vma);
1050                         if (err == -ENOMEM)
1051                                 return -ENOMEM;
1052                         if (!err)
1053                                 continue;
1054                         /* fall through */
1055                 }
1056                 if (pmd_none_or_clear_bad(src_pmd))
1057                         continue;
1058                 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1059                                    addr, next))
1060                         return -ENOMEM;
1061         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1062         return 0;
1063 }
1064
1065 static inline int
1066 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1067                p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1068                unsigned long end)
1069 {
1070         struct mm_struct *dst_mm = dst_vma->vm_mm;
1071         struct mm_struct *src_mm = src_vma->vm_mm;
1072         pud_t *src_pud, *dst_pud;
1073         unsigned long next;
1074
1075         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1076         if (!dst_pud)
1077                 return -ENOMEM;
1078         src_pud = pud_offset(src_p4d, addr);
1079         do {
1080                 next = pud_addr_end(addr, end);
1081                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1082                         int err;
1083
1084                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1085                         err = copy_huge_pud(dst_mm, src_mm,
1086                                             dst_pud, src_pud, addr, src_vma);
1087                         if (err == -ENOMEM)
1088                                 return -ENOMEM;
1089                         if (!err)
1090                                 continue;
1091                         /* fall through */
1092                 }
1093                 if (pud_none_or_clear_bad(src_pud))
1094                         continue;
1095                 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1096                                    addr, next))
1097                         return -ENOMEM;
1098         } while (dst_pud++, src_pud++, addr = next, addr != end);
1099         return 0;
1100 }
1101
1102 static inline int
1103 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1104                pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1105                unsigned long end)
1106 {
1107         struct mm_struct *dst_mm = dst_vma->vm_mm;
1108         p4d_t *src_p4d, *dst_p4d;
1109         unsigned long next;
1110
1111         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1112         if (!dst_p4d)
1113                 return -ENOMEM;
1114         src_p4d = p4d_offset(src_pgd, addr);
1115         do {
1116                 next = p4d_addr_end(addr, end);
1117                 if (p4d_none_or_clear_bad(src_p4d))
1118                         continue;
1119                 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1120                                    addr, next))
1121                         return -ENOMEM;
1122         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1123         return 0;
1124 }
1125
1126 int
1127 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1128 {
1129         pgd_t *src_pgd, *dst_pgd;
1130         unsigned long next;
1131         unsigned long addr = src_vma->vm_start;
1132         unsigned long end = src_vma->vm_end;
1133         struct mm_struct *dst_mm = dst_vma->vm_mm;
1134         struct mm_struct *src_mm = src_vma->vm_mm;
1135         struct mmu_notifier_range range;
1136         bool is_cow;
1137         int ret;
1138
1139         /*
1140          * Don't copy ptes where a page fault will fill them correctly.
1141          * Fork becomes much lighter when there are big shared or private
1142          * readonly mappings. The tradeoff is that copy_page_range is more
1143          * efficient than faulting.
1144          */
1145         if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1146             !src_vma->anon_vma)
1147                 return 0;
1148
1149         if (is_vm_hugetlb_page(src_vma))
1150                 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1151
1152         if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1153                 /*
1154                  * We do not free on error cases below as remove_vma
1155                  * gets called on error from higher level routine
1156                  */
1157                 ret = track_pfn_copy(src_vma);
1158                 if (ret)
1159                         return ret;
1160         }
1161
1162         /*
1163          * We need to invalidate the secondary MMU mappings only when
1164          * there could be a permission downgrade on the ptes of the
1165          * parent mm. And a permission downgrade will only happen if
1166          * is_cow_mapping() returns true.
1167          */
1168         is_cow = is_cow_mapping(src_vma->vm_flags);
1169
1170         if (is_cow) {
1171                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1172                                         0, src_vma, src_mm, addr, end);
1173                 mmu_notifier_invalidate_range_start(&range);
1174         }
1175
1176         ret = 0;
1177         dst_pgd = pgd_offset(dst_mm, addr);
1178         src_pgd = pgd_offset(src_mm, addr);
1179         do {
1180                 next = pgd_addr_end(addr, end);
1181                 if (pgd_none_or_clear_bad(src_pgd))
1182                         continue;
1183                 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1184                                             addr, next))) {
1185                         ret = -ENOMEM;
1186                         break;
1187                 }
1188         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1189
1190         if (is_cow)
1191                 mmu_notifier_invalidate_range_end(&range);
1192         return ret;
1193 }
1194
1195 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1196                                 struct vm_area_struct *vma, pmd_t *pmd,
1197                                 unsigned long addr, unsigned long end,
1198                                 struct zap_details *details)
1199 {
1200         struct mm_struct *mm = tlb->mm;
1201         int force_flush = 0;
1202         int rss[NR_MM_COUNTERS];
1203         spinlock_t *ptl;
1204         pte_t *start_pte;
1205         pte_t *pte;
1206         swp_entry_t entry;
1207
1208         tlb_change_page_size(tlb, PAGE_SIZE);
1209 again:
1210         init_rss_vec(rss);
1211         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1212         pte = start_pte;
1213         flush_tlb_batched_pending(mm);
1214         arch_enter_lazy_mmu_mode();
1215         do {
1216                 pte_t ptent = *pte;
1217                 if (pte_none(ptent))
1218                         continue;
1219
1220                 if (need_resched())
1221                         break;
1222
1223                 if (pte_present(ptent)) {
1224                         struct page *page;
1225
1226                         page = vm_normal_page(vma, addr, ptent);
1227                         if (unlikely(details) && page) {
1228                                 /*
1229                                  * unmap_shared_mapping_pages() wants to
1230                                  * invalidate cache without truncating:
1231                                  * unmap shared but keep private pages.
1232                                  */
1233                                 if (details->check_mapping &&
1234                                     details->check_mapping != page_rmapping(page))
1235                                         continue;
1236                         }
1237                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1238                                                         tlb->fullmm);
1239                         tlb_remove_tlb_entry(tlb, pte, addr);
1240                         if (unlikely(!page))
1241                                 continue;
1242
1243                         if (!PageAnon(page)) {
1244                                 if (pte_dirty(ptent)) {
1245                                         force_flush = 1;
1246                                         set_page_dirty(page);
1247                                 }
1248                                 if (pte_young(ptent) &&
1249                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1250                                         mark_page_accessed(page);
1251                         }
1252                         rss[mm_counter(page)]--;
1253                         page_remove_rmap(page, false);
1254                         if (unlikely(page_mapcount(page) < 0))
1255                                 print_bad_pte(vma, addr, ptent, page);
1256                         if (unlikely(__tlb_remove_page(tlb, page))) {
1257                                 force_flush = 1;
1258                                 addr += PAGE_SIZE;
1259                                 break;
1260                         }
1261                         continue;
1262                 }
1263
1264                 entry = pte_to_swp_entry(ptent);
1265                 if (is_device_private_entry(entry)) {
1266                         struct page *page = device_private_entry_to_page(entry);
1267
1268                         if (unlikely(details && details->check_mapping)) {
1269                                 /*
1270                                  * unmap_shared_mapping_pages() wants to
1271                                  * invalidate cache without truncating:
1272                                  * unmap shared but keep private pages.
1273                                  */
1274                                 if (details->check_mapping !=
1275                                     page_rmapping(page))
1276                                         continue;
1277                         }
1278
1279                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1280                         rss[mm_counter(page)]--;
1281                         page_remove_rmap(page, false);
1282                         put_page(page);
1283                         continue;
1284                 }
1285
1286                 /* If details->check_mapping, we leave swap entries. */
1287                 if (unlikely(details))
1288                         continue;
1289
1290                 if (!non_swap_entry(entry))
1291                         rss[MM_SWAPENTS]--;
1292                 else if (is_migration_entry(entry)) {
1293                         struct page *page;
1294
1295                         page = migration_entry_to_page(entry);
1296                         rss[mm_counter(page)]--;
1297                 }
1298                 if (unlikely(!free_swap_and_cache(entry)))
1299                         print_bad_pte(vma, addr, ptent, NULL);
1300                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1301         } while (pte++, addr += PAGE_SIZE, addr != end);
1302
1303         add_mm_rss_vec(mm, rss);
1304         arch_leave_lazy_mmu_mode();
1305
1306         /* Do the actual TLB flush before dropping ptl */
1307         if (force_flush)
1308                 tlb_flush_mmu_tlbonly(tlb);
1309         pte_unmap_unlock(start_pte, ptl);
1310
1311         /*
1312          * If we forced a TLB flush (either due to running out of
1313          * batch buffers or because we needed to flush dirty TLB
1314          * entries before releasing the ptl), free the batched
1315          * memory too. Restart if we didn't do everything.
1316          */
1317         if (force_flush) {
1318                 force_flush = 0;
1319                 tlb_flush_mmu(tlb);
1320         }
1321
1322         if (addr != end) {
1323                 cond_resched();
1324                 goto again;
1325         }
1326
1327         return addr;
1328 }
1329
1330 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1331                                 struct vm_area_struct *vma, pud_t *pud,
1332                                 unsigned long addr, unsigned long end,
1333                                 struct zap_details *details)
1334 {
1335         pmd_t *pmd;
1336         unsigned long next;
1337
1338         pmd = pmd_offset(pud, addr);
1339         do {
1340                 next = pmd_addr_end(addr, end);
1341                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1342                         if (next - addr != HPAGE_PMD_SIZE)
1343                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1344                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1345                                 goto next;
1346                         /* fall through */
1347                 }
1348                 /*
1349                  * Here there can be other concurrent MADV_DONTNEED or
1350                  * trans huge page faults running, and if the pmd is
1351                  * none or trans huge it can change under us. This is
1352                  * because MADV_DONTNEED holds the mmap_lock in read
1353                  * mode.
1354                  */
1355                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1356                         goto next;
1357                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1358 next:
1359                 cond_resched();
1360         } while (pmd++, addr = next, addr != end);
1361
1362         return addr;
1363 }
1364
1365 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1366                                 struct vm_area_struct *vma, p4d_t *p4d,
1367                                 unsigned long addr, unsigned long end,
1368                                 struct zap_details *details)
1369 {
1370         pud_t *pud;
1371         unsigned long next;
1372
1373         pud = pud_offset(p4d, addr);
1374         do {
1375                 next = pud_addr_end(addr, end);
1376                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1377                         if (next - addr != HPAGE_PUD_SIZE) {
1378                                 mmap_assert_locked(tlb->mm);
1379                                 split_huge_pud(vma, pud, addr);
1380                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1381                                 goto next;
1382                         /* fall through */
1383                 }
1384                 if (pud_none_or_clear_bad(pud))
1385                         continue;
1386                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1387 next:
1388                 cond_resched();
1389         } while (pud++, addr = next, addr != end);
1390
1391         return addr;
1392 }
1393
1394 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1395                                 struct vm_area_struct *vma, pgd_t *pgd,
1396                                 unsigned long addr, unsigned long end,
1397                                 struct zap_details *details)
1398 {
1399         p4d_t *p4d;
1400         unsigned long next;
1401
1402         p4d = p4d_offset(pgd, addr);
1403         do {
1404                 next = p4d_addr_end(addr, end);
1405                 if (p4d_none_or_clear_bad(p4d))
1406                         continue;
1407                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1408         } while (p4d++, addr = next, addr != end);
1409
1410         return addr;
1411 }
1412
1413 void unmap_page_range(struct mmu_gather *tlb,
1414                              struct vm_area_struct *vma,
1415                              unsigned long addr, unsigned long end,
1416                              struct zap_details *details)
1417 {
1418         pgd_t *pgd;
1419         unsigned long next;
1420
1421         BUG_ON(addr >= end);
1422         tlb_start_vma(tlb, vma);
1423         pgd = pgd_offset(vma->vm_mm, addr);
1424         do {
1425                 next = pgd_addr_end(addr, end);
1426                 if (pgd_none_or_clear_bad(pgd))
1427                         continue;
1428                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1429         } while (pgd++, addr = next, addr != end);
1430         tlb_end_vma(tlb, vma);
1431 }
1432
1433
1434 static void unmap_single_vma(struct mmu_gather *tlb,
1435                 struct vm_area_struct *vma, unsigned long start_addr,
1436                 unsigned long end_addr,
1437                 struct zap_details *details)
1438 {
1439         unsigned long start = max(vma->vm_start, start_addr);
1440         unsigned long end;
1441
1442         if (start >= vma->vm_end)
1443                 return;
1444         end = min(vma->vm_end, end_addr);
1445         if (end <= vma->vm_start)
1446                 return;
1447
1448         if (vma->vm_file)
1449                 uprobe_munmap(vma, start, end);
1450
1451         if (unlikely(vma->vm_flags & VM_PFNMAP))
1452                 untrack_pfn(vma, 0, 0);
1453
1454         if (start != end) {
1455                 if (unlikely(is_vm_hugetlb_page(vma))) {
1456                         /*
1457                          * It is undesirable to test vma->vm_file as it
1458                          * should be non-null for valid hugetlb area.
1459                          * However, vm_file will be NULL in the error
1460                          * cleanup path of mmap_region. When
1461                          * hugetlbfs ->mmap method fails,
1462                          * mmap_region() nullifies vma->vm_file
1463                          * before calling this function to clean up.
1464                          * Since no pte has actually been setup, it is
1465                          * safe to do nothing in this case.
1466                          */
1467                         if (vma->vm_file) {
1468                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1469                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1470                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1471                         }
1472                 } else
1473                         unmap_page_range(tlb, vma, start, end, details);
1474         }
1475 }
1476
1477 /**
1478  * unmap_vmas - unmap a range of memory covered by a list of vma's
1479  * @tlb: address of the caller's struct mmu_gather
1480  * @vma: the starting vma
1481  * @start_addr: virtual address at which to start unmapping
1482  * @end_addr: virtual address at which to end unmapping
1483  *
1484  * Unmap all pages in the vma list.
1485  *
1486  * Only addresses between `start' and `end' will be unmapped.
1487  *
1488  * The VMA list must be sorted in ascending virtual address order.
1489  *
1490  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1491  * range after unmap_vmas() returns.  So the only responsibility here is to
1492  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1493  * drops the lock and schedules.
1494  */
1495 void unmap_vmas(struct mmu_gather *tlb,
1496                 struct vm_area_struct *vma, unsigned long start_addr,
1497                 unsigned long end_addr)
1498 {
1499         struct mmu_notifier_range range;
1500
1501         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1502                                 start_addr, end_addr);
1503         mmu_notifier_invalidate_range_start(&range);
1504         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1505                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1506         mmu_notifier_invalidate_range_end(&range);
1507 }
1508
1509 /**
1510  * zap_page_range - remove user pages in a given range
1511  * @vma: vm_area_struct holding the applicable pages
1512  * @start: starting address of pages to zap
1513  * @size: number of bytes to zap
1514  *
1515  * Caller must protect the VMA list
1516  */
1517 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1518                 unsigned long size)
1519 {
1520         struct mmu_notifier_range range;
1521         struct mmu_gather tlb;
1522
1523         lru_add_drain();
1524         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1525                                 start, start + size);
1526         tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1527         update_hiwater_rss(vma->vm_mm);
1528         mmu_notifier_invalidate_range_start(&range);
1529         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1530                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1531         mmu_notifier_invalidate_range_end(&range);
1532         tlb_finish_mmu(&tlb, start, range.end);
1533 }
1534
1535 /**
1536  * zap_page_range_single - remove user pages in a given range
1537  * @vma: vm_area_struct holding the applicable pages
1538  * @address: starting address of pages to zap
1539  * @size: number of bytes to zap
1540  * @details: details of shared cache invalidation
1541  *
1542  * The range must fit into one VMA.
1543  */
1544 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1545                 unsigned long size, struct zap_details *details)
1546 {
1547         struct mmu_notifier_range range;
1548         struct mmu_gather tlb;
1549
1550         lru_add_drain();
1551         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1552                                 address, address + size);
1553         tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1554         update_hiwater_rss(vma->vm_mm);
1555         mmu_notifier_invalidate_range_start(&range);
1556         unmap_single_vma(&tlb, vma, address, range.end, details);
1557         mmu_notifier_invalidate_range_end(&range);
1558         tlb_finish_mmu(&tlb, address, range.end);
1559 }
1560
1561 /**
1562  * zap_vma_ptes - remove ptes mapping the vma
1563  * @vma: vm_area_struct holding ptes to be zapped
1564  * @address: starting address of pages to zap
1565  * @size: number of bytes to zap
1566  *
1567  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1568  *
1569  * The entire address range must be fully contained within the vma.
