Linux 6.9-rc1
[linux-2.6-microblaze.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/ksm.h>
56 #include <linux/rmap.h>
57 #include <linux/export.h>
58 #include <linux/delayacct.h>
59 #include <linux/init.h>
60 #include <linux/pfn_t.h>
61 #include <linux/writeback.h>
62 #include <linux/memcontrol.h>
63 #include <linux/mmu_notifier.h>
64 #include <linux/swapops.h>
65 #include <linux/elf.h>
66 #include <linux/gfp.h>
67 #include <linux/migrate.h>
68 #include <linux/string.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74 #include <linux/perf_event.h>
75 #include <linux/ptrace.h>
76 #include <linux/vmalloc.h>
77
78 #include <trace/events/kmem.h>
79
80 #include <asm/io.h>
81 #include <asm/mmu_context.h>
82 #include <asm/pgalloc.h>
83 #include <linux/uaccess.h>
84 #include <asm/tlb.h>
85 #include <asm/tlbflush.h>
86
87 #include "pgalloc-track.h"
88 #include "internal.h"
89 #include "swap.h"
90
91 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
92 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
93 #endif
94
95 #ifndef CONFIG_NUMA
96 unsigned long max_mapnr;
97 EXPORT_SYMBOL(max_mapnr);
98
99 struct page *mem_map;
100 EXPORT_SYMBOL(mem_map);
101 #endif
102
103 static vm_fault_t do_fault(struct vm_fault *vmf);
104
105 /*
106  * A number of key systems in x86 including ioremap() rely on the assumption
107  * that high_memory defines the upper bound on direct map memory, then end
108  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
109  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
110  * and ZONE_HIGHMEM.
111  */
112 void *high_memory;
113 EXPORT_SYMBOL(high_memory);
114
115 /*
116  * Randomize the address space (stacks, mmaps, brk, etc.).
117  *
118  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
119  *   as ancient (libc5 based) binaries can segfault. )
120  */
121 int randomize_va_space __read_mostly =
122 #ifdef CONFIG_COMPAT_BRK
123                                         1;
124 #else
125                                         2;
126 #endif
127
128 #ifndef arch_faults_on_old_pte
129 static inline bool arch_faults_on_old_pte(void)
130 {
131         /*
132          * Those arches which don't have hw access flag feature need to
133          * implement their own helper. By default, "true" means pagefault
134          * will be hit on old pte.
135          */
136         return true;
137 }
138 #endif
139
140 #ifndef arch_wants_old_prefaulted_pte
141 static inline bool arch_wants_old_prefaulted_pte(void)
142 {
143         /*
144          * Transitioning a PTE from 'old' to 'young' can be expensive on
145          * some architectures, even if it's performed in hardware. By
146          * default, "false" means prefaulted entries will be 'young'.
147          */
148         return false;
149 }
150 #endif
151
152 static int __init disable_randmaps(char *s)
153 {
154         randomize_va_space = 0;
155         return 1;
156 }
157 __setup("norandmaps", disable_randmaps);
158
159 unsigned long zero_pfn __read_mostly;
160 EXPORT_SYMBOL(zero_pfn);
161
162 unsigned long highest_memmap_pfn __read_mostly;
163
164 /*
165  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
166  */
167 static int __init init_zero_pfn(void)
168 {
169         zero_pfn = page_to_pfn(ZERO_PAGE(0));
170         return 0;
171 }
172 early_initcall(init_zero_pfn);
173
174 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
175 {
176         trace_rss_stat(mm, member, count);
177 }
178
179 #if defined(SPLIT_RSS_COUNTING)
180
181 void sync_mm_rss(struct mm_struct *mm)
182 {
183         int i;
184
185         for (i = 0; i < NR_MM_COUNTERS; i++) {
186                 if (current->rss_stat.count[i]) {
187                         add_mm_counter(mm, i, current->rss_stat.count[i]);
188                         current->rss_stat.count[i] = 0;
189                 }
190         }
191         current->rss_stat.events = 0;
192 }
193
194 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
195 {
196         struct task_struct *task = current;
197
198         if (likely(task->mm == mm))
199                 task->rss_stat.count[member] += val;
200         else
201                 add_mm_counter(mm, member, val);
202 }
203 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
204 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
205
206 /* sync counter once per 64 page faults */
207 #define TASK_RSS_EVENTS_THRESH  (64)
208 static void check_sync_rss_stat(struct task_struct *task)
209 {
210         if (unlikely(task != current))
211                 return;
212         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
213                 sync_mm_rss(task->mm);
214 }
215 #else /* SPLIT_RSS_COUNTING */
216
217 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
218 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
219
220 static void check_sync_rss_stat(struct task_struct *task)
221 {
222 }
223
224 #endif /* SPLIT_RSS_COUNTING */
225
226 /*
227  * Note: this doesn't free the actual pages themselves. That
228  * has been handled earlier when unmapping all the memory regions.
229  */
230 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
231                            unsigned long addr)
232 {
233         pgtable_t token = pmd_pgtable(*pmd);
234         pmd_clear(pmd);
235         pte_free_tlb(tlb, token, addr);
236         mm_dec_nr_ptes(tlb->mm);
237 }
238
239 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
240                                 unsigned long addr, unsigned long end,
241                                 unsigned long floor, unsigned long ceiling)
242 {
243         pmd_t *pmd;
244         unsigned long next;
245         unsigned long start;
246
247         start = addr;
248         pmd = pmd_offset(pud, addr);
249         do {
250                 next = pmd_addr_end(addr, end);
251                 if (pmd_none_or_clear_bad(pmd))
252                         continue;
253                 free_pte_range(tlb, pmd, addr);
254         } while (pmd++, addr = next, addr != end);
255
256         start &= PUD_MASK;
257         if (start < floor)
258                 return;
259         if (ceiling) {
260                 ceiling &= PUD_MASK;
261                 if (!ceiling)
262                         return;
263         }
264         if (end - 1 > ceiling - 1)
265                 return;
266
267         pmd = pmd_offset(pud, start);
268         pud_clear(pud);
269         pmd_free_tlb(tlb, pmd, start);
270         mm_dec_nr_pmds(tlb->mm);
271 }
272
273 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
274                                 unsigned long addr, unsigned long end,
275                                 unsigned long floor, unsigned long ceiling)
276 {
277         pud_t *pud;
278         unsigned long next;
279         unsigned long start;
280
281         start = addr;
282         pud = pud_offset(p4d, addr);
283         do {
284                 next = pud_addr_end(addr, end);
285                 if (pud_none_or_clear_bad(pud))
286                         continue;
287                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
288         } while (pud++, addr = next, addr != end);
289
290         start &= P4D_MASK;
291         if (start < floor)
292                 return;
293         if (ceiling) {
294                 ceiling &= P4D_MASK;
295                 if (!ceiling)
296                         return;
297         }
298         if (end - 1 > ceiling - 1)
299                 return;
300
301         pud = pud_offset(p4d, start);
302         p4d_clear(p4d);
303         pud_free_tlb(tlb, pud, start);
304         mm_dec_nr_puds(tlb->mm);
305 }
306
307 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
308                                 unsigned long addr, unsigned long end,
309                                 unsigned long floor, unsigned long ceiling)
310 {
311         p4d_t *p4d;
312         unsigned long next;
313         unsigned long start;
314
315         start = addr;
316         p4d = p4d_offset(pgd, addr);
317         do {
318                 next = p4d_addr_end(addr, end);
319                 if (p4d_none_or_clear_bad(p4d))
320                         continue;
321                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
322         } while (p4d++, addr = next, addr != end);
323
324         start &= PGDIR_MASK;
325         if (start < floor)
326                 return;
327         if (ceiling) {
328                 ceiling &= PGDIR_MASK;
329                 if (!ceiling)
330                         return;
331         }
332         if (end - 1 > ceiling - 1)
333                 return;
334
335         p4d = p4d_offset(pgd, start);
336         pgd_clear(pgd);
337         p4d_free_tlb(tlb, p4d, start);
338 }
339
340 /*
341  * This function frees user-level page tables of a process.
342  */
343 void free_pgd_range(struct mmu_gather *tlb,
344                         unsigned long addr, unsigned long end,
345                         unsigned long floor, unsigned long ceiling)
346 {
347         pgd_t *pgd;
348         unsigned long next;
349
350         /*
351          * The next few lines have given us lots of grief...
352          *
353          * Why are we testing PMD* at this top level?  Because often
354          * there will be no work to do at all, and we'd prefer not to
355          * go all the way down to the bottom just to discover that.
356          *
357          * Why all these "- 1"s?  Because 0 represents both the bottom
358          * of the address space and the top of it (using -1 for the
359          * top wouldn't help much: the masks would do the wrong thing).
360          * The rule is that addr 0 and floor 0 refer to the bottom of
361          * the address space, but end 0 and ceiling 0 refer to the top
362          * Comparisons need to use "end - 1" and "ceiling - 1" (though
363          * that end 0 case should be mythical).
364          *
365          * Wherever addr is brought up or ceiling brought down, we must
366          * be careful to reject "the opposite 0" before it confuses the
367          * subsequent tests.  But what about where end is brought down
368          * by PMD_SIZE below? no, end can't go down to 0 there.
369          *
370          * Whereas we round start (addr) and ceiling down, by different
371          * masks at different levels, in order to test whether a table
372          * now has no other vmas using it, so can be freed, we don't
373          * bother to round floor or end up - the tests don't need that.
374          */
375
376         addr &= PMD_MASK;
377         if (addr < floor) {
378                 addr += PMD_SIZE;
379                 if (!addr)
380                         return;
381         }
382         if (ceiling) {
383                 ceiling &= PMD_MASK;
384                 if (!ceiling)
385                         return;
386         }
387         if (end - 1 > ceiling - 1)
388                 end -= PMD_SIZE;
389         if (addr > end - 1)
390                 return;
391         /*
392          * We add page table cache pages with PAGE_SIZE,
393          * (see pte_free_tlb()), flush the tlb if we need
394          */
395         tlb_change_page_size(tlb, PAGE_SIZE);
396         pgd = pgd_offset(tlb->mm, addr);
397         do {
398                 next = pgd_addr_end(addr, end);
399                 if (pgd_none_or_clear_bad(pgd))
400                         continue;
401                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
402         } while (pgd++, addr = next, addr != end);
403 }
404
405 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
406                 unsigned long floor, unsigned long ceiling)
407 {
408         while (vma) {
409                 struct vm_area_struct *next = vma->vm_next;
410                 unsigned long addr = vma->vm_start;
411
412                 /*
413                  * Hide vma from rmap and truncate_pagecache before freeing
414                  * pgtables
415                  */
416                 unlink_anon_vmas(vma);
417                 unlink_file_vma(vma);
418
419                 if (is_vm_hugetlb_page(vma)) {
420                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
421                                 floor, next ? next->vm_start : ceiling);
422                 } else {
423                         /*
424                          * Optimization: gather nearby vmas into one call down
425                          */
426                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
427                                && !is_vm_hugetlb_page(next)) {
428                                 vma = next;
429                                 next = vma->vm_next;
430                                 unlink_anon_vmas(vma);
431                                 unlink_file_vma(vma);
432                         }
433                         free_pgd_range(tlb, addr, vma->vm_end,
434                                 floor, next ? next->vm_start : ceiling);
435                 }
436                 vma = next;
437         }
438 }
439
440 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
441 {
442         spinlock_t *ptl = pmd_lock(mm, pmd);
443
444         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
445                 mm_inc_nr_ptes(mm);
446                 /*
447                  * Ensure all pte setup (eg. pte page lock and page clearing) are
448                  * visible before the pte is made visible to other CPUs by being
449                  * put into page tables.
450                  *
451                  * The other side of the story is the pointer chasing in the page
452                  * table walking code (when walking the page table without locking;
453                  * ie. most of the time). Fortunately, these data accesses consist
454                  * of a chain of data-dependent loads, meaning most CPUs (alpha
455                  * being the notable exception) will already guarantee loads are
456                  * seen in-order. See the alpha page table accessors for the
457                  * smp_rmb() barriers in page table walking code.
458                  */
459                 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
460                 pmd_populate(mm, pmd, *pte);
461                 *pte = NULL;
462         }
463         spin_unlock(ptl);
464 }
465
466 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
467 {
468         pgtable_t new = pte_alloc_one(mm);
469         if (!new)
470                 return -ENOMEM;
471
472         pmd_install(mm, pmd, &new);
473         if (new)
474                 pte_free(mm, new);
475         return 0;
476 }
477
478 int __pte_alloc_kernel(pmd_t *pmd)
479 {
480         pte_t *new = pte_alloc_one_kernel(&init_mm);
481         if (!new)
482                 return -ENOMEM;
483
484         spin_lock(&init_mm.page_table_lock);
485         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
486                 smp_wmb(); /* See comment in pmd_install() */
487                 pmd_populate_kernel(&init_mm, pmd, new);
488                 new = NULL;
489         }
490         spin_unlock(&init_mm.page_table_lock);
491         if (new)
492                 pte_free_kernel(&init_mm, new);
493         return 0;
494 }
495
496 static inline void init_rss_vec(int *rss)
497 {
498         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
499 }
500
501 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
502 {
503         int i;
504
505         if (current->mm == mm)
506                 sync_mm_rss(mm);
507         for (i = 0; i < NR_MM_COUNTERS; i++)
508                 if (rss[i])
509                         add_mm_counter(mm, i, rss[i]);
510 }
511
512 /*
513  * This function is called to print an error when a bad pte
514  * is found. For example, we might have a PFN-mapped pte in
515  * a region that doesn't allow it.
516  *
517  * The calling function must still handle the error.
518  */
519 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
520                           pte_t pte, struct page *page)
521 {
522         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
523         p4d_t *p4d = p4d_offset(pgd, addr);
524         pud_t *pud = pud_offset(p4d, addr);
525         pmd_t *pmd = pmd_offset(pud, addr);
526         struct address_space *mapping;
527         pgoff_t index;
528         static unsigned long resume;
529         static unsigned long nr_shown;
530         static unsigned long nr_unshown;
531
532         /*
533          * Allow a burst of 60 reports, then keep quiet for that minute;
534          * or allow a steady drip of one report per second.
535          */
536         if (nr_shown == 60) {
537                 if (time_before(jiffies, resume)) {
538                         nr_unshown++;
539                         return;
540                 }
541                 if (nr_unshown) {
542                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
543                                  nr_unshown);
544                         nr_unshown = 0;
545                 }
546                 nr_shown = 0;
547         }
548         if (nr_shown++ == 0)
549                 resume = jiffies + 60 * HZ;
550
551         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
552         index = linear_page_index(vma, addr);
553
554         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
555                  current->comm,
556                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
557         if (page)
558                 dump_page(page, "bad pte");
559         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
560                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
561         pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
562                  vma->vm_file,
563                  vma->vm_ops ? vma->vm_ops->fault : NULL,
564                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
565                  mapping ? mapping->a_ops->read_folio : NULL);
566         dump_stack();
567         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
568 }
569
570 /*
571  * vm_normal_page -- This function gets the "struct page" associated with a pte.
572  *
573  * "Special" mappings do not wish to be associated with a "struct page" (either
574  * it doesn't exist, or it exists but they don't want to touch it). In this
575  * case, NULL is returned here. "Normal" mappings do have a struct page.
576  *
577  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
578  * pte bit, in which case this function is trivial. Secondly, an architecture
579  * may not have a spare pte bit, which requires a more complicated scheme,
580  * described below.
581  *
582  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
583  * special mapping (even if there are underlying and valid "struct pages").
584  * COWed pages of a VM_PFNMAP are always normal.
585  *
586  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
587  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
588  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
589  * mapping will always honor the rule
590  *
591  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
592  *
593  * And for normal mappings this is false.
594  *
595  * This restricts such mappings to be a linear translation from virtual address
596  * to pfn. To get around this restriction, we allow arbitrary mappings so long
597  * as the vma is not a COW mapping; in that case, we know that all ptes are
598  * special (because none can have been COWed).
599  *
600  *
601  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
602  *
603  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
604  * page" backing, however the difference is that _all_ pages with a struct
605  * page (that is, those where pfn_valid is true) are refcounted and considered
606  * normal pages by the VM. The disadvantage is that pages are refcounted
607  * (which can be slower and simply not an option for some PFNMAP users). The
608  * advantage is that we don't have to follow the strict linearity rule of
609  * PFNMAP mappings in order to support COWable mappings.
610  *
611  */
612 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
613                             pte_t pte)
614 {
615         unsigned long pfn = pte_pfn(pte);
616
617         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
618                 if (likely(!pte_special(pte)))
619                         goto check_pfn;
620                 if (vma->vm_ops && vma->vm_ops->find_special_page)
621                         return vma->vm_ops->find_special_page(vma, addr);
622                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
623                         return NULL;
624                 if (is_zero_pfn(pfn))
625                         return NULL;
626                 if (pte_devmap(pte))
627                 /*
628                  * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
629                  * and will have refcounts incremented on their struct pages
630                  * when they are inserted into PTEs, thus they are safe to
631                  * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
632                  * do not have refcounts. Example of legacy ZONE_DEVICE is
633                  * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
634                  */
635                         return NULL;
636
637                 print_bad_pte(vma, addr, pte, NULL);
638                 return NULL;
639         }
640
641         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
642
643         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
644                 if (vma->vm_flags & VM_MIXEDMAP) {
645                         if (!pfn_valid(pfn))
646                                 return NULL;
647                         goto out;
648                 } else {
649                         unsigned long off;
650                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
651                         if (pfn == vma->vm_pgoff + off)
652                                 return NULL;
653                         if (!is_cow_mapping(vma->vm_flags))
654                                 return NULL;
655                 }
656         }
657
658         if (is_zero_pfn(pfn))
659                 return NULL;
660
661 check_pfn:
662         if (unlikely(pfn > highest_memmap_pfn)) {
663                 print_bad_pte(vma, addr, pte, NULL);
664                 return NULL;
665         }
666
667         /*
668          * NOTE! We still have PageReserved() pages in the page tables.
669          * eg. VDSO mappings can cause them to exist.
670          */
671 out:
672         return pfn_to_page(pfn);
673 }
674
675 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
676 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
677                                 pmd_t pmd)
678 {
679         unsigned long pfn = pmd_pfn(pmd);
680
681         /*
682          * There is no pmd_special() but there may be special pmds, e.g.
683          * in a direct-access (dax) mapping, so let's just replicate the
684          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
685          */
686         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
687                 if (vma->vm_flags & VM_MIXEDMAP) {
688                         if (!pfn_valid(pfn))
689                                 return NULL;
690                         goto out;
691                 } else {
692                         unsigned long off;
693                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
694                         if (pfn == vma->vm_pgoff + off)
695                                 return NULL;
696                         if (!is_cow_mapping(vma->vm_flags))
697                                 return NULL;
698                 }
699         }
700
701         if (pmd_devmap(pmd))
702                 return NULL;
703         if (is_huge_zero_pmd(pmd))
704                 return NULL;
705         if (unlikely(pfn > highest_memmap_pfn))
706                 return NULL;
707
708         /*
709          * NOTE! We still have PageReserved() pages in the page tables.
710          * eg. VDSO mappings can cause them to exist.
711          */
712 out:
713         return pfn_to_page(pfn);
714 }
715 #endif
716
717 static void restore_exclusive_pte(struct vm_area_struct *vma,
718                                   struct page *page, unsigned long address,
719                                   pte_t *ptep)
720 {
721         pte_t pte;
722         swp_entry_t entry;
723
724         pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
725         if (pte_swp_soft_dirty(*ptep))
726                 pte = pte_mksoft_dirty(pte);
727
728         entry = pte_to_swp_entry(*ptep);
729         if (pte_swp_uffd_wp(*ptep))
730                 pte = pte_mkuffd_wp(pte);
731         else if (is_writable_device_exclusive_entry(entry))
732                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
733
734         VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
735
736         /*
737          * No need to take a page reference as one was already
738          * created when the swap entry was made.
739          */
740         if (PageAnon(page))
741                 page_add_anon_rmap(page, vma, address, RMAP_NONE);
742         else
743                 /*
744                  * Currently device exclusive access only supports anonymous
745                  * memory so the entry shouldn't point to a filebacked page.
746                  */
747                 WARN_ON_ONCE(1);
748
749         set_pte_at(vma->vm_mm, address, ptep, pte);
750
751         /*
752          * No need to invalidate - it was non-present before. However
753          * secondary CPUs may have mappings that need invalidating.
754          */
755         update_mmu_cache(vma, address, ptep);
756 }
757
758 /*
759  * Tries to restore an exclusive pte if the page lock can be acquired without
760  * sleeping.
761  */
762 static int
763 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
764                         unsigned long addr)
765 {
766         swp_entry_t entry = pte_to_swp_entry(*src_pte);
767         struct page *page = pfn_swap_entry_to_page(entry);
768
769         if (trylock_page(page)) {
770                 restore_exclusive_pte(vma, page, addr, src_pte);
771                 unlock_page(page);
772                 return 0;
773         }
774
775         return -EBUSY;
776 }
777
778 /*
779  * copy one vm_area from one task to the other. Assumes the page tables
780  * already present in the new task to be cleared in the whole range
781  * covered by this vma.
782  */
783
784 static unsigned long
785 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
786                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
787                 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
788 {
789         unsigned long vm_flags = dst_vma->vm_flags;
790         pte_t pte = *src_pte;
791         struct page *page;
792         swp_entry_t entry = pte_to_swp_entry(pte);
793
794         if (likely(!non_swap_entry(entry))) {
795                 if (swap_duplicate(entry) < 0)
796                         return -EIO;
797
798                 /* make sure dst_mm is on swapoff's mmlist. */
799                 if (unlikely(list_empty(&dst_mm->mmlist))) {
800                         spin_lock(&mmlist_lock);
801                         if (list_empty(&dst_mm->mmlist))
802                                 list_add(&dst_mm->mmlist,
803                                                 &src_mm->mmlist);
804                         spin_unlock(&mmlist_lock);
805                 }
806                 /* Mark the swap entry as shared. */
807                 if (pte_swp_exclusive(*src_pte)) {
808                         pte = pte_swp_clear_exclusive(*src_pte);
809                         set_pte_at(src_mm, addr, src_pte, pte);
810                 }
811                 rss[MM_SWAPENTS]++;
812         } else if (is_migration_entry(entry)) {
813                 page = pfn_swap_entry_to_page(entry);
814
815                 rss[mm_counter(page)]++;
816
817                 if (!is_readable_migration_entry(entry) &&
818                                 is_cow_mapping(vm_flags)) {
819                         /*
820                          * COW mappings require pages in both parent and child
821                          * to be set to read. A previously exclusive entry is
822                          * now shared.
