libnvdimm/namespace: Differentiate between probe mapping and runtime mapping
[linux-2.6-microblaze.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74
75 #include <asm/io.h>
76 #include <asm/mmu_context.h>
77 #include <asm/pgalloc.h>
78 #include <linux/uaccess.h>
79 #include <asm/tlb.h>
80 #include <asm/tlbflush.h>
81 #include <asm/pgtable.h>
82
83 #include "internal.h"
84
85 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
86 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
87 #endif
88
89 #ifndef CONFIG_NEED_MULTIPLE_NODES
90 /* use the per-pgdat data instead for discontigmem - mbligh */
91 unsigned long max_mapnr;
92 EXPORT_SYMBOL(max_mapnr);
93
94 struct page *mem_map;
95 EXPORT_SYMBOL(mem_map);
96 #endif
97
98 /*
99  * A number of key systems in x86 including ioremap() rely on the assumption
100  * that high_memory defines the upper bound on direct map memory, then end
101  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
102  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
103  * and ZONE_HIGHMEM.
104  */
105 void *high_memory;
106 EXPORT_SYMBOL(high_memory);
107
108 /*
109  * Randomize the address space (stacks, mmaps, brk, etc.).
110  *
111  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
112  *   as ancient (libc5 based) binaries can segfault. )
113  */
114 int randomize_va_space __read_mostly =
115 #ifdef CONFIG_COMPAT_BRK
116                                         1;
117 #else
118                                         2;
119 #endif
120
121 static int __init disable_randmaps(char *s)
122 {
123         randomize_va_space = 0;
124         return 1;
125 }
126 __setup("norandmaps", disable_randmaps);
127
128 unsigned long zero_pfn __read_mostly;
129 EXPORT_SYMBOL(zero_pfn);
130
131 unsigned long highest_memmap_pfn __read_mostly;
132
133 /*
134  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
135  */
136 static int __init init_zero_pfn(void)
137 {
138         zero_pfn = page_to_pfn(ZERO_PAGE(0));
139         return 0;
140 }
141 core_initcall(init_zero_pfn);
142
143
144 #if defined(SPLIT_RSS_COUNTING)
145
146 void sync_mm_rss(struct mm_struct *mm)
147 {
148         int i;
149
150         for (i = 0; i < NR_MM_COUNTERS; i++) {
151                 if (current->rss_stat.count[i]) {
152                         add_mm_counter(mm, i, current->rss_stat.count[i]);
153                         current->rss_stat.count[i] = 0;
154                 }
155         }
156         current->rss_stat.events = 0;
157 }
158
159 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
160 {
161         struct task_struct *task = current;
162
163         if (likely(task->mm == mm))
164                 task->rss_stat.count[member] += val;
165         else
166                 add_mm_counter(mm, member, val);
167 }
168 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
169 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
170
171 /* sync counter once per 64 page faults */
172 #define TASK_RSS_EVENTS_THRESH  (64)
173 static void check_sync_rss_stat(struct task_struct *task)
174 {
175         if (unlikely(task != current))
176                 return;
177         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
178                 sync_mm_rss(task->mm);
179 }
180 #else /* SPLIT_RSS_COUNTING */
181
182 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
183 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
184
185 static void check_sync_rss_stat(struct task_struct *task)
186 {
187 }
188
189 #endif /* SPLIT_RSS_COUNTING */
190
191 /*
192  * Note: this doesn't free the actual pages themselves. That
193  * has been handled earlier when unmapping all the memory regions.
194  */
195 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
196                            unsigned long addr)
197 {
198         pgtable_t token = pmd_pgtable(*pmd);
199         pmd_clear(pmd);
200         pte_free_tlb(tlb, token, addr);
201         mm_dec_nr_ptes(tlb->mm);
202 }
203
204 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
205                                 unsigned long addr, unsigned long end,
206                                 unsigned long floor, unsigned long ceiling)
207 {
208         pmd_t *pmd;
209         unsigned long next;
210         unsigned long start;
211
212         start = addr;
213         pmd = pmd_offset(pud, addr);
214         do {
215                 next = pmd_addr_end(addr, end);
216                 if (pmd_none_or_clear_bad(pmd))
217                         continue;
218                 free_pte_range(tlb, pmd, addr);
219         } while (pmd++, addr = next, addr != end);
220
221         start &= PUD_MASK;
222         if (start < floor)
223                 return;
224         if (ceiling) {
225                 ceiling &= PUD_MASK;
226                 if (!ceiling)
227                         return;
228         }
229         if (end - 1 > ceiling - 1)
230                 return;
231
232         pmd = pmd_offset(pud, start);
233         pud_clear(pud);
234         pmd_free_tlb(tlb, pmd, start);
235         mm_dec_nr_pmds(tlb->mm);
236 }
237
238 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
239                                 unsigned long addr, unsigned long end,
240                                 unsigned long floor, unsigned long ceiling)
241 {
242         pud_t *pud;
243         unsigned long next;
244         unsigned long start;
245
246         start = addr;
247         pud = pud_offset(p4d, addr);
248         do {
249                 next = pud_addr_end(addr, end);
250                 if (pud_none_or_clear_bad(pud))
251                         continue;
252                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
253         } while (pud++, addr = next, addr != end);
254
255         start &= P4D_MASK;
256         if (start < floor)
257                 return;
258         if (ceiling) {
259                 ceiling &= P4D_MASK;
260                 if (!ceiling)
261                         return;
262         }
263         if (end - 1 > ceiling - 1)
264                 return;
265
266         pud = pud_offset(p4d, start);
267         p4d_clear(p4d);
268         pud_free_tlb(tlb, pud, start);
269         mm_dec_nr_puds(tlb->mm);
270 }
271
272 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
273                                 unsigned long addr, unsigned long end,
274                                 unsigned long floor, unsigned long ceiling)
275 {
276         p4d_t *p4d;
277         unsigned long next;
278         unsigned long start;
279
280         start = addr;
281         p4d = p4d_offset(pgd, addr);
282         do {
283                 next = p4d_addr_end(addr, end);
284                 if (p4d_none_or_clear_bad(p4d))
285                         continue;
286                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
287         } while (p4d++, addr = next, addr != end);
288
289         start &= PGDIR_MASK;
290         if (start < floor)
291                 return;
292         if (ceiling) {
293                 ceiling &= PGDIR_MASK;
294                 if (!ceiling)
295                         return;
296         }
297         if (end - 1 > ceiling - 1)
298                 return;
299
300         p4d = p4d_offset(pgd, start);
301         pgd_clear(pgd);
302         p4d_free_tlb(tlb, p4d, start);
303 }
304
305 /*
306  * This function frees user-level page tables of a process.
307  */
308 void free_pgd_range(struct mmu_gather *tlb,
309                         unsigned long addr, unsigned long end,
310                         unsigned long floor, unsigned long ceiling)
311 {
312         pgd_t *pgd;
313         unsigned long next;
314
315         /*
316          * The next few lines have given us lots of grief...
317          *
318          * Why are we testing PMD* at this top level?  Because often
319          * there will be no work to do at all, and we'd prefer not to
320          * go all the way down to the bottom just to discover that.
321          *
322          * Why all these "- 1"s?  Because 0 represents both the bottom
323          * of the address space and the top of it (using -1 for the
324          * top wouldn't help much: the masks would do the wrong thing).
325          * The rule is that addr 0 and floor 0 refer to the bottom of
326          * the address space, but end 0 and ceiling 0 refer to the top
327          * Comparisons need to use "end - 1" and "ceiling - 1" (though
328          * that end 0 case should be mythical).
329          *
330          * Wherever addr is brought up or ceiling brought down, we must
331          * be careful to reject "the opposite 0" before it confuses the
332          * subsequent tests.  But what about where end is brought down
333          * by PMD_SIZE below? no, end can't go down to 0 there.
334          *
335          * Whereas we round start (addr) and ceiling down, by different
336          * masks at different levels, in order to test whether a table
337          * now has no other vmas using it, so can be freed, we don't
338          * bother to round floor or end up - the tests don't need that.
339          */
340
341         addr &= PMD_MASK;
342         if (addr < floor) {
343                 addr += PMD_SIZE;
344                 if (!addr)
345                         return;
346         }
347         if (ceiling) {
348                 ceiling &= PMD_MASK;
349                 if (!ceiling)
350                         return;
351         }
352         if (end - 1 > ceiling - 1)
353                 end -= PMD_SIZE;
354         if (addr > end - 1)
355                 return;
356         /*
357          * We add page table cache pages with PAGE_SIZE,
358          * (see pte_free_tlb()), flush the tlb if we need
359          */
360         tlb_change_page_size(tlb, PAGE_SIZE);
361         pgd = pgd_offset(tlb->mm, addr);
362         do {
363                 next = pgd_addr_end(addr, end);
364                 if (pgd_none_or_clear_bad(pgd))
365                         continue;
366                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
367         } while (pgd++, addr = next, addr != end);
368 }
369
370 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
371                 unsigned long floor, unsigned long ceiling)
372 {
373         while (vma) {
374                 struct vm_area_struct *next = vma->vm_next;
375                 unsigned long addr = vma->vm_start;
376
377                 /*
378                  * Hide vma from rmap and truncate_pagecache before freeing
379                  * pgtables
380                  */
381                 unlink_anon_vmas(vma);
382                 unlink_file_vma(vma);
383
384                 if (is_vm_hugetlb_page(vma)) {
385                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
386                                 floor, next ? next->vm_start : ceiling);
387                 } else {
388                         /*
389                          * Optimization: gather nearby vmas into one call down
390                          */
391                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
392                                && !is_vm_hugetlb_page(next)) {
393                                 vma = next;
394                                 next = vma->vm_next;
395                                 unlink_anon_vmas(vma);
396                                 unlink_file_vma(vma);
397                         }
398                         free_pgd_range(tlb, addr, vma->vm_end,
399                                 floor, next ? next->vm_start : ceiling);
400                 }
401                 vma = next;
402         }
403 }
404
405 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
406 {
407         spinlock_t *ptl;
408         pgtable_t new = pte_alloc_one(mm);
409         if (!new)
410                 return -ENOMEM;
411
412         /*
413          * Ensure all pte setup (eg. pte page lock and page clearing) are
414          * visible before the pte is made visible to other CPUs by being
415          * put into page tables.
416          *
417          * The other side of the story is the pointer chasing in the page
418          * table walking code (when walking the page table without locking;
419          * ie. most of the time). Fortunately, these data accesses consist
420          * of a chain of data-dependent loads, meaning most CPUs (alpha
421          * being the notable exception) will already guarantee loads are
422          * seen in-order. See the alpha page table accessors for the
423          * smp_read_barrier_depends() barriers in page table walking code.
424          */
425         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
426
427         ptl = pmd_lock(mm, pmd);
428         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
429                 mm_inc_nr_ptes(mm);
430                 pmd_populate(mm, pmd, new);
431                 new = NULL;
432         }
433         spin_unlock(ptl);
434         if (new)
435                 pte_free(mm, new);
436         return 0;
437 }
438
439 int __pte_alloc_kernel(pmd_t *pmd)
440 {
441         pte_t *new = pte_alloc_one_kernel(&init_mm);
442         if (!new)
443                 return -ENOMEM;
444
445         smp_wmb(); /* See comment in __pte_alloc */
446
447         spin_lock(&init_mm.page_table_lock);
448         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
449                 pmd_populate_kernel(&init_mm, pmd, new);
450                 new = NULL;
451         }
452         spin_unlock(&init_mm.page_table_lock);
453         if (new)
454                 pte_free_kernel(&init_mm, new);
455         return 0;
456 }
457
458 static inline void init_rss_vec(int *rss)
459 {
460         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
461 }
462
463 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
464 {
465         int i;
466
467         if (current->mm == mm)
468                 sync_mm_rss(mm);
469         for (i = 0; i < NR_MM_COUNTERS; i++)
470                 if (rss[i])
471                         add_mm_counter(mm, i, rss[i]);
472 }
473
474 /*
475  * This function is called to print an error when a bad pte
476  * is found. For example, we might have a PFN-mapped pte in
477  * a region that doesn't allow it.
478  *
479  * The calling function must still handle the error.
480  */
481 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
482                           pte_t pte, struct page *page)
483 {
484         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
485         p4d_t *p4d = p4d_offset(pgd, addr);
486         pud_t *pud = pud_offset(p4d, addr);
487         pmd_t *pmd = pmd_offset(pud, addr);
488         struct address_space *mapping;
489         pgoff_t index;
490         static unsigned long resume;
491         static unsigned long nr_shown;
492         static unsigned long nr_unshown;
493
494         /*
495          * Allow a burst of 60 reports, then keep quiet for that minute;
496          * or allow a steady drip of one report per second.
497          */
498         if (nr_shown == 60) {
499                 if (time_before(jiffies, resume)) {
500                         nr_unshown++;
501                         return;
502                 }
503                 if (nr_unshown) {
504                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
505                                  nr_unshown);
506                         nr_unshown = 0;
507                 }
508                 nr_shown = 0;
509         }
510         if (nr_shown++ == 0)
511                 resume = jiffies + 60 * HZ;
512
513         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
514         index = linear_page_index(vma, addr);
515
516         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
517                  current->comm,
518                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
519         if (page)
520                 dump_page(page, "bad pte");
521         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
522                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
523         pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
524                  vma->vm_file,
525                  vma->vm_ops ? vma->vm_ops->fault : NULL,
526                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
527                  mapping ? mapping->a_ops->readpage : NULL);
528         dump_stack();
529         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
530 }
531
532 /*
533  * vm_normal_page -- This function gets the "struct page" associated with a pte.
534  *
535  * "Special" mappings do not wish to be associated with a "struct page" (either
536  * it doesn't exist, or it exists but they don't want to touch it). In this
537  * case, NULL is returned here. "Normal" mappings do have a struct page.
538  *
539  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
540  * pte bit, in which case this function is trivial. Secondly, an architecture
541  * may not have a spare pte bit, which requires a more complicated scheme,
542  * described below.
543  *
544  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
545  * special mapping (even if there are underlying and valid "struct pages").
546  * COWed pages of a VM_PFNMAP are always normal.
547  *
548  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
549  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
550  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
551  * mapping will always honor the rule
552  *
553  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
554  *
555  * And for normal mappings this is false.
556  *
557  * This restricts such mappings to be a linear translation from virtual address
558  * to pfn. To get around this restriction, we allow arbitrary mappings so long
559  * as the vma is not a COW mapping; in that case, we know that all ptes are
560  * special (because none can have been COWed).
561  *
562  *
563  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
564  *
565  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
566  * page" backing, however the difference is that _all_ pages with a struct
567  * page (that is, those where pfn_valid is true) are refcounted and considered
568  * normal pages by the VM. The disadvantage is that pages are refcounted
569  * (which can be slower and simply not an option for some PFNMAP users). The
570  * advantage is that we don't have to follow the strict linearity rule of
571  * PFNMAP mappings in order to support COWable mappings.
572  *
573  */
574 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
575                             pte_t pte)
576 {
577         unsigned long pfn = pte_pfn(pte);
578
579         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
580                 if (likely(!pte_special(pte)))
581                         goto check_pfn;
582                 if (vma->vm_ops && vma->vm_ops->find_special_page)
583                         return vma->vm_ops->find_special_page(vma, addr);
584                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
585                         return NULL;
586                 if (is_zero_pfn(pfn))
587                         return NULL;
588                 if (pte_devmap(pte))
589                         return NULL;
590
591                 print_bad_pte(vma, addr, pte, NULL);
592                 return NULL;
593         }
594
595         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
596
597         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
598                 if (vma->vm_flags & VM_MIXEDMAP) {
599                         if (!pfn_valid(pfn))
600                                 return NULL;
601                         goto out;
602                 } else {
603                         unsigned long off;
604                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
605                         if (pfn == vma->vm_pgoff + off)
606                                 return NULL;
607                         if (!is_cow_mapping(vma->vm_flags))
608                                 return NULL;
609                 }
610         }
611
612         if (is_zero_pfn(pfn))
613                 return NULL;
614
615 check_pfn:
616         if (unlikely(pfn > highest_memmap_pfn)) {
617                 print_bad_pte(vma, addr, pte, NULL);
618                 return NULL;
619         }
620
621         /*
622          * NOTE! We still have PageReserved() pages in the page tables.
623          * eg. VDSO mappings can cause them to exist.
624          */
625 out:
626         return pfn_to_page(pfn);
627 }
628
629 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
630 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
631                                 pmd_t pmd)
632 {
633         unsigned long pfn = pmd_pfn(pmd);
634
635         /*
636          * There is no pmd_special() but there may be special pmds, e.g.
637          * in a direct-access (dax) mapping, so let's just replicate the
638          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
639          */
640         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
641                 if (vma->vm_flags & VM_MIXEDMAP) {
642                         if (!pfn_valid(pfn))
643                                 return NULL;
644                         goto out;
645                 } else {
646                         unsigned long off;
647                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
648                         if (pfn == vma->vm_pgoff + off)
649                                 return NULL;
650                         if (!is_cow_mapping(vma->vm_flags))
651                                 return NULL;
652                 }
653         }
654
655         if (pmd_devmap(pmd))
656                 return NULL;
657         if (is_zero_pfn(pfn))
658                 return NULL;
659         if (unlikely(pfn > highest_memmap_pfn))
660                 return NULL;
661
662         /*
663          * NOTE! We still have PageReserved() pages in the page tables.
664          * eg. VDSO mappings can cause them to exist.
665          */
666 out:
667         return pfn_to_page(pfn);
668 }
669 #endif
670
671 /*
672  * copy one vm_area from one task to the other. Assumes the page tables
673  * already present in the new task to be cleared in the whole range
674  * covered by this vma.