1570  *
1571  */
1572 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1573                 unsigned long size)
1574 {
1575         if (address < vma->vm_start || address + size > vma->vm_end ||
1576                         !(vma->vm_flags & VM_PFNMAP))
1577                 return;
1578
1579         zap_page_range_single(vma, address, size, NULL);
1580 }
1581 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1582
1583 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1584 {
1585         pgd_t *pgd;
1586         p4d_t *p4d;
1587         pud_t *pud;
1588         pmd_t *pmd;
1589
1590         pgd = pgd_offset(mm, addr);
1591         p4d = p4d_alloc(mm, pgd, addr);
1592         if (!p4d)
1593                 return NULL;
1594         pud = pud_alloc(mm, p4d, addr);
1595         if (!pud)
1596                 return NULL;
1597         pmd = pmd_alloc(mm, pud, addr);
1598         if (!pmd)
1599                 return NULL;
1600
1601         VM_BUG_ON(pmd_trans_huge(*pmd));
1602         return pmd;
1603 }
1604
1605 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1606                         spinlock_t **ptl)
1607 {
1608         pmd_t *pmd = walk_to_pmd(mm, addr);
1609
1610         if (!pmd)
1611                 return NULL;
1612         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1613 }
1614
1615 static int validate_page_before_insert(struct page *page)
1616 {
1617         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1618                 return -EINVAL;
1619         flush_dcache_page(page);
1620         return 0;
1621 }
1622
1623 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1624                         unsigned long addr, struct page *page, pgprot_t prot)
1625 {
1626         if (!pte_none(*pte))
1627                 return -EBUSY;
1628         /* Ok, finally just insert the thing.. */
1629         get_page(page);
1630         inc_mm_counter_fast(mm, mm_counter_file(page));
1631         page_add_file_rmap(page, false);
1632         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1633         return 0;
1634 }
1635
1636 /*
1637  * This is the old fallback for page remapping.
1638  *
1639  * For historical reasons, it only allows reserved pages. Only
1640  * old drivers should use this, and they needed to mark their
1641  * pages reserved for the old functions anyway.
1642  */
1643 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1644                         struct page *page, pgprot_t prot)
1645 {
1646         struct mm_struct *mm = vma->vm_mm;
1647         int retval;
1648         pte_t *pte;
1649         spinlock_t *ptl;
1650
1651         retval = validate_page_before_insert(page);
1652         if (retval)
1653                 goto out;
1654         retval = -ENOMEM;
1655         pte = get_locked_pte(mm, addr, &ptl);
1656         if (!pte)
1657                 goto out;
1658         retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1659         pte_unmap_unlock(pte, ptl);
1660 out:
1661         return retval;
1662 }
1663
1664 #ifdef pte_index
1665 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1666                         unsigned long addr, struct page *page, pgprot_t prot)
1667 {
1668         int err;
1669
1670         if (!page_count(page))
1671                 return -EINVAL;
1672         err = validate_page_before_insert(page);
1673         if (err)
1674                 return err;
1675         return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1676 }
1677
1678 /* insert_pages() amortizes the cost of spinlock operations
1679  * when inserting pages in a loop. Arch *must* define pte_index.
1680  */
1681 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1682                         struct page **pages, unsigned long *num, pgprot_t prot)
1683 {
1684         pmd_t *pmd = NULL;
1685         pte_t *start_pte, *pte;
1686         spinlock_t *pte_lock;
1687         struct mm_struct *const mm = vma->vm_mm;
1688         unsigned long curr_page_idx = 0;
1689         unsigned long remaining_pages_total = *num;
1690         unsigned long pages_to_write_in_pmd;
1691         int ret;
1692 more:
1693         ret = -EFAULT;
1694         pmd = walk_to_pmd(mm, addr);
1695         if (!pmd)
1696                 goto out;
1697
1698         pages_to_write_in_pmd = min_t(unsigned long,
1699                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1700
1701         /* Allocate the PTE if necessary; takes PMD lock once only. */
1702         ret = -ENOMEM;
1703         if (pte_alloc(mm, pmd))
1704                 goto out;
1705
1706         while (pages_to_write_in_pmd) {
1707                 int pte_idx = 0;
1708                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1709
1710                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1711                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1712                         int err = insert_page_in_batch_locked(mm, pte,
1713                                 addr, pages[curr_page_idx], prot);
1714                         if (unlikely(err)) {
1715                                 pte_unmap_unlock(start_pte, pte_lock);
1716                                 ret = err;
1717                                 remaining_pages_total -= pte_idx;
1718                                 goto out;
1719                         }
1720                         addr += PAGE_SIZE;
1721                         ++curr_page_idx;
1722                 }
1723                 pte_unmap_unlock(start_pte, pte_lock);
1724                 pages_to_write_in_pmd -= batch_size;
1725                 remaining_pages_total -= batch_size;
1726         }
1727         if (remaining_pages_total)
1728                 goto more;
1729         ret = 0;
1730 out:
1731         *num = remaining_pages_total;
1732         return ret;
1733 }
1734 #endif  /* ifdef pte_index */
1735
1736 /**
1737  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1738  * @vma: user vma to map to
1739  * @addr: target start user address of these pages
1740  * @pages: source kernel pages
1741  * @num: in: number of pages to map. out: number of pages that were *not*
1742  * mapped. (0 means all pages were successfully mapped).
1743  *
1744  * Preferred over vm_insert_page() when inserting multiple pages.
1745  *
1746  * In case of error, we may have mapped a subset of the provided
1747  * pages. It is the caller's responsibility to account for this case.
1748  *
1749  * The same restrictions apply as in vm_insert_page().
1750  */
1751 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1752                         struct page **pages, unsigned long *num)
1753 {
1754 #ifdef pte_index
1755         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1756
1757         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1758                 return -EFAULT;
1759         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1760                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1761                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1762                 vma->vm_flags |= VM_MIXEDMAP;
1763         }
1764         /* Defer page refcount checking till we're about to map that page. */
1765         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1766 #else
1767         unsigned long idx = 0, pgcount = *num;
1768         int err = -EINVAL;
1769
1770         for (; idx < pgcount; ++idx) {
1771                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1772                 if (err)
1773                         break;
1774         }
1775         *num = pgcount - idx;
1776         return err;
1777 #endif  /* ifdef pte_index */
1778 }
1779 EXPORT_SYMBOL(vm_insert_pages);
1780
1781 /**
1782  * vm_insert_page - insert single page into user vma
1783  * @vma: user vma to map to
1784  * @addr: target user address of this page
1785  * @page: source kernel page
1786  *
1787  * This allows drivers to insert individual pages they've allocated
1788  * into a user vma.
1789  *
1790  * The page has to be a nice clean _individual_ kernel allocation.
1791  * If you allocate a compound page, you need to have marked it as
1792  * such (__GFP_COMP), or manually just split the page up yourself
1793  * (see split_page()).
1794  *
1795  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1796  * took an arbitrary page protection parameter. This doesn't allow
1797  * that. Your vma protection will have to be set up correctly, which
1798  * means that if you want a shared writable mapping, you'd better
1799  * ask for a shared writable mapping!
1800  *
1801  * The page does not need to be reserved.
1802  *
1803  * Usually this function is called from f_op->mmap() handler
1804  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1805  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1806  * function from other places, for example from page-fault handler.
1807  *
1808  * Return: %0 on success, negative error code otherwise.
1809  */
1810 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1811                         struct page *page)
1812 {
1813         if (addr < vma->vm_start || addr >= vma->vm_end)
1814                 return -EFAULT;
1815         if (!page_count(page))
1816                 return -EINVAL;
1817         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1818                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1819                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1820                 vma->vm_flags |= VM_MIXEDMAP;
1821         }
1822         return insert_page(vma, addr, page, vma->vm_page_prot);
1823 }
1824 EXPORT_SYMBOL(vm_insert_page);
1825
1826 /*
1827  * __vm_map_pages - maps range of kernel pages into user vma
1828  * @vma: user vma to map to
1829  * @pages: pointer to array of source kernel pages
1830  * @num: number of pages in page array
1831  * @offset: user's requested vm_pgoff
1832  *
1833  * This allows drivers to map range of kernel pages into a user vma.
1834  *
1835  * Return: 0 on success and error code otherwise.
1836  */
1837 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1838                                 unsigned long num, unsigned long offset)
1839 {
1840         unsigned long count = vma_pages(vma);
1841         unsigned long uaddr = vma->vm_start;
1842         int ret, i;
1843
1844         /* Fail if the user requested offset is beyond the end of the object */
1845         if (offset >= num)
1846                 return -ENXIO;
1847
1848         /* Fail if the user requested size exceeds available object size */
1849         if (count > num - offset)
1850                 return -ENXIO;
1851
1852         for (i = 0; i < count; i++) {
1853                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1854                 if (ret < 0)
1855                         return ret;
1856                 uaddr += PAGE_SIZE;
1857         }
1858
1859         return 0;
1860 }
1861
1862 /**
1863  * vm_map_pages - maps range of kernel pages starts with non zero offset
1864  * @vma: user vma to map to
1865  * @pages: pointer to array of source kernel pages
1866  * @num: number of pages in page array
1867  *
1868  * Maps an object consisting of @num pages, catering for the user's
1869  * requested vm_pgoff
1870  *
1871  * If we fail to insert any page into the vma, the function will return
1872  * immediately leaving any previously inserted pages present.  Callers
1873  * from the mmap handler may immediately return the error as their caller
1874  * will destroy the vma, removing any successfully inserted pages. Other
1875  * callers should make their own arrangements for calling unmap_region().
1876  *
1877  * Context: Process context. Called by mmap handlers.
1878  * Return: 0 on success and error code otherwise.
1879  */
1880 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1881                                 unsigned long num)
1882 {
1883         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1884 }
1885 EXPORT_SYMBOL(vm_map_pages);
1886
1887 /**
1888  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1889  * @vma: user vma to map to
1890  * @pages: pointer to array of source kernel pages
1891  * @num: number of pages in page array
1892  *
1893  * Similar to vm_map_pages(), except that it explicitly sets the offset
1894  * to 0. This function is intended for the drivers that did not consider
1895  * vm_pgoff.
1896  *
1897  * Context: Process context. Called by mmap handlers.
1898  * Return: 0 on success and error code otherwise.
1899  */
1900 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1901                                 unsigned long num)
1902 {
1903         return __vm_map_pages(vma, pages, num, 0);
1904 }
1905 EXPORT_SYMBOL(vm_map_pages_zero);
1906
1907 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1908                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1909 {
1910         struct mm_struct *mm = vma->vm_mm;
1911         pte_t *pte, entry;
1912         spinlock_t *ptl;
1913
1914         pte = get_locked_pte(mm, addr, &ptl);
1915         if (!pte)
1916                 return VM_FAULT_OOM;
1917         if (!pte_none(*pte)) {
1918                 if (mkwrite) {
1919                         /*
1920                          * For read faults on private mappings the PFN passed
1921                          * in may not match the PFN we have mapped if the
1922                          * mapped PFN is a writeable COW page.  In the mkwrite
1923                          * case we are creating a writable PTE for a shared
1924                          * mapping and we expect the PFNs to match. If they
1925                          * don't match, we are likely racing with block
1926                          * allocation and mapping invalidation so just skip the
1927                          * update.
1928                          */
1929                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1930                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1931                                 goto out_unlock;
1932                         }
1933                         entry = pte_mkyoung(*pte);
1934                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1935                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1936                                 update_mmu_cache(vma, addr, pte);
1937                 }
1938                 goto out_unlock;
1939         }
1940
1941         /* Ok, finally just insert the thing.. */
1942         if (pfn_t_devmap(pfn))
1943                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1944         else
1945                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1946
1947         if (mkwrite) {
1948                 entry = pte_mkyoung(entry);
1949                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1950         }
1951
1952         set_pte_at(mm, addr, pte, entry);
1953         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1954
1955 out_unlock:
1956         pte_unmap_unlock(pte, ptl);
1957         return VM_FAULT_NOPAGE;
1958 }
1959
1960 /**
1961  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1962  * @vma: user vma to map to
1963  * @addr: target user address of this page
1964  * @pfn: source kernel pfn
1965  * @pgprot: pgprot flags for the inserted page
1966  *
1967  * This is exactly like vmf_insert_pfn(), except that it allows drivers
1968  * to override pgprot on a per-page basis.
1969  *
1970  * This only makes sense for IO mappings, and it makes no sense for
1971  * COW mappings.  In general, using multiple vmas is preferable;
1972  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1973  * impractical.
1974  *
1975  * See vmf_insert_mixed_prot() for a discussion of the implication of using
1976  * a value of @pgprot different from that of @vma->vm_page_prot.
1977  *
1978  * Context: Process context.  May allocate using %GFP_KERNEL.
1979  * Return: vm_fault_t value.
1980  */
1981 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1982                         unsigned long pfn, pgprot_t pgprot)
1983 {
1984         /*
1985          * Technically, architectures with pte_special can avoid all these
1986          * restrictions (same for remap_pfn_range).  However we would like
1987          * consistency in testing and feature parity among all, so we should
1988          * try to keep these invariants in place for everybody.
1989          */
1990         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1991         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1992                                                 (VM_PFNMAP|VM_MIXEDMAP));
1993         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1994         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1995
1996         if (addr < vma->vm_start || addr >= vma->vm_end)
1997                 return VM_FAULT_SIGBUS;
1998
1999         if (!pfn_modify_allowed(pfn, pgprot))
2000                 return VM_FAULT_SIGBUS;
2001
2002         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2003
2004         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2005                         false);
2006 }
2007 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2008
2009 /**
2010  * vmf_insert_pfn - insert single pfn into user vma
2011  * @vma: user vma to map to
2012  * @addr: target user address of this page
2013  * @pfn: source kernel pfn
2014  *
2015  * Similar to vm_insert_page, this allows drivers to insert individual pages
2016  * they've allocated into a user vma. Same comments apply.
2017  *
2018  * This function should only be called from a vm_ops->fault handler, and
2019  * in that case the handler should return the result of this function.
2020  *
2021  * vma cannot be a COW mapping.
2022  *
2023  * As this is called only for pages that do not currently exist, we
2024  * do not need to flush old virtual caches or the TLB.
2025  *
2026  * Context: Process context.  May allocate using %GFP_KERNEL.
2027  * Return: vm_fault_t value.
2028  */
2029 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2030                         unsigned long pfn)
2031 {
2032         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2033 }
2034 EXPORT_SYMBOL(vmf_insert_pfn);
2035
2036 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2037 {
2038         /* these checks mirror the abort conditions in vm_normal_page */
2039         if (vma->vm_flags & VM_MIXEDMAP)
2040                 return true;
2041         if (pfn_t_devmap(pfn))
2042                 return true;
2043         if (pfn_t_special(pfn))
2044                 return true;
2045         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2046                 return true;
2047         return false;
2048 }
2049
2050 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2051                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2052                 bool mkwrite)
2053 {
2054         int err;
2055
2056         BUG_ON(!vm_mixed_ok(vma, pfn));
2057
2058         if (addr < vma->vm_start || addr >= vma->vm_end)
2059                 return VM_FAULT_SIGBUS;
2060
2061         track_pfn_insert(vma, &pgprot, pfn);
2062
2063         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2064                 return VM_FAULT_SIGBUS;
2065
2066         /*
2067          * If we don't have pte special, then we have to use the pfn_valid()
2068          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2069          * refcount the page if pfn_valid is true (hence insert_page rather
2070          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2071          * without pte special, it would there be refcounted as a normal page.
2072          */
2073         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2074             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2075                 struct page *page;
2076
2077                 /*
2078                  * At this point we are committed to insert_page()
2079                  * regardless of whether the caller specified flags that
2080                  * result in pfn_t_has_page() == false.