823                          */
824                         entry = make_readable_migration_entry(
825                                                         swp_offset(entry));
826                         pte = swp_entry_to_pte(entry);
827                         if (pte_swp_soft_dirty(*src_pte))
828                                 pte = pte_swp_mksoft_dirty(pte);
829                         if (pte_swp_uffd_wp(*src_pte))
830                                 pte = pte_swp_mkuffd_wp(pte);
831                         set_pte_at(src_mm, addr, src_pte, pte);
832                 }
833         } else if (is_device_private_entry(entry)) {
834                 page = pfn_swap_entry_to_page(entry);
835
836                 /*
837                  * Update rss count even for unaddressable pages, as
838                  * they should treated just like normal pages in this
839                  * respect.
840                  *
841                  * We will likely want to have some new rss counters
842                  * for unaddressable pages, at some point. But for now
843                  * keep things as they are.
844                  */
845                 get_page(page);
846                 rss[mm_counter(page)]++;
847                 /* Cannot fail as these pages cannot get pinned. */
848                 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
849
850                 /*
851                  * We do not preserve soft-dirty information, because so
852                  * far, checkpoint/restore is the only feature that
853                  * requires that. And checkpoint/restore does not work
854                  * when a device driver is involved (you cannot easily
855                  * save and restore device driver state).
856                  */
857                 if (is_writable_device_private_entry(entry) &&
858                     is_cow_mapping(vm_flags)) {
859                         entry = make_readable_device_private_entry(
860                                                         swp_offset(entry));
861                         pte = swp_entry_to_pte(entry);
862                         if (pte_swp_uffd_wp(*src_pte))
863                                 pte = pte_swp_mkuffd_wp(pte);
864                         set_pte_at(src_mm, addr, src_pte, pte);
865                 }
866         } else if (is_device_exclusive_entry(entry)) {
867                 /*
868                  * Make device exclusive entries present by restoring the
869                  * original entry then copying as for a present pte. Device
870                  * exclusive entries currently only support private writable
871                  * (ie. COW) mappings.
872                  */
873                 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
874                 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
875                         return -EBUSY;
876                 return -ENOENT;
877         } else if (is_pte_marker_entry(entry)) {
878                 /*
879                  * We're copying the pgtable should only because dst_vma has
880                  * uffd-wp enabled, do sanity check.
881                  */
882                 WARN_ON_ONCE(!userfaultfd_wp(dst_vma));
883                 set_pte_at(dst_mm, addr, dst_pte, pte);
884                 return 0;
885         }
886         if (!userfaultfd_wp(dst_vma))
887                 pte = pte_swp_clear_uffd_wp(pte);
888         set_pte_at(dst_mm, addr, dst_pte, pte);
889         return 0;
890 }
891
892 /*
893  * Copy a present and normal page.
894  *
895  * NOTE! The usual case is that this isn't required;
896  * instead, the caller can just increase the page refcount
897  * and re-use the pte the traditional way.
898  *
899  * And if we need a pre-allocated page but don't yet have
900  * one, return a negative error to let the preallocation
901  * code know so that it can do so outside the page table
902  * lock.
903  */
904 static inline int
905 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
906                   pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
907                   struct page **prealloc, struct page *page)
908 {
909         struct page *new_page;
910         pte_t pte;
911
912         new_page = *prealloc;
913         if (!new_page)
914                 return -EAGAIN;
915
916         /*
917          * We have a prealloc page, all good!  Take it
918          * over and copy the page & arm it.
919          */
920         *prealloc = NULL;
921         copy_user_highpage(new_page, page, addr, src_vma);
922         __SetPageUptodate(new_page);
923         page_add_new_anon_rmap(new_page, dst_vma, addr);
924         lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
925         rss[mm_counter(new_page)]++;
926
927         /* All done, just insert the new page copy in the child */
928         pte = mk_pte(new_page, dst_vma->vm_page_prot);
929         pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
930         if (userfaultfd_pte_wp(dst_vma, *src_pte))
931                 /* Uffd-wp needs to be delivered to dest pte as well */
932                 pte = pte_wrprotect(pte_mkuffd_wp(pte));
933         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
934         return 0;
935 }
936
937 /*
938  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
939  * is required to copy this pte.
940  */
941 static inline int
942 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
943                  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
944                  struct page **prealloc)
945 {
946         struct mm_struct *src_mm = src_vma->vm_mm;
947         unsigned long vm_flags = src_vma->vm_flags;
948         pte_t pte = *src_pte;
949         struct page *page;
950
951         page = vm_normal_page(src_vma, addr, pte);
952         if (page && PageAnon(page)) {
953                 /*
954                  * If this page may have been pinned by the parent process,
955                  * copy the page immediately for the child so that we'll always
956                  * guarantee the pinned page won't be randomly replaced in the
957                  * future.
958                  */
959                 get_page(page);
960                 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
961                         /* Page maybe pinned, we have to copy. */
962                         put_page(page);
963                         return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
964                                                  addr, rss, prealloc, page);
965                 }
966                 rss[mm_counter(page)]++;
967         } else if (page) {
968                 get_page(page);
969                 page_dup_file_rmap(page, false);
970                 rss[mm_counter(page)]++;
971         }
972
973         /*
974          * If it's a COW mapping, write protect it both
975          * in the parent and the child
976          */
977         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
978                 ptep_set_wrprotect(src_mm, addr, src_pte);
979                 pte = pte_wrprotect(pte);
980         }
981         VM_BUG_ON(page && PageAnon(page) && PageAnonExclusive(page));
982
983         /*
984          * If it's a shared mapping, mark it clean in
985          * the child
986          */
987         if (vm_flags & VM_SHARED)
988                 pte = pte_mkclean(pte);
989         pte = pte_mkold(pte);
990
991         if (!userfaultfd_wp(dst_vma))
992                 pte = pte_clear_uffd_wp(pte);
993
994         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
995         return 0;
996 }
997
998 static inline struct page *
999 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
1000                    unsigned long addr)
1001 {
1002         struct page *new_page;
1003
1004         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
1005         if (!new_page)
1006                 return NULL;
1007
1008         if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
1009                 put_page(new_page);
1010                 return NULL;
1011         }
1012         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
1013
1014         return new_page;
1015 }
1016
1017 static int
1018 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1019                pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1020                unsigned long end)
1021 {
1022         struct mm_struct *dst_mm = dst_vma->vm_mm;
1023         struct mm_struct *src_mm = src_vma->vm_mm;
1024         pte_t *orig_src_pte, *orig_dst_pte;
1025         pte_t *src_pte, *dst_pte;
1026         spinlock_t *src_ptl, *dst_ptl;
1027         int progress, ret = 0;
1028         int rss[NR_MM_COUNTERS];
1029         swp_entry_t entry = (swp_entry_t){0};
1030         struct page *prealloc = NULL;
1031
1032 again:
1033         progress = 0;
1034         init_rss_vec(rss);
1035
1036         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1037         if (!dst_pte) {
1038                 ret = -ENOMEM;
1039                 goto out;
1040         }
1041         src_pte = pte_offset_map(src_pmd, addr);
1042         src_ptl = pte_lockptr(src_mm, src_pmd);
1043         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1044         orig_src_pte = src_pte;
1045         orig_dst_pte = dst_pte;
1046         arch_enter_lazy_mmu_mode();
1047
1048         do {
1049                 /*
1050                  * We are holding two locks at this point - either of them
1051                  * could generate latencies in another task on another CPU.
1052                  */
1053                 if (progress >= 32) {
1054                         progress = 0;
1055                         if (need_resched() ||
1056                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1057                                 break;
1058                 }
1059                 if (pte_none(*src_pte)) {
1060                         progress++;
1061                         continue;
1062                 }
1063                 if (unlikely(!pte_present(*src_pte))) {
1064                         ret = copy_nonpresent_pte(dst_mm, src_mm,
1065                                                   dst_pte, src_pte,
1066                                                   dst_vma, src_vma,
1067                                                   addr, rss);
1068                         if (ret == -EIO) {
1069                                 entry = pte_to_swp_entry(*src_pte);
1070                                 break;
1071                         } else if (ret == -EBUSY) {
1072                                 break;
1073                         } else if (!ret) {
1074                                 progress += 8;
1075                                 continue;
1076                         }
1077
1078                         /*
1079                          * Device exclusive entry restored, continue by copying
1080                          * the now present pte.
1081                          */
1082                         WARN_ON_ONCE(ret != -ENOENT);
1083                 }
1084                 /* copy_present_pte() will clear `*prealloc' if consumed */
1085                 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1086                                        addr, rss, &prealloc);
1087                 /*
1088                  * If we need a pre-allocated page for this pte, drop the
1089                  * locks, allocate, and try again.
1090                  */
1091                 if (unlikely(ret == -EAGAIN))
1092                         break;
1093                 if (unlikely(prealloc)) {
1094                         /*
1095                          * pre-alloc page cannot be reused by next time so as
1096                          * to strictly follow mempolicy (e.g., alloc_page_vma()
1097                          * will allocate page according to address).  This
1098                          * could only happen if one pinned pte changed.
1099                          */
1100                         put_page(prealloc);
1101                         prealloc = NULL;
1102                 }
1103                 progress += 8;
1104         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1105
1106         arch_leave_lazy_mmu_mode();
1107         spin_unlock(src_ptl);
1108         pte_unmap(orig_src_pte);
1109         add_mm_rss_vec(dst_mm, rss);
1110         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1111         cond_resched();
1112
1113         if (ret == -EIO) {
1114                 VM_WARN_ON_ONCE(!entry.val);
1115                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1116                         ret = -ENOMEM;
1117                         goto out;
1118                 }
1119                 entry.val = 0;
1120         } else if (ret == -EBUSY) {
1121                 goto out;
1122         } else if (ret ==  -EAGAIN) {
1123                 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1124                 if (!prealloc)
1125                         return -ENOMEM;
1126         } else if (ret) {
1127                 VM_WARN_ON_ONCE(1);
1128         }
1129
1130         /* We've captured and resolved the error. Reset, try again. */
1131         ret = 0;
1132
1133         if (addr != end)
1134                 goto again;
1135 out:
1136         if (unlikely(prealloc))
1137                 put_page(prealloc);
1138         return ret;
1139 }
1140
1141 static inline int
1142 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1143                pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1144                unsigned long end)
1145 {
1146         struct mm_struct *dst_mm = dst_vma->vm_mm;
1147         struct mm_struct *src_mm = src_vma->vm_mm;
1148         pmd_t *src_pmd, *dst_pmd;
1149         unsigned long next;
1150
1151         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1152         if (!dst_pmd)
1153                 return -ENOMEM;
1154         src_pmd = pmd_offset(src_pud, addr);
1155         do {
1156                 next = pmd_addr_end(addr, end);
1157                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1158                         || pmd_devmap(*src_pmd)) {
1159                         int err;
1160                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1161                         err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1162                                             addr, dst_vma, src_vma);
1163                         if (err == -ENOMEM)
1164                                 return -ENOMEM;
1165                         if (!err)
1166                                 continue;
1167                         /* fall through */
1168                 }
1169                 if (pmd_none_or_clear_bad(src_pmd))
1170                         continue;
1171                 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1172                                    addr, next))
1173                         return -ENOMEM;
1174         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1175         return 0;
1176 }
1177
1178 static inline int
1179 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1180                p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1181                unsigned long end)
1182 {
1183         struct mm_struct *dst_mm = dst_vma->vm_mm;
1184         struct mm_struct *src_mm = src_vma->vm_mm;
1185         pud_t *src_pud, *dst_pud;
1186         unsigned long next;
1187
1188         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1189         if (!dst_pud)
1190                 return -ENOMEM;
1191         src_pud = pud_offset(src_p4d, addr);
1192         do {
1193                 next = pud_addr_end(addr, end);
1194                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1195                         int err;
1196
1197                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1198                         err = copy_huge_pud(dst_mm, src_mm,
1199                                             dst_pud, src_pud, addr, src_vma);
1200                         if (err == -ENOMEM)
1201                                 return -ENOMEM;
1202                         if (!err)
1203                                 continue;
1204                         /* fall through */
1205                 }
1206                 if (pud_none_or_clear_bad(src_pud))
1207                         continue;
1208                 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1209                                    addr, next))
1210                         return -ENOMEM;
1211         } while (dst_pud++, src_pud++, addr = next, addr != end);
1212         return 0;
1213 }
1214
1215 static inline int
1216 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1217                pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1218                unsigned long end)
1219 {
1220         struct mm_struct *dst_mm = dst_vma->vm_mm;
1221         p4d_t *src_p4d, *dst_p4d;
1222         unsigned long next;
1223
1224         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1225         if (!dst_p4d)
1226                 return -ENOMEM;
1227         src_p4d = p4d_offset(src_pgd, addr);
1228         do {
1229                 next = p4d_addr_end(addr, end);
1230                 if (p4d_none_or_clear_bad(src_p4d))
1231                         continue;
1232                 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1233                                    addr, next))
1234                         return -ENOMEM;
1235         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1236         return 0;
1237 }
1238
1239 /*
1240  * Return true if the vma needs to copy the pgtable during this fork().  Return
1241  * false when we can speed up fork() by allowing lazy page faults later until
1242  * when the child accesses the memory range.
1243  */
1244 static bool
1245 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1246 {
1247         /*
1248          * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1249          * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1250          * contains uffd-wp protection information, that's something we can't
1251          * retrieve from page cache, and skip copying will lose those info.
1252          */
1253         if (userfaultfd_wp(dst_vma))
1254                 return true;
1255
1256         if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1257                 return true;
1258
1259         if (src_vma->anon_vma)
1260                 return true;
1261
1262         /*
1263          * Don't copy ptes where a page fault will fill them correctly.  Fork
1264          * becomes much lighter when there are big shared or private readonly
1265          * mappings. The tradeoff is that copy_page_range is more efficient
1266          * than faulting.
1267          */
1268         return false;
1269 }
1270
1271 int
1272 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1273 {
1274         pgd_t *src_pgd, *dst_pgd;
1275         unsigned long next;
1276         unsigned long addr = src_vma->vm_start;
1277         unsigned long end = src_vma->vm_end;
1278         struct mm_struct *dst_mm = dst_vma->vm_mm;
1279         struct mm_struct *src_mm = src_vma->vm_mm;
1280         struct mmu_notifier_range range;
1281         bool is_cow;
1282         int ret;
1283
1284         if (!vma_needs_copy(dst_vma, src_vma))
1285                 return 0;
1286
1287         if (is_vm_hugetlb_page(src_vma))
1288                 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1289
1290         if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1291                 /*
1292                  * We do not free on error cases below as remove_vma
1293                  * gets called on error from higher level routine
1294                  */
1295                 ret = track_pfn_copy(src_vma);
1296                 if (ret)
1297                         return ret;
1298         }
1299
1300         /*
1301          * We need to invalidate the secondary MMU mappings only when
1302          * there could be a permission downgrade on the ptes of the
1303          * parent mm. And a permission downgrade will only happen if
1304          * is_cow_mapping() returns true.
1305          */
1306         is_cow = is_cow_mapping(src_vma->vm_flags);
1307
1308         if (is_cow) {
1309                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1310                                         0, src_vma, src_mm, addr, end);
1311                 mmu_notifier_invalidate_range_start(&range);
1312                 /*
1313                  * Disabling preemption is not needed for the write side, as
1314                  * the read side doesn't spin, but goes to the mmap_lock.
1315                  *
1316                  * Use the raw variant of the seqcount_t write API to avoid
1317                  * lockdep complaining about preemptibility.
1318                  */
1319                 mmap_assert_write_locked(src_mm);
1320                 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1321         }
1322
1323         ret = 0;
1324         dst_pgd = pgd_offset(dst_mm, addr);
1325         src_pgd = pgd_offset(src_mm, addr);
1326         do {
1327                 next = pgd_addr_end(addr, end);
1328                 if (pgd_none_or_clear_bad(src_pgd))
1329                         continue;
1330                 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1331                                             addr, next))) {
1332                         ret = -ENOMEM;
1333                         break;
1334                 }
1335         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1336
1337         if (is_cow) {
1338                 raw_write_seqcount_end(&src_mm->write_protect_seq);
1339                 mmu_notifier_invalidate_range_end(&range);
1340         }
1341         return ret;
1342 }
1343
1344 /*
1345  * Parameter block passed down to zap_pte_range in exceptional cases.
1346  */
1347 struct zap_details {
1348         struct folio *single_folio;     /* Locked folio to be unmapped */
1349         bool even_cows;                 /* Zap COWed private pages too? */
1350         zap_flags_t zap_flags;          /* Extra flags for zapping */
1351 };
1352
1353 /* Whether we should zap all COWed (private) pages too */
1354 static inline bool should_zap_cows(struct zap_details *details)
1355 {
1356         /* By default, zap all pages */
1357         if (!details)
1358                 return true;
1359
1360         /* Or, we zap COWed pages only if the caller wants to */
1361         return details->even_cows;
1362 }
1363
1364 /* Decides whether we should zap this page with the page pointer specified */
1365 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1366 {
1367         /* If we can make a decision without *page.. */
1368         if (should_zap_cows(details))
1369                 return true;
1370
1371         /* E.g. the caller passes NULL for the case of a zero page */
1372         if (!page)
1373                 return true;
1374
1375         /* Otherwise we should only zap non-anon pages */
1376         return !PageAnon(page);
1377 }
1378
1379 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1380 {
1381         if (!details)
1382                 return false;
1383
1384         return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1385 }
1386
1387 /*
1388  * This function makes sure that we'll replace the none pte with an uffd-wp
1389  * swap special pte marker when necessary. Must be with the pgtable lock held.
1390  */
1391 static inline void
1392 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1393                               unsigned long addr, pte_t *pte,
1394                               struct zap_details *details, pte_t pteval)
1395 {
1396         if (zap_drop_file_uffd_wp(details))
1397                 return;
1398
1399         pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1400 }
1401
1402 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1403                                 struct vm_area_struct *vma, pmd_t *pmd,
1404                                 unsigned long addr, unsigned long end,
1405                                 struct zap_details *details)
1406 {
1407         struct mm_struct *mm = tlb->mm;
1408         int force_flush = 0;
1409         int rss[NR_MM_COUNTERS];
1410         spinlock_t *ptl;
1411         pte_t *start_pte;
1412         pte_t *pte;
1413         swp_entry_t entry;
1414
1415         tlb_change_page_size(tlb, PAGE_SIZE);
1416 again:
1417         init_rss_vec(rss);
1418         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1419         pte = start_pte;
1420         flush_tlb_batched_pending(mm);
1421         arch_enter_lazy_mmu_mode();
1422         do {
1423                 pte_t ptent = *pte;
1424                 struct page *page;
1425
1426                 if (pte_none(ptent))
1427                         continue;
1428
1429                 if (need_resched())
1430                         break;
1431
1432                 if (pte_present(ptent)) {
1433                         page = vm_normal_page(vma, addr, ptent);
1434                         if (unlikely(!should_zap_page(details, page)))
1435                                 continue;
1436                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1437                                                         tlb->fullmm);
1438                         tlb_remove_tlb_entry(tlb, pte, addr);
1439                         zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1440                                                       ptent);
1441                         if (unlikely(!page))
1442                                 continue;
1443
1444                         if (!PageAnon(page)) {
1445                                 if (pte_dirty(ptent)) {
1446                                         force_flush = 1;
1447                                         set_page_dirty(page);
1448                                 }
1449                                 if (pte_young(ptent) &&
1450                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1451                                         mark_page_accessed(page);
1452                         }
1453                         rss[mm_counter(page)]--;
1454                         page_remove_rmap(page, vma, false);
1455                         if (unlikely(page_mapcount(page) < 0))
1456                                 print_bad_pte(vma, addr, ptent, page);
1457                         if (unlikely(__tlb_remove_page(tlb, page))) {
1458                                 force_flush = 1;
1459                                 addr += PAGE_SIZE;
1460                                 break;
1461                         }
1462                         continue;
1463                 }
1464
1465                 entry = pte_to_swp_entry(ptent);
1466                 if (is_device_private_entry(entry) ||
1467                     is_device_exclusive_entry(entry)) {
1468                         page = pfn_swap_entry_to_page(entry);
1469                         if (unlikely(!should_zap_page(details, page)))
1470                                 continue;
1471                         /*
1472                          * Both device private/exclusive mappings should only
1473                          * work with anonymous page so far, so we don't need to
1474                          * consider uffd-wp bit when zap. For more information,
1475                          * see zap_install_uffd_wp_if_needed().
1476                          */
1477                         WARN_ON_ONCE(!vma_is_anonymous(vma));
1478                         rss[mm_counter(page)]--;
1479                         if (is_device_private_entry(entry))
1480                                 page_remove_rmap(page, vma, false);
1481                         put_page(page);
1482                 } else if (!non_swap_entry(entry)) {
1483                         /* Genuine swap entry, hence a private anon page */
1484                         if (!should_zap_cows(details))
1485                                 continue;
1486                         rss[MM_SWAPENTS]--;
1487                         if (unlikely(!free_swap_and_cache(entry)))
1488                                 print_bad_pte(vma, addr, ptent, NULL);
1489                 } else if (is_migration_entry(entry)) {
1490                         page = pfn_swap_entry_to_page(entry);
1491                         if (!should_zap_page(details, page))
1492                                 continue;
1493                         rss[mm_counter(page)]--;
1494                 } else if (pte_marker_entry_uffd_wp(entry)) {
1495                         /* Only drop the uffd-wp marker if explicitly requested */
1496                         if (!zap_drop_file_uffd_wp(details))
1497                                 continue;
1498                 } else if (is_hwpoison_entry(entry) ||
1499                            is_swapin_error_entry(entry)) {
1500                         if (!should_zap_cows(details))
1501                                 continue;
1502                 } else {
1503                         /* We should have covered all the swap entry types */
1504                         WARN_ON_ONCE(1);
1505                 }
1506                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1507                 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1508         } while (pte++, addr += PAGE_SIZE, addr != end);
1509
1510         add_mm_rss_vec(mm, rss);
1511         arch_leave_lazy_mmu_mode();
1512
1513         /* Do the actual TLB flush before dropping ptl */
1514         if (force_flush)
1515                 tlb_flush_mmu_tlbonly(tlb);
1516         pte_unmap_unlock(start_pte, ptl);
1517
1518         /*
1519          * If we forced a TLB flush (either due to running out of
1520          * batch buffers or because we needed to flush dirty TLB
1521          * entries before releasing the ptl), free the batched
1522          * memory too. Restart if we didn't do everything.
