drm/etnaviv: Implement mmap as GEM object function
[linux-2.6-microblaze.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 #include <linux/numa.h>
73 #include <linux/perf_event.h>
74 #include <linux/ptrace.h>
75 #include <linux/vmalloc.h>
76
77 #include <trace/events/kmem.h>
78
79 #include <asm/io.h>
80 #include <asm/mmu_context.h>
81 #include <asm/pgalloc.h>
82 #include <linux/uaccess.h>
83 #include <asm/tlb.h>
84 #include <asm/tlbflush.h>
85
86 #include "pgalloc-track.h"
87 #include "internal.h"
88
89 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
91 #endif
92
93 #ifndef CONFIG_NEED_MULTIPLE_NODES
94 /* use the per-pgdat data instead for discontigmem - mbligh */
95 unsigned long max_mapnr;
96 EXPORT_SYMBOL(max_mapnr);
97
98 struct page *mem_map;
99 EXPORT_SYMBOL(mem_map);
100 #endif
101
102 /*
103  * A number of key systems in x86 including ioremap() rely on the assumption
104  * that high_memory defines the upper bound on direct map memory, then end
105  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
106  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
107  * and ZONE_HIGHMEM.
108  */
109 void *high_memory;
110 EXPORT_SYMBOL(high_memory);
111
112 /*
113  * Randomize the address space (stacks, mmaps, brk, etc.).
114  *
115  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
116  *   as ancient (libc5 based) binaries can segfault. )
117  */
118 int randomize_va_space __read_mostly =
119 #ifdef CONFIG_COMPAT_BRK
120                                         1;
121 #else
122                                         2;
123 #endif
124
125 #ifndef arch_faults_on_old_pte
126 static inline bool arch_faults_on_old_pte(void)
127 {
128         /*
129          * Those arches which don't have hw access flag feature need to
130          * implement their own helper. By default, "true" means pagefault
131          * will be hit on old pte.
132          */
133         return true;
134 }
135 #endif
136
137 #ifndef arch_wants_old_prefaulted_pte
138 static inline bool arch_wants_old_prefaulted_pte(void)
139 {
140         /*
141          * Transitioning a PTE from 'old' to 'young' can be expensive on
142          * some architectures, even if it's performed in hardware. By
143          * default, "false" means prefaulted entries will be 'young'.
144          */
145         return false;
146 }
147 #endif
148
149 static int __init disable_randmaps(char *s)
150 {
151         randomize_va_space = 0;
152         return 1;
153 }
154 __setup("norandmaps", disable_randmaps);
155
156 unsigned long zero_pfn __read_mostly;
157 EXPORT_SYMBOL(zero_pfn);
158
159 unsigned long highest_memmap_pfn __read_mostly;
160
161 /*
162  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
163  */
164 static int __init init_zero_pfn(void)
165 {
166         zero_pfn = page_to_pfn(ZERO_PAGE(0));
167         return 0;
168 }
169 early_initcall(init_zero_pfn);
170
171 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
172 {
173         trace_rss_stat(mm, member, count);
174 }
175
176 #if defined(SPLIT_RSS_COUNTING)
177
178 void sync_mm_rss(struct mm_struct *mm)
179 {
180         int i;
181
182         for (i = 0; i < NR_MM_COUNTERS; i++) {
183                 if (current->rss_stat.count[i]) {
184                         add_mm_counter(mm, i, current->rss_stat.count[i]);
185                         current->rss_stat.count[i] = 0;
186                 }
187         }
188         current->rss_stat.events = 0;
189 }
190
191 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
192 {
193         struct task_struct *task = current;
194
195         if (likely(task->mm == mm))
196                 task->rss_stat.count[member] += val;
197         else
198                 add_mm_counter(mm, member, val);
199 }
200 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
201 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
202
203 /* sync counter once per 64 page faults */
204 #define TASK_RSS_EVENTS_THRESH  (64)
205 static void check_sync_rss_stat(struct task_struct *task)
206 {
207         if (unlikely(task != current))
208                 return;
209         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
210                 sync_mm_rss(task->mm);
211 }
212 #else /* SPLIT_RSS_COUNTING */
213
214 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
215 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
216
217 static void check_sync_rss_stat(struct task_struct *task)
218 {
219 }
220
221 #endif /* SPLIT_RSS_COUNTING */
222
223 /*
224  * Note: this doesn't free the actual pages themselves. That
225  * has been handled earlier when unmapping all the memory regions.
