tools kvm headers arm64: Update KVM headers from the kernel sources
[linux-2.6-microblaze.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 #include <linux/numa.h>
73 #include <linux/perf_event.h>
74 #include <linux/ptrace.h>
75 #include <linux/vmalloc.h>
76
77 #include <trace/events/kmem.h>
78
79 #include <asm/io.h>
80 #include <asm/mmu_context.h>
81 #include <asm/pgalloc.h>
82 #include <linux/uaccess.h>
83 #include <asm/tlb.h>
84 #include <asm/tlbflush.h>
85
86 #include "pgalloc-track.h"
87 #include "internal.h"
88
89 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
91 #endif
92
93 #ifndef CONFIG_NUMA
94 unsigned long max_mapnr;
95 EXPORT_SYMBOL(max_mapnr);
96
97 struct page *mem_map;
98 EXPORT_SYMBOL(mem_map);
99 #endif
100
101 /*
102  * A number of key systems in x86 including ioremap() rely on the assumption
103  * that high_memory defines the upper bound on direct map memory, then end
104  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
105  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
106  * and ZONE_HIGHMEM.
107  */
108 void *high_memory;
109 EXPORT_SYMBOL(high_memory);
110
111 /*
112  * Randomize the address space (stacks, mmaps, brk, etc.).
113  *
114  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
115  *   as ancient (libc5 based) binaries can segfault. )
116  */
117 int randomize_va_space __read_mostly =
118 #ifdef CONFIG_COMPAT_BRK
119                                         1;
120 #else
121                                         2;
122 #endif
123
124 #ifndef arch_faults_on_old_pte
125 static inline bool arch_faults_on_old_pte(void)
126 {
127         /*
128          * Those arches which don't have hw access flag feature need to
129          * implement their own helper. By default, "true" means pagefault
130          * will be hit on old pte.
131          */
132         return true;
133 }
134 #endif
135
136 #ifndef arch_wants_old_prefaulted_pte
137 static inline bool arch_wants_old_prefaulted_pte(void)
138 {
139         /*
140          * Transitioning a PTE from 'old' to 'young' can be expensive on
141          * some architectures, even if it's performed in hardware. By
142          * default, "false" means prefaulted entries will be 'young'.
143          */
144         return false;
145 }
146 #endif
147
148 static int __init disable_randmaps(char *s)
149 {
150         randomize_va_space = 0;
151         return 1;
152 }
153 __setup("norandmaps", disable_randmaps);
154
155 unsigned long zero_pfn __read_mostly;
156 EXPORT_SYMBOL(zero_pfn);
157
158 unsigned long highest_memmap_pfn __read_mostly;
159
160 /*
161  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
162  */
163 static int __init init_zero_pfn(void)
164 {
165         zero_pfn = page_to_pfn(ZERO_PAGE(0));
166         return 0;
167 }
168 early_initcall(init_zero_pfn);
169
170 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
171 {
172         trace_rss_stat(mm, member, count);
173 }
174
175 #if defined(SPLIT_RSS_COUNTING)
176
177 void sync_mm_rss(struct mm_struct *mm)
178 {
179         int i;
180
181         for (i = 0; i < NR_MM_COUNTERS; i++) {
182                 if (current->rss_stat.count[i]) {
183                         add_mm_counter(mm, i, current->rss_stat.count[i]);
184                         current->rss_stat.count[i] = 0;
185                 }
186         }
187         current->rss_stat.events = 0;
188 }
189
190 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
191 {
192         struct task_struct *task = current;
193
194         if (likely(task->mm == mm))
195                 task->rss_stat.count[member] += val;
196         else
197                 add_mm_counter(mm, member, val);
198 }
199 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
200 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
201
202 /* sync counter once per 64 page faults */
203 #define TASK_RSS_EVENTS_THRESH  (64)
204 static void check_sync_rss_stat(struct task_struct *task)
205 {
206         if (unlikely(task != current))
207                 return;
208         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
209                 sync_mm_rss(task->mm);
210 }
211 #else /* SPLIT_RSS_COUNTING */
212
213 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
214 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
215
216 static void check_sync_rss_stat(struct task_struct *task)
217 {
218 }
219
220 #endif /* SPLIT_RSS_COUNTING */
221
222 /*
223  * Note: this doesn't free the actual pages themselves. That
224  * has been handled earlier when unmapping all the memory regions.
225  */
226 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
227                            unsigned long addr)
228 {
229         pgtable_t token = pmd_pgtable(*pmd);
230         pmd_clear(pmd);
231         pte_free_tlb(tlb, token, addr);
232         mm_dec_nr_ptes(tlb->mm);
233 }
234
235 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
236                                 unsigned long addr, unsigned long end,
237                                 unsigned long floor, unsigned long ceiling)
238 {
239         pmd_t *pmd;
240         unsigned long next;
241         unsigned long start;
242
243         start = addr;
244         pmd = pmd_offset(pud, addr);
245         do {
246                 next = pmd_addr_end(addr, end);
247                 if (pmd_none_or_clear_bad(pmd))
248                         continue;
249                 free_pte_range(tlb, pmd, addr);
250         } while (pmd++, addr = next, addr != end);
251
252         start &= PUD_MASK;
253         if (start < floor)
254                 return;
255         if (ceiling) {
256                 ceiling &= PUD_MASK;
257                 if (!ceiling)
258                         return;
259         }
260         if (end - 1 > ceiling - 1)
261                 return;
262
263         pmd = pmd_offset(pud, start);
264         pud_clear(pud);
265         pmd_free_tlb(tlb, pmd, start);
266         mm_dec_nr_pmds(tlb->mm);
267 }
268
269 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
270                                 unsigned long addr, unsigned long end,
271                                 unsigned long floor, unsigned long ceiling)
272 {
273         pud_t *pud;
274         unsigned long next;
275         unsigned long start;
276
277         start = addr;
278         pud = pud_offset(p4d, addr);
279         do {
280                 next = pud_addr_end(addr, end);
281                 if (pud_none_or_clear_bad(pud))
282                         continue;
283                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
284         } while (pud++, addr = next, addr != end);
285
286         start &= P4D_MASK;
287         if (start < floor)
288                 return;
289         if (ceiling) {
290                 ceiling &= P4D_MASK;
291                 if (!ceiling)
292                         return;
293         }
294         if (end - 1 > ceiling - 1)
295                 return;
296
297         pud = pud_offset(p4d, start);
298         p4d_clear(p4d);
299         pud_free_tlb(tlb, pud, start);
300         mm_dec_nr_puds(tlb->mm);
301 }
302
303 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
304                                 unsigned long addr, unsigned long end,
305                                 unsigned long floor, unsigned long ceiling)
306 {
307         p4d_t *p4d;
308         unsigned long next;
309         unsigned long start;
310
311         start = addr;
312         p4d = p4d_offset(pgd, addr);
313         do {
314                 next = p4d_addr_end(addr, end);
315                 if (p4d_none_or_clear_bad(p4d))
316                         continue;
317                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
318         } while (p4d++, addr = next, addr != end);
319
320         start &= PGDIR_MASK;
321         if (start < floor)
322                 return;
323         if (ceiling) {
324                 ceiling &= PGDIR_MASK;
325                 if (!ceiling)
326                         return;
327         }
328         if (end - 1 > ceiling - 1)
329                 return;
330
331         p4d = p4d_offset(pgd, start);
332         pgd_clear(pgd);
333         p4d_free_tlb(tlb, p4d, start);
334 }
335
336 /*
337  * This function frees user-level page tables of a process.
338  */
339 void free_pgd_range(struct mmu_gather *tlb,
340                         unsigned long addr, unsigned long end,
341                         unsigned long floor, unsigned long ceiling)
342 {
343         pgd_t *pgd;
344         unsigned long next;
345
346         /*
347          * The next few lines have given us lots of grief...
348          *
349          * Why are we testing PMD* at this top level?  Because often
350          * there will be no work to do at all, and we'd prefer not to
351          * go all the way down to the bottom just to discover that.
352          *
353          * Why all these "- 1"s?  Because 0 represents both the bottom
354          * of the address space and the top of it (using -1 for the
355          * top wouldn't help much: the masks would do the wrong thing).
356          * The rule is that addr 0 and floor 0 refer to the bottom of
357          * the address space, but end 0 and ceiling 0 refer to the top
358          * Comparisons need to use "end - 1" and "ceiling - 1" (though
359          * that end 0 case should be mythical).
360          *
361          * Wherever addr is brought up or ceiling brought down, we must
362          * be careful to reject "the opposite 0" before it confuses the
363          * subsequent tests.  But what about where end is brought down
364          * by PMD_SIZE below? no, end can't go down to 0 there.
365          *
366          * Whereas we round start (addr) and ceiling down, by different
367          * masks at different levels, in order to test whether a table
368          * now has no other vmas using it, so can be freed, we don't
369          * bother to round floor or end up - the tests don't need that.
370          */
371
372         addr &= PMD_MASK;
373         if (addr < floor) {
374                 addr += PMD_SIZE;
375                 if (!addr)
376                         return;
377         }
378         if (ceiling) {
379                 ceiling &= PMD_MASK;
380                 if (!ceiling)
381                         return;
382         }
383         if (end - 1 > ceiling - 1)
384                 end -= PMD_SIZE;
385         if (addr > end - 1)
386                 return;
387         /*
388          * We add page table cache pages with PAGE_SIZE,
389          * (see pte_free_tlb()), flush the tlb if we need
390          */
391         tlb_change_page_size(tlb, PAGE_SIZE);
392         pgd = pgd_offset(tlb->mm, addr);
393         do {
394                 next = pgd_addr_end(addr, end);
395                 if (pgd_none_or_clear_bad(pgd))
396                         continue;
397                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
398         } while (pgd++, addr = next, addr != end);
399 }
400
401 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
402                 unsigned long floor, unsigned long ceiling)
403 {
404         while (vma) {
405                 struct vm_area_struct *next = vma->vm_next;
406                 unsigned long addr = vma->vm_start;
407
408                 /*
409                  * Hide vma from rmap and truncate_pagecache before freeing
410                  * pgtables
411                  */
412                 unlink_anon_vmas(vma);
413                 unlink_file_vma(vma);
414
415                 if (is_vm_hugetlb_page(vma)) {
416                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
417                                 floor, next ? next->vm_start : ceiling);
418                 } else {
419                         /*
420                          * Optimization: gather nearby vmas into one call down
421                          */
422                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
423                                && !is_vm_hugetlb_page(next)) {
424                                 vma = next;
425                                 next = vma->vm_next;
426                                 unlink_anon_vmas(vma);
427                                 unlink_file_vma(vma);
428                         }
429                         free_pgd_range(tlb, addr, vma->vm_end,
430                                 floor, next ? next->vm_start : ceiling);
431                 }
432                 vma = next;
433         }
434 }
435
436 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
437 {
438         spinlock_t *ptl;
439         pgtable_t new = pte_alloc_one(mm);
440         if (!new)
441                 return -ENOMEM;
442
443         /*
444          * Ensure all pte setup (eg. pte page lock and page clearing) are
445          * visible before the pte is made visible to other CPUs by being
446          * put into page tables.
447          *
448          * The other side of the story is the pointer chasing in the page
449          * table walking code (when walking the page table without locking;
450          * ie. most of the time). Fortunately, these data accesses consist
451          * of a chain of data-dependent loads, meaning most CPUs (alpha
452          * being the notable exception) will already guarantee loads are
453          * seen in-order. See the alpha page table accessors for the
454          * smp_rmb() barriers in page table walking code.
455          */
456         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
457
458         ptl = pmd_lock(mm, pmd);
459         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
460                 mm_inc_nr_ptes(mm);
461                 pmd_populate(mm, pmd, new);
462                 new = NULL;
463         }
464         spin_unlock(ptl);
465         if (new)
466                 pte_free(mm, new);
467         return 0;
468 }
469
470 int __pte_alloc_kernel(pmd_t *pmd)
471 {
472         pte_t *new = pte_alloc_one_kernel(&init_mm);
473         if (!new)
474                 return -ENOMEM;
475
476         smp_wmb(); /* See comment in __pte_alloc */
477
478         spin_lock(&init_mm.page_table_lock);
479         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
480                 pmd_populate_kernel(&init_mm, pmd, new);
481                 new = NULL;
482         }
483         spin_unlock(&init_mm.page_table_lock);
484         if (new)
485                 pte_free_kernel(&init_mm, new);
486         return 0;
487 }
488
489 static inline void init_rss_vec(int *rss)
490 {
491         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
492 }
493
494 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
495 {
496         int i;
497
498         if (current->mm == mm)
499                 sync_mm_rss(mm);
500         for (i = 0; i < NR_MM_COUNTERS; i++)
501                 if (rss[i])
502                         add_mm_counter(mm, i, rss[i]);
503 }
504
505 /*
506  * This function is called to print an error when a bad pte
507  * is found. For example, we might have a PFN-mapped pte in
508  * a region that doesn't allow it.
509  *
510  * The calling function must still handle the error.
511  */
512 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
513                           pte_t pte, struct page *page)
514 {
515         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
516         p4d_t *p4d = p4d_offset(pgd, addr);
517         pud_t *pud = pud_offset(p4d, addr);
518         pmd_t *pmd = pmd_offset(pud, addr);
519         struct address_space *mapping;
520         pgoff_t index;
521         static unsigned long resume;
522         static unsigned long nr_shown;
523         static unsigned long nr_unshown;
524
525         /*
526          * Allow a burst of 60 reports, then keep quiet for that minute;
527          * or allow a steady drip of one report per second.
528          */
529         if (nr_shown == 60) {
530                 if (time_before(jiffies, resume)) {
531                         nr_unshown++;
532                         return;
533                 }
534                 if (nr_unshown) {
535                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
536                                  nr_unshown);
537                         nr_unshown = 0;
538                 }
539                 nr_shown = 0;
540         }
541         if (nr_shown++ == 0)
542                 resume = jiffies + 60 * HZ;
543
544         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
545         index = linear_page_index(vma, addr);
546
547         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
548                  current->comm,
549                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
550         if (page)
551                 dump_page(page, "bad pte");
552         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
553                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
554         pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
555                  vma->vm_file,
556                  vma->vm_ops ? vma->vm_ops->fault : NULL,
557                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
558                  mapping ? mapping->a_ops->readpage : NULL);
559         dump_stack();
560         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
561 }
562
563 /*
564  * vm_normal_page -- This function gets the "struct page" associated with a pte.
565  *
566  * "Special" mappings do not wish to be associated with a "struct page" (either
567  * it doesn't exist, or it exists but they don't want to touch it). In this
568  * case, NULL is returned here. "Normal" mappings do have a struct page.
569  *
570  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
571  * pte bit, in which case this function is trivial. Secondly, an architecture
572  * may not have a spare pte bit, which requires a more complicated scheme,
573  * described below.
574  *
575  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
576  * special mapping (even if there are underlying and valid "struct pages").
577  * COWed pages of a VM_PFNMAP are always normal.
578  *
579  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
580  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
581  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
582  * mapping will always honor the rule
583  *
584  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
585  *
586  * And for normal mappings this is false.
587  *
588  * This restricts such mappings to be a linear translation from virtual address
589  * to pfn. To get around this restriction, we allow arbitrary mappings so long
590  * as the vma is not a COW mapping; in that case, we know that all ptes are
591  * special (because none can have been COWed).
592  *
593  *
594  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
595  *
596  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
597  * page" backing, however the difference is that _all_ pages with a struct
598  * page (that is, those where pfn_valid is true) are refcounted and considered
599  * normal pages by the VM. The disadvantage is that pages are refcounted
600  * (which can be slower and simply not an option for some PFNMAP users). The
601  * advantage is that we don't have to follow the strict linearity rule of
602  * PFNMAP mappings in order to support COWable mappings.
603  *
604  */
605 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
606                             pte_t pte)
607 {
608         unsigned long pfn = pte_pfn(pte);
609
610         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
611                 if (likely(!pte_special(pte)))
612                         goto check_pfn;
613                 if (vma->vm_ops && vma->vm_ops->find_special_page)
614                         return vma->vm_ops->find_special_page(vma, addr);
615                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
616                         return NULL;
617                 if (is_zero_pfn(pfn))
618                         return NULL;
619                 if (pte_devmap(pte))
620                         return NULL;
621
622                 print_bad_pte(vma, addr, pte, NULL);
623                 return NULL;
624         }
625
626         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
627
628         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
629                 if (vma->vm_flags & VM_MIXEDMAP) {
630                         if (!pfn_valid(pfn))
631                                 return NULL;
632                         goto out;
633                 } else {
634                         unsigned long off;
635                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
636                         if (pfn == vma->vm_pgoff + off)
637                                 return NULL;
638                         if (!is_cow_mapping(vma->vm_flags))
639                                 return NULL;
640                 }
641         }
642
643         if (is_zero_pfn(pfn))
644                 return NULL;
645
646 check_pfn:
647         if (unlikely(pfn > highest_memmap_pfn)) {
648                 print_bad_pte(vma, addr, pte, NULL);
649                 return NULL;
650         }
651
652         /*
653          * NOTE! We still have PageReserved() pages in the page tables.
654          * eg. VDSO mappings can cause them to exist.
655          */
656 out:
657         return pfn_to_page(pfn);
658 }
659
660 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
661 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
662                                 pmd_t pmd)
663 {
664         unsigned long pfn = pmd_pfn(pmd);
665
666         /*
667          * There is no pmd_special() but there may be special pmds, e.g.
668          * in a direct-access (dax) mapping, so let's just replicate the
669          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
670          */
671         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
672                 if (vma->vm_flags & VM_MIXEDMAP) {
673                         if (!pfn_valid(pfn))
674                                 return NULL;
675                         goto out;
676                 } else {
677                         unsigned long off;
678                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
679                         if (pfn == vma->vm_pgoff + off)
680                                 return NULL;
681                         if (!is_cow_mapping(vma->vm_flags))
682                                 return NULL;
683                 }
684         }
685
686         if (pmd_devmap(pmd))
687                 return NULL;
688         if (is_huge_zero_pmd(pmd))
689                 return NULL;
690         if (unlikely(pfn > highest_memmap_pfn))
691                 return NULL;
692
693         /*
694          * NOTE! We still have PageReserved() pages in the page tables.
695          * eg. VDSO mappings can cause them to exist.
696          */
697 out:
698         return pfn_to_page(pfn);
699 }
700 #endif
701
702 /*
703  * copy one vm_area from one task to the other. Assumes the page tables
704  * already present in the new task to be cleared in the whole range
705  * covered by this vma.
706  */
707
708 static unsigned long
709 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
710                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
711                 unsigned long addr, int *rss)
712 {
713         unsigned long vm_flags = vma->vm_flags;
714         pte_t pte = *src_pte;
715         struct page *page;
716         swp_entry_t entry = pte_to_swp_entry(pte);
717
718         if (likely(!non_swap_entry(entry))) {
719                 if (swap_duplicate(entry) < 0)
720                         return entry.val;
721
722                 /* make sure dst_mm is on swapoff's mmlist. */
723                 if (unlikely(list_empty(&dst_mm->mmlist))) {
724                         spin_lock(&mmlist_lock);
725                         if (list_empty(&dst_mm->mmlist))
726                                 list_add(&dst_mm->mmlist,
727                                                 &src_mm->mmlist);
728                         spin_unlock(&mmlist_lock);
729                 }
730                 rss[MM_SWAPENTS]++;
731         } else if (is_migration_entry(entry)) {
732                 page = migration_entry_to_page(entry);
733
734                 rss[mm_counter(page)]++;
735
736                 if (is_write_migration_entry(entry) &&
737                                 is_cow_mapping(vm_flags)) {
738                         /*
739                          * COW mappings require pages in both
740                          * parent and child to be set to read.
741                          */
742                         make_migration_entry_read(&entry);
743                         pte = swp_entry_to_pte(entry);
744                         if (pte_swp_soft_dirty(*src_pte))
745                                 pte = pte_swp_mksoft_dirty(pte);
746                         if (pte_swp_uffd_wp(*src_pte))
747                                 pte = pte_swp_mkuffd_wp(pte);
748                         set_pte_at(src_mm, addr, src_pte, pte);
749                 }
750         } else if (is_device_private_entry(entry)) {
751                 page = device_private_entry_to_page(entry);
752
753                 /*
754                  * Update rss count even for unaddressable pages, as
755                  * they should treated just like normal pages in this
756                  * respect.