1523          */
1524         if (force_flush) {
1525                 force_flush = 0;
1526                 tlb_flush_mmu(tlb);
1527         }
1528
1529         if (addr != end) {
1530                 cond_resched();
1531                 goto again;
1532         }
1533
1534         return addr;
1535 }
1536
1537 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1538                                 struct vm_area_struct *vma, pud_t *pud,
1539                                 unsigned long addr, unsigned long end,
1540                                 struct zap_details *details)
1541 {
1542         pmd_t *pmd;
1543         unsigned long next;
1544
1545         pmd = pmd_offset(pud, addr);
1546         do {
1547                 next = pmd_addr_end(addr, end);
1548                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1549                         if (next - addr != HPAGE_PMD_SIZE)
1550                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1551                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1552                                 goto next;
1553                         /* fall through */
1554                 } else if (details && details->single_folio &&
1555                            folio_test_pmd_mappable(details->single_folio) &&
1556                            next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1557                         spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1558                         /*
1559                          * Take and drop THP pmd lock so that we cannot return
1560                          * prematurely, while zap_huge_pmd() has cleared *pmd,
1561                          * but not yet decremented compound_mapcount().
1562                          */
1563                         spin_unlock(ptl);
1564                 }
1565
1566                 /*
1567                  * Here there can be other concurrent MADV_DONTNEED or
1568                  * trans huge page faults running, and if the pmd is
1569                  * none or trans huge it can change under us. This is
1570                  * because MADV_DONTNEED holds the mmap_lock in read
1571                  * mode.
1572                  */
1573                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1574                         goto next;
1575                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1576 next:
1577                 cond_resched();
1578         } while (pmd++, addr = next, addr != end);
1579
1580         return addr;
1581 }
1582
1583 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1584                                 struct vm_area_struct *vma, p4d_t *p4d,
1585                                 unsigned long addr, unsigned long end,
1586                                 struct zap_details *details)
1587 {
1588         pud_t *pud;
1589         unsigned long next;
1590
1591         pud = pud_offset(p4d, addr);
1592         do {
1593                 next = pud_addr_end(addr, end);
1594                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1595                         if (next - addr != HPAGE_PUD_SIZE) {
1596                                 mmap_assert_locked(tlb->mm);
1597                                 split_huge_pud(vma, pud, addr);
1598                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1599                                 goto next;
1600                         /* fall through */
1601                 }
1602                 if (pud_none_or_clear_bad(pud))
1603                         continue;
1604                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1605 next:
1606                 cond_resched();
1607         } while (pud++, addr = next, addr != end);
1608
1609         return addr;
1610 }
1611
1612 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1613                                 struct vm_area_struct *vma, pgd_t *pgd,
1614                                 unsigned long addr, unsigned long end,
1615                                 struct zap_details *details)
1616 {
1617         p4d_t *p4d;
1618         unsigned long next;
1619
1620         p4d = p4d_offset(pgd, addr);
1621         do {
1622                 next = p4d_addr_end(addr, end);
1623                 if (p4d_none_or_clear_bad(p4d))
1624                         continue;
1625                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1626         } while (p4d++, addr = next, addr != end);
1627
1628         return addr;
1629 }
1630
1631 void unmap_page_range(struct mmu_gather *tlb,
1632                              struct vm_area_struct *vma,
1633                              unsigned long addr, unsigned long end,
1634                              struct zap_details *details)
1635 {
1636         pgd_t *pgd;
1637         unsigned long next;
1638
1639         BUG_ON(addr >= end);
1640         tlb_start_vma(tlb, vma);
1641         pgd = pgd_offset(vma->vm_mm, addr);
1642         do {
1643                 next = pgd_addr_end(addr, end);
1644                 if (pgd_none_or_clear_bad(pgd))
1645                         continue;
1646                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1647         } while (pgd++, addr = next, addr != end);
1648         tlb_end_vma(tlb, vma);
1649 }
1650
1651
1652 static void unmap_single_vma(struct mmu_gather *tlb,
1653                 struct vm_area_struct *vma, unsigned long start_addr,
1654                 unsigned long end_addr,
1655                 struct zap_details *details)
1656 {
1657         unsigned long start = max(vma->vm_start, start_addr);
1658         unsigned long end;
1659
1660         if (start >= vma->vm_end)
1661                 return;
1662         end = min(vma->vm_end, end_addr);
1663         if (end <= vma->vm_start)
1664                 return;
1665
1666         if (vma->vm_file)
1667                 uprobe_munmap(vma, start, end);
1668
1669         if (unlikely(vma->vm_flags & VM_PFNMAP))
1670                 untrack_pfn(vma, 0, 0);
1671
1672         if (start != end) {
1673                 if (unlikely(is_vm_hugetlb_page(vma))) {
1674                         /*
1675                          * It is undesirable to test vma->vm_file as it
1676                          * should be non-null for valid hugetlb area.
1677                          * However, vm_file will be NULL in the error
1678                          * cleanup path of mmap_region. When
1679                          * hugetlbfs ->mmap method fails,
1680                          * mmap_region() nullifies vma->vm_file
1681                          * before calling this function to clean up.
1682                          * Since no pte has actually been setup, it is
1683                          * safe to do nothing in this case.
1684                          */
1685                         if (vma->vm_file) {
1686                                 zap_flags_t zap_flags = details ?
1687                                     details->zap_flags : 0;
1688                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1689                                 __unmap_hugepage_range_final(tlb, vma, start, end,
1690                                                              NULL, zap_flags);
1691                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1692                         }
1693                 } else
1694                         unmap_page_range(tlb, vma, start, end, details);
1695         }
1696 }
1697
1698 /**
1699  * unmap_vmas - unmap a range of memory covered by a list of vma's
1700  * @tlb: address of the caller's struct mmu_gather
1701  * @vma: the starting vma
1702  * @start_addr: virtual address at which to start unmapping
1703  * @end_addr: virtual address at which to end unmapping
1704  *
1705  * Unmap all pages in the vma list.
1706  *
1707  * Only addresses between `start' and `end' will be unmapped.
1708  *
1709  * The VMA list must be sorted in ascending virtual address order.
1710  *
1711  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1712  * range after unmap_vmas() returns.  So the only responsibility here is to
1713  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1714  * drops the lock and schedules.
1715  */
1716 void unmap_vmas(struct mmu_gather *tlb,
1717                 struct vm_area_struct *vma, unsigned long start_addr,
1718                 unsigned long end_addr)
1719 {
1720         struct mmu_notifier_range range;
1721         struct zap_details details = {
1722                 .zap_flags = ZAP_FLAG_DROP_MARKER,
1723                 /* Careful - we need to zap private pages too! */
1724                 .even_cows = true,
1725         };
1726
1727         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1728                                 start_addr, end_addr);
1729         mmu_notifier_invalidate_range_start(&range);
1730         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1731                 unmap_single_vma(tlb, vma, start_addr, end_addr, &details);
1732         mmu_notifier_invalidate_range_end(&range);
1733 }
1734
1735 /**
1736  * zap_page_range - remove user pages in a given range
1737  * @vma: vm_area_struct holding the applicable pages
1738  * @start: starting address of pages to zap
1739  * @size: number of bytes to zap
1740  *
1741  * Caller must protect the VMA list
1742  */
1743 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1744                 unsigned long size)
1745 {
1746         struct mmu_notifier_range range;
1747         struct mmu_gather tlb;
1748
1749         lru_add_drain();
1750         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1751                                 start, start + size);
1752         tlb_gather_mmu(&tlb, vma->vm_mm);
1753         update_hiwater_rss(vma->vm_mm);
1754         mmu_notifier_invalidate_range_start(&range);
1755         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1756                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1757         mmu_notifier_invalidate_range_end(&range);
1758         tlb_finish_mmu(&tlb);
1759 }
1760
1761 /**
1762  * zap_page_range_single - remove user pages in a given range
1763  * @vma: vm_area_struct holding the applicable pages
1764  * @address: starting address of pages to zap
1765  * @size: number of bytes to zap
1766  * @details: details of shared cache invalidation
1767  *
1768  * The range must fit into one VMA.
1769  */
1770 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1771                 unsigned long size, struct zap_details *details)
1772 {
1773         struct mmu_notifier_range range;
1774         struct mmu_gather tlb;
1775
1776         lru_add_drain();
1777         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1778                                 address, address + size);
1779         tlb_gather_mmu(&tlb, vma->vm_mm);
1780         update_hiwater_rss(vma->vm_mm);
1781         mmu_notifier_invalidate_range_start(&range);
1782         unmap_single_vma(&tlb, vma, address, range.end, details);
1783         mmu_notifier_invalidate_range_end(&range);
1784         tlb_finish_mmu(&tlb);
1785 }
1786
1787 /**
1788  * zap_vma_ptes - remove ptes mapping the vma
1789  * @vma: vm_area_struct holding ptes to be zapped
1790  * @address: starting address of pages to zap
1791  * @size: number of bytes to zap
1792  *
1793  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1794  *
1795  * The entire address range must be fully contained within the vma.
1796  *
1797  */
1798 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1799                 unsigned long size)
1800 {
1801         if (!range_in_vma(vma, address, address + size) ||
1802                         !(vma->vm_flags & VM_PFNMAP))
1803                 return;
1804
1805         zap_page_range_single(vma, address, size, NULL);
1806 }
1807 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1808
1809 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1810 {
1811         pgd_t *pgd;
1812         p4d_t *p4d;
1813         pud_t *pud;
1814         pmd_t *pmd;
1815
1816         pgd = pgd_offset(mm, addr);
1817         p4d = p4d_alloc(mm, pgd, addr);
1818         if (!p4d)
1819                 return NULL;
1820         pud = pud_alloc(mm, p4d, addr);
1821         if (!pud)
1822                 return NULL;
1823         pmd = pmd_alloc(mm, pud, addr);
1824         if (!pmd)
1825                 return NULL;
1826
1827         VM_BUG_ON(pmd_trans_huge(*pmd));
1828         return pmd;
1829 }
1830
1831 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1832                         spinlock_t **ptl)
1833 {
1834         pmd_t *pmd = walk_to_pmd(mm, addr);
1835
1836         if (!pmd)
1837                 return NULL;
1838         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1839 }
1840
1841 static int validate_page_before_insert(struct page *page)
1842 {
1843         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1844                 return -EINVAL;
1845         flush_dcache_page(page);
1846         return 0;
1847 }
1848
1849 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1850                         unsigned long addr, struct page *page, pgprot_t prot)
1851 {
1852         if (!pte_none(*pte))
1853                 return -EBUSY;
1854         /* Ok, finally just insert the thing.. */
1855         get_page(page);
1856         inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
1857         page_add_file_rmap(page, vma, false);
1858         set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1859         return 0;
1860 }
1861
1862 /*
1863  * This is the old fallback for page remapping.
1864  *
1865  * For historical reasons, it only allows reserved pages. Only
1866  * old drivers should use this, and they needed to mark their
1867  * pages reserved for the old functions anyway.
1868  */
1869 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1870                         struct page *page, pgprot_t prot)
1871 {
1872         int retval;
1873         pte_t *pte;
1874         spinlock_t *ptl;
1875
1876         retval = validate_page_before_insert(page);
1877         if (retval)
1878                 goto out;
1879         retval = -ENOMEM;
1880         pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1881         if (!pte)
1882                 goto out;
1883         retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1884         pte_unmap_unlock(pte, ptl);
1885 out:
1886         return retval;
1887 }
1888
1889 #ifdef pte_index
1890 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1891                         unsigned long addr, struct page *page, pgprot_t prot)
1892 {
1893         int err;
1894
1895         if (!page_count(page))
1896                 return -EINVAL;
1897         err = validate_page_before_insert(page);
1898         if (err)
1899                 return err;
1900         return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1901 }
1902
1903 /* insert_pages() amortizes the cost of spinlock operations
1904  * when inserting pages in a loop. Arch *must* define pte_index.
1905  */
1906 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1907                         struct page **pages, unsigned long *num, pgprot_t prot)
1908 {
1909         pmd_t *pmd = NULL;
1910         pte_t *start_pte, *pte;
1911         spinlock_t *pte_lock;
1912         struct mm_struct *const mm = vma->vm_mm;
1913         unsigned long curr_page_idx = 0;
1914         unsigned long remaining_pages_total = *num;
1915         unsigned long pages_to_write_in_pmd;
1916         int ret;
1917 more:
1918         ret = -EFAULT;
1919         pmd = walk_to_pmd(mm, addr);
1920         if (!pmd)
1921                 goto out;
1922
1923         pages_to_write_in_pmd = min_t(unsigned long,
1924                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1925
1926         /* Allocate the PTE if necessary; takes PMD lock once only. */
1927         ret = -ENOMEM;
1928         if (pte_alloc(mm, pmd))
1929                 goto out;
1930
1931         while (pages_to_write_in_pmd) {
1932                 int pte_idx = 0;
1933                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1934
1935                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1936                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1937                         int err = insert_page_in_batch_locked(vma, pte,
1938                                 addr, pages[curr_page_idx], prot);
1939                         if (unlikely(err)) {
1940                                 pte_unmap_unlock(start_pte, pte_lock);
1941                                 ret = err;
1942                                 remaining_pages_total -= pte_idx;
1943                                 goto out;
1944                         }
1945                         addr += PAGE_SIZE;
1946                         ++curr_page_idx;
1947                 }
1948                 pte_unmap_unlock(start_pte, pte_lock);
1949                 pages_to_write_in_pmd -= batch_size;
1950                 remaining_pages_total -= batch_size;
1951         }
1952         if (remaining_pages_total)
1953                 goto more;
1954         ret = 0;
1955 out:
1956         *num = remaining_pages_total;
1957         return ret;
1958 }
1959 #endif  /* ifdef pte_index */
1960
1961 /**
1962  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1963  * @vma: user vma to map to
1964  * @addr: target start user address of these pages
1965  * @pages: source kernel pages
1966  * @num: in: number of pages to map. out: number of pages that were *not*
1967  * mapped. (0 means all pages were successfully mapped).
1968  *
1969  * Preferred over vm_insert_page() when inserting multiple pages.
1970  *
1971  * In case of error, we may have mapped a subset of the provided
1972  * pages. It is the caller's responsibility to account for this case.
1973  *
1974  * The same restrictions apply as in vm_insert_page().
1975  */
1976 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1977                         struct page **pages, unsigned long *num)
1978 {
1979 #ifdef pte_index
1980         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1981
1982         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1983                 return -EFAULT;
1984         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1985                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1986                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1987                 vma->vm_flags |= VM_MIXEDMAP;
1988         }
1989         /* Defer page refcount checking till we're about to map that page. */
1990         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1991 #else
1992         unsigned long idx = 0, pgcount = *num;
1993         int err = -EINVAL;
1994
1995         for (; idx < pgcount; ++idx) {
1996                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1997                 if (err)
1998                         break;
1999         }
2000         *num = pgcount - idx;
2001         return err;
2002 #endif  /* ifdef pte_index */
2003 }
2004 EXPORT_SYMBOL(vm_insert_pages);
2005
2006 /**
2007  * vm_insert_page - insert single page into user vma
2008  * @vma: user vma to map to
2009  * @addr: target user address of this page
2010  * @page: source kernel page
2011  *
2012  * This allows drivers to insert individual pages they've allocated
2013  * into a user vma.
2014  *
2015  * The page has to be a nice clean _individual_ kernel allocation.
2016  * If you allocate a compound page, you need to have marked it as
2017  * such (__GFP_COMP), or manually just split the page up yourself
2018  * (see split_page()).
2019  *
2020  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2021  * took an arbitrary page protection parameter. This doesn't allow
2022  * that. Your vma protection will have to be set up correctly, which
2023  * means that if you want a shared writable mapping, you'd better
2024  * ask for a shared writable mapping!
2025  *
2026  * The page does not need to be reserved.
2027  *
2028  * Usually this function is called from f_op->mmap() handler
2029  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2030  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2031  * function from other places, for example from page-fault handler.
2032  *
2033  * Return: %0 on success, negative error code otherwise.
2034  */
2035 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2036                         struct page *page)
2037 {
2038         if (addr < vma->vm_start || addr >= vma->vm_end)
2039                 return -EFAULT;
2040         if (!page_count(page))
2041                 return -EINVAL;
2042         if (!(vma->vm_flags & VM_MIXEDMAP)) {
2043                 BUG_ON(mmap_read_trylock(vma->vm_mm));
2044                 BUG_ON(vma->vm_flags & VM_PFNMAP);
2045                 vma->vm_flags |= VM_MIXEDMAP;
2046         }
2047         return insert_page(vma, addr, page, vma->vm_page_prot);
2048 }
2049 EXPORT_SYMBOL(vm_insert_page);
2050
2051 /*
2052  * __vm_map_pages - maps range of kernel pages into user vma
2053  * @vma: user vma to map to
2054  * @pages: pointer to array of source kernel pages
2055  * @num: number of pages in page array
2056  * @offset: user's requested vm_pgoff
2057  *
2058  * This allows drivers to map range of kernel pages into a user vma.
2059  *
2060  * Return: 0 on success and error code otherwise.
2061  */
2062 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2063                                 unsigned long num, unsigned long offset)
2064 {
2065         unsigned long count = vma_pages(vma);
2066         unsigned long uaddr = vma->vm_start;
2067         int ret, i;
2068
2069         /* Fail if the user requested offset is beyond the end of the object */
2070         if (offset >= num)
2071                 return -ENXIO;
2072
2073         /* Fail if the user requested size exceeds available object size */
2074         if (count > num - offset)
2075                 return -ENXIO;
2076
2077         for (i = 0; i < count; i++) {
2078                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2079                 if (ret < 0)
2080                         return ret;
2081                 uaddr += PAGE_SIZE;
2082         }
2083
2084         return 0;
2085 }
2086
2087 /**
2088  * vm_map_pages - maps range of kernel pages starts with non zero offset
2089  * @vma: user vma to map to
2090  * @pages: pointer to array of source kernel pages
2091  * @num: number of pages in page array
2092  *
2093  * Maps an object consisting of @num pages, catering for the user's
2094  * requested vm_pgoff
2095  *
2096  * If we fail to insert any page into the vma, the function will return
2097  * immediately leaving any previously inserted pages present.  Callers
2098  * from the mmap handler may immediately return the error as their caller
2099  * will destroy the vma, removing any successfully inserted pages. Other
2100  * callers should make their own arrangements for calling unmap_region().
2101  *
2102  * Context: Process context. Called by mmap handlers.
2103  * Return: 0 on success and error code otherwise.
2104  */
2105 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2106                                 unsigned long num)
2107 {
2108         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2109 }
2110 EXPORT_SYMBOL(vm_map_pages);
2111
2112 /**
2113  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2114  * @vma: user vma to map to
2115  * @pages: pointer to array of source kernel pages
2116  * @num: number of pages in page array
2117  *
2118  * Similar to vm_map_pages(), except that it explicitly sets the offset
2119  * to 0. This function is intended for the drivers that did not consider
2120  * vm_pgoff.
2121  *
2122  * Context: Process context. Called by mmap handlers.
2123  * Return: 0 on success and error code otherwise.
2124  */
2125 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2126                                 unsigned long num)
2127 {
2128         return __vm_map_pages(vma, pages, num, 0);
2129 }
2130 EXPORT_SYMBOL(vm_map_pages_zero);
2131
2132 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2133                         pfn_t pfn, pgprot_t prot, bool mkwrite)
2134 {
2135         struct mm_struct *mm = vma->vm_mm;
2136         pte_t *pte, entry;
2137         spinlock_t *ptl;
2138
2139         pte = get_locked_pte(mm, addr, &ptl);
2140         if (!pte)
2141                 return VM_FAULT_OOM;
2142         if (!pte_none(*pte)) {
2143                 if (mkwrite) {
2144                         /*
2145                          * For read faults on private mappings the PFN passed
2146                          * in may not match the PFN we have mapped if the
2147                          * mapped PFN is a writeable COW page.  In the mkwrite
2148                          * case we are creating a writable PTE for a shared
2149                          * mapping and we expect the PFNs to match. If they
2150                          * don't match, we are likely racing with block
2151                          * allocation and mapping invalidation so just skip the
2152                          * update.
2153                          */
2154                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2155                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2156                                 goto out_unlock;
2157                         }
2158                         entry = pte_mkyoung(*pte);
2159                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2160                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2161                                 update_mmu_cache(vma, addr, pte);
2162                 }
2163                 goto out_unlock;
2164         }
2165
2166         /* Ok, finally just insert the thing.. */
2167         if (pfn_t_devmap(pfn))
2168                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2169         else
2170                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2171
2172         if (mkwrite) {
2173                 entry = pte_mkyoung(entry);
2174                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2175         }
2176
2177         set_pte_at(mm, addr, pte, entry);
2178         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2179
2180 out_unlock:
2181         pte_unmap_unlock(pte, ptl);
2182         return VM_FAULT_NOPAGE;
2183 }
2184
2185 /**
2186  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2187  * @vma: user vma to map to
2188  * @addr: target user address of this page
2189  * @pfn: source kernel pfn
2190  * @pgprot: pgprot flags for the inserted page
2191  *
2192  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2193  * to override pgprot on a per-page basis.
2194  *
2195  * This only makes sense for IO mappings, and it makes no sense for
2196  * COW mappings.  In general, using multiple vmas is preferable;
2197  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2198  * impractical.
2199  *
2200  * See vmf_insert_mixed_prot() for a discussion of the implication of using
2201  * a value of @pgprot different from that of @vma->vm_page_prot.
2202  *
2203  * Context: Process context.  May allocate using %GFP_KERNEL.
2204  * Return: vm_fault_t value.
2205  */
2206 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2207                         unsigned long pfn, pgprot_t pgprot)
2208 {
2209         /*
2210          * Technically, architectures with pte_special can avoid all these
2211          * restrictions (same for remap_pfn_range).  However we would like
2212          * consistency in testing and feature parity among all, so we should
2213          * try to keep these invariants in place for everybody.
2214          */
2215         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2216         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2217                                                 (VM_PFNMAP|VM_MIXEDMAP));
2218         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2219         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2220
2221         if (addr < vma->vm_start || addr >= vma->vm_end)
2222                 return VM_FAULT_SIGBUS;
2223
2224         if (!pfn_modify_allowed(pfn, pgprot))
2225                 return VM_FAULT_SIGBUS;
2226
2227         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2228
2229         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2230                         false);
2231 }
2232 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2233
2234 /**
2235  * vmf_insert_pfn - insert single pfn into user vma
2236  * @vma: user vma to map to
2237  * @addr: target user address of this page
2238  * @pfn: source kernel pfn
2239  *
2240  * Similar to vm_insert_page, this allows drivers to insert individual pages
2241  * they've allocated into a user vma. Same comments apply.