226  */
227 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
228                            unsigned long addr)
229 {
230         pgtable_t token = pmd_pgtable(*pmd);
231         pmd_clear(pmd);
232         pte_free_tlb(tlb, token, addr);
233         mm_dec_nr_ptes(tlb->mm);
234 }
235
236 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
237                                 unsigned long addr, unsigned long end,
238                                 unsigned long floor, unsigned long ceiling)
239 {
240         pmd_t *pmd;
241         unsigned long next;
242         unsigned long start;
243
244         start = addr;
245         pmd = pmd_offset(pud, addr);
246         do {
247                 next = pmd_addr_end(addr, end);
248                 if (pmd_none_or_clear_bad(pmd))
249                         continue;
250                 free_pte_range(tlb, pmd, addr);
251         } while (pmd++, addr = next, addr != end);
252
253         start &= PUD_MASK;
254         if (start < floor)
255                 return;
256         if (ceiling) {
257                 ceiling &= PUD_MASK;
258                 if (!ceiling)
259                         return;
260         }
261         if (end - 1 > ceiling - 1)
262                 return;
263
264         pmd = pmd_offset(pud, start);
265         pud_clear(pud);
266         pmd_free_tlb(tlb, pmd, start);
267         mm_dec_nr_pmds(tlb->mm);
268 }
269
270 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
271                                 unsigned long addr, unsigned long end,
272                                 unsigned long floor, unsigned long ceiling)
273 {
274         pud_t *pud;
275         unsigned long next;
276         unsigned long start;
277
278         start = addr;
279         pud = pud_offset(p4d, addr);
280         do {
281                 next = pud_addr_end(addr, end);
282                 if (pud_none_or_clear_bad(pud))
283                         continue;
284                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
285         } while (pud++, addr = next, addr != end);
286
287         start &= P4D_MASK;
288         if (start < floor)
289                 return;
290         if (ceiling) {
291                 ceiling &= P4D_MASK;
292                 if (!ceiling)
293                         return;
294         }
295         if (end - 1 > ceiling - 1)
296                 return;
297
298         pud = pud_offset(p4d, start);
299         p4d_clear(p4d);
300         pud_free_tlb(tlb, pud, start);
301         mm_dec_nr_puds(tlb->mm);
302 }
303
304 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
305                                 unsigned long addr, unsigned long end,
306                                 unsigned long floor, unsigned long ceiling)
307 {
308         p4d_t *p4d;
309         unsigned long next;
310         unsigned long start;
311
312         start = addr;
313         p4d = p4d_offset(pgd, addr);
314         do {
315                 next = p4d_addr_end(addr, end);
316                 if (p4d_none_or_clear_bad(p4d))
317                         continue;
318                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
319         } while (p4d++, addr = next, addr != end);
320
321         start &= PGDIR_MASK;
322         if (start < floor)
323                 return;
324         if (ceiling) {
325                 ceiling &= PGDIR_MASK;
326                 if (!ceiling)
327                         return;
328         }
329         if (end - 1 > ceiling - 1)
330                 return;
331
332         p4d = p4d_offset(pgd, start);
333         pgd_clear(pgd);
334         p4d_free_tlb(tlb, p4d, start);
335 }
336
337 /*
338  * This function frees user-level page tables of a process.
339  */
340 void free_pgd_range(struct mmu_gather *tlb,
341                         unsigned long addr, unsigned long end,
342                         unsigned long floor, unsigned long ceiling)
343 {
344         pgd_t *pgd;
345         unsigned long next;
346
347         /*
348          * The next few lines have given us lots of grief...
349          *
350          * Why are we testing PMD* at this top level?  Because often
351          * there will be no work to do at all, and we'd prefer not to
352          * go all the way down to the bottom just to discover that.
353          *
354          * Why all these "- 1"s?  Because 0 represents both the bottom
355          * of the address space and the top of it (using -1 for the
356          * top wouldn't help much: the masks would do the wrong thing).
357          * The rule is that addr 0 and floor 0 refer to the bottom of
358          * the address space, but end 0 and ceiling 0 refer to the top
359          * Comparisons need to use "end - 1" and "ceiling - 1" (though
360          * that end 0 case should be mythical).
361          *
362          * Wherever addr is brought up or ceiling brought down, we must
363          * be careful to reject "the opposite 0" before it confuses the
364          * subsequent tests.  But what about where end is brought down
365          * by PMD_SIZE below? no, end can't go down to 0 there.