757                  *
758                  * We will likely want to have some new rss counters
759                  * for unaddressable pages, at some point. But for now
760                  * keep things as they are.
761                  */
762                 get_page(page);
763                 rss[mm_counter(page)]++;
764                 page_dup_rmap(page, false);
765
766                 /*
767                  * We do not preserve soft-dirty information, because so
768                  * far, checkpoint/restore is the only feature that
769                  * requires that. And checkpoint/restore does not work
770                  * when a device driver is involved (you cannot easily
771                  * save and restore device driver state).
772                  */
773                 if (is_write_device_private_entry(entry) &&
774                     is_cow_mapping(vm_flags)) {
775                         make_device_private_entry_read(&entry);
776                         pte = swp_entry_to_pte(entry);
777                         if (pte_swp_uffd_wp(*src_pte))
778                                 pte = pte_swp_mkuffd_wp(pte);
779                         set_pte_at(src_mm, addr, src_pte, pte);
780                 }
781         }
782         set_pte_at(dst_mm, addr, dst_pte, pte);
783         return 0;
784 }
785
786 /*
787  * Copy a present and normal page if necessary.
788  *
789  * NOTE! The usual case is that this doesn't need to do
790  * anything, and can just return a positive value. That
791  * will let the caller know that it can just increase
792  * the page refcount and re-use the pte the traditional
793  * way.
794  *
795  * But _if_ we need to copy it because it needs to be
796  * pinned in the parent (and the child should get its own
797  * copy rather than just a reference to the same page),
798  * we'll do that here and return zero to let the caller
799  * know we're done.
800  *
801  * And if we need a pre-allocated page but don't yet have
802  * one, return a negative error to let the preallocation
803  * code know so that it can do so outside the page table
804  * lock.
805  */
806 static inline int
807 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
808                   pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
809                   struct page **prealloc, pte_t pte, struct page *page)
810 {
811         struct page *new_page;
812
813         /*
814          * What we want to do is to check whether this page may
815          * have been pinned by the parent process.  If so,
816          * instead of wrprotect the pte on both sides, we copy
817          * the page immediately so that we'll always guarantee
818          * the pinned page won't be randomly replaced in the
819          * future.
820          *
821          * The page pinning checks are just "has this mm ever
822          * seen pinning", along with the (inexact) check of
823          * the page count. That might give false positives for
824          * for pinning, but it will work correctly.
825          */
826         if (likely(!page_needs_cow_for_dma(src_vma, page)))
827                 return 1;
828
829         new_page = *prealloc;
830         if (!new_page)
831                 return -EAGAIN;
832
833         /*
834          * We have a prealloc page, all good!  Take it
835          * over and copy the page & arm it.
836          */
837         *prealloc = NULL;
838         copy_user_highpage(new_page, page, addr, src_vma);
839         __SetPageUptodate(new_page);
840         page_add_new_anon_rmap(new_page, dst_vma, addr, false);
841         lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
842         rss[mm_counter(new_page)]++;
843
844         /* All done, just insert the new page copy in the child */
845         pte = mk_pte(new_page, dst_vma->vm_page_prot);
846         pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
847         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
848         return 0;
849 }
850
851 /*
852  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
853  * is required to copy this pte.
854  */
855 static inline int
856 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
857                  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
858                  struct page **prealloc)
859 {
860         struct mm_struct *src_mm = src_vma->vm_mm;
861         unsigned long vm_flags = src_vma->vm_flags;
862         pte_t pte = *src_pte;
863         struct page *page;
864
865         page = vm_normal_page(src_vma, addr, pte);
866         if (page) {
867                 int retval;
868
869                 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
870                                            addr, rss, prealloc, pte, page);
871                 if (retval <= 0)
872                         return retval;
873
874                 get_page(page);
875                 page_dup_rmap(page, false);
876                 rss[mm_counter(page)]++;
877         }
878
879         /*
880          * If it's a COW mapping, write protect it both
881          * in the parent and the child
882          */
883         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
884                 ptep_set_wrprotect(src_mm, addr, src_pte);
885                 pte = pte_wrprotect(pte);
886         }
887
888         /*
889          * If it's a shared mapping, mark it clean in
890          * the child
891          */
892         if (vm_flags & VM_SHARED)
893                 pte = pte_mkclean(pte);
894         pte = pte_mkold(pte);
895
896         /*
897          * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
898          * does not have the VM_UFFD_WP, which means that the uffd
899          * fork event is not enabled.
900          */
901         if (!(vm_flags & VM_UFFD_WP))
902                 pte = pte_clear_uffd_wp(pte);
903
904         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
905         return 0;
906 }
907
908 static inline struct page *
909 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
910                    unsigned long addr)
911 {
912         struct page *new_page;
913
914         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
915         if (!new_page)
916                 return NULL;
917
918         if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
919                 put_page(new_page);
920                 return NULL;
921         }
922         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
923
924         return new_page;
925 }
926
927 static int
928 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
929                pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
930                unsigned long end)
931 {
932         struct mm_struct *dst_mm = dst_vma->vm_mm;
933         struct mm_struct *src_mm = src_vma->vm_mm;
934         pte_t *orig_src_pte, *orig_dst_pte;
935         pte_t *src_pte, *dst_pte;
936         spinlock_t *src_ptl, *dst_ptl;
937         int progress, ret = 0;
938         int rss[NR_MM_COUNTERS];
939         swp_entry_t entry = (swp_entry_t){0};
940         struct page *prealloc = NULL;
941
942 again:
943         progress = 0;
944         init_rss_vec(rss);
945
946         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
947         if (!dst_pte) {
948                 ret = -ENOMEM;
949                 goto out;
950         }
951         src_pte = pte_offset_map(src_pmd, addr);
952         src_ptl = pte_lockptr(src_mm, src_pmd);
953         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
954         orig_src_pte = src_pte;
955         orig_dst_pte = dst_pte;
956         arch_enter_lazy_mmu_mode();
957
958         do {
959                 /*
960                  * We are holding two locks at this point - either of them
961                  * could generate latencies in another task on another CPU.
962                  */
963                 if (progress >= 32) {
964                         progress = 0;
965                         if (need_resched() ||
966                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
967                                 break;
968                 }
969                 if (pte_none(*src_pte)) {
970                         progress++;
971                         continue;
972                 }
973                 if (unlikely(!pte_present(*src_pte))) {
974                         entry.val = copy_nonpresent_pte(dst_mm, src_mm,
975                                                         dst_pte, src_pte,
976                                                         src_vma, addr, rss);
977                         if (entry.val)
978                                 break;
979                         progress += 8;
980                         continue;
981                 }
982                 /* copy_present_pte() will clear `*prealloc' if consumed */
983                 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
984                                        addr, rss, &prealloc);
985                 /*
986                  * If we need a pre-allocated page for this pte, drop the
987                  * locks, allocate, and try again.
988                  */
989                 if (unlikely(ret == -EAGAIN))
990                         break;
991                 if (unlikely(prealloc)) {
992                         /*
993                          * pre-alloc page cannot be reused by next time so as
994                          * to strictly follow mempolicy (e.g., alloc_page_vma()
995                          * will allocate page according to address).  This
996                          * could only happen if one pinned pte changed.
997                          */
998                         put_page(prealloc);
999                         prealloc = NULL;
1000                 }
1001                 progress += 8;
1002         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1003
1004         arch_leave_lazy_mmu_mode();
1005         spin_unlock(src_ptl);
1006         pte_unmap(orig_src_pte);
1007         add_mm_rss_vec(dst_mm, rss);
1008         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1009         cond_resched();
1010
1011         if (entry.val) {
1012                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1013                         ret = -ENOMEM;
1014                         goto out;
1015                 }
1016                 entry.val = 0;
1017         } else if (ret) {
1018                 WARN_ON_ONCE(ret != -EAGAIN);
1019                 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1020                 if (!prealloc)
1021                         return -ENOMEM;
1022                 /* We've captured and resolved the error. Reset, try again. */
1023                 ret = 0;
1024         }
1025         if (addr != end)
1026                 goto again;
1027 out:
1028         if (unlikely(prealloc))
1029                 put_page(prealloc);
1030         return ret;
1031 }
1032
1033 static inline int
1034 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1035                pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1036                unsigned long end)
1037 {
1038         struct mm_struct *dst_mm = dst_vma->vm_mm;
1039         struct mm_struct *src_mm = src_vma->vm_mm;
1040         pmd_t *src_pmd, *dst_pmd;
1041         unsigned long next;
1042
1043         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1044         if (!dst_pmd)
1045                 return -ENOMEM;
1046         src_pmd = pmd_offset(src_pud, addr);
1047         do {
1048                 next = pmd_addr_end(addr, end);
1049                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1050                         || pmd_devmap(*src_pmd)) {
1051                         int err;
1052                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1053                         err = copy_huge_pmd(dst_mm, src_mm,
1054                                             dst_pmd, src_pmd, addr, src_vma);
1055                         if (err == -ENOMEM)
1056                                 return -ENOMEM;
1057                         if (!err)
1058                                 continue;
1059                         /* fall through */
1060                 }
1061                 if (pmd_none_or_clear_bad(src_pmd))
1062                         continue;
1063                 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1064                                    addr, next))
1065                         return -ENOMEM;
1066         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1067         return 0;
1068 }
1069
1070 static inline int
1071 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1072                p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1073                unsigned long end)
1074 {
1075         struct mm_struct *dst_mm = dst_vma->vm_mm;
1076         struct mm_struct *src_mm = src_vma->vm_mm;
1077         pud_t *src_pud, *dst_pud;
1078         unsigned long next;
1079
1080         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1081         if (!dst_pud)
1082                 return -ENOMEM;
1083         src_pud = pud_offset(src_p4d, addr);
1084         do {
1085                 next = pud_addr_end(addr, end);
1086                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1087                         int err;
1088
1089                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1090                         err = copy_huge_pud(dst_mm, src_mm,
1091                                             dst_pud, src_pud, addr, src_vma);
1092                         if (err == -ENOMEM)
1093                                 return -ENOMEM;
1094                         if (!err)
1095                                 continue;
1096                         /* fall through */
1097                 }
1098                 if (pud_none_or_clear_bad(src_pud))
1099                         continue;
1100                 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1101                                    addr, next))
1102                         return -ENOMEM;
1103         } while (dst_pud++, src_pud++, addr = next, addr != end);
1104         return 0;
1105 }
1106
1107 static inline int
1108 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1109                pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1110                unsigned long end)
1111 {
1112         struct mm_struct *dst_mm = dst_vma->vm_mm;
1113         p4d_t *src_p4d, *dst_p4d;
1114         unsigned long next;
1115
1116         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1117         if (!dst_p4d)
1118                 return -ENOMEM;
1119         src_p4d = p4d_offset(src_pgd, addr);
1120         do {
1121                 next = p4d_addr_end(addr, end);
1122                 if (p4d_none_or_clear_bad(src_p4d))
1123                         continue;
1124                 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1125                                    addr, next))
1126                         return -ENOMEM;
1127         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1128         return 0;
1129 }
1130
1131 int
1132 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1133 {
1134         pgd_t *src_pgd, *dst_pgd;
1135         unsigned long next;
1136         unsigned long addr = src_vma->vm_start;
1137         unsigned long end = src_vma->vm_end;
1138         struct mm_struct *dst_mm = dst_vma->vm_mm;
1139         struct mm_struct *src_mm = src_vma->vm_mm;
1140         struct mmu_notifier_range range;
1141         bool is_cow;
1142         int ret;
1143
1144         /*
1145          * Don't copy ptes where a page fault will fill them correctly.
1146          * Fork becomes much lighter when there are big shared or private
1147          * readonly mappings. The tradeoff is that copy_page_range is more
1148          * efficient than faulting.
1149          */
1150         if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1151             !src_vma->anon_vma)
1152                 return 0;
1153
1154         if (is_vm_hugetlb_page(src_vma))
1155                 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1156
1157         if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1158                 /*
1159                  * We do not free on error cases below as remove_vma
1160                  * gets called on error from higher level routine
1161                  */
1162                 ret = track_pfn_copy(src_vma);
1163                 if (ret)
1164                         return ret;
1165         }
1166
1167         /*
1168          * We need to invalidate the secondary MMU mappings only when
1169          * there could be a permission downgrade on the ptes of the
1170          * parent mm. And a permission downgrade will only happen if
1171          * is_cow_mapping() returns true.
1172          */
1173         is_cow = is_cow_mapping(src_vma->vm_flags);
1174
1175         if (is_cow) {
1176                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1177                                         0, src_vma, src_mm, addr, end);
1178                 mmu_notifier_invalidate_range_start(&range);
1179                 /*
1180                  * Disabling preemption is not needed for the write side, as
1181                  * the read side doesn't spin, but goes to the mmap_lock.
1182                  *
1183                  * Use the raw variant of the seqcount_t write API to avoid
1184                  * lockdep complaining about preemptibility.
1185                  */
1186                 mmap_assert_write_locked(src_mm);
1187                 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1188         }
1189
1190         ret = 0;
1191         dst_pgd = pgd_offset(dst_mm, addr);
1192         src_pgd = pgd_offset(src_mm, addr);
1193         do {
1194                 next = pgd_addr_end(addr, end);
1195                 if (pgd_none_or_clear_bad(src_pgd))
1196                         continue;
1197                 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1198                                             addr, next))) {
1199                         ret = -ENOMEM;
1200                         break;
1201                 }
1202         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1203
1204         if (is_cow) {
1205                 raw_write_seqcount_end(&src_mm->write_protect_seq);
1206                 mmu_notifier_invalidate_range_end(&range);
1207         }
1208         return ret;
1209 }
1210
1211 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1212                                 struct vm_area_struct *vma, pmd_t *pmd,
1213                                 unsigned long addr, unsigned long end,
1214                                 struct zap_details *details)
1215 {
1216         struct mm_struct *mm = tlb->mm;
1217         int force_flush = 0;
1218         int rss[NR_MM_COUNTERS];
1219         spinlock_t *ptl;
1220         pte_t *start_pte;
1221         pte_t *pte;
1222         swp_entry_t entry;
1223
1224         tlb_change_page_size(tlb, PAGE_SIZE);
1225 again:
1226         init_rss_vec(rss);
1227         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1228         pte = start_pte;
1229         flush_tlb_batched_pending(mm);
1230         arch_enter_lazy_mmu_mode();
1231         do {
1232                 pte_t ptent = *pte;
1233                 if (pte_none(ptent))
1234                         continue;
1235
1236                 if (need_resched())
1237                         break;
1238
1239                 if (pte_present(ptent)) {
1240                         struct page *page;
1241
1242                         page = vm_normal_page(vma, addr, ptent);
1243                         if (unlikely(details) && page) {
1244                                 /*
1245                                  * unmap_shared_mapping_pages() wants to
1246                                  * invalidate cache without truncating:
1247                                  * unmap shared but keep private pages.
1248                                  */
1249                                 if (details->check_mapping &&
1250                                     details->check_mapping != page_rmapping(page))
1251                                         continue;
1252                         }
1253                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1254                                                         tlb->fullmm);
1255                         tlb_remove_tlb_entry(tlb, pte, addr);
1256                         if (unlikely(!page))
1257                                 continue;
1258
1259                         if (!PageAnon(page)) {
1260                                 if (pte_dirty(ptent)) {
1261                                         force_flush = 1;
1262                                         set_page_dirty(page);
1263                                 }
1264                                 if (pte_young(ptent) &&
1265                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1266                                         mark_page_accessed(page);
1267                         }
1268                         rss[mm_counter(page)]--;
1269                         page_remove_rmap(page, false);
1270                         if (unlikely(page_mapcount(page) < 0))
1271                                 print_bad_pte(vma, addr, ptent, page);
1272                         if (unlikely(__tlb_remove_page(tlb, page))) {
1273                                 force_flush = 1;
1274                                 addr += PAGE_SIZE;
1275                                 break;
1276                         }
1277                         continue;
1278                 }
1279
1280                 entry = pte_to_swp_entry(ptent);
1281                 if (is_device_private_entry(entry)) {
1282                         struct page *page = device_private_entry_to_page(entry);
1283
1284                         if (unlikely(details && details->check_mapping)) {
1285                                 /*
1286                                  * unmap_shared_mapping_pages() wants to
1287                                  * invalidate cache without truncating:
1288                                  * unmap shared but keep private pages.
1289                                  */
1290                                 if (details->check_mapping !=
1291                                     page_rmapping(page))
1292                                         continue;
1293                         }
1294
1295                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1296                         rss[mm_counter(page)]--;
1297                         page_remove_rmap(page, false);
1298                         put_page(page);
1299                         continue;
1300                 }
1301
1302                 /* If details->check_mapping, we leave swap entries. */
1303                 if (unlikely(details))
1304                         continue;
1305
1306                 if (!non_swap_entry(entry))
1307                         rss[MM_SWAPENTS]--;
1308                 else if (is_migration_entry(entry)) {
1309                         struct page *page;
1310
1311                         page = migration_entry_to_page(entry);
1312                         rss[mm_counter(page)]--;
1313                 }
1314                 if (unlikely(!free_swap_and_cache(entry)))
1315                         print_bad_pte(vma, addr, ptent, NULL);
1316                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1317         } while (pte++, addr += PAGE_SIZE, addr != end);
1318
1319         add_mm_rss_vec(mm, rss);
1320         arch_leave_lazy_mmu_mode();
1321
1322         /* Do the actual TLB flush before dropping ptl */
1323         if (force_flush)
1324                 tlb_flush_mmu_tlbonly(tlb);
1325         pte_unmap_unlock(start_pte, ptl);
1326
1327         /*
1328          * If we forced a TLB flush (either due to running out of
1329          * batch buffers or because we needed to flush dirty TLB
1330          * entries before releasing the ptl), free the batched
1331          * memory too. Restart if we didn't do everything.
1332          */
1333         if (force_flush) {
1334                 force_flush = 0;
1335                 tlb_flush_mmu(tlb);
1336         }
1337
1338         if (addr != end) {
1339                 cond_resched();
1340                 goto again;
1341         }
1342
1343         return addr;
1344 }
1345
1346 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1347                                 struct vm_area_struct *vma, pud_t *pud,
1348                                 unsigned long addr, unsigned long end,
1349                                 struct zap_details *details)
1350 {
1351         pmd_t *pmd;
1352         unsigned long next;
1353
1354         pmd = pmd_offset(pud, addr);
1355         do {
1356                 next = pmd_addr_end(addr, end);
1357                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1358                         if (next - addr != HPAGE_PMD_SIZE)
1359                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1360                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1361                                 goto next;
1362                         /* fall through */
1363                 } else if (details && details->single_page &&
1364                            PageTransCompound(details->single_page) &&
1365                            next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1366                         spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1367                         /*
1368                          * Take and drop THP pmd lock so that we cannot return
1369                          * prematurely, while zap_huge_pmd() has cleared *pmd,
1370                          * but not yet decremented compound_mapcount().
1371                          */
1372                         spin_unlock(ptl);
1373                 }
1374
1375                 /*
1376                  * Here there can be other concurrent MADV_DONTNEED or
1377                  * trans huge page faults running, and if the pmd is
1378                  * none or trans huge it can change under us. This is
1379                  * because MADV_DONTNEED holds the mmap_lock in read
1380                  * mode.