675  */
676
677 static inline unsigned long
678 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
679                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
680                 unsigned long addr, int *rss)
681 {
682         unsigned long vm_flags = vma->vm_flags;
683         pte_t pte = *src_pte;
684         struct page *page;
685
686         /* pte contains position in swap or file, so copy. */
687         if (unlikely(!pte_present(pte))) {
688                 swp_entry_t entry = pte_to_swp_entry(pte);
689
690                 if (likely(!non_swap_entry(entry))) {
691                         if (swap_duplicate(entry) < 0)
692                                 return entry.val;
693
694                         /* make sure dst_mm is on swapoff's mmlist. */
695                         if (unlikely(list_empty(&dst_mm->mmlist))) {
696                                 spin_lock(&mmlist_lock);
697                                 if (list_empty(&dst_mm->mmlist))
698                                         list_add(&dst_mm->mmlist,
699                                                         &src_mm->mmlist);
700                                 spin_unlock(&mmlist_lock);
701                         }
702                         rss[MM_SWAPENTS]++;
703                 } else if (is_migration_entry(entry)) {
704                         page = migration_entry_to_page(entry);
705
706                         rss[mm_counter(page)]++;
707
708                         if (is_write_migration_entry(entry) &&
709                                         is_cow_mapping(vm_flags)) {
710                                 /*
711                                  * COW mappings require pages in both
712                                  * parent and child to be set to read.
713                                  */
714                                 make_migration_entry_read(&entry);
715                                 pte = swp_entry_to_pte(entry);
716                                 if (pte_swp_soft_dirty(*src_pte))
717                                         pte = pte_swp_mksoft_dirty(pte);
718                                 set_pte_at(src_mm, addr, src_pte, pte);
719                         }
720                 } else if (is_device_private_entry(entry)) {
721                         page = device_private_entry_to_page(entry);
722
723                         /*
724                          * Update rss count even for unaddressable pages, as
725                          * they should treated just like normal pages in this
726                          * respect.
727                          *
728                          * We will likely want to have some new rss counters
729                          * for unaddressable pages, at some point. But for now
730                          * keep things as they are.
731                          */
732                         get_page(page);
733                         rss[mm_counter(page)]++;
734                         page_dup_rmap(page, false);
735
736                         /*
737                          * We do not preserve soft-dirty information, because so
738                          * far, checkpoint/restore is the only feature that
739                          * requires that. And checkpoint/restore does not work
740                          * when a device driver is involved (you cannot easily
741                          * save and restore device driver state).
742                          */
743                         if (is_write_device_private_entry(entry) &&
744                             is_cow_mapping(vm_flags)) {
745                                 make_device_private_entry_read(&entry);
746                                 pte = swp_entry_to_pte(entry);
747                                 set_pte_at(src_mm, addr, src_pte, pte);
748                         }
749                 }
750                 goto out_set_pte;
751         }
752
753         /*
754          * If it's a COW mapping, write protect it both
755          * in the parent and the child
756          */
757         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
758                 ptep_set_wrprotect(src_mm, addr, src_pte);
759                 pte = pte_wrprotect(pte);
760         }
761
762         /*
763          * If it's a shared mapping, mark it clean in
764          * the child
765          */
766         if (vm_flags & VM_SHARED)
767                 pte = pte_mkclean(pte);
768         pte = pte_mkold(pte);
769
770         page = vm_normal_page(vma, addr, pte);
771         if (page) {
772                 get_page(page);
773                 page_dup_rmap(page, false);
774                 rss[mm_counter(page)]++;
775         } else if (pte_devmap(pte)) {
776                 page = pte_page(pte);
777         }
778
779 out_set_pte:
780         set_pte_at(dst_mm, addr, dst_pte, pte);
781         return 0;
782 }
783
784 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
785                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
786                    unsigned long addr, unsigned long end)
787 {
788         pte_t *orig_src_pte, *orig_dst_pte;
789         pte_t *src_pte, *dst_pte;
790         spinlock_t *src_ptl, *dst_ptl;
791         int progress = 0;
792         int rss[NR_MM_COUNTERS];
793         swp_entry_t entry = (swp_entry_t){0};
794
795 again:
796         init_rss_vec(rss);
797
798         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
799         if (!dst_pte)
800                 return -ENOMEM;
801         src_pte = pte_offset_map(src_pmd, addr);
802         src_ptl = pte_lockptr(src_mm, src_pmd);
803         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
804         orig_src_pte = src_pte;
805         orig_dst_pte = dst_pte;
806         arch_enter_lazy_mmu_mode();
807
808         do {
809                 /*
810                  * We are holding two locks at this point - either of them
811                  * could generate latencies in another task on another CPU.
812                  */
813                 if (progress >= 32) {
814                         progress = 0;
815                         if (need_resched() ||
816                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
817                                 break;
818                 }
819                 if (pte_none(*src_pte)) {
820                         progress++;
821                         continue;
822                 }
823                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
824                                                         vma, addr, rss);
825                 if (entry.val)
826                         break;
827                 progress += 8;
828         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
829
830         arch_leave_lazy_mmu_mode();
831         spin_unlock(src_ptl);
832         pte_unmap(orig_src_pte);
833         add_mm_rss_vec(dst_mm, rss);
834         pte_unmap_unlock(orig_dst_pte, dst_ptl);
835         cond_resched();
836
837         if (entry.val) {
838                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
839                         return -ENOMEM;
840                 progress = 0;
841         }
842         if (addr != end)
843                 goto again;
844         return 0;
845 }
846
847 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
848                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
849                 unsigned long addr, unsigned long end)
850 {
851         pmd_t *src_pmd, *dst_pmd;
852         unsigned long next;
853
854         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
855         if (!dst_pmd)
856                 return -ENOMEM;
857         src_pmd = pmd_offset(src_pud, addr);
858         do {
859                 next = pmd_addr_end(addr, end);
860                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
861                         || pmd_devmap(*src_pmd)) {
862                         int err;
863                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
864                         err = copy_huge_pmd(dst_mm, src_mm,
865                                             dst_pmd, src_pmd, addr, vma);
866                         if (err == -ENOMEM)
867                                 return -ENOMEM;
868                         if (!err)
869                                 continue;
870                         /* fall through */
871                 }
872                 if (pmd_none_or_clear_bad(src_pmd))
873                         continue;
874                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
875                                                 vma, addr, next))
876                         return -ENOMEM;
877         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
878         return 0;
879 }
880
881 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
882                 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
883                 unsigned long addr, unsigned long end)
884 {
885         pud_t *src_pud, *dst_pud;
886         unsigned long next;
887
888         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
889         if (!dst_pud)
890                 return -ENOMEM;
891         src_pud = pud_offset(src_p4d, addr);
892         do {
893                 next = pud_addr_end(addr, end);
894                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
895                         int err;
896
897                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
898                         err = copy_huge_pud(dst_mm, src_mm,
899                                             dst_pud, src_pud, addr, vma);
900                         if (err == -ENOMEM)
901                                 return -ENOMEM;
902                         if (!err)
903                                 continue;
904                         /* fall through */
905                 }
906                 if (pud_none_or_clear_bad(src_pud))
907                         continue;
908                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
909                                                 vma, addr, next))
910                         return -ENOMEM;
911         } while (dst_pud++, src_pud++, addr = next, addr != end);
912         return 0;
913 }
914
915 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
916                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
917                 unsigned long addr, unsigned long end)
918 {
919         p4d_t *src_p4d, *dst_p4d;
920         unsigned long next;
921
922         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
923         if (!dst_p4d)
924                 return -ENOMEM;
925         src_p4d = p4d_offset(src_pgd, addr);
926         do {
927                 next = p4d_addr_end(addr, end);
928                 if (p4d_none_or_clear_bad(src_p4d))
929                         continue;
930                 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
931                                                 vma, addr, next))
932                         return -ENOMEM;
933         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
934         return 0;
935 }
936
937 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
938                 struct vm_area_struct *vma)
939 {
940         pgd_t *src_pgd, *dst_pgd;
941         unsigned long next;
942         unsigned long addr = vma->vm_start;
943         unsigned long end = vma->vm_end;
944         struct mmu_notifier_range range;
945         bool is_cow;
946         int ret;
947
948         /*
949          * Don't copy ptes where a page fault will fill them correctly.
950          * Fork becomes much lighter when there are big shared or private
951          * readonly mappings. The tradeoff is that copy_page_range is more
952          * efficient than faulting.
953          */
954         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
955                         !vma->anon_vma)
956                 return 0;
957
958         if (is_vm_hugetlb_page(vma))
959                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
960
961         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
962                 /*
963                  * We do not free on error cases below as remove_vma
964                  * gets called on error from higher level routine
965                  */
966                 ret = track_pfn_copy(vma);
967                 if (ret)
968                         return ret;
969         }
970
971         /*
972          * We need to invalidate the secondary MMU mappings only when
973          * there could be a permission downgrade on the ptes of the
974          * parent mm. And a permission downgrade will only happen if
975          * is_cow_mapping() returns true.
976          */
977         is_cow = is_cow_mapping(vma->vm_flags);
978
979         if (is_cow) {
980                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
981                                         0, vma, src_mm, addr, end);
982                 mmu_notifier_invalidate_range_start(&range);
983         }
984
985         ret = 0;
986         dst_pgd = pgd_offset(dst_mm, addr);
987         src_pgd = pgd_offset(src_mm, addr);
988         do {
989                 next = pgd_addr_end(addr, end);
990                 if (pgd_none_or_clear_bad(src_pgd))
991                         continue;
992                 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
993                                             vma, addr, next))) {
994                         ret = -ENOMEM;
995                         break;
996                 }
997         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
998
999         if (is_cow)
1000                 mmu_notifier_invalidate_range_end(&range);
1001         return ret;
1002 }
1003
1004 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1005                                 struct vm_area_struct *vma, pmd_t *pmd,
1006                                 unsigned long addr, unsigned long end,
1007                                 struct zap_details *details)
1008 {
1009         struct mm_struct *mm = tlb->mm;
1010         int force_flush = 0;
1011         int rss[NR_MM_COUNTERS];
1012         spinlock_t *ptl;
1013         pte_t *start_pte;
1014         pte_t *pte;
1015         swp_entry_t entry;
1016
1017         tlb_change_page_size(tlb, PAGE_SIZE);
1018 again:
1019         init_rss_vec(rss);
1020         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1021         pte = start_pte;
1022         flush_tlb_batched_pending(mm);
1023         arch_enter_lazy_mmu_mode();
1024         do {
1025                 pte_t ptent = *pte;
1026                 if (pte_none(ptent))
1027                         continue;
1028
1029                 if (need_resched())
1030                         break;
1031
1032                 if (pte_present(ptent)) {
1033                         struct page *page;
1034
1035                         page = vm_normal_page(vma, addr, ptent);
1036                         if (unlikely(details) && page) {
1037                                 /*
1038                                  * unmap_shared_mapping_pages() wants to
1039                                  * invalidate cache without truncating:
1040                                  * unmap shared but keep private pages.
1041                                  */
1042                                 if (details->check_mapping &&
1043                                     details->check_mapping != page_rmapping(page))
1044                                         continue;
1045                         }
1046                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1047                                                         tlb->fullmm);
1048                         tlb_remove_tlb_entry(tlb, pte, addr);
1049                         if (unlikely(!page))
1050                                 continue;
1051
1052                         if (!PageAnon(page)) {
1053                                 if (pte_dirty(ptent)) {
1054                                         force_flush = 1;
1055                                         set_page_dirty(page);
1056                                 }
1057                                 if (pte_young(ptent) &&
1058                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1059                                         mark_page_accessed(page);
1060                         }
1061                         rss[mm_counter(page)]--;
1062                         page_remove_rmap(page, false);
1063                         if (unlikely(page_mapcount(page) < 0))
1064                                 print_bad_pte(vma, addr, ptent, page);
1065                         if (unlikely(__tlb_remove_page(tlb, page))) {
1066                                 force_flush = 1;
1067                                 addr += PAGE_SIZE;
1068                                 break;
1069                         }
1070                         continue;
1071                 }
1072
1073                 entry = pte_to_swp_entry(ptent);
1074                 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1075                         struct page *page = device_private_entry_to_page(entry);
1076
1077                         if (unlikely(details && details->check_mapping)) {
1078                                 /*
1079                                  * unmap_shared_mapping_pages() wants to
1080                                  * invalidate cache without truncating:
1081                                  * unmap shared but keep private pages.
1082                                  */
1083                                 if (details->check_mapping !=
1084                                     page_rmapping(page))
1085                                         continue;
1086                         }
1087
1088                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1089                         rss[mm_counter(page)]--;
1090                         page_remove_rmap(page, false);
1091                         put_page(page);
1092                         continue;
1093                 }
1094
1095                 /* If details->check_mapping, we leave swap entries. */
1096                 if (unlikely(details))
1097                         continue;
1098
1099                 if (!non_swap_entry(entry))
1100                         rss[MM_SWAPENTS]--;
1101                 else if (is_migration_entry(entry)) {
1102                         struct page *page;
1103
1104                         page = migration_entry_to_page(entry);
1105                         rss[mm_counter(page)]--;
1106                 }
1107                 if (unlikely(!free_swap_and_cache(entry)))
1108                         print_bad_pte(vma, addr, ptent, NULL);
1109                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1110         } while (pte++, addr += PAGE_SIZE, addr != end);
1111
1112         add_mm_rss_vec(mm, rss);
1113         arch_leave_lazy_mmu_mode();
1114
1115         /* Do the actual TLB flush before dropping ptl */
1116         if (force_flush)
1117                 tlb_flush_mmu_tlbonly(tlb);
1118         pte_unmap_unlock(start_pte, ptl);
1119
1120         /*
1121          * If we forced a TLB flush (either due to running out of
1122          * batch buffers or because we needed to flush dirty TLB
1123          * entries before releasing the ptl), free the batched
1124          * memory too. Restart if we didn't do everything.
1125          */
1126         if (force_flush) {
1127                 force_flush = 0;
1128                 tlb_flush_mmu(tlb);
1129         }
1130
1131         if (addr != end) {
1132                 cond_resched();
1133                 goto again;
1134         }
1135
1136         return addr;
1137 }
1138
1139 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1140                                 struct vm_area_struct *vma, pud_t *pud,
1141                                 unsigned long addr, unsigned long end,
1142                                 struct zap_details *details)
1143 {
1144         pmd_t *pmd;
1145         unsigned long next;
1146
1147         pmd = pmd_offset(pud, addr);
1148         do {
1149                 next = pmd_addr_end(addr, end);
1150                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1151                         if (next - addr != HPAGE_PMD_SIZE)
1152                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1153                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1154                                 goto next;
1155                         /* fall through */
1156                 }
1157                 /*
1158                  * Here there can be other concurrent MADV_DONTNEED or
1159                  * trans huge page faults running, and if the pmd is
1160                  * none or trans huge it can change under us. This is
1161                  * because MADV_DONTNEED holds the mmap_sem in read
1162                  * mode.
1163                  */
1164                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1165                         goto next;
1166                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1167 next:
1168                 cond_resched();
1169         } while (pmd++, addr = next, addr != end);
1170
1171         return addr;
1172 }
1173
1174 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1175                                 struct vm_area_struct *vma, p4d_t *p4d,
1176                                 unsigned long addr, unsigned long end,
1177                                 struct zap_details *details)
1178 {
1179         pud_t *pud;
1180         unsigned long next;
1181
1182         pud = pud_offset(p4d, addr);
1183         do {
1184                 next = pud_addr_end(addr, end);
1185                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1186                         if (next - addr != HPAGE_PUD_SIZE) {
1187                                 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1188                                 split_huge_pud(vma, pud, addr);
1189                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1190                                 goto next;
1191                         /* fall through */
1192                 }
1193                 if (pud_none_or_clear_bad(pud))
1194                         continue;
1195                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1196 next:
1197                 cond_resched();
1198         } while (pud++, addr = next, addr != end);
1199
1200         return addr;
1201 }
1202
1203 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1204                                 struct vm_area_struct *vma, pgd_t *pgd,
1205                                 unsigned long addr, unsigned long end,
1206                                 struct zap_details *details)
1207 {
1208         p4d_t *p4d;
1209         unsigned long next;
1210
1211         p4d = p4d_offset(pgd, addr);
1212         do {
1213                 next = p4d_addr_end(addr, end);
1214                 if (p4d_none_or_clear_bad(p4d))
1215                         continue;
1216                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1217         } while (p4d++, addr = next, addr != end);
1218
1219         return addr;
1220 }
1221
1222 void unmap_page_range(struct mmu_gather *tlb,
1223                              struct vm_area_struct *vma,
1224                              unsigned long addr, unsigned long end,
1225                              struct zap_details *details)
1226 {
1227         pgd_t *pgd;
1228         unsigned long next;
1229
1230         BUG_ON(addr >= end);
1231         tlb_start_vma(tlb, vma);
1232         pgd = pgd_offset(vma->vm_mm, addr);
1233         do {
1234                 next = pgd_addr_end(addr, end);
1235                 if (pgd_none_or_clear_bad(pgd))
1236                         continue;
1237                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1238         } while (pgd++, addr = next, addr != end);
1239         tlb_end_vma(tlb, vma);
1240 }
1241
1242
1243 static void unmap_single_vma(struct mmu_gather *tlb,
1244                 struct vm_area_struct *vma, unsigned long start_addr,
1245                 unsigned long end_addr,
1246                 struct zap_details *details)
1247 {
1248         unsigned long start = max(vma->vm_start, start_addr);
1249         unsigned long end;
1250
1251         if (start >= vma->vm_end)
1252                 return;
1253         end = min(vma->vm_end, end_addr);
1254         if (end <= vma->vm_start)
1255                 return;
1256
1257         if (vma->vm_file)
1258                 uprobe_munmap(vma, start, end);
1259
1260         if (unlikely(vma->vm_flags & VM_PFNMAP))
1261                 untrack_pfn(vma, 0, 0);
1262
1263         if (start != end) {
1264                 if (unlikely(is_vm_hugetlb_page(vma))) {
1265                         /*
1266                          * It is undesirable to test vma->vm_file as it
1267                          * should be non-null for valid hugetlb area.