366          *
367          * Whereas we round start (addr) and ceiling down, by different
368          * masks at different levels, in order to test whether a table
369          * now has no other vmas using it, so can be freed, we don't
370          * bother to round floor or end up - the tests don't need that.
371          */
372
373         addr &= PMD_MASK;
374         if (addr < floor) {
375                 addr += PMD_SIZE;
376                 if (!addr)
377                         return;
378         }
379         if (ceiling) {
380                 ceiling &= PMD_MASK;
381                 if (!ceiling)
382                         return;
383         }
384         if (end - 1 > ceiling - 1)
385                 end -= PMD_SIZE;
386         if (addr > end - 1)
387                 return;
388         /*
389          * We add page table cache pages with PAGE_SIZE,
390          * (see pte_free_tlb()), flush the tlb if we need
391          */
392         tlb_change_page_size(tlb, PAGE_SIZE);
393         pgd = pgd_offset(tlb->mm, addr);
394         do {
395                 next = pgd_addr_end(addr, end);
396                 if (pgd_none_or_clear_bad(pgd))
397                         continue;
398                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
399         } while (pgd++, addr = next, addr != end);
400 }
401
402 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
403                 unsigned long floor, unsigned long ceiling)
404 {
405         while (vma) {
406                 struct vm_area_struct *next = vma->vm_next;
407                 unsigned long addr = vma->vm_start;
408
409                 /*
410                  * Hide vma from rmap and truncate_pagecache before freeing
411                  * pgtables
412                  */
413                 unlink_anon_vmas(vma);
414                 unlink_file_vma(vma);
415
416                 if (is_vm_hugetlb_page(vma)) {
417                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
418                                 floor, next ? next->vm_start : ceiling);
419                 } else {
420                         /*
421                          * Optimization: gather nearby vmas into one call down
422                          */
423                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
424                                && !is_vm_hugetlb_page(next)) {
425                                 vma = next;
426                                 next = vma->vm_next;
427                                 unlink_anon_vmas(vma);
428                                 unlink_file_vma(vma);
429                         }
430                         free_pgd_range(tlb, addr, vma->vm_end,
431                                 floor, next ? next->vm_start : ceiling);
432                 }
433                 vma = next;
434         }
435 }
436
437 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
438 {
439         spinlock_t *ptl;
440         pgtable_t new = pte_alloc_one(mm);
441         if (!new)
442                 return -ENOMEM;
443
444         /*
445          * Ensure all pte setup (eg. pte page lock and page clearing) are
446          * visible before the pte is made visible to other CPUs by being
447          * put into page tables.
448          *
449          * The other side of the story is the pointer chasing in the page
450          * table walking code (when walking the page table without locking;
451          * ie. most of the time). Fortunately, these data accesses consist
452          * of a chain of data-dependent loads, meaning most CPUs (alpha
453          * being the notable exception) will already guarantee loads are
454          * seen in-order. See the alpha page table accessors for the
455          * smp_rmb() barriers in page table walking code.
456          */
457         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
458
459         ptl = pmd_lock(mm, pmd);
460         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
461                 mm_inc_nr_ptes(mm);
462                 pmd_populate(mm, pmd, new);
463                 new = NULL;
464         }
465         spin_unlock(ptl);
466         if (new)
467                 pte_free(mm, new);
468         return 0;
469 }
470
471 int __pte_alloc_kernel(pmd_t *pmd)
472 {
473         pte_t *new = pte_alloc_one_kernel(&init_mm);
474         if (!new)
475                 return -ENOMEM;
476
477         smp_wmb(); /* See comment in __pte_alloc */
478
479         spin_lock(&init_mm.page_table_lock);
480         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
481                 pmd_populate_kernel(&init_mm, pmd, new);
482                 new = NULL;
483         }
484         spin_unlock(&init_mm.page_table_lock);
485         if (new)
486                 pte_free_kernel(&init_mm, new);
487         return 0;
488 }
489
490 static inline void init_rss_vec(int *rss)
491 {
492         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
493 }
494
495 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
496 {
497         int i;
498
499         if (current->mm == mm)
500                 sync_mm_rss(mm);
501         for (i = 0; i < NR_MM_COUNTERS; i++)
502                 if (rss[i])
503                         add_mm_counter(mm, i, rss[i]);
504 }
505
506 /*
507  * This function is called to print an error when a bad pte
508  * is found. For example, we might have a PFN-mapped pte in
509  * a region that doesn't allow it.