1381                  */
1382                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1383                         goto next;
1384                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1385 next:
1386                 cond_resched();
1387         } while (pmd++, addr = next, addr != end);
1388
1389         return addr;
1390 }
1391
1392 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1393                                 struct vm_area_struct *vma, p4d_t *p4d,
1394                                 unsigned long addr, unsigned long end,
1395                                 struct zap_details *details)
1396 {
1397         pud_t *pud;
1398         unsigned long next;
1399
1400         pud = pud_offset(p4d, addr);
1401         do {
1402                 next = pud_addr_end(addr, end);
1403                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1404                         if (next - addr != HPAGE_PUD_SIZE) {
1405                                 mmap_assert_locked(tlb->mm);
1406                                 split_huge_pud(vma, pud, addr);
1407                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1408                                 goto next;
1409                         /* fall through */
1410                 }
1411                 if (pud_none_or_clear_bad(pud))
1412                         continue;
1413                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1414 next:
1415                 cond_resched();
1416         } while (pud++, addr = next, addr != end);
1417
1418         return addr;
1419 }
1420
1421 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1422                                 struct vm_area_struct *vma, pgd_t *pgd,
1423                                 unsigned long addr, unsigned long end,
1424                                 struct zap_details *details)
1425 {
1426         p4d_t *p4d;
1427         unsigned long next;
1428
1429         p4d = p4d_offset(pgd, addr);
1430         do {
1431                 next = p4d_addr_end(addr, end);
1432                 if (p4d_none_or_clear_bad(p4d))
1433                         continue;
1434                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1435         } while (p4d++, addr = next, addr != end);
1436
1437         return addr;
1438 }
1439
1440 void unmap_page_range(struct mmu_gather *tlb,
1441                              struct vm_area_struct *vma,
1442                              unsigned long addr, unsigned long end,
1443                              struct zap_details *details)
1444 {
1445         pgd_t *pgd;
1446         unsigned long next;
1447
1448         BUG_ON(addr >= end);
1449         tlb_start_vma(tlb, vma);
1450         pgd = pgd_offset(vma->vm_mm, addr);
1451         do {
1452                 next = pgd_addr_end(addr, end);
1453                 if (pgd_none_or_clear_bad(pgd))
1454                         continue;
1455                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1456         } while (pgd++, addr = next, addr != end);
1457         tlb_end_vma(tlb, vma);
1458 }
1459
1460
1461 static void unmap_single_vma(struct mmu_gather *tlb,
1462                 struct vm_area_struct *vma, unsigned long start_addr,
1463                 unsigned long end_addr,
1464                 struct zap_details *details)
1465 {
1466         unsigned long start = max(vma->vm_start, start_addr);
1467         unsigned long end;
1468
1469         if (start >= vma->vm_end)
1470                 return;
1471         end = min(vma->vm_end, end_addr);
1472         if (end <= vma->vm_start)
1473                 return;
1474
1475         if (vma->vm_file)
1476                 uprobe_munmap(vma, start, end);
1477
1478         if (unlikely(vma->vm_flags & VM_PFNMAP))
1479                 untrack_pfn(vma, 0, 0);
1480
1481         if (start != end) {
1482                 if (unlikely(is_vm_hugetlb_page(vma))) {
1483                         /*
1484                          * It is undesirable to test vma->vm_file as it
1485                          * should be non-null for valid hugetlb area.
1486                          * However, vm_file will be NULL in the error
1487                          * cleanup path of mmap_region. When
1488                          * hugetlbfs ->mmap method fails,
1489                          * mmap_region() nullifies vma->vm_file
1490                          * before calling this function to clean up.
1491                          * Since no pte has actually been setup, it is
1492                          * safe to do nothing in this case.
1493                          */
1494                         if (vma->vm_file) {
1495                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1496                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1497                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1498                         }
1499                 } else
1500                         unmap_page_range(tlb, vma, start, end, details);
1501         }
1502 }
1503
1504 /**
1505  * unmap_vmas - unmap a range of memory covered by a list of vma's
1506  * @tlb: address of the caller's struct mmu_gather
1507  * @vma: the starting vma
1508  * @start_addr: virtual address at which to start unmapping
1509  * @end_addr: virtual address at which to end unmapping
1510  *
1511  * Unmap all pages in the vma list.
1512  *
1513  * Only addresses between `start' and `end' will be unmapped.
1514  *
1515  * The VMA list must be sorted in ascending virtual address order.
1516  *
1517  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1518  * range after unmap_vmas() returns.  So the only responsibility here is to
1519  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1520  * drops the lock and schedules.
1521  */
1522 void unmap_vmas(struct mmu_gather *tlb,
1523                 struct vm_area_struct *vma, unsigned long start_addr,
1524                 unsigned long end_addr)
1525 {
1526         struct mmu_notifier_range range;
1527
1528         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1529                                 start_addr, end_addr);
1530         mmu_notifier_invalidate_range_start(&range);
1531         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1532                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1533         mmu_notifier_invalidate_range_end(&range);
1534 }
1535
1536 /**
1537  * zap_page_range - remove user pages in a given range
1538  * @vma: vm_area_struct holding the applicable pages
1539  * @start: starting address of pages to zap
1540  * @size: number of bytes to zap
1541  *
1542  * Caller must protect the VMA list
1543  */
1544 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1545                 unsigned long size)
1546 {
1547         struct mmu_notifier_range range;
1548         struct mmu_gather tlb;
1549
1550         lru_add_drain();
1551         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1552                                 start, start + size);
1553         tlb_gather_mmu(&tlb, vma->vm_mm);
1554         update_hiwater_rss(vma->vm_mm);
1555         mmu_notifier_invalidate_range_start(&range);
1556         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1557                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1558         mmu_notifier_invalidate_range_end(&range);
1559         tlb_finish_mmu(&tlb);
1560 }
1561
1562 /**
1563  * zap_page_range_single - remove user pages in a given range
1564  * @vma: vm_area_struct holding the applicable pages
1565  * @address: starting address of pages to zap
1566  * @size: number of bytes to zap
1567  * @details: details of shared cache invalidation
1568  *
1569  * The range must fit into one VMA.
1570  */
1571 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1572                 unsigned long size, struct zap_details *details)
1573 {
1574         struct mmu_notifier_range range;
1575         struct mmu_gather tlb;
1576
1577         lru_add_drain();
1578         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1579                                 address, address + size);
1580         tlb_gather_mmu(&tlb, vma->vm_mm);
1581         update_hiwater_rss(vma->vm_mm);
1582         mmu_notifier_invalidate_range_start(&range);
1583         unmap_single_vma(&tlb, vma, address, range.end, details);
1584         mmu_notifier_invalidate_range_end(&range);
1585         tlb_finish_mmu(&tlb);
1586 }
1587
1588 /**
1589  * zap_vma_ptes - remove ptes mapping the vma
1590  * @vma: vm_area_struct holding ptes to be zapped
1591  * @address: starting address of pages to zap
1592  * @size: number of bytes to zap
1593  *
1594  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1595  *
1596  * The entire address range must be fully contained within the vma.
1597  *
1598  */
1599 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1600                 unsigned long size)
1601 {
1602         if (address < vma->vm_start || address + size > vma->vm_end ||
1603                         !(vma->vm_flags & VM_PFNMAP))
1604                 return;
1605
1606         zap_page_range_single(vma, address, size, NULL);
1607 }
1608 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1609
1610 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1611 {
1612         pgd_t *pgd;
1613         p4d_t *p4d;
1614         pud_t *pud;
1615         pmd_t *pmd;
1616
1617         pgd = pgd_offset(mm, addr);
1618         p4d = p4d_alloc(mm, pgd, addr);
1619         if (!p4d)
1620                 return NULL;
1621         pud = pud_alloc(mm, p4d, addr);
1622         if (!pud)
1623                 return NULL;
1624         pmd = pmd_alloc(mm, pud, addr);
1625         if (!pmd)
1626                 return NULL;
1627
1628         VM_BUG_ON(pmd_trans_huge(*pmd));
1629         return pmd;
1630 }
1631
1632 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1633                         spinlock_t **ptl)
1634 {
1635         pmd_t *pmd = walk_to_pmd(mm, addr);
1636
1637         if (!pmd)
1638                 return NULL;
1639         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1640 }
1641
1642 static int validate_page_before_insert(struct page *page)
1643 {
1644         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1645                 return -EINVAL;
1646         flush_dcache_page(page);
1647         return 0;
1648 }
1649
1650 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1651                         unsigned long addr, struct page *page, pgprot_t prot)
1652 {
1653         if (!pte_none(*pte))
1654                 return -EBUSY;
1655         /* Ok, finally just insert the thing.. */
1656         get_page(page);
1657         inc_mm_counter_fast(mm, mm_counter_file(page));
1658         page_add_file_rmap(page, false);
1659         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1660         return 0;
1661 }
1662
1663 /*
1664  * This is the old fallback for page remapping.
1665  *
1666  * For historical reasons, it only allows reserved pages. Only
1667  * old drivers should use this, and they needed to mark their
1668  * pages reserved for the old functions anyway.
1669  */
1670 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1671                         struct page *page, pgprot_t prot)
1672 {
1673         struct mm_struct *mm = vma->vm_mm;
1674         int retval;
1675         pte_t *pte;
1676         spinlock_t *ptl;
1677
1678         retval = validate_page_before_insert(page);
1679         if (retval)
1680                 goto out;
1681         retval = -ENOMEM;
1682         pte = get_locked_pte(mm, addr, &ptl);
1683         if (!pte)
1684                 goto out;
1685         retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1686         pte_unmap_unlock(pte, ptl);
1687 out:
1688         return retval;
1689 }
1690
1691 #ifdef pte_index
1692 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1693                         unsigned long addr, struct page *page, pgprot_t prot)
1694 {
1695         int err;
1696
1697         if (!page_count(page))
1698                 return -EINVAL;
1699         err = validate_page_before_insert(page);
1700         if (err)
1701                 return err;
1702         return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1703 }
1704
1705 /* insert_pages() amortizes the cost of spinlock operations
1706  * when inserting pages in a loop. Arch *must* define pte_index.
1707  */
1708 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1709                         struct page **pages, unsigned long *num, pgprot_t prot)
1710 {
1711         pmd_t *pmd = NULL;
1712         pte_t *start_pte, *pte;
1713         spinlock_t *pte_lock;
1714         struct mm_struct *const mm = vma->vm_mm;
1715         unsigned long curr_page_idx = 0;
1716         unsigned long remaining_pages_total = *num;
1717         unsigned long pages_to_write_in_pmd;
1718         int ret;
1719 more:
1720         ret = -EFAULT;
1721         pmd = walk_to_pmd(mm, addr);
1722         if (!pmd)
1723                 goto out;
1724
1725         pages_to_write_in_pmd = min_t(unsigned long,
1726                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1727
1728         /* Allocate the PTE if necessary; takes PMD lock once only. */
1729         ret = -ENOMEM;
1730         if (pte_alloc(mm, pmd))
1731                 goto out;
1732
1733         while (pages_to_write_in_pmd) {
1734                 int pte_idx = 0;
1735                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1736
1737                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1738                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1739                         int err = insert_page_in_batch_locked(mm, pte,
1740                                 addr, pages[curr_page_idx], prot);
1741                         if (unlikely(err)) {
1742                                 pte_unmap_unlock(start_pte, pte_lock);
1743                                 ret = err;
1744                                 remaining_pages_total -= pte_idx;
1745                                 goto out;
1746                         }
1747                         addr += PAGE_SIZE;
1748                         ++curr_page_idx;
1749                 }
1750                 pte_unmap_unlock(start_pte, pte_lock);
1751                 pages_to_write_in_pmd -= batch_size;
1752                 remaining_pages_total -= batch_size;
1753         }
1754         if (remaining_pages_total)
1755                 goto more;
1756         ret = 0;
1757 out:
1758         *num = remaining_pages_total;
1759         return ret;
1760 }
1761 #endif  /* ifdef pte_index */
1762
1763 /**
1764  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1765  * @vma: user vma to map to
1766  * @addr: target start user address of these pages
1767  * @pages: source kernel pages
1768  * @num: in: number of pages to map. out: number of pages that were *not*
1769  * mapped. (0 means all pages were successfully mapped).
1770  *
1771  * Preferred over vm_insert_page() when inserting multiple pages.
1772  *
1773  * In case of error, we may have mapped a subset of the provided
1774  * pages. It is the caller's responsibility to account for this case.
1775  *
1776  * The same restrictions apply as in vm_insert_page().
1777  */
1778 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1779                         struct page **pages, unsigned long *num)
1780 {
1781 #ifdef pte_index
1782         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1783
1784         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1785                 return -EFAULT;
1786         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1787                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1788                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1789                 vma->vm_flags |= VM_MIXEDMAP;
1790         }
1791         /* Defer page refcount checking till we're about to map that page. */
1792         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1793 #else
1794         unsigned long idx = 0, pgcount = *num;
1795         int err = -EINVAL;
1796
1797         for (; idx < pgcount; ++idx) {
1798                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1799                 if (err)
1800                         break;
1801         }
1802         *num = pgcount - idx;
1803         return err;
1804 #endif  /* ifdef pte_index */
1805 }
1806 EXPORT_SYMBOL(vm_insert_pages);
1807
1808 /**
1809  * vm_insert_page - insert single page into user vma
1810  * @vma: user vma to map to
1811  * @addr: target user address of this page
1812  * @page: source kernel page
1813  *
1814  * This allows drivers to insert individual pages they've allocated
1815  * into a user vma.
1816  *
1817  * The page has to be a nice clean _individual_ kernel allocation.
1818  * If you allocate a compound page, you need to have marked it as
1819  * such (__GFP_COMP), or manually just split the page up yourself
1820  * (see split_page()).
1821  *
1822  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1823  * took an arbitrary page protection parameter. This doesn't allow
1824  * that. Your vma protection will have to be set up correctly, which
1825  * means that if you want a shared writable mapping, you'd better
1826  * ask for a shared writable mapping!
1827  *
1828  * The page does not need to be reserved.
1829  *
1830  * Usually this function is called from f_op->mmap() handler
1831  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1832  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1833  * function from other places, for example from page-fault handler.
1834  *
1835  * Return: %0 on success, negative error code otherwise.
1836  */
1837 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1838                         struct page *page)
1839 {
1840         if (addr < vma->vm_start || addr >= vma->vm_end)
1841                 return -EFAULT;
1842         if (!page_count(page))
1843                 return -EINVAL;
1844         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1845                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1846                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1847                 vma->vm_flags |= VM_MIXEDMAP;
1848         }
1849         return insert_page(vma, addr, page, vma->vm_page_prot);
1850 }
1851 EXPORT_SYMBOL(vm_insert_page);
1852
1853 /*
1854  * __vm_map_pages - maps range of kernel pages into user vma
1855  * @vma: user vma to map to
1856  * @pages: pointer to array of source kernel pages
1857  * @num: number of pages in page array
1858  * @offset: user's requested vm_pgoff
1859  *
1860  * This allows drivers to map range of kernel pages into a user vma.
1861  *
1862  * Return: 0 on success and error code otherwise.
1863  */
1864 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1865                                 unsigned long num, unsigned long offset)
1866 {
1867         unsigned long count = vma_pages(vma);
1868         unsigned long uaddr = vma->vm_start;
1869         int ret, i;
1870
1871         /* Fail if the user requested offset is beyond the end of the object */
1872         if (offset >= num)
1873                 return -ENXIO;
1874
1875         /* Fail if the user requested size exceeds available object size */
1876         if (count > num - offset)
1877                 return -ENXIO;
1878
1879         for (i = 0; i < count; i++) {
1880                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1881                 if (ret < 0)
1882                         return ret;
1883                 uaddr += PAGE_SIZE;
1884         }
1885
1886         return 0;
1887 }
1888
1889 /**
1890  * vm_map_pages - maps range of kernel pages starts with non zero offset
1891  * @vma: user vma to map to
1892  * @pages: pointer to array of source kernel pages
1893  * @num: number of pages in page array
1894  *
1895  * Maps an object consisting of @num pages, catering for the user's
1896  * requested vm_pgoff
1897  *
1898  * If we fail to insert any page into the vma, the function will return
1899  * immediately leaving any previously inserted pages present.  Callers
1900  * from the mmap handler may immediately return the error as their caller
1901  * will destroy the vma, removing any successfully inserted pages. Other
1902  * callers should make their own arrangements for calling unmap_region().
1903  *
1904  * Context: Process context. Called by mmap handlers.
1905  * Return: 0 on success and error code otherwise.
1906  */
1907 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1908                                 unsigned long num)
1909 {
1910         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1911 }
1912 EXPORT_SYMBOL(vm_map_pages);
1913
1914 /**
1915  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1916  * @vma: user vma to map to
1917  * @pages: pointer to array of source kernel pages
1918  * @num: number of pages in page array
1919  *
1920  * Similar to vm_map_pages(), except that it explicitly sets the offset
1921  * to 0. This function is intended for the drivers that did not consider
1922  * vm_pgoff.
1923  *
1924  * Context: Process context. Called by mmap handlers.
1925  * Return: 0 on success and error code otherwise.
1926  */
1927 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1928                                 unsigned long num)
1929 {
1930         return __vm_map_pages(vma, pages, num, 0);
1931 }
1932 EXPORT_SYMBOL(vm_map_pages_zero);
1933
1934 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1935                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1936 {
1937         struct mm_struct *mm = vma->vm_mm;
1938         pte_t *pte, entry;
1939         spinlock_t *ptl;
1940
1941         pte = get_locked_pte(mm, addr, &ptl);
1942         if (!pte)
1943                 return VM_FAULT_OOM;
1944         if (!pte_none(*pte)) {
1945                 if (mkwrite) {
1946                         /*
1947                          * For read faults on private mappings the PFN passed
1948                          * in may not match the PFN we have mapped if the
1949                          * mapped PFN is a writeable COW page.  In the mkwrite
1950                          * case we are creating a writable PTE for a shared
1951                          * mapping and we expect the PFNs to match. If they
1952                          * don't match, we are likely racing with block
1953                          * allocation and mapping invalidation so just skip the
1954                          * update.
1955                          */
1956                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1957                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1958                                 goto out_unlock;
1959                         }
1960                         entry = pte_mkyoung(*pte);
1961                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1962                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1963                                 update_mmu_cache(vma, addr, pte);
1964                 }
1965                 goto out_unlock;
1966         }
1967
1968         /* Ok, finally just insert the thing.. */
1969         if (pfn_t_devmap(pfn))
1970                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1971         else
1972                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1973
1974         if (mkwrite) {
1975                 entry = pte_mkyoung(entry);
1976                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1977         }
1978
1979         set_pte_at(mm, addr, pte, entry);
1980         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1981
1982 out_unlock:
1983         pte_unmap_unlock(pte, ptl);
1984         return VM_FAULT_NOPAGE;
1985 }
1986
1987 /**
1988  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1989  * @vma: user vma to map to
1990  * @addr: target user address of this page
1991  * @pfn: source kernel pfn
1992  * @pgprot: pgprot flags for the inserted page
1993  *
1994  * This is exactly like vmf_insert_pfn(), except that it allows drivers
1995  * to override pgprot on a per-page basis.
1996  *
1997  * This only makes sense for IO mappings, and it makes no sense for
1998  * COW mappings.  In general, using multiple vmas is preferable;
1999  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2000  * impractical.
2001  *
2002  * See vmf_insert_mixed_prot() for a discussion of the implication of using
2003  * a value of @pgprot different from that of @vma->vm_page_prot.
2004  *
2005  * Context: Process context.  May allocate using %GFP_KERNEL.
2006  * Return: vm_fault_t value.
2007  */
2008 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2009                         unsigned long pfn, pgprot_t pgprot)
2010 {
2011         /*
2012          * Technically, architectures with pte_special can avoid all these
2013          * restrictions (same for remap_pfn_range).  However we would like
2014          * consistency in testing and feature parity among all, so we should
2015          * try to keep these invariants in place for everybody.
2016          */
2017         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2018         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2019                                                 (VM_PFNMAP|VM_MIXEDMAP));
2020         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2021         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2022
2023         if (addr < vma->vm_start || addr >= vma->vm_end)
2024                 return VM_FAULT_SIGBUS;
2025
2026         if (!pfn_modify_allowed(pfn, pgprot))
2027                 return VM_FAULT_SIGBUS;
2028
2029         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2030
2031         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2032                         false);
2033 }
2034 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2035
2036 /**
2037  * vmf_insert_pfn - insert single pfn into user vma
2038  * @vma: user vma to map to
2039  * @addr: target user address of this page
2040  * @pfn: source kernel pfn
2041  *
2042  * Similar to vm_insert_page, this allows drivers to insert individual pages
2043  * they've allocated into a user vma. Same comments apply.
2044  *
2045  * This function should only be called from a vm_ops->fault handler, and
2046  * in that case the handler should return the result of this function.
2047  *
2048  * vma cannot be a COW mapping.
2049  *
2050  * As this is called only for pages that do not currently exist, we
2051  * do not need to flush old virtual caches or the TLB.
2052  *
2053  * Context: Process context.  May allocate using %GFP_KERNEL.
2054  * Return: vm_fault_t value.