2242  *
2243  * This function should only be called from a vm_ops->fault handler, and
2244  * in that case the handler should return the result of this function.
2245  *
2246  * vma cannot be a COW mapping.
2247  *
2248  * As this is called only for pages that do not currently exist, we
2249  * do not need to flush old virtual caches or the TLB.
2250  *
2251  * Context: Process context.  May allocate using %GFP_KERNEL.
2252  * Return: vm_fault_t value.
2253  */
2254 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2255                         unsigned long pfn)
2256 {
2257         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2258 }
2259 EXPORT_SYMBOL(vmf_insert_pfn);
2260
2261 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2262 {
2263         /* these checks mirror the abort conditions in vm_normal_page */
2264         if (vma->vm_flags & VM_MIXEDMAP)
2265                 return true;
2266         if (pfn_t_devmap(pfn))
2267                 return true;
2268         if (pfn_t_special(pfn))
2269                 return true;
2270         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2271                 return true;
2272         return false;
2273 }
2274
2275 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2276                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2277                 bool mkwrite)
2278 {
2279         int err;
2280
2281         BUG_ON(!vm_mixed_ok(vma, pfn));
2282
2283         if (addr < vma->vm_start || addr >= vma->vm_end)
2284                 return VM_FAULT_SIGBUS;
2285
2286         track_pfn_insert(vma, &pgprot, pfn);
2287
2288         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2289                 return VM_FAULT_SIGBUS;
2290
2291         /*
2292          * If we don't have pte special, then we have to use the pfn_valid()
2293          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2294          * refcount the page if pfn_valid is true (hence insert_page rather
2295          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2296          * without pte special, it would there be refcounted as a normal page.
2297          */
2298         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2299             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2300                 struct page *page;
2301
2302                 /*
2303                  * At this point we are committed to insert_page()
2304                  * regardless of whether the caller specified flags that
2305                  * result in pfn_t_has_page() == false.
2306                  */
2307                 page = pfn_to_page(pfn_t_to_pfn(pfn));
2308                 err = insert_page(vma, addr, page, pgprot);
2309         } else {
2310                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2311         }
2312
2313         if (err == -ENOMEM)
2314                 return VM_FAULT_OOM;
2315         if (err < 0 && err != -EBUSY)
2316                 return VM_FAULT_SIGBUS;
2317
2318         return VM_FAULT_NOPAGE;
2319 }
2320
2321 /**
2322  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2323  * @vma: user vma to map to
2324  * @addr: target user address of this page
2325  * @pfn: source kernel pfn
2326  * @pgprot: pgprot flags for the inserted page
2327  *
2328  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2329  * to override pgprot on a per-page basis.
2330  *
2331  * Typically this function should be used by drivers to set caching- and
2332  * encryption bits different than those of @vma->vm_page_prot, because
2333  * the caching- or encryption mode may not be known at mmap() time.
2334  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2335  * to set caching and encryption bits for those vmas (except for COW pages).
2336  * This is ensured by core vm only modifying these page table entries using
2337  * functions that don't touch caching- or encryption bits, using pte_modify()
2338  * if needed. (See for example mprotect()).
2339  * Also when new page-table entries are created, this is only done using the
2340  * fault() callback, and never using the value of vma->vm_page_prot,
2341  * except for page-table entries that point to anonymous pages as the result
2342  * of COW.
2343  *
2344  * Context: Process context.  May allocate using %GFP_KERNEL.
2345  * Return: vm_fault_t value.
2346  */
2347 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2348                                  pfn_t pfn, pgprot_t pgprot)
2349 {
2350         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2351 }
2352 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2353
2354 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2355                 pfn_t pfn)
2356 {
2357         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2358 }
2359 EXPORT_SYMBOL(vmf_insert_mixed);
2360
2361 /*
2362  *  If the insertion of PTE failed because someone else already added a
2363  *  different entry in the mean time, we treat that as success as we assume
2364  *  the same entry was actually inserted.
2365  */
2366 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2367                 unsigned long addr, pfn_t pfn)
2368 {
2369         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2370 }
2371 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2372
2373 /*
2374  * maps a range of physical memory into the requested pages. the old
2375  * mappings are removed. any references to nonexistent pages results
2376  * in null mappings (currently treated as "copy-on-access")
2377  */
2378 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2379                         unsigned long addr, unsigned long end,
2380                         unsigned long pfn, pgprot_t prot)
2381 {
2382         pte_t *pte, *mapped_pte;
2383         spinlock_t *ptl;
2384         int err = 0;
2385
2386         mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2387         if (!pte)
2388                 return -ENOMEM;
2389         arch_enter_lazy_mmu_mode();
2390         do {
2391                 BUG_ON(!pte_none(*pte));
2392                 if (!pfn_modify_allowed(pfn, prot)) {
2393                         err = -EACCES;
2394                         break;
2395                 }
2396                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2397                 pfn++;
2398         } while (pte++, addr += PAGE_SIZE, addr != end);
2399         arch_leave_lazy_mmu_mode();
2400         pte_unmap_unlock(mapped_pte, ptl);
2401         return err;
2402 }
2403
2404 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2405                         unsigned long addr, unsigned long end,
2406                         unsigned long pfn, pgprot_t prot)
2407 {
2408         pmd_t *pmd;
2409         unsigned long next;
2410         int err;
2411
2412         pfn -= addr >> PAGE_SHIFT;
2413         pmd = pmd_alloc(mm, pud, addr);
2414         if (!pmd)
2415                 return -ENOMEM;
2416         VM_BUG_ON(pmd_trans_huge(*pmd));
2417         do {
2418                 next = pmd_addr_end(addr, end);
2419                 err = remap_pte_range(mm, pmd, addr, next,
2420                                 pfn + (addr >> PAGE_SHIFT), prot);
2421                 if (err)
2422                         return err;
2423         } while (pmd++, addr = next, addr != end);
2424         return 0;
2425 }
2426
2427 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2428                         unsigned long addr, unsigned long end,
2429                         unsigned long pfn, pgprot_t prot)
2430 {
2431         pud_t *pud;
2432         unsigned long next;
2433         int err;
2434
2435         pfn -= addr >> PAGE_SHIFT;
2436         pud = pud_alloc(mm, p4d, addr);
2437         if (!pud)
2438                 return -ENOMEM;
2439         do {
2440                 next = pud_addr_end(addr, end);
2441                 err = remap_pmd_range(mm, pud, addr, next,
2442                                 pfn + (addr >> PAGE_SHIFT), prot);
2443                 if (err)
2444                         return err;
2445         } while (pud++, addr = next, addr != end);
2446         return 0;
2447 }
2448
2449 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2450                         unsigned long addr, unsigned long end,
2451                         unsigned long pfn, pgprot_t prot)
2452 {
2453         p4d_t *p4d;
2454         unsigned long next;
2455         int err;
2456
2457         pfn -= addr >> PAGE_SHIFT;
2458         p4d = p4d_alloc(mm, pgd, addr);
2459         if (!p4d)
2460                 return -ENOMEM;
2461         do {
2462                 next = p4d_addr_end(addr, end);
2463                 err = remap_pud_range(mm, p4d, addr, next,
2464                                 pfn + (addr >> PAGE_SHIFT), prot);
2465                 if (err)
2466                         return err;
2467         } while (p4d++, addr = next, addr != end);
2468         return 0;
2469 }
2470
2471 /*
2472  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2473  * must have pre-validated the caching bits of the pgprot_t.
2474  */
2475 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2476                 unsigned long pfn, unsigned long size, pgprot_t prot)
2477 {
2478         pgd_t *pgd;
2479         unsigned long next;
2480         unsigned long end = addr + PAGE_ALIGN(size);
2481         struct mm_struct *mm = vma->vm_mm;
2482         int err;
2483
2484         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2485                 return -EINVAL;
2486
2487         /*
2488          * Physically remapped pages are special. Tell the
2489          * rest of the world about it:
2490          *   VM_IO tells people not to look at these pages
2491          *      (accesses can have side effects).
2492          *   VM_PFNMAP tells the core MM that the base pages are just
2493          *      raw PFN mappings, and do not have a "struct page" associated
2494          *      with them.
2495          *   VM_DONTEXPAND
2496          *      Disable vma merging and expanding with mremap().
2497          *   VM_DONTDUMP
2498          *      Omit vma from core dump, even when VM_IO turned off.
2499          *
2500          * There's a horrible special case to handle copy-on-write
2501          * behaviour that some programs depend on. We mark the "original"
2502          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2503          * See vm_normal_page() for details.
2504          */
2505         if (is_cow_mapping(vma->vm_flags)) {
2506                 if (addr != vma->vm_start || end != vma->vm_end)
2507                         return -EINVAL;
2508                 vma->vm_pgoff = pfn;
2509         }
2510
2511         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2512
2513         BUG_ON(addr >= end);
2514         pfn -= addr >> PAGE_SHIFT;
2515         pgd = pgd_offset(mm, addr);
2516         flush_cache_range(vma, addr, end);
2517         do {
2518                 next = pgd_addr_end(addr, end);
2519                 err = remap_p4d_range(mm, pgd, addr, next,
2520                                 pfn + (addr >> PAGE_SHIFT), prot);
2521                 if (err)
2522                         return err;
2523         } while (pgd++, addr = next, addr != end);
2524
2525         return 0;
2526 }
2527
2528 /**
2529  * remap_pfn_range - remap kernel memory to userspace
2530  * @vma: user vma to map to
2531  * @addr: target page aligned user address to start at
2532  * @pfn: page frame number of kernel physical memory address
2533  * @size: size of mapping area
2534  * @prot: page protection flags for this mapping
2535  *
2536  * Note: this is only safe if the mm semaphore is held when called.
2537  *
2538  * Return: %0 on success, negative error code otherwise.
2539  */
2540 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2541                     unsigned long pfn, unsigned long size, pgprot_t prot)
2542 {
2543         int err;
2544
2545         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2546         if (err)
2547                 return -EINVAL;
2548
2549         err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2550         if (err)
2551                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2552         return err;
2553 }
2554 EXPORT_SYMBOL(remap_pfn_range);
2555
2556 /**
2557  * vm_iomap_memory - remap memory to userspace
2558  * @vma: user vma to map to
2559  * @start: start of the physical memory to be mapped
2560  * @len: size of area
2561  *
2562  * This is a simplified io_remap_pfn_range() for common driver use. The
2563  * driver just needs to give us the physical memory range to be mapped,
2564  * we'll figure out the rest from the vma information.
2565  *
2566  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2567  * whatever write-combining details or similar.
2568  *
2569  * Return: %0 on success, negative error code otherwise.
2570  */
2571 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2572 {
2573         unsigned long vm_len, pfn, pages;
2574
2575         /* Check that the physical memory area passed in looks valid */
2576         if (start + len < start)
2577                 return -EINVAL;
2578         /*
2579          * You *really* shouldn't map things that aren't page-aligned,
2580          * but we've historically allowed it because IO memory might
2581          * just have smaller alignment.
2582          */
2583         len += start & ~PAGE_MASK;
2584         pfn = start >> PAGE_SHIFT;
2585         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2586         if (pfn + pages < pfn)
2587                 return -EINVAL;
2588
2589         /* We start the mapping 'vm_pgoff' pages into the area */
2590         if (vma->vm_pgoff > pages)
2591                 return -EINVAL;
2592         pfn += vma->vm_pgoff;
2593         pages -= vma->vm_pgoff;
2594
2595         /* Can we fit all of the mapping? */
2596         vm_len = vma->vm_end - vma->vm_start;
2597         if (vm_len >> PAGE_SHIFT > pages)
2598                 return -EINVAL;
2599
2600         /* Ok, let it rip */
2601         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2602 }
2603 EXPORT_SYMBOL(vm_iomap_memory);
2604
2605 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2606                                      unsigned long addr, unsigned long end,
2607                                      pte_fn_t fn, void *data, bool create,
2608                                      pgtbl_mod_mask *mask)
2609 {
2610         pte_t *pte, *mapped_pte;
2611         int err = 0;
2612         spinlock_t *ptl;
2613
2614         if (create) {
2615                 mapped_pte = pte = (mm == &init_mm) ?
2616                         pte_alloc_kernel_track(pmd, addr, mask) :
2617                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2618                 if (!pte)
2619                         return -ENOMEM;
2620         } else {
2621                 mapped_pte = pte = (mm == &init_mm) ?
2622                         pte_offset_kernel(pmd, addr) :
2623                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2624         }
2625
2626         BUG_ON(pmd_huge(*pmd));
2627
2628         arch_enter_lazy_mmu_mode();
2629
2630         if (fn) {
2631                 do {
2632                         if (create || !pte_none(*pte)) {
2633                                 err = fn(pte++, addr, data);
2634                                 if (err)
2635                                         break;
2636                         }
2637                 } while (addr += PAGE_SIZE, addr != end);
2638         }
2639         *mask |= PGTBL_PTE_MODIFIED;
2640
2641         arch_leave_lazy_mmu_mode();
2642
2643         if (mm != &init_mm)
2644                 pte_unmap_unlock(mapped_pte, ptl);
2645         return err;
2646 }
2647
2648 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2649                                      unsigned long addr, unsigned long end,
2650                                      pte_fn_t fn, void *data, bool create,
2651                                      pgtbl_mod_mask *mask)
2652 {
2653         pmd_t *pmd;
2654         unsigned long next;
2655         int err = 0;
2656
2657         BUG_ON(pud_huge(*pud));
2658
2659         if (create) {
2660                 pmd = pmd_alloc_track(mm, pud, addr, mask);
2661                 if (!pmd)
2662                         return -ENOMEM;
2663         } else {
2664                 pmd = pmd_offset(pud, addr);
2665         }
2666         do {
2667                 next = pmd_addr_end(addr, end);
2668                 if (pmd_none(*pmd) && !create)
2669                         continue;
2670                 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2671                         return -EINVAL;
2672                 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2673                         if (!create)
2674                                 continue;
2675                         pmd_clear_bad(pmd);
2676                 }
2677                 err = apply_to_pte_range(mm, pmd, addr, next,
2678                                          fn, data, create, mask);
2679                 if (err)
2680                         break;
2681         } while (pmd++, addr = next, addr != end);
2682
2683         return err;
2684 }
2685
2686 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2687                                      unsigned long addr, unsigned long end,
2688                                      pte_fn_t fn, void *data, bool create,
2689                                      pgtbl_mod_mask *mask)
2690 {
2691         pud_t *pud;
2692         unsigned long next;
2693         int err = 0;
2694
2695         if (create) {
2696                 pud = pud_alloc_track(mm, p4d, addr, mask);
2697                 if (!pud)
2698                         return -ENOMEM;
2699         } else {
2700                 pud = pud_offset(p4d, addr);
2701         }
2702         do {
2703                 next = pud_addr_end(addr, end);
2704                 if (pud_none(*pud) && !create)
2705                         continue;
2706                 if (WARN_ON_ONCE(pud_leaf(*pud)))
2707                         return -EINVAL;
2708                 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2709                         if (!create)
2710                                 continue;
2711                         pud_clear_bad(pud);
2712                 }
2713                 err = apply_to_pmd_range(mm, pud, addr, next,
2714                                          fn, data, create, mask);
2715                 if (err)
2716                         break;
2717         } while (pud++, addr = next, addr != end);
2718
2719         return err;
2720 }
2721
2722 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2723                                      unsigned long addr, unsigned long end,
2724                                      pte_fn_t fn, void *data, bool create,
2725                                      pgtbl_mod_mask *mask)
2726 {
2727         p4d_t *p4d;
2728         unsigned long next;
2729         int err = 0;
2730
2731         if (create) {
2732                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2733                 if (!p4d)
2734                         return -ENOMEM;
2735         } else {
2736                 p4d = p4d_offset(pgd, addr);
2737         }
2738         do {
2739                 next = p4d_addr_end(addr, end);
2740                 if (p4d_none(*p4d) && !create)
2741                         continue;
2742                 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2743                         return -EINVAL;
2744                 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2745                         if (!create)
2746                                 continue;
2747                         p4d_clear_bad(p4d);
2748                 }
2749                 err = apply_to_pud_range(mm, p4d, addr, next,
2750                                          fn, data, create, mask);
2751                 if (err)
2752                         break;
2753         } while (p4d++, addr = next, addr != end);
2754
2755         return err;
2756 }
2757
2758 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2759                                  unsigned long size, pte_fn_t fn,
2760                                  void *data, bool create)
2761 {
2762         pgd_t *pgd;
2763         unsigned long start = addr, next;
2764         unsigned long end = addr + size;
2765         pgtbl_mod_mask mask = 0;
2766         int err = 0;
2767
2768         if (WARN_ON(addr >= end))
2769                 return -EINVAL;
2770
2771         pgd = pgd_offset(mm, addr);
2772         do {
2773                 next = pgd_addr_end(addr, end);
2774                 if (pgd_none(*pgd) && !create)
2775                         continue;
2776                 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2777                         return -EINVAL;
2778                 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2779                         if (!create)
2780                                 continue;
2781                         pgd_clear_bad(pgd);
2782                 }
2783                 err = apply_to_p4d_range(mm, pgd, addr, next,
2784                                          fn, data, create, &mask);
2785                 if (err)
2786                         break;
2787         } while (pgd++, addr = next, addr != end);
2788
2789         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2790                 arch_sync_kernel_mappings(start, start + size);
2791
2792         return err;
2793 }
2794
2795 /*
2796  * Scan a region of virtual memory, filling in page tables as necessary
2797  * and calling a provided function on each leaf page table.
2798  */
2799 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2800                         unsigned long size, pte_fn_t fn, void *data)
2801 {
2802         return __apply_to_page_range(mm, addr, size, fn, data, true);
2803 }
2804 EXPORT_SYMBOL_GPL(apply_to_page_range);
2805
2806 /*
2807  * Scan a region of virtual memory, calling a provided function on
2808  * each leaf page table where it exists.
2809  *
2810  * Unlike apply_to_page_range, this does _not_ fill in page tables
2811  * where they are absent.
2812  */
2813 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2814                                  unsigned long size, pte_fn_t fn, void *data)
2815 {
2816         return __apply_to_page_range(mm, addr, size, fn, data, false);
2817 }
2818 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2819
2820 /*
2821  * handle_pte_fault chooses page fault handler according to an entry which was
2822  * read non-atomically.  Before making any commitment, on those architectures
2823  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2824  * parts, do_swap_page must check under lock before unmapping the pte and
2825  * proceeding (but do_wp_page is only called after already making such a check;
2826  * and do_anonymous_page can safely check later on).
2827  */
2828 static inline int pte_unmap_same(struct vm_fault *vmf)
2829 {
2830         int same = 1;
2831 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2832         if (sizeof(pte_t) > sizeof(unsigned long)) {
2833                 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2834                 spin_lock(ptl);
2835                 same = pte_same(*vmf->pte, vmf->orig_pte);
2836                 spin_unlock(ptl);
2837         }
2838 #endif
2839         pte_unmap(vmf->pte);
2840         vmf->pte = NULL;
2841         return same;
2842 }
2843
2844 static inline bool __wp_page_copy_user(struct page *dst, struct page *src,
2845                                        struct vm_fault *vmf)
2846 {
2847         bool ret;
2848         void *kaddr;
2849         void __user *uaddr;
2850         bool locked = false;
2851         struct vm_area_struct *vma = vmf->vma;
2852         struct mm_struct *mm = vma->vm_mm;
2853         unsigned long addr = vmf->address;
2854
2855         if (likely(src)) {
2856                 copy_user_highpage(dst, src, addr, vma);
2857                 return true;
2858         }
2859
2860         /*
2861          * If the source page was a PFN mapping, we don't have
2862          * a "struct page" for it. We do a best-effort copy by
2863          * just copying from the original user address. If that
2864          * fails, we just zero-fill it. Live with it.
2865          */
2866         kaddr = kmap_atomic(dst);
2867         uaddr = (void __user *)(addr & PAGE_MASK);
2868
2869         /*
2870          * On architectures with software "accessed" bits, we would
2871          * take a double page fault, so mark it accessed here.
2872          */
2873         if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2874                 pte_t entry;
2875
2876                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2877                 locked = true;
2878                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2879                         /*
2880                          * Other thread has already handled the fault
2881                          * and update local tlb only
2882                          */
2883                         update_mmu_tlb(vma, addr, vmf->pte);
2884                         ret = false;
2885                         goto pte_unlock;
2886                 }
2887
2888                 entry = pte_mkyoung(vmf->orig_pte);
2889                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2890                         update_mmu_cache(vma, addr, vmf->pte);
2891         }
2892
2893         /*
2894          * This really shouldn't fail, because the page is there
2895          * in the page tables. But it might just be unreadable,
2896          * in which case we just give up and fill the result with
2897          * zeroes.
2898          */
2899         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2900                 if (locked)
2901                         goto warn;
2902
2903                 /* Re-validate under PTL if the page is still mapped */
2904                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2905                 locked = true;
2906                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2907                         /* The PTE changed under us, update local tlb */
2908                         update_mmu_tlb(vma, addr, vmf->pte);
2909                         ret = false;
2910                         goto pte_unlock;
2911                 }
2912
2913                 /*
2914                  * The same page can be mapped back since last copy attempt.
2915                  * Try to copy again under PTL.
2916                  */
2917                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2918                         /*
2919                          * Give a warn in case there can be some obscure
2920                          * use-case
2921                          */
2922 warn:
2923                         WARN_ON_ONCE(1);
2924                         clear_page(kaddr);
2925                 }
2926         }
2927
2928         ret = true;
2929
2930 pte_unlock:
2931         if (locked)
2932                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2933         kunmap_atomic(kaddr);
2934         flush_dcache_page(dst);
2935
2936         return ret;
2937 }
2938
2939 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2940 {
2941         struct file *vm_file = vma->vm_file;
2942
2943         if (vm_file)
2944                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2945
2946         /*
2947          * Special mappings (e.g. VDSO) do not have any file so fake
2948          * a default GFP_KERNEL for them.
2949          */
2950         return GFP_KERNEL;
2951 }
2952
2953 /*
2954  * Notify the address space that the page is about to become writable so that
2955  * it can prohibit this or wait for the page to get into an appropriate state.
2956  *
2957  * We do this without the lock held, so that it can sleep if it needs to.