510  *
511  * The calling function must still handle the error.
512  */
513 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
514                           pte_t pte, struct page *page)
515 {
516         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
517         p4d_t *p4d = p4d_offset(pgd, addr);
518         pud_t *pud = pud_offset(p4d, addr);
519         pmd_t *pmd = pmd_offset(pud, addr);
520         struct address_space *mapping;
521         pgoff_t index;
522         static unsigned long resume;
523         static unsigned long nr_shown;
524         static unsigned long nr_unshown;
525
526         /*
527          * Allow a burst of 60 reports, then keep quiet for that minute;
528          * or allow a steady drip of one report per second.
529          */
530         if (nr_shown == 60) {
531                 if (time_before(jiffies, resume)) {
532                         nr_unshown++;
533                         return;
534                 }
535                 if (nr_unshown) {
536                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
537                                  nr_unshown);
538                         nr_unshown = 0;
539                 }
540                 nr_shown = 0;
541         }
542         if (nr_shown++ == 0)
543                 resume = jiffies + 60 * HZ;
544
545         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
546         index = linear_page_index(vma, addr);
547
548         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
549                  current->comm,
550                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
551         if (page)
552                 dump_page(page, "bad pte");
553         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
554                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
555         pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
556                  vma->vm_file,
557                  vma->vm_ops ? vma->vm_ops->fault : NULL,
558                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
559                  mapping ? mapping->a_ops->readpage : NULL);
560         dump_stack();
561         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
562 }
563
564 /*
565  * vm_normal_page -- This function gets the "struct page" associated with a pte.
566  *
567  * "Special" mappings do not wish to be associated with a "struct page" (either
568  * it doesn't exist, or it exists but they don't want to touch it). In this
569  * case, NULL is returned here. "Normal" mappings do have a struct page.
570  *
571  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
572  * pte bit, in which case this function is trivial. Secondly, an architecture
573  * may not have a spare pte bit, which requires a more complicated scheme,
574  * described below.
575  *
576  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
577  * special mapping (even if there are underlying and valid "struct pages").
578  * COWed pages of a VM_PFNMAP are always normal.
579  *
580  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
581  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
582  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
583  * mapping will always honor the rule
584  *
585  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
586  *
587  * And for normal mappings this is false.
588  *
589  * This restricts such mappings to be a linear translation from virtual address
590  * to pfn. To get around this restriction, we allow arbitrary mappings so long
591  * as the vma is not a COW mapping; in that case, we know that all ptes are
592  * special (because none can have been COWed).
593  *
594  *
595  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
596  *
597  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
598  * page" backing, however the difference is that _all_ pages with a struct
599  * page (that is, those where pfn_valid is true) are refcounted and considered
600  * normal pages by the VM. The disadvantage is that pages are refcounted
601  * (which can be slower and simply not an option for some PFNMAP users). The
602  * advantage is that we don't have to follow the strict linearity rule of
603  * PFNMAP mappings in order to support COWable mappings.
604  *
605  */
606 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
607                             pte_t pte)
608 {
609         unsigned long pfn = pte_pfn(pte);
610
611         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
612                 if (likely(!pte_special(pte)))
613                         goto check_pfn;
614                 if (vma->vm_ops && vma->vm_ops->find_special_page)
615                         return vma->vm_ops->find_special_page(vma, addr);
616                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
617                         return NULL;
618                 if (is_zero_pfn(pfn))
619                         return NULL;
620                 if (pte_devmap(pte))
621                         return NULL;
622
623                 print_bad_pte(vma, addr, pte, NULL);
624                 return NULL;
625         }
626
627         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
628
629         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
630                 if (vma->vm_flags & VM_MIXEDMAP) {
631                         if (!pfn_valid(pfn))
632                                 return NULL;
633                         goto out;
634                 } else {
635                         unsigned long off;
636                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
637                         if (pfn == vma->vm_pgoff + off)
638                                 return NULL;
639                         if (!is_cow_mapping(vma->vm_flags))
640                                 return NULL;
641                 }
642         }
643
644         if (is_zero_pfn(pfn))
645                 return NULL;
646
647 check_pfn:
648         if (unlikely(pfn > highest_memmap_pfn)) {
649                 print_bad_pte(vma, addr, pte, NULL);
650                 return NULL;
651         }
652
653         /*
654          * NOTE! We still have PageReserved() pages in the page tables.