1268                          * However, vm_file will be NULL in the error
1269                          * cleanup path of mmap_region. When
1270                          * hugetlbfs ->mmap method fails,
1271                          * mmap_region() nullifies vma->vm_file
1272                          * before calling this function to clean up.
1273                          * Since no pte has actually been setup, it is
1274                          * safe to do nothing in this case.
1275                          */
1276                         if (vma->vm_file) {
1277                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1278                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1279                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1280                         }
1281                 } else
1282                         unmap_page_range(tlb, vma, start, end, details);
1283         }
1284 }
1285
1286 /**
1287  * unmap_vmas - unmap a range of memory covered by a list of vma's
1288  * @tlb: address of the caller's struct mmu_gather
1289  * @vma: the starting vma
1290  * @start_addr: virtual address at which to start unmapping
1291  * @end_addr: virtual address at which to end unmapping
1292  *
1293  * Unmap all pages in the vma list.
1294  *
1295  * Only addresses between `start' and `end' will be unmapped.
1296  *
1297  * The VMA list must be sorted in ascending virtual address order.
1298  *
1299  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1300  * range after unmap_vmas() returns.  So the only responsibility here is to
1301  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1302  * drops the lock and schedules.
1303  */
1304 void unmap_vmas(struct mmu_gather *tlb,
1305                 struct vm_area_struct *vma, unsigned long start_addr,
1306                 unsigned long end_addr)
1307 {
1308         struct mmu_notifier_range range;
1309
1310         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1311                                 start_addr, end_addr);
1312         mmu_notifier_invalidate_range_start(&range);
1313         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1314                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1315         mmu_notifier_invalidate_range_end(&range);
1316 }
1317
1318 /**
1319  * zap_page_range - remove user pages in a given range
1320  * @vma: vm_area_struct holding the applicable pages
1321  * @start: starting address of pages to zap
1322  * @size: number of bytes to zap
1323  *
1324  * Caller must protect the VMA list
1325  */
1326 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1327                 unsigned long size)
1328 {
1329         struct mmu_notifier_range range;
1330         struct mmu_gather tlb;
1331
1332         lru_add_drain();
1333         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1334                                 start, start + size);
1335         tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1336         update_hiwater_rss(vma->vm_mm);
1337         mmu_notifier_invalidate_range_start(&range);
1338         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1339                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1340         mmu_notifier_invalidate_range_end(&range);
1341         tlb_finish_mmu(&tlb, start, range.end);
1342 }
1343
1344 /**
1345  * zap_page_range_single - remove user pages in a given range
1346  * @vma: vm_area_struct holding the applicable pages
1347  * @address: starting address of pages to zap
1348  * @size: number of bytes to zap
1349  * @details: details of shared cache invalidation
1350  *
1351  * The range must fit into one VMA.
1352  */
1353 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1354                 unsigned long size, struct zap_details *details)
1355 {
1356         struct mmu_notifier_range range;
1357         struct mmu_gather tlb;
1358
1359         lru_add_drain();
1360         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1361                                 address, address + size);
1362         tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1363         update_hiwater_rss(vma->vm_mm);
1364         mmu_notifier_invalidate_range_start(&range);
1365         unmap_single_vma(&tlb, vma, address, range.end, details);
1366         mmu_notifier_invalidate_range_end(&range);
1367         tlb_finish_mmu(&tlb, address, range.end);
1368 }
1369
1370 /**
1371  * zap_vma_ptes - remove ptes mapping the vma
1372  * @vma: vm_area_struct holding ptes to be zapped
1373  * @address: starting address of pages to zap
1374  * @size: number of bytes to zap
1375  *
1376  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1377  *
1378  * The entire address range must be fully contained within the vma.
1379  *
1380  */
1381 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1382                 unsigned long size)
1383 {
1384         if (address < vma->vm_start || address + size > vma->vm_end ||
1385                         !(vma->vm_flags & VM_PFNMAP))
1386                 return;
1387
1388         zap_page_range_single(vma, address, size, NULL);
1389 }
1390 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1391
1392 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1393                         spinlock_t **ptl)
1394 {
1395         pgd_t *pgd;
1396         p4d_t *p4d;
1397         pud_t *pud;
1398         pmd_t *pmd;
1399
1400         pgd = pgd_offset(mm, addr);
1401         p4d = p4d_alloc(mm, pgd, addr);
1402         if (!p4d)
1403                 return NULL;
1404         pud = pud_alloc(mm, p4d, addr);
1405         if (!pud)
1406                 return NULL;
1407         pmd = pmd_alloc(mm, pud, addr);
1408         if (!pmd)
1409                 return NULL;
1410
1411         VM_BUG_ON(pmd_trans_huge(*pmd));
1412         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1413 }
1414
1415 /*
1416  * This is the old fallback for page remapping.
1417  *
1418  * For historical reasons, it only allows reserved pages. Only
1419  * old drivers should use this, and they needed to mark their
1420  * pages reserved for the old functions anyway.
1421  */
1422 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1423                         struct page *page, pgprot_t prot)
1424 {
1425         struct mm_struct *mm = vma->vm_mm;
1426         int retval;
1427         pte_t *pte;
1428         spinlock_t *ptl;
1429
1430         retval = -EINVAL;
1431         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1432                 goto out;
1433         retval = -ENOMEM;
1434         flush_dcache_page(page);
1435         pte = get_locked_pte(mm, addr, &ptl);
1436         if (!pte)
1437                 goto out;
1438         retval = -EBUSY;
1439         if (!pte_none(*pte))
1440                 goto out_unlock;
1441
1442         /* Ok, finally just insert the thing.. */
1443         get_page(page);
1444         inc_mm_counter_fast(mm, mm_counter_file(page));
1445         page_add_file_rmap(page, false);
1446         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1447
1448         retval = 0;
1449 out_unlock:
1450         pte_unmap_unlock(pte, ptl);
1451 out:
1452         return retval;
1453 }
1454
1455 /**
1456  * vm_insert_page - insert single page into user vma
1457  * @vma: user vma to map to
1458  * @addr: target user address of this page
1459  * @page: source kernel page
1460  *
1461  * This allows drivers to insert individual pages they've allocated
1462  * into a user vma.
1463  *
1464  * The page has to be a nice clean _individual_ kernel allocation.
1465  * If you allocate a compound page, you need to have marked it as
1466  * such (__GFP_COMP), or manually just split the page up yourself
1467  * (see split_page()).
1468  *
1469  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1470  * took an arbitrary page protection parameter. This doesn't allow
1471  * that. Your vma protection will have to be set up correctly, which
1472  * means that if you want a shared writable mapping, you'd better
1473  * ask for a shared writable mapping!
1474  *
1475  * The page does not need to be reserved.
1476  *
1477  * Usually this function is called from f_op->mmap() handler
1478  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1479  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1480  * function from other places, for example from page-fault handler.
1481  *
1482  * Return: %0 on success, negative error code otherwise.
1483  */
1484 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1485                         struct page *page)
1486 {
1487         if (addr < vma->vm_start || addr >= vma->vm_end)
1488                 return -EFAULT;
1489         if (!page_count(page))
1490                 return -EINVAL;
1491         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1492                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1493                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1494                 vma->vm_flags |= VM_MIXEDMAP;
1495         }
1496         return insert_page(vma, addr, page, vma->vm_page_prot);
1497 }
1498 EXPORT_SYMBOL(vm_insert_page);
1499
1500 /*
1501  * __vm_map_pages - maps range of kernel pages into user vma
1502  * @vma: user vma to map to
1503  * @pages: pointer to array of source kernel pages
1504  * @num: number of pages in page array
1505  * @offset: user's requested vm_pgoff
1506  *
1507  * This allows drivers to map range of kernel pages into a user vma.
1508  *
1509  * Return: 0 on success and error code otherwise.
1510  */
1511 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1512                                 unsigned long num, unsigned long offset)
1513 {
1514         unsigned long count = vma_pages(vma);
1515         unsigned long uaddr = vma->vm_start;
1516         int ret, i;
1517
1518         /* Fail if the user requested offset is beyond the end of the object */
1519         if (offset >= num)
1520                 return -ENXIO;
1521
1522         /* Fail if the user requested size exceeds available object size */
1523         if (count > num - offset)
1524                 return -ENXIO;
1525
1526         for (i = 0; i < count; i++) {
1527                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1528                 if (ret < 0)
1529                         return ret;
1530                 uaddr += PAGE_SIZE;
1531         }
1532
1533         return 0;
1534 }
1535
1536 /**
1537  * vm_map_pages - maps range of kernel pages starts with non zero offset
1538  * @vma: user vma to map to
1539  * @pages: pointer to array of source kernel pages
1540  * @num: number of pages in page array
1541  *
1542  * Maps an object consisting of @num pages, catering for the user's
1543  * requested vm_pgoff
1544  *
1545  * If we fail to insert any page into the vma, the function will return
1546  * immediately leaving any previously inserted pages present.  Callers
1547  * from the mmap handler may immediately return the error as their caller
1548  * will destroy the vma, removing any successfully inserted pages. Other
1549  * callers should make their own arrangements for calling unmap_region().
1550  *
1551  * Context: Process context. Called by mmap handlers.
1552  * Return: 0 on success and error code otherwise.
1553  */
1554 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1555                                 unsigned long num)
1556 {
1557         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1558 }
1559 EXPORT_SYMBOL(vm_map_pages);
1560
1561 /**
1562  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1563  * @vma: user vma to map to
1564  * @pages: pointer to array of source kernel pages
1565  * @num: number of pages in page array
1566  *
1567  * Similar to vm_map_pages(), except that it explicitly sets the offset
1568  * to 0. This function is intended for the drivers that did not consider
1569  * vm_pgoff.
1570  *
1571  * Context: Process context. Called by mmap handlers.
1572  * Return: 0 on success and error code otherwise.
1573  */
1574 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1575                                 unsigned long num)
1576 {
1577         return __vm_map_pages(vma, pages, num, 0);
1578 }
1579 EXPORT_SYMBOL(vm_map_pages_zero);
1580
1581 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1582                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1583 {
1584         struct mm_struct *mm = vma->vm_mm;
1585         pte_t *pte, entry;
1586         spinlock_t *ptl;
1587
1588         pte = get_locked_pte(mm, addr, &ptl);
1589         if (!pte)
1590                 return VM_FAULT_OOM;
1591         if (!pte_none(*pte)) {
1592                 if (mkwrite) {
1593                         /*
1594                          * For read faults on private mappings the PFN passed
1595                          * in may not match the PFN we have mapped if the
1596                          * mapped PFN is a writeable COW page.  In the mkwrite
1597                          * case we are creating a writable PTE for a shared
1598                          * mapping and we expect the PFNs to match. If they
1599                          * don't match, we are likely racing with block
1600                          * allocation and mapping invalidation so just skip the
1601                          * update.
1602                          */
1603                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1604                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1605                                 goto out_unlock;
1606                         }
1607                         entry = pte_mkyoung(*pte);
1608                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1609                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1610                                 update_mmu_cache(vma, addr, pte);
1611                 }
1612                 goto out_unlock;
1613         }
1614
1615         /* Ok, finally just insert the thing.. */
1616         if (pfn_t_devmap(pfn))
1617                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1618         else
1619                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1620
1621         if (mkwrite) {
1622                 entry = pte_mkyoung(entry);
1623                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1624         }
1625
1626         set_pte_at(mm, addr, pte, entry);
1627         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1628
1629 out_unlock:
1630         pte_unmap_unlock(pte, ptl);
1631         return VM_FAULT_NOPAGE;
1632 }
1633
1634 /**
1635  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1636  * @vma: user vma to map to
1637  * @addr: target user address of this page
1638  * @pfn: source kernel pfn
1639  * @pgprot: pgprot flags for the inserted page
1640  *
1641  * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1642  * to override pgprot on a per-page basis.
1643  *
1644  * This only makes sense for IO mappings, and it makes no sense for
1645  * COW mappings.  In general, using multiple vmas is preferable;
1646  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1647  * impractical.
1648  *
1649  * Context: Process context.  May allocate using %GFP_KERNEL.
1650  * Return: vm_fault_t value.
1651  */
1652 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1653                         unsigned long pfn, pgprot_t pgprot)
1654 {
1655         /*
1656          * Technically, architectures with pte_special can avoid all these
1657          * restrictions (same for remap_pfn_range).  However we would like
1658          * consistency in testing and feature parity among all, so we should
1659          * try to keep these invariants in place for everybody.
1660          */
1661         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1662         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1663                                                 (VM_PFNMAP|VM_MIXEDMAP));
1664         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1665         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1666
1667         if (addr < vma->vm_start || addr >= vma->vm_end)
1668                 return VM_FAULT_SIGBUS;
1669
1670         if (!pfn_modify_allowed(pfn, pgprot))
1671                 return VM_FAULT_SIGBUS;
1672
1673         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1674
1675         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1676                         false);
1677 }
1678 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1679
1680 /**
1681  * vmf_insert_pfn - insert single pfn into user vma
1682  * @vma: user vma to map to
1683  * @addr: target user address of this page
1684  * @pfn: source kernel pfn
1685  *
1686  * Similar to vm_insert_page, this allows drivers to insert individual pages
1687  * they've allocated into a user vma. Same comments apply.
1688  *
1689  * This function should only be called from a vm_ops->fault handler, and
1690  * in that case the handler should return the result of this function.
1691  *
1692  * vma cannot be a COW mapping.
1693  *
1694  * As this is called only for pages that do not currently exist, we
1695  * do not need to flush old virtual caches or the TLB.
1696  *
1697  * Context: Process context.  May allocate using %GFP_KERNEL.
1698  * Return: vm_fault_t value.
1699  */
1700 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1701                         unsigned long pfn)
1702 {
1703         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1704 }
1705 EXPORT_SYMBOL(vmf_insert_pfn);
1706
1707 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1708 {
1709         /* these checks mirror the abort conditions in vm_normal_page */
1710         if (vma->vm_flags & VM_MIXEDMAP)
1711                 return true;
1712         if (pfn_t_devmap(pfn))
1713                 return true;
1714         if (pfn_t_special(pfn))
1715                 return true;
1716         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1717                 return true;
1718         return false;
1719 }
1720
1721 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1722                 unsigned long addr, pfn_t pfn, bool mkwrite)
1723 {
1724         pgprot_t pgprot = vma->vm_page_prot;
1725         int err;
1726
1727         BUG_ON(!vm_mixed_ok(vma, pfn));
1728
1729         if (addr < vma->vm_start || addr >= vma->vm_end)
1730                 return VM_FAULT_SIGBUS;
1731
1732         track_pfn_insert(vma, &pgprot, pfn);
1733
1734         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1735                 return VM_FAULT_SIGBUS;
1736
1737         /*
1738          * If we don't have pte special, then we have to use the pfn_valid()
1739          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1740          * refcount the page if pfn_valid is true (hence insert_page rather
1741          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1742          * without pte special, it would there be refcounted as a normal page.
1743          */
1744         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1745             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1746                 struct page *page;
1747
1748                 /*
1749                  * At this point we are committed to insert_page()
1750                  * regardless of whether the caller specified flags that
1751                  * result in pfn_t_has_page() == false.
1752                  */
1753                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1754                 err = insert_page(vma, addr, page, pgprot);
1755         } else {
1756                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1757         }
1758
1759         if (err == -ENOMEM)
1760                 return VM_FAULT_OOM;
1761         if (err < 0 && err != -EBUSY)
1762                 return VM_FAULT_SIGBUS;
1763
1764         return VM_FAULT_NOPAGE;
1765 }
1766
1767 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1768                 pfn_t pfn)
1769 {
1770         return __vm_insert_mixed(vma, addr, pfn, false);
1771 }
1772 EXPORT_SYMBOL(vmf_insert_mixed);
1773
1774 /*
1775  *  If the insertion of PTE failed because someone else already added a
1776  *  different entry in the mean time, we treat that as success as we assume
1777  *  the same entry was actually inserted.