2055  */
2056 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2057                         unsigned long pfn)
2058 {
2059         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2060 }
2061 EXPORT_SYMBOL(vmf_insert_pfn);
2062
2063 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2064 {
2065         /* these checks mirror the abort conditions in vm_normal_page */
2066         if (vma->vm_flags & VM_MIXEDMAP)
2067                 return true;
2068         if (pfn_t_devmap(pfn))
2069                 return true;
2070         if (pfn_t_special(pfn))
2071                 return true;
2072         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2073                 return true;
2074         return false;
2075 }
2076
2077 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2078                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2079                 bool mkwrite)
2080 {
2081         int err;
2082
2083         BUG_ON(!vm_mixed_ok(vma, pfn));
2084
2085         if (addr < vma->vm_start || addr >= vma->vm_end)
2086                 return VM_FAULT_SIGBUS;
2087
2088         track_pfn_insert(vma, &pgprot, pfn);
2089
2090         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2091                 return VM_FAULT_SIGBUS;
2092
2093         /*
2094          * If we don't have pte special, then we have to use the pfn_valid()
2095          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2096          * refcount the page if pfn_valid is true (hence insert_page rather
2097          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2098          * without pte special, it would there be refcounted as a normal page.
2099          */
2100         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2101             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2102                 struct page *page;
2103
2104                 /*
2105                  * At this point we are committed to insert_page()
2106                  * regardless of whether the caller specified flags that
2107                  * result in pfn_t_has_page() == false.
2108                  */
2109                 page = pfn_to_page(pfn_t_to_pfn(pfn));
2110                 err = insert_page(vma, addr, page, pgprot);
2111         } else {
2112                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2113         }
2114
2115         if (err == -ENOMEM)
2116                 return VM_FAULT_OOM;
2117         if (err < 0 && err != -EBUSY)
2118                 return VM_FAULT_SIGBUS;
2119
2120         return VM_FAULT_NOPAGE;
2121 }
2122
2123 /**
2124  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2125  * @vma: user vma to map to
2126  * @addr: target user address of this page
2127  * @pfn: source kernel pfn
2128  * @pgprot: pgprot flags for the inserted page
2129  *
2130  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2131  * to override pgprot on a per-page basis.
2132  *
2133  * Typically this function should be used by drivers to set caching- and
2134  * encryption bits different than those of @vma->vm_page_prot, because
2135  * the caching- or encryption mode may not be known at mmap() time.
2136  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2137  * to set caching and encryption bits for those vmas (except for COW pages).
2138  * This is ensured by core vm only modifying these page table entries using
2139  * functions that don't touch caching- or encryption bits, using pte_modify()
2140  * if needed. (See for example mprotect()).
2141  * Also when new page-table entries are created, this is only done using the
2142  * fault() callback, and never using the value of vma->vm_page_prot,
2143  * except for page-table entries that point to anonymous pages as the result
2144  * of COW.
2145  *
2146  * Context: Process context.  May allocate using %GFP_KERNEL.
2147  * Return: vm_fault_t value.
2148  */
2149 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2150                                  pfn_t pfn, pgprot_t pgprot)
2151 {
2152         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2153 }
2154 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2155
2156 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2157                 pfn_t pfn)
2158 {
2159         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2160 }
2161 EXPORT_SYMBOL(vmf_insert_mixed);
2162
2163 /*
2164  *  If the insertion of PTE failed because someone else already added a
2165  *  different entry in the mean time, we treat that as success as we assume
2166  *  the same entry was actually inserted.
2167  */
2168 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2169                 unsigned long addr, pfn_t pfn)
2170 {
2171         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2172 }
2173 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2174
2175 /*
2176  * maps a range of physical memory into the requested pages. the old
2177  * mappings are removed. any references to nonexistent pages results
2178  * in null mappings (currently treated as "copy-on-access")
2179  */
2180 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2181                         unsigned long addr, unsigned long end,
2182                         unsigned long pfn, pgprot_t prot)
2183 {
2184         pte_t *pte, *mapped_pte;
2185         spinlock_t *ptl;
2186         int err = 0;
2187
2188         mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2189         if (!pte)
2190                 return -ENOMEM;
2191         arch_enter_lazy_mmu_mode();
2192         do {
2193                 BUG_ON(!pte_none(*pte));
2194                 if (!pfn_modify_allowed(pfn, prot)) {
2195                         err = -EACCES;
2196                         break;
2197                 }
2198                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2199                 pfn++;
2200         } while (pte++, addr += PAGE_SIZE, addr != end);
2201         arch_leave_lazy_mmu_mode();
2202         pte_unmap_unlock(mapped_pte, ptl);
2203         return err;
2204 }
2205
2206 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2207                         unsigned long addr, unsigned long end,
2208                         unsigned long pfn, pgprot_t prot)
2209 {
2210         pmd_t *pmd;
2211         unsigned long next;
2212         int err;
2213
2214         pfn -= addr >> PAGE_SHIFT;
2215         pmd = pmd_alloc(mm, pud, addr);
2216         if (!pmd)
2217                 return -ENOMEM;
2218         VM_BUG_ON(pmd_trans_huge(*pmd));
2219         do {
2220                 next = pmd_addr_end(addr, end);
2221                 err = remap_pte_range(mm, pmd, addr, next,
2222                                 pfn + (addr >> PAGE_SHIFT), prot);
2223                 if (err)
2224                         return err;
2225         } while (pmd++, addr = next, addr != end);
2226         return 0;
2227 }
2228
2229 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2230                         unsigned long addr, unsigned long end,
2231                         unsigned long pfn, pgprot_t prot)
2232 {
2233         pud_t *pud;
2234         unsigned long next;
2235         int err;
2236
2237         pfn -= addr >> PAGE_SHIFT;
2238         pud = pud_alloc(mm, p4d, addr);
2239         if (!pud)
2240                 return -ENOMEM;
2241         do {
2242                 next = pud_addr_end(addr, end);
2243                 err = remap_pmd_range(mm, pud, addr, next,
2244                                 pfn + (addr >> PAGE_SHIFT), prot);
2245                 if (err)
2246                         return err;
2247         } while (pud++, addr = next, addr != end);
2248         return 0;
2249 }
2250
2251 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2252                         unsigned long addr, unsigned long end,
2253                         unsigned long pfn, pgprot_t prot)
2254 {
2255         p4d_t *p4d;
2256         unsigned long next;
2257         int err;
2258
2259         pfn -= addr >> PAGE_SHIFT;
2260         p4d = p4d_alloc(mm, pgd, addr);
2261         if (!p4d)
2262                 return -ENOMEM;
2263         do {
2264                 next = p4d_addr_end(addr, end);
2265                 err = remap_pud_range(mm, p4d, addr, next,
2266                                 pfn + (addr >> PAGE_SHIFT), prot);
2267                 if (err)
2268                         return err;
2269         } while (p4d++, addr = next, addr != end);
2270         return 0;
2271 }
2272
2273 /*
2274  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2275  * must have pre-validated the caching bits of the pgprot_t.
2276  */
2277 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2278                 unsigned long pfn, unsigned long size, pgprot_t prot)
2279 {
2280         pgd_t *pgd;
2281         unsigned long next;
2282         unsigned long end = addr + PAGE_ALIGN(size);
2283         struct mm_struct *mm = vma->vm_mm;
2284         int err;
2285
2286         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2287                 return -EINVAL;
2288
2289         /*
2290          * Physically remapped pages are special. Tell the
2291          * rest of the world about it:
2292          *   VM_IO tells people not to look at these pages
2293          *      (accesses can have side effects).
2294          *   VM_PFNMAP tells the core MM that the base pages are just
2295          *      raw PFN mappings, and do not have a "struct page" associated
2296          *      with them.
2297          *   VM_DONTEXPAND
2298          *      Disable vma merging and expanding with mremap().
2299          *   VM_DONTDUMP
2300          *      Omit vma from core dump, even when VM_IO turned off.
2301          *
2302          * There's a horrible special case to handle copy-on-write
2303          * behaviour that some programs depend on. We mark the "original"
2304          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2305          * See vm_normal_page() for details.
2306          */
2307         if (is_cow_mapping(vma->vm_flags)) {
2308                 if (addr != vma->vm_start || end != vma->vm_end)
2309                         return -EINVAL;
2310                 vma->vm_pgoff = pfn;
2311         }
2312
2313         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2314
2315         BUG_ON(addr >= end);
2316         pfn -= addr >> PAGE_SHIFT;
2317         pgd = pgd_offset(mm, addr);
2318         flush_cache_range(vma, addr, end);
2319         do {
2320                 next = pgd_addr_end(addr, end);
2321                 err = remap_p4d_range(mm, pgd, addr, next,
2322                                 pfn + (addr >> PAGE_SHIFT), prot);
2323                 if (err)
2324                         return err;
2325         } while (pgd++, addr = next, addr != end);
2326
2327         return 0;
2328 }
2329
2330 /**
2331  * remap_pfn_range - remap kernel memory to userspace
2332  * @vma: user vma to map to
2333  * @addr: target page aligned user address to start at
2334  * @pfn: page frame number of kernel physical memory address
2335  * @size: size of mapping area
2336  * @prot: page protection flags for this mapping
2337  *
2338  * Note: this is only safe if the mm semaphore is held when called.
2339  *
2340  * Return: %0 on success, negative error code otherwise.
2341  */
2342 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2343                     unsigned long pfn, unsigned long size, pgprot_t prot)
2344 {
2345         int err;
2346
2347         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2348         if (err)
2349                 return -EINVAL;
2350
2351         err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2352         if (err)
2353                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2354         return err;
2355 }
2356 EXPORT_SYMBOL(remap_pfn_range);
2357
2358 /**
2359  * vm_iomap_memory - remap memory to userspace
2360  * @vma: user vma to map to
2361  * @start: start of the physical memory to be mapped
2362  * @len: size of area
2363  *
2364  * This is a simplified io_remap_pfn_range() for common driver use. The
2365  * driver just needs to give us the physical memory range to be mapped,
2366  * we'll figure out the rest from the vma information.
2367  *
2368  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2369  * whatever write-combining details or similar.
2370  *
2371  * Return: %0 on success, negative error code otherwise.
2372  */
2373 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2374 {
2375         unsigned long vm_len, pfn, pages;
2376
2377         /* Check that the physical memory area passed in looks valid */
2378         if (start + len < start)
2379                 return -EINVAL;
2380         /*
2381          * You *really* shouldn't map things that aren't page-aligned,
2382          * but we've historically allowed it because IO memory might
2383          * just have smaller alignment.
2384          */
2385         len += start & ~PAGE_MASK;
2386         pfn = start >> PAGE_SHIFT;
2387         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2388         if (pfn + pages < pfn)
2389                 return -EINVAL;
2390
2391         /* We start the mapping 'vm_pgoff' pages into the area */
2392         if (vma->vm_pgoff > pages)
2393                 return -EINVAL;
2394         pfn += vma->vm_pgoff;
2395         pages -= vma->vm_pgoff;
2396
2397         /* Can we fit all of the mapping? */
2398         vm_len = vma->vm_end - vma->vm_start;
2399         if (vm_len >> PAGE_SHIFT > pages)
2400                 return -EINVAL;
2401
2402         /* Ok, let it rip */
2403         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2404 }
2405 EXPORT_SYMBOL(vm_iomap_memory);
2406
2407 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2408                                      unsigned long addr, unsigned long end,
2409                                      pte_fn_t fn, void *data, bool create,
2410                                      pgtbl_mod_mask *mask)
2411 {
2412         pte_t *pte, *mapped_pte;
2413         int err = 0;
2414         spinlock_t *ptl;
2415
2416         if (create) {
2417                 mapped_pte = pte = (mm == &init_mm) ?
2418                         pte_alloc_kernel_track(pmd, addr, mask) :
2419                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2420                 if (!pte)
2421                         return -ENOMEM;
2422         } else {
2423                 mapped_pte = pte = (mm == &init_mm) ?
2424                         pte_offset_kernel(pmd, addr) :
2425                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2426         }
2427
2428         BUG_ON(pmd_huge(*pmd));
2429
2430         arch_enter_lazy_mmu_mode();
2431
2432         if (fn) {
2433                 do {
2434                         if (create || !pte_none(*pte)) {
2435                                 err = fn(pte++, addr, data);
2436                                 if (err)
2437                                         break;
2438                         }
2439                 } while (addr += PAGE_SIZE, addr != end);
2440         }
2441         *mask |= PGTBL_PTE_MODIFIED;
2442
2443         arch_leave_lazy_mmu_mode();
2444
2445         if (mm != &init_mm)
2446                 pte_unmap_unlock(mapped_pte, ptl);
2447         return err;
2448 }
2449
2450 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2451                                      unsigned long addr, unsigned long end,
2452                                      pte_fn_t fn, void *data, bool create,
2453                                      pgtbl_mod_mask *mask)
2454 {
2455         pmd_t *pmd;
2456         unsigned long next;
2457         int err = 0;
2458
2459         BUG_ON(pud_huge(*pud));
2460
2461         if (create) {
2462                 pmd = pmd_alloc_track(mm, pud, addr, mask);
2463                 if (!pmd)
2464                         return -ENOMEM;
2465         } else {
2466                 pmd = pmd_offset(pud, addr);
2467         }
2468         do {
2469                 next = pmd_addr_end(addr, end);
2470                 if (pmd_none(*pmd) && !create)
2471                         continue;
2472                 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2473                         return -EINVAL;
2474                 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2475                         if (!create)
2476                                 continue;
2477                         pmd_clear_bad(pmd);
2478                 }
2479                 err = apply_to_pte_range(mm, pmd, addr, next,
2480                                          fn, data, create, mask);
2481                 if (err)
2482                         break;
2483         } while (pmd++, addr = next, addr != end);
2484
2485         return err;
2486 }
2487
2488 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2489                                      unsigned long addr, unsigned long end,
2490                                      pte_fn_t fn, void *data, bool create,
2491                                      pgtbl_mod_mask *mask)
2492 {
2493         pud_t *pud;
2494         unsigned long next;
2495         int err = 0;
2496
2497         if (create) {
2498                 pud = pud_alloc_track(mm, p4d, addr, mask);
2499                 if (!pud)
2500                         return -ENOMEM;
2501         } else {
2502                 pud = pud_offset(p4d, addr);
2503         }
2504         do {
2505                 next = pud_addr_end(addr, end);
2506                 if (pud_none(*pud) && !create)
2507                         continue;
2508                 if (WARN_ON_ONCE(pud_leaf(*pud)))
2509                         return -EINVAL;
2510                 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2511                         if (!create)
2512                                 continue;
2513                         pud_clear_bad(pud);
2514                 }
2515                 err = apply_to_pmd_range(mm, pud, addr, next,
2516                                          fn, data, create, mask);
2517                 if (err)
2518                         break;
2519         } while (pud++, addr = next, addr != end);
2520
2521         return err;
2522 }
2523
2524 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2525                                      unsigned long addr, unsigned long end,
2526                                      pte_fn_t fn, void *data, bool create,
2527                                      pgtbl_mod_mask *mask)
2528 {
2529         p4d_t *p4d;
2530         unsigned long next;
2531         int err = 0;
2532
2533         if (create) {
2534                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2535                 if (!p4d)
2536                         return -ENOMEM;
2537         } else {
2538                 p4d = p4d_offset(pgd, addr);
2539         }
2540         do {
2541                 next = p4d_addr_end(addr, end);
2542                 if (p4d_none(*p4d) && !create)
2543                         continue;
2544                 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2545                         return -EINVAL;
2546                 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2547                         if (!create)
2548                                 continue;
2549                         p4d_clear_bad(p4d);
2550                 }
2551                 err = apply_to_pud_range(mm, p4d, addr, next,
2552                                          fn, data, create, mask);
2553                 if (err)
2554                         break;
2555         } while (p4d++, addr = next, addr != end);
2556
2557         return err;
2558 }
2559
2560 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2561                                  unsigned long size, pte_fn_t fn,
2562                                  void *data, bool create)
2563 {
2564         pgd_t *pgd;
2565         unsigned long start = addr, next;
2566         unsigned long end = addr + size;
2567         pgtbl_mod_mask mask = 0;
2568         int err = 0;
2569
2570         if (WARN_ON(addr >= end))
2571                 return -EINVAL;
2572
2573         pgd = pgd_offset(mm, addr);
2574         do {
2575                 next = pgd_addr_end(addr, end);
2576                 if (pgd_none(*pgd) && !create)
2577                         continue;
2578                 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2579                         return -EINVAL;
2580                 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2581                         if (!create)
2582                                 continue;
2583                         pgd_clear_bad(pgd);
2584                 }
2585                 err = apply_to_p4d_range(mm, pgd, addr, next,
2586                                          fn, data, create, &mask);
2587                 if (err)
2588                         break;
2589         } while (pgd++, addr = next, addr != end);
2590
2591         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2592                 arch_sync_kernel_mappings(start, start + size);
2593
2594         return err;
2595 }
2596
2597 /*
2598  * Scan a region of virtual memory, filling in page tables as necessary
2599  * and calling a provided function on each leaf page table.
2600  */
2601 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2602                         unsigned long size, pte_fn_t fn, void *data)
2603 {
2604         return __apply_to_page_range(mm, addr, size, fn, data, true);
2605 }
2606 EXPORT_SYMBOL_GPL(apply_to_page_range);
2607
2608 /*
2609  * Scan a region of virtual memory, calling a provided function on
2610  * each leaf page table where it exists.
2611  *
2612  * Unlike apply_to_page_range, this does _not_ fill in page tables
2613  * where they are absent.
2614  */
2615 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2616                                  unsigned long size, pte_fn_t fn, void *data)
2617 {
2618         return __apply_to_page_range(mm, addr, size, fn, data, false);
2619 }
2620 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2621
2622 /*
2623  * handle_pte_fault chooses page fault handler according to an entry which was
2624  * read non-atomically.  Before making any commitment, on those architectures
2625  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2626  * parts, do_swap_page must check under lock before unmapping the pte and
2627  * proceeding (but do_wp_page is only called after already making such a check;
2628  * and do_anonymous_page can safely check later on).
2629  */
2630 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2631                                 pte_t *page_table, pte_t orig_pte)
2632 {
2633         int same = 1;
2634 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2635         if (sizeof(pte_t) > sizeof(unsigned long)) {
2636                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2637                 spin_lock(ptl);
2638                 same = pte_same(*page_table, orig_pte);
2639                 spin_unlock(ptl);
2640         }
2641 #endif
2642         pte_unmap(page_table);
2643         return same;
2644 }
2645
2646 static inline bool cow_user_page(struct page *dst, struct page *src,
2647                                  struct vm_fault *vmf)
2648 {
2649         bool ret;
2650         void *kaddr;
2651         void __user *uaddr;
2652         bool locked = false;
2653         struct vm_area_struct *vma = vmf->vma;
2654         struct mm_struct *mm = vma->vm_mm;
2655         unsigned long addr = vmf->address;
2656
2657         if (likely(src)) {
2658                 copy_user_highpage(dst, src, addr, vma);
2659                 return true;
2660         }
2661
2662         /*
2663          * If the source page was a PFN mapping, we don't have
2664          * a "struct page" for it. We do a best-effort copy by
2665          * just copying from the original user address. If that
2666          * fails, we just zero-fill it. Live with it.
2667          */
2668         kaddr = kmap_atomic(dst);
2669         uaddr = (void __user *)(addr & PAGE_MASK);
2670
2671         /*
2672          * On architectures with software "accessed" bits, we would
2673          * take a double page fault, so mark it accessed here.
2674          */
2675         if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2676                 pte_t entry;
2677
2678                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2679                 locked = true;
2680                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2681                         /*
2682                          * Other thread has already handled the fault
2683                          * and update local tlb only
2684                          */
2685                         update_mmu_tlb(vma, addr, vmf->pte);
2686                         ret = false;
2687                         goto pte_unlock;
2688                 }
2689
2690                 entry = pte_mkyoung(vmf->orig_pte);
2691                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2692                         update_mmu_cache(vma, addr, vmf->pte);
2693         }
2694
2695         /*
2696          * This really shouldn't fail, because the page is there
2697          * in the page tables. But it might just be unreadable,
2698          * in which case we just give up and fill the result with
2699          * zeroes.
2700          */
2701         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2702                 if (locked)
2703                         goto warn;
2704
2705                 /* Re-validate under PTL if the page is still mapped */
2706                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2707                 locked = true;
2708                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2709                         /* The PTE changed under us, update local tlb */
2710                         update_mmu_tlb(vma, addr, vmf->pte);
2711                         ret = false;
2712                         goto pte_unlock;
2713                 }
2714
2715                 /*
2716                  * The same page can be mapped back since last copy attempt.