655          * eg. VDSO mappings can cause them to exist.
656          */
657 out:
658         return pfn_to_page(pfn);
659 }
660
661 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
662 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
663                                 pmd_t pmd)
664 {
665         unsigned long pfn = pmd_pfn(pmd);
666
667         /*
668          * There is no pmd_special() but there may be special pmds, e.g.
669          * in a direct-access (dax) mapping, so let's just replicate the
670          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
671          */
672         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
673                 if (vma->vm_flags & VM_MIXEDMAP) {
674                         if (!pfn_valid(pfn))
675                                 return NULL;
676                         goto out;
677                 } else {
678                         unsigned long off;
679                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
680                         if (pfn == vma->vm_pgoff + off)
681                                 return NULL;
682                         if (!is_cow_mapping(vma->vm_flags))
683                                 return NULL;
684                 }
685         }
686
687         if (pmd_devmap(pmd))
688                 return NULL;
689         if (is_huge_zero_pmd(pmd))
690                 return NULL;
691         if (unlikely(pfn > highest_memmap_pfn))
692                 return NULL;
693
694         /*
695          * NOTE! We still have PageReserved() pages in the page tables.
696          * eg. VDSO mappings can cause them to exist.
697          */
698 out:
699         return pfn_to_page(pfn);
700 }
701 #endif
702
703 /*
704  * copy one vm_area from one task to the other. Assumes the page tables
705  * already present in the new task to be cleared in the whole range
706  * covered by this vma.
707  */
708
709 static unsigned long
710 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
711                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
712                 unsigned long addr, int *rss)
713 {
714         unsigned long vm_flags = vma->vm_flags;
715         pte_t pte = *src_pte;
716         struct page *page;
717         swp_entry_t entry = pte_to_swp_entry(pte);
718
719         if (likely(!non_swap_entry(entry))) {
720                 if (swap_duplicate(entry) < 0)
721                         return entry.val;
722
723                 /* make sure dst_mm is on swapoff's mmlist. */
724                 if (unlikely(list_empty(&dst_mm->mmlist))) {
725                         spin_lock(&mmlist_lock);
726                         if (list_empty(&dst_mm->mmlist))
727                                 list_add(&dst_mm->mmlist,
728                                                 &src_mm->mmlist);
729                         spin_unlock(&mmlist_lock);
730                 }
731                 rss[MM_SWAPENTS]++;
732         } else if (is_migration_entry(entry)) {
733                 page = migration_entry_to_page(entry);
734
735                 rss[mm_counter(page)]++;
736
737                 if (is_write_migration_entry(entry) &&
738                                 is_cow_mapping(vm_flags)) {
739                         /*
740                          * COW mappings require pages in both
741                          * parent and child to be set to read.
742                          */
743                         make_migration_entry_read(&entry);
744                         pte = swp_entry_to_pte(entry);
745                         if (pte_swp_soft_dirty(*src_pte))
746                                 pte = pte_swp_mksoft_dirty(pte);
747                         if (pte_swp_uffd_wp(*src_pte))
748                                 pte = pte_swp_mkuffd_wp(pte);
749                         set_pte_at(src_mm, addr, src_pte, pte);
750                 }
751         } else if (is_device_private_entry(entry)) {
752                 page = device_private_entry_to_page(entry);
753
754                 /*
755                  * Update rss count even for unaddressable pages, as
756                  * they should treated just like normal pages in this
757                  * respect.
758                  *
759                  * We will likely want to have some new rss counters
760                  * for unaddressable pages, at some point. But for now
761                  * keep things as they are.
762                  */
763                 get_page(page);
764                 rss[mm_counter(page)]++;
765                 page_dup_rmap(page, false);
766
767                 /*
768                  * We do not preserve soft-dirty information, because so
769                  * far, checkpoint/restore is the only feature that
770                  * requires that. And checkpoint/restore does not work
771                  * when a device driver is involved (you cannot easily
772                  * save and restore device driver state).
773                  */
774                 if (is_write_device_private_entry(entry) &&
775                     is_cow_mapping(vm_flags)) {
776                         make_device_private_entry_read(&entry);
777                         pte = swp_entry_to_pte(entry);
778                         if (pte_swp_uffd_wp(*src_pte))
779                                 pte = pte_swp_mkuffd_wp(pte);
780                         set_pte_at(src_mm, addr, src_pte, pte);
781                 }
782         }
783         set_pte_at(dst_mm, addr, dst_pte, pte);
784         return 0;
785 }
786
787 /*
788  * Copy a present and normal page if necessary.