1778  */
1779 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1780                 unsigned long addr, pfn_t pfn)
1781 {
1782         return __vm_insert_mixed(vma, addr, pfn, true);
1783 }
1784 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1785
1786 /*
1787  * maps a range of physical memory into the requested pages. the old
1788  * mappings are removed. any references to nonexistent pages results
1789  * in null mappings (currently treated as "copy-on-access")
1790  */
1791 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1792                         unsigned long addr, unsigned long end,
1793                         unsigned long pfn, pgprot_t prot)
1794 {
1795         pte_t *pte;
1796         spinlock_t *ptl;
1797         int err = 0;
1798
1799         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1800         if (!pte)
1801                 return -ENOMEM;
1802         arch_enter_lazy_mmu_mode();
1803         do {
1804                 BUG_ON(!pte_none(*pte));
1805                 if (!pfn_modify_allowed(pfn, prot)) {
1806                         err = -EACCES;
1807                         break;
1808                 }
1809                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1810                 pfn++;
1811         } while (pte++, addr += PAGE_SIZE, addr != end);
1812         arch_leave_lazy_mmu_mode();
1813         pte_unmap_unlock(pte - 1, ptl);
1814         return err;
1815 }
1816
1817 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1818                         unsigned long addr, unsigned long end,
1819                         unsigned long pfn, pgprot_t prot)
1820 {
1821         pmd_t *pmd;
1822         unsigned long next;
1823         int err;
1824
1825         pfn -= addr >> PAGE_SHIFT;
1826         pmd = pmd_alloc(mm, pud, addr);
1827         if (!pmd)
1828                 return -ENOMEM;
1829         VM_BUG_ON(pmd_trans_huge(*pmd));
1830         do {
1831                 next = pmd_addr_end(addr, end);
1832                 err = remap_pte_range(mm, pmd, addr, next,
1833                                 pfn + (addr >> PAGE_SHIFT), prot);
1834                 if (err)
1835                         return err;
1836         } while (pmd++, addr = next, addr != end);
1837         return 0;
1838 }
1839
1840 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1841                         unsigned long addr, unsigned long end,
1842                         unsigned long pfn, pgprot_t prot)
1843 {
1844         pud_t *pud;
1845         unsigned long next;
1846         int err;
1847
1848         pfn -= addr >> PAGE_SHIFT;
1849         pud = pud_alloc(mm, p4d, addr);
1850         if (!pud)
1851                 return -ENOMEM;
1852         do {
1853                 next = pud_addr_end(addr, end);
1854                 err = remap_pmd_range(mm, pud, addr, next,
1855                                 pfn + (addr >> PAGE_SHIFT), prot);
1856                 if (err)
1857                         return err;
1858         } while (pud++, addr = next, addr != end);
1859         return 0;
1860 }
1861
1862 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1863                         unsigned long addr, unsigned long end,
1864                         unsigned long pfn, pgprot_t prot)
1865 {
1866         p4d_t *p4d;
1867         unsigned long next;
1868         int err;
1869
1870         pfn -= addr >> PAGE_SHIFT;
1871         p4d = p4d_alloc(mm, pgd, addr);
1872         if (!p4d)
1873                 return -ENOMEM;
1874         do {
1875                 next = p4d_addr_end(addr, end);
1876                 err = remap_pud_range(mm, p4d, addr, next,
1877                                 pfn + (addr >> PAGE_SHIFT), prot);
1878                 if (err)
1879                         return err;
1880         } while (p4d++, addr = next, addr != end);
1881         return 0;
1882 }
1883
1884 /**
1885  * remap_pfn_range - remap kernel memory to userspace
1886  * @vma: user vma to map to
1887  * @addr: target user address to start at
1888  * @pfn: physical address of kernel memory
1889  * @size: size of map area
1890  * @prot: page protection flags for this mapping
1891  *
1892  * Note: this is only safe if the mm semaphore is held when called.
1893  *
1894  * Return: %0 on success, negative error code otherwise.
1895  */
1896 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1897                     unsigned long pfn, unsigned long size, pgprot_t prot)
1898 {
1899         pgd_t *pgd;
1900         unsigned long next;
1901         unsigned long end = addr + PAGE_ALIGN(size);
1902         struct mm_struct *mm = vma->vm_mm;
1903         unsigned long remap_pfn = pfn;
1904         int err;
1905
1906         /*
1907          * Physically remapped pages are special. Tell the
1908          * rest of the world about it:
1909          *   VM_IO tells people not to look at these pages
1910          *      (accesses can have side effects).
1911          *   VM_PFNMAP tells the core MM that the base pages are just
1912          *      raw PFN mappings, and do not have a "struct page" associated
1913          *      with them.
1914          *   VM_DONTEXPAND
1915          *      Disable vma merging and expanding with mremap().
1916          *   VM_DONTDUMP
1917          *      Omit vma from core dump, even when VM_IO turned off.
1918          *
1919          * There's a horrible special case to handle copy-on-write
1920          * behaviour that some programs depend on. We mark the "original"
1921          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1922          * See vm_normal_page() for details.
1923          */
1924         if (is_cow_mapping(vma->vm_flags)) {
1925                 if (addr != vma->vm_start || end != vma->vm_end)
1926                         return -EINVAL;
1927                 vma->vm_pgoff = pfn;
1928         }
1929
1930         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1931         if (err)
1932                 return -EINVAL;
1933
1934         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1935
1936         BUG_ON(addr >= end);
1937         pfn -= addr >> PAGE_SHIFT;
1938         pgd = pgd_offset(mm, addr);
1939         flush_cache_range(vma, addr, end);
1940         do {
1941                 next = pgd_addr_end(addr, end);
1942                 err = remap_p4d_range(mm, pgd, addr, next,
1943                                 pfn + (addr >> PAGE_SHIFT), prot);
1944                 if (err)
1945                         break;
1946         } while (pgd++, addr = next, addr != end);
1947
1948         if (err)
1949                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1950
1951         return err;
1952 }
1953 EXPORT_SYMBOL(remap_pfn_range);
1954
1955 /**
1956  * vm_iomap_memory - remap memory to userspace
1957  * @vma: user vma to map to
1958  * @start: start of area
1959  * @len: size of area
1960  *
1961  * This is a simplified io_remap_pfn_range() for common driver use. The
1962  * driver just needs to give us the physical memory range to be mapped,
1963  * we'll figure out the rest from the vma information.
1964  *
1965  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1966  * whatever write-combining details or similar.
1967  *
1968  * Return: %0 on success, negative error code otherwise.
1969  */
1970 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1971 {
1972         unsigned long vm_len, pfn, pages;
1973
1974         /* Check that the physical memory area passed in looks valid */
1975         if (start + len < start)
1976                 return -EINVAL;
1977         /*
1978          * You *really* shouldn't map things that aren't page-aligned,
1979          * but we've historically allowed it because IO memory might
1980          * just have smaller alignment.
1981          */
1982         len += start & ~PAGE_MASK;
1983         pfn = start >> PAGE_SHIFT;
1984         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1985         if (pfn + pages < pfn)
1986                 return -EINVAL;
1987
1988         /* We start the mapping 'vm_pgoff' pages into the area */
1989         if (vma->vm_pgoff > pages)
1990                 return -EINVAL;
1991         pfn += vma->vm_pgoff;
1992         pages -= vma->vm_pgoff;
1993
1994         /* Can we fit all of the mapping? */
1995         vm_len = vma->vm_end - vma->vm_start;
1996         if (vm_len >> PAGE_SHIFT > pages)
1997                 return -EINVAL;
1998
1999         /* Ok, let it rip */
2000         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2001 }
2002 EXPORT_SYMBOL(vm_iomap_memory);
2003
2004 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2005                                      unsigned long addr, unsigned long end,
2006                                      pte_fn_t fn, void *data)
2007 {
2008         pte_t *pte;
2009         int err;
2010         spinlock_t *uninitialized_var(ptl);
2011
2012         pte = (mm == &init_mm) ?
2013                 pte_alloc_kernel(pmd, addr) :
2014                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2015         if (!pte)
2016                 return -ENOMEM;
2017
2018         BUG_ON(pmd_huge(*pmd));
2019
2020         arch_enter_lazy_mmu_mode();
2021
2022         do {
2023                 err = fn(pte++, addr, data);
2024                 if (err)
2025                         break;
2026         } while (addr += PAGE_SIZE, addr != end);
2027
2028         arch_leave_lazy_mmu_mode();
2029
2030         if (mm != &init_mm)
2031                 pte_unmap_unlock(pte-1, ptl);
2032         return err;
2033 }
2034
2035 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2036                                      unsigned long addr, unsigned long end,
2037                                      pte_fn_t fn, void *data)
2038 {
2039         pmd_t *pmd;
2040         unsigned long next;
2041         int err;
2042
2043         BUG_ON(pud_huge(*pud));
2044
2045         pmd = pmd_alloc(mm, pud, addr);
2046         if (!pmd)
2047                 return -ENOMEM;
2048         do {
2049                 next = pmd_addr_end(addr, end);
2050                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2051                 if (err)
2052                         break;
2053         } while (pmd++, addr = next, addr != end);
2054         return err;
2055 }
2056
2057 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2058                                      unsigned long addr, unsigned long end,
2059                                      pte_fn_t fn, void *data)
2060 {
2061         pud_t *pud;
2062         unsigned long next;
2063         int err;
2064
2065         pud = pud_alloc(mm, p4d, addr);
2066         if (!pud)
2067                 return -ENOMEM;
2068         do {
2069                 next = pud_addr_end(addr, end);
2070                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2071                 if (err)
2072                         break;
2073         } while (pud++, addr = next, addr != end);
2074         return err;
2075 }
2076
2077 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2078                                      unsigned long addr, unsigned long end,
2079                                      pte_fn_t fn, void *data)
2080 {
2081         p4d_t *p4d;
2082         unsigned long next;
2083         int err;
2084
2085         p4d = p4d_alloc(mm, pgd, addr);
2086         if (!p4d)
2087                 return -ENOMEM;
2088         do {
2089                 next = p4d_addr_end(addr, end);
2090                 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2091                 if (err)
2092                         break;
2093         } while (p4d++, addr = next, addr != end);
2094         return err;
2095 }
2096
2097 /*
2098  * Scan a region of virtual memory, filling in page tables as necessary
2099  * and calling a provided function on each leaf page table.
2100  */
2101 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2102                         unsigned long size, pte_fn_t fn, void *data)
2103 {
2104         pgd_t *pgd;
2105         unsigned long next;
2106         unsigned long end = addr + size;
2107         int err;
2108
2109         if (WARN_ON(addr >= end))
2110                 return -EINVAL;
2111
2112         pgd = pgd_offset(mm, addr);
2113         do {
2114                 next = pgd_addr_end(addr, end);
2115                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2116                 if (err)
2117                         break;
2118         } while (pgd++, addr = next, addr != end);
2119
2120         return err;
2121 }
2122 EXPORT_SYMBOL_GPL(apply_to_page_range);
2123
2124 /*
2125  * handle_pte_fault chooses page fault handler according to an entry which was
2126  * read non-atomically.  Before making any commitment, on those architectures
2127  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2128  * parts, do_swap_page must check under lock before unmapping the pte and
2129  * proceeding (but do_wp_page is only called after already making such a check;
2130  * and do_anonymous_page can safely check later on).
2131  */
2132 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2133                                 pte_t *page_table, pte_t orig_pte)
2134 {
2135         int same = 1;
2136 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2137         if (sizeof(pte_t) > sizeof(unsigned long)) {
2138                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2139                 spin_lock(ptl);
2140                 same = pte_same(*page_table, orig_pte);
2141                 spin_unlock(ptl);
2142         }
2143 #endif
2144         pte_unmap(page_table);
2145         return same;
2146 }
2147
2148 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2149 {
2150         debug_dma_assert_idle(src);
2151
2152         /*
2153          * If the source page was a PFN mapping, we don't have
2154          * a "struct page" for it. We do a best-effort copy by
2155          * just copying from the original user address. If that
2156          * fails, we just zero-fill it. Live with it.
2157          */
2158         if (unlikely(!src)) {
2159                 void *kaddr = kmap_atomic(dst);
2160                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2161
2162                 /*
2163                  * This really shouldn't fail, because the page is there
2164                  * in the page tables. But it might just be unreadable,
2165                  * in which case we just give up and fill the result with
2166                  * zeroes.
2167                  */
2168                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2169                         clear_page(kaddr);
2170                 kunmap_atomic(kaddr);
2171                 flush_dcache_page(dst);
2172         } else
2173                 copy_user_highpage(dst, src, va, vma);
2174 }
2175
2176 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2177 {
2178         struct file *vm_file = vma->vm_file;
2179
2180         if (vm_file)
2181                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2182
2183         /*
2184          * Special mappings (e.g. VDSO) do not have any file so fake
2185          * a default GFP_KERNEL for them.
2186          */
2187         return GFP_KERNEL;
2188 }
2189
2190 /*
2191  * Notify the address space that the page is about to become writable so that
2192  * it can prohibit this or wait for the page to get into an appropriate state.
2193  *
2194  * We do this without the lock held, so that it can sleep if it needs to.
2195  */
2196 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2197 {
2198         vm_fault_t ret;
2199         struct page *page = vmf->page;
2200         unsigned int old_flags = vmf->flags;
2201
2202         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2203
2204         if (vmf->vma->vm_file &&
2205             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2206                 return VM_FAULT_SIGBUS;
2207
2208         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2209         /* Restore original flags so that caller is not surprised */
2210         vmf->flags = old_flags;
2211         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2212                 return ret;
2213         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2214                 lock_page(page);
2215                 if (!page->mapping) {
2216                         unlock_page(page);
2217                         return 0; /* retry */
2218                 }
2219                 ret |= VM_FAULT_LOCKED;
2220         } else
2221                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2222         return ret;
2223 }
2224
2225 /*
2226  * Handle dirtying of a page in shared file mapping on a write fault.
2227  *
2228  * The function expects the page to be locked and unlocks it.
2229  */
2230 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2231                                     struct page *page)
2232 {
2233         struct address_space *mapping;
2234         bool dirtied;
2235         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2236
2237         dirtied = set_page_dirty(page);
2238         VM_BUG_ON_PAGE(PageAnon(page), page);
2239         /*
2240          * Take a local copy of the address_space - page.mapping may be zeroed
2241          * by truncate after unlock_page().   The address_space itself remains
2242          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2243          * release semantics to prevent the compiler from undoing this copying.
2244          */
2245         mapping = page_rmapping(page);
2246         unlock_page(page);
2247
2248         if ((dirtied || page_mkwrite) && mapping) {
2249                 /*
2250                  * Some device drivers do not set page.mapping
2251                  * but still dirty their pages
2252                  */
2253                 balance_dirty_pages_ratelimited(mapping);
2254         }
2255
2256         if (!page_mkwrite)
2257                 file_update_time(vma->vm_file);
2258 }
2259
2260 /*
2261  * Handle write page faults for pages that can be reused in the current vma
2262  *
2263  * This can happen either due to the mapping being with the VM_SHARED flag,
2264  * or due to us being the last reference standing to the page. In either
2265  * case, all we need to do here is to mark the page as writable and update
2266  * any related book-keeping.
2267  */
2268 static inline void wp_page_reuse(struct vm_fault *vmf)
2269         __releases(vmf->ptl)
2270 {
2271         struct vm_area_struct *vma = vmf->vma;
2272         struct page *page = vmf->page;
2273         pte_t entry;
2274         /*
2275          * Clear the pages cpupid information as the existing
2276          * information potentially belongs to a now completely
2277          * unrelated process.
2278          */
2279         if (page)
2280                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2281
2282         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2283         entry = pte_mkyoung(vmf->orig_pte);
2284         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2285         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2286                 update_mmu_cache(vma, vmf->address, vmf->pte);
2287         pte_unmap_unlock(vmf->pte, vmf->ptl);
2288 }
2289
2290 /*
2291  * Handle the case of a page which we actually need to copy to a new page.
2292  *
2293  * Called with mmap_sem locked and the old page referenced, but
2294  * without the ptl held.
2295  *
2296  * High level logic flow:
2297  *
2298  * - Allocate a page, copy the content of the old page to the new one.
2299  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2300  * - Take the PTL. If the pte changed, bail out and release the allocated page
2301  * - If the pte is still the way we remember it, update the page table and all
2302  *   relevant references. This includes dropping the reference the page-table
2303  *   held to the old page, as well as updating the rmap.
2304  * - In any case, unlock the PTL and drop the reference we took to the old page.
2305  */
2306 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2307 {
2308         struct vm_area_struct *vma = vmf->vma;
2309         struct mm_struct *mm = vma->vm_mm;
2310         struct page *old_page = vmf->page;
2311         struct page *new_page = NULL;
2312         pte_t entry;
2313         int page_copied = 0;
2314         struct mem_cgroup *memcg;
2315         struct mmu_notifier_range range;
2316
2317         if (unlikely(anon_vma_prepare(vma)))
2318                 goto oom;
2319
2320         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2321                 new_page = alloc_zeroed_user_highpage_movable(vma,
2322                                                               vmf->address);
2323                 if (!new_page)
2324                         goto oom;
2325         } else {
2326                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2327                                 vmf->address);
2328                 if (!new_page)
2329                         goto oom;
2330                 cow_user_page(new_page, old_page, vmf->address, vma);
2331         }
2332
2333         if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2334                 goto oom_free_new;
2335
2336         __SetPageUptodate(new_page);
2337
2338         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2339                                 vmf->address & PAGE_MASK,
2340                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2341         mmu_notifier_invalidate_range_start(&range);
2342
2343         /*
2344          * Re-check the pte - we dropped the lock
2345          */
2346         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2347         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2348                 if (old_page) {
2349                         if (!PageAnon(old_page)) {
2350                                 dec_mm_counter_fast(mm,
2351                                                 mm_counter_file(old_page));
2352                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2353                         }
2354                 } else {
2355                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2356                 }
2357                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2358                 entry = mk_pte(new_page, vma->vm_page_prot);
2359                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2360                 /*
2361                  * Clear the pte entry and flush it first, before updating the
2362                  * pte with the new entry. This will avoid a race condition
2363                  * seen in the presence of one thread doing SMC and another
2364                  * thread doing COW.
2365                  */
2366                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2367                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2368                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2369                 lru_cache_add_active_or_unevictable(new_page, vma);
2370                 /*
2371                  * We call the notify macro here because, when using secondary
2372                  * mmu page tables (such as kvm shadow page tables), we want the
2373                  * new page to be mapped directly into the secondary page table.
2374                  */
2375                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2376                 update_mmu_cache(vma, vmf->address, vmf->pte);
2377                 if (old_page) {
2378                         /*
2379                          * Only after switching the pte to the new page may
2380                          * we remove the mapcount here. Otherwise another
2381                          * process may come and find the rmap count decremented
2382                          * before the pte is switched to the new page, and
2383                          * "reuse" the old page writing into it while our pte
2384                          * here still points into it and can be read by other
2385                          * threads.