2717                  * Try to copy again under PTL.
2718                  */
2719                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2720                         /*
2721                          * Give a warn in case there can be some obscure
2722                          * use-case
2723                          */
2724 warn:
2725                         WARN_ON_ONCE(1);
2726                         clear_page(kaddr);
2727                 }
2728         }
2729
2730         ret = true;
2731
2732 pte_unlock:
2733         if (locked)
2734                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2735         kunmap_atomic(kaddr);
2736         flush_dcache_page(dst);
2737
2738         return ret;
2739 }
2740
2741 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2742 {
2743         struct file *vm_file = vma->vm_file;
2744
2745         if (vm_file)
2746                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2747
2748         /*
2749          * Special mappings (e.g. VDSO) do not have any file so fake
2750          * a default GFP_KERNEL for them.
2751          */
2752         return GFP_KERNEL;
2753 }
2754
2755 /*
2756  * Notify the address space that the page is about to become writable so that
2757  * it can prohibit this or wait for the page to get into an appropriate state.
2758  *
2759  * We do this without the lock held, so that it can sleep if it needs to.
2760  */
2761 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2762 {
2763         vm_fault_t ret;
2764         struct page *page = vmf->page;
2765         unsigned int old_flags = vmf->flags;
2766
2767         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2768
2769         if (vmf->vma->vm_file &&
2770             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2771                 return VM_FAULT_SIGBUS;
2772
2773         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2774         /* Restore original flags so that caller is not surprised */
2775         vmf->flags = old_flags;
2776         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2777                 return ret;
2778         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2779                 lock_page(page);
2780                 if (!page->mapping) {
2781                         unlock_page(page);
2782                         return 0; /* retry */
2783                 }
2784                 ret |= VM_FAULT_LOCKED;
2785         } else
2786                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2787         return ret;
2788 }
2789
2790 /*
2791  * Handle dirtying of a page in shared file mapping on a write fault.
2792  *
2793  * The function expects the page to be locked and unlocks it.
2794  */
2795 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2796 {
2797         struct vm_area_struct *vma = vmf->vma;
2798         struct address_space *mapping;
2799         struct page *page = vmf->page;
2800         bool dirtied;
2801         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2802
2803         dirtied = set_page_dirty(page);
2804         VM_BUG_ON_PAGE(PageAnon(page), page);
2805         /*
2806          * Take a local copy of the address_space - page.mapping may be zeroed
2807          * by truncate after unlock_page().   The address_space itself remains
2808          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2809          * release semantics to prevent the compiler from undoing this copying.
2810          */
2811         mapping = page_rmapping(page);
2812         unlock_page(page);
2813
2814         if (!page_mkwrite)
2815                 file_update_time(vma->vm_file);
2816
2817         /*
2818          * Throttle page dirtying rate down to writeback speed.
2819          *
2820          * mapping may be NULL here because some device drivers do not
2821          * set page.mapping but still dirty their pages
2822          *
2823          * Drop the mmap_lock before waiting on IO, if we can. The file
2824          * is pinning the mapping, as per above.
2825          */
2826         if ((dirtied || page_mkwrite) && mapping) {
2827                 struct file *fpin;
2828
2829                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2830                 balance_dirty_pages_ratelimited(mapping);
2831                 if (fpin) {
2832                         fput(fpin);
2833                         return VM_FAULT_RETRY;
2834                 }
2835         }
2836
2837         return 0;
2838 }
2839
2840 /*
2841  * Handle write page faults for pages that can be reused in the current vma
2842  *
2843  * This can happen either due to the mapping being with the VM_SHARED flag,
2844  * or due to us being the last reference standing to the page. In either
2845  * case, all we need to do here is to mark the page as writable and update
2846  * any related book-keeping.
2847  */
2848 static inline void wp_page_reuse(struct vm_fault *vmf)
2849         __releases(vmf->ptl)
2850 {
2851         struct vm_area_struct *vma = vmf->vma;
2852         struct page *page = vmf->page;
2853         pte_t entry;
2854         /*
2855          * Clear the pages cpupid information as the existing
2856          * information potentially belongs to a now completely
2857          * unrelated process.
2858          */
2859         if (page)
2860                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2861
2862         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2863         entry = pte_mkyoung(vmf->orig_pte);
2864         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2865         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2866                 update_mmu_cache(vma, vmf->address, vmf->pte);
2867         pte_unmap_unlock(vmf->pte, vmf->ptl);
2868         count_vm_event(PGREUSE);
2869 }
2870
2871 /*
2872  * Handle the case of a page which we actually need to copy to a new page.
2873  *
2874  * Called with mmap_lock locked and the old page referenced, but
2875  * without the ptl held.
2876  *
2877  * High level logic flow:
2878  *
2879  * - Allocate a page, copy the content of the old page to the new one.
2880  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2881  * - Take the PTL. If the pte changed, bail out and release the allocated page
2882  * - If the pte is still the way we remember it, update the page table and all
2883  *   relevant references. This includes dropping the reference the page-table
2884  *   held to the old page, as well as updating the rmap.
2885  * - In any case, unlock the PTL and drop the reference we took to the old page.
2886  */
2887 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2888 {
2889         struct vm_area_struct *vma = vmf->vma;
2890         struct mm_struct *mm = vma->vm_mm;
2891         struct page *old_page = vmf->page;
2892         struct page *new_page = NULL;
2893         pte_t entry;
2894         int page_copied = 0;
2895         struct mmu_notifier_range range;
2896
2897         if (unlikely(anon_vma_prepare(vma)))
2898                 goto oom;
2899
2900         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2901                 new_page = alloc_zeroed_user_highpage_movable(vma,
2902                                                               vmf->address);
2903                 if (!new_page)
2904                         goto oom;
2905         } else {
2906                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2907                                 vmf->address);
2908                 if (!new_page)
2909                         goto oom;
2910
2911                 if (!cow_user_page(new_page, old_page, vmf)) {
2912                         /*
2913                          * COW failed, if the fault was solved by other,
2914                          * it's fine. If not, userspace would re-fault on
2915                          * the same address and we will handle the fault
2916                          * from the second attempt.
2917                          */
2918                         put_page(new_page);
2919                         if (old_page)
2920                                 put_page(old_page);
2921                         return 0;
2922                 }
2923         }
2924
2925         if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2926                 goto oom_free_new;
2927         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2928
2929         __SetPageUptodate(new_page);
2930
2931         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2932                                 vmf->address & PAGE_MASK,
2933                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2934         mmu_notifier_invalidate_range_start(&range);
2935
2936         /*
2937          * Re-check the pte - we dropped the lock
2938          */
2939         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2940         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2941                 if (old_page) {
2942                         if (!PageAnon(old_page)) {
2943                                 dec_mm_counter_fast(mm,
2944                                                 mm_counter_file(old_page));
2945                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2946                         }
2947                 } else {
2948                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2949                 }
2950                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2951                 entry = mk_pte(new_page, vma->vm_page_prot);
2952                 entry = pte_sw_mkyoung(entry);
2953                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2954
2955                 /*
2956                  * Clear the pte entry and flush it first, before updating the
2957                  * pte with the new entry, to keep TLBs on different CPUs in
2958                  * sync. This code used to set the new PTE then flush TLBs, but
2959                  * that left a window where the new PTE could be loaded into
2960                  * some TLBs while the old PTE remains in others.
2961                  */
2962                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2963                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2964                 lru_cache_add_inactive_or_unevictable(new_page, vma);
2965                 /*
2966                  * We call the notify macro here because, when using secondary
2967                  * mmu page tables (such as kvm shadow page tables), we want the
2968                  * new page to be mapped directly into the secondary page table.
2969                  */
2970                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2971                 update_mmu_cache(vma, vmf->address, vmf->pte);
2972                 if (old_page) {
2973                         /*
2974                          * Only after switching the pte to the new page may
2975                          * we remove the mapcount here. Otherwise another
2976                          * process may come and find the rmap count decremented
2977                          * before the pte is switched to the new page, and
2978                          * "reuse" the old page writing into it while our pte
2979                          * here still points into it and can be read by other
2980                          * threads.
2981                          *
2982                          * The critical issue is to order this
2983                          * page_remove_rmap with the ptp_clear_flush above.
2984                          * Those stores are ordered by (if nothing else,)
2985                          * the barrier present in the atomic_add_negative
2986                          * in page_remove_rmap.
2987                          *
2988                          * Then the TLB flush in ptep_clear_flush ensures that
2989                          * no process can access the old page before the
2990                          * decremented mapcount is visible. And the old page
2991                          * cannot be reused until after the decremented
2992                          * mapcount is visible. So transitively, TLBs to
2993                          * old page will be flushed before it can be reused.
2994                          */
2995                         page_remove_rmap(old_page, false);
2996                 }
2997
2998                 /* Free the old page.. */
2999                 new_page = old_page;
3000                 page_copied = 1;
3001         } else {
3002                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3003         }
3004
3005         if (new_page)
3006                 put_page(new_page);
3007
3008         pte_unmap_unlock(vmf->pte, vmf->ptl);
3009         /*
3010          * No need to double call mmu_notifier->invalidate_range() callback as
3011          * the above ptep_clear_flush_notify() did already call it.
3012          */
3013         mmu_notifier_invalidate_range_only_end(&range);
3014         if (old_page) {
3015                 /*
3016                  * Don't let another task, with possibly unlocked vma,
3017                  * keep the mlocked page.
3018                  */
3019                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
3020                         lock_page(old_page);    /* LRU manipulation */
3021                         if (PageMlocked(old_page))
3022                                 munlock_vma_page(old_page);
3023                         unlock_page(old_page);
3024                 }
3025                 if (page_copied)
3026                         free_swap_cache(old_page);
3027                 put_page(old_page);
3028         }
3029         return page_copied ? VM_FAULT_WRITE : 0;
3030 oom_free_new:
3031         put_page(new_page);
3032 oom:
3033         if (old_page)
3034                 put_page(old_page);
3035         return VM_FAULT_OOM;
3036 }
3037
3038 /**
3039  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3040  *                        writeable once the page is prepared
3041  *
3042  * @vmf: structure describing the fault
3043  *
3044  * This function handles all that is needed to finish a write page fault in a
3045  * shared mapping due to PTE being read-only once the mapped page is prepared.
3046  * It handles locking of PTE and modifying it.
3047  *
3048  * The function expects the page to be locked or other protection against
3049  * concurrent faults / writeback (such as DAX radix tree locks).
3050  *
3051  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3052  * we acquired PTE lock.
3053  */
3054 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3055 {
3056         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3057         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3058                                        &vmf->ptl);
3059         /*
3060          * We might have raced with another page fault while we released the
3061          * pte_offset_map_lock.
3062          */
3063         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3064                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3065                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3066                 return VM_FAULT_NOPAGE;
3067         }
3068         wp_page_reuse(vmf);
3069         return 0;
3070 }
3071
3072 /*
3073  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3074  * mapping
3075  */
3076 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3077 {
3078         struct vm_area_struct *vma = vmf->vma;
3079
3080         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3081                 vm_fault_t ret;
3082
3083                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3084                 vmf->flags |= FAULT_FLAG_MKWRITE;
3085                 ret = vma->vm_ops->pfn_mkwrite(vmf);
3086                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3087                         return ret;
3088                 return finish_mkwrite_fault(vmf);
3089         }
3090         wp_page_reuse(vmf);
3091         return VM_FAULT_WRITE;
3092 }
3093
3094 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3095         __releases(vmf->ptl)
3096 {
3097         struct vm_area_struct *vma = vmf->vma;
3098         vm_fault_t ret = VM_FAULT_WRITE;
3099
3100         get_page(vmf->page);
3101
3102         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3103                 vm_fault_t tmp;
3104
3105                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3106                 tmp = do_page_mkwrite(vmf);
3107                 if (unlikely(!tmp || (tmp &
3108                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3109                         put_page(vmf->page);
3110                         return tmp;
3111                 }
3112                 tmp = finish_mkwrite_fault(vmf);
3113                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3114                         unlock_page(vmf->page);
3115                         put_page(vmf->page);
3116                         return tmp;
3117                 }
3118         } else {
3119                 wp_page_reuse(vmf);
3120                 lock_page(vmf->page);
3121         }
3122         ret |= fault_dirty_shared_page(vmf);
3123         put_page(vmf->page);
3124
3125         return ret;
3126 }
3127
3128 /*
3129  * This routine handles present pages, when users try to write
3130  * to a shared page. It is done by copying the page to a new address
3131  * and decrementing the shared-page counter for the old page.
3132  *
3133  * Note that this routine assumes that the protection checks have been
3134  * done by the caller (the low-level page fault routine in most cases).
3135  * Thus we can safely just mark it writable once we've done any necessary
3136  * COW.
3137  *
3138  * We also mark the page dirty at this point even though the page will
3139  * change only once the write actually happens. This avoids a few races,
3140  * and potentially makes it more efficient.
3141  *
3142  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3143  * but allow concurrent faults), with pte both mapped and locked.
3144  * We return with mmap_lock still held, but pte unmapped and unlocked.
3145  */
3146 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3147         __releases(vmf->ptl)
3148 {
3149         struct vm_area_struct *vma = vmf->vma;
3150
3151         if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3152                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3153                 return handle_userfault(vmf, VM_UFFD_WP);
3154         }
3155
3156         /*
3157          * Userfaultfd write-protect can defer flushes. Ensure the TLB
3158          * is flushed in this case before copying.
3159          */
3160         if (unlikely(userfaultfd_wp(vmf->vma) &&
3161                      mm_tlb_flush_pending(vmf->vma->vm_mm)))
3162                 flush_tlb_page(vmf->vma, vmf->address);
3163
3164         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3165         if (!vmf->page) {
3166                 /*
3167                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3168                  * VM_PFNMAP VMA.
3169                  *
3170                  * We should not cow pages in a shared writeable mapping.
3171                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
3172                  */
3173                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3174                                      (VM_WRITE|VM_SHARED))
3175                         return wp_pfn_shared(vmf);
3176
3177                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3178                 return wp_page_copy(vmf);
3179         }
3180
3181         /*
3182          * Take out anonymous pages first, anonymous shared vmas are
3183          * not dirty accountable.
3184          */
3185         if (PageAnon(vmf->page)) {
3186                 struct page *page = vmf->page;
3187
3188                 /* PageKsm() doesn't necessarily raise the page refcount */
3189                 if (PageKsm(page) || page_count(page) != 1)
3190                         goto copy;
3191                 if (!trylock_page(page))
3192                         goto copy;
3193                 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3194                         unlock_page(page);
3195                         goto copy;
3196                 }
3197                 /*
3198                  * Ok, we've got the only map reference, and the only
3199                  * page count reference, and the page is locked,
3200                  * it's dark out, and we're wearing sunglasses. Hit it.
3201                  */
3202                 unlock_page(page);
3203                 wp_page_reuse(vmf);
3204                 return VM_FAULT_WRITE;
3205         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3206                                         (VM_WRITE|VM_SHARED))) {
3207                 return wp_page_shared(vmf);
3208         }
3209 copy:
3210         /*
3211          * Ok, we need to copy. Oh, well..
3212          */
3213         get_page(vmf->page);
3214
3215         pte_unmap_unlock(vmf->pte, vmf->ptl);
3216         return wp_page_copy(vmf);
3217 }
3218
3219 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3220                 unsigned long start_addr, unsigned long end_addr,
3221                 struct zap_details *details)
3222 {
3223         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3224 }
3225
3226 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3227                                             struct zap_details *details)
3228 {
3229         struct vm_area_struct *vma;
3230         pgoff_t vba, vea, zba, zea;
3231
3232         vma_interval_tree_foreach(vma, root,
3233                         details->first_index, details->last_index) {
3234
3235                 vba = vma->vm_pgoff;
3236                 vea = vba + vma_pages(vma) - 1;
3237                 zba = details->first_index;
3238                 if (zba < vba)
3239                         zba = vba;
3240                 zea = details->last_index;
3241                 if (zea > vea)
3242                         zea = vea;
3243
3244                 unmap_mapping_range_vma(vma,
3245                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3246                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3247                                 details);
3248         }
3249 }
3250
3251 /**
3252  * unmap_mapping_page() - Unmap single page from processes.
3253  * @page: The locked page to be unmapped.
3254  *
3255  * Unmap this page from any userspace process which still has it mmaped.
3256  * Typically, for efficiency, the range of nearby pages has already been
3257  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3258  * truncation or invalidation holds the lock on a page, it may find that
3259  * the page has been remapped again: and then uses unmap_mapping_page()
3260  * to unmap it finally.
3261  */
3262 void unmap_mapping_page(struct page *page)
3263 {
3264         struct address_space *mapping = page->mapping;
3265         struct zap_details details = { };
3266
3267         VM_BUG_ON(!PageLocked(page));
3268         VM_BUG_ON(PageTail(page));
3269
3270         details.check_mapping = mapping;
3271         details.first_index = page->index;
3272         details.last_index = page->index + thp_nr_pages(page) - 1;
3273         details.single_page = page;
3274
3275         i_mmap_lock_write(mapping);
3276         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3277                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3278         i_mmap_unlock_write(mapping);
3279 }
3280
3281 /**
3282  * unmap_mapping_pages() - Unmap pages from processes.
3283  * @mapping: The address space containing pages to be unmapped.
3284  * @start: Index of first page to be unmapped.
3285  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3286  * @even_cows: Whether to unmap even private COWed pages.
3287  *
3288  * Unmap the pages in this address space from any userspace process which
3289  * has them mmaped.  Generally, you want to remove COWed pages as well when
3290  * a file is being truncated, but not when invalidating pages from the page
3291  * cache.
3292  */
3293 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3294                 pgoff_t nr, bool even_cows)
3295 {
3296         struct zap_details details = { };
3297
3298         details.check_mapping = even_cows ? NULL : mapping;
3299         details.first_index = start;
3300         details.last_index = start + nr - 1;
3301         if (details.last_index < details.first_index)
3302                 details.last_index = ULONG_MAX;
3303
3304         i_mmap_lock_write(mapping);
3305         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3306                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3307         i_mmap_unlock_write(mapping);
3308 }
3309
3310 /**
3311  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3312  * address_space corresponding to the specified byte range in the underlying
3313  * file.
3314  *
3315  * @mapping: the address space containing mmaps to be unmapped.
3316  * @holebegin: byte in first page to unmap, relative to the start of
3317  * the underlying file.  This will be rounded down to a PAGE_SIZE
3318  * boundary.  Note that this is different from truncate_pagecache(), which
3319  * must keep the partial page.  In contrast, we must get rid of
3320  * partial pages.
3321  * @holelen: size of prospective hole in bytes.  This will be rounded
3322  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3323  * end of the file.
3324  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3325  * but 0 when invalidating pagecache, don't throw away private data.
3326  */
3327 void unmap_mapping_range(struct address_space *mapping,
3328                 loff_t const holebegin, loff_t const holelen, int even_cows)
3329 {
3330         pgoff_t hba = holebegin >> PAGE_SHIFT;
3331         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3332
3333         /* Check for overflow. */
3334         if (sizeof(holelen) > sizeof(hlen)) {
3335                 long long holeend =
3336                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3337                 if (holeend & ~(long long)ULONG_MAX)
3338                         hlen = ULONG_MAX - hba + 1;
3339         }
3340
3341         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3342 }
3343 EXPORT_SYMBOL(unmap_mapping_range);
3344
3345 /*
3346  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3347  * but allow concurrent faults), and pte mapped but not yet locked.
3348  * We return with pte unmapped and unlocked.
3349  *
3350  * We return with the mmap_lock locked or unlocked in the same cases
3351  * as does filemap_fault().