2958  */
2959 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2960 {
2961         vm_fault_t ret;
2962         struct page *page = vmf->page;
2963         unsigned int old_flags = vmf->flags;
2964
2965         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2966
2967         if (vmf->vma->vm_file &&
2968             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2969                 return VM_FAULT_SIGBUS;
2970
2971         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2972         /* Restore original flags so that caller is not surprised */
2973         vmf->flags = old_flags;
2974         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2975                 return ret;
2976         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2977                 lock_page(page);
2978                 if (!page->mapping) {
2979                         unlock_page(page);
2980                         return 0; /* retry */
2981                 }
2982                 ret |= VM_FAULT_LOCKED;
2983         } else
2984                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2985         return ret;
2986 }
2987
2988 /*
2989  * Handle dirtying of a page in shared file mapping on a write fault.
2990  *
2991  * The function expects the page to be locked and unlocks it.
2992  */
2993 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2994 {
2995         struct vm_area_struct *vma = vmf->vma;
2996         struct address_space *mapping;
2997         struct page *page = vmf->page;
2998         bool dirtied;
2999         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3000
3001         dirtied = set_page_dirty(page);
3002         VM_BUG_ON_PAGE(PageAnon(page), page);
3003         /*
3004          * Take a local copy of the address_space - page.mapping may be zeroed
3005          * by truncate after unlock_page().   The address_space itself remains
3006          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
3007          * release semantics to prevent the compiler from undoing this copying.
3008          */
3009         mapping = page_rmapping(page);
3010         unlock_page(page);
3011
3012         if (!page_mkwrite)
3013                 file_update_time(vma->vm_file);
3014
3015         /*
3016          * Throttle page dirtying rate down to writeback speed.
3017          *
3018          * mapping may be NULL here because some device drivers do not
3019          * set page.mapping but still dirty their pages
3020          *
3021          * Drop the mmap_lock before waiting on IO, if we can. The file
3022          * is pinning the mapping, as per above.
3023          */
3024         if ((dirtied || page_mkwrite) && mapping) {
3025                 struct file *fpin;
3026
3027                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3028                 balance_dirty_pages_ratelimited(mapping);
3029                 if (fpin) {
3030                         fput(fpin);
3031                         return VM_FAULT_COMPLETED;
3032                 }
3033         }
3034
3035         return 0;
3036 }
3037
3038 /*
3039  * Handle write page faults for pages that can be reused in the current vma
3040  *
3041  * This can happen either due to the mapping being with the VM_SHARED flag,
3042  * or due to us being the last reference standing to the page. In either
3043  * case, all we need to do here is to mark the page as writable and update
3044  * any related book-keeping.
3045  */
3046 static inline void wp_page_reuse(struct vm_fault *vmf)
3047         __releases(vmf->ptl)
3048 {
3049         struct vm_area_struct *vma = vmf->vma;
3050         struct page *page = vmf->page;
3051         pte_t entry;
3052
3053         VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3054         VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3055
3056         /*
3057          * Clear the pages cpupid information as the existing
3058          * information potentially belongs to a now completely
3059          * unrelated process.
3060          */
3061         if (page)
3062                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3063
3064         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3065         entry = pte_mkyoung(vmf->orig_pte);
3066         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3067         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3068                 update_mmu_cache(vma, vmf->address, vmf->pte);
3069         pte_unmap_unlock(vmf->pte, vmf->ptl);
3070         count_vm_event(PGREUSE);
3071 }
3072
3073 /*
3074  * Handle the case of a page which we actually need to copy to a new page,
3075  * either due to COW or unsharing.
3076  *
3077  * Called with mmap_lock locked and the old page referenced, but
3078  * without the ptl held.
3079  *
3080  * High level logic flow:
3081  *
3082  * - Allocate a page, copy the content of the old page to the new one.
3083  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3084  * - Take the PTL. If the pte changed, bail out and release the allocated page
3085  * - If the pte is still the way we remember it, update the page table and all
3086  *   relevant references. This includes dropping the reference the page-table
3087  *   held to the old page, as well as updating the rmap.
3088  * - In any case, unlock the PTL and drop the reference we took to the old page.
3089  */
3090 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3091 {
3092         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3093         struct vm_area_struct *vma = vmf->vma;
3094         struct mm_struct *mm = vma->vm_mm;
3095         struct page *old_page = vmf->page;
3096         struct page *new_page = NULL;
3097         pte_t entry;
3098         int page_copied = 0;
3099         struct mmu_notifier_range range;
3100
3101         delayacct_wpcopy_start();
3102
3103         if (unlikely(anon_vma_prepare(vma)))
3104                 goto oom;
3105
3106         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3107                 new_page = alloc_zeroed_user_highpage_movable(vma,
3108                                                               vmf->address);
3109                 if (!new_page)
3110                         goto oom;
3111         } else {
3112                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3113                                 vmf->address);
3114                 if (!new_page)
3115                         goto oom;
3116
3117                 if (!__wp_page_copy_user(new_page, old_page, vmf)) {
3118                         /*
3119                          * COW failed, if the fault was solved by other,
3120                          * it's fine. If not, userspace would re-fault on
3121                          * the same address and we will handle the fault
3122                          * from the second attempt.
3123                          */
3124                         put_page(new_page);
3125                         if (old_page)
3126                                 put_page(old_page);
3127
3128                         delayacct_wpcopy_end();
3129                         return 0;
3130                 }
3131         }
3132
3133         if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
3134                 goto oom_free_new;
3135         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3136
3137         __SetPageUptodate(new_page);
3138
3139         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3140                                 vmf->address & PAGE_MASK,
3141                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3142         mmu_notifier_invalidate_range_start(&range);
3143
3144         /*
3145          * Re-check the pte - we dropped the lock
3146          */
3147         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3148         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3149                 if (old_page) {
3150                         if (!PageAnon(old_page)) {
3151                                 dec_mm_counter_fast(mm,
3152                                                 mm_counter_file(old_page));
3153                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
3154                         }
3155                 } else {
3156                         inc_mm_counter_fast(mm, MM_ANONPAGES);
3157                 }
3158                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3159                 entry = mk_pte(new_page, vma->vm_page_prot);
3160                 entry = pte_sw_mkyoung(entry);
3161                 if (unlikely(unshare)) {
3162                         if (pte_soft_dirty(vmf->orig_pte))
3163                                 entry = pte_mksoft_dirty(entry);
3164                         if (pte_uffd_wp(vmf->orig_pte))
3165                                 entry = pte_mkuffd_wp(entry);
3166                 } else {
3167                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3168                 }
3169
3170                 /*
3171                  * Clear the pte entry and flush it first, before updating the
3172                  * pte with the new entry, to keep TLBs on different CPUs in
3173                  * sync. This code used to set the new PTE then flush TLBs, but
3174                  * that left a window where the new PTE could be loaded into
3175                  * some TLBs while the old PTE remains in others.
3176                  */
3177                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3178                 page_add_new_anon_rmap(new_page, vma, vmf->address);
3179                 lru_cache_add_inactive_or_unevictable(new_page, vma);
3180                 /*
3181                  * We call the notify macro here because, when using secondary
3182                  * mmu page tables (such as kvm shadow page tables), we want the
3183                  * new page to be mapped directly into the secondary page table.
3184                  */
3185                 BUG_ON(unshare && pte_write(entry));
3186                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3187                 update_mmu_cache(vma, vmf->address, vmf->pte);
3188                 if (old_page) {
3189                         /*
3190                          * Only after switching the pte to the new page may
3191                          * we remove the mapcount here. Otherwise another
3192                          * process may come and find the rmap count decremented
3193                          * before the pte is switched to the new page, and
3194                          * "reuse" the old page writing into it while our pte
3195                          * here still points into it and can be read by other
3196                          * threads.
3197                          *
3198                          * The critical issue is to order this
3199                          * page_remove_rmap with the ptp_clear_flush above.
3200                          * Those stores are ordered by (if nothing else,)
3201                          * the barrier present in the atomic_add_negative
3202                          * in page_remove_rmap.
3203                          *
3204                          * Then the TLB flush in ptep_clear_flush ensures that
3205                          * no process can access the old page before the
3206                          * decremented mapcount is visible. And the old page
3207                          * cannot be reused until after the decremented
3208                          * mapcount is visible. So transitively, TLBs to
3209                          * old page will be flushed before it can be reused.
3210                          */
3211                         page_remove_rmap(old_page, vma, false);
3212                 }
3213
3214                 /* Free the old page.. */
3215                 new_page = old_page;
3216                 page_copied = 1;
3217         } else {
3218                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3219         }
3220
3221         if (new_page)
3222                 put_page(new_page);
3223
3224         pte_unmap_unlock(vmf->pte, vmf->ptl);
3225         /*
3226          * No need to double call mmu_notifier->invalidate_range() callback as
3227          * the above ptep_clear_flush_notify() did already call it.
3228          */
3229         mmu_notifier_invalidate_range_only_end(&range);
3230         if (old_page) {
3231                 if (page_copied)
3232                         free_swap_cache(old_page);
3233                 put_page(old_page);
3234         }
3235
3236         delayacct_wpcopy_end();
3237         return (page_copied && !unshare) ? VM_FAULT_WRITE : 0;
3238 oom_free_new:
3239         put_page(new_page);
3240 oom:
3241         if (old_page)
3242                 put_page(old_page);
3243
3244         delayacct_wpcopy_end();
3245         return VM_FAULT_OOM;
3246 }
3247
3248 /**
3249  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3250  *                        writeable once the page is prepared
3251  *
3252  * @vmf: structure describing the fault
3253  *
3254  * This function handles all that is needed to finish a write page fault in a
3255  * shared mapping due to PTE being read-only once the mapped page is prepared.
3256  * It handles locking of PTE and modifying it.
3257  *
3258  * The function expects the page to be locked or other protection against
3259  * concurrent faults / writeback (such as DAX radix tree locks).
3260  *
3261  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3262  * we acquired PTE lock.
3263  */
3264 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3265 {
3266         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3267         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3268                                        &vmf->ptl);
3269         /*
3270          * We might have raced with another page fault while we released the
3271          * pte_offset_map_lock.
3272          */
3273         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3274                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3275                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3276                 return VM_FAULT_NOPAGE;
3277         }
3278         wp_page_reuse(vmf);
3279         return 0;
3280 }
3281
3282 /*
3283  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3284  * mapping
3285  */
3286 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3287 {
3288         struct vm_area_struct *vma = vmf->vma;
3289
3290         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3291                 vm_fault_t ret;
3292
3293                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3294                 vmf->flags |= FAULT_FLAG_MKWRITE;
3295                 ret = vma->vm_ops->pfn_mkwrite(vmf);
3296                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3297                         return ret;
3298                 return finish_mkwrite_fault(vmf);
3299         }
3300         wp_page_reuse(vmf);
3301         return VM_FAULT_WRITE;
3302 }
3303
3304 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3305         __releases(vmf->ptl)
3306 {
3307         struct vm_area_struct *vma = vmf->vma;
3308         vm_fault_t ret = VM_FAULT_WRITE;
3309
3310         get_page(vmf->page);
3311
3312         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3313                 vm_fault_t tmp;
3314
3315                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3316                 tmp = do_page_mkwrite(vmf);
3317                 if (unlikely(!tmp || (tmp &
3318                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3319                         put_page(vmf->page);
3320                         return tmp;
3321                 }
3322                 tmp = finish_mkwrite_fault(vmf);
3323                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3324                         unlock_page(vmf->page);
3325                         put_page(vmf->page);
3326                         return tmp;
3327                 }
3328         } else {
3329                 wp_page_reuse(vmf);
3330                 lock_page(vmf->page);
3331         }
3332         ret |= fault_dirty_shared_page(vmf);
3333         put_page(vmf->page);
3334
3335         return ret;
3336 }
3337
3338 /*
3339  * This routine handles present pages, when
3340  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3341  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3342  *   (FAULT_FLAG_UNSHARE)
3343  *
3344  * It is done by copying the page to a new address and decrementing the
3345  * shared-page counter for the old page.
3346  *
3347  * Note that this routine assumes that the protection checks have been
3348  * done by the caller (the low-level page fault routine in most cases).
3349  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3350  * done any necessary COW.
3351  *
3352  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3353  * though the page will change only once the write actually happens. This
3354  * avoids a few races, and potentially makes it more efficient.
3355  *
3356  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3357  * but allow concurrent faults), with pte both mapped and locked.
3358  * We return with mmap_lock still held, but pte unmapped and unlocked.
3359  */
3360 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3361         __releases(vmf->ptl)
3362 {
3363         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3364         struct vm_area_struct *vma = vmf->vma;
3365
3366         VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE));
3367         VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE));
3368
3369         if (likely(!unshare)) {
3370                 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3371                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3372                         return handle_userfault(vmf, VM_UFFD_WP);
3373                 }
3374
3375                 /*
3376                  * Userfaultfd write-protect can defer flushes. Ensure the TLB
3377                  * is flushed in this case before copying.
3378                  */
3379                 if (unlikely(userfaultfd_wp(vmf->vma) &&
3380                              mm_tlb_flush_pending(vmf->vma->vm_mm)))
3381                         flush_tlb_page(vmf->vma, vmf->address);
3382         }
3383
3384         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3385         if (!vmf->page) {
3386                 if (unlikely(unshare)) {
3387                         /* No anonymous page -> nothing to do. */
3388                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3389                         return 0;
3390                 }
3391
3392                 /*
3393                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3394                  * VM_PFNMAP VMA.
3395                  *
3396                  * We should not cow pages in a shared writeable mapping.
3397                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
3398                  */
3399                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3400                                      (VM_WRITE|VM_SHARED))
3401                         return wp_pfn_shared(vmf);
3402
3403                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3404                 return wp_page_copy(vmf);
3405         }
3406
3407         /*
3408          * Take out anonymous pages first, anonymous shared vmas are
3409          * not dirty accountable.
3410          */
3411         if (PageAnon(vmf->page)) {
3412                 struct page *page = vmf->page;
3413
3414                 /*
3415                  * If the page is exclusive to this process we must reuse the
3416                  * page without further checks.
3417                  */
3418                 if (PageAnonExclusive(page))
3419                         goto reuse;
3420
3421                 /*
3422                  * We have to verify under page lock: these early checks are
3423                  * just an optimization to avoid locking the page and freeing
3424                  * the swapcache if there is little hope that we can reuse.
3425                  *
3426                  * PageKsm() doesn't necessarily raise the page refcount.
3427                  */
3428                 if (PageKsm(page) || page_count(page) > 3)
3429                         goto copy;
3430                 if (!PageLRU(page))
3431                         /*
3432                          * Note: We cannot easily detect+handle references from
3433                          * remote LRU pagevecs or references to PageLRU() pages.
3434                          */
3435                         lru_add_drain();
3436                 if (page_count(page) > 1 + PageSwapCache(page))
3437                         goto copy;
3438                 if (!trylock_page(page))
3439                         goto copy;
3440                 if (PageSwapCache(page))
3441                         try_to_free_swap(page);
3442                 if (PageKsm(page) || page_count(page) != 1) {
3443                         unlock_page(page);
3444                         goto copy;
3445                 }
3446                 /*
3447                  * Ok, we've got the only page reference from our mapping
3448                  * and the page is locked, it's dark out, and we're wearing
3449                  * sunglasses. Hit it.
3450                  */
3451                 page_move_anon_rmap(page, vma);
3452                 unlock_page(page);
3453 reuse:
3454                 if (unlikely(unshare)) {
3455                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3456                         return 0;
3457                 }
3458                 wp_page_reuse(vmf);
3459                 return VM_FAULT_WRITE;
3460         } else if (unshare) {
3461                 /* No anonymous page -> nothing to do. */
3462                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3463                 return 0;
3464         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3465                                         (VM_WRITE|VM_SHARED))) {
3466                 return wp_page_shared(vmf);
3467         }
3468 copy:
3469         /*
3470          * Ok, we need to copy. Oh, well..
3471          */
3472         get_page(vmf->page);
3473
3474         pte_unmap_unlock(vmf->pte, vmf->ptl);
3475 #ifdef CONFIG_KSM
3476         if (PageKsm(vmf->page))
3477                 count_vm_event(COW_KSM);
3478 #endif
3479         return wp_page_copy(vmf);
3480 }
3481
3482 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3483                 unsigned long start_addr, unsigned long end_addr,
3484                 struct zap_details *details)
3485 {
3486         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3487 }
3488
3489 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3490                                             pgoff_t first_index,
3491                                             pgoff_t last_index,
3492                                             struct zap_details *details)
3493 {
3494         struct vm_area_struct *vma;
3495         pgoff_t vba, vea, zba, zea;
3496
3497         vma_interval_tree_foreach(vma, root, first_index, last_index) {
3498                 vba = vma->vm_pgoff;
3499                 vea = vba + vma_pages(vma) - 1;
3500                 zba = max(first_index, vba);
3501                 zea = min(last_index, vea);
3502
3503                 unmap_mapping_range_vma(vma,
3504                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3505                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3506                                 details);
3507         }
3508 }
3509
3510 /**
3511  * unmap_mapping_folio() - Unmap single folio from processes.
3512  * @folio: The locked folio to be unmapped.
3513  *
3514  * Unmap this folio from any userspace process which still has it mmaped.
3515  * Typically, for efficiency, the range of nearby pages has already been
3516  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3517  * truncation or invalidation holds the lock on a folio, it may find that
3518  * the page has been remapped again: and then uses unmap_mapping_folio()
3519  * to unmap it finally.
3520  */
3521 void unmap_mapping_folio(struct folio *folio)
3522 {
3523         struct address_space *mapping = folio->mapping;
3524         struct zap_details details = { };
3525         pgoff_t first_index;
3526         pgoff_t last_index;
3527
3528         VM_BUG_ON(!folio_test_locked(folio));
3529
3530         first_index = folio->index;
3531         last_index = folio->index + folio_nr_pages(folio) - 1;
3532
3533         details.even_cows = false;
3534         details.single_folio = folio;
3535         details.zap_flags = ZAP_FLAG_DROP_MARKER;
3536
3537         i_mmap_lock_read(mapping);
3538         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3539                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3540                                          last_index, &details);
3541         i_mmap_unlock_read(mapping);
3542 }
3543
3544 /**
3545  * unmap_mapping_pages() - Unmap pages from processes.
3546  * @mapping: The address space containing pages to be unmapped.
3547  * @start: Index of first page to be unmapped.
3548  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3549  * @even_cows: Whether to unmap even private COWed pages.
3550  *
3551  * Unmap the pages in this address space from any userspace process which
3552  * has them mmaped.  Generally, you want to remove COWed pages as well when
3553  * a file is being truncated, but not when invalidating pages from the page
3554  * cache.
3555  */
3556 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3557                 pgoff_t nr, bool even_cows)
3558 {
3559         struct zap_details details = { };
3560         pgoff_t first_index = start;
3561         pgoff_t last_index = start + nr - 1;
3562
3563         details.even_cows = even_cows;
3564         if (last_index < first_index)
3565                 last_index = ULONG_MAX;
3566
3567         i_mmap_lock_read(mapping);
3568         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3569                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3570                                          last_index, &details);
3571         i_mmap_unlock_read(mapping);
3572 }
3573 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3574
3575 /**
3576  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3577  * address_space corresponding to the specified byte range in the underlying
3578  * file.
3579  *
3580  * @mapping: the address space containing mmaps to be unmapped.
3581  * @holebegin: byte in first page to unmap, relative to the start of
3582  * the underlying file.  This will be rounded down to a PAGE_SIZE
3583  * boundary.  Note that this is different from truncate_pagecache(), which
3584  * must keep the partial page.  In contrast, we must get rid of
3585  * partial pages.
3586  * @holelen: size of prospective hole in bytes.  This will be rounded
3587  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3588  * end of the file.
3589  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3590  * but 0 when invalidating pagecache, don't throw away private data.
3591  */
3592 void unmap_mapping_range(struct address_space *mapping,
3593                 loff_t const holebegin, loff_t const holelen, int even_cows)
3594 {
3595         pgoff_t hba = holebegin >> PAGE_SHIFT;
3596         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3597
3598         /* Check for overflow. */
3599         if (sizeof(holelen) > sizeof(hlen)) {
3600                 long long holeend =
3601                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3602                 if (holeend & ~(long long)ULONG_MAX)
3603                         hlen = ULONG_MAX - hba + 1;
3604         }
3605
3606         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3607 }
3608 EXPORT_SYMBOL(unmap_mapping_range);
3609
3610 /*
3611  * Restore a potential device exclusive pte to a working pte entry
3612  */
3613 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3614 {
3615         struct page *page = vmf->page;
3616         struct vm_area_struct *vma = vmf->vma;
3617         struct mmu_notifier_range range;
3618
3619         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags))
3620                 return VM_FAULT_RETRY;
3621         mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3622                                 vma->vm_mm, vmf->address & PAGE_MASK,
3623                                 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3624         mmu_notifier_invalidate_range_start(&range);
3625
3626         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3627                                 &vmf->ptl);
3628         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3629                 restore_exclusive_pte(vma, page, vmf->address, vmf->pte);
3630
3631         pte_unmap_unlock(vmf->pte, vmf->ptl);
3632         unlock_page(page);
3633
3634         mmu_notifier_invalidate_range_end(&range);
3635         return 0;
3636 }
3637
3638 static inline bool should_try_to_free_swap(struct page *page,
3639                                            struct vm_area_struct *vma,
3640                                            unsigned int fault_flags)
3641 {
3642         if (!PageSwapCache(page))
3643                 return false;
3644         if (mem_cgroup_swap_full(page) || (vma->vm_flags & VM_LOCKED) ||
3645             PageMlocked(page))
3646                 return true;
3647         /*
3648          * If we want to map a page that's in the swapcache writable, we
3649          * have to detect via the refcount if we're really the exclusive
3650          * user. Try freeing the swapcache to get rid of the swapcache
3651          * reference only in case it's likely that we'll be the exlusive user.
3652          */
3653         return (fault_flags & FAULT_FLAG_WRITE) && !PageKsm(page) &&
3654                 page_count(page) == 2;
3655 }
3656
3657 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3658 {
3659         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3660                                        vmf->address, &vmf->ptl);
3661         /*
3662          * Be careful so that we will only recover a special uffd-wp pte into a
3663          * none pte.  Otherwise it means the pte could have changed, so retry.
3664          */
3665         if (is_pte_marker(*vmf->pte))
3666                 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3667         pte_unmap_unlock(vmf->pte, vmf->ptl);
3668         return 0;
3669 }
3670
3671 /*
3672  * This is actually a page-missing access, but with uffd-wp special pte
3673  * installed.  It means this pte was wr-protected before being unmapped.