2386                          *
2387                          * The critical issue is to order this
2388                          * page_remove_rmap with the ptp_clear_flush above.
2389                          * Those stores are ordered by (if nothing else,)
2390                          * the barrier present in the atomic_add_negative
2391                          * in page_remove_rmap.
2392                          *
2393                          * Then the TLB flush in ptep_clear_flush ensures that
2394                          * no process can access the old page before the
2395                          * decremented mapcount is visible. And the old page
2396                          * cannot be reused until after the decremented
2397                          * mapcount is visible. So transitively, TLBs to
2398                          * old page will be flushed before it can be reused.
2399                          */
2400                         page_remove_rmap(old_page, false);
2401                 }
2402
2403                 /* Free the old page.. */
2404                 new_page = old_page;
2405                 page_copied = 1;
2406         } else {
2407                 mem_cgroup_cancel_charge(new_page, memcg, false);
2408         }
2409
2410         if (new_page)
2411                 put_page(new_page);
2412
2413         pte_unmap_unlock(vmf->pte, vmf->ptl);
2414         /*
2415          * No need to double call mmu_notifier->invalidate_range() callback as
2416          * the above ptep_clear_flush_notify() did already call it.
2417          */
2418         mmu_notifier_invalidate_range_only_end(&range);
2419         if (old_page) {
2420                 /*
2421                  * Don't let another task, with possibly unlocked vma,
2422                  * keep the mlocked page.
2423                  */
2424                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2425                         lock_page(old_page);    /* LRU manipulation */
2426                         if (PageMlocked(old_page))
2427                                 munlock_vma_page(old_page);
2428                         unlock_page(old_page);
2429                 }
2430                 put_page(old_page);
2431         }
2432         return page_copied ? VM_FAULT_WRITE : 0;
2433 oom_free_new:
2434         put_page(new_page);
2435 oom:
2436         if (old_page)
2437                 put_page(old_page);
2438         return VM_FAULT_OOM;
2439 }
2440
2441 /**
2442  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2443  *                        writeable once the page is prepared
2444  *
2445  * @vmf: structure describing the fault
2446  *
2447  * This function handles all that is needed to finish a write page fault in a
2448  * shared mapping due to PTE being read-only once the mapped page is prepared.
2449  * It handles locking of PTE and modifying it.
2450  *
2451  * The function expects the page to be locked or other protection against
2452  * concurrent faults / writeback (such as DAX radix tree locks).
2453  *
2454  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2455  * we acquired PTE lock.
2456  */
2457 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2458 {
2459         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2460         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2461                                        &vmf->ptl);
2462         /*
2463          * We might have raced with another page fault while we released the
2464          * pte_offset_map_lock.
2465          */
2466         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2467                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2468                 return VM_FAULT_NOPAGE;
2469         }
2470         wp_page_reuse(vmf);
2471         return 0;
2472 }
2473
2474 /*
2475  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2476  * mapping
2477  */
2478 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2479 {
2480         struct vm_area_struct *vma = vmf->vma;
2481
2482         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2483                 vm_fault_t ret;
2484
2485                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2486                 vmf->flags |= FAULT_FLAG_MKWRITE;
2487                 ret = vma->vm_ops->pfn_mkwrite(vmf);
2488                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2489                         return ret;
2490                 return finish_mkwrite_fault(vmf);
2491         }
2492         wp_page_reuse(vmf);
2493         return VM_FAULT_WRITE;
2494 }
2495
2496 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2497         __releases(vmf->ptl)
2498 {
2499         struct vm_area_struct *vma = vmf->vma;
2500
2501         get_page(vmf->page);
2502
2503         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2504                 vm_fault_t tmp;
2505
2506                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2507                 tmp = do_page_mkwrite(vmf);
2508                 if (unlikely(!tmp || (tmp &
2509                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2510                         put_page(vmf->page);
2511                         return tmp;
2512                 }
2513                 tmp = finish_mkwrite_fault(vmf);
2514                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2515                         unlock_page(vmf->page);
2516                         put_page(vmf->page);
2517                         return tmp;
2518                 }
2519         } else {
2520                 wp_page_reuse(vmf);
2521                 lock_page(vmf->page);
2522         }
2523         fault_dirty_shared_page(vma, vmf->page);
2524         put_page(vmf->page);
2525
2526         return VM_FAULT_WRITE;
2527 }
2528
2529 /*
2530  * This routine handles present pages, when users try to write
2531  * to a shared page. It is done by copying the page to a new address
2532  * and decrementing the shared-page counter for the old page.
2533  *
2534  * Note that this routine assumes that the protection checks have been
2535  * done by the caller (the low-level page fault routine in most cases).
2536  * Thus we can safely just mark it writable once we've done any necessary
2537  * COW.
2538  *
2539  * We also mark the page dirty at this point even though the page will
2540  * change only once the write actually happens. This avoids a few races,
2541  * and potentially makes it more efficient.
2542  *
2543  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2544  * but allow concurrent faults), with pte both mapped and locked.
2545  * We return with mmap_sem still held, but pte unmapped and unlocked.
2546  */
2547 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2548         __releases(vmf->ptl)
2549 {
2550         struct vm_area_struct *vma = vmf->vma;
2551
2552         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2553         if (!vmf->page) {
2554                 /*
2555                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2556                  * VM_PFNMAP VMA.
2557                  *
2558                  * We should not cow pages in a shared writeable mapping.
2559                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2560                  */
2561                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2562                                      (VM_WRITE|VM_SHARED))
2563                         return wp_pfn_shared(vmf);
2564
2565                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2566                 return wp_page_copy(vmf);
2567         }
2568
2569         /*
2570          * Take out anonymous pages first, anonymous shared vmas are
2571          * not dirty accountable.
2572          */
2573         if (PageAnon(vmf->page)) {
2574                 int total_map_swapcount;
2575                 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2576                                            page_count(vmf->page) != 1))
2577                         goto copy;
2578                 if (!trylock_page(vmf->page)) {
2579                         get_page(vmf->page);
2580                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2581                         lock_page(vmf->page);
2582                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2583                                         vmf->address, &vmf->ptl);
2584                         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2585                                 unlock_page(vmf->page);
2586                                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2587                                 put_page(vmf->page);
2588                                 return 0;
2589                         }
2590                         put_page(vmf->page);
2591                 }
2592                 if (PageKsm(vmf->page)) {
2593                         bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2594                                                      vmf->address);
2595                         unlock_page(vmf->page);
2596                         if (!reused)
2597                                 goto copy;
2598                         wp_page_reuse(vmf);
2599                         return VM_FAULT_WRITE;
2600                 }
2601                 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2602                         if (total_map_swapcount == 1) {
2603                                 /*
2604                                  * The page is all ours. Move it to
2605                                  * our anon_vma so the rmap code will
2606                                  * not search our parent or siblings.
2607                                  * Protected against the rmap code by
2608                                  * the page lock.
2609                                  */
2610                                 page_move_anon_rmap(vmf->page, vma);
2611                         }
2612                         unlock_page(vmf->page);
2613                         wp_page_reuse(vmf);
2614                         return VM_FAULT_WRITE;
2615                 }
2616                 unlock_page(vmf->page);
2617         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2618                                         (VM_WRITE|VM_SHARED))) {
2619                 return wp_page_shared(vmf);
2620         }
2621 copy:
2622         /*
2623          * Ok, we need to copy. Oh, well..
2624          */
2625         get_page(vmf->page);
2626
2627         pte_unmap_unlock(vmf->pte, vmf->ptl);
2628         return wp_page_copy(vmf);
2629 }
2630
2631 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2632                 unsigned long start_addr, unsigned long end_addr,
2633                 struct zap_details *details)
2634 {
2635         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2636 }
2637
2638 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2639                                             struct zap_details *details)
2640 {
2641         struct vm_area_struct *vma;
2642         pgoff_t vba, vea, zba, zea;
2643
2644         vma_interval_tree_foreach(vma, root,
2645                         details->first_index, details->last_index) {
2646
2647                 vba = vma->vm_pgoff;
2648                 vea = vba + vma_pages(vma) - 1;
2649                 zba = details->first_index;
2650                 if (zba < vba)
2651                         zba = vba;
2652                 zea = details->last_index;
2653                 if (zea > vea)
2654                         zea = vea;
2655
2656                 unmap_mapping_range_vma(vma,
2657                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2658                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2659                                 details);
2660         }
2661 }
2662
2663 /**
2664  * unmap_mapping_pages() - Unmap pages from processes.
2665  * @mapping: The address space containing pages to be unmapped.
2666  * @start: Index of first page to be unmapped.
2667  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2668  * @even_cows: Whether to unmap even private COWed pages.
2669  *
2670  * Unmap the pages in this address space from any userspace process which
2671  * has them mmaped.  Generally, you want to remove COWed pages as well when
2672  * a file is being truncated, but not when invalidating pages from the page
2673  * cache.
2674  */
2675 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2676                 pgoff_t nr, bool even_cows)
2677 {
2678         struct zap_details details = { };
2679
2680         details.check_mapping = even_cows ? NULL : mapping;
2681         details.first_index = start;
2682         details.last_index = start + nr - 1;
2683         if (details.last_index < details.first_index)
2684                 details.last_index = ULONG_MAX;
2685
2686         i_mmap_lock_write(mapping);
2687         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2688                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2689         i_mmap_unlock_write(mapping);
2690 }
2691
2692 /**
2693  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2694  * address_space corresponding to the specified byte range in the underlying
2695  * file.
2696  *
2697  * @mapping: the address space containing mmaps to be unmapped.
2698  * @holebegin: byte in first page to unmap, relative to the start of
2699  * the underlying file.  This will be rounded down to a PAGE_SIZE
2700  * boundary.  Note that this is different from truncate_pagecache(), which
2701  * must keep the partial page.  In contrast, we must get rid of
2702  * partial pages.
2703  * @holelen: size of prospective hole in bytes.  This will be rounded
2704  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2705  * end of the file.
2706  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2707  * but 0 when invalidating pagecache, don't throw away private data.
2708  */
2709 void unmap_mapping_range(struct address_space *mapping,
2710                 loff_t const holebegin, loff_t const holelen, int even_cows)
2711 {
2712         pgoff_t hba = holebegin >> PAGE_SHIFT;
2713         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2714
2715         /* Check for overflow. */
2716         if (sizeof(holelen) > sizeof(hlen)) {
2717                 long long holeend =
2718                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2719                 if (holeend & ~(long long)ULONG_MAX)
2720                         hlen = ULONG_MAX - hba + 1;
2721         }
2722
2723         unmap_mapping_pages(mapping, hba, hlen, even_cows);
2724 }
2725 EXPORT_SYMBOL(unmap_mapping_range);
2726
2727 /*
2728  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2729  * but allow concurrent faults), and pte mapped but not yet locked.
2730  * We return with pte unmapped and unlocked.
2731  *
2732  * We return with the mmap_sem locked or unlocked in the same cases
2733  * as does filemap_fault().
2734  */
2735 vm_fault_t do_swap_page(struct vm_fault *vmf)
2736 {
2737         struct vm_area_struct *vma = vmf->vma;
2738         struct page *page = NULL, *swapcache;
2739         struct mem_cgroup *memcg;
2740         swp_entry_t entry;
2741         pte_t pte;
2742         int locked;
2743         int exclusive = 0;
2744         vm_fault_t ret = 0;
2745
2746         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2747                 goto out;
2748
2749         entry = pte_to_swp_entry(vmf->orig_pte);
2750         if (unlikely(non_swap_entry(entry))) {
2751                 if (is_migration_entry(entry)) {
2752                         migration_entry_wait(vma->vm_mm, vmf->pmd,
2753                                              vmf->address);
2754                 } else if (is_device_private_entry(entry)) {
2755                         vmf->page = device_private_entry_to_page(entry);
2756                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
2757                 } else if (is_hwpoison_entry(entry)) {
2758                         ret = VM_FAULT_HWPOISON;
2759                 } else {
2760                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2761                         ret = VM_FAULT_SIGBUS;
2762                 }
2763                 goto out;
2764         }
2765
2766
2767         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2768         page = lookup_swap_cache(entry, vma, vmf->address);
2769         swapcache = page;
2770
2771         if (!page) {
2772                 struct swap_info_struct *si = swp_swap_info(entry);
2773
2774                 if (si->flags & SWP_SYNCHRONOUS_IO &&
2775                                 __swap_count(entry) == 1) {
2776                         /* skip swapcache */
2777                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2778                                                         vmf->address);
2779                         if (page) {
2780                                 __SetPageLocked(page);
2781                                 __SetPageSwapBacked(page);
2782                                 set_page_private(page, entry.val);
2783                                 lru_cache_add_anon(page);
2784                                 swap_readpage(page, true);
2785                         }
2786                 } else {
2787                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2788                                                 vmf);
2789                         swapcache = page;
2790                 }
2791
2792                 if (!page) {
2793                         /*
2794                          * Back out if somebody else faulted in this pte
2795                          * while we released the pte lock.
2796                          */
2797                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2798                                         vmf->address, &vmf->ptl);
2799                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2800                                 ret = VM_FAULT_OOM;
2801                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2802                         goto unlock;
2803                 }
2804
2805                 /* Had to read the page from swap area: Major fault */
2806                 ret = VM_FAULT_MAJOR;
2807                 count_vm_event(PGMAJFAULT);
2808                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2809         } else if (PageHWPoison(page)) {
2810                 /*
2811                  * hwpoisoned dirty swapcache pages are kept for killing
2812                  * owner processes (which may be unknown at hwpoison time)
2813                  */
2814                 ret = VM_FAULT_HWPOISON;
2815                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2816                 goto out_release;
2817         }
2818
2819         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2820
2821         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2822         if (!locked) {
2823                 ret |= VM_FAULT_RETRY;
2824                 goto out_release;
2825         }
2826
2827         /*
2828          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2829          * release the swapcache from under us.  The page pin, and pte_same
2830          * test below, are not enough to exclude that.  Even if it is still
2831          * swapcache, we need to check that the page's swap has not changed.
2832          */
2833         if (unlikely((!PageSwapCache(page) ||
2834                         page_private(page) != entry.val)) && swapcache)
2835                 goto out_page;
2836
2837         page = ksm_might_need_to_copy(page, vma, vmf->address);
2838         if (unlikely(!page)) {
2839                 ret = VM_FAULT_OOM;
2840                 page = swapcache;
2841                 goto out_page;
2842         }
2843
2844         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2845                                         &memcg, false)) {
2846                 ret = VM_FAULT_OOM;
2847                 goto out_page;
2848         }
2849
2850         /*
2851          * Back out if somebody else already faulted in this pte.
2852          */
2853         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2854                         &vmf->ptl);
2855         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2856                 goto out_nomap;
2857
2858         if (unlikely(!PageUptodate(page))) {
2859                 ret = VM_FAULT_SIGBUS;
2860                 goto out_nomap;
2861         }
2862
2863         /*
2864          * The page isn't present yet, go ahead with the fault.
2865          *
2866          * Be careful about the sequence of operations here.
2867          * To get its accounting right, reuse_swap_page() must be called
2868          * while the page is counted on swap but not yet in mapcount i.e.
2869          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2870          * must be called after the swap_free(), or it will never succeed.
2871          */
2872
2873         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2874         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2875         pte = mk_pte(page, vma->vm_page_prot);
2876         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2877                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2878                 vmf->flags &= ~FAULT_FLAG_WRITE;
2879                 ret |= VM_FAULT_WRITE;
2880                 exclusive = RMAP_EXCLUSIVE;
2881         }
2882         flush_icache_page(vma, page);
2883         if (pte_swp_soft_dirty(vmf->orig_pte))
2884                 pte = pte_mksoft_dirty(pte);
2885         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2886         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2887         vmf->orig_pte = pte;
2888
2889         /* ksm created a completely new copy */
2890         if (unlikely(page != swapcache && swapcache)) {
2891                 page_add_new_anon_rmap(page, vma, vmf->address, false);
2892                 mem_cgroup_commit_charge(page, memcg, false, false);
2893                 lru_cache_add_active_or_unevictable(page, vma);
2894         } else {
2895                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2896                 mem_cgroup_commit_charge(page, memcg, true, false);
2897                 activate_page(page);
2898         }
2899
2900         swap_free(entry);
2901         if (mem_cgroup_swap_full(page) ||
2902             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2903                 try_to_free_swap(page);
2904         unlock_page(page);
2905         if (page != swapcache && swapcache) {
2906                 /*
2907                  * Hold the lock to avoid the swap entry to be reused
2908                  * until we take the PT lock for the pte_same() check
2909                  * (to avoid false positives from pte_same). For
2910                  * further safety release the lock after the swap_free
2911                  * so that the swap count won't change under a
2912                  * parallel locked swapcache.
2913                  */
2914                 unlock_page(swapcache);
2915                 put_page(swapcache);
2916         }
2917
2918         if (vmf->flags & FAULT_FLAG_WRITE) {
2919                 ret |= do_wp_page(vmf);
2920                 if (ret & VM_FAULT_ERROR)
2921                         ret &= VM_FAULT_ERROR;
2922                 goto out;
2923         }
2924
2925         /* No need to invalidate - it was non-present before */
2926         update_mmu_cache(vma, vmf->address, vmf->pte);
2927 unlock:
2928         pte_unmap_unlock(vmf->pte, vmf->ptl);
2929 out:
2930         return ret;
2931 out_nomap:
2932         mem_cgroup_cancel_charge(page, memcg, false);
2933         pte_unmap_unlock(vmf->pte, vmf->ptl);
2934 out_page:
2935         unlock_page(page);
2936 out_release:
2937         put_page(page);
2938         if (page != swapcache && swapcache) {
2939                 unlock_page(swapcache);
2940                 put_page(swapcache);
2941         }
2942         return ret;
2943 }
2944
2945 /*
2946  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2947  * but allow concurrent faults), and pte mapped but not yet locked.