2081                  */
2082                 page = pfn_to_page(pfn_t_to_pfn(pfn));
2083                 err = insert_page(vma, addr, page, pgprot);
2084         } else {
2085                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2086         }
2087
2088         if (err == -ENOMEM)
2089                 return VM_FAULT_OOM;
2090         if (err < 0 && err != -EBUSY)
2091                 return VM_FAULT_SIGBUS;
2092
2093         return VM_FAULT_NOPAGE;
2094 }
2095
2096 /**
2097  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2098  * @vma: user vma to map to
2099  * @addr: target user address of this page
2100  * @pfn: source kernel pfn
2101  * @pgprot: pgprot flags for the inserted page
2102  *
2103  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2104  * to override pgprot on a per-page basis.
2105  *
2106  * Typically this function should be used by drivers to set caching- and
2107  * encryption bits different than those of @vma->vm_page_prot, because
2108  * the caching- or encryption mode may not be known at mmap() time.
2109  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2110  * to set caching and encryption bits for those vmas (except for COW pages).
2111  * This is ensured by core vm only modifying these page table entries using
2112  * functions that don't touch caching- or encryption bits, using pte_modify()
2113  * if needed. (See for example mprotect()).
2114  * Also when new page-table entries are created, this is only done using the
2115  * fault() callback, and never using the value of vma->vm_page_prot,
2116  * except for page-table entries that point to anonymous pages as the result
2117  * of COW.
2118  *
2119  * Context: Process context.  May allocate using %GFP_KERNEL.
2120  * Return: vm_fault_t value.
2121  */
2122 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2123                                  pfn_t pfn, pgprot_t pgprot)
2124 {
2125         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2126 }
2127 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2128
2129 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2130                 pfn_t pfn)
2131 {
2132         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2133 }
2134 EXPORT_SYMBOL(vmf_insert_mixed);
2135
2136 /*
2137  *  If the insertion of PTE failed because someone else already added a
2138  *  different entry in the mean time, we treat that as success as we assume
2139  *  the same entry was actually inserted.
2140  */
2141 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2142                 unsigned long addr, pfn_t pfn)
2143 {
2144         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2145 }
2146 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2147
2148 /*
2149  * maps a range of physical memory into the requested pages. the old
2150  * mappings are removed. any references to nonexistent pages results
2151  * in null mappings (currently treated as "copy-on-access")
2152  */
2153 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2154                         unsigned long addr, unsigned long end,
2155                         unsigned long pfn, pgprot_t prot)
2156 {
2157         pte_t *pte;
2158         spinlock_t *ptl;
2159         int err = 0;
2160
2161         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2162         if (!pte)
2163                 return -ENOMEM;
2164         arch_enter_lazy_mmu_mode();
2165         do {
2166                 BUG_ON(!pte_none(*pte));
2167                 if (!pfn_modify_allowed(pfn, prot)) {
2168                         err = -EACCES;
2169                         break;
2170                 }
2171                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2172                 pfn++;
2173         } while (pte++, addr += PAGE_SIZE, addr != end);
2174         arch_leave_lazy_mmu_mode();
2175         pte_unmap_unlock(pte - 1, ptl);
2176         return err;
2177 }
2178
2179 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2180                         unsigned long addr, unsigned long end,
2181                         unsigned long pfn, pgprot_t prot)
2182 {
2183         pmd_t *pmd;
2184         unsigned long next;
2185         int err;
2186
2187         pfn -= addr >> PAGE_SHIFT;
2188         pmd = pmd_alloc(mm, pud, addr);
2189         if (!pmd)
2190                 return -ENOMEM;
2191         VM_BUG_ON(pmd_trans_huge(*pmd));
2192         do {
2193                 next = pmd_addr_end(addr, end);
2194                 err = remap_pte_range(mm, pmd, addr, next,
2195                                 pfn + (addr >> PAGE_SHIFT), prot);
2196                 if (err)
2197                         return err;
2198         } while (pmd++, addr = next, addr != end);
2199         return 0;
2200 }
2201
2202 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2203                         unsigned long addr, unsigned long end,
2204                         unsigned long pfn, pgprot_t prot)
2205 {
2206         pud_t *pud;
2207         unsigned long next;
2208         int err;
2209
2210         pfn -= addr >> PAGE_SHIFT;
2211         pud = pud_alloc(mm, p4d, addr);
2212         if (!pud)
2213                 return -ENOMEM;
2214         do {
2215                 next = pud_addr_end(addr, end);
2216                 err = remap_pmd_range(mm, pud, addr, next,
2217                                 pfn + (addr >> PAGE_SHIFT), prot);
2218                 if (err)
2219                         return err;
2220         } while (pud++, addr = next, addr != end);
2221         return 0;
2222 }
2223
2224 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2225                         unsigned long addr, unsigned long end,
2226                         unsigned long pfn, pgprot_t prot)
2227 {
2228         p4d_t *p4d;
2229         unsigned long next;
2230         int err;
2231
2232         pfn -= addr >> PAGE_SHIFT;
2233         p4d = p4d_alloc(mm, pgd, addr);
2234         if (!p4d)
2235                 return -ENOMEM;
2236         do {
2237                 next = p4d_addr_end(addr, end);
2238                 err = remap_pud_range(mm, p4d, addr, next,
2239                                 pfn + (addr >> PAGE_SHIFT), prot);
2240                 if (err)
2241                         return err;
2242         } while (p4d++, addr = next, addr != end);
2243         return 0;
2244 }
2245
2246 /**
2247  * remap_pfn_range - remap kernel memory to userspace
2248  * @vma: user vma to map to
2249  * @addr: target page aligned user address to start at
2250  * @pfn: page frame number of kernel physical memory address
2251  * @size: size of mapping area
2252  * @prot: page protection flags for this mapping
2253  *
2254  * Note: this is only safe if the mm semaphore is held when called.
2255  *
2256  * Return: %0 on success, negative error code otherwise.
2257  */
2258 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2259                     unsigned long pfn, unsigned long size, pgprot_t prot)
2260 {
2261         pgd_t *pgd;
2262         unsigned long next;
2263         unsigned long end = addr + PAGE_ALIGN(size);
2264         struct mm_struct *mm = vma->vm_mm;
2265         unsigned long remap_pfn = pfn;
2266         int err;
2267
2268         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2269                 return -EINVAL;
2270
2271         /*
2272          * Physically remapped pages are special. Tell the
2273          * rest of the world about it:
2274          *   VM_IO tells people not to look at these pages
2275          *      (accesses can have side effects).
2276          *   VM_PFNMAP tells the core MM that the base pages are just
2277          *      raw PFN mappings, and do not have a "struct page" associated
2278          *      with them.
2279          *   VM_DONTEXPAND
2280          *      Disable vma merging and expanding with mremap().
2281          *   VM_DONTDUMP
2282          *      Omit vma from core dump, even when VM_IO turned off.
2283          *
2284          * There's a horrible special case to handle copy-on-write
2285          * behaviour that some programs depend on. We mark the "original"
2286          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2287          * See vm_normal_page() for details.
2288          */
2289         if (is_cow_mapping(vma->vm_flags)) {
2290                 if (addr != vma->vm_start || end != vma->vm_end)
2291                         return -EINVAL;
2292                 vma->vm_pgoff = pfn;
2293         }
2294
2295         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2296         if (err)
2297                 return -EINVAL;
2298
2299         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2300
2301         BUG_ON(addr >= end);
2302         pfn -= addr >> PAGE_SHIFT;
2303         pgd = pgd_offset(mm, addr);
2304         flush_cache_range(vma, addr, end);
2305         do {
2306                 next = pgd_addr_end(addr, end);
2307                 err = remap_p4d_range(mm, pgd, addr, next,
2308                                 pfn + (addr >> PAGE_SHIFT), prot);
2309                 if (err)
2310                         break;
2311         } while (pgd++, addr = next, addr != end);
2312
2313         if (err)
2314                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2315
2316         return err;
2317 }
2318 EXPORT_SYMBOL(remap_pfn_range);
2319
2320 /**
2321  * vm_iomap_memory - remap memory to userspace
2322  * @vma: user vma to map to
2323  * @start: start of the physical memory to be mapped
2324  * @len: size of area
2325  *
2326  * This is a simplified io_remap_pfn_range() for common driver use. The
2327  * driver just needs to give us the physical memory range to be mapped,
2328  * we'll figure out the rest from the vma information.
2329  *
2330  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2331  * whatever write-combining details or similar.
2332  *
2333  * Return: %0 on success, negative error code otherwise.
2334  */
2335 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2336 {
2337         unsigned long vm_len, pfn, pages;
2338
2339         /* Check that the physical memory area passed in looks valid */
2340         if (start + len < start)
2341                 return -EINVAL;
2342         /*
2343          * You *really* shouldn't map things that aren't page-aligned,
2344          * but we've historically allowed it because IO memory might
2345          * just have smaller alignment.
2346          */
2347         len += start & ~PAGE_MASK;
2348         pfn = start >> PAGE_SHIFT;
2349         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2350         if (pfn + pages < pfn)
2351                 return -EINVAL;
2352
2353         /* We start the mapping 'vm_pgoff' pages into the area */
2354         if (vma->vm_pgoff > pages)
2355                 return -EINVAL;
2356         pfn += vma->vm_pgoff;
2357         pages -= vma->vm_pgoff;
2358
2359         /* Can we fit all of the mapping? */
2360         vm_len = vma->vm_end - vma->vm_start;
2361         if (vm_len >> PAGE_SHIFT > pages)
2362                 return -EINVAL;
2363
2364         /* Ok, let it rip */
2365         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2366 }
2367 EXPORT_SYMBOL(vm_iomap_memory);
2368
2369 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2370                                      unsigned long addr, unsigned long end,
2371                                      pte_fn_t fn, void *data, bool create,
2372                                      pgtbl_mod_mask *mask)
2373 {
2374         pte_t *pte;
2375         int err = 0;
2376         spinlock_t *ptl;
2377
2378         if (create) {
2379                 pte = (mm == &init_mm) ?
2380                         pte_alloc_kernel_track(pmd, addr, mask) :
2381                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2382                 if (!pte)
2383                         return -ENOMEM;
2384         } else {
2385                 pte = (mm == &init_mm) ?
2386                         pte_offset_kernel(pmd, addr) :
2387                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2388         }
2389
2390         BUG_ON(pmd_huge(*pmd));
2391
2392         arch_enter_lazy_mmu_mode();
2393
2394         if (fn) {
2395                 do {
2396                         if (create || !pte_none(*pte)) {
2397                                 err = fn(pte++, addr, data);
2398                                 if (err)
2399                                         break;
2400                         }
2401                 } while (addr += PAGE_SIZE, addr != end);
2402         }
2403         *mask |= PGTBL_PTE_MODIFIED;
2404
2405         arch_leave_lazy_mmu_mode();
2406
2407         if (mm != &init_mm)
2408                 pte_unmap_unlock(pte-1, ptl);
2409         return err;
2410 }
2411
2412 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2413                                      unsigned long addr, unsigned long end,
2414                                      pte_fn_t fn, void *data, bool create,
2415                                      pgtbl_mod_mask *mask)
2416 {
2417         pmd_t *pmd;
2418         unsigned long next;
2419         int err = 0;
2420
2421         BUG_ON(pud_huge(*pud));
2422
2423         if (create) {
2424                 pmd = pmd_alloc_track(mm, pud, addr, mask);
2425                 if (!pmd)
2426                         return -ENOMEM;
2427         } else {
2428                 pmd = pmd_offset(pud, addr);
2429         }
2430         do {
2431                 next = pmd_addr_end(addr, end);
2432                 if (create || !pmd_none_or_clear_bad(pmd)) {
2433                         err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2434                                                  create, mask);
2435                         if (err)
2436                                 break;
2437                 }
2438         } while (pmd++, addr = next, addr != end);
2439         return err;
2440 }
2441
2442 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2443                                      unsigned long addr, unsigned long end,
2444                                      pte_fn_t fn, void *data, bool create,
2445                                      pgtbl_mod_mask *mask)
2446 {
2447         pud_t *pud;
2448         unsigned long next;
2449         int err = 0;
2450
2451         if (create) {
2452                 pud = pud_alloc_track(mm, p4d, addr, mask);
2453                 if (!pud)
2454                         return -ENOMEM;
2455         } else {
2456                 pud = pud_offset(p4d, addr);
2457         }
2458         do {
2459                 next = pud_addr_end(addr, end);
2460                 if (create || !pud_none_or_clear_bad(pud)) {
2461                         err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2462                                                  create, mask);
2463                         if (err)
2464                                 break;
2465                 }
2466         } while (pud++, addr = next, addr != end);
2467         return err;
2468 }
2469
2470 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2471                                      unsigned long addr, unsigned long end,
2472                                      pte_fn_t fn, void *data, bool create,
2473                                      pgtbl_mod_mask *mask)
2474 {
2475         p4d_t *p4d;
2476         unsigned long next;
2477         int err = 0;
2478
2479         if (create) {
2480                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2481                 if (!p4d)
2482                         return -ENOMEM;
2483         } else {
2484                 p4d = p4d_offset(pgd, addr);
2485         }
2486         do {
2487                 next = p4d_addr_end(addr, end);
2488                 if (create || !p4d_none_or_clear_bad(p4d)) {
2489                         err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2490                                                  create, mask);
2491                         if (err)
2492                                 break;
2493                 }
2494         } while (p4d++, addr = next, addr != end);
2495         return err;
2496 }
2497
2498 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2499                                  unsigned long size, pte_fn_t fn,
2500                                  void *data, bool create)
2501 {
2502         pgd_t *pgd;
2503         unsigned long start = addr, next;
2504         unsigned long end = addr + size;
2505         pgtbl_mod_mask mask = 0;
2506         int err = 0;
2507
2508         if (WARN_ON(addr >= end))
2509                 return -EINVAL;
2510
2511         pgd = pgd_offset(mm, addr);
2512         do {
2513                 next = pgd_addr_end(addr, end);
2514                 if (!create && pgd_none_or_clear_bad(pgd))
2515                         continue;
2516                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask);
2517                 if (err)
2518                         break;
2519         } while (pgd++, addr = next, addr != end);
2520
2521         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2522                 arch_sync_kernel_mappings(start, start + size);
2523
2524         return err;
2525 }
2526
2527 /*
2528  * Scan a region of virtual memory, filling in page tables as necessary
2529  * and calling a provided function on each leaf page table.
2530  */
2531 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2532                         unsigned long size, pte_fn_t fn, void *data)
2533 {
2534         return __apply_to_page_range(mm, addr, size, fn, data, true);
2535 }
2536 EXPORT_SYMBOL_GPL(apply_to_page_range);
2537
2538 /*
2539  * Scan a region of virtual memory, calling a provided function on
2540  * each leaf page table where it exists.
2541  *
2542  * Unlike apply_to_page_range, this does _not_ fill in page tables
2543  * where they are absent.
2544  */
2545 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2546                                  unsigned long size, pte_fn_t fn, void *data)
2547 {
2548         return __apply_to_page_range(mm, addr, size, fn, data, false);
2549 }
2550 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2551
2552 /*
2553  * handle_pte_fault chooses page fault handler according to an entry which was
2554  * read non-atomically.  Before making any commitment, on those architectures
2555  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2556  * parts, do_swap_page must check under lock before unmapping the pte and
2557  * proceeding (but do_wp_page is only called after already making such a check;
2558  * and do_anonymous_page can safely check later on).
2559  */
2560 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2561                                 pte_t *page_table, pte_t orig_pte)
2562 {
2563         int same = 1;
2564 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2565         if (sizeof(pte_t) > sizeof(unsigned long)) {
2566                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2567                 spin_lock(ptl);
2568                 same = pte_same(*page_table, orig_pte);
2569                 spin_unlock(ptl);
2570         }
2571 #endif
2572         pte_unmap(page_table);
2573         return same;
2574 }
2575
2576 static inline bool cow_user_page(struct page *dst, struct page *src,
2577                                  struct vm_fault *vmf)
2578 {
2579         bool ret;
2580         void *kaddr;
2581         void __user *uaddr;
2582         bool locked = false;
2583         struct vm_area_struct *vma = vmf->vma;
2584         struct mm_struct *mm = vma->vm_mm;
2585         unsigned long addr = vmf->address;
2586
2587         if (likely(src)) {
2588                 copy_user_highpage(dst, src, addr, vma);
2589                 return true;
2590         }
2591
2592         /*
2593          * If the source page was a PFN mapping, we don't have
2594          * a "struct page" for it. We do a best-effort copy by
2595          * just copying from the original user address. If that
2596          * fails, we just zero-fill it. Live with it.