3352  */
3353 vm_fault_t do_swap_page(struct vm_fault *vmf)
3354 {
3355         struct vm_area_struct *vma = vmf->vma;
3356         struct page *page = NULL, *swapcache;
3357         struct swap_info_struct *si = NULL;
3358         swp_entry_t entry;
3359         pte_t pte;
3360         int locked;
3361         int exclusive = 0;
3362         vm_fault_t ret = 0;
3363         void *shadow = NULL;
3364
3365         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3366                 goto out;
3367
3368         entry = pte_to_swp_entry(vmf->orig_pte);
3369         if (unlikely(non_swap_entry(entry))) {
3370                 if (is_migration_entry(entry)) {
3371                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3372                                              vmf->address);
3373                 } else if (is_device_private_entry(entry)) {
3374                         vmf->page = device_private_entry_to_page(entry);
3375                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3376                 } else if (is_hwpoison_entry(entry)) {
3377                         ret = VM_FAULT_HWPOISON;
3378                 } else {
3379                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3380                         ret = VM_FAULT_SIGBUS;
3381                 }
3382                 goto out;
3383         }
3384
3385         /* Prevent swapoff from happening to us. */
3386         si = get_swap_device(entry);
3387         if (unlikely(!si))
3388                 goto out;
3389
3390         delayacct_set_flag(current, DELAYACCT_PF_SWAPIN);
3391         page = lookup_swap_cache(entry, vma, vmf->address);
3392         swapcache = page;
3393
3394         if (!page) {
3395                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3396                     __swap_count(entry) == 1) {
3397                         /* skip swapcache */
3398                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3399                                                         vmf->address);
3400                         if (page) {
3401                                 __SetPageLocked(page);
3402                                 __SetPageSwapBacked(page);
3403
3404                                 if (mem_cgroup_swapin_charge_page(page,
3405                                         vma->vm_mm, GFP_KERNEL, entry)) {
3406                                         ret = VM_FAULT_OOM;
3407                                         goto out_page;
3408                                 }
3409                                 mem_cgroup_swapin_uncharge_swap(entry);
3410
3411                                 shadow = get_shadow_from_swap_cache(entry);
3412                                 if (shadow)
3413                                         workingset_refault(page, shadow);
3414
3415                                 lru_cache_add(page);
3416
3417                                 /* To provide entry to swap_readpage() */
3418                                 set_page_private(page, entry.val);
3419                                 swap_readpage(page, true);
3420                                 set_page_private(page, 0);
3421                         }
3422                 } else {
3423                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3424                                                 vmf);
3425                         swapcache = page;
3426                 }
3427
3428                 if (!page) {
3429                         /*
3430                          * Back out if somebody else faulted in this pte
3431                          * while we released the pte lock.
3432                          */
3433                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3434                                         vmf->address, &vmf->ptl);
3435                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3436                                 ret = VM_FAULT_OOM;
3437                         delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3438                         goto unlock;
3439                 }
3440
3441                 /* Had to read the page from swap area: Major fault */
3442                 ret = VM_FAULT_MAJOR;
3443                 count_vm_event(PGMAJFAULT);
3444                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3445         } else if (PageHWPoison(page)) {
3446                 /*
3447                  * hwpoisoned dirty swapcache pages are kept for killing
3448                  * owner processes (which may be unknown at hwpoison time)
3449                  */
3450                 ret = VM_FAULT_HWPOISON;
3451                 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3452                 goto out_release;
3453         }
3454
3455         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3456
3457         delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3458         if (!locked) {
3459                 ret |= VM_FAULT_RETRY;
3460                 goto out_release;
3461         }
3462
3463         /*
3464          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3465          * release the swapcache from under us.  The page pin, and pte_same
3466          * test below, are not enough to exclude that.  Even if it is still
3467          * swapcache, we need to check that the page's swap has not changed.
3468          */
3469         if (unlikely((!PageSwapCache(page) ||
3470                         page_private(page) != entry.val)) && swapcache)
3471                 goto out_page;
3472
3473         page = ksm_might_need_to_copy(page, vma, vmf->address);
3474         if (unlikely(!page)) {
3475                 ret = VM_FAULT_OOM;
3476                 page = swapcache;
3477                 goto out_page;
3478         }
3479
3480         cgroup_throttle_swaprate(page, GFP_KERNEL);
3481
3482         /*
3483          * Back out if somebody else already faulted in this pte.
3484          */
3485         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3486                         &vmf->ptl);
3487         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3488                 goto out_nomap;
3489
3490         if (unlikely(!PageUptodate(page))) {
3491                 ret = VM_FAULT_SIGBUS;
3492                 goto out_nomap;
3493         }
3494
3495         /*
3496          * The page isn't present yet, go ahead with the fault.
3497          *
3498          * Be careful about the sequence of operations here.
3499          * To get its accounting right, reuse_swap_page() must be called
3500          * while the page is counted on swap but not yet in mapcount i.e.
3501          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3502          * must be called after the swap_free(), or it will never succeed.
3503          */
3504
3505         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3506         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3507         pte = mk_pte(page, vma->vm_page_prot);
3508         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3509                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3510                 vmf->flags &= ~FAULT_FLAG_WRITE;
3511                 ret |= VM_FAULT_WRITE;
3512                 exclusive = RMAP_EXCLUSIVE;
3513         }
3514         flush_icache_page(vma, page);
3515         if (pte_swp_soft_dirty(vmf->orig_pte))
3516                 pte = pte_mksoft_dirty(pte);
3517         if (pte_swp_uffd_wp(vmf->orig_pte)) {
3518                 pte = pte_mkuffd_wp(pte);
3519                 pte = pte_wrprotect(pte);
3520         }
3521         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3522         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3523         vmf->orig_pte = pte;
3524
3525         /* ksm created a completely new copy */
3526         if (unlikely(page != swapcache && swapcache)) {
3527                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3528                 lru_cache_add_inactive_or_unevictable(page, vma);
3529         } else {
3530                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3531         }
3532
3533         swap_free(entry);
3534         if (mem_cgroup_swap_full(page) ||
3535             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3536                 try_to_free_swap(page);
3537         unlock_page(page);
3538         if (page != swapcache && swapcache) {
3539                 /*
3540                  * Hold the lock to avoid the swap entry to be reused
3541                  * until we take the PT lock for the pte_same() check
3542                  * (to avoid false positives from pte_same). For
3543                  * further safety release the lock after the swap_free
3544                  * so that the swap count won't change under a
3545                  * parallel locked swapcache.
3546                  */
3547                 unlock_page(swapcache);
3548                 put_page(swapcache);
3549         }
3550
3551         if (vmf->flags & FAULT_FLAG_WRITE) {
3552                 ret |= do_wp_page(vmf);
3553                 if (ret & VM_FAULT_ERROR)
3554                         ret &= VM_FAULT_ERROR;
3555                 goto out;
3556         }
3557
3558         /* No need to invalidate - it was non-present before */
3559         update_mmu_cache(vma, vmf->address, vmf->pte);
3560 unlock:
3561         pte_unmap_unlock(vmf->pte, vmf->ptl);
3562 out:
3563         if (si)
3564                 put_swap_device(si);
3565         return ret;
3566 out_nomap:
3567         pte_unmap_unlock(vmf->pte, vmf->ptl);
3568 out_page:
3569         unlock_page(page);
3570 out_release:
3571         put_page(page);
3572         if (page != swapcache && swapcache) {
3573                 unlock_page(swapcache);
3574                 put_page(swapcache);
3575         }
3576         if (si)
3577                 put_swap_device(si);
3578         return ret;
3579 }
3580
3581 /*
3582  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3583  * but allow concurrent faults), and pte mapped but not yet locked.
3584  * We return with mmap_lock still held, but pte unmapped and unlocked.
3585  */
3586 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3587 {
3588         struct vm_area_struct *vma = vmf->vma;
3589         struct page *page;
3590         vm_fault_t ret = 0;
3591         pte_t entry;
3592
3593         /* File mapping without ->vm_ops ? */
3594         if (vma->vm_flags & VM_SHARED)
3595                 return VM_FAULT_SIGBUS;
3596
3597         /*
3598          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3599          * pte_offset_map() on pmds where a huge pmd might be created
3600          * from a different thread.
3601          *
3602          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3603          * parallel threads are excluded by other means.
3604          *
3605          * Here we only have mmap_read_lock(mm).
3606          */
3607         if (pte_alloc(vma->vm_mm, vmf->pmd))
3608                 return VM_FAULT_OOM;
3609
3610         /* See comment in handle_pte_fault() */
3611         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3612                 return 0;
3613
3614         /* Use the zero-page for reads */
3615         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3616                         !mm_forbids_zeropage(vma->vm_mm)) {
3617                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3618                                                 vma->vm_page_prot));
3619                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3620                                 vmf->address, &vmf->ptl);
3621                 if (!pte_none(*vmf->pte)) {
3622                         update_mmu_tlb(vma, vmf->address, vmf->pte);
3623                         goto unlock;
3624                 }
3625                 ret = check_stable_address_space(vma->vm_mm);
3626                 if (ret)
3627                         goto unlock;
3628                 /* Deliver the page fault to userland, check inside PT lock */
3629                 if (userfaultfd_missing(vma)) {
3630                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3631                         return handle_userfault(vmf, VM_UFFD_MISSING);
3632                 }
3633                 goto setpte;
3634         }
3635
3636         /* Allocate our own private page. */
3637         if (unlikely(anon_vma_prepare(vma)))
3638                 goto oom;
3639         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3640         if (!page)
3641                 goto oom;
3642
3643         if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3644                 goto oom_free_page;
3645         cgroup_throttle_swaprate(page, GFP_KERNEL);
3646
3647         /*
3648          * The memory barrier inside __SetPageUptodate makes sure that
3649          * preceding stores to the page contents become visible before
3650          * the set_pte_at() write.
3651          */
3652         __SetPageUptodate(page);
3653
3654         entry = mk_pte(page, vma->vm_page_prot);
3655         entry = pte_sw_mkyoung(entry);
3656         if (vma->vm_flags & VM_WRITE)
3657                 entry = pte_mkwrite(pte_mkdirty(entry));
3658
3659         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3660                         &vmf->ptl);
3661         if (!pte_none(*vmf->pte)) {
3662                 update_mmu_cache(vma, vmf->address, vmf->pte);
3663                 goto release;
3664         }
3665
3666         ret = check_stable_address_space(vma->vm_mm);
3667         if (ret)
3668                 goto release;
3669
3670         /* Deliver the page fault to userland, check inside PT lock */
3671         if (userfaultfd_missing(vma)) {
3672                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3673                 put_page(page);
3674                 return handle_userfault(vmf, VM_UFFD_MISSING);
3675         }
3676
3677         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3678         page_add_new_anon_rmap(page, vma, vmf->address, false);
3679         lru_cache_add_inactive_or_unevictable(page, vma);
3680 setpte:
3681         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3682
3683         /* No need to invalidate - it was non-present before */
3684         update_mmu_cache(vma, vmf->address, vmf->pte);
3685 unlock:
3686         pte_unmap_unlock(vmf->pte, vmf->ptl);
3687         return ret;
3688 release:
3689         put_page(page);
3690         goto unlock;
3691 oom_free_page:
3692         put_page(page);
3693 oom:
3694         return VM_FAULT_OOM;
3695 }
3696
3697 /*
3698  * The mmap_lock must have been held on entry, and may have been
3699  * released depending on flags and vma->vm_ops->fault() return value.
3700  * See filemap_fault() and __lock_page_retry().
3701  */
3702 static vm_fault_t __do_fault(struct vm_fault *vmf)
3703 {
3704         struct vm_area_struct *vma = vmf->vma;
3705         vm_fault_t ret;
3706
3707         /*
3708          * Preallocate pte before we take page_lock because this might lead to
3709          * deadlocks for memcg reclaim which waits for pages under writeback:
3710          *                              lock_page(A)
3711          *                              SetPageWriteback(A)
3712          *                              unlock_page(A)
3713          * lock_page(B)
3714          *                              lock_page(B)
3715          * pte_alloc_one
3716          *   shrink_page_list
3717          *     wait_on_page_writeback(A)
3718          *                              SetPageWriteback(B)
3719          *                              unlock_page(B)
3720          *                              # flush A, B to clear the writeback
3721          */
3722         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3723                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3724                 if (!vmf->prealloc_pte)
3725                         return VM_FAULT_OOM;
3726                 smp_wmb(); /* See comment in __pte_alloc() */
3727         }
3728
3729         ret = vma->vm_ops->fault(vmf);
3730         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3731                             VM_FAULT_DONE_COW)))
3732                 return ret;
3733
3734         if (unlikely(PageHWPoison(vmf->page))) {
3735                 if (ret & VM_FAULT_LOCKED)
3736                         unlock_page(vmf->page);
3737                 put_page(vmf->page);
3738                 vmf->page = NULL;
3739                 return VM_FAULT_HWPOISON;
3740         }
3741
3742         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3743                 lock_page(vmf->page);
3744         else
3745                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3746
3747         return ret;
3748 }
3749
3750 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3751 static void deposit_prealloc_pte(struct vm_fault *vmf)
3752 {
3753         struct vm_area_struct *vma = vmf->vma;
3754
3755         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3756         /*
3757          * We are going to consume the prealloc table,
3758          * count that as nr_ptes.
3759          */
3760         mm_inc_nr_ptes(vma->vm_mm);
3761         vmf->prealloc_pte = NULL;
3762 }
3763
3764 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3765 {
3766         struct vm_area_struct *vma = vmf->vma;
3767         bool write = vmf->flags & FAULT_FLAG_WRITE;
3768         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3769         pmd_t entry;
3770         int i;
3771         vm_fault_t ret = VM_FAULT_FALLBACK;
3772
3773         if (!transhuge_vma_suitable(vma, haddr))
3774                 return ret;
3775
3776         page = compound_head(page);
3777         if (compound_order(page) != HPAGE_PMD_ORDER)
3778                 return ret;
3779
3780         /*
3781          * Archs like ppc64 need additional space to store information
3782          * related to pte entry. Use the preallocated table for that.
3783          */
3784         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3785                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3786                 if (!vmf->prealloc_pte)
3787                         return VM_FAULT_OOM;
3788                 smp_wmb(); /* See comment in __pte_alloc() */
3789         }
3790
3791         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3792         if (unlikely(!pmd_none(*vmf->pmd)))
3793                 goto out;
3794
3795         for (i = 0; i < HPAGE_PMD_NR; i++)
3796                 flush_icache_page(vma, page + i);
3797
3798         entry = mk_huge_pmd(page, vma->vm_page_prot);
3799         if (write)
3800                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3801
3802         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3803         page_add_file_rmap(page, true);
3804         /*
3805          * deposit and withdraw with pmd lock held
3806          */
3807         if (arch_needs_pgtable_deposit())
3808                 deposit_prealloc_pte(vmf);
3809
3810         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3811
3812         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3813
3814         /* fault is handled */
3815         ret = 0;
3816         count_vm_event(THP_FILE_MAPPED);
3817 out:
3818         spin_unlock(vmf->ptl);
3819         return ret;
3820 }
3821 #else
3822 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3823 {
3824         return VM_FAULT_FALLBACK;
3825 }
3826 #endif
3827
3828 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3829 {
3830         struct vm_area_struct *vma = vmf->vma;
3831         bool write = vmf->flags & FAULT_FLAG_WRITE;
3832         bool prefault = vmf->address != addr;
3833         pte_t entry;
3834
3835         flush_icache_page(vma, page);
3836         entry = mk_pte(page, vma->vm_page_prot);
3837
3838         if (prefault && arch_wants_old_prefaulted_pte())
3839                 entry = pte_mkold(entry);
3840         else
3841                 entry = pte_sw_mkyoung(entry);
3842
3843         if (write)
3844                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3845         /* copy-on-write page */
3846         if (write && !(vma->vm_flags & VM_SHARED)) {
3847                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3848                 page_add_new_anon_rmap(page, vma, addr, false);
3849                 lru_cache_add_inactive_or_unevictable(page, vma);
3850         } else {
3851                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3852                 page_add_file_rmap(page, false);
3853         }
3854         set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
3855 }
3856
3857 /**
3858  * finish_fault - finish page fault once we have prepared the page to fault
3859  *
3860  * @vmf: structure describing the fault
3861  *
3862  * This function handles all that is needed to finish a page fault once the
3863  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3864  * given page, adds reverse page mapping, handles memcg charges and LRU
3865  * addition.
3866  *
3867  * The function expects the page to be locked and on success it consumes a
3868  * reference of a page being mapped (for the PTE which maps it).
3869  *
3870  * Return: %0 on success, %VM_FAULT_ code in case of error.
3871  */
3872 vm_fault_t finish_fault(struct vm_fault *vmf)
3873 {
3874         struct vm_area_struct *vma = vmf->vma;
3875         struct page *page;
3876         vm_fault_t ret;
3877
3878         /* Did we COW the page? */
3879         if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
3880                 page = vmf->cow_page;
3881         else
3882                 page = vmf->page;
3883
3884         /*
3885          * check even for read faults because we might have lost our CoWed
3886          * page
3887          */
3888         if (!(vma->vm_flags & VM_SHARED)) {
3889                 ret = check_stable_address_space(vma->vm_mm);
3890                 if (ret)
3891                         return ret;
3892         }
3893
3894         if (pmd_none(*vmf->pmd)) {
3895                 if (PageTransCompound(page)) {
3896                         ret = do_set_pmd(vmf, page);
3897                         if (ret != VM_FAULT_FALLBACK)
3898                                 return ret;
3899                 }
3900
3901                 if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
3902                         return VM_FAULT_OOM;
3903         }
3904
3905         /* See comment in handle_pte_fault() */
3906         if (pmd_devmap_trans_unstable(vmf->pmd))
3907                 return 0;
3908
3909         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3910                                       vmf->address, &vmf->ptl);
3911         ret = 0;
3912         /* Re-check under ptl */
3913         if (likely(pte_none(*vmf->pte)))
3914                 do_set_pte(vmf, page, vmf->address);
3915         else
3916                 ret = VM_FAULT_NOPAGE;
3917
3918         update_mmu_tlb(vma, vmf->address, vmf->pte);
3919         pte_unmap_unlock(vmf->pte, vmf->ptl);
3920         return ret;
3921 }
3922
3923 static unsigned long fault_around_bytes __read_mostly =
3924         rounddown_pow_of_two(65536);
3925
3926 #ifdef CONFIG_DEBUG_FS
3927 static int fault_around_bytes_get(void *data, u64 *val)
3928 {
3929         *val = fault_around_bytes;
3930         return 0;
3931 }
3932
3933 /*
3934  * fault_around_bytes must be rounded down to the nearest page order as it's
3935  * what do_fault_around() expects to see.
3936  */
3937 static int fault_around_bytes_set(void *data, u64 val)
3938 {
3939         if (val / PAGE_SIZE > PTRS_PER_PTE)
3940                 return -EINVAL;
3941         if (val > PAGE_SIZE)
3942                 fault_around_bytes = rounddown_pow_of_two(val);
3943         else
3944                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3945         return 0;
3946 }
3947 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3948                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3949
3950 static int __init fault_around_debugfs(void)
3951 {
3952         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3953                                    &fault_around_bytes_fops);
3954         return 0;
3955 }
3956 late_initcall(fault_around_debugfs);
3957 #endif
3958
3959 /*
3960  * do_fault_around() tries to map few pages around the fault address. The hope
3961  * is that the pages will be needed soon and this will lower the number of
3962  * faults to handle.
3963  *
3964  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3965  * not ready to be mapped: not up-to-date, locked, etc.
3966  *
3967  * This function is called with the page table lock taken. In the split ptlock
3968  * case the page table lock only protects only those entries which belong to
3969  * the page table corresponding to the fault address.
3970  *
3971  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3972  * only once.
3973  *
3974  * fault_around_bytes defines how many bytes we'll try to map.
3975  * do_fault_around() expects it to be set to a power of two less than or equal
3976  * to PTRS_PER_PTE.
3977  *
3978  * The virtual address of the area that we map is naturally aligned to
3979  * fault_around_bytes rounded down to the machine page size
3980  * (and therefore to page order).  This way it's easier to guarantee
3981  * that we don't cross page table boundaries.
3982  */
3983 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3984 {
3985         unsigned long address = vmf->address, nr_pages, mask;
3986         pgoff_t start_pgoff = vmf->pgoff;
3987         pgoff_t end_pgoff;
3988         int off;
3989
3990         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3991         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3992
3993         address = max(address & mask, vmf->vma->vm_start);
3994         off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3995         start_pgoff -= off;
3996
3997         /*
3998          *  end_pgoff is either the end of the page table, the end of
3999          *  the vma or nr_pages from start_pgoff, depending what is nearest.
4000          */
4001         end_pgoff = start_pgoff -
4002                 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4003                 PTRS_PER_PTE - 1;
4004         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4005                         start_pgoff + nr_pages - 1);
4006
4007         if (pmd_none(*vmf->pmd)) {
4008                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4009                 if (!vmf->prealloc_pte)
4010                         return VM_FAULT_OOM;
4011                 smp_wmb(); /* See comment in __pte_alloc() */
4012         }
4013
4014         return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4015 }
4016
4017 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4018 {
4019         struct vm_area_struct *vma = vmf->vma;
4020         vm_fault_t ret = 0;
4021
4022         /*
4023          * Let's call ->map_pages() first and use ->fault() as fallback
4024          * if page by the offset is not ready to be mapped (cold cache or
4025          * something).