2948  * We return with mmap_sem still held, but pte unmapped and unlocked.
2949  */
2950 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
2951 {
2952         struct vm_area_struct *vma = vmf->vma;
2953         struct mem_cgroup *memcg;
2954         struct page *page;
2955         vm_fault_t ret = 0;
2956         pte_t entry;
2957
2958         /* File mapping without ->vm_ops ? */
2959         if (vma->vm_flags & VM_SHARED)
2960                 return VM_FAULT_SIGBUS;
2961
2962         /*
2963          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2964          * pte_offset_map() on pmds where a huge pmd might be created
2965          * from a different thread.
2966          *
2967          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2968          * parallel threads are excluded by other means.
2969          *
2970          * Here we only have down_read(mmap_sem).
2971          */
2972         if (pte_alloc(vma->vm_mm, vmf->pmd))
2973                 return VM_FAULT_OOM;
2974
2975         /* See the comment in pte_alloc_one_map() */
2976         if (unlikely(pmd_trans_unstable(vmf->pmd)))
2977                 return 0;
2978
2979         /* Use the zero-page for reads */
2980         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
2981                         !mm_forbids_zeropage(vma->vm_mm)) {
2982                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
2983                                                 vma->vm_page_prot));
2984                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2985                                 vmf->address, &vmf->ptl);
2986                 if (!pte_none(*vmf->pte))
2987                         goto unlock;
2988                 ret = check_stable_address_space(vma->vm_mm);
2989                 if (ret)
2990                         goto unlock;
2991                 /* Deliver the page fault to userland, check inside PT lock */
2992                 if (userfaultfd_missing(vma)) {
2993                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2994                         return handle_userfault(vmf, VM_UFFD_MISSING);
2995                 }
2996                 goto setpte;
2997         }
2998
2999         /* Allocate our own private page. */
3000         if (unlikely(anon_vma_prepare(vma)))
3001                 goto oom;
3002         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3003         if (!page)
3004                 goto oom;
3005
3006         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3007                                         false))
3008                 goto oom_free_page;
3009
3010         /*
3011          * The memory barrier inside __SetPageUptodate makes sure that
3012          * preceeding stores to the page contents become visible before
3013          * the set_pte_at() write.
3014          */
3015         __SetPageUptodate(page);
3016
3017         entry = mk_pte(page, vma->vm_page_prot);
3018         if (vma->vm_flags & VM_WRITE)
3019                 entry = pte_mkwrite(pte_mkdirty(entry));
3020
3021         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3022                         &vmf->ptl);
3023         if (!pte_none(*vmf->pte))
3024                 goto release;
3025
3026         ret = check_stable_address_space(vma->vm_mm);
3027         if (ret)
3028                 goto release;
3029
3030         /* Deliver the page fault to userland, check inside PT lock */
3031         if (userfaultfd_missing(vma)) {
3032                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3033                 mem_cgroup_cancel_charge(page, memcg, false);
3034                 put_page(page);
3035                 return handle_userfault(vmf, VM_UFFD_MISSING);
3036         }
3037
3038         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3039         page_add_new_anon_rmap(page, vma, vmf->address, false);
3040         mem_cgroup_commit_charge(page, memcg, false, false);
3041         lru_cache_add_active_or_unevictable(page, vma);
3042 setpte:
3043         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3044
3045         /* No need to invalidate - it was non-present before */
3046         update_mmu_cache(vma, vmf->address, vmf->pte);
3047 unlock:
3048         pte_unmap_unlock(vmf->pte, vmf->ptl);
3049         return ret;
3050 release:
3051         mem_cgroup_cancel_charge(page, memcg, false);
3052         put_page(page);
3053         goto unlock;
3054 oom_free_page:
3055         put_page(page);
3056 oom:
3057         return VM_FAULT_OOM;
3058 }
3059
3060 /*
3061  * The mmap_sem must have been held on entry, and may have been
3062  * released depending on flags and vma->vm_ops->fault() return value.
3063  * See filemap_fault() and __lock_page_retry().
3064  */
3065 static vm_fault_t __do_fault(struct vm_fault *vmf)
3066 {
3067         struct vm_area_struct *vma = vmf->vma;
3068         vm_fault_t ret;
3069
3070         /*
3071          * Preallocate pte before we take page_lock because this might lead to
3072          * deadlocks for memcg reclaim which waits for pages under writeback:
3073          *                              lock_page(A)
3074          *                              SetPageWriteback(A)
3075          *                              unlock_page(A)
3076          * lock_page(B)
3077          *                              lock_page(B)
3078          * pte_alloc_pne
3079          *   shrink_page_list
3080          *     wait_on_page_writeback(A)
3081          *                              SetPageWriteback(B)
3082          *                              unlock_page(B)
3083          *                              # flush A, B to clear the writeback
3084          */
3085         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3086                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3087                 if (!vmf->prealloc_pte)
3088                         return VM_FAULT_OOM;
3089                 smp_wmb(); /* See comment in __pte_alloc() */
3090         }
3091
3092         ret = vma->vm_ops->fault(vmf);
3093         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3094                             VM_FAULT_DONE_COW)))
3095                 return ret;
3096
3097         if (unlikely(PageHWPoison(vmf->page))) {
3098                 if (ret & VM_FAULT_LOCKED)
3099                         unlock_page(vmf->page);
3100                 put_page(vmf->page);
3101                 vmf->page = NULL;
3102                 return VM_FAULT_HWPOISON;
3103         }
3104
3105         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3106                 lock_page(vmf->page);
3107         else
3108                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3109
3110         return ret;
3111 }
3112
3113 /*
3114  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3115  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3116  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3117  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3118  */
3119 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3120 {
3121         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3122 }
3123
3124 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3125 {
3126         struct vm_area_struct *vma = vmf->vma;
3127
3128         if (!pmd_none(*vmf->pmd))
3129                 goto map_pte;
3130         if (vmf->prealloc_pte) {
3131                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3132                 if (unlikely(!pmd_none(*vmf->pmd))) {
3133                         spin_unlock(vmf->ptl);
3134                         goto map_pte;
3135                 }
3136
3137                 mm_inc_nr_ptes(vma->vm_mm);
3138                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3139                 spin_unlock(vmf->ptl);
3140                 vmf->prealloc_pte = NULL;
3141         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3142                 return VM_FAULT_OOM;
3143         }
3144 map_pte:
3145         /*
3146          * If a huge pmd materialized under us just retry later.  Use
3147          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3148          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3149          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3150          * running immediately after a huge pmd fault in a different thread of
3151          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3152          * All we have to ensure is that it is a regular pmd that we can walk
3153          * with pte_offset_map() and we can do that through an atomic read in
3154          * C, which is what pmd_trans_unstable() provides.
3155          */
3156         if (pmd_devmap_trans_unstable(vmf->pmd))
3157                 return VM_FAULT_NOPAGE;
3158
3159         /*
3160          * At this point we know that our vmf->pmd points to a page of ptes
3161          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3162          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3163          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3164          * be valid and we will re-check to make sure the vmf->pte isn't
3165          * pte_none() under vmf->ptl protection when we return to
3166          * alloc_set_pte().
3167          */
3168         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3169                         &vmf->ptl);
3170         return 0;
3171 }
3172
3173 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3174 static void deposit_prealloc_pte(struct vm_fault *vmf)
3175 {
3176         struct vm_area_struct *vma = vmf->vma;
3177
3178         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3179         /*
3180          * We are going to consume the prealloc table,
3181          * count that as nr_ptes.
3182          */
3183         mm_inc_nr_ptes(vma->vm_mm);
3184         vmf->prealloc_pte = NULL;
3185 }
3186
3187 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3188 {
3189         struct vm_area_struct *vma = vmf->vma;
3190         bool write = vmf->flags & FAULT_FLAG_WRITE;
3191         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3192         pmd_t entry;
3193         int i;
3194         vm_fault_t ret;
3195
3196         if (!transhuge_vma_suitable(vma, haddr))
3197                 return VM_FAULT_FALLBACK;
3198
3199         ret = VM_FAULT_FALLBACK;
3200         page = compound_head(page);
3201
3202         /*
3203          * Archs like ppc64 need additonal space to store information
3204          * related to pte entry. Use the preallocated table for that.
3205          */
3206         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3207                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3208                 if (!vmf->prealloc_pte)
3209                         return VM_FAULT_OOM;
3210                 smp_wmb(); /* See comment in __pte_alloc() */
3211         }
3212
3213         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3214         if (unlikely(!pmd_none(*vmf->pmd)))
3215                 goto out;
3216
3217         for (i = 0; i < HPAGE_PMD_NR; i++)
3218                 flush_icache_page(vma, page + i);
3219
3220         entry = mk_huge_pmd(page, vma->vm_page_prot);
3221         if (write)
3222                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3223
3224         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3225         page_add_file_rmap(page, true);
3226         /*
3227          * deposit and withdraw with pmd lock held
3228          */
3229         if (arch_needs_pgtable_deposit())
3230                 deposit_prealloc_pte(vmf);
3231
3232         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3233
3234         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3235
3236         /* fault is handled */
3237         ret = 0;
3238         count_vm_event(THP_FILE_MAPPED);
3239 out:
3240         spin_unlock(vmf->ptl);
3241         return ret;
3242 }
3243 #else
3244 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3245 {
3246         BUILD_BUG();
3247         return 0;
3248 }
3249 #endif
3250
3251 /**
3252  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3253  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3254  *
3255  * @vmf: fault environment
3256  * @memcg: memcg to charge page (only for private mappings)
3257  * @page: page to map
3258  *
3259  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3260  * return.
3261  *
3262  * Target users are page handler itself and implementations of
3263  * vm_ops->map_pages.
3264  *
3265  * Return: %0 on success, %VM_FAULT_ code in case of error.
3266  */
3267 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3268                 struct page *page)
3269 {
3270         struct vm_area_struct *vma = vmf->vma;
3271         bool write = vmf->flags & FAULT_FLAG_WRITE;
3272         pte_t entry;
3273         vm_fault_t ret;
3274
3275         if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3276                         IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3277                 /* THP on COW? */
3278                 VM_BUG_ON_PAGE(memcg, page);
3279
3280                 ret = do_set_pmd(vmf, page);
3281                 if (ret != VM_FAULT_FALLBACK)
3282                         return ret;
3283         }
3284
3285         if (!vmf->pte) {
3286                 ret = pte_alloc_one_map(vmf);
3287                 if (ret)
3288                         return ret;
3289         }
3290
3291         /* Re-check under ptl */
3292         if (unlikely(!pte_none(*vmf->pte)))
3293                 return VM_FAULT_NOPAGE;
3294
3295         flush_icache_page(vma, page);
3296         entry = mk_pte(page, vma->vm_page_prot);
3297         if (write)
3298                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3299         /* copy-on-write page */
3300         if (write && !(vma->vm_flags & VM_SHARED)) {
3301                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3302                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3303                 mem_cgroup_commit_charge(page, memcg, false, false);
3304                 lru_cache_add_active_or_unevictable(page, vma);
3305         } else {
3306                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3307                 page_add_file_rmap(page, false);
3308         }
3309         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3310
3311         /* no need to invalidate: a not-present page won't be cached */
3312         update_mmu_cache(vma, vmf->address, vmf->pte);
3313
3314         return 0;
3315 }
3316
3317
3318 /**
3319  * finish_fault - finish page fault once we have prepared the page to fault
3320  *
3321  * @vmf: structure describing the fault
3322  *
3323  * This function handles all that is needed to finish a page fault once the
3324  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3325  * given page, adds reverse page mapping, handles memcg charges and LRU
3326  * addition.
3327  *
3328  * The function expects the page to be locked and on success it consumes a
3329  * reference of a page being mapped (for the PTE which maps it).
3330  *
3331  * Return: %0 on success, %VM_FAULT_ code in case of error.
3332  */
3333 vm_fault_t finish_fault(struct vm_fault *vmf)
3334 {
3335         struct page *page;
3336         vm_fault_t ret = 0;
3337
3338         /* Did we COW the page? */
3339         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3340             !(vmf->vma->vm_flags & VM_SHARED))
3341                 page = vmf->cow_page;
3342         else
3343                 page = vmf->page;
3344
3345         /*
3346          * check even for read faults because we might have lost our CoWed
3347          * page
3348          */
3349         if (!(vmf->vma->vm_flags & VM_SHARED))
3350                 ret = check_stable_address_space(vmf->vma->vm_mm);
3351         if (!ret)
3352                 ret = alloc_set_pte(vmf, vmf->memcg, page);
3353         if (vmf->pte)
3354                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3355         return ret;
3356 }
3357
3358 static unsigned long fault_around_bytes __read_mostly =
3359         rounddown_pow_of_two(65536);
3360
3361 #ifdef CONFIG_DEBUG_FS
3362 static int fault_around_bytes_get(void *data, u64 *val)
3363 {
3364         *val = fault_around_bytes;
3365         return 0;
3366 }
3367
3368 /*
3369  * fault_around_bytes must be rounded down to the nearest page order as it's
3370  * what do_fault_around() expects to see.
3371  */
3372 static int fault_around_bytes_set(void *data, u64 val)
3373 {
3374         if (val / PAGE_SIZE > PTRS_PER_PTE)
3375                 return -EINVAL;
3376         if (val > PAGE_SIZE)
3377                 fault_around_bytes = rounddown_pow_of_two(val);
3378         else
3379                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3380         return 0;
3381 }
3382 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3383                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3384
3385 static int __init fault_around_debugfs(void)
3386 {
3387         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3388                                    &fault_around_bytes_fops);
3389         return 0;
3390 }
3391 late_initcall(fault_around_debugfs);
3392 #endif
3393
3394 /*
3395  * do_fault_around() tries to map few pages around the fault address. The hope
3396  * is that the pages will be needed soon and this will lower the number of
3397  * faults to handle.
3398  *
3399  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3400  * not ready to be mapped: not up-to-date, locked, etc.
3401  *
3402  * This function is called with the page table lock taken. In the split ptlock
3403  * case the page table lock only protects only those entries which belong to
3404  * the page table corresponding to the fault address.
3405  *
3406  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3407  * only once.
3408  *
3409  * fault_around_bytes defines how many bytes we'll try to map.
3410  * do_fault_around() expects it to be set to a power of two less than or equal
3411  * to PTRS_PER_PTE.
3412  *
3413  * The virtual address of the area that we map is naturally aligned to
3414  * fault_around_bytes rounded down to the machine page size
3415  * (and therefore to page order).  This way it's easier to guarantee
3416  * that we don't cross page table boundaries.
3417  */
3418 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3419 {
3420         unsigned long address = vmf->address, nr_pages, mask;
3421         pgoff_t start_pgoff = vmf->pgoff;
3422         pgoff_t end_pgoff;
3423         int off;
3424         vm_fault_t ret = 0;
3425
3426         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3427         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3428
3429         vmf->address = max(address & mask, vmf->vma->vm_start);
3430         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3431         start_pgoff -= off;
3432
3433         /*
3434          *  end_pgoff is either the end of the page table, the end of
3435          *  the vma or nr_pages from start_pgoff, depending what is nearest.
3436          */
3437         end_pgoff = start_pgoff -
3438                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3439                 PTRS_PER_PTE - 1;
3440         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3441                         start_pgoff + nr_pages - 1);
3442
3443         if (pmd_none(*vmf->pmd)) {
3444                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3445                 if (!vmf->prealloc_pte)
3446                         goto out;
3447                 smp_wmb(); /* See comment in __pte_alloc() */
3448         }
3449
3450         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3451
3452         /* Huge page is mapped? Page fault is solved */
3453         if (pmd_trans_huge(*vmf->pmd)) {
3454                 ret = VM_FAULT_NOPAGE;
3455                 goto out;
3456         }
3457
3458         /* ->map_pages() haven't done anything useful. Cold page cache? */
3459         if (!vmf->pte)
3460                 goto out;
3461
3462         /* check if the page fault is solved */
3463         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3464         if (!pte_none(*vmf->pte))
3465                 ret = VM_FAULT_NOPAGE;
3466         pte_unmap_unlock(vmf->pte, vmf->ptl);
3467 out:
3468         vmf->address = address;
3469         vmf->pte = NULL;
3470         return ret;
3471 }
3472
3473 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3474 {
3475         struct vm_area_struct *vma = vmf->vma;
3476         vm_fault_t ret = 0;
3477
3478         /*
3479          * Let's call ->map_pages() first and use ->fault() as fallback
3480          * if page by the offset is not ready to be mapped (cold cache or
3481          * something).