2597          */
2598         kaddr = kmap_atomic(dst);
2599         uaddr = (void __user *)(addr & PAGE_MASK);
2600
2601         /*
2602          * On architectures with software "accessed" bits, we would
2603          * take a double page fault, so mark it accessed here.
2604          */
2605         if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2606                 pte_t entry;
2607
2608                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2609                 locked = true;
2610                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2611                         /*
2612                          * Other thread has already handled the fault
2613                          * and update local tlb only
2614                          */
2615                         update_mmu_tlb(vma, addr, vmf->pte);
2616                         ret = false;
2617                         goto pte_unlock;
2618                 }
2619
2620                 entry = pte_mkyoung(vmf->orig_pte);
2621                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2622                         update_mmu_cache(vma, addr, vmf->pte);
2623         }
2624
2625         /*
2626          * This really shouldn't fail, because the page is there
2627          * in the page tables. But it might just be unreadable,
2628          * in which case we just give up and fill the result with
2629          * zeroes.
2630          */
2631         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2632                 if (locked)
2633                         goto warn;
2634
2635                 /* Re-validate under PTL if the page is still mapped */
2636                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2637                 locked = true;
2638                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2639                         /* The PTE changed under us, update local tlb */
2640                         update_mmu_tlb(vma, addr, vmf->pte);
2641                         ret = false;
2642                         goto pte_unlock;
2643                 }
2644
2645                 /*
2646                  * The same page can be mapped back since last copy attempt.
2647                  * Try to copy again under PTL.
2648                  */
2649                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2650                         /*
2651                          * Give a warn in case there can be some obscure
2652                          * use-case
2653                          */
2654 warn:
2655                         WARN_ON_ONCE(1);
2656                         clear_page(kaddr);
2657                 }
2658         }
2659
2660         ret = true;
2661
2662 pte_unlock:
2663         if (locked)
2664                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2665         kunmap_atomic(kaddr);
2666         flush_dcache_page(dst);
2667
2668         return ret;
2669 }
2670
2671 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2672 {
2673         struct file *vm_file = vma->vm_file;
2674
2675         if (vm_file)
2676                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2677
2678         /*
2679          * Special mappings (e.g. VDSO) do not have any file so fake
2680          * a default GFP_KERNEL for them.
2681          */
2682         return GFP_KERNEL;
2683 }
2684
2685 /*
2686  * Notify the address space that the page is about to become writable so that
2687  * it can prohibit this or wait for the page to get into an appropriate state.
2688  *
2689  * We do this without the lock held, so that it can sleep if it needs to.
2690  */
2691 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2692 {
2693         vm_fault_t ret;
2694         struct page *page = vmf->page;
2695         unsigned int old_flags = vmf->flags;
2696
2697         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2698
2699         if (vmf->vma->vm_file &&
2700             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2701                 return VM_FAULT_SIGBUS;
2702
2703         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2704         /* Restore original flags so that caller is not surprised */
2705         vmf->flags = old_flags;
2706         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2707                 return ret;
2708         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2709                 lock_page(page);
2710                 if (!page->mapping) {
2711                         unlock_page(page);
2712                         return 0; /* retry */
2713                 }
2714                 ret |= VM_FAULT_LOCKED;
2715         } else
2716                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2717         return ret;
2718 }
2719
2720 /*
2721  * Handle dirtying of a page in shared file mapping on a write fault.
2722  *
2723  * The function expects the page to be locked and unlocks it.
2724  */
2725 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2726 {
2727         struct vm_area_struct *vma = vmf->vma;
2728         struct address_space *mapping;
2729         struct page *page = vmf->page;
2730         bool dirtied;
2731         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2732
2733         dirtied = set_page_dirty(page);
2734         VM_BUG_ON_PAGE(PageAnon(page), page);
2735         /*
2736          * Take a local copy of the address_space - page.mapping may be zeroed
2737          * by truncate after unlock_page().   The address_space itself remains
2738          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2739          * release semantics to prevent the compiler from undoing this copying.
2740          */
2741         mapping = page_rmapping(page);
2742         unlock_page(page);
2743
2744         if (!page_mkwrite)
2745                 file_update_time(vma->vm_file);
2746
2747         /*
2748          * Throttle page dirtying rate down to writeback speed.
2749          *
2750          * mapping may be NULL here because some device drivers do not
2751          * set page.mapping but still dirty their pages
2752          *
2753          * Drop the mmap_lock before waiting on IO, if we can. The file
2754          * is pinning the mapping, as per above.
2755          */
2756         if ((dirtied || page_mkwrite) && mapping) {
2757                 struct file *fpin;
2758
2759                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2760                 balance_dirty_pages_ratelimited(mapping);
2761                 if (fpin) {
2762                         fput(fpin);
2763                         return VM_FAULT_RETRY;
2764                 }
2765         }
2766
2767         return 0;
2768 }
2769
2770 /*
2771  * Handle write page faults for pages that can be reused in the current vma
2772  *
2773  * This can happen either due to the mapping being with the VM_SHARED flag,
2774  * or due to us being the last reference standing to the page. In either
2775  * case, all we need to do here is to mark the page as writable and update
2776  * any related book-keeping.
2777  */
2778 static inline void wp_page_reuse(struct vm_fault *vmf)
2779         __releases(vmf->ptl)
2780 {
2781         struct vm_area_struct *vma = vmf->vma;
2782         struct page *page = vmf->page;
2783         pte_t entry;
2784         /*
2785          * Clear the pages cpupid information as the existing
2786          * information potentially belongs to a now completely
2787          * unrelated process.
2788          */
2789         if (page)
2790                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2791
2792         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2793         entry = pte_mkyoung(vmf->orig_pte);
2794         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2795         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2796                 update_mmu_cache(vma, vmf->address, vmf->pte);
2797         pte_unmap_unlock(vmf->pte, vmf->ptl);
2798         count_vm_event(PGREUSE);
2799 }
2800
2801 /*
2802  * Handle the case of a page which we actually need to copy to a new page.
2803  *
2804  * Called with mmap_lock locked and the old page referenced, but
2805  * without the ptl held.
2806  *
2807  * High level logic flow:
2808  *
2809  * - Allocate a page, copy the content of the old page to the new one.
2810  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2811  * - Take the PTL. If the pte changed, bail out and release the allocated page
2812  * - If the pte is still the way we remember it, update the page table and all
2813  *   relevant references. This includes dropping the reference the page-table
2814  *   held to the old page, as well as updating the rmap.
2815  * - In any case, unlock the PTL and drop the reference we took to the old page.
2816  */
2817 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2818 {
2819         struct vm_area_struct *vma = vmf->vma;
2820         struct mm_struct *mm = vma->vm_mm;
2821         struct page *old_page = vmf->page;
2822         struct page *new_page = NULL;
2823         pte_t entry;
2824         int page_copied = 0;
2825         struct mmu_notifier_range range;
2826
2827         if (unlikely(anon_vma_prepare(vma)))
2828                 goto oom;
2829
2830         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2831                 new_page = alloc_zeroed_user_highpage_movable(vma,
2832                                                               vmf->address);
2833                 if (!new_page)
2834                         goto oom;
2835         } else {
2836                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2837                                 vmf->address);
2838                 if (!new_page)
2839                         goto oom;
2840
2841                 if (!cow_user_page(new_page, old_page, vmf)) {
2842                         /*
2843                          * COW failed, if the fault was solved by other,
2844                          * it's fine. If not, userspace would re-fault on
2845                          * the same address and we will handle the fault
2846                          * from the second attempt.
2847                          */
2848                         put_page(new_page);
2849                         if (old_page)
2850                                 put_page(old_page);
2851                         return 0;
2852                 }
2853         }
2854
2855         if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2856                 goto oom_free_new;
2857         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2858
2859         __SetPageUptodate(new_page);
2860
2861         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2862                                 vmf->address & PAGE_MASK,
2863                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2864         mmu_notifier_invalidate_range_start(&range);
2865
2866         /*
2867          * Re-check the pte - we dropped the lock
2868          */
2869         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2870         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2871                 if (old_page) {
2872                         if (!PageAnon(old_page)) {
2873                                 dec_mm_counter_fast(mm,
2874                                                 mm_counter_file(old_page));
2875                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2876                         }
2877                 } else {
2878                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2879                 }
2880                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2881                 entry = mk_pte(new_page, vma->vm_page_prot);
2882                 entry = pte_sw_mkyoung(entry);
2883                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2884                 /*
2885                  * Clear the pte entry and flush it first, before updating the
2886                  * pte with the new entry. This will avoid a race condition
2887                  * seen in the presence of one thread doing SMC and another
2888                  * thread doing COW.
2889                  */
2890                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2891                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2892                 lru_cache_add_inactive_or_unevictable(new_page, vma);
2893                 /*
2894                  * We call the notify macro here because, when using secondary
2895                  * mmu page tables (such as kvm shadow page tables), we want the
2896                  * new page to be mapped directly into the secondary page table.
2897                  */
2898                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2899                 update_mmu_cache(vma, vmf->address, vmf->pte);
2900                 if (old_page) {
2901                         /*
2902                          * Only after switching the pte to the new page may
2903                          * we remove the mapcount here. Otherwise another
2904                          * process may come and find the rmap count decremented
2905                          * before the pte is switched to the new page, and
2906                          * "reuse" the old page writing into it while our pte
2907                          * here still points into it and can be read by other
2908                          * threads.
2909                          *
2910                          * The critical issue is to order this
2911                          * page_remove_rmap with the ptp_clear_flush above.
2912                          * Those stores are ordered by (if nothing else,)
2913                          * the barrier present in the atomic_add_negative
2914                          * in page_remove_rmap.
2915                          *
2916                          * Then the TLB flush in ptep_clear_flush ensures that
2917                          * no process can access the old page before the
2918                          * decremented mapcount is visible. And the old page
2919                          * cannot be reused until after the decremented
2920                          * mapcount is visible. So transitively, TLBs to
2921                          * old page will be flushed before it can be reused.
2922                          */
2923                         page_remove_rmap(old_page, false);
2924                 }
2925
2926                 /* Free the old page.. */
2927                 new_page = old_page;
2928                 page_copied = 1;
2929         } else {
2930                 update_mmu_tlb(vma, vmf->address, vmf->pte);
2931         }
2932
2933         if (new_page)
2934                 put_page(new_page);
2935
2936         pte_unmap_unlock(vmf->pte, vmf->ptl);
2937         /*
2938          * No need to double call mmu_notifier->invalidate_range() callback as
2939          * the above ptep_clear_flush_notify() did already call it.
2940          */
2941         mmu_notifier_invalidate_range_only_end(&range);
2942         if (old_page) {
2943                 /*
2944                  * Don't let another task, with possibly unlocked vma,
2945                  * keep the mlocked page.
2946                  */
2947                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2948                         lock_page(old_page);    /* LRU manipulation */
2949                         if (PageMlocked(old_page))
2950                                 munlock_vma_page(old_page);
2951                         unlock_page(old_page);
2952                 }
2953                 put_page(old_page);
2954         }
2955         return page_copied ? VM_FAULT_WRITE : 0;
2956 oom_free_new:
2957         put_page(new_page);
2958 oom:
2959         if (old_page)
2960                 put_page(old_page);
2961         return VM_FAULT_OOM;
2962 }
2963
2964 /**
2965  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2966  *                        writeable once the page is prepared
2967  *
2968  * @vmf: structure describing the fault
2969  *
2970  * This function handles all that is needed to finish a write page fault in a
2971  * shared mapping due to PTE being read-only once the mapped page is prepared.
2972  * It handles locking of PTE and modifying it.
2973  *
2974  * The function expects the page to be locked or other protection against
2975  * concurrent faults / writeback (such as DAX radix tree locks).
2976  *
2977  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2978  * we acquired PTE lock.
2979  */
2980 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2981 {
2982         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2983         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2984                                        &vmf->ptl);
2985         /*
2986          * We might have raced with another page fault while we released the
2987          * pte_offset_map_lock.
2988          */
2989         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2990                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
2991                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2992                 return VM_FAULT_NOPAGE;
2993         }
2994         wp_page_reuse(vmf);
2995         return 0;
2996 }
2997
2998 /*
2999  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3000  * mapping
3001  */
3002 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3003 {
3004         struct vm_area_struct *vma = vmf->vma;
3005
3006         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3007                 vm_fault_t ret;
3008
3009                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3010                 vmf->flags |= FAULT_FLAG_MKWRITE;
3011                 ret = vma->vm_ops->pfn_mkwrite(vmf);
3012                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3013                         return ret;
3014                 return finish_mkwrite_fault(vmf);
3015         }
3016         wp_page_reuse(vmf);
3017         return VM_FAULT_WRITE;
3018 }
3019
3020 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3021         __releases(vmf->ptl)
3022 {
3023         struct vm_area_struct *vma = vmf->vma;
3024         vm_fault_t ret = VM_FAULT_WRITE;
3025
3026         get_page(vmf->page);
3027
3028         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3029                 vm_fault_t tmp;
3030
3031                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3032                 tmp = do_page_mkwrite(vmf);
3033                 if (unlikely(!tmp || (tmp &
3034                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3035                         put_page(vmf->page);
3036                         return tmp;
3037                 }
3038                 tmp = finish_mkwrite_fault(vmf);
3039                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3040                         unlock_page(vmf->page);
3041                         put_page(vmf->page);
3042                         return tmp;
3043                 }
3044         } else {
3045                 wp_page_reuse(vmf);
3046                 lock_page(vmf->page);
3047         }
3048         ret |= fault_dirty_shared_page(vmf);
3049         put_page(vmf->page);
3050
3051         return ret;
3052 }
3053
3054 /*
3055  * This routine handles present pages, when users try to write
3056  * to a shared page. It is done by copying the page to a new address
3057  * and decrementing the shared-page counter for the old page.
3058  *
3059  * Note that this routine assumes that the protection checks have been
3060  * done by the caller (the low-level page fault routine in most cases).
3061  * Thus we can safely just mark it writable once we've done any necessary
3062  * COW.
3063  *
3064  * We also mark the page dirty at this point even though the page will
3065  * change only once the write actually happens. This avoids a few races,
3066  * and potentially makes it more efficient.
3067  *
3068  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3069  * but allow concurrent faults), with pte both mapped and locked.
3070  * We return with mmap_lock still held, but pte unmapped and unlocked.
3071  */
3072 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3073         __releases(vmf->ptl)
3074 {
3075         struct vm_area_struct *vma = vmf->vma;
3076
3077         if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3078                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3079                 return handle_userfault(vmf, VM_UFFD_WP);
3080         }
3081
3082         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3083         if (!vmf->page) {
3084                 /*
3085                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3086                  * VM_PFNMAP VMA.
3087                  *
3088                  * We should not cow pages in a shared writeable mapping.
3089                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
3090                  */
3091                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3092                                      (VM_WRITE|VM_SHARED))
3093                         return wp_pfn_shared(vmf);
3094
3095                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3096                 return wp_page_copy(vmf);
3097         }
3098
3099         /*
3100          * Take out anonymous pages first, anonymous shared vmas are
3101          * not dirty accountable.
3102          */
3103         if (PageAnon(vmf->page)) {
3104                 struct page *page = vmf->page;
3105
3106                 /* PageKsm() doesn't necessarily raise the page refcount */
3107                 if (PageKsm(page) || page_count(page) != 1)
3108                         goto copy;
3109                 if (!trylock_page(page))
3110                         goto copy;
3111                 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3112                         unlock_page(page);
3113                         goto copy;
3114                 }
3115                 /*
3116                  * Ok, we've got the only map reference, and the only
3117                  * page count reference, and the page is locked,
3118                  * it's dark out, and we're wearing sunglasses. Hit it.
3119                  */
3120                 unlock_page(page);
3121                 wp_page_reuse(vmf);
3122                 return VM_FAULT_WRITE;
3123         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3124                                         (VM_WRITE|VM_SHARED))) {
3125                 return wp_page_shared(vmf);
3126         }
3127 copy:
3128         /*
3129          * Ok, we need to copy. Oh, well..