4026          */
4027         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4028                 ret = do_fault_around(vmf);
4029                 if (ret)
4030                         return ret;
4031         }
4032
4033         ret = __do_fault(vmf);
4034         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4035                 return ret;
4036
4037         ret |= finish_fault(vmf);
4038         unlock_page(vmf->page);
4039         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4040                 put_page(vmf->page);
4041         return ret;
4042 }
4043
4044 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4045 {
4046         struct vm_area_struct *vma = vmf->vma;
4047         vm_fault_t ret;
4048
4049         if (unlikely(anon_vma_prepare(vma)))
4050                 return VM_FAULT_OOM;
4051
4052         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4053         if (!vmf->cow_page)
4054                 return VM_FAULT_OOM;
4055
4056         if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
4057                 put_page(vmf->cow_page);
4058                 return VM_FAULT_OOM;
4059         }
4060         cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4061
4062         ret = __do_fault(vmf);
4063         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4064                 goto uncharge_out;
4065         if (ret & VM_FAULT_DONE_COW)
4066                 return ret;
4067
4068         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4069         __SetPageUptodate(vmf->cow_page);
4070
4071         ret |= finish_fault(vmf);
4072         unlock_page(vmf->page);
4073         put_page(vmf->page);
4074         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4075                 goto uncharge_out;
4076         return ret;
4077 uncharge_out:
4078         put_page(vmf->cow_page);
4079         return ret;
4080 }
4081
4082 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4083 {
4084         struct vm_area_struct *vma = vmf->vma;
4085         vm_fault_t ret, tmp;
4086
4087         ret = __do_fault(vmf);
4088         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4089                 return ret;
4090
4091         /*
4092          * Check if the backing address space wants to know that the page is
4093          * about to become writable
4094          */
4095         if (vma->vm_ops->page_mkwrite) {
4096                 unlock_page(vmf->page);
4097                 tmp = do_page_mkwrite(vmf);
4098                 if (unlikely(!tmp ||
4099                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4100                         put_page(vmf->page);
4101                         return tmp;
4102                 }
4103         }
4104
4105         ret |= finish_fault(vmf);
4106         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4107                                         VM_FAULT_RETRY))) {
4108                 unlock_page(vmf->page);
4109                 put_page(vmf->page);
4110                 return ret;
4111         }
4112
4113         ret |= fault_dirty_shared_page(vmf);
4114         return ret;
4115 }
4116
4117 /*
4118  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4119  * but allow concurrent faults).
4120  * The mmap_lock may have been released depending on flags and our
4121  * return value.  See filemap_fault() and __lock_page_or_retry().
4122  * If mmap_lock is released, vma may become invalid (for example
4123  * by other thread calling munmap()).
4124  */
4125 static vm_fault_t do_fault(struct vm_fault *vmf)
4126 {
4127         struct vm_area_struct *vma = vmf->vma;
4128         struct mm_struct *vm_mm = vma->vm_mm;
4129         vm_fault_t ret;
4130
4131         /*
4132          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4133          */
4134         if (!vma->vm_ops->fault) {
4135                 /*
4136                  * If we find a migration pmd entry or a none pmd entry, which
4137                  * should never happen, return SIGBUS
4138                  */
4139                 if (unlikely(!pmd_present(*vmf->pmd)))
4140                         ret = VM_FAULT_SIGBUS;
4141                 else {
4142                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4143                                                        vmf->pmd,
4144                                                        vmf->address,
4145                                                        &vmf->ptl);
4146                         /*
4147                          * Make sure this is not a temporary clearing of pte
4148                          * by holding ptl and checking again. A R/M/W update
4149                          * of pte involves: take ptl, clearing the pte so that
4150                          * we don't have concurrent modification by hardware
4151                          * followed by an update.
4152                          */
4153                         if (unlikely(pte_none(*vmf->pte)))
4154                                 ret = VM_FAULT_SIGBUS;
4155                         else
4156                                 ret = VM_FAULT_NOPAGE;
4157
4158                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4159                 }
4160         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4161                 ret = do_read_fault(vmf);
4162         else if (!(vma->vm_flags & VM_SHARED))
4163                 ret = do_cow_fault(vmf);
4164         else
4165                 ret = do_shared_fault(vmf);
4166
4167         /* preallocated pagetable is unused: free it */
4168         if (vmf->prealloc_pte) {
4169                 pte_free(vm_mm, vmf->prealloc_pte);
4170                 vmf->prealloc_pte = NULL;
4171         }
4172         return ret;
4173 }
4174
4175 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4176                                 unsigned long addr, int page_nid,
4177                                 int *flags)
4178 {
4179         get_page(page);
4180
4181         count_vm_numa_event(NUMA_HINT_FAULTS);
4182         if (page_nid == numa_node_id()) {
4183                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4184                 *flags |= TNF_FAULT_LOCAL;
4185         }
4186
4187         return mpol_misplaced(page, vma, addr);
4188 }
4189
4190 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4191 {
4192         struct vm_area_struct *vma = vmf->vma;
4193         struct page *page = NULL;
4194         int page_nid = NUMA_NO_NODE;
4195         int last_cpupid;
4196         int target_nid;
4197         pte_t pte, old_pte;
4198         bool was_writable = pte_savedwrite(vmf->orig_pte);
4199         int flags = 0;
4200
4201         /*
4202          * The "pte" at this point cannot be used safely without
4203          * validation through pte_unmap_same(). It's of NUMA type but
4204          * the pfn may be screwed if the read is non atomic.
4205          */
4206         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4207         spin_lock(vmf->ptl);
4208         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4209                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4210                 goto out;
4211         }
4212
4213         /* Get the normal PTE  */
4214         old_pte = ptep_get(vmf->pte);
4215         pte = pte_modify(old_pte, vma->vm_page_prot);
4216
4217         page = vm_normal_page(vma, vmf->address, pte);
4218         if (!page)
4219                 goto out_map;
4220
4221         /* TODO: handle PTE-mapped THP */
4222         if (PageCompound(page))
4223                 goto out_map;
4224
4225         /*
4226          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4227          * much anyway since they can be in shared cache state. This misses
4228          * the case where a mapping is writable but the process never writes
4229          * to it but pte_write gets cleared during protection updates and
4230          * pte_dirty has unpredictable behaviour between PTE scan updates,
4231          * background writeback, dirty balancing and application behaviour.
4232          */
4233         if (!was_writable)
4234                 flags |= TNF_NO_GROUP;
4235
4236         /*
4237          * Flag if the page is shared between multiple address spaces. This
4238          * is later used when determining whether to group tasks together
4239          */
4240         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4241                 flags |= TNF_SHARED;
4242
4243         last_cpupid = page_cpupid_last(page);
4244         page_nid = page_to_nid(page);
4245         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4246                         &flags);
4247         if (target_nid == NUMA_NO_NODE) {
4248                 put_page(page);
4249                 goto out_map;
4250         }
4251         pte_unmap_unlock(vmf->pte, vmf->ptl);
4252
4253         /* Migrate to the requested node */
4254         if (migrate_misplaced_page(page, vma, target_nid)) {
4255                 page_nid = target_nid;
4256                 flags |= TNF_MIGRATED;
4257         } else {
4258                 flags |= TNF_MIGRATE_FAIL;
4259                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4260                 spin_lock(vmf->ptl);
4261                 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4262                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4263                         goto out;
4264                 }
4265                 goto out_map;
4266         }
4267
4268 out:
4269         if (page_nid != NUMA_NO_NODE)
4270                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4271         return 0;
4272 out_map:
4273         /*
4274          * Make it present again, depending on how arch implements
4275          * non-accessible ptes, some can allow access by kernel mode.
4276          */
4277         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4278         pte = pte_modify(old_pte, vma->vm_page_prot);
4279         pte = pte_mkyoung(pte);
4280         if (was_writable)
4281                 pte = pte_mkwrite(pte);
4282         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4283         update_mmu_cache(vma, vmf->address, vmf->pte);
4284         pte_unmap_unlock(vmf->pte, vmf->ptl);
4285         goto out;
4286 }
4287
4288 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4289 {
4290         if (vma_is_anonymous(vmf->vma))
4291                 return do_huge_pmd_anonymous_page(vmf);
4292         if (vmf->vma->vm_ops->huge_fault)
4293                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4294         return VM_FAULT_FALLBACK;
4295 }
4296
4297 /* `inline' is required to avoid gcc 4.1.2 build error */
4298 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4299 {
4300         if (vma_is_anonymous(vmf->vma)) {
4301                 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4302                         return handle_userfault(vmf, VM_UFFD_WP);
4303                 return do_huge_pmd_wp_page(vmf, orig_pmd);
4304         }
4305         if (vmf->vma->vm_ops->huge_fault) {
4306                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4307
4308                 if (!(ret & VM_FAULT_FALLBACK))
4309                         return ret;
4310         }
4311
4312         /* COW or write-notify handled on pte level: split pmd. */
4313         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4314
4315         return VM_FAULT_FALLBACK;
4316 }
4317
4318 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4319 {
4320 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4321         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4322         /* No support for anonymous transparent PUD pages yet */
4323         if (vma_is_anonymous(vmf->vma))
4324                 goto split;
4325         if (vmf->vma->vm_ops->huge_fault) {
4326                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4327
4328                 if (!(ret & VM_FAULT_FALLBACK))
4329                         return ret;
4330         }
4331 split:
4332         /* COW or write-notify not handled on PUD level: split pud.*/
4333         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4334 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4335         return VM_FAULT_FALLBACK;
4336 }
4337
4338 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4339 {
4340 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4341         /* No support for anonymous transparent PUD pages yet */
4342         if (vma_is_anonymous(vmf->vma))
4343                 return VM_FAULT_FALLBACK;
4344         if (vmf->vma->vm_ops->huge_fault)
4345                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4346 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4347         return VM_FAULT_FALLBACK;
4348 }
4349
4350 /*
4351  * These routines also need to handle stuff like marking pages dirty
4352  * and/or accessed for architectures that don't do it in hardware (most
4353  * RISC architectures).  The early dirtying is also good on the i386.
4354  *
4355  * There is also a hook called "update_mmu_cache()" that architectures
4356  * with external mmu caches can use to update those (ie the Sparc or
4357  * PowerPC hashed page tables that act as extended TLBs).
4358  *
4359  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4360  * concurrent faults).
4361  *
4362  * The mmap_lock may have been released depending on flags and our return value.
4363  * See filemap_fault() and __lock_page_or_retry().
4364  */
4365 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4366 {
4367         pte_t entry;
4368
4369         if (unlikely(pmd_none(*vmf->pmd))) {
4370                 /*
4371                  * Leave __pte_alloc() until later: because vm_ops->fault may
4372                  * want to allocate huge page, and if we expose page table
4373                  * for an instant, it will be difficult to retract from
4374                  * concurrent faults and from rmap lookups.
4375                  */
4376                 vmf->pte = NULL;
4377         } else {
4378                 /*
4379                  * If a huge pmd materialized under us just retry later.  Use
4380                  * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4381                  * of pmd_trans_huge() to ensure the pmd didn't become
4382                  * pmd_trans_huge under us and then back to pmd_none, as a
4383                  * result of MADV_DONTNEED running immediately after a huge pmd
4384                  * fault in a different thread of this mm, in turn leading to a
4385                  * misleading pmd_trans_huge() retval. All we have to ensure is
4386                  * that it is a regular pmd that we can walk with
4387                  * pte_offset_map() and we can do that through an atomic read
4388                  * in C, which is what pmd_trans_unstable() provides.
4389                  */
4390                 if (pmd_devmap_trans_unstable(vmf->pmd))
4391                         return 0;
4392                 /*
4393                  * A regular pmd is established and it can't morph into a huge
4394                  * pmd from under us anymore at this point because we hold the
4395                  * mmap_lock read mode and khugepaged takes it in write mode.
4396                  * So now it's safe to run pte_offset_map().
4397                  */
4398                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4399                 vmf->orig_pte = *vmf->pte;
4400
4401                 /*
4402                  * some architectures can have larger ptes than wordsize,
4403                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4404                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4405                  * accesses.  The code below just needs a consistent view
4406                  * for the ifs and we later double check anyway with the
4407                  * ptl lock held. So here a barrier will do.
4408                  */
4409                 barrier();
4410                 if (pte_none(vmf->orig_pte)) {
4411                         pte_unmap(vmf->pte);
4412                         vmf->pte = NULL;
4413                 }
4414         }
4415
4416         if (!vmf->pte) {
4417                 if (vma_is_anonymous(vmf->vma))
4418                         return do_anonymous_page(vmf);
4419                 else
4420                         return do_fault(vmf);
4421         }
4422
4423         if (!pte_present(vmf->orig_pte))
4424                 return do_swap_page(vmf);
4425
4426         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4427                 return do_numa_page(vmf);
4428
4429         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4430         spin_lock(vmf->ptl);
4431         entry = vmf->orig_pte;
4432         if (unlikely(!pte_same(*vmf->pte, entry))) {
4433                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4434                 goto unlock;
4435         }
4436         if (vmf->flags & FAULT_FLAG_WRITE) {
4437                 if (!pte_write(entry))
4438                         return do_wp_page(vmf);
4439                 entry = pte_mkdirty(entry);
4440         }
4441         entry = pte_mkyoung(entry);
4442         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4443                                 vmf->flags & FAULT_FLAG_WRITE)) {
4444                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4445         } else {
4446                 /* Skip spurious TLB flush for retried page fault */
4447                 if (vmf->flags & FAULT_FLAG_TRIED)
4448                         goto unlock;
4449                 /*
4450                  * This is needed only for protection faults but the arch code
4451                  * is not yet telling us if this is a protection fault or not.
4452                  * This still avoids useless tlb flushes for .text page faults
4453                  * with threads.
4454                  */
4455                 if (vmf->flags & FAULT_FLAG_WRITE)
4456                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4457         }
4458 unlock:
4459         pte_unmap_unlock(vmf->pte, vmf->ptl);
4460         return 0;
4461 }
4462
4463 /*
4464  * By the time we get here, we already hold the mm semaphore
4465  *
4466  * The mmap_lock may have been released depending on flags and our
4467  * return value.  See filemap_fault() and __lock_page_or_retry().
4468  */
4469 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4470                 unsigned long address, unsigned int flags)
4471 {
4472         struct vm_fault vmf = {
4473                 .vma = vma,
4474                 .address = address & PAGE_MASK,
4475                 .flags = flags,
4476                 .pgoff = linear_page_index(vma, address),
4477                 .gfp_mask = __get_fault_gfp_mask(vma),
4478         };
4479         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4480         struct mm_struct *mm = vma->vm_mm;
4481         pgd_t *pgd;
4482         p4d_t *p4d;
4483         vm_fault_t ret;
4484
4485         pgd = pgd_offset(mm, address);
4486         p4d = p4d_alloc(mm, pgd, address);
4487         if (!p4d)
4488                 return VM_FAULT_OOM;
4489
4490         vmf.pud = pud_alloc(mm, p4d, address);
4491         if (!vmf.pud)
4492                 return VM_FAULT_OOM;
4493 retry_pud:
4494         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4495                 ret = create_huge_pud(&vmf);
4496                 if (!(ret & VM_FAULT_FALLBACK))
4497                         return ret;
4498         } else {
4499                 pud_t orig_pud = *vmf.pud;
4500
4501                 barrier();
4502                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4503
4504                         /* NUMA case for anonymous PUDs would go here */
4505
4506                         if (dirty && !pud_write(orig_pud)) {
4507                                 ret = wp_huge_pud(&vmf, orig_pud);
4508                                 if (!(ret & VM_FAULT_FALLBACK))
4509                                         return ret;
4510                         } else {
4511                                 huge_pud_set_accessed(&vmf, orig_pud);
4512                                 return 0;
4513                         }
4514                 }
4515         }
4516
4517         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4518         if (!vmf.pmd)
4519                 return VM_FAULT_OOM;
4520
4521         /* Huge pud page fault raced with pmd_alloc? */
4522         if (pud_trans_unstable(vmf.pud))
4523                 goto retry_pud;
4524
4525         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4526                 ret = create_huge_pmd(&vmf);
4527                 if (!(ret & VM_FAULT_FALLBACK))
4528                         return ret;
4529         } else {
4530                 pmd_t orig_pmd = *vmf.pmd;
4531
4532                 barrier();
4533                 if (unlikely(is_swap_pmd(orig_pmd))) {
4534                         VM_BUG_ON(thp_migration_supported() &&
4535                                           !is_pmd_migration_entry(orig_pmd));
4536                         if (is_pmd_migration_entry(orig_pmd))
4537                                 pmd_migration_entry_wait(mm, vmf.pmd);
4538                         return 0;
4539                 }
4540                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4541                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4542                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4543
4544                         if (dirty && !pmd_write(orig_pmd)) {
4545                                 ret = wp_huge_pmd(&vmf, orig_pmd);
4546                                 if (!(ret & VM_FAULT_FALLBACK))
4547                                         return ret;
4548                         } else {
4549                                 huge_pmd_set_accessed(&vmf, orig_pmd);
4550                                 return 0;
4551                         }
4552                 }
4553         }
4554
4555         return handle_pte_fault(&vmf);
4556 }
4557
4558 /**
4559  * mm_account_fault - Do page fault accounting
4560  *
4561  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4562  *        of perf event counters, but we'll still do the per-task accounting to
4563  *        the task who triggered this page fault.
4564  * @address: the faulted address.
4565  * @flags: the fault flags.
4566  * @ret: the fault retcode.
4567  *
4568  * This will take care of most of the page fault accounting.  Meanwhile, it
4569  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4570  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4571  * still be in per-arch page fault handlers at the entry of page fault.
4572  */
4573 static inline void mm_account_fault(struct pt_regs *regs,
4574                                     unsigned long address, unsigned int flags,
4575                                     vm_fault_t ret)
4576 {
4577         bool major;
4578
4579         /*
4580          * We don't do accounting for some specific faults:
4581          *
4582          * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4583          *   includes arch_vma_access_permitted() failing before reaching here.
4584          *   So this is not a "this many hardware page faults" counter.  We
4585          *   should use the hw profiling for that.
4586          *
4587          * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4588          *   once they're completed.
4589          */
4590         if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4591                 return;
4592
4593         /*
4594          * We define the fault as a major fault when the final successful fault
4595          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4596          * handle it immediately previously).
4597          */
4598         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4599
4600         if (major)
4601                 current->maj_flt++;
4602         else
4603                 current->min_flt++;
4604
4605         /*
4606          * If the fault is done for GUP, regs will be NULL.  We only do the
4607          * accounting for the per thread fault counters who triggered the
4608          * fault, and we skip the perf event updates.
4609          */
4610         if (!regs)
4611                 return;
4612
4613         if (major)
4614                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4615         else
4616                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4617 }
4618
4619 /*
4620  * By the time we get here, we already hold the mm semaphore
4621  *
4622  * The mmap_lock may have been released depending on flags and our
4623  * return value.  See filemap_fault() and __lock_page_or_retry().
4624  */
4625 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4626                            unsigned int flags, struct pt_regs *regs)
4627 {
4628         vm_fault_t ret;
4629
4630         __set_current_state(TASK_RUNNING);
4631
4632         count_vm_event(PGFAULT);
4633         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4634
4635         /* do counter updates before entering really critical section. */
4636         check_sync_rss_stat(current);
4637
4638         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4639                                             flags & FAULT_FLAG_INSTRUCTION,
4640                                             flags & FAULT_FLAG_REMOTE))
4641                 return VM_FAULT_SIGSEGV;
4642
4643         /*
4644          * Enable the memcg OOM handling for faults triggered in user
4645          * space.  Kernel faults are handled more gracefully.
4646          */
4647         if (flags & FAULT_FLAG_USER)
4648                 mem_cgroup_enter_user_fault();
4649
4650         if (unlikely(is_vm_hugetlb_page(vma)))
4651                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4652         else
4653                 ret = __handle_mm_fault(vma, address, flags);
4654
4655         if (flags & FAULT_FLAG_USER) {
4656                 mem_cgroup_exit_user_fault();
4657                 /*
4658                  * The task may have entered a memcg OOM situation but
4659                  * if the allocation error was handled gracefully (no
4660                  * VM_FAULT_OOM), there is no need to kill anything.