3674  */
3675 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3676 {
3677         /*
3678          * Just in case there're leftover special ptes even after the region
3679          * got unregistered - we can simply clear them.  We can also do that
3680          * proactively when e.g. when we do UFFDIO_UNREGISTER upon some uffd-wp
3681          * ranges, but it should be more efficient to be done lazily here.
3682          */
3683         if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma)))
3684                 return pte_marker_clear(vmf);
3685
3686         /* do_fault() can handle pte markers too like none pte */
3687         return do_fault(vmf);
3688 }
3689
3690 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3691 {
3692         swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3693         unsigned long marker = pte_marker_get(entry);
3694
3695         /*
3696          * PTE markers should always be with file-backed memories, and the
3697          * marker should never be empty.  If anything weird happened, the best
3698          * thing to do is to kill the process along with its mm.
3699          */
3700         if (WARN_ON_ONCE(vma_is_anonymous(vmf->vma) || !marker))
3701                 return VM_FAULT_SIGBUS;
3702
3703         if (pte_marker_entry_uffd_wp(entry))
3704                 return pte_marker_handle_uffd_wp(vmf);
3705
3706         /* This is an unknown pte marker */
3707         return VM_FAULT_SIGBUS;
3708 }
3709
3710 /*
3711  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3712  * but allow concurrent faults), and pte mapped but not yet locked.
3713  * We return with pte unmapped and unlocked.
3714  *
3715  * We return with the mmap_lock locked or unlocked in the same cases
3716  * as does filemap_fault().
3717  */
3718 vm_fault_t do_swap_page(struct vm_fault *vmf)
3719 {
3720         struct vm_area_struct *vma = vmf->vma;
3721         struct page *page = NULL, *swapcache;
3722         struct swap_info_struct *si = NULL;
3723         rmap_t rmap_flags = RMAP_NONE;
3724         bool exclusive = false;
3725         swp_entry_t entry;
3726         pte_t pte;
3727         int locked;
3728         vm_fault_t ret = 0;
3729         void *shadow = NULL;
3730
3731         if (!pte_unmap_same(vmf))
3732                 goto out;
3733
3734         entry = pte_to_swp_entry(vmf->orig_pte);
3735         if (unlikely(non_swap_entry(entry))) {
3736                 if (is_migration_entry(entry)) {
3737                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3738                                              vmf->address);
3739                 } else if (is_device_exclusive_entry(entry)) {
3740                         vmf->page = pfn_swap_entry_to_page(entry);
3741                         ret = remove_device_exclusive_entry(vmf);
3742                 } else if (is_device_private_entry(entry)) {
3743                         vmf->page = pfn_swap_entry_to_page(entry);
3744                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3745                 } else if (is_hwpoison_entry(entry)) {
3746                         ret = VM_FAULT_HWPOISON;
3747                 } else if (is_swapin_error_entry(entry)) {
3748                         ret = VM_FAULT_SIGBUS;
3749                 } else if (is_pte_marker_entry(entry)) {
3750                         ret = handle_pte_marker(vmf);
3751                 } else {
3752                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3753                         ret = VM_FAULT_SIGBUS;
3754                 }
3755                 goto out;
3756         }
3757
3758         /* Prevent swapoff from happening to us. */
3759         si = get_swap_device(entry);
3760         if (unlikely(!si))
3761                 goto out;
3762
3763         page = lookup_swap_cache(entry, vma, vmf->address);
3764         swapcache = page;
3765
3766         if (!page) {
3767                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3768                     __swap_count(entry) == 1) {
3769                         /* skip swapcache */
3770                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3771                                                         vmf->address);
3772                         if (page) {
3773                                 __SetPageLocked(page);
3774                                 __SetPageSwapBacked(page);
3775
3776                                 if (mem_cgroup_swapin_charge_page(page,
3777                                         vma->vm_mm, GFP_KERNEL, entry)) {
3778                                         ret = VM_FAULT_OOM;
3779                                         goto out_page;
3780                                 }
3781                                 mem_cgroup_swapin_uncharge_swap(entry);
3782
3783                                 shadow = get_shadow_from_swap_cache(entry);
3784                                 if (shadow)
3785                                         workingset_refault(page_folio(page),
3786                                                                 shadow);
3787
3788                                 lru_cache_add(page);
3789
3790                                 /* To provide entry to swap_readpage() */
3791                                 set_page_private(page, entry.val);
3792                                 swap_readpage(page, true, NULL);
3793                                 set_page_private(page, 0);
3794                         }
3795                 } else {
3796                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3797                                                 vmf);
3798                         swapcache = page;
3799                 }
3800
3801                 if (!page) {
3802                         /*
3803                          * Back out if somebody else faulted in this pte
3804                          * while we released the pte lock.
3805                          */
3806                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3807                                         vmf->address, &vmf->ptl);
3808                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3809                                 ret = VM_FAULT_OOM;
3810                         goto unlock;
3811                 }
3812
3813                 /* Had to read the page from swap area: Major fault */
3814                 ret = VM_FAULT_MAJOR;
3815                 count_vm_event(PGMAJFAULT);
3816                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3817         } else if (PageHWPoison(page)) {
3818                 /*
3819                  * hwpoisoned dirty swapcache pages are kept for killing
3820                  * owner processes (which may be unknown at hwpoison time)
3821                  */
3822                 ret = VM_FAULT_HWPOISON;
3823                 goto out_release;
3824         }
3825
3826         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3827
3828         if (!locked) {
3829                 ret |= VM_FAULT_RETRY;
3830                 goto out_release;
3831         }
3832
3833         if (swapcache) {
3834                 /*
3835                  * Make sure try_to_free_swap or swapoff did not release the
3836                  * swapcache from under us.  The page pin, and pte_same test
3837                  * below, are not enough to exclude that.  Even if it is still
3838                  * swapcache, we need to check that the page's swap has not
3839                  * changed.
3840                  */
3841                 if (unlikely(!PageSwapCache(page) ||
3842                              page_private(page) != entry.val))
3843                         goto out_page;
3844
3845                 /*
3846                  * KSM sometimes has to copy on read faults, for example, if
3847                  * page->index of !PageKSM() pages would be nonlinear inside the
3848                  * anon VMA -- PageKSM() is lost on actual swapout.
3849                  */
3850                 page = ksm_might_need_to_copy(page, vma, vmf->address);
3851                 if (unlikely(!page)) {
3852                         ret = VM_FAULT_OOM;
3853                         page = swapcache;
3854                         goto out_page;
3855                 }
3856
3857                 /*
3858                  * If we want to map a page that's in the swapcache writable, we
3859                  * have to detect via the refcount if we're really the exclusive
3860                  * owner. Try removing the extra reference from the local LRU
3861                  * pagevecs if required.
3862                  */
3863                 if ((vmf->flags & FAULT_FLAG_WRITE) && page == swapcache &&
3864                     !PageKsm(page) && !PageLRU(page))
3865                         lru_add_drain();
3866         }
3867
3868         cgroup_throttle_swaprate(page, GFP_KERNEL);
3869
3870         /*
3871          * Back out if somebody else already faulted in this pte.
3872          */
3873         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3874                         &vmf->ptl);
3875         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3876                 goto out_nomap;
3877
3878         if (unlikely(!PageUptodate(page))) {
3879                 ret = VM_FAULT_SIGBUS;
3880                 goto out_nomap;
3881         }
3882
3883         /*
3884          * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3885          * must never point at an anonymous page in the swapcache that is
3886          * PG_anon_exclusive. Sanity check that this holds and especially, that
3887          * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3888          * check after taking the PT lock and making sure that nobody
3889          * concurrently faulted in this page and set PG_anon_exclusive.
3890          */
3891         BUG_ON(!PageAnon(page) && PageMappedToDisk(page));
3892         BUG_ON(PageAnon(page) && PageAnonExclusive(page));
3893
3894         /*
3895          * Check under PT lock (to protect against concurrent fork() sharing
3896          * the swap entry concurrently) for certainly exclusive pages.
3897          */
3898         if (!PageKsm(page)) {
3899                 /*
3900                  * Note that pte_swp_exclusive() == false for architectures
3901                  * without __HAVE_ARCH_PTE_SWP_EXCLUSIVE.
3902                  */
3903                 exclusive = pte_swp_exclusive(vmf->orig_pte);
3904                 if (page != swapcache) {
3905                         /*
3906                          * We have a fresh page that is not exposed to the
3907                          * swapcache -> certainly exclusive.
3908                          */
3909                         exclusive = true;
3910                 } else if (exclusive && PageWriteback(page) &&
3911                           data_race(si->flags & SWP_STABLE_WRITES)) {
3912                         /*
3913                          * This is tricky: not all swap backends support
3914                          * concurrent page modifications while under writeback.
3915                          *
3916                          * So if we stumble over such a page in the swapcache
3917                          * we must not set the page exclusive, otherwise we can
3918                          * map it writable without further checks and modify it
3919                          * while still under writeback.
3920                          *
3921                          * For these problematic swap backends, simply drop the
3922                          * exclusive marker: this is perfectly fine as we start
3923                          * writeback only if we fully unmapped the page and
3924                          * there are no unexpected references on the page after
3925                          * unmapping succeeded. After fully unmapped, no
3926                          * further GUP references (FOLL_GET and FOLL_PIN) can
3927                          * appear, so dropping the exclusive marker and mapping
3928                          * it only R/O is fine.
3929                          */
3930                         exclusive = false;
3931                 }
3932         }
3933
3934         /*
3935          * Remove the swap entry and conditionally try to free up the swapcache.
3936          * We're already holding a reference on the page but haven't mapped it
3937          * yet.
3938          */
3939         swap_free(entry);
3940         if (should_try_to_free_swap(page, vma, vmf->flags))
3941                 try_to_free_swap(page);
3942
3943         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3944         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3945         pte = mk_pte(page, vma->vm_page_prot);
3946
3947         /*
3948          * Same logic as in do_wp_page(); however, optimize for pages that are
3949          * certainly not shared either because we just allocated them without
3950          * exposing them to the swapcache or because the swap entry indicates
3951          * exclusivity.
3952          */
3953         if (!PageKsm(page) && (exclusive || page_count(page) == 1)) {
3954                 if (vmf->flags & FAULT_FLAG_WRITE) {
3955                         pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3956                         vmf->flags &= ~FAULT_FLAG_WRITE;
3957                         ret |= VM_FAULT_WRITE;
3958                 }
3959                 rmap_flags |= RMAP_EXCLUSIVE;
3960         }
3961         flush_icache_page(vma, page);
3962         if (pte_swp_soft_dirty(vmf->orig_pte))
3963                 pte = pte_mksoft_dirty(pte);
3964         if (pte_swp_uffd_wp(vmf->orig_pte)) {
3965                 pte = pte_mkuffd_wp(pte);
3966                 pte = pte_wrprotect(pte);
3967         }
3968         vmf->orig_pte = pte;
3969
3970         /* ksm created a completely new copy */
3971         if (unlikely(page != swapcache && swapcache)) {
3972                 page_add_new_anon_rmap(page, vma, vmf->address);
3973                 lru_cache_add_inactive_or_unevictable(page, vma);
3974         } else {
3975                 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
3976         }
3977
3978         VM_BUG_ON(!PageAnon(page) || (pte_write(pte) && !PageAnonExclusive(page)));
3979         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3980         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3981
3982         unlock_page(page);
3983         if (page != swapcache && swapcache) {
3984                 /*
3985                  * Hold the lock to avoid the swap entry to be reused
3986                  * until we take the PT lock for the pte_same() check
3987                  * (to avoid false positives from pte_same). For
3988                  * further safety release the lock after the swap_free
3989                  * so that the swap count won't change under a
3990                  * parallel locked swapcache.
3991                  */
3992                 unlock_page(swapcache);
3993                 put_page(swapcache);
3994         }
3995
3996         if (vmf->flags & FAULT_FLAG_WRITE) {
3997                 ret |= do_wp_page(vmf);
3998                 if (ret & VM_FAULT_ERROR)
3999                         ret &= VM_FAULT_ERROR;
4000                 goto out;
4001         }
4002
4003         /* No need to invalidate - it was non-present before */
4004         update_mmu_cache(vma, vmf->address, vmf->pte);
4005 unlock:
4006         pte_unmap_unlock(vmf->pte, vmf->ptl);
4007 out:
4008         if (si)
4009                 put_swap_device(si);
4010         return ret;
4011 out_nomap:
4012         pte_unmap_unlock(vmf->pte, vmf->ptl);
4013 out_page:
4014         unlock_page(page);
4015 out_release:
4016         put_page(page);
4017         if (page != swapcache && swapcache) {
4018                 unlock_page(swapcache);
4019                 put_page(swapcache);
4020         }
4021         if (si)
4022                 put_swap_device(si);
4023         return ret;
4024 }
4025
4026 /*
4027  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4028  * but allow concurrent faults), and pte mapped but not yet locked.
4029  * We return with mmap_lock still held, but pte unmapped and unlocked.
4030  */
4031 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4032 {
4033         struct vm_area_struct *vma = vmf->vma;
4034         struct page *page;
4035         vm_fault_t ret = 0;
4036         pte_t entry;
4037
4038         /* File mapping without ->vm_ops ? */
4039         if (vma->vm_flags & VM_SHARED)
4040                 return VM_FAULT_SIGBUS;
4041
4042         /*
4043          * Use pte_alloc() instead of pte_alloc_map().  We can't run
4044          * pte_offset_map() on pmds where a huge pmd might be created
4045          * from a different thread.
4046          *
4047          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
4048          * parallel threads are excluded by other means.
4049          *
4050          * Here we only have mmap_read_lock(mm).
4051          */
4052         if (pte_alloc(vma->vm_mm, vmf->pmd))
4053                 return VM_FAULT_OOM;
4054
4055         /* See comment in handle_pte_fault() */
4056         if (unlikely(pmd_trans_unstable(vmf->pmd)))
4057                 return 0;
4058
4059         /* Use the zero-page for reads */
4060         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4061                         !mm_forbids_zeropage(vma->vm_mm)) {
4062                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4063                                                 vma->vm_page_prot));
4064                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4065                                 vmf->address, &vmf->ptl);
4066                 if (!pte_none(*vmf->pte)) {
4067                         update_mmu_tlb(vma, vmf->address, vmf->pte);
4068                         goto unlock;
4069                 }
4070                 ret = check_stable_address_space(vma->vm_mm);
4071                 if (ret)
4072                         goto unlock;
4073                 /* Deliver the page fault to userland, check inside PT lock */
4074                 if (userfaultfd_missing(vma)) {
4075                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4076                         return handle_userfault(vmf, VM_UFFD_MISSING);
4077                 }
4078                 goto setpte;
4079         }
4080
4081         /* Allocate our own private page. */
4082         if (unlikely(anon_vma_prepare(vma)))
4083                 goto oom;
4084         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
4085         if (!page)
4086                 goto oom;
4087
4088         if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
4089                 goto oom_free_page;
4090         cgroup_throttle_swaprate(page, GFP_KERNEL);
4091
4092         /*
4093          * The memory barrier inside __SetPageUptodate makes sure that
4094          * preceding stores to the page contents become visible before
4095          * the set_pte_at() write.
4096          */
4097         __SetPageUptodate(page);
4098
4099         entry = mk_pte(page, vma->vm_page_prot);
4100         entry = pte_sw_mkyoung(entry);
4101         if (vma->vm_flags & VM_WRITE)
4102                 entry = pte_mkwrite(pte_mkdirty(entry));
4103
4104         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4105                         &vmf->ptl);
4106         if (!pte_none(*vmf->pte)) {
4107                 update_mmu_cache(vma, vmf->address, vmf->pte);
4108                 goto release;
4109         }
4110
4111         ret = check_stable_address_space(vma->vm_mm);
4112         if (ret)
4113                 goto release;
4114
4115         /* Deliver the page fault to userland, check inside PT lock */
4116         if (userfaultfd_missing(vma)) {
4117                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4118                 put_page(page);
4119                 return handle_userfault(vmf, VM_UFFD_MISSING);
4120         }
4121
4122         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4123         page_add_new_anon_rmap(page, vma, vmf->address);
4124         lru_cache_add_inactive_or_unevictable(page, vma);
4125 setpte:
4126         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4127
4128         /* No need to invalidate - it was non-present before */
4129         update_mmu_cache(vma, vmf->address, vmf->pte);
4130 unlock:
4131         pte_unmap_unlock(vmf->pte, vmf->ptl);
4132         return ret;
4133 release:
4134         put_page(page);
4135         goto unlock;
4136 oom_free_page:
4137         put_page(page);
4138 oom:
4139         return VM_FAULT_OOM;
4140 }
4141
4142 /*
4143  * The mmap_lock must have been held on entry, and may have been
4144  * released depending on flags and vma->vm_ops->fault() return value.
4145  * See filemap_fault() and __lock_page_retry().
4146  */
4147 static vm_fault_t __do_fault(struct vm_fault *vmf)
4148 {
4149         struct vm_area_struct *vma = vmf->vma;
4150         vm_fault_t ret;
4151
4152         /*
4153          * Preallocate pte before we take page_lock because this might lead to
4154          * deadlocks for memcg reclaim which waits for pages under writeback:
4155          *                              lock_page(A)
4156          *                              SetPageWriteback(A)
4157          *                              unlock_page(A)
4158          * lock_page(B)
4159          *                              lock_page(B)
4160          * pte_alloc_one
4161          *   shrink_page_list
4162          *     wait_on_page_writeback(A)
4163          *                              SetPageWriteback(B)
4164          *                              unlock_page(B)
4165          *                              # flush A, B to clear the writeback
4166          */
4167         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4168                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4169                 if (!vmf->prealloc_pte)
4170                         return VM_FAULT_OOM;
4171         }
4172
4173         ret = vma->vm_ops->fault(vmf);
4174         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4175                             VM_FAULT_DONE_COW)))
4176                 return ret;
4177
4178         if (unlikely(PageHWPoison(vmf->page))) {
4179                 struct page *page = vmf->page;
4180                 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4181                 if (ret & VM_FAULT_LOCKED) {
4182                         if (page_mapped(page))
4183                                 unmap_mapping_pages(page_mapping(page),
4184                                                     page->index, 1, false);
4185                         /* Retry if a clean page was removed from the cache. */
4186                         if (invalidate_inode_page(page))
4187                                 poisonret = VM_FAULT_NOPAGE;
4188                         unlock_page(page);
4189                 }
4190                 put_page(page);
4191                 vmf->page = NULL;
4192                 return poisonret;
4193         }
4194
4195         if (unlikely(!(ret & VM_FAULT_LOCKED)))
4196                 lock_page(vmf->page);
4197         else
4198                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4199
4200         return ret;
4201 }
4202
4203 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4204 static void deposit_prealloc_pte(struct vm_fault *vmf)
4205 {
4206         struct vm_area_struct *vma = vmf->vma;
4207
4208         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4209         /*
4210          * We are going to consume the prealloc table,
4211          * count that as nr_ptes.
4212          */
4213         mm_inc_nr_ptes(vma->vm_mm);
4214         vmf->prealloc_pte = NULL;
4215 }
4216
4217 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4218 {
4219         struct vm_area_struct *vma = vmf->vma;
4220         bool write = vmf->flags & FAULT_FLAG_WRITE;
4221         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4222         pmd_t entry;
4223         int i;
4224         vm_fault_t ret = VM_FAULT_FALLBACK;
4225
4226         if (!transhuge_vma_suitable(vma, haddr))
4227                 return ret;
4228
4229         page = compound_head(page);
4230         if (compound_order(page) != HPAGE_PMD_ORDER)
4231                 return ret;
4232
4233         /*
4234          * Just backoff if any subpage of a THP is corrupted otherwise
4235          * the corrupted page may mapped by PMD silently to escape the
4236          * check.  This kind of THP just can be PTE mapped.  Access to
4237          * the corrupted subpage should trigger SIGBUS as expected.
4238          */
4239         if (unlikely(PageHasHWPoisoned(page)))
4240                 return ret;
4241
4242         /*
4243          * Archs like ppc64 need additional space to store information
4244          * related to pte entry. Use the preallocated table for that.
4245          */
4246         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4247                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4248                 if (!vmf->prealloc_pte)
4249                         return VM_FAULT_OOM;
4250         }
4251
4252         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4253         if (unlikely(!pmd_none(*vmf->pmd)))
4254                 goto out;
4255
4256         for (i = 0; i < HPAGE_PMD_NR; i++)
4257                 flush_icache_page(vma, page + i);
4258
4259         entry = mk_huge_pmd(page, vma->vm_page_prot);
4260         if (write)
4261                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4262
4263         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4264         page_add_file_rmap(page, vma, true);
4265
4266         /*
4267          * deposit and withdraw with pmd lock held
4268          */
4269         if (arch_needs_pgtable_deposit())
4270                 deposit_prealloc_pte(vmf);
4271
4272         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4273
4274         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4275
4276         /* fault is handled */
4277         ret = 0;
4278         count_vm_event(THP_FILE_MAPPED);
4279 out:
4280         spin_unlock(vmf->ptl);
4281         return ret;
4282 }
4283 #else
4284 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4285 {
4286         return VM_FAULT_FALLBACK;
4287 }
4288 #endif
4289
4290 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4291 {
4292         struct vm_area_struct *vma = vmf->vma;
4293         bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte);
4294         bool write = vmf->flags & FAULT_FLAG_WRITE;
4295         bool prefault = vmf->address != addr;
4296         pte_t entry;
4297
4298         flush_icache_page(vma, page);
4299         entry = mk_pte(page, vma->vm_page_prot);
4300
4301         if (prefault && arch_wants_old_prefaulted_pte())
4302                 entry = pte_mkold(entry);
4303         else
4304                 entry = pte_sw_mkyoung(entry);
4305
4306         if (write)
4307                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4308         if (unlikely(uffd_wp))
4309                 entry = pte_mkuffd_wp(pte_wrprotect(entry));
4310         /* copy-on-write page */
4311         if (write && !(vma->vm_flags & VM_SHARED)) {
4312                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4313                 page_add_new_anon_rmap(page, vma, addr);
4314                 lru_cache_add_inactive_or_unevictable(page, vma);
4315         } else {
4316                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
4317                 page_add_file_rmap(page, vma, false);
4318         }
4319         set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4320 }
4321
4322 static bool vmf_pte_changed(struct vm_fault *vmf)
4323 {
4324         if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4325                 return !pte_same(*vmf->pte, vmf->orig_pte);
4326
4327         return !pte_none(*vmf->pte);
4328 }
4329
4330 /**
4331  * finish_fault - finish page fault once we have prepared the page to fault
4332  *
4333  * @vmf: structure describing the fault
4334  *
4335  * This function handles all that is needed to finish a page fault once the
4336  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4337  * given page, adds reverse page mapping, handles memcg charges and LRU
4338  * addition.