3130          */
3131         get_page(vmf->page);
3132
3133         pte_unmap_unlock(vmf->pte, vmf->ptl);
3134         return wp_page_copy(vmf);
3135 }
3136
3137 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3138                 unsigned long start_addr, unsigned long end_addr,
3139                 struct zap_details *details)
3140 {
3141         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3142 }
3143
3144 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3145                                             struct zap_details *details)
3146 {
3147         struct vm_area_struct *vma;
3148         pgoff_t vba, vea, zba, zea;
3149
3150         vma_interval_tree_foreach(vma, root,
3151                         details->first_index, details->last_index) {
3152
3153                 vba = vma->vm_pgoff;
3154                 vea = vba + vma_pages(vma) - 1;
3155                 zba = details->first_index;
3156                 if (zba < vba)
3157                         zba = vba;
3158                 zea = details->last_index;
3159                 if (zea > vea)
3160                         zea = vea;
3161
3162                 unmap_mapping_range_vma(vma,
3163                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3164                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3165                                 details);
3166         }
3167 }
3168
3169 /**
3170  * unmap_mapping_pages() - Unmap pages from processes.
3171  * @mapping: The address space containing pages to be unmapped.
3172  * @start: Index of first page to be unmapped.
3173  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3174  * @even_cows: Whether to unmap even private COWed pages.
3175  *
3176  * Unmap the pages in this address space from any userspace process which
3177  * has them mmaped.  Generally, you want to remove COWed pages as well when
3178  * a file is being truncated, but not when invalidating pages from the page
3179  * cache.
3180  */
3181 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3182                 pgoff_t nr, bool even_cows)
3183 {
3184         struct zap_details details = { };
3185
3186         details.check_mapping = even_cows ? NULL : mapping;
3187         details.first_index = start;
3188         details.last_index = start + nr - 1;
3189         if (details.last_index < details.first_index)
3190                 details.last_index = ULONG_MAX;
3191
3192         i_mmap_lock_write(mapping);
3193         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3194                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3195         i_mmap_unlock_write(mapping);
3196 }
3197
3198 /**
3199  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3200  * address_space corresponding to the specified byte range in the underlying
3201  * file.
3202  *
3203  * @mapping: the address space containing mmaps to be unmapped.
3204  * @holebegin: byte in first page to unmap, relative to the start of
3205  * the underlying file.  This will be rounded down to a PAGE_SIZE
3206  * boundary.  Note that this is different from truncate_pagecache(), which
3207  * must keep the partial page.  In contrast, we must get rid of
3208  * partial pages.
3209  * @holelen: size of prospective hole in bytes.  This will be rounded
3210  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3211  * end of the file.
3212  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3213  * but 0 when invalidating pagecache, don't throw away private data.
3214  */
3215 void unmap_mapping_range(struct address_space *mapping,
3216                 loff_t const holebegin, loff_t const holelen, int even_cows)
3217 {
3218         pgoff_t hba = holebegin >> PAGE_SHIFT;
3219         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3220
3221         /* Check for overflow. */
3222         if (sizeof(holelen) > sizeof(hlen)) {
3223                 long long holeend =
3224                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3225                 if (holeend & ~(long long)ULONG_MAX)
3226                         hlen = ULONG_MAX - hba + 1;
3227         }
3228
3229         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3230 }
3231 EXPORT_SYMBOL(unmap_mapping_range);
3232
3233 /*
3234  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3235  * but allow concurrent faults), and pte mapped but not yet locked.
3236  * We return with pte unmapped and unlocked.
3237  *
3238  * We return with the mmap_lock locked or unlocked in the same cases
3239  * as does filemap_fault().
3240  */
3241 vm_fault_t do_swap_page(struct vm_fault *vmf)
3242 {
3243         struct vm_area_struct *vma = vmf->vma;
3244         struct page *page = NULL, *swapcache;
3245         swp_entry_t entry;
3246         pte_t pte;
3247         int locked;
3248         int exclusive = 0;
3249         vm_fault_t ret = 0;
3250         void *shadow = NULL;
3251
3252         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3253                 goto out;
3254
3255         entry = pte_to_swp_entry(vmf->orig_pte);
3256         if (unlikely(non_swap_entry(entry))) {
3257                 if (is_migration_entry(entry)) {
3258                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3259                                              vmf->address);
3260                 } else if (is_device_private_entry(entry)) {
3261                         vmf->page = device_private_entry_to_page(entry);
3262                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3263                 } else if (is_hwpoison_entry(entry)) {
3264                         ret = VM_FAULT_HWPOISON;
3265                 } else {
3266                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3267                         ret = VM_FAULT_SIGBUS;
3268                 }
3269                 goto out;
3270         }
3271
3272
3273         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3274         page = lookup_swap_cache(entry, vma, vmf->address);
3275         swapcache = page;
3276
3277         if (!page) {
3278                 struct swap_info_struct *si = swp_swap_info(entry);
3279
3280                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3281                     __swap_count(entry) == 1) {
3282                         /* skip swapcache */
3283                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3284                                                         vmf->address);
3285                         if (page) {
3286                                 int err;
3287
3288                                 __SetPageLocked(page);
3289                                 __SetPageSwapBacked(page);
3290                                 set_page_private(page, entry.val);
3291
3292                                 /* Tell memcg to use swap ownership records */
3293                                 SetPageSwapCache(page);
3294                                 err = mem_cgroup_charge(page, vma->vm_mm,
3295                                                         GFP_KERNEL);
3296                                 ClearPageSwapCache(page);
3297                                 if (err) {
3298                                         ret = VM_FAULT_OOM;
3299                                         goto out_page;
3300                                 }
3301
3302                                 shadow = get_shadow_from_swap_cache(entry);
3303                                 if (shadow)
3304                                         workingset_refault(page, shadow);
3305
3306                                 lru_cache_add(page);
3307                                 swap_readpage(page, true);
3308                         }
3309                 } else {
3310                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3311                                                 vmf);
3312                         swapcache = page;
3313                 }
3314
3315                 if (!page) {
3316                         /*
3317                          * Back out if somebody else faulted in this pte
3318                          * while we released the pte lock.
3319                          */
3320                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3321                                         vmf->address, &vmf->ptl);
3322                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3323                                 ret = VM_FAULT_OOM;
3324                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3325                         goto unlock;
3326                 }
3327
3328                 /* Had to read the page from swap area: Major fault */
3329                 ret = VM_FAULT_MAJOR;
3330                 count_vm_event(PGMAJFAULT);
3331                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3332         } else if (PageHWPoison(page)) {
3333                 /*
3334                  * hwpoisoned dirty swapcache pages are kept for killing
3335                  * owner processes (which may be unknown at hwpoison time)
3336                  */
3337                 ret = VM_FAULT_HWPOISON;
3338                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3339                 goto out_release;
3340         }
3341
3342         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3343
3344         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3345         if (!locked) {
3346                 ret |= VM_FAULT_RETRY;
3347                 goto out_release;
3348         }
3349
3350         /*
3351          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3352          * release the swapcache from under us.  The page pin, and pte_same
3353          * test below, are not enough to exclude that.  Even if it is still
3354          * swapcache, we need to check that the page's swap has not changed.
3355          */
3356         if (unlikely((!PageSwapCache(page) ||
3357                         page_private(page) != entry.val)) && swapcache)
3358                 goto out_page;
3359
3360         page = ksm_might_need_to_copy(page, vma, vmf->address);
3361         if (unlikely(!page)) {
3362                 ret = VM_FAULT_OOM;
3363                 page = swapcache;
3364                 goto out_page;
3365         }
3366
3367         cgroup_throttle_swaprate(page, GFP_KERNEL);
3368
3369         /*
3370          * Back out if somebody else already faulted in this pte.
3371          */
3372         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3373                         &vmf->ptl);
3374         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3375                 goto out_nomap;
3376
3377         if (unlikely(!PageUptodate(page))) {
3378                 ret = VM_FAULT_SIGBUS;
3379                 goto out_nomap;
3380         }
3381
3382         /*
3383          * The page isn't present yet, go ahead with the fault.
3384          *
3385          * Be careful about the sequence of operations here.
3386          * To get its accounting right, reuse_swap_page() must be called
3387          * while the page is counted on swap but not yet in mapcount i.e.
3388          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3389          * must be called after the swap_free(), or it will never succeed.
3390          */
3391
3392         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3393         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3394         pte = mk_pte(page, vma->vm_page_prot);
3395         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3396                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3397                 vmf->flags &= ~FAULT_FLAG_WRITE;
3398                 ret |= VM_FAULT_WRITE;
3399                 exclusive = RMAP_EXCLUSIVE;
3400         }
3401         flush_icache_page(vma, page);
3402         if (pte_swp_soft_dirty(vmf->orig_pte))
3403                 pte = pte_mksoft_dirty(pte);
3404         if (pte_swp_uffd_wp(vmf->orig_pte)) {
3405                 pte = pte_mkuffd_wp(pte);
3406                 pte = pte_wrprotect(pte);
3407         }
3408         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3409         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3410         vmf->orig_pte = pte;
3411
3412         /* ksm created a completely new copy */
3413         if (unlikely(page != swapcache && swapcache)) {
3414                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3415                 lru_cache_add_inactive_or_unevictable(page, vma);
3416         } else {
3417                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3418         }
3419
3420         swap_free(entry);
3421         if (mem_cgroup_swap_full(page) ||
3422             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3423                 try_to_free_swap(page);
3424         unlock_page(page);
3425         if (page != swapcache && swapcache) {
3426                 /*
3427                  * Hold the lock to avoid the swap entry to be reused
3428                  * until we take the PT lock for the pte_same() check
3429                  * (to avoid false positives from pte_same). For
3430                  * further safety release the lock after the swap_free
3431                  * so that the swap count won't change under a
3432                  * parallel locked swapcache.
3433                  */
3434                 unlock_page(swapcache);
3435                 put_page(swapcache);
3436         }
3437
3438         if (vmf->flags & FAULT_FLAG_WRITE) {
3439                 ret |= do_wp_page(vmf);
3440                 if (ret & VM_FAULT_ERROR)
3441                         ret &= VM_FAULT_ERROR;
3442                 goto out;
3443         }
3444
3445         /* No need to invalidate - it was non-present before */
3446         update_mmu_cache(vma, vmf->address, vmf->pte);
3447 unlock:
3448         pte_unmap_unlock(vmf->pte, vmf->ptl);
3449 out:
3450         return ret;
3451 out_nomap:
3452         pte_unmap_unlock(vmf->pte, vmf->ptl);
3453 out_page:
3454         unlock_page(page);
3455 out_release:
3456         put_page(page);
3457         if (page != swapcache && swapcache) {
3458                 unlock_page(swapcache);
3459                 put_page(swapcache);
3460         }
3461         return ret;
3462 }
3463
3464 /*
3465  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3466  * but allow concurrent faults), and pte mapped but not yet locked.
3467  * We return with mmap_lock still held, but pte unmapped and unlocked.
3468  */
3469 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3470 {
3471         struct vm_area_struct *vma = vmf->vma;
3472         struct page *page;
3473         vm_fault_t ret = 0;
3474         pte_t entry;
3475
3476         /* File mapping without ->vm_ops ? */
3477         if (vma->vm_flags & VM_SHARED)
3478                 return VM_FAULT_SIGBUS;
3479
3480         /*
3481          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3482          * pte_offset_map() on pmds where a huge pmd might be created
3483          * from a different thread.
3484          *
3485          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3486          * parallel threads are excluded by other means.
3487          *
3488          * Here we only have mmap_read_lock(mm).
3489          */
3490         if (pte_alloc(vma->vm_mm, vmf->pmd))
3491                 return VM_FAULT_OOM;
3492
3493         /* See the comment in pte_alloc_one_map() */
3494         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3495                 return 0;
3496
3497         /* Use the zero-page for reads */
3498         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3499                         !mm_forbids_zeropage(vma->vm_mm)) {
3500                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3501                                                 vma->vm_page_prot));
3502                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3503                                 vmf->address, &vmf->ptl);
3504                 if (!pte_none(*vmf->pte)) {
3505                         update_mmu_tlb(vma, vmf->address, vmf->pte);
3506                         goto unlock;
3507                 }
3508                 ret = check_stable_address_space(vma->vm_mm);
3509                 if (ret)
3510                         goto unlock;
3511                 /* Deliver the page fault to userland, check inside PT lock */
3512                 if (userfaultfd_missing(vma)) {
3513                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3514                         return handle_userfault(vmf, VM_UFFD_MISSING);
3515                 }
3516                 goto setpte;
3517         }
3518
3519         /* Allocate our own private page. */
3520         if (unlikely(anon_vma_prepare(vma)))
3521                 goto oom;
3522         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3523         if (!page)
3524                 goto oom;
3525
3526         if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3527                 goto oom_free_page;
3528         cgroup_throttle_swaprate(page, GFP_KERNEL);
3529
3530         /*
3531          * The memory barrier inside __SetPageUptodate makes sure that
3532          * preceding stores to the page contents become visible before
3533          * the set_pte_at() write.
3534          */
3535         __SetPageUptodate(page);
3536
3537         entry = mk_pte(page, vma->vm_page_prot);
3538         entry = pte_sw_mkyoung(entry);
3539         if (vma->vm_flags & VM_WRITE)
3540                 entry = pte_mkwrite(pte_mkdirty(entry));
3541
3542         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3543                         &vmf->ptl);
3544         if (!pte_none(*vmf->pte)) {
3545                 update_mmu_cache(vma, vmf->address, vmf->pte);
3546                 goto release;
3547         }
3548
3549         ret = check_stable_address_space(vma->vm_mm);
3550         if (ret)
3551                 goto release;
3552
3553         /* Deliver the page fault to userland, check inside PT lock */
3554         if (userfaultfd_missing(vma)) {
3555                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3556                 put_page(page);
3557                 return handle_userfault(vmf, VM_UFFD_MISSING);
3558         }
3559
3560         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3561         page_add_new_anon_rmap(page, vma, vmf->address, false);
3562         lru_cache_add_inactive_or_unevictable(page, vma);
3563 setpte:
3564         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3565
3566         /* No need to invalidate - it was non-present before */
3567         update_mmu_cache(vma, vmf->address, vmf->pte);
3568 unlock:
3569         pte_unmap_unlock(vmf->pte, vmf->ptl);
3570         return ret;
3571 release:
3572         put_page(page);
3573         goto unlock;
3574 oom_free_page:
3575         put_page(page);
3576 oom:
3577         return VM_FAULT_OOM;
3578 }
3579
3580 /*
3581  * The mmap_lock must have been held on entry, and may have been
3582  * released depending on flags and vma->vm_ops->fault() return value.
3583  * See filemap_fault() and __lock_page_retry().
3584  */
3585 static vm_fault_t __do_fault(struct vm_fault *vmf)
3586 {
3587         struct vm_area_struct *vma = vmf->vma;
3588         vm_fault_t ret;
3589
3590         /*
3591          * Preallocate pte before we take page_lock because this might lead to
3592          * deadlocks for memcg reclaim which waits for pages under writeback:
3593          *                              lock_page(A)
3594          *                              SetPageWriteback(A)
3595          *                              unlock_page(A)
3596          * lock_page(B)
3597          *                              lock_page(B)
3598          * pte_alloc_one
3599          *   shrink_page_list
3600          *     wait_on_page_writeback(A)
3601          *                              SetPageWriteback(B)
3602          *                              unlock_page(B)
3603          *                              # flush A, B to clear the writeback
3604          */
3605         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3606                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3607                 if (!vmf->prealloc_pte)
3608                         return VM_FAULT_OOM;
3609                 smp_wmb(); /* See comment in __pte_alloc() */
3610         }
3611
3612         ret = vma->vm_ops->fault(vmf);
3613         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3614                             VM_FAULT_DONE_COW)))
3615                 return ret;
3616
3617         if (unlikely(PageHWPoison(vmf->page))) {
3618                 if (ret & VM_FAULT_LOCKED)
3619                         unlock_page(vmf->page);
3620                 put_page(vmf->page);
3621                 vmf->page = NULL;
3622                 return VM_FAULT_HWPOISON;
3623         }
3624
3625         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3626                 lock_page(vmf->page);
3627         else
3628                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3629
3630         return ret;
3631 }
3632
3633 /*
3634  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3635  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3636  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3637  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3638  */
3639 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3640 {
3641         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3642 }
3643
3644 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3645 {
3646         struct vm_area_struct *vma = vmf->vma;
3647
3648         if (!pmd_none(*vmf->pmd))
3649                 goto map_pte;
3650         if (vmf->prealloc_pte) {
3651                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3652                 if (unlikely(!pmd_none(*vmf->pmd))) {
3653                         spin_unlock(vmf->ptl);
3654                         goto map_pte;
3655                 }
3656
3657                 mm_inc_nr_ptes(vma->vm_mm);
3658                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3659                 spin_unlock(vmf->ptl);
3660                 vmf->prealloc_pte = NULL;
3661         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3662                 return VM_FAULT_OOM;
3663         }
3664 map_pte:
3665         /*
3666          * If a huge pmd materialized under us just retry later.  Use
3667          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3668          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3669          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3670          * running immediately after a huge pmd fault in a different thread of
3671          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3672          * All we have to ensure is that it is a regular pmd that we can walk
3673          * with pte_offset_map() and we can do that through an atomic read in
3674          * C, which is what pmd_trans_unstable() provides.