4661                  * Just clean up the OOM state peacefully.
4662                  */
4663                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4664                         mem_cgroup_oom_synchronize(false);
4665         }
4666
4667         mm_account_fault(regs, address, flags, ret);
4668
4669         return ret;
4670 }
4671 EXPORT_SYMBOL_GPL(handle_mm_fault);
4672
4673 #ifndef __PAGETABLE_P4D_FOLDED
4674 /*
4675  * Allocate p4d page table.
4676  * We've already handled the fast-path in-line.
4677  */
4678 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4679 {
4680         p4d_t *new = p4d_alloc_one(mm, address);
4681         if (!new)
4682                 return -ENOMEM;
4683
4684         smp_wmb(); /* See comment in __pte_alloc */
4685
4686         spin_lock(&mm->page_table_lock);
4687         if (pgd_present(*pgd))          /* Another has populated it */
4688                 p4d_free(mm, new);
4689         else
4690                 pgd_populate(mm, pgd, new);
4691         spin_unlock(&mm->page_table_lock);
4692         return 0;
4693 }
4694 #endif /* __PAGETABLE_P4D_FOLDED */
4695
4696 #ifndef __PAGETABLE_PUD_FOLDED
4697 /*
4698  * Allocate page upper directory.
4699  * We've already handled the fast-path in-line.
4700  */
4701 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4702 {
4703         pud_t *new = pud_alloc_one(mm, address);
4704         if (!new)
4705                 return -ENOMEM;
4706
4707         smp_wmb(); /* See comment in __pte_alloc */
4708
4709         spin_lock(&mm->page_table_lock);
4710         if (!p4d_present(*p4d)) {
4711                 mm_inc_nr_puds(mm);
4712                 p4d_populate(mm, p4d, new);
4713         } else  /* Another has populated it */
4714                 pud_free(mm, new);
4715         spin_unlock(&mm->page_table_lock);
4716         return 0;
4717 }
4718 #endif /* __PAGETABLE_PUD_FOLDED */
4719
4720 #ifndef __PAGETABLE_PMD_FOLDED
4721 /*
4722  * Allocate page middle directory.
4723  * We've already handled the fast-path in-line.
4724  */
4725 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4726 {
4727         spinlock_t *ptl;
4728         pmd_t *new = pmd_alloc_one(mm, address);
4729         if (!new)
4730                 return -ENOMEM;
4731
4732         smp_wmb(); /* See comment in __pte_alloc */
4733
4734         ptl = pud_lock(mm, pud);
4735         if (!pud_present(*pud)) {
4736                 mm_inc_nr_pmds(mm);
4737                 pud_populate(mm, pud, new);
4738         } else  /* Another has populated it */
4739                 pmd_free(mm, new);
4740         spin_unlock(ptl);
4741         return 0;
4742 }
4743 #endif /* __PAGETABLE_PMD_FOLDED */
4744
4745 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4746                           struct mmu_notifier_range *range, pte_t **ptepp,
4747                           pmd_t **pmdpp, spinlock_t **ptlp)
4748 {
4749         pgd_t *pgd;
4750         p4d_t *p4d;
4751         pud_t *pud;
4752         pmd_t *pmd;
4753         pte_t *ptep;
4754
4755         pgd = pgd_offset(mm, address);
4756         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4757                 goto out;
4758
4759         p4d = p4d_offset(pgd, address);
4760         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4761                 goto out;
4762
4763         pud = pud_offset(p4d, address);
4764         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4765                 goto out;
4766
4767         pmd = pmd_offset(pud, address);
4768         VM_BUG_ON(pmd_trans_huge(*pmd));
4769
4770         if (pmd_huge(*pmd)) {
4771                 if (!pmdpp)
4772                         goto out;
4773
4774                 if (range) {
4775                         mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4776                                                 NULL, mm, address & PMD_MASK,
4777                                                 (address & PMD_MASK) + PMD_SIZE);
4778                         mmu_notifier_invalidate_range_start(range);
4779                 }
4780                 *ptlp = pmd_lock(mm, pmd);
4781                 if (pmd_huge(*pmd)) {
4782                         *pmdpp = pmd;
4783                         return 0;
4784                 }
4785                 spin_unlock(*ptlp);
4786                 if (range)
4787                         mmu_notifier_invalidate_range_end(range);
4788         }
4789
4790         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4791                 goto out;
4792
4793         if (range) {
4794                 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4795                                         address & PAGE_MASK,
4796                                         (address & PAGE_MASK) + PAGE_SIZE);
4797                 mmu_notifier_invalidate_range_start(range);
4798         }
4799         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4800         if (!pte_present(*ptep))
4801                 goto unlock;
4802         *ptepp = ptep;
4803         return 0;
4804 unlock:
4805         pte_unmap_unlock(ptep, *ptlp);
4806         if (range)
4807                 mmu_notifier_invalidate_range_end(range);
4808 out:
4809         return -EINVAL;
4810 }
4811
4812 /**
4813  * follow_pte - look up PTE at a user virtual address
4814  * @mm: the mm_struct of the target address space
4815  * @address: user virtual address
4816  * @ptepp: location to store found PTE
4817  * @ptlp: location to store the lock for the PTE
4818  *
4819  * On a successful return, the pointer to the PTE is stored in @ptepp;
4820  * the corresponding lock is taken and its location is stored in @ptlp.
4821  * The contents of the PTE are only stable until @ptlp is released;
4822  * any further use, if any, must be protected against invalidation
4823  * with MMU notifiers.
4824  *
4825  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
4826  * should be taken for read.
4827  *
4828  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
4829  * it is not a good general-purpose API.
4830  *
4831  * Return: zero on success, -ve otherwise.
4832  */
4833 int follow_pte(struct mm_struct *mm, unsigned long address,
4834                pte_t **ptepp, spinlock_t **ptlp)
4835 {
4836         return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4837 }
4838 EXPORT_SYMBOL_GPL(follow_pte);
4839
4840 /**
4841  * follow_pfn - look up PFN at a user virtual address
4842  * @vma: memory mapping
4843  * @address: user virtual address
4844  * @pfn: location to store found PFN
4845  *
4846  * Only IO mappings and raw PFN mappings are allowed.
4847  *
4848  * This function does not allow the caller to read the permissions
4849  * of the PTE.  Do not use it.
4850  *
4851  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4852  */
4853 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4854         unsigned long *pfn)
4855 {
4856         int ret = -EINVAL;
4857         spinlock_t *ptl;
4858         pte_t *ptep;
4859
4860         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4861                 return ret;
4862
4863         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4864         if (ret)
4865                 return ret;
4866         *pfn = pte_pfn(*ptep);
4867         pte_unmap_unlock(ptep, ptl);
4868         return 0;
4869 }
4870 EXPORT_SYMBOL(follow_pfn);
4871
4872 #ifdef CONFIG_HAVE_IOREMAP_PROT
4873 int follow_phys(struct vm_area_struct *vma,
4874                 unsigned long address, unsigned int flags,
4875                 unsigned long *prot, resource_size_t *phys)
4876 {
4877         int ret = -EINVAL;
4878         pte_t *ptep, pte;
4879         spinlock_t *ptl;
4880
4881         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4882                 goto out;
4883
4884         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4885                 goto out;
4886         pte = *ptep;
4887
4888         if ((flags & FOLL_WRITE) && !pte_write(pte))
4889                 goto unlock;
4890
4891         *prot = pgprot_val(pte_pgprot(pte));
4892         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4893
4894         ret = 0;
4895 unlock:
4896         pte_unmap_unlock(ptep, ptl);
4897 out:
4898         return ret;
4899 }
4900
4901 /**
4902  * generic_access_phys - generic implementation for iomem mmap access
4903  * @vma: the vma to access
4904  * @addr: userspace address, not relative offset within @vma
4905  * @buf: buffer to read/write
4906  * @len: length of transfer
4907  * @write: set to FOLL_WRITE when writing, otherwise reading
4908  *
4909  * This is a generic implementation for &vm_operations_struct.access for an
4910  * iomem mapping. This callback is used by access_process_vm() when the @vma is
4911  * not page based.
4912  */
4913 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4914                         void *buf, int len, int write)
4915 {
4916         resource_size_t phys_addr;
4917         unsigned long prot = 0;
4918         void __iomem *maddr;
4919         pte_t *ptep, pte;
4920         spinlock_t *ptl;
4921         int offset = offset_in_page(addr);
4922         int ret = -EINVAL;
4923
4924         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4925                 return -EINVAL;
4926
4927 retry:
4928         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
4929                 return -EINVAL;
4930         pte = *ptep;
4931         pte_unmap_unlock(ptep, ptl);
4932
4933         prot = pgprot_val(pte_pgprot(pte));
4934         phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4935
4936         if ((write & FOLL_WRITE) && !pte_write(pte))
4937                 return -EINVAL;
4938
4939         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4940         if (!maddr)
4941                 return -ENOMEM;
4942
4943         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
4944                 goto out_unmap;
4945
4946         if (!pte_same(pte, *ptep)) {
4947                 pte_unmap_unlock(ptep, ptl);
4948                 iounmap(maddr);
4949
4950                 goto retry;
4951         }
4952
4953         if (write)
4954                 memcpy_toio(maddr + offset, buf, len);
4955         else
4956                 memcpy_fromio(buf, maddr + offset, len);
4957         ret = len;
4958         pte_unmap_unlock(ptep, ptl);
4959 out_unmap:
4960         iounmap(maddr);
4961
4962         return ret;
4963 }
4964 EXPORT_SYMBOL_GPL(generic_access_phys);
4965 #endif
4966
4967 /*
4968  * Access another process' address space as given in mm.
4969  */
4970 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
4971                        int len, unsigned int gup_flags)
4972 {
4973         struct vm_area_struct *vma;
4974         void *old_buf = buf;
4975         int write = gup_flags & FOLL_WRITE;
4976
4977         if (mmap_read_lock_killable(mm))
4978                 return 0;
4979
4980         /* ignore errors, just check how much was successfully transferred */
4981         while (len) {
4982                 int bytes, ret, offset;
4983                 void *maddr;
4984                 struct page *page = NULL;
4985
4986                 ret = get_user_pages_remote(mm, addr, 1,
4987                                 gup_flags, &page, &vma, NULL);
4988                 if (ret <= 0) {
4989 #ifndef CONFIG_HAVE_IOREMAP_PROT
4990                         break;
4991 #else
4992                         /*
4993                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4994                          * we can access using slightly different code.
4995                          */
4996                         vma = vma_lookup(mm, addr);
4997                         if (!vma)
4998                                 break;
4999                         if (vma->vm_ops && vma->vm_ops->access)
5000                                 ret = vma->vm_ops->access(vma, addr, buf,
5001                                                           len, write);
5002                         if (ret <= 0)
5003                                 break;
5004                         bytes = ret;
5005 #endif
5006                 } else {
5007                         bytes = len;
5008                         offset = addr & (PAGE_SIZE-1);
5009                         if (bytes > PAGE_SIZE-offset)
5010                                 bytes = PAGE_SIZE-offset;
5011
5012                         maddr = kmap(page);
5013                         if (write) {
5014                                 copy_to_user_page(vma, page, addr,
5015                                                   maddr + offset, buf, bytes);
5016                                 set_page_dirty_lock(page);
5017                         } else {
5018                                 copy_from_user_page(vma, page, addr,
5019                                                     buf, maddr + offset, bytes);
5020                         }
5021                         kunmap(page);
5022                         put_page(page);
5023                 }
5024                 len -= bytes;
5025                 buf += bytes;
5026                 addr += bytes;
5027         }
5028         mmap_read_unlock(mm);
5029
5030         return buf - old_buf;
5031 }
5032
5033 /**
5034  * access_remote_vm - access another process' address space
5035  * @mm:         the mm_struct of the target address space
5036  * @addr:       start address to access
5037  * @buf:        source or destination buffer
5038  * @len:        number of bytes to transfer
5039  * @gup_flags:  flags modifying lookup behaviour
5040  *
5041  * The caller must hold a reference on @mm.
5042  *
5043  * Return: number of bytes copied from source to destination.
5044  */
5045 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5046                 void *buf, int len, unsigned int gup_flags)
5047 {
5048         return __access_remote_vm(mm, addr, buf, len, gup_flags);
5049 }
5050
5051 /*
5052  * Access another process' address space.
5053  * Source/target buffer must be kernel space,
5054  * Do not walk the page table directly, use get_user_pages
5055  */
5056 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5057                 void *buf, int len, unsigned int gup_flags)
5058 {
5059         struct mm_struct *mm;
5060         int ret;
5061
5062         mm = get_task_mm(tsk);
5063         if (!mm)
5064                 return 0;
5065
5066         ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5067
5068         mmput(mm);
5069
5070         return ret;
5071 }
5072 EXPORT_SYMBOL_GPL(access_process_vm);
5073
5074 /*
5075  * Print the name of a VMA.
5076  */
5077 void print_vma_addr(char *prefix, unsigned long ip)
5078 {
5079         struct mm_struct *mm = current->mm;
5080         struct vm_area_struct *vma;
5081
5082         /*
5083          * we might be running from an atomic context so we cannot sleep
5084          */
5085         if (!mmap_read_trylock(mm))
5086                 return;
5087
5088         vma = find_vma(mm, ip);
5089         if (vma && vma->vm_file) {
5090                 struct file *f = vma->vm_file;
5091                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5092                 if (buf) {
5093                         char *p;
5094
5095                         p = file_path(f, buf, PAGE_SIZE);
5096                         if (IS_ERR(p))
5097                                 p = "?";
5098                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5099                                         vma->vm_start,
5100                                         vma->vm_end - vma->vm_start);
5101                         free_page((unsigned long)buf);
5102                 }
5103         }
5104         mmap_read_unlock(mm);
5105 }
5106
5107 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5108 void __might_fault(const char *file, int line)
5109 {
5110         /*
5111          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5112          * holding the mmap_lock, this is safe because kernel memory doesn't
5113          * get paged out, therefore we'll never actually fault, and the
5114          * below annotations will generate false positives.
5115          */
5116         if (uaccess_kernel())
5117                 return;
5118         if (pagefault_disabled())
5119                 return;
5120         __might_sleep(file, line, 0);
5121 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5122         if (current->mm)
5123                 might_lock_read(&current->mm->mmap_lock);
5124 #endif
5125 }
5126 EXPORT_SYMBOL(__might_fault);
5127 #endif
5128
5129 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5130 /*
5131  * Process all subpages of the specified huge page with the specified
5132  * operation.  The target subpage will be processed last to keep its
5133  * cache lines hot.
5134  */
5135 static inline void process_huge_page(
5136         unsigned long addr_hint, unsigned int pages_per_huge_page,
5137         void (*process_subpage)(unsigned long addr, int idx, void *arg),
5138         void *arg)
5139 {
5140         int i, n, base, l;
5141         unsigned long addr = addr_hint &
5142                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5143
5144         /* Process target subpage last to keep its cache lines hot */
5145         might_sleep();
5146         n = (addr_hint - addr) / PAGE_SIZE;
5147         if (2 * n <= pages_per_huge_page) {
5148                 /* If target subpage in first half of huge page */
5149                 base = 0;
5150                 l = n;
5151                 /* Process subpages at the end of huge page */
5152                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5153                         cond_resched();
5154                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5155                 }
5156         } else {
5157                 /* If target subpage in second half of huge page */
5158                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5159                 l = pages_per_huge_page - n;
5160                 /* Process subpages at the begin of huge page */
5161                 for (i = 0; i < base; i++) {
5162                         cond_resched();
5163                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5164                 }
5165         }
5166         /*
5167          * Process remaining subpages in left-right-left-right pattern
5168          * towards the target subpage
5169          */
5170         for (i = 0; i < l; i++) {
5171                 int left_idx = base + i;
5172                 int right_idx = base + 2 * l - 1 - i;
5173
5174                 cond_resched();
5175                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5176                 cond_resched();
5177                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5178         }
5179 }
5180
5181 static void clear_gigantic_page(struct page *page,
5182                                 unsigned long addr,
5183                                 unsigned int pages_per_huge_page)
5184 {
5185         int i;
5186         struct page *p = page;
5187
5188         might_sleep();
5189         for (i = 0; i < pages_per_huge_page;
5190              i++, p = mem_map_next(p, page, i)) {
5191                 cond_resched();
5192                 clear_user_highpage(p, addr + i * PAGE_SIZE);
5193         }
5194 }
5195
5196 static void clear_subpage(unsigned long addr, int idx, void *arg)
5197 {
5198         struct page *page = arg;
5199
5200         clear_user_highpage(page + idx, addr);
5201 }
5202
5203 void clear_huge_page(struct page *page,
5204                      unsigned long addr_hint, unsigned int pages_per_huge_page)
5205 {
5206         unsigned long addr = addr_hint &
5207                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5208
5209         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5210                 clear_gigantic_page(page, addr, pages_per_huge_page);
5211                 return;
5212         }
5213
5214         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5215 }
5216
5217 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5218                                     unsigned long addr,
5219                                     struct vm_area_struct *vma,
5220                                     unsigned int pages_per_huge_page)
5221 {
5222         int i;
5223         struct page *dst_base = dst;
5224         struct page *src_base = src;
5225
5226         for (i = 0; i < pages_per_huge_page; ) {
5227                 cond_resched();
5228                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5229
5230                 i++;
5231                 dst = mem_map_next(dst, dst_base, i);
5232                 src = mem_map_next(src, src_base, i);
5233         }
5234 }
5235
5236 struct copy_subpage_arg {
5237         struct page *dst;
5238         struct page *src;
5239         struct vm_area_struct *vma;
5240 };
5241
5242 static void copy_subpage(unsigned long addr, int idx, void *arg)
5243 {
5244         struct copy_subpage_arg *copy_arg = arg;
5245
5246         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5247                            addr, copy_arg->vma);
5248 }
5249
5250 void copy_user_huge_page(struct page *dst, struct page *src,
5251                          unsigned long addr_hint, struct vm_area_struct *vma,
5252                          unsigned int pages_per_huge_page)
5253 {
5254         unsigned long addr = addr_hint &
5255                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5256         struct copy_subpage_arg arg = {
5257                 .dst = dst,
5258                 .src = src,
5259                 .vma = vma,
5260         };
5261
5262         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5263                 copy_user_gigantic_page(dst, src, addr, vma,
5264                                         pages_per_huge_page);
5265                 return;
5266         }
5267
5268         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5269 }
5270
5271 long copy_huge_page_from_user(struct page *dst_page,
5272                                 const void __user *usr_src,
5273                                 unsigned int pages_per_huge_page,
5274                                 bool allow_pagefault)
5275 {
5276         void *src = (void *)usr_src;
5277         void *page_kaddr;
5278         unsigned long i, rc = 0;
5279         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5280         struct page *subpage = dst_page;
5281
5282         for (i = 0; i < pages_per_huge_page;
5283              i++, subpage = mem_map_next(subpage, dst_page, i)) {
5284                 if (allow_pagefault)
5285                         page_kaddr = kmap(subpage);
5286                 else
5287                         page_kaddr = kmap_atomic(subpage);
5288                 rc = copy_from_user(page_kaddr,
5289                                 (const void __user *)(src + i * PAGE_SIZE),
5290                                 PAGE_SIZE);
5291                 if (allow_pagefault)
5292                         kunmap(subpage);
5293                 else
5294                         kunmap_atomic(page_kaddr);
5295
5296                 ret_val -= (PAGE_SIZE - rc);
5297                 if (rc)
5298                         break;
5299
5300                 cond_resched();
5301         }
5302         return ret_val;
5303 }
5304 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5305
5306 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5307
5308 static struct kmem_cache *page_ptl_cachep;
5309
5310 void __init ptlock_cache_init(void)
5311 {
5312         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5313                         SLAB_PANIC, NULL);
5314 }
5315
5316 bool ptlock_alloc(struct page *page)
5317 {
5318         spinlock_t *ptl;
5319
5320         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5321         if (!ptl)
5322                 return false;
5323         page->ptl = ptl;
5324         return true;
5325 }
5326
5327 void ptlock_free(struct page *page)
5328 {
5329         kmem_cache_free(page_ptl_cachep, page->ptl);
5330 }
5331 #endif