4339  *
4340  * The function expects the page to be locked and on success it consumes a
4341  * reference of a page being mapped (for the PTE which maps it).
4342  *
4343  * Return: %0 on success, %VM_FAULT_ code in case of error.
4344  */
4345 vm_fault_t finish_fault(struct vm_fault *vmf)
4346 {
4347         struct vm_area_struct *vma = vmf->vma;
4348         struct page *page;
4349         vm_fault_t ret;
4350
4351         /* Did we COW the page? */
4352         if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4353                 page = vmf->cow_page;
4354         else
4355                 page = vmf->page;
4356
4357         /*
4358          * check even for read faults because we might have lost our CoWed
4359          * page
4360          */
4361         if (!(vma->vm_flags & VM_SHARED)) {
4362                 ret = check_stable_address_space(vma->vm_mm);
4363                 if (ret)
4364                         return ret;
4365         }
4366
4367         if (pmd_none(*vmf->pmd)) {
4368                 if (PageTransCompound(page)) {
4369                         ret = do_set_pmd(vmf, page);
4370                         if (ret != VM_FAULT_FALLBACK)
4371                                 return ret;
4372                 }
4373
4374                 if (vmf->prealloc_pte)
4375                         pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4376                 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4377                         return VM_FAULT_OOM;
4378         }
4379
4380         /*
4381          * See comment in handle_pte_fault() for how this scenario happens, we
4382          * need to return NOPAGE so that we drop this page.
4383          */
4384         if (pmd_devmap_trans_unstable(vmf->pmd))
4385                 return VM_FAULT_NOPAGE;
4386
4387         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4388                                       vmf->address, &vmf->ptl);
4389         ret = 0;
4390         /* Re-check under ptl */
4391         if (likely(!vmf_pte_changed(vmf)))
4392                 do_set_pte(vmf, page, vmf->address);
4393         else
4394                 ret = VM_FAULT_NOPAGE;
4395
4396         update_mmu_tlb(vma, vmf->address, vmf->pte);
4397         pte_unmap_unlock(vmf->pte, vmf->ptl);
4398         return ret;
4399 }
4400
4401 static unsigned long fault_around_bytes __read_mostly =
4402         rounddown_pow_of_two(65536);
4403
4404 #ifdef CONFIG_DEBUG_FS
4405 static int fault_around_bytes_get(void *data, u64 *val)
4406 {
4407         *val = fault_around_bytes;
4408         return 0;
4409 }
4410
4411 /*
4412  * fault_around_bytes must be rounded down to the nearest page order as it's
4413  * what do_fault_around() expects to see.
4414  */
4415 static int fault_around_bytes_set(void *data, u64 val)
4416 {
4417         if (val / PAGE_SIZE > PTRS_PER_PTE)
4418                 return -EINVAL;
4419         if (val > PAGE_SIZE)
4420                 fault_around_bytes = rounddown_pow_of_two(val);
4421         else
4422                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4423         return 0;
4424 }
4425 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4426                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4427
4428 static int __init fault_around_debugfs(void)
4429 {
4430         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4431                                    &fault_around_bytes_fops);
4432         return 0;
4433 }
4434 late_initcall(fault_around_debugfs);
4435 #endif
4436
4437 /*
4438  * do_fault_around() tries to map few pages around the fault address. The hope
4439  * is that the pages will be needed soon and this will lower the number of
4440  * faults to handle.
4441  *
4442  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4443  * not ready to be mapped: not up-to-date, locked, etc.
4444  *
4445  * This function doesn't cross the VMA boundaries, in order to call map_pages()
4446  * only once.
4447  *
4448  * fault_around_bytes defines how many bytes we'll try to map.
4449  * do_fault_around() expects it to be set to a power of two less than or equal
4450  * to PTRS_PER_PTE.
4451  *
4452  * The virtual address of the area that we map is naturally aligned to
4453  * fault_around_bytes rounded down to the machine page size
4454  * (and therefore to page order).  This way it's easier to guarantee
4455  * that we don't cross page table boundaries.
4456  */
4457 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4458 {
4459         unsigned long address = vmf->address, nr_pages, mask;
4460         pgoff_t start_pgoff = vmf->pgoff;
4461         pgoff_t end_pgoff;
4462         int off;
4463
4464         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4465         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4466
4467         address = max(address & mask, vmf->vma->vm_start);
4468         off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4469         start_pgoff -= off;
4470
4471         /*
4472          *  end_pgoff is either the end of the page table, the end of
4473          *  the vma or nr_pages from start_pgoff, depending what is nearest.
4474          */
4475         end_pgoff = start_pgoff -
4476                 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4477                 PTRS_PER_PTE - 1;
4478         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4479                         start_pgoff + nr_pages - 1);
4480
4481         if (pmd_none(*vmf->pmd)) {
4482                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4483                 if (!vmf->prealloc_pte)
4484                         return VM_FAULT_OOM;
4485         }
4486
4487         return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4488 }
4489
4490 /* Return true if we should do read fault-around, false otherwise */
4491 static inline bool should_fault_around(struct vm_fault *vmf)
4492 {
4493         /* No ->map_pages?  No way to fault around... */
4494         if (!vmf->vma->vm_ops->map_pages)
4495                 return false;
4496
4497         if (uffd_disable_fault_around(vmf->vma))
4498                 return false;
4499
4500         return fault_around_bytes >> PAGE_SHIFT > 1;
4501 }
4502
4503 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4504 {
4505         vm_fault_t ret = 0;
4506
4507         /*
4508          * Let's call ->map_pages() first and use ->fault() as fallback
4509          * if page by the offset is not ready to be mapped (cold cache or
4510          * something).
4511          */
4512         if (should_fault_around(vmf)) {
4513                 ret = do_fault_around(vmf);
4514                 if (ret)
4515                         return ret;
4516         }
4517
4518         ret = __do_fault(vmf);
4519         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4520                 return ret;
4521
4522         ret |= finish_fault(vmf);
4523         unlock_page(vmf->page);
4524         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4525                 put_page(vmf->page);
4526         return ret;
4527 }
4528
4529 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4530 {
4531         struct vm_area_struct *vma = vmf->vma;
4532         vm_fault_t ret;
4533
4534         if (unlikely(anon_vma_prepare(vma)))
4535                 return VM_FAULT_OOM;
4536
4537         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4538         if (!vmf->cow_page)
4539                 return VM_FAULT_OOM;
4540
4541         if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4542                                 GFP_KERNEL)) {
4543                 put_page(vmf->cow_page);
4544                 return VM_FAULT_OOM;
4545         }
4546         cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4547
4548         ret = __do_fault(vmf);
4549         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4550                 goto uncharge_out;
4551         if (ret & VM_FAULT_DONE_COW)
4552                 return ret;
4553
4554         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4555         __SetPageUptodate(vmf->cow_page);
4556
4557         ret |= finish_fault(vmf);
4558         unlock_page(vmf->page);
4559         put_page(vmf->page);
4560         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4561                 goto uncharge_out;
4562         return ret;
4563 uncharge_out:
4564         put_page(vmf->cow_page);
4565         return ret;
4566 }
4567
4568 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4569 {
4570         struct vm_area_struct *vma = vmf->vma;
4571         vm_fault_t ret, tmp;
4572
4573         ret = __do_fault(vmf);
4574         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4575                 return ret;
4576
4577         /*
4578          * Check if the backing address space wants to know that the page is
4579          * about to become writable
4580          */
4581         if (vma->vm_ops->page_mkwrite) {
4582                 unlock_page(vmf->page);
4583                 tmp = do_page_mkwrite(vmf);
4584                 if (unlikely(!tmp ||
4585                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4586                         put_page(vmf->page);
4587                         return tmp;
4588                 }
4589         }
4590
4591         ret |= finish_fault(vmf);
4592         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4593                                         VM_FAULT_RETRY))) {
4594                 unlock_page(vmf->page);
4595                 put_page(vmf->page);
4596                 return ret;
4597         }
4598
4599         ret |= fault_dirty_shared_page(vmf);
4600         return ret;
4601 }
4602
4603 /*
4604  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4605  * but allow concurrent faults).
4606  * The mmap_lock may have been released depending on flags and our
4607  * return value.  See filemap_fault() and __folio_lock_or_retry().
4608  * If mmap_lock is released, vma may become invalid (for example
4609  * by other thread calling munmap()).
4610  */
4611 static vm_fault_t do_fault(struct vm_fault *vmf)
4612 {
4613         struct vm_area_struct *vma = vmf->vma;
4614         struct mm_struct *vm_mm = vma->vm_mm;
4615         vm_fault_t ret;
4616
4617         /*
4618          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4619          */
4620         if (!vma->vm_ops->fault) {
4621                 /*
4622                  * If we find a migration pmd entry or a none pmd entry, which
4623                  * should never happen, return SIGBUS
4624                  */
4625                 if (unlikely(!pmd_present(*vmf->pmd)))
4626                         ret = VM_FAULT_SIGBUS;
4627                 else {
4628                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4629                                                        vmf->pmd,
4630                                                        vmf->address,
4631                                                        &vmf->ptl);
4632                         /*
4633                          * Make sure this is not a temporary clearing of pte
4634                          * by holding ptl and checking again. A R/M/W update
4635                          * of pte involves: take ptl, clearing the pte so that
4636                          * we don't have concurrent modification by hardware
4637                          * followed by an update.
4638                          */
4639                         if (unlikely(pte_none(*vmf->pte)))
4640                                 ret = VM_FAULT_SIGBUS;
4641                         else
4642                                 ret = VM_FAULT_NOPAGE;
4643
4644                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4645                 }
4646         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4647                 ret = do_read_fault(vmf);
4648         else if (!(vma->vm_flags & VM_SHARED))
4649                 ret = do_cow_fault(vmf);
4650         else
4651                 ret = do_shared_fault(vmf);
4652
4653         /* preallocated pagetable is unused: free it */
4654         if (vmf->prealloc_pte) {
4655                 pte_free(vm_mm, vmf->prealloc_pte);
4656                 vmf->prealloc_pte = NULL;
4657         }
4658         return ret;
4659 }
4660
4661 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4662                       unsigned long addr, int page_nid, int *flags)
4663 {
4664         get_page(page);
4665
4666         count_vm_numa_event(NUMA_HINT_FAULTS);
4667         if (page_nid == numa_node_id()) {
4668                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4669                 *flags |= TNF_FAULT_LOCAL;
4670         }
4671
4672         return mpol_misplaced(page, vma, addr);
4673 }
4674
4675 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4676 {
4677         struct vm_area_struct *vma = vmf->vma;
4678         struct page *page = NULL;
4679         int page_nid = NUMA_NO_NODE;
4680         int last_cpupid;
4681         int target_nid;
4682         pte_t pte, old_pte;
4683         bool was_writable = pte_savedwrite(vmf->orig_pte);
4684         int flags = 0;
4685
4686         /*
4687          * The "pte" at this point cannot be used safely without
4688          * validation through pte_unmap_same(). It's of NUMA type but
4689          * the pfn may be screwed if the read is non atomic.
4690          */
4691         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4692         spin_lock(vmf->ptl);
4693         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4694                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4695                 goto out;
4696         }
4697
4698         /* Get the normal PTE  */
4699         old_pte = ptep_get(vmf->pte);
4700         pte = pte_modify(old_pte, vma->vm_page_prot);
4701
4702         page = vm_normal_page(vma, vmf->address, pte);
4703         if (!page || is_zone_device_page(page))
4704                 goto out_map;
4705
4706         /* TODO: handle PTE-mapped THP */
4707         if (PageCompound(page))
4708                 goto out_map;
4709
4710         /*
4711          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4712          * much anyway since they can be in shared cache state. This misses
4713          * the case where a mapping is writable but the process never writes
4714          * to it but pte_write gets cleared during protection updates and
4715          * pte_dirty has unpredictable behaviour between PTE scan updates,
4716          * background writeback, dirty balancing and application behaviour.
4717          */
4718         if (!was_writable)
4719                 flags |= TNF_NO_GROUP;
4720
4721         /*
4722          * Flag if the page is shared between multiple address spaces. This
4723          * is later used when determining whether to group tasks together
4724          */
4725         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4726                 flags |= TNF_SHARED;
4727
4728         last_cpupid = page_cpupid_last(page);
4729         page_nid = page_to_nid(page);
4730         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4731                         &flags);
4732         if (target_nid == NUMA_NO_NODE) {
4733                 put_page(page);
4734                 goto out_map;
4735         }
4736         pte_unmap_unlock(vmf->pte, vmf->ptl);
4737
4738         /* Migrate to the requested node */
4739         if (migrate_misplaced_page(page, vma, target_nid)) {
4740                 page_nid = target_nid;
4741                 flags |= TNF_MIGRATED;
4742         } else {
4743                 flags |= TNF_MIGRATE_FAIL;
4744                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4745                 spin_lock(vmf->ptl);
4746                 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4747                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4748                         goto out;
4749                 }
4750                 goto out_map;
4751         }
4752
4753 out:
4754         if (page_nid != NUMA_NO_NODE)
4755                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4756         return 0;
4757 out_map:
4758         /*
4759          * Make it present again, depending on how arch implements
4760          * non-accessible ptes, some can allow access by kernel mode.
4761          */
4762         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4763         pte = pte_modify(old_pte, vma->vm_page_prot);
4764         pte = pte_mkyoung(pte);
4765         if (was_writable)
4766                 pte = pte_mkwrite(pte);
4767         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4768         update_mmu_cache(vma, vmf->address, vmf->pte);
4769         pte_unmap_unlock(vmf->pte, vmf->ptl);
4770         goto out;
4771 }
4772
4773 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4774 {
4775         if (vma_is_anonymous(vmf->vma))
4776                 return do_huge_pmd_anonymous_page(vmf);
4777         if (vmf->vma->vm_ops->huge_fault)
4778                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4779         return VM_FAULT_FALLBACK;
4780 }
4781
4782 /* `inline' is required to avoid gcc 4.1.2 build error */
4783 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4784 {
4785         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4786
4787         if (vma_is_anonymous(vmf->vma)) {
4788                 if (likely(!unshare) &&
4789                     userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4790                         return handle_userfault(vmf, VM_UFFD_WP);
4791                 return do_huge_pmd_wp_page(vmf);
4792         }
4793         if (vmf->vma->vm_ops->huge_fault) {
4794                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4795
4796                 if (!(ret & VM_FAULT_FALLBACK))
4797                         return ret;
4798         }
4799
4800         /* COW or write-notify handled on pte level: split pmd. */
4801         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4802
4803         return VM_FAULT_FALLBACK;
4804 }
4805
4806 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4807 {
4808 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4809         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4810         /* No support for anonymous transparent PUD pages yet */
4811         if (vma_is_anonymous(vmf->vma))
4812                 return VM_FAULT_FALLBACK;
4813         if (vmf->vma->vm_ops->huge_fault)
4814                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4815 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4816         return VM_FAULT_FALLBACK;
4817 }
4818
4819 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4820 {
4821 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4822         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4823         /* No support for anonymous transparent PUD pages yet */
4824         if (vma_is_anonymous(vmf->vma))
4825                 goto split;
4826         if (vmf->vma->vm_ops->huge_fault) {
4827                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4828
4829                 if (!(ret & VM_FAULT_FALLBACK))
4830                         return ret;
4831         }
4832 split:
4833         /* COW or write-notify not handled on PUD level: split pud.*/
4834         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4835 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4836         return VM_FAULT_FALLBACK;
4837 }
4838
4839 /*
4840  * These routines also need to handle stuff like marking pages dirty
4841  * and/or accessed for architectures that don't do it in hardware (most
4842  * RISC architectures).  The early dirtying is also good on the i386.
4843  *
4844  * There is also a hook called "update_mmu_cache()" that architectures
4845  * with external mmu caches can use to update those (ie the Sparc or
4846  * PowerPC hashed page tables that act as extended TLBs).
4847  *
4848  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4849  * concurrent faults).
4850  *
4851  * The mmap_lock may have been released depending on flags and our return value.
4852  * See filemap_fault() and __folio_lock_or_retry().
4853  */
4854 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4855 {
4856         pte_t entry;
4857
4858         if (unlikely(pmd_none(*vmf->pmd))) {
4859                 /*
4860                  * Leave __pte_alloc() until later: because vm_ops->fault may
4861                  * want to allocate huge page, and if we expose page table
4862                  * for an instant, it will be difficult to retract from
4863                  * concurrent faults and from rmap lookups.
4864                  */
4865                 vmf->pte = NULL;
4866                 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4867         } else {
4868                 /*
4869                  * If a huge pmd materialized under us just retry later.  Use
4870                  * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4871                  * of pmd_trans_huge() to ensure the pmd didn't become
4872                  * pmd_trans_huge under us and then back to pmd_none, as a
4873                  * result of MADV_DONTNEED running immediately after a huge pmd
4874                  * fault in a different thread of this mm, in turn leading to a
4875                  * misleading pmd_trans_huge() retval. All we have to ensure is
4876                  * that it is a regular pmd that we can walk with
4877                  * pte_offset_map() and we can do that through an atomic read
4878                  * in C, which is what pmd_trans_unstable() provides.
4879                  */
4880                 if (pmd_devmap_trans_unstable(vmf->pmd))
4881                         return 0;
4882                 /*
4883                  * A regular pmd is established and it can't morph into a huge
4884                  * pmd from under us anymore at this point because we hold the
4885                  * mmap_lock read mode and khugepaged takes it in write mode.
4886                  * So now it's safe to run pte_offset_map().
4887                  */
4888                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4889                 vmf->orig_pte = *vmf->pte;
4890                 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4891
4892                 /*
4893                  * some architectures can have larger ptes than wordsize,
4894                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4895                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4896                  * accesses.  The code below just needs a consistent view
4897                  * for the ifs and we later double check anyway with the
4898                  * ptl lock held. So here a barrier will do.
4899                  */
4900                 barrier();
4901                 if (pte_none(vmf->orig_pte)) {
4902                         pte_unmap(vmf->pte);
4903                         vmf->pte = NULL;
4904                 }
4905         }
4906
4907         if (!vmf->pte) {
4908                 if (vma_is_anonymous(vmf->vma))
4909                         return do_anonymous_page(vmf);
4910                 else
4911                         return do_fault(vmf);
4912         }
4913
4914         if (!pte_present(vmf->orig_pte))
4915                 return do_swap_page(vmf);
4916
4917         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4918                 return do_numa_page(vmf);
4919
4920         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4921         spin_lock(vmf->ptl);
4922         entry = vmf->orig_pte;
4923         if (unlikely(!pte_same(*vmf->pte, entry))) {
4924                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4925                 goto unlock;
4926         }
4927         if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4928                 if (!pte_write(entry))
4929                         return do_wp_page(vmf);
4930                 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4931                         entry = pte_mkdirty(entry);
4932         }
4933         entry = pte_mkyoung(entry);
4934         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4935                                 vmf->flags & FAULT_FLAG_WRITE)) {
4936                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4937         } else {
4938                 /* Skip spurious TLB flush for retried page fault */
4939                 if (vmf->flags & FAULT_FLAG_TRIED)
4940                         goto unlock;
4941                 /*
4942                  * This is needed only for protection faults but the arch code
4943                  * is not yet telling us if this is a protection fault or not.
4944                  * This still avoids useless tlb flushes for .text page faults
4945                  * with threads.
4946                  */
4947                 if (vmf->flags & FAULT_FLAG_WRITE)
4948                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4949         }
4950 unlock:
4951         pte_unmap_unlock(vmf->pte, vmf->ptl);
4952         return 0;
4953 }
4954
4955 /*
4956  * By the time we get here, we already hold the mm semaphore
4957  *
4958  * The mmap_lock may have been released depending on flags and our
4959  * return value.  See filemap_fault() and __folio_lock_or_retry().
4960  */
4961 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4962                 unsigned long address, unsigned int flags)
4963 {
4964         struct vm_fault vmf = {
4965                 .vma = vma,
4966                 .address = address & PAGE_MASK,
4967                 .real_address = address,
4968                 .flags = flags,
4969                 .pgoff = linear_page_index(vma, address),
4970                 .gfp_mask = __get_fault_gfp_mask(vma),
4971         };
4972         struct mm_struct *mm = vma->vm_mm;
4973         unsigned long vm_flags = vma->vm_flags;
4974         pgd_t *pgd;
4975         p4d_t *p4d;
4976         vm_fault_t ret;
4977
4978         pgd = pgd_offset(mm, address);
4979         p4d = p4d_alloc(mm, pgd, address);
4980         if (!p4d)
4981                 return VM_FAULT_OOM;
4982
4983         vmf.pud = pud_alloc(mm, p4d, address);
4984         if (!vmf.pud)
4985                 return VM_FAULT_OOM;
4986 retry_pud:
4987         if (pud_none(*vmf.pud) &&
4988             hugepage_vma_check(vma, vm_flags, false, true)) {
4989                 ret = create_huge_pud(&vmf);
4990                 if (!(ret & VM_FAULT_FALLBACK))
4991                         return ret;
4992         } else {
4993                 pud_t orig_pud = *vmf.pud;
4994
4995                 barrier();
4996                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4997
4998                         /*
4999                          * TODO once we support anonymous PUDs: NUMA case and
5000                          * FAULT_FLAG_UNSHARE handling.
5001                          */
5002                         if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5003                                 ret = wp_huge_pud(&vmf, orig_pud);
5004                                 if (!(ret & VM_FAULT_FALLBACK))
5005                                         return ret;
5006                         } else {
5007                                 huge_pud_set_accessed(&vmf, orig_pud);
5008                                 return 0;
5009                         }
5010                 }
5011         }
5012
5013         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5014         if (!vmf.pmd)
5015                 return VM_FAULT_OOM;
5016
5017         /* Huge pud page fault raced with pmd_alloc? */
5018         if (pud_trans_unstable(vmf.pud))
5019                 goto retry_pud;
5020
5021         if (pmd_none(*vmf.pmd) &&
5022             hugepage_vma_check(vma, vm_flags, false, true)) {
5023                 ret = create_huge_pmd(&vmf);
5024                 if (!(ret & VM_FAULT_FALLBACK))
5025                         return ret;
5026         } else {
5027                 vmf.orig_pmd = *vmf.pmd;
5028
5029                 barrier();
5030                 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5031                         VM_BUG_ON(thp_migration_supported() &&
5032                                           !is_pmd_migration_entry(vmf.orig_pmd));
5033                         if (is_pmd_migration_entry(vmf.orig_pmd))
5034                                 pmd_migration_entry_wait(mm, vmf.pmd);
5035                         return 0;
5036                 }
5037                 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5038                         if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5039                                 return do_huge_pmd_numa_page(&vmf);
5040
5041                         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5042                             !pmd_write(vmf.orig_pmd)) {
5043                                 ret = wp_huge_pmd(&vmf);
5044                                 if (!(ret & VM_FAULT_FALLBACK))
5045                                         return ret;
5046                         } else {
5047                                 huge_pmd_set_accessed(&vmf);
5048                                 return 0;
5049                         }
5050                 }
5051         }
5052
5053         return handle_pte_fault(&vmf);
5054 }
5055
5056 /**
5057  * mm_account_fault - Do page fault accounting
5058  *
5059  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5060  *        of perf event counters, but we'll still do the per-task accounting to
5061  *        the task who triggered this page fault.