3675          */
3676         if (pmd_devmap_trans_unstable(vmf->pmd))
3677                 return VM_FAULT_NOPAGE;
3678
3679         /*
3680          * At this point we know that our vmf->pmd points to a page of ptes
3681          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3682          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3683          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3684          * be valid and we will re-check to make sure the vmf->pte isn't
3685          * pte_none() under vmf->ptl protection when we return to
3686          * alloc_set_pte().
3687          */
3688         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3689                         &vmf->ptl);
3690         return 0;
3691 }
3692
3693 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3694 static void deposit_prealloc_pte(struct vm_fault *vmf)
3695 {
3696         struct vm_area_struct *vma = vmf->vma;
3697
3698         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3699         /*
3700          * We are going to consume the prealloc table,
3701          * count that as nr_ptes.
3702          */
3703         mm_inc_nr_ptes(vma->vm_mm);
3704         vmf->prealloc_pte = NULL;
3705 }
3706
3707 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3708 {
3709         struct vm_area_struct *vma = vmf->vma;
3710         bool write = vmf->flags & FAULT_FLAG_WRITE;
3711         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3712         pmd_t entry;
3713         int i;
3714         vm_fault_t ret = VM_FAULT_FALLBACK;
3715
3716         if (!transhuge_vma_suitable(vma, haddr))
3717                 return ret;
3718
3719         page = compound_head(page);
3720         if (compound_order(page) != HPAGE_PMD_ORDER)
3721                 return ret;
3722
3723         /*
3724          * Archs like ppc64 need additonal space to store information
3725          * related to pte entry. Use the preallocated table for that.
3726          */
3727         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3728                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3729                 if (!vmf->prealloc_pte)
3730                         return VM_FAULT_OOM;
3731                 smp_wmb(); /* See comment in __pte_alloc() */
3732         }
3733
3734         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3735         if (unlikely(!pmd_none(*vmf->pmd)))
3736                 goto out;
3737
3738         for (i = 0; i < HPAGE_PMD_NR; i++)
3739                 flush_icache_page(vma, page + i);
3740
3741         entry = mk_huge_pmd(page, vma->vm_page_prot);
3742         if (write)
3743                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3744
3745         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3746         page_add_file_rmap(page, true);
3747         /*
3748          * deposit and withdraw with pmd lock held
3749          */
3750         if (arch_needs_pgtable_deposit())
3751                 deposit_prealloc_pte(vmf);
3752
3753         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3754
3755         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3756
3757         /* fault is handled */
3758         ret = 0;
3759         count_vm_event(THP_FILE_MAPPED);
3760 out:
3761         spin_unlock(vmf->ptl);
3762         return ret;
3763 }
3764 #else
3765 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3766 {
3767         BUILD_BUG();
3768         return 0;
3769 }
3770 #endif
3771
3772 /**
3773  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3774  * mapping. If needed, the function allocates page table or use pre-allocated.
3775  *
3776  * @vmf: fault environment
3777  * @page: page to map
3778  *
3779  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3780  * return.
3781  *
3782  * Target users are page handler itself and implementations of
3783  * vm_ops->map_pages.
3784  *
3785  * Return: %0 on success, %VM_FAULT_ code in case of error.
3786  */
3787 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
3788 {
3789         struct vm_area_struct *vma = vmf->vma;
3790         bool write = vmf->flags & FAULT_FLAG_WRITE;
3791         pte_t entry;
3792         vm_fault_t ret;
3793
3794         if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3795                 ret = do_set_pmd(vmf, page);
3796                 if (ret != VM_FAULT_FALLBACK)
3797                         return ret;
3798         }
3799
3800         if (!vmf->pte) {
3801                 ret = pte_alloc_one_map(vmf);
3802                 if (ret)
3803                         return ret;
3804         }
3805
3806         /* Re-check under ptl */
3807         if (unlikely(!pte_none(*vmf->pte))) {
3808                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3809                 return VM_FAULT_NOPAGE;
3810         }
3811
3812         flush_icache_page(vma, page);
3813         entry = mk_pte(page, vma->vm_page_prot);
3814         entry = pte_sw_mkyoung(entry);
3815         if (write)
3816                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3817         /* copy-on-write page */
3818         if (write && !(vma->vm_flags & VM_SHARED)) {
3819                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3820                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3821                 lru_cache_add_inactive_or_unevictable(page, vma);
3822         } else {
3823                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3824                 page_add_file_rmap(page, false);
3825         }
3826         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3827
3828         /* no need to invalidate: a not-present page won't be cached */
3829         update_mmu_cache(vma, vmf->address, vmf->pte);
3830
3831         return 0;
3832 }
3833
3834
3835 /**
3836  * finish_fault - finish page fault once we have prepared the page to fault
3837  *
3838  * @vmf: structure describing the fault
3839  *
3840  * This function handles all that is needed to finish a page fault once the
3841  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3842  * given page, adds reverse page mapping, handles memcg charges and LRU
3843  * addition.
3844  *
3845  * The function expects the page to be locked and on success it consumes a
3846  * reference of a page being mapped (for the PTE which maps it).
3847  *
3848  * Return: %0 on success, %VM_FAULT_ code in case of error.
3849  */
3850 vm_fault_t finish_fault(struct vm_fault *vmf)
3851 {
3852         struct page *page;
3853         vm_fault_t ret = 0;
3854
3855         /* Did we COW the page? */
3856         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3857             !(vmf->vma->vm_flags & VM_SHARED))
3858                 page = vmf->cow_page;
3859         else
3860                 page = vmf->page;
3861
3862         /*
3863          * check even for read faults because we might have lost our CoWed
3864          * page
3865          */
3866         if (!(vmf->vma->vm_flags & VM_SHARED))
3867                 ret = check_stable_address_space(vmf->vma->vm_mm);
3868         if (!ret)
3869                 ret = alloc_set_pte(vmf, page);
3870         if (vmf->pte)
3871                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3872         return ret;
3873 }
3874
3875 static unsigned long fault_around_bytes __read_mostly =
3876         rounddown_pow_of_two(65536);
3877
3878 #ifdef CONFIG_DEBUG_FS
3879 static int fault_around_bytes_get(void *data, u64 *val)
3880 {
3881         *val = fault_around_bytes;
3882         return 0;
3883 }
3884
3885 /*
3886  * fault_around_bytes must be rounded down to the nearest page order as it's
3887  * what do_fault_around() expects to see.
3888  */
3889 static int fault_around_bytes_set(void *data, u64 val)
3890 {
3891         if (val / PAGE_SIZE > PTRS_PER_PTE)
3892                 return -EINVAL;
3893         if (val > PAGE_SIZE)
3894                 fault_around_bytes = rounddown_pow_of_two(val);
3895         else
3896                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3897         return 0;
3898 }
3899 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3900                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3901
3902 static int __init fault_around_debugfs(void)
3903 {
3904         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3905                                    &fault_around_bytes_fops);
3906         return 0;
3907 }
3908 late_initcall(fault_around_debugfs);
3909 #endif
3910
3911 /*
3912  * do_fault_around() tries to map few pages around the fault address. The hope
3913  * is that the pages will be needed soon and this will lower the number of
3914  * faults to handle.
3915  *
3916  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3917  * not ready to be mapped: not up-to-date, locked, etc.
3918  *
3919  * This function is called with the page table lock taken. In the split ptlock
3920  * case the page table lock only protects only those entries which belong to
3921  * the page table corresponding to the fault address.
3922  *
3923  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3924  * only once.
3925  *
3926  * fault_around_bytes defines how many bytes we'll try to map.
3927  * do_fault_around() expects it to be set to a power of two less than or equal
3928  * to PTRS_PER_PTE.
3929  *
3930  * The virtual address of the area that we map is naturally aligned to
3931  * fault_around_bytes rounded down to the machine page size
3932  * (and therefore to page order).  This way it's easier to guarantee
3933  * that we don't cross page table boundaries.
3934  */
3935 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3936 {
3937         unsigned long address = vmf->address, nr_pages, mask;
3938         pgoff_t start_pgoff = vmf->pgoff;
3939         pgoff_t end_pgoff;
3940         int off;
3941         vm_fault_t ret = 0;
3942
3943         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3944         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3945
3946         vmf->address = max(address & mask, vmf->vma->vm_start);
3947         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3948         start_pgoff -= off;
3949
3950         /*
3951          *  end_pgoff is either the end of the page table, the end of
3952          *  the vma or nr_pages from start_pgoff, depending what is nearest.
3953          */
3954         end_pgoff = start_pgoff -
3955                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3956                 PTRS_PER_PTE - 1;
3957         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3958                         start_pgoff + nr_pages - 1);
3959
3960         if (pmd_none(*vmf->pmd)) {
3961                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3962                 if (!vmf->prealloc_pte)
3963                         goto out;
3964                 smp_wmb(); /* See comment in __pte_alloc() */
3965         }
3966
3967         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3968
3969         /* Huge page is mapped? Page fault is solved */
3970         if (pmd_trans_huge(*vmf->pmd)) {
3971                 ret = VM_FAULT_NOPAGE;
3972                 goto out;
3973         }
3974
3975         /* ->map_pages() haven't done anything useful. Cold page cache? */
3976         if (!vmf->pte)
3977                 goto out;
3978
3979         /* check if the page fault is solved */
3980         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3981         if (!pte_none(*vmf->pte))
3982                 ret = VM_FAULT_NOPAGE;
3983         pte_unmap_unlock(vmf->pte, vmf->ptl);
3984 out:
3985         vmf->address = address;
3986         vmf->pte = NULL;
3987         return ret;
3988 }
3989
3990 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3991 {
3992         struct vm_area_struct *vma = vmf->vma;
3993         vm_fault_t ret = 0;
3994
3995         /*
3996          * Let's call ->map_pages() first and use ->fault() as fallback
3997          * if page by the offset is not ready to be mapped (cold cache or
3998          * something).
3999          */
4000         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4001                 ret = do_fault_around(vmf);
4002                 if (ret)
4003                         return ret;
4004         }
4005
4006         ret = __do_fault(vmf);
4007         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4008                 return ret;
4009
4010         ret |= finish_fault(vmf);
4011         unlock_page(vmf->page);
4012         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4013                 put_page(vmf->page);
4014         return ret;
4015 }
4016
4017 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4018 {
4019         struct vm_area_struct *vma = vmf->vma;
4020         vm_fault_t ret;
4021
4022         if (unlikely(anon_vma_prepare(vma)))
4023                 return VM_FAULT_OOM;
4024
4025         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4026         if (!vmf->cow_page)
4027                 return VM_FAULT_OOM;
4028
4029         if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
4030                 put_page(vmf->cow_page);
4031                 return VM_FAULT_OOM;
4032         }
4033         cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4034
4035         ret = __do_fault(vmf);
4036         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4037                 goto uncharge_out;
4038         if (ret & VM_FAULT_DONE_COW)
4039                 return ret;
4040
4041         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4042         __SetPageUptodate(vmf->cow_page);
4043
4044         ret |= finish_fault(vmf);
4045         unlock_page(vmf->page);
4046         put_page(vmf->page);
4047         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4048                 goto uncharge_out;
4049         return ret;
4050 uncharge_out:
4051         put_page(vmf->cow_page);
4052         return ret;
4053 }
4054
4055 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4056 {
4057         struct vm_area_struct *vma = vmf->vma;
4058         vm_fault_t ret, tmp;
4059
4060         ret = __do_fault(vmf);
4061         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4062                 return ret;
4063
4064         /*
4065          * Check if the backing address space wants to know that the page is
4066          * about to become writable
4067          */
4068         if (vma->vm_ops->page_mkwrite) {
4069                 unlock_page(vmf->page);
4070                 tmp = do_page_mkwrite(vmf);
4071                 if (unlikely(!tmp ||
4072                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4073                         put_page(vmf->page);
4074                         return tmp;
4075                 }
4076         }
4077
4078         ret |= finish_fault(vmf);
4079         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4080                                         VM_FAULT_RETRY))) {
4081                 unlock_page(vmf->page);
4082                 put_page(vmf->page);
4083                 return ret;
4084         }
4085
4086         ret |= fault_dirty_shared_page(vmf);
4087         return ret;
4088 }
4089
4090 /*
4091  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4092  * but allow concurrent faults).
4093  * The mmap_lock may have been released depending on flags and our
4094  * return value.  See filemap_fault() and __lock_page_or_retry().
4095  * If mmap_lock is released, vma may become invalid (for example
4096  * by other thread calling munmap()).
4097  */
4098 static vm_fault_t do_fault(struct vm_fault *vmf)
4099 {
4100         struct vm_area_struct *vma = vmf->vma;
4101         struct mm_struct *vm_mm = vma->vm_mm;
4102         vm_fault_t ret;
4103
4104         /*
4105          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4106          */
4107         if (!vma->vm_ops->fault) {
4108                 /*
4109                  * If we find a migration pmd entry or a none pmd entry, which
4110                  * should never happen, return SIGBUS
4111                  */
4112                 if (unlikely(!pmd_present(*vmf->pmd)))
4113                         ret = VM_FAULT_SIGBUS;
4114                 else {
4115                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4116                                                        vmf->pmd,
4117                                                        vmf->address,
4118                                                        &vmf->ptl);
4119                         /*
4120                          * Make sure this is not a temporary clearing of pte
4121                          * by holding ptl and checking again. A R/M/W update
4122                          * of pte involves: take ptl, clearing the pte so that
4123                          * we don't have concurrent modification by hardware
4124                          * followed by an update.
4125                          */
4126                         if (unlikely(pte_none(*vmf->pte)))
4127                                 ret = VM_FAULT_SIGBUS;
4128                         else
4129                                 ret = VM_FAULT_NOPAGE;
4130
4131                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4132                 }
4133         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4134                 ret = do_read_fault(vmf);
4135         else if (!(vma->vm_flags & VM_SHARED))
4136                 ret = do_cow_fault(vmf);
4137         else
4138                 ret = do_shared_fault(vmf);
4139
4140         /* preallocated pagetable is unused: free it */
4141         if (vmf->prealloc_pte) {
4142                 pte_free(vm_mm, vmf->prealloc_pte);
4143                 vmf->prealloc_pte = NULL;
4144         }
4145         return ret;
4146 }
4147
4148 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4149                                 unsigned long addr, int page_nid,
4150                                 int *flags)
4151 {
4152         get_page(page);
4153
4154         count_vm_numa_event(NUMA_HINT_FAULTS);
4155         if (page_nid == numa_node_id()) {
4156                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4157                 *flags |= TNF_FAULT_LOCAL;
4158         }
4159
4160         return mpol_misplaced(page, vma, addr);
4161 }
4162
4163 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4164 {
4165         struct vm_area_struct *vma = vmf->vma;
4166         struct page *page = NULL;
4167         int page_nid = NUMA_NO_NODE;
4168         int last_cpupid;
4169         int target_nid;
4170         bool migrated = false;
4171         pte_t pte, old_pte;
4172         bool was_writable = pte_savedwrite(vmf->orig_pte);
4173         int flags = 0;
4174
4175         /*
4176          * The "pte" at this point cannot be used safely without
4177          * validation through pte_unmap_same(). It's of NUMA type but
4178          * the pfn may be screwed if the read is non atomic.