3482          */
3483         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3484                 ret = do_fault_around(vmf);
3485                 if (ret)
3486                         return ret;
3487         }
3488
3489         ret = __do_fault(vmf);
3490         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3491                 return ret;
3492
3493         ret |= finish_fault(vmf);
3494         unlock_page(vmf->page);
3495         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3496                 put_page(vmf->page);
3497         return ret;
3498 }
3499
3500 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3501 {
3502         struct vm_area_struct *vma = vmf->vma;
3503         vm_fault_t ret;
3504
3505         if (unlikely(anon_vma_prepare(vma)))
3506                 return VM_FAULT_OOM;
3507
3508         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3509         if (!vmf->cow_page)
3510                 return VM_FAULT_OOM;
3511
3512         if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3513                                 &vmf->memcg, false)) {
3514                 put_page(vmf->cow_page);
3515                 return VM_FAULT_OOM;
3516         }
3517
3518         ret = __do_fault(vmf);
3519         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3520                 goto uncharge_out;
3521         if (ret & VM_FAULT_DONE_COW)
3522                 return ret;
3523
3524         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3525         __SetPageUptodate(vmf->cow_page);
3526
3527         ret |= finish_fault(vmf);
3528         unlock_page(vmf->page);
3529         put_page(vmf->page);
3530         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3531                 goto uncharge_out;
3532         return ret;
3533 uncharge_out:
3534         mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3535         put_page(vmf->cow_page);
3536         return ret;
3537 }
3538
3539 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3540 {
3541         struct vm_area_struct *vma = vmf->vma;
3542         vm_fault_t ret, tmp;
3543
3544         ret = __do_fault(vmf);
3545         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3546                 return ret;
3547
3548         /*
3549          * Check if the backing address space wants to know that the page is
3550          * about to become writable
3551          */
3552         if (vma->vm_ops->page_mkwrite) {
3553                 unlock_page(vmf->page);
3554                 tmp = do_page_mkwrite(vmf);
3555                 if (unlikely(!tmp ||
3556                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3557                         put_page(vmf->page);
3558                         return tmp;
3559                 }
3560         }
3561
3562         ret |= finish_fault(vmf);
3563         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3564                                         VM_FAULT_RETRY))) {
3565                 unlock_page(vmf->page);
3566                 put_page(vmf->page);
3567                 return ret;
3568         }
3569
3570         fault_dirty_shared_page(vma, vmf->page);
3571         return ret;
3572 }
3573
3574 /*
3575  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3576  * but allow concurrent faults).
3577  * The mmap_sem may have been released depending on flags and our
3578  * return value.  See filemap_fault() and __lock_page_or_retry().
3579  * If mmap_sem is released, vma may become invalid (for example
3580  * by other thread calling munmap()).
3581  */
3582 static vm_fault_t do_fault(struct vm_fault *vmf)
3583 {
3584         struct vm_area_struct *vma = vmf->vma;
3585         struct mm_struct *vm_mm = vma->vm_mm;
3586         vm_fault_t ret;
3587
3588         /*
3589          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3590          */
3591         if (!vma->vm_ops->fault) {
3592                 /*
3593                  * If we find a migration pmd entry or a none pmd entry, which
3594                  * should never happen, return SIGBUS
3595                  */
3596                 if (unlikely(!pmd_present(*vmf->pmd)))
3597                         ret = VM_FAULT_SIGBUS;
3598                 else {
3599                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3600                                                        vmf->pmd,
3601                                                        vmf->address,
3602                                                        &vmf->ptl);
3603                         /*
3604                          * Make sure this is not a temporary clearing of pte
3605                          * by holding ptl and checking again. A R/M/W update
3606                          * of pte involves: take ptl, clearing the pte so that
3607                          * we don't have concurrent modification by hardware
3608                          * followed by an update.
3609                          */
3610                         if (unlikely(pte_none(*vmf->pte)))
3611                                 ret = VM_FAULT_SIGBUS;
3612                         else
3613                                 ret = VM_FAULT_NOPAGE;
3614
3615                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3616                 }
3617         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3618                 ret = do_read_fault(vmf);
3619         else if (!(vma->vm_flags & VM_SHARED))
3620                 ret = do_cow_fault(vmf);
3621         else
3622                 ret = do_shared_fault(vmf);
3623
3624         /* preallocated pagetable is unused: free it */
3625         if (vmf->prealloc_pte) {
3626                 pte_free(vm_mm, vmf->prealloc_pte);
3627                 vmf->prealloc_pte = NULL;
3628         }
3629         return ret;
3630 }
3631
3632 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3633                                 unsigned long addr, int page_nid,
3634                                 int *flags)
3635 {
3636         get_page(page);
3637
3638         count_vm_numa_event(NUMA_HINT_FAULTS);
3639         if (page_nid == numa_node_id()) {
3640                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3641                 *flags |= TNF_FAULT_LOCAL;
3642         }
3643
3644         return mpol_misplaced(page, vma, addr);
3645 }
3646
3647 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3648 {
3649         struct vm_area_struct *vma = vmf->vma;
3650         struct page *page = NULL;
3651         int page_nid = NUMA_NO_NODE;
3652         int last_cpupid;
3653         int target_nid;
3654         bool migrated = false;
3655         pte_t pte, old_pte;
3656         bool was_writable = pte_savedwrite(vmf->orig_pte);
3657         int flags = 0;
3658
3659         /*
3660          * The "pte" at this point cannot be used safely without
3661          * validation through pte_unmap_same(). It's of NUMA type but
3662          * the pfn may be screwed if the read is non atomic.
3663          */
3664         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3665         spin_lock(vmf->ptl);
3666         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3667                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3668                 goto out;
3669         }
3670
3671         /*
3672          * Make it present again, Depending on how arch implementes non
3673          * accessible ptes, some can allow access by kernel mode.
3674          */
3675         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3676         pte = pte_modify(old_pte, vma->vm_page_prot);
3677         pte = pte_mkyoung(pte);
3678         if (was_writable)
3679                 pte = pte_mkwrite(pte);
3680         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3681         update_mmu_cache(vma, vmf->address, vmf->pte);
3682
3683         page = vm_normal_page(vma, vmf->address, pte);
3684         if (!page) {
3685                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3686                 return 0;
3687         }
3688
3689         /* TODO: handle PTE-mapped THP */
3690         if (PageCompound(page)) {
3691                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3692                 return 0;
3693         }
3694
3695         /*
3696          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3697          * much anyway since they can be in shared cache state. This misses
3698          * the case where a mapping is writable but the process never writes
3699          * to it but pte_write gets cleared during protection updates and
3700          * pte_dirty has unpredictable behaviour between PTE scan updates,
3701          * background writeback, dirty balancing and application behaviour.
3702          */
3703         if (!pte_write(pte))
3704                 flags |= TNF_NO_GROUP;
3705
3706         /*
3707          * Flag if the page is shared between multiple address spaces. This
3708          * is later used when determining whether to group tasks together
3709          */
3710         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3711                 flags |= TNF_SHARED;
3712
3713         last_cpupid = page_cpupid_last(page);
3714         page_nid = page_to_nid(page);
3715         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3716                         &flags);
3717         pte_unmap_unlock(vmf->pte, vmf->ptl);
3718         if (target_nid == NUMA_NO_NODE) {
3719                 put_page(page);
3720                 goto out;
3721         }
3722
3723         /* Migrate to the requested node */
3724         migrated = migrate_misplaced_page(page, vma, target_nid);
3725         if (migrated) {
3726                 page_nid = target_nid;
3727                 flags |= TNF_MIGRATED;
3728         } else
3729                 flags |= TNF_MIGRATE_FAIL;
3730
3731 out:
3732         if (page_nid != NUMA_NO_NODE)
3733                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3734         return 0;
3735 }
3736
3737 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3738 {
3739         if (vma_is_anonymous(vmf->vma))
3740                 return do_huge_pmd_anonymous_page(vmf);
3741         if (vmf->vma->vm_ops->huge_fault)
3742                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3743         return VM_FAULT_FALLBACK;
3744 }
3745
3746 /* `inline' is required to avoid gcc 4.1.2 build error */
3747 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3748 {
3749         if (vma_is_anonymous(vmf->vma))
3750                 return do_huge_pmd_wp_page(vmf, orig_pmd);
3751         if (vmf->vma->vm_ops->huge_fault)
3752                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3753
3754         /* COW handled on pte level: split pmd */
3755         VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3756         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3757
3758         return VM_FAULT_FALLBACK;
3759 }
3760
3761 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3762 {
3763         return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3764 }
3765
3766 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3767 {
3768 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3769         /* No support for anonymous transparent PUD pages yet */
3770         if (vma_is_anonymous(vmf->vma))
3771                 return VM_FAULT_FALLBACK;
3772         if (vmf->vma->vm_ops->huge_fault)
3773                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3774 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3775         return VM_FAULT_FALLBACK;
3776 }
3777
3778 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3779 {
3780 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3781         /* No support for anonymous transparent PUD pages yet */
3782         if (vma_is_anonymous(vmf->vma))
3783                 return VM_FAULT_FALLBACK;
3784         if (vmf->vma->vm_ops->huge_fault)
3785                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3786 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3787         return VM_FAULT_FALLBACK;
3788 }
3789
3790 /*
3791  * These routines also need to handle stuff like marking pages dirty
3792  * and/or accessed for architectures that don't do it in hardware (most
3793  * RISC architectures).  The early dirtying is also good on the i386.
3794  *
3795  * There is also a hook called "update_mmu_cache()" that architectures
3796  * with external mmu caches can use to update those (ie the Sparc or
3797  * PowerPC hashed page tables that act as extended TLBs).
3798  *
3799  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3800  * concurrent faults).
3801  *
3802  * The mmap_sem may have been released depending on flags and our return value.
3803  * See filemap_fault() and __lock_page_or_retry().
3804  */
3805 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3806 {
3807         pte_t entry;
3808
3809         if (unlikely(pmd_none(*vmf->pmd))) {
3810                 /*
3811                  * Leave __pte_alloc() until later: because vm_ops->fault may
3812                  * want to allocate huge page, and if we expose page table
3813                  * for an instant, it will be difficult to retract from
3814                  * concurrent faults and from rmap lookups.
3815                  */
3816                 vmf->pte = NULL;
3817         } else {
3818                 /* See comment in pte_alloc_one_map() */
3819                 if (pmd_devmap_trans_unstable(vmf->pmd))
3820                         return 0;
3821                 /*
3822                  * A regular pmd is established and it can't morph into a huge
3823                  * pmd from under us anymore at this point because we hold the
3824                  * mmap_sem read mode and khugepaged takes it in write mode.
3825                  * So now it's safe to run pte_offset_map().
3826                  */
3827                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3828                 vmf->orig_pte = *vmf->pte;
3829
3830                 /*
3831                  * some architectures can have larger ptes than wordsize,
3832                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3833                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3834                  * accesses.  The code below just needs a consistent view
3835                  * for the ifs and we later double check anyway with the
3836                  * ptl lock held. So here a barrier will do.
3837                  */
3838                 barrier();
3839                 if (pte_none(vmf->orig_pte)) {
3840                         pte_unmap(vmf->pte);
3841                         vmf->pte = NULL;
3842                 }
3843         }
3844
3845         if (!vmf->pte) {
3846                 if (vma_is_anonymous(vmf->vma))
3847                         return do_anonymous_page(vmf);
3848                 else
3849                         return do_fault(vmf);
3850         }
3851
3852         if (!pte_present(vmf->orig_pte))
3853                 return do_swap_page(vmf);
3854
3855         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3856                 return do_numa_page(vmf);
3857
3858         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3859         spin_lock(vmf->ptl);
3860         entry = vmf->orig_pte;
3861         if (unlikely(!pte_same(*vmf->pte, entry)))
3862                 goto unlock;
3863         if (vmf->flags & FAULT_FLAG_WRITE) {
3864                 if (!pte_write(entry))
3865                         return do_wp_page(vmf);
3866                 entry = pte_mkdirty(entry);
3867         }
3868         entry = pte_mkyoung(entry);
3869         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3870                                 vmf->flags & FAULT_FLAG_WRITE)) {
3871                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3872         } else {
3873                 /*
3874                  * This is needed only for protection faults but the arch code
3875                  * is not yet telling us if this is a protection fault or not.
3876                  * This still avoids useless tlb flushes for .text page faults
3877                  * with threads.
3878                  */
3879                 if (vmf->flags & FAULT_FLAG_WRITE)
3880                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3881         }
3882 unlock:
3883         pte_unmap_unlock(vmf->pte, vmf->ptl);
3884         return 0;
3885 }
3886
3887 /*
3888  * By the time we get here, we already hold the mm semaphore
3889  *
3890  * The mmap_sem may have been released depending on flags and our
3891  * return value.  See filemap_fault() and __lock_page_or_retry().
3892  */
3893 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3894                 unsigned long address, unsigned int flags)
3895 {
3896         struct vm_fault vmf = {
3897                 .vma = vma,
3898                 .address = address & PAGE_MASK,
3899                 .flags = flags,
3900                 .pgoff = linear_page_index(vma, address),
3901                 .gfp_mask = __get_fault_gfp_mask(vma),
3902         };
3903         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3904         struct mm_struct *mm = vma->vm_mm;
3905         pgd_t *pgd;
3906         p4d_t *p4d;
3907         vm_fault_t ret;
3908
3909         pgd = pgd_offset(mm, address);
3910         p4d = p4d_alloc(mm, pgd, address);
3911         if (!p4d)
3912                 return VM_FAULT_OOM;
3913
3914         vmf.pud = pud_alloc(mm, p4d, address);
3915         if (!vmf.pud)
3916                 return VM_FAULT_OOM;
3917         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
3918                 ret = create_huge_pud(&vmf);
3919                 if (!(ret & VM_FAULT_FALLBACK))
3920                         return ret;
3921         } else {
3922                 pud_t orig_pud = *vmf.pud;
3923
3924                 barrier();
3925                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3926
3927                         /* NUMA case for anonymous PUDs would go here */
3928
3929                         if (dirty && !pud_write(orig_pud)) {
3930                                 ret = wp_huge_pud(&vmf, orig_pud);
3931                                 if (!(ret & VM_FAULT_FALLBACK))
3932                                         return ret;
3933                         } else {
3934                                 huge_pud_set_accessed(&vmf, orig_pud);
3935                                 return 0;
3936                         }
3937                 }
3938         }
3939
3940         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3941         if (!vmf.pmd)
3942                 return VM_FAULT_OOM;
3943         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
3944                 ret = create_huge_pmd(&vmf);
3945                 if (!(ret & VM_FAULT_FALLBACK))
3946                         return ret;
3947         } else {
3948                 pmd_t orig_pmd = *vmf.pmd;
3949
3950                 barrier();
3951                 if (unlikely(is_swap_pmd(orig_pmd))) {
3952                         VM_BUG_ON(thp_migration_supported() &&
3953                                           !is_pmd_migration_entry(orig_pmd));
3954                         if (is_pmd_migration_entry(orig_pmd))
3955                                 pmd_migration_entry_wait(mm, vmf.pmd);
3956                         return 0;
3957                 }
3958                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3959                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3960                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
3961
3962                         if (dirty && !pmd_write(orig_pmd)) {
3963                                 ret = wp_huge_pmd(&vmf, orig_pmd);
3964                                 if (!(ret & VM_FAULT_FALLBACK))
3965                                         return ret;
3966                         } else {
3967                                 huge_pmd_set_accessed(&vmf, orig_pmd);
3968                                 return 0;
3969                         }
3970                 }
3971         }
3972
3973         return handle_pte_fault(&vmf);
3974 }
3975
3976 /*
3977  * By the time we get here, we already hold the mm semaphore
3978  *
3979  * The mmap_sem may have been released depending on flags and our
3980  * return value.  See filemap_fault() and __lock_page_or_retry().
3981  */
3982 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3983                 unsigned int flags)
3984 {
3985         vm_fault_t ret;
3986
3987         __set_current_state(TASK_RUNNING);
3988
3989         count_vm_event(PGFAULT);
3990         count_memcg_event_mm(vma->vm_mm, PGFAULT);
3991
3992         /* do counter updates before entering really critical section. */
3993         check_sync_rss_stat(current);
3994
3995         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3996                                             flags & FAULT_FLAG_INSTRUCTION,
3997                                             flags & FAULT_FLAG_REMOTE))
3998                 return VM_FAULT_SIGSEGV;
3999
4000         /*
4001          * Enable the memcg OOM handling for faults triggered in user
4002          * space.  Kernel faults are handled more gracefully.
4003          */
4004         if (flags & FAULT_FLAG_USER)
4005                 mem_cgroup_enter_user_fault();
4006
4007         if (unlikely(is_vm_hugetlb_page(vma)))
4008                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4009         else
4010                 ret = __handle_mm_fault(vma, address, flags);
4011
4012         if (flags & FAULT_FLAG_USER) {
4013                 mem_cgroup_exit_user_fault();
4014                 /*
4015                  * The task may have entered a memcg OOM situation but
4016                  * if the allocation error was handled gracefully (no
4017                  * VM_FAULT_OOM), there is no need to kill anything.
4018                  * Just clean up the OOM state peacefully.
4019                  */
4020                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4021                         mem_cgroup_oom_synchronize(false);
4022         }
4023
4024         return ret;
4025 }
4026 EXPORT_SYMBOL_GPL(handle_mm_fault);
4027
4028 #ifndef __PAGETABLE_P4D_FOLDED
4029 /*
4030  * Allocate p4d page table.
4031  * We've already handled the fast-path in-line.
4032  */
4033 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4034 {
4035         p4d_t *new = p4d_alloc_one(mm, address);
4036         if (!new)
4037                 return -ENOMEM;
4038
4039         smp_wmb(); /* See comment in __pte_alloc */
4040
4041         spin_lock(&mm->page_table_lock);
4042         if (pgd_present(*pgd))          /* Another has populated it */
4043                 p4d_free(mm, new);
4044         else
4045                 pgd_populate(mm, pgd, new);
4046         spin_unlock(&mm->page_table_lock);
4047         return 0;
4048 }
4049 #endif /* __PAGETABLE_P4D_FOLDED */
4050
4051 #ifndef __PAGETABLE_PUD_FOLDED
4052 /*
4053  * Allocate page upper directory.
4054  * We've already handled the fast-path in-line.