5062  * @address: the faulted address.
5063  * @flags: the fault flags.
5064  * @ret: the fault retcode.
5065  *
5066  * This will take care of most of the page fault accounting.  Meanwhile, it
5067  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5068  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5069  * still be in per-arch page fault handlers at the entry of page fault.
5070  */
5071 static inline void mm_account_fault(struct pt_regs *regs,
5072                                     unsigned long address, unsigned int flags,
5073                                     vm_fault_t ret)
5074 {
5075         bool major;
5076
5077         /*
5078          * We don't do accounting for some specific faults:
5079          *
5080          * - Unsuccessful faults (e.g. when the address wasn't valid).  That
5081          *   includes arch_vma_access_permitted() failing before reaching here.
5082          *   So this is not a "this many hardware page faults" counter.  We
5083          *   should use the hw profiling for that.
5084          *
5085          * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
5086          *   once they're completed.
5087          */
5088         if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
5089                 return;
5090
5091         /*
5092          * We define the fault as a major fault when the final successful fault
5093          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5094          * handle it immediately previously).
5095          */
5096         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5097
5098         if (major)
5099                 current->maj_flt++;
5100         else
5101                 current->min_flt++;
5102
5103         /*
5104          * If the fault is done for GUP, regs will be NULL.  We only do the
5105          * accounting for the per thread fault counters who triggered the
5106          * fault, and we skip the perf event updates.
5107          */
5108         if (!regs)
5109                 return;
5110
5111         if (major)
5112                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5113         else
5114                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5115 }
5116
5117 /*
5118  * By the time we get here, we already hold the mm semaphore
5119  *
5120  * The mmap_lock may have been released depending on flags and our
5121  * return value.  See filemap_fault() and __folio_lock_or_retry().
5122  */
5123 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5124                            unsigned int flags, struct pt_regs *regs)
5125 {
5126         vm_fault_t ret;
5127
5128         __set_current_state(TASK_RUNNING);
5129
5130         count_vm_event(PGFAULT);
5131         count_memcg_event_mm(vma->vm_mm, PGFAULT);
5132
5133         /* do counter updates before entering really critical section. */
5134         check_sync_rss_stat(current);
5135
5136         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5137                                             flags & FAULT_FLAG_INSTRUCTION,
5138                                             flags & FAULT_FLAG_REMOTE))
5139                 return VM_FAULT_SIGSEGV;
5140
5141         /*
5142          * Enable the memcg OOM handling for faults triggered in user
5143          * space.  Kernel faults are handled more gracefully.
5144          */
5145         if (flags & FAULT_FLAG_USER)
5146                 mem_cgroup_enter_user_fault();
5147
5148         if (unlikely(is_vm_hugetlb_page(vma)))
5149                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5150         else
5151                 ret = __handle_mm_fault(vma, address, flags);
5152
5153         if (flags & FAULT_FLAG_USER) {
5154                 mem_cgroup_exit_user_fault();
5155                 /*
5156                  * The task may have entered a memcg OOM situation but
5157                  * if the allocation error was handled gracefully (no
5158                  * VM_FAULT_OOM), there is no need to kill anything.
5159                  * Just clean up the OOM state peacefully.
5160                  */
5161                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5162                         mem_cgroup_oom_synchronize(false);
5163         }
5164
5165         mm_account_fault(regs, address, flags, ret);
5166
5167         return ret;
5168 }
5169 EXPORT_SYMBOL_GPL(handle_mm_fault);
5170
5171 #ifndef __PAGETABLE_P4D_FOLDED
5172 /*
5173  * Allocate p4d page table.
5174  * We've already handled the fast-path in-line.
5175  */
5176 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5177 {
5178         p4d_t *new = p4d_alloc_one(mm, address);
5179         if (!new)
5180                 return -ENOMEM;
5181
5182         spin_lock(&mm->page_table_lock);
5183         if (pgd_present(*pgd)) {        /* Another has populated it */
5184                 p4d_free(mm, new);
5185         } else {
5186                 smp_wmb(); /* See comment in pmd_install() */
5187                 pgd_populate(mm, pgd, new);
5188         }
5189         spin_unlock(&mm->page_table_lock);
5190         return 0;
5191 }
5192 #endif /* __PAGETABLE_P4D_FOLDED */
5193
5194 #ifndef __PAGETABLE_PUD_FOLDED
5195 /*
5196  * Allocate page upper directory.
5197  * We've already handled the fast-path in-line.
5198  */
5199 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5200 {
5201         pud_t *new = pud_alloc_one(mm, address);
5202         if (!new)
5203                 return -ENOMEM;
5204
5205         spin_lock(&mm->page_table_lock);
5206         if (!p4d_present(*p4d)) {
5207                 mm_inc_nr_puds(mm);
5208                 smp_wmb(); /* See comment in pmd_install() */
5209                 p4d_populate(mm, p4d, new);
5210         } else  /* Another has populated it */
5211                 pud_free(mm, new);
5212         spin_unlock(&mm->page_table_lock);
5213         return 0;
5214 }
5215 #endif /* __PAGETABLE_PUD_FOLDED */
5216
5217 #ifndef __PAGETABLE_PMD_FOLDED
5218 /*
5219  * Allocate page middle directory.
5220  * We've already handled the fast-path in-line.
5221  */
5222 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5223 {
5224         spinlock_t *ptl;
5225         pmd_t *new = pmd_alloc_one(mm, address);
5226         if (!new)
5227                 return -ENOMEM;
5228
5229         ptl = pud_lock(mm, pud);
5230         if (!pud_present(*pud)) {
5231                 mm_inc_nr_pmds(mm);
5232                 smp_wmb(); /* See comment in pmd_install() */
5233                 pud_populate(mm, pud, new);
5234         } else {        /* Another has populated it */
5235                 pmd_free(mm, new);
5236         }
5237         spin_unlock(ptl);
5238         return 0;
5239 }
5240 #endif /* __PAGETABLE_PMD_FOLDED */
5241
5242 /**
5243  * follow_pte - look up PTE at a user virtual address
5244  * @mm: the mm_struct of the target address space
5245  * @address: user virtual address
5246  * @ptepp: location to store found PTE
5247  * @ptlp: location to store the lock for the PTE
5248  *
5249  * On a successful return, the pointer to the PTE is stored in @ptepp;
5250  * the corresponding lock is taken and its location is stored in @ptlp.
5251  * The contents of the PTE are only stable until @ptlp is released;
5252  * any further use, if any, must be protected against invalidation
5253  * with MMU notifiers.
5254  *
5255  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5256  * should be taken for read.
5257  *
5258  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5259  * it is not a good general-purpose API.
5260  *
5261  * Return: zero on success, -ve otherwise.
5262  */
5263 int follow_pte(struct mm_struct *mm, unsigned long address,
5264                pte_t **ptepp, spinlock_t **ptlp)
5265 {
5266         pgd_t *pgd;
5267         p4d_t *p4d;
5268         pud_t *pud;
5269         pmd_t *pmd;
5270         pte_t *ptep;
5271
5272         pgd = pgd_offset(mm, address);
5273         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5274                 goto out;
5275
5276         p4d = p4d_offset(pgd, address);
5277         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5278                 goto out;
5279
5280         pud = pud_offset(p4d, address);
5281         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5282                 goto out;
5283
5284         pmd = pmd_offset(pud, address);
5285         VM_BUG_ON(pmd_trans_huge(*pmd));
5286
5287         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
5288                 goto out;
5289
5290         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5291         if (!pte_present(*ptep))
5292                 goto unlock;
5293         *ptepp = ptep;
5294         return 0;
5295 unlock:
5296         pte_unmap_unlock(ptep, *ptlp);
5297 out:
5298         return -EINVAL;
5299 }
5300 EXPORT_SYMBOL_GPL(follow_pte);
5301
5302 /**
5303  * follow_pfn - look up PFN at a user virtual address
5304  * @vma: memory mapping
5305  * @address: user virtual address
5306  * @pfn: location to store found PFN
5307  *
5308  * Only IO mappings and raw PFN mappings are allowed.
5309  *
5310  * This function does not allow the caller to read the permissions
5311  * of the PTE.  Do not use it.
5312  *
5313  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5314  */
5315 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5316         unsigned long *pfn)
5317 {
5318         int ret = -EINVAL;
5319         spinlock_t *ptl;
5320         pte_t *ptep;
5321
5322         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5323                 return ret;
5324
5325         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5326         if (ret)
5327                 return ret;
5328         *pfn = pte_pfn(*ptep);
5329         pte_unmap_unlock(ptep, ptl);
5330         return 0;
5331 }
5332 EXPORT_SYMBOL(follow_pfn);
5333
5334 #ifdef CONFIG_HAVE_IOREMAP_PROT
5335 int follow_phys(struct vm_area_struct *vma,
5336                 unsigned long address, unsigned int flags,
5337                 unsigned long *prot, resource_size_t *phys)
5338 {
5339         int ret = -EINVAL;
5340         pte_t *ptep, pte;
5341         spinlock_t *ptl;
5342
5343         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5344                 goto out;
5345
5346         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5347                 goto out;
5348         pte = *ptep;
5349
5350         if ((flags & FOLL_WRITE) && !pte_write(pte))
5351                 goto unlock;
5352
5353         *prot = pgprot_val(pte_pgprot(pte));
5354         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5355
5356         ret = 0;
5357 unlock:
5358         pte_unmap_unlock(ptep, ptl);
5359 out:
5360         return ret;
5361 }
5362
5363 /**
5364  * generic_access_phys - generic implementation for iomem mmap access
5365  * @vma: the vma to access
5366  * @addr: userspace address, not relative offset within @vma
5367  * @buf: buffer to read/write
5368  * @len: length of transfer
5369  * @write: set to FOLL_WRITE when writing, otherwise reading
5370  *
5371  * This is a generic implementation for &vm_operations_struct.access for an
5372  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5373  * not page based.
5374  */
5375 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5376                         void *buf, int len, int write)
5377 {
5378         resource_size_t phys_addr;
5379         unsigned long prot = 0;
5380         void __iomem *maddr;
5381         pte_t *ptep, pte;
5382         spinlock_t *ptl;
5383         int offset = offset_in_page(addr);
5384         int ret = -EINVAL;
5385
5386         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5387                 return -EINVAL;
5388
5389 retry:
5390         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5391                 return -EINVAL;
5392         pte = *ptep;
5393         pte_unmap_unlock(ptep, ptl);
5394
5395         prot = pgprot_val(pte_pgprot(pte));
5396         phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5397
5398         if ((write & FOLL_WRITE) && !pte_write(pte))
5399                 return -EINVAL;
5400
5401         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5402         if (!maddr)
5403                 return -ENOMEM;
5404
5405         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5406                 goto out_unmap;
5407
5408         if (!pte_same(pte, *ptep)) {
5409                 pte_unmap_unlock(ptep, ptl);
5410                 iounmap(maddr);
5411
5412                 goto retry;
5413         }
5414
5415         if (write)
5416                 memcpy_toio(maddr + offset, buf, len);
5417         else
5418                 memcpy_fromio(buf, maddr + offset, len);
5419         ret = len;
5420         pte_unmap_unlock(ptep, ptl);
5421 out_unmap:
5422         iounmap(maddr);
5423
5424         return ret;
5425 }
5426 EXPORT_SYMBOL_GPL(generic_access_phys);
5427 #endif
5428
5429 /*
5430  * Access another process' address space as given in mm.
5431  */
5432 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5433                        int len, unsigned int gup_flags)
5434 {
5435         struct vm_area_struct *vma;
5436         void *old_buf = buf;
5437         int write = gup_flags & FOLL_WRITE;
5438
5439         if (mmap_read_lock_killable(mm))
5440                 return 0;
5441
5442         /* ignore errors, just check how much was successfully transferred */
5443         while (len) {
5444                 int bytes, ret, offset;
5445                 void *maddr;
5446                 struct page *page = NULL;
5447
5448                 ret = get_user_pages_remote(mm, addr, 1,
5449                                 gup_flags, &page, &vma, NULL);
5450                 if (ret <= 0) {
5451 #ifndef CONFIG_HAVE_IOREMAP_PROT
5452                         break;
5453 #else
5454                         /*
5455                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
5456                          * we can access using slightly different code.
5457                          */
5458                         vma = vma_lookup(mm, addr);
5459                         if (!vma)
5460                                 break;
5461                         if (vma->vm_ops && vma->vm_ops->access)
5462                                 ret = vma->vm_ops->access(vma, addr, buf,
5463                                                           len, write);
5464                         if (ret <= 0)
5465                                 break;
5466                         bytes = ret;
5467 #endif
5468                 } else {
5469                         bytes = len;
5470                         offset = addr & (PAGE_SIZE-1);
5471                         if (bytes > PAGE_SIZE-offset)
5472                                 bytes = PAGE_SIZE-offset;
5473
5474                         maddr = kmap(page);
5475                         if (write) {
5476                                 copy_to_user_page(vma, page, addr,
5477                                                   maddr + offset, buf, bytes);
5478                                 set_page_dirty_lock(page);
5479                         } else {
5480                                 copy_from_user_page(vma, page, addr,
5481                                                     buf, maddr + offset, bytes);
5482                         }
5483                         kunmap(page);
5484                         put_page(page);
5485                 }
5486                 len -= bytes;
5487                 buf += bytes;
5488                 addr += bytes;
5489         }
5490         mmap_read_unlock(mm);
5491
5492         return buf - old_buf;
5493 }
5494
5495 /**
5496  * access_remote_vm - access another process' address space
5497  * @mm:         the mm_struct of the target address space
5498  * @addr:       start address to access
5499  * @buf:        source or destination buffer
5500  * @len:        number of bytes to transfer
5501  * @gup_flags:  flags modifying lookup behaviour
5502  *
5503  * The caller must hold a reference on @mm.
5504  *
5505  * Return: number of bytes copied from source to destination.
5506  */
5507 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5508                 void *buf, int len, unsigned int gup_flags)
5509 {
5510         return __access_remote_vm(mm, addr, buf, len, gup_flags);
5511 }
5512
5513 /*
5514  * Access another process' address space.
5515  * Source/target buffer must be kernel space,
5516  * Do not walk the page table directly, use get_user_pages
5517  */
5518 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5519                 void *buf, int len, unsigned int gup_flags)
5520 {
5521         struct mm_struct *mm;
5522         int ret;
5523
5524         mm = get_task_mm(tsk);
5525         if (!mm)
5526                 return 0;
5527
5528         ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5529
5530         mmput(mm);
5531
5532         return ret;
5533 }
5534 EXPORT_SYMBOL_GPL(access_process_vm);
5535
5536 /*
5537  * Print the name of a VMA.
5538  */
5539 void print_vma_addr(char *prefix, unsigned long ip)
5540 {
5541         struct mm_struct *mm = current->mm;
5542         struct vm_area_struct *vma;
5543
5544         /*
5545          * we might be running from an atomic context so we cannot sleep
5546          */
5547         if (!mmap_read_trylock(mm))
5548                 return;
5549
5550         vma = find_vma(mm, ip);
5551         if (vma && vma->vm_file) {
5552                 struct file *f = vma->vm_file;
5553                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5554                 if (buf) {
5555                         char *p;
5556
5557                         p = file_path(f, buf, PAGE_SIZE);
5558                         if (IS_ERR(p))
5559                                 p = "?";
5560                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5561                                         vma->vm_start,
5562                                         vma->vm_end - vma->vm_start);
5563                         free_page((unsigned long)buf);
5564                 }
5565         }
5566         mmap_read_unlock(mm);
5567 }
5568
5569 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5570 void __might_fault(const char *file, int line)
5571 {
5572         if (pagefault_disabled())
5573                 return;
5574         __might_sleep(file, line);
5575 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5576         if (current->mm)
5577                 might_lock_read(&current->mm->mmap_lock);
5578 #endif
5579 }
5580 EXPORT_SYMBOL(__might_fault);
5581 #endif
5582
5583 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5584 /*
5585  * Process all subpages of the specified huge page with the specified
5586  * operation.  The target subpage will be processed last to keep its
5587  * cache lines hot.
5588  */
5589 static inline void process_huge_page(
5590         unsigned long addr_hint, unsigned int pages_per_huge_page,
5591         void (*process_subpage)(unsigned long addr, int idx, void *arg),
5592         void *arg)
5593 {
5594         int i, n, base, l;
5595         unsigned long addr = addr_hint &
5596                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5597
5598         /* Process target subpage last to keep its cache lines hot */
5599         might_sleep();
5600         n = (addr_hint - addr) / PAGE_SIZE;
5601         if (2 * n <= pages_per_huge_page) {
5602                 /* If target subpage in first half of huge page */
5603                 base = 0;
5604                 l = n;
5605                 /* Process subpages at the end of huge page */
5606                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5607                         cond_resched();
5608                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5609                 }
5610         } else {
5611                 /* If target subpage in second half of huge page */
5612                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5613                 l = pages_per_huge_page - n;
5614                 /* Process subpages at the begin of huge page */
5615                 for (i = 0; i < base; i++) {
5616                         cond_resched();
5617                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5618                 }
5619         }
5620         /*
5621          * Process remaining subpages in left-right-left-right pattern
5622          * towards the target subpage
5623          */
5624         for (i = 0; i < l; i++) {
5625                 int left_idx = base + i;
5626                 int right_idx = base + 2 * l - 1 - i;
5627
5628                 cond_resched();
5629                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5630                 cond_resched();
5631                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5632         }
5633 }
5634
5635 static void clear_gigantic_page(struct page *page,
5636                                 unsigned long addr,
5637                                 unsigned int pages_per_huge_page)
5638 {
5639         int i;
5640         struct page *p = page;
5641
5642         might_sleep();
5643         for (i = 0; i < pages_per_huge_page;
5644              i++, p = mem_map_next(p, page, i)) {
5645                 cond_resched();
5646                 clear_user_highpage(p, addr + i * PAGE_SIZE);
5647         }
5648 }
5649
5650 static void clear_subpage(unsigned long addr, int idx, void *arg)
5651 {
5652         struct page *page = arg;
5653
5654         clear_user_highpage(page + idx, addr);
5655 }
5656
5657 void clear_huge_page(struct page *page,
5658                      unsigned long addr_hint, unsigned int pages_per_huge_page)
5659 {
5660         unsigned long addr = addr_hint &
5661                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5662
5663         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5664                 clear_gigantic_page(page, addr, pages_per_huge_page);
5665                 return;
5666         }
5667
5668         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5669 }
5670
5671 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5672                                     unsigned long addr,
5673                                     struct vm_area_struct *vma,
5674                                     unsigned int pages_per_huge_page)
5675 {
5676         int i;
5677         struct page *dst_base = dst;
5678         struct page *src_base = src;
5679
5680         for (i = 0; i < pages_per_huge_page; ) {
5681                 cond_resched();
5682                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5683
5684                 i++;
5685                 dst = mem_map_next(dst, dst_base, i);
5686                 src = mem_map_next(src, src_base, i);
5687         }
5688 }
5689
5690 struct copy_subpage_arg {
5691         struct page *dst;
5692         struct page *src;
5693         struct vm_area_struct *vma;
5694 };
5695
5696 static void copy_subpage(unsigned long addr, int idx, void *arg)
5697 {
5698         struct copy_subpage_arg *copy_arg = arg;
5699
5700         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5701                            addr, copy_arg->vma);
5702 }
5703
5704 void copy_user_huge_page(struct page *dst, struct page *src,
5705                          unsigned long addr_hint, struct vm_area_struct *vma,
5706                          unsigned int pages_per_huge_page)
5707 {
5708         unsigned long addr = addr_hint &
5709                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5710         struct copy_subpage_arg arg = {
5711                 .dst = dst,
5712                 .src = src,
5713                 .vma = vma,
5714         };
5715
5716         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5717                 copy_user_gigantic_page(dst, src, addr, vma,
5718                                         pages_per_huge_page);
5719                 return;
5720         }
5721
5722         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5723 }
5724
5725 long copy_huge_page_from_user(struct page *dst_page,
5726                                 const void __user *usr_src,
5727                                 unsigned int pages_per_huge_page,
5728                                 bool allow_pagefault)
5729 {
5730         void *page_kaddr;
5731         unsigned long i, rc = 0;
5732         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5733         struct page *subpage = dst_page;
5734
5735         for (i = 0; i < pages_per_huge_page;
5736              i++, subpage = mem_map_next(subpage, dst_page, i)) {
5737                 if (allow_pagefault)
5738                         page_kaddr = kmap(subpage);
5739                 else
5740                         page_kaddr = kmap_atomic(subpage);
5741                 rc = copy_from_user(page_kaddr,
5742                                 usr_src + i * PAGE_SIZE, PAGE_SIZE);
5743                 if (allow_pagefault)
5744                         kunmap(subpage);
5745                 else
5746                         kunmap_atomic(page_kaddr);
5747
5748                 ret_val -= (PAGE_SIZE - rc);
5749                 if (rc)
5750                         break;
5751
5752                 flush_dcache_page(subpage);
5753
5754                 cond_resched();
5755         }
5756         return ret_val;
5757 }
5758 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5759
5760 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5761
5762 static struct kmem_cache *page_ptl_cachep;
5763
5764 void __init ptlock_cache_init(void)
5765 {
5766         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5767                         SLAB_PANIC, NULL);
5768 }
5769
5770 bool ptlock_alloc(struct page *page)
5771 {
5772         spinlock_t *ptl;
5773
5774         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5775         if (!ptl)
5776                 return false;
5777         page->ptl = ptl;
5778         return true;
5779 }
5780
5781 void ptlock_free(struct page *page)
5782 {
5783         kmem_cache_free(page_ptl_cachep, page->ptl);
5784 }
5785 #endif