4179          */
4180         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4181         spin_lock(vmf->ptl);
4182         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4183                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4184                 goto out;
4185         }
4186
4187         /*
4188          * Make it present again, Depending on how arch implementes non
4189          * accessible ptes, some can allow access by kernel mode.
4190          */
4191         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4192         pte = pte_modify(old_pte, vma->vm_page_prot);
4193         pte = pte_mkyoung(pte);
4194         if (was_writable)
4195                 pte = pte_mkwrite(pte);
4196         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4197         update_mmu_cache(vma, vmf->address, vmf->pte);
4198
4199         page = vm_normal_page(vma, vmf->address, pte);
4200         if (!page) {
4201                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4202                 return 0;
4203         }
4204
4205         /* TODO: handle PTE-mapped THP */
4206         if (PageCompound(page)) {
4207                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4208                 return 0;
4209         }
4210
4211         /*
4212          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4213          * much anyway since they can be in shared cache state. This misses
4214          * the case where a mapping is writable but the process never writes
4215          * to it but pte_write gets cleared during protection updates and
4216          * pte_dirty has unpredictable behaviour between PTE scan updates,
4217          * background writeback, dirty balancing and application behaviour.
4218          */
4219         if (!pte_write(pte))
4220                 flags |= TNF_NO_GROUP;
4221
4222         /*
4223          * Flag if the page is shared between multiple address spaces. This
4224          * is later used when determining whether to group tasks together
4225          */
4226         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4227                 flags |= TNF_SHARED;
4228
4229         last_cpupid = page_cpupid_last(page);
4230         page_nid = page_to_nid(page);
4231         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4232                         &flags);
4233         pte_unmap_unlock(vmf->pte, vmf->ptl);
4234         if (target_nid == NUMA_NO_NODE) {
4235                 put_page(page);
4236                 goto out;
4237         }
4238
4239         /* Migrate to the requested node */
4240         migrated = migrate_misplaced_page(page, vma, target_nid);
4241         if (migrated) {
4242                 page_nid = target_nid;
4243                 flags |= TNF_MIGRATED;
4244         } else
4245                 flags |= TNF_MIGRATE_FAIL;
4246
4247 out:
4248         if (page_nid != NUMA_NO_NODE)
4249                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4250         return 0;
4251 }
4252
4253 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4254 {
4255         if (vma_is_anonymous(vmf->vma))
4256                 return do_huge_pmd_anonymous_page(vmf);
4257         if (vmf->vma->vm_ops->huge_fault)
4258                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4259         return VM_FAULT_FALLBACK;
4260 }
4261
4262 /* `inline' is required to avoid gcc 4.1.2 build error */
4263 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4264 {
4265         if (vma_is_anonymous(vmf->vma)) {
4266                 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4267                         return handle_userfault(vmf, VM_UFFD_WP);
4268                 return do_huge_pmd_wp_page(vmf, orig_pmd);
4269         }
4270         if (vmf->vma->vm_ops->huge_fault) {
4271                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4272
4273                 if (!(ret & VM_FAULT_FALLBACK))
4274                         return ret;
4275         }
4276
4277         /* COW or write-notify handled on pte level: split pmd. */
4278         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4279
4280         return VM_FAULT_FALLBACK;
4281 }
4282
4283 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4284 {
4285 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4286         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4287         /* No support for anonymous transparent PUD pages yet */
4288         if (vma_is_anonymous(vmf->vma))
4289                 goto split;
4290         if (vmf->vma->vm_ops->huge_fault) {
4291                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4292
4293                 if (!(ret & VM_FAULT_FALLBACK))
4294                         return ret;
4295         }
4296 split:
4297         /* COW or write-notify not handled on PUD level: split pud.*/
4298         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4299 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4300         return VM_FAULT_FALLBACK;
4301 }
4302
4303 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4304 {
4305 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4306         /* No support for anonymous transparent PUD pages yet */
4307         if (vma_is_anonymous(vmf->vma))
4308                 return VM_FAULT_FALLBACK;
4309         if (vmf->vma->vm_ops->huge_fault)
4310                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4311 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4312         return VM_FAULT_FALLBACK;
4313 }
4314
4315 /*
4316  * These routines also need to handle stuff like marking pages dirty
4317  * and/or accessed for architectures that don't do it in hardware (most
4318  * RISC architectures).  The early dirtying is also good on the i386.
4319  *
4320  * There is also a hook called "update_mmu_cache()" that architectures
4321  * with external mmu caches can use to update those (ie the Sparc or
4322  * PowerPC hashed page tables that act as extended TLBs).
4323  *
4324  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4325  * concurrent faults).
4326  *
4327  * The mmap_lock may have been released depending on flags and our return value.
4328  * See filemap_fault() and __lock_page_or_retry().
4329  */
4330 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4331 {
4332         pte_t entry;
4333
4334         if (unlikely(pmd_none(*vmf->pmd))) {
4335                 /*
4336                  * Leave __pte_alloc() until later: because vm_ops->fault may
4337                  * want to allocate huge page, and if we expose page table
4338                  * for an instant, it will be difficult to retract from
4339                  * concurrent faults and from rmap lookups.
4340                  */
4341                 vmf->pte = NULL;
4342         } else {
4343                 /* See comment in pte_alloc_one_map() */
4344                 if (pmd_devmap_trans_unstable(vmf->pmd))
4345                         return 0;
4346                 /*
4347                  * A regular pmd is established and it can't morph into a huge
4348                  * pmd from under us anymore at this point because we hold the
4349                  * mmap_lock read mode and khugepaged takes it in write mode.
4350                  * So now it's safe to run pte_offset_map().
4351                  */
4352                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4353                 vmf->orig_pte = *vmf->pte;
4354
4355                 /*
4356                  * some architectures can have larger ptes than wordsize,
4357                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4358                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4359                  * accesses.  The code below just needs a consistent view
4360                  * for the ifs and we later double check anyway with the
4361                  * ptl lock held. So here a barrier will do.
4362                  */
4363                 barrier();
4364                 if (pte_none(vmf->orig_pte)) {
4365                         pte_unmap(vmf->pte);
4366                         vmf->pte = NULL;
4367                 }
4368         }
4369
4370         if (!vmf->pte) {
4371                 if (vma_is_anonymous(vmf->vma))
4372                         return do_anonymous_page(vmf);
4373                 else
4374                         return do_fault(vmf);
4375         }
4376
4377         if (!pte_present(vmf->orig_pte))
4378                 return do_swap_page(vmf);
4379
4380         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4381                 return do_numa_page(vmf);
4382
4383         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4384         spin_lock(vmf->ptl);
4385         entry = vmf->orig_pte;
4386         if (unlikely(!pte_same(*vmf->pte, entry))) {
4387                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4388                 goto unlock;
4389         }
4390         if (vmf->flags & FAULT_FLAG_WRITE) {
4391                 if (!pte_write(entry))
4392                         return do_wp_page(vmf);
4393                 entry = pte_mkdirty(entry);
4394         }
4395         entry = pte_mkyoung(entry);
4396         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4397                                 vmf->flags & FAULT_FLAG_WRITE)) {
4398                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4399         } else {
4400                 /* Skip spurious TLB flush for retried page fault */
4401                 if (vmf->flags & FAULT_FLAG_TRIED)
4402                         goto unlock;
4403                 /*
4404                  * This is needed only for protection faults but the arch code
4405                  * is not yet telling us if this is a protection fault or not.
4406                  * This still avoids useless tlb flushes for .text page faults
4407                  * with threads.
4408                  */
4409                 if (vmf->flags & FAULT_FLAG_WRITE)
4410                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4411         }
4412 unlock:
4413         pte_unmap_unlock(vmf->pte, vmf->ptl);
4414         return 0;
4415 }
4416
4417 /*
4418  * By the time we get here, we already hold the mm semaphore
4419  *
4420  * The mmap_lock may have been released depending on flags and our
4421  * return value.  See filemap_fault() and __lock_page_or_retry().
4422  */
4423 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4424                 unsigned long address, unsigned int flags)
4425 {
4426         struct vm_fault vmf = {
4427                 .vma = vma,
4428                 .address = address & PAGE_MASK,
4429                 .flags = flags,
4430                 .pgoff = linear_page_index(vma, address),
4431                 .gfp_mask = __get_fault_gfp_mask(vma),
4432         };
4433         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4434         struct mm_struct *mm = vma->vm_mm;
4435         pgd_t *pgd;
4436         p4d_t *p4d;
4437         vm_fault_t ret;
4438
4439         pgd = pgd_offset(mm, address);
4440         p4d = p4d_alloc(mm, pgd, address);
4441         if (!p4d)
4442                 return VM_FAULT_OOM;
4443
4444         vmf.pud = pud_alloc(mm, p4d, address);
4445         if (!vmf.pud)
4446                 return VM_FAULT_OOM;
4447 retry_pud:
4448         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4449                 ret = create_huge_pud(&vmf);
4450                 if (!(ret & VM_FAULT_FALLBACK))
4451                         return ret;
4452         } else {
4453                 pud_t orig_pud = *vmf.pud;
4454
4455                 barrier();
4456                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4457
4458                         /* NUMA case for anonymous PUDs would go here */
4459
4460                         if (dirty && !pud_write(orig_pud)) {
4461                                 ret = wp_huge_pud(&vmf, orig_pud);
4462                                 if (!(ret & VM_FAULT_FALLBACK))
4463                                         return ret;
4464                         } else {
4465                                 huge_pud_set_accessed(&vmf, orig_pud);
4466                                 return 0;
4467                         }
4468                 }
4469         }
4470
4471         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4472         if (!vmf.pmd)
4473                 return VM_FAULT_OOM;
4474
4475         /* Huge pud page fault raced with pmd_alloc? */
4476         if (pud_trans_unstable(vmf.pud))
4477                 goto retry_pud;
4478
4479         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4480                 ret = create_huge_pmd(&vmf);
4481                 if (!(ret & VM_FAULT_FALLBACK))
4482                         return ret;
4483         } else {
4484                 pmd_t orig_pmd = *vmf.pmd;
4485
4486                 barrier();
4487                 if (unlikely(is_swap_pmd(orig_pmd))) {
4488                         VM_BUG_ON(thp_migration_supported() &&
4489                                           !is_pmd_migration_entry(orig_pmd));
4490                         if (is_pmd_migration_entry(orig_pmd))
4491                                 pmd_migration_entry_wait(mm, vmf.pmd);
4492                         return 0;
4493                 }
4494                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4495                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4496                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4497
4498                         if (dirty && !pmd_write(orig_pmd)) {
4499                                 ret = wp_huge_pmd(&vmf, orig_pmd);
4500                                 if (!(ret & VM_FAULT_FALLBACK))
4501                                         return ret;
4502                         } else {
4503                                 huge_pmd_set_accessed(&vmf, orig_pmd);
4504                                 return 0;
4505                         }
4506                 }
4507         }
4508
4509         return handle_pte_fault(&vmf);
4510 }
4511
4512 /**
4513  * mm_account_fault - Do page fault accountings
4514  *
4515  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4516  *        of perf event counters, but we'll still do the per-task accounting to
4517  *        the task who triggered this page fault.
4518  * @address: the faulted address.
4519  * @flags: the fault flags.
4520  * @ret: the fault retcode.
4521  *
4522  * This will take care of most of the page fault accountings.  Meanwhile, it
4523  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4524  * updates.  However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4525  * still be in per-arch page fault handlers at the entry of page fault.
4526  */
4527 static inline void mm_account_fault(struct pt_regs *regs,
4528                                     unsigned long address, unsigned int flags,
4529                                     vm_fault_t ret)
4530 {
4531         bool major;
4532
4533         /*
4534          * We don't do accounting for some specific faults:
4535          *
4536          * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4537          *   includes arch_vma_access_permitted() failing before reaching here.
4538          *   So this is not a "this many hardware page faults" counter.  We
4539          *   should use the hw profiling for that.
4540          *
4541          * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4542          *   once they're completed.
4543          */
4544         if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4545                 return;
4546
4547         /*
4548          * We define the fault as a major fault when the final successful fault
4549          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4550          * handle it immediately previously).
4551          */
4552         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4553
4554         if (major)
4555                 current->maj_flt++;
4556         else
4557                 current->min_flt++;
4558
4559         /*
4560          * If the fault is done for GUP, regs will be NULL.  We only do the
4561          * accounting for the per thread fault counters who triggered the
4562          * fault, and we skip the perf event updates.
4563          */
4564         if (!regs)
4565                 return;
4566
4567         if (major)
4568                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4569         else
4570                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4571 }
4572
4573 /*
4574  * By the time we get here, we already hold the mm semaphore
4575  *
4576  * The mmap_lock may have been released depending on flags and our
4577  * return value.  See filemap_fault() and __lock_page_or_retry().
4578  */
4579 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4580                            unsigned int flags, struct pt_regs *regs)
4581 {
4582         vm_fault_t ret;
4583
4584         __set_current_state(TASK_RUNNING);
4585
4586         count_vm_event(PGFAULT);
4587         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4588
4589         /* do counter updates before entering really critical section. */
4590         check_sync_rss_stat(current);
4591
4592         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4593                                             flags & FAULT_FLAG_INSTRUCTION,
4594                                             flags & FAULT_FLAG_REMOTE))
4595                 return VM_FAULT_SIGSEGV;
4596
4597         /*
4598          * Enable the memcg OOM handling for faults triggered in user
4599          * space.  Kernel faults are handled more gracefully.
4600          */
4601         if (flags & FAULT_FLAG_USER)
4602                 mem_cgroup_enter_user_fault();
4603
4604         if (unlikely(is_vm_hugetlb_page(vma)))
4605                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4606         else
4607                 ret = __handle_mm_fault(vma, address, flags);
4608
4609         if (flags & FAULT_FLAG_USER) {
4610                 mem_cgroup_exit_user_fault();
4611                 /*
4612                  * The task may have entered a memcg OOM situation but
4613                  * if the allocation error was handled gracefully (no
4614                  * VM_FAULT_OOM), there is no need to kill anything.
4615                  * Just clean up the OOM state peacefully.
4616                  */
4617                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4618                         mem_cgroup_oom_synchronize(false);
4619         }
4620
4621         mm_account_fault(regs, address, flags, ret);
4622
4623         return ret;
4624 }
4625 EXPORT_SYMBOL_GPL(handle_mm_fault);
4626
4627 #ifndef __PAGETABLE_P4D_FOLDED
4628 /*
4629  * Allocate p4d page table.
4630  * We've already handled the fast-path in-line.
4631  */
4632 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4633 {
4634         p4d_t *new = p4d_alloc_one(mm, address);
4635         if (!new)
4636                 return -ENOMEM;
4637
4638         smp_wmb(); /* See comment in __pte_alloc */
4639
4640         spin_lock(&mm->page_table_lock);
4641         if (pgd_present(*pgd))          /* Another has populated it */
4642                 p4d_free(mm, new);
4643         else
4644                 pgd_populate(mm, pgd, new);
4645         spin_unlock(&mm->page_table_lock);
4646         return 0;
4647 }
4648 #endif /* __PAGETABLE_P4D_FOLDED */
4649
4650 #ifndef __PAGETABLE_PUD_FOLDED
4651 /*
4652  * Allocate page upper directory.
4653  * We've already handled the fast-path in-line.
4654  */
4655 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4656 {
4657         pud_t *new = pud_alloc_one(mm, address);
4658         if (!new)
4659                 return -ENOMEM;
4660
4661         smp_wmb(); /* See comment in __pte_alloc */
4662
4663         spin_lock(&mm->page_table_lock);
4664         if (!p4d_present(*p4d)) {
4665                 mm_inc_nr_puds(mm);
4666                 p4d_populate(mm, p4d, new);
4667         } else  /* Another has populated it */
4668                 pud_free(mm, new);
4669         spin_unlock(&mm->page_table_lock);
4670         return 0;
4671 }
4672 #endif /* __PAGETABLE_PUD_FOLDED */
4673
4674 #ifndef __PAGETABLE_PMD_FOLDED
4675 /*
4676  * Allocate page middle directory.
4677  * We've already handled the fast-path in-line.