4055  */
4056 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4057 {
4058         pud_t *new = pud_alloc_one(mm, address);
4059         if (!new)
4060                 return -ENOMEM;
4061
4062         smp_wmb(); /* See comment in __pte_alloc */
4063
4064         spin_lock(&mm->page_table_lock);
4065 #ifndef __ARCH_HAS_5LEVEL_HACK
4066         if (!p4d_present(*p4d)) {
4067                 mm_inc_nr_puds(mm);
4068                 p4d_populate(mm, p4d, new);
4069         } else  /* Another has populated it */
4070                 pud_free(mm, new);
4071 #else
4072         if (!pgd_present(*p4d)) {
4073                 mm_inc_nr_puds(mm);
4074                 pgd_populate(mm, p4d, new);
4075         } else  /* Another has populated it */
4076                 pud_free(mm, new);
4077 #endif /* __ARCH_HAS_5LEVEL_HACK */
4078         spin_unlock(&mm->page_table_lock);
4079         return 0;
4080 }
4081 #endif /* __PAGETABLE_PUD_FOLDED */
4082
4083 #ifndef __PAGETABLE_PMD_FOLDED
4084 /*
4085  * Allocate page middle directory.
4086  * We've already handled the fast-path in-line.
4087  */
4088 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4089 {
4090         spinlock_t *ptl;
4091         pmd_t *new = pmd_alloc_one(mm, address);
4092         if (!new)
4093                 return -ENOMEM;
4094
4095         smp_wmb(); /* See comment in __pte_alloc */
4096
4097         ptl = pud_lock(mm, pud);
4098 #ifndef __ARCH_HAS_4LEVEL_HACK
4099         if (!pud_present(*pud)) {
4100                 mm_inc_nr_pmds(mm);
4101                 pud_populate(mm, pud, new);
4102         } else  /* Another has populated it */
4103                 pmd_free(mm, new);
4104 #else
4105         if (!pgd_present(*pud)) {
4106                 mm_inc_nr_pmds(mm);
4107                 pgd_populate(mm, pud, new);
4108         } else /* Another has populated it */
4109                 pmd_free(mm, new);
4110 #endif /* __ARCH_HAS_4LEVEL_HACK */
4111         spin_unlock(ptl);
4112         return 0;
4113 }
4114 #endif /* __PAGETABLE_PMD_FOLDED */
4115
4116 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4117                             struct mmu_notifier_range *range,
4118                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4119 {
4120         pgd_t *pgd;
4121         p4d_t *p4d;
4122         pud_t *pud;
4123         pmd_t *pmd;
4124         pte_t *ptep;
4125
4126         pgd = pgd_offset(mm, address);
4127         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4128                 goto out;
4129
4130         p4d = p4d_offset(pgd, address);
4131         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4132                 goto out;
4133
4134         pud = pud_offset(p4d, address);
4135         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4136                 goto out;
4137
4138         pmd = pmd_offset(pud, address);
4139         VM_BUG_ON(pmd_trans_huge(*pmd));
4140
4141         if (pmd_huge(*pmd)) {
4142                 if (!pmdpp)
4143                         goto out;
4144
4145                 if (range) {
4146                         mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4147                                                 NULL, mm, address & PMD_MASK,
4148                                                 (address & PMD_MASK) + PMD_SIZE);
4149                         mmu_notifier_invalidate_range_start(range);
4150                 }
4151                 *ptlp = pmd_lock(mm, pmd);
4152                 if (pmd_huge(*pmd)) {
4153                         *pmdpp = pmd;
4154                         return 0;
4155                 }
4156                 spin_unlock(*ptlp);
4157                 if (range)
4158                         mmu_notifier_invalidate_range_end(range);
4159         }
4160
4161         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4162                 goto out;
4163
4164         if (range) {
4165                 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4166                                         address & PAGE_MASK,
4167                                         (address & PAGE_MASK) + PAGE_SIZE);
4168                 mmu_notifier_invalidate_range_start(range);
4169         }
4170         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4171         if (!pte_present(*ptep))
4172                 goto unlock;
4173         *ptepp = ptep;
4174         return 0;
4175 unlock:
4176         pte_unmap_unlock(ptep, *ptlp);
4177         if (range)
4178                 mmu_notifier_invalidate_range_end(range);
4179 out:
4180         return -EINVAL;
4181 }
4182
4183 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4184                              pte_t **ptepp, spinlock_t **ptlp)
4185 {
4186         int res;
4187
4188         /* (void) is needed to make gcc happy */
4189         (void) __cond_lock(*ptlp,
4190                            !(res = __follow_pte_pmd(mm, address, NULL,
4191                                                     ptepp, NULL, ptlp)));
4192         return res;
4193 }
4194
4195 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4196                    struct mmu_notifier_range *range,
4197                    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4198 {
4199         int res;
4200
4201         /* (void) is needed to make gcc happy */
4202         (void) __cond_lock(*ptlp,
4203                            !(res = __follow_pte_pmd(mm, address, range,
4204                                                     ptepp, pmdpp, ptlp)));
4205         return res;
4206 }
4207 EXPORT_SYMBOL(follow_pte_pmd);
4208
4209 /**
4210  * follow_pfn - look up PFN at a user virtual address
4211  * @vma: memory mapping
4212  * @address: user virtual address
4213  * @pfn: location to store found PFN
4214  *
4215  * Only IO mappings and raw PFN mappings are allowed.
4216  *
4217  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4218  */
4219 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4220         unsigned long *pfn)
4221 {
4222         int ret = -EINVAL;
4223         spinlock_t *ptl;
4224         pte_t *ptep;
4225
4226         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4227                 return ret;
4228
4229         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4230         if (ret)
4231                 return ret;
4232         *pfn = pte_pfn(*ptep);
4233         pte_unmap_unlock(ptep, ptl);
4234         return 0;
4235 }
4236 EXPORT_SYMBOL(follow_pfn);
4237
4238 #ifdef CONFIG_HAVE_IOREMAP_PROT
4239 int follow_phys(struct vm_area_struct *vma,
4240                 unsigned long address, unsigned int flags,
4241                 unsigned long *prot, resource_size_t *phys)
4242 {
4243         int ret = -EINVAL;
4244         pte_t *ptep, pte;
4245         spinlock_t *ptl;
4246
4247         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4248                 goto out;
4249
4250         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4251                 goto out;
4252         pte = *ptep;
4253
4254         if ((flags & FOLL_WRITE) && !pte_write(pte))
4255                 goto unlock;
4256
4257         *prot = pgprot_val(pte_pgprot(pte));
4258         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4259
4260         ret = 0;
4261 unlock:
4262         pte_unmap_unlock(ptep, ptl);
4263 out:
4264         return ret;
4265 }
4266
4267 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4268                         void *buf, int len, int write)
4269 {
4270         resource_size_t phys_addr;
4271         unsigned long prot = 0;
4272         void __iomem *maddr;
4273         int offset = addr & (PAGE_SIZE-1);
4274
4275         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4276                 return -EINVAL;
4277
4278         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4279         if (!maddr)
4280                 return -ENOMEM;
4281
4282         if (write)
4283                 memcpy_toio(maddr + offset, buf, len);
4284         else
4285                 memcpy_fromio(buf, maddr + offset, len);
4286         iounmap(maddr);
4287
4288         return len;
4289 }
4290 EXPORT_SYMBOL_GPL(generic_access_phys);
4291 #endif
4292
4293 /*
4294  * Access another process' address space as given in mm.  If non-NULL, use the
4295  * given task for page fault accounting.
4296  */
4297 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4298                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4299 {
4300         struct vm_area_struct *vma;
4301         void *old_buf = buf;
4302         int write = gup_flags & FOLL_WRITE;
4303
4304         if (down_read_killable(&mm->mmap_sem))
4305                 return 0;
4306
4307         /* ignore errors, just check how much was successfully transferred */
4308         while (len) {
4309                 int bytes, ret, offset;
4310                 void *maddr;
4311                 struct page *page = NULL;
4312
4313                 ret = get_user_pages_remote(tsk, mm, addr, 1,
4314                                 gup_flags, &page, &vma, NULL);
4315                 if (ret <= 0) {
4316 #ifndef CONFIG_HAVE_IOREMAP_PROT
4317                         break;
4318 #else
4319                         /*
4320                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4321                          * we can access using slightly different code.
4322                          */
4323                         vma = find_vma(mm, addr);
4324                         if (!vma || vma->vm_start > addr)
4325                                 break;
4326                         if (vma->vm_ops && vma->vm_ops->access)
4327                                 ret = vma->vm_ops->access(vma, addr, buf,
4328                                                           len, write);
4329                         if (ret <= 0)
4330                                 break;
4331                         bytes = ret;
4332 #endif
4333                 } else {
4334                         bytes = len;
4335                         offset = addr & (PAGE_SIZE-1);
4336                         if (bytes > PAGE_SIZE-offset)
4337                                 bytes = PAGE_SIZE-offset;
4338
4339                         maddr = kmap(page);
4340                         if (write) {
4341                                 copy_to_user_page(vma, page, addr,
4342                                                   maddr + offset, buf, bytes);
4343                                 set_page_dirty_lock(page);
4344                         } else {
4345                                 copy_from_user_page(vma, page, addr,
4346                                                     buf, maddr + offset, bytes);
4347                         }
4348                         kunmap(page);
4349                         put_page(page);
4350                 }
4351                 len -= bytes;
4352                 buf += bytes;
4353                 addr += bytes;
4354         }
4355         up_read(&mm->mmap_sem);
4356
4357         return buf - old_buf;
4358 }
4359
4360 /**
4361  * access_remote_vm - access another process' address space
4362  * @mm:         the mm_struct of the target address space
4363  * @addr:       start address to access
4364  * @buf:        source or destination buffer
4365  * @len:        number of bytes to transfer
4366  * @gup_flags:  flags modifying lookup behaviour
4367  *
4368  * The caller must hold a reference on @mm.
4369  *
4370  * Return: number of bytes copied from source to destination.
4371  */
4372 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4373                 void *buf, int len, unsigned int gup_flags)
4374 {
4375         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4376 }
4377
4378 /*
4379  * Access another process' address space.
4380  * Source/target buffer must be kernel space,
4381  * Do not walk the page table directly, use get_user_pages
4382  */
4383 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4384                 void *buf, int len, unsigned int gup_flags)
4385 {
4386         struct mm_struct *mm;
4387         int ret;
4388
4389         mm = get_task_mm(tsk);
4390         if (!mm)
4391                 return 0;
4392
4393         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4394
4395         mmput(mm);
4396
4397         return ret;
4398 }
4399 EXPORT_SYMBOL_GPL(access_process_vm);
4400
4401 /*
4402  * Print the name of a VMA.
4403  */
4404 void print_vma_addr(char *prefix, unsigned long ip)
4405 {
4406         struct mm_struct *mm = current->mm;
4407         struct vm_area_struct *vma;
4408
4409         /*
4410          * we might be running from an atomic context so we cannot sleep
4411          */
4412         if (!down_read_trylock(&mm->mmap_sem))
4413                 return;
4414
4415         vma = find_vma(mm, ip);
4416         if (vma && vma->vm_file) {
4417                 struct file *f = vma->vm_file;
4418                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4419                 if (buf) {
4420                         char *p;
4421
4422                         p = file_path(f, buf, PAGE_SIZE);
4423                         if (IS_ERR(p))
4424                                 p = "?";
4425                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4426                                         vma->vm_start,
4427                                         vma->vm_end - vma->vm_start);
4428                         free_page((unsigned long)buf);
4429                 }
4430         }
4431         up_read(&mm->mmap_sem);
4432 }
4433
4434 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4435 void __might_fault(const char *file, int line)
4436 {
4437         /*
4438          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4439          * holding the mmap_sem, this is safe because kernel memory doesn't
4440          * get paged out, therefore we'll never actually fault, and the
4441          * below annotations will generate false positives.
4442          */
4443         if (uaccess_kernel())
4444                 return;
4445         if (pagefault_disabled())
4446                 return;
4447         __might_sleep(file, line, 0);
4448 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4449         if (current->mm)
4450                 might_lock_read(&current->mm->mmap_sem);
4451 #endif
4452 }
4453 EXPORT_SYMBOL(__might_fault);
4454 #endif
4455
4456 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4457 /*
4458  * Process all subpages of the specified huge page with the specified
4459  * operation.  The target subpage will be processed last to keep its
4460  * cache lines hot.
4461  */
4462 static inline void process_huge_page(
4463         unsigned long addr_hint, unsigned int pages_per_huge_page,
4464         void (*process_subpage)(unsigned long addr, int idx, void *arg),
4465         void *arg)
4466 {
4467         int i, n, base, l;
4468         unsigned long addr = addr_hint &
4469                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4470
4471         /* Process target subpage last to keep its cache lines hot */
4472         might_sleep();
4473         n = (addr_hint - addr) / PAGE_SIZE;
4474         if (2 * n <= pages_per_huge_page) {
4475                 /* If target subpage in first half of huge page */
4476                 base = 0;
4477                 l = n;
4478                 /* Process subpages at the end of huge page */
4479                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4480                         cond_resched();
4481                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4482                 }
4483         } else {
4484                 /* If target subpage in second half of huge page */
4485                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4486                 l = pages_per_huge_page - n;
4487                 /* Process subpages at the begin of huge page */
4488                 for (i = 0; i < base; i++) {
4489                         cond_resched();
4490                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4491                 }
4492         }
4493         /*
4494          * Process remaining subpages in left-right-left-right pattern
4495          * towards the target subpage
4496          */
4497         for (i = 0; i < l; i++) {
4498                 int left_idx = base + i;
4499                 int right_idx = base + 2 * l - 1 - i;
4500
4501                 cond_resched();
4502                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4503                 cond_resched();
4504                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4505         }
4506 }
4507
4508 static void clear_gigantic_page(struct page *page,
4509                                 unsigned long addr,
4510                                 unsigned int pages_per_huge_page)
4511 {
4512         int i;
4513         struct page *p = page;
4514
4515         might_sleep();
4516         for (i = 0; i < pages_per_huge_page;
4517              i++, p = mem_map_next(p, page, i)) {
4518                 cond_resched();
4519                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4520         }
4521 }
4522
4523 static void clear_subpage(unsigned long addr, int idx, void *arg)
4524 {
4525         struct page *page = arg;
4526
4527         clear_user_highpage(page + idx, addr);
4528 }
4529
4530 void clear_huge_page(struct page *page,
4531                      unsigned long addr_hint, unsigned int pages_per_huge_page)
4532 {
4533         unsigned long addr = addr_hint &
4534                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4535
4536         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4537                 clear_gigantic_page(page, addr, pages_per_huge_page);
4538                 return;
4539         }
4540
4541         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4542 }
4543
4544 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4545                                     unsigned long addr,
4546                                     struct vm_area_struct *vma,
4547                                     unsigned int pages_per_huge_page)
4548 {
4549         int i;
4550         struct page *dst_base = dst;
4551         struct page *src_base = src;
4552
4553         for (i = 0; i < pages_per_huge_page; ) {
4554                 cond_resched();
4555                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4556
4557                 i++;
4558                 dst = mem_map_next(dst, dst_base, i);
4559                 src = mem_map_next(src, src_base, i);
4560         }
4561 }
4562
4563 struct copy_subpage_arg {
4564         struct page *dst;
4565         struct page *src;
4566         struct vm_area_struct *vma;
4567 };
4568
4569 static void copy_subpage(unsigned long addr, int idx, void *arg)
4570 {
4571         struct copy_subpage_arg *copy_arg = arg;
4572
4573         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4574                            addr, copy_arg->vma);
4575 }
4576
4577 void copy_user_huge_page(struct page *dst, struct page *src,
4578                          unsigned long addr_hint, struct vm_area_struct *vma,
4579                          unsigned int pages_per_huge_page)
4580 {
4581         unsigned long addr = addr_hint &
4582                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4583         struct copy_subpage_arg arg = {
4584                 .dst = dst,
4585                 .src = src,
4586                 .vma = vma,
4587         };
4588
4589         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4590                 copy_user_gigantic_page(dst, src, addr, vma,
4591                                         pages_per_huge_page);
4592                 return;
4593         }
4594
4595         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4596 }
4597
4598 long copy_huge_page_from_user(struct page *dst_page,
4599                                 const void __user *usr_src,
4600                                 unsigned int pages_per_huge_page,
4601                                 bool allow_pagefault)
4602 {
4603         void *src = (void *)usr_src;
4604         void *page_kaddr;
4605         unsigned long i, rc = 0;
4606         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4607
4608         for (i = 0; i < pages_per_huge_page; i++) {
4609                 if (allow_pagefault)
4610                         page_kaddr = kmap(dst_page + i);
4611                 else
4612                         page_kaddr = kmap_atomic(dst_page + i);
4613                 rc = copy_from_user(page_kaddr,
4614                                 (const void __user *)(src + i * PAGE_SIZE),
4615                                 PAGE_SIZE);
4616                 if (allow_pagefault)
4617                         kunmap(dst_page + i);
4618                 else
4619                         kunmap_atomic(page_kaddr);
4620
4621                 ret_val -= (PAGE_SIZE - rc);
4622                 if (rc)
4623                         break;
4624
4625                 cond_resched();
4626         }
4627         return ret_val;
4628 }
4629 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4630
4631 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4632
4633 static struct kmem_cache *page_ptl_cachep;
4634
4635 void __init ptlock_cache_init(void)
4636 {
4637         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4638                         SLAB_PANIC, NULL);
4639 }
4640
4641 bool ptlock_alloc(struct page *page)
4642 {
4643         spinlock_t *ptl;
4644
4645         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4646         if (!ptl)
4647                 return false;
4648         page->ptl = ptl;
4649         return true;
4650 }
4651
4652 void ptlock_free(struct page *page)
4653 {
4654         kmem_cache_free(page_ptl_cachep, page->ptl);
4655 }
4656 #endif