4678  */
4679 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4680 {
4681         spinlock_t *ptl;
4682         pmd_t *new = pmd_alloc_one(mm, address);
4683         if (!new)
4684                 return -ENOMEM;
4685
4686         smp_wmb(); /* See comment in __pte_alloc */
4687
4688         ptl = pud_lock(mm, pud);
4689         if (!pud_present(*pud)) {
4690                 mm_inc_nr_pmds(mm);
4691                 pud_populate(mm, pud, new);
4692         } else  /* Another has populated it */
4693                 pmd_free(mm, new);
4694         spin_unlock(ptl);
4695         return 0;
4696 }
4697 #endif /* __PAGETABLE_PMD_FOLDED */
4698
4699 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4700                             struct mmu_notifier_range *range,
4701                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4702 {
4703         pgd_t *pgd;
4704         p4d_t *p4d;
4705         pud_t *pud;
4706         pmd_t *pmd;
4707         pte_t *ptep;
4708
4709         pgd = pgd_offset(mm, address);
4710         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4711                 goto out;
4712
4713         p4d = p4d_offset(pgd, address);
4714         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4715                 goto out;
4716
4717         pud = pud_offset(p4d, address);
4718         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4719                 goto out;
4720
4721         pmd = pmd_offset(pud, address);
4722         VM_BUG_ON(pmd_trans_huge(*pmd));
4723
4724         if (pmd_huge(*pmd)) {
4725                 if (!pmdpp)
4726                         goto out;
4727
4728                 if (range) {
4729                         mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4730                                                 NULL, mm, address & PMD_MASK,
4731                                                 (address & PMD_MASK) + PMD_SIZE);
4732                         mmu_notifier_invalidate_range_start(range);
4733                 }
4734                 *ptlp = pmd_lock(mm, pmd);
4735                 if (pmd_huge(*pmd)) {
4736                         *pmdpp = pmd;
4737                         return 0;
4738                 }
4739                 spin_unlock(*ptlp);
4740                 if (range)
4741                         mmu_notifier_invalidate_range_end(range);
4742         }
4743
4744         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4745                 goto out;
4746
4747         if (range) {
4748                 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4749                                         address & PAGE_MASK,
4750                                         (address & PAGE_MASK) + PAGE_SIZE);
4751                 mmu_notifier_invalidate_range_start(range);
4752         }
4753         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4754         if (!pte_present(*ptep))
4755                 goto unlock;
4756         *ptepp = ptep;
4757         return 0;
4758 unlock:
4759         pte_unmap_unlock(ptep, *ptlp);
4760         if (range)
4761                 mmu_notifier_invalidate_range_end(range);
4762 out:
4763         return -EINVAL;
4764 }
4765
4766 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4767                              pte_t **ptepp, spinlock_t **ptlp)
4768 {
4769         int res;
4770
4771         /* (void) is needed to make gcc happy */
4772         (void) __cond_lock(*ptlp,
4773                            !(res = __follow_pte_pmd(mm, address, NULL,
4774                                                     ptepp, NULL, ptlp)));
4775         return res;
4776 }
4777
4778 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4779                    struct mmu_notifier_range *range,
4780                    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4781 {
4782         int res;
4783
4784         /* (void) is needed to make gcc happy */
4785         (void) __cond_lock(*ptlp,
4786                            !(res = __follow_pte_pmd(mm, address, range,
4787                                                     ptepp, pmdpp, ptlp)));
4788         return res;
4789 }
4790 EXPORT_SYMBOL(follow_pte_pmd);
4791
4792 /**
4793  * follow_pfn - look up PFN at a user virtual address
4794  * @vma: memory mapping
4795  * @address: user virtual address
4796  * @pfn: location to store found PFN
4797  *
4798  * Only IO mappings and raw PFN mappings are allowed.
4799  *
4800  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4801  */
4802 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4803         unsigned long *pfn)
4804 {
4805         int ret = -EINVAL;
4806         spinlock_t *ptl;
4807         pte_t *ptep;
4808
4809         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4810                 return ret;
4811
4812         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4813         if (ret)
4814                 return ret;
4815         *pfn = pte_pfn(*ptep);
4816         pte_unmap_unlock(ptep, ptl);
4817         return 0;
4818 }
4819 EXPORT_SYMBOL(follow_pfn);
4820
4821 #ifdef CONFIG_HAVE_IOREMAP_PROT
4822 int follow_phys(struct vm_area_struct *vma,
4823                 unsigned long address, unsigned int flags,
4824                 unsigned long *prot, resource_size_t *phys)
4825 {
4826         int ret = -EINVAL;
4827         pte_t *ptep, pte;
4828         spinlock_t *ptl;
4829
4830         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4831                 goto out;
4832
4833         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4834                 goto out;
4835         pte = *ptep;
4836
4837         if ((flags & FOLL_WRITE) && !pte_write(pte))
4838                 goto unlock;
4839
4840         *prot = pgprot_val(pte_pgprot(pte));
4841         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4842
4843         ret = 0;
4844 unlock:
4845         pte_unmap_unlock(ptep, ptl);
4846 out:
4847         return ret;
4848 }
4849
4850 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4851                         void *buf, int len, int write)
4852 {
4853         resource_size_t phys_addr;
4854         unsigned long prot = 0;
4855         void __iomem *maddr;
4856         int offset = addr & (PAGE_SIZE-1);
4857
4858         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4859                 return -EINVAL;
4860
4861         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4862         if (!maddr)
4863                 return -ENOMEM;
4864
4865         if (write)
4866                 memcpy_toio(maddr + offset, buf, len);
4867         else
4868                 memcpy_fromio(buf, maddr + offset, len);
4869         iounmap(maddr);
4870
4871         return len;
4872 }
4873 EXPORT_SYMBOL_GPL(generic_access_phys);
4874 #endif
4875
4876 /*
4877  * Access another process' address space as given in mm.  If non-NULL, use the
4878  * given task for page fault accounting.
4879  */
4880 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4881                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4882 {
4883         struct vm_area_struct *vma;
4884         void *old_buf = buf;
4885         int write = gup_flags & FOLL_WRITE;
4886
4887         if (mmap_read_lock_killable(mm))
4888                 return 0;
4889
4890         /* ignore errors, just check how much was successfully transferred */
4891         while (len) {
4892                 int bytes, ret, offset;
4893                 void *maddr;
4894                 struct page *page = NULL;
4895
4896                 ret = get_user_pages_remote(mm, addr, 1,
4897                                 gup_flags, &page, &vma, NULL);
4898                 if (ret <= 0) {
4899 #ifndef CONFIG_HAVE_IOREMAP_PROT
4900                         break;
4901 #else
4902                         /*
4903                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4904                          * we can access using slightly different code.
4905                          */
4906                         vma = find_vma(mm, addr);
4907                         if (!vma || vma->vm_start > addr)
4908                                 break;
4909                         if (vma->vm_ops && vma->vm_ops->access)
4910                                 ret = vma->vm_ops->access(vma, addr, buf,
4911                                                           len, write);
4912                         if (ret <= 0)
4913                                 break;
4914                         bytes = ret;
4915 #endif
4916                 } else {
4917                         bytes = len;
4918                         offset = addr & (PAGE_SIZE-1);
4919                         if (bytes > PAGE_SIZE-offset)
4920                                 bytes = PAGE_SIZE-offset;
4921
4922                         maddr = kmap(page);
4923                         if (write) {
4924                                 copy_to_user_page(vma, page, addr,
4925                                                   maddr + offset, buf, bytes);
4926                                 set_page_dirty_lock(page);
4927                         } else {
4928                                 copy_from_user_page(vma, page, addr,
4929                                                     buf, maddr + offset, bytes);
4930                         }
4931                         kunmap(page);
4932                         put_page(page);
4933                 }
4934                 len -= bytes;
4935                 buf += bytes;
4936                 addr += bytes;
4937         }
4938         mmap_read_unlock(mm);
4939
4940         return buf - old_buf;
4941 }
4942
4943 /**
4944  * access_remote_vm - access another process' address space
4945  * @mm:         the mm_struct of the target address space
4946  * @addr:       start address to access
4947  * @buf:        source or destination buffer
4948  * @len:        number of bytes to transfer
4949  * @gup_flags:  flags modifying lookup behaviour
4950  *
4951  * The caller must hold a reference on @mm.
4952  *
4953  * Return: number of bytes copied from source to destination.
4954  */
4955 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4956                 void *buf, int len, unsigned int gup_flags)
4957 {
4958         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4959 }
4960
4961 /*
4962  * Access another process' address space.
4963  * Source/target buffer must be kernel space,
4964  * Do not walk the page table directly, use get_user_pages
4965  */
4966 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4967                 void *buf, int len, unsigned int gup_flags)
4968 {
4969         struct mm_struct *mm;
4970         int ret;
4971
4972         mm = get_task_mm(tsk);
4973         if (!mm)
4974                 return 0;
4975
4976         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4977
4978         mmput(mm);
4979
4980         return ret;
4981 }
4982 EXPORT_SYMBOL_GPL(access_process_vm);
4983
4984 /*
4985  * Print the name of a VMA.
4986  */
4987 void print_vma_addr(char *prefix, unsigned long ip)
4988 {
4989         struct mm_struct *mm = current->mm;
4990         struct vm_area_struct *vma;
4991
4992         /*
4993          * we might be running from an atomic context so we cannot sleep
4994          */
4995         if (!mmap_read_trylock(mm))
4996                 return;
4997
4998         vma = find_vma(mm, ip);
4999         if (vma && vma->vm_file) {
5000                 struct file *f = vma->vm_file;
5001                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5002                 if (buf) {
5003                         char *p;
5004
5005                         p = file_path(f, buf, PAGE_SIZE);
5006                         if (IS_ERR(p))
5007                                 p = "?";
5008                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5009                                         vma->vm_start,
5010                                         vma->vm_end - vma->vm_start);
5011                         free_page((unsigned long)buf);
5012                 }
5013         }
5014         mmap_read_unlock(mm);
5015 }
5016
5017 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5018 void __might_fault(const char *file, int line)
5019 {
5020         /*
5021          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5022          * holding the mmap_lock, this is safe because kernel memory doesn't
5023          * get paged out, therefore we'll never actually fault, and the
5024          * below annotations will generate false positives.
5025          */
5026         if (uaccess_kernel())
5027                 return;
5028         if (pagefault_disabled())
5029                 return;
5030         __might_sleep(file, line, 0);
5031 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5032         if (current->mm)
5033                 might_lock_read(&current->mm->mmap_lock);
5034 #endif
5035 }
5036 EXPORT_SYMBOL(__might_fault);
5037 #endif
5038
5039 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5040 /*
5041  * Process all subpages of the specified huge page with the specified
5042  * operation.  The target subpage will be processed last to keep its
5043  * cache lines hot.
5044  */
5045 static inline void process_huge_page(
5046         unsigned long addr_hint, unsigned int pages_per_huge_page,
5047         void (*process_subpage)(unsigned long addr, int idx, void *arg),
5048         void *arg)
5049 {
5050         int i, n, base, l;
5051         unsigned long addr = addr_hint &
5052                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5053
5054         /* Process target subpage last to keep its cache lines hot */
5055         might_sleep();
5056         n = (addr_hint - addr) / PAGE_SIZE;
5057         if (2 * n <= pages_per_huge_page) {
5058                 /* If target subpage in first half of huge page */
5059                 base = 0;
5060                 l = n;
5061                 /* Process subpages at the end of huge page */
5062                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5063                         cond_resched();
5064                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5065                 }
5066         } else {
5067                 /* If target subpage in second half of huge page */
5068                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5069                 l = pages_per_huge_page - n;
5070                 /* Process subpages at the begin of huge page */
5071                 for (i = 0; i < base; i++) {
5072                         cond_resched();
5073                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5074                 }
5075         }
5076         /*
5077          * Process remaining subpages in left-right-left-right pattern
5078          * towards the target subpage
5079          */
5080         for (i = 0; i < l; i++) {
5081                 int left_idx = base + i;
5082                 int right_idx = base + 2 * l - 1 - i;
5083
5084                 cond_resched();
5085                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5086                 cond_resched();
5087                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5088         }
5089 }
5090
5091 static void clear_gigantic_page(struct page *page,
5092                                 unsigned long addr,
5093                                 unsigned int pages_per_huge_page)
5094 {
5095         int i;
5096         struct page *p = page;
5097
5098         might_sleep();
5099         for (i = 0; i < pages_per_huge_page;
5100              i++, p = mem_map_next(p, page, i)) {
5101                 cond_resched();
5102                 clear_user_highpage(p, addr + i * PAGE_SIZE);
5103         }
5104 }
5105
5106 static void clear_subpage(unsigned long addr, int idx, void *arg)
5107 {
5108         struct page *page = arg;
5109
5110         clear_user_highpage(page + idx, addr);
5111 }
5112
5113 void clear_huge_page(struct page *page,
5114                      unsigned long addr_hint, unsigned int pages_per_huge_page)
5115 {
5116         unsigned long addr = addr_hint &
5117                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5118
5119         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5120                 clear_gigantic_page(page, addr, pages_per_huge_page);
5121                 return;
5122         }
5123
5124         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5125 }
5126
5127 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5128                                     unsigned long addr,
5129                                     struct vm_area_struct *vma,
5130                                     unsigned int pages_per_huge_page)
5131 {
5132         int i;
5133         struct page *dst_base = dst;
5134         struct page *src_base = src;
5135
5136         for (i = 0; i < pages_per_huge_page; ) {
5137                 cond_resched();
5138                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5139
5140                 i++;
5141                 dst = mem_map_next(dst, dst_base, i);
5142                 src = mem_map_next(src, src_base, i);
5143         }
5144 }
5145
5146 struct copy_subpage_arg {
5147         struct page *dst;
5148         struct page *src;
5149         struct vm_area_struct *vma;
5150 };
5151
5152 static void copy_subpage(unsigned long addr, int idx, void *arg)
5153 {
5154         struct copy_subpage_arg *copy_arg = arg;
5155
5156         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5157                            addr, copy_arg->vma);
5158 }
5159
5160 void copy_user_huge_page(struct page *dst, struct page *src,
5161                          unsigned long addr_hint, struct vm_area_struct *vma,
5162                          unsigned int pages_per_huge_page)
5163 {
5164         unsigned long addr = addr_hint &
5165                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5166         struct copy_subpage_arg arg = {
5167                 .dst = dst,
5168                 .src = src,
5169                 .vma = vma,
5170         };
5171
5172         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5173                 copy_user_gigantic_page(dst, src, addr, vma,
5174                                         pages_per_huge_page);
5175                 return;
5176         }
5177
5178         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5179 }
5180
5181 long copy_huge_page_from_user(struct page *dst_page,
5182                                 const void __user *usr_src,
5183                                 unsigned int pages_per_huge_page,
5184                                 bool allow_pagefault)
5185 {
5186         void *src = (void *)usr_src;
5187         void *page_kaddr;
5188         unsigned long i, rc = 0;
5189         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5190
5191         for (i = 0; i < pages_per_huge_page; i++) {
5192                 if (allow_pagefault)
5193                         page_kaddr = kmap(dst_page + i);
5194                 else
5195                         page_kaddr = kmap_atomic(dst_page + i);
5196                 rc = copy_from_user(page_kaddr,
5197                                 (const void __user *)(src + i * PAGE_SIZE),
5198                                 PAGE_SIZE);
5199                 if (allow_pagefault)
5200                         kunmap(dst_page + i);
5201                 else
5202                         kunmap_atomic(page_kaddr);
5203
5204                 ret_val -= (PAGE_SIZE - rc);
5205                 if (rc)
5206                         break;
5207
5208                 cond_resched();
5209         }
5210         return ret_val;
5211 }
5212 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5213
5214 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5215
5216 static struct kmem_cache *page_ptl_cachep;
5217
5218 void __init ptlock_cache_init(void)
5219 {
5220         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5221                         SLAB_PANIC, NULL);
5222 }
5223
5224 bool ptlock_alloc(struct page *page)
5225 {
5226         spinlock_t *ptl;
5227
5228         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5229         if (!ptl)
5230                 return false;
5231         page->ptl = ptl;
5232         return true;
5233 }
5234
5235 void ptlock_free(struct page *page)
5236 {
5237         kmem_cache_free(page_ptl_cachep, page->ptl);
5238 }
5239 #endif