789  *
790  * NOTE! The usual case is that this doesn't need to do
791  * anything, and can just return a positive value. That
792  * will let the caller know that it can just increase
793  * the page refcount and re-use the pte the traditional
794  * way.
795  *
796  * But _if_ we need to copy it because it needs to be
797  * pinned in the parent (and the child should get its own
798  * copy rather than just a reference to the same page),
799  * we'll do that here and return zero to let the caller
800  * know we're done.
801  *
802  * And if we need a pre-allocated page but don't yet have
803  * one, return a negative error to let the preallocation
804  * code know so that it can do so outside the page table
805  * lock.
806  */
807 static inline int
808 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
809                   pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
810                   struct page **prealloc, pte_t pte, struct page *page)
811 {
812         struct page *new_page;
813
814         /*
815          * What we want to do is to check whether this page may
816          * have been pinned by the parent process.  If so,
817          * instead of wrprotect the pte on both sides, we copy
818          * the page immediately so that we'll always guarantee
819          * the pinned page won't be randomly replaced in the
820          * future.
821          *
822          * The page pinning checks are just "has this mm ever
823          * seen pinning", along with the (inexact) check of
824          * the page count. That might give false positives for
825          * for pinning, but it will work correctly.
826          */
827         if (likely(!page_needs_cow_for_dma(src_vma, page)))
828                 return 1;
829
830         new_page = *prealloc;
831         if (!new_page)
832                 return -EAGAIN;
833
834         /*
835          * We have a prealloc page, all good!  Take it
836          * over and copy the page & arm it.
837          */
838         *prealloc = NULL;
839         copy_user_highpage(new_page, page, addr, src_vma);
840         __SetPageUptodate(new_page);
841         page_add_new_anon_rmap(new_page, dst_vma, addr, false);
842         lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
843         rss[mm_counter(new_page)]++;
844
845         /* All done, just insert the new page copy in the child */
846         pte = mk_pte(new_page, dst_vma->vm_page_prot);
847         pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
848         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
849         return 0;
850 }
851
852 /*
853  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
854  * is required to copy this pte.
855  */
856 static inline int
857 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
858                  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
859                  struct page **prealloc)
860 {
861         struct mm_struct *src_mm = src_vma->vm_mm;
862         unsigned long vm_flags = src_vma->vm_flags;
863         pte_t pte = *src_pte;
864         struct page *page;
865
866         page = vm_normal_page(src_vma, addr, pte);
867         if (page) {
868                 int retval;
869
870                 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
871                                            addr, rss, prealloc, pte, page);
872                 if (retval <= 0)
873                         return retval;
874
875                 get_page(page);
876                 page_dup_rmap(page, false);
877                 rss[mm_counter(page)]++;
878         }
879
880         /*
881          * If it's a COW mapping, write protect it both
882          * in the parent and the child
883          */
884         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
885                 ptep_set_wrprotect(src_mm, addr, src_pte);
886                 pte = pte_wrprotect(pte);
887         }
888
889         /*
890          * If it's a shared mapping, mark it clean in
891          * the child
892          */
893         if (vm_flags & VM_SHARED)
894                 pte = pte_mkclean(pte);
895         pte = pte_mkold(pte);
896
897         /*
898          * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
899          * does not have the VM_UFFD_WP, which means that the uffd
900          * fork event is not enabled.
901          */
902         if (!(vm_flags & VM_UFFD_WP))
903                 pte = pte_clear_uffd_wp(pte);
904
905         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
906         return 0;
907 }
908
909 static inline struct page *
910 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
911                    unsigned long addr)
912 {
913         struct page *new_page;
914
915         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
916         if (!new_page)
917                 return NULL;
918
919         if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
920                 put_page(new_page);
921                 return NULL;
922         }
923         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
924
925         return new_page;
926 }
927
928 static int
929 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
930                pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
931                unsigned long end)
932 {
933         struct mm_struct *dst_mm = dst_vma->vm_mm;
934         struct mm_struct *src_mm = src_vma->vm_mm;
935         pte_t *orig_src_pte, *orig_dst_pte;
936         pte_t *src_pte, *dst_pte;
937         spinlock_t *src_ptl, *dst_ptl;
938         int progress, ret = 0;
939         int rss[NR_MM_COUNTERS];
940         swp_entry_t entry = (swp_entry_t){0};
941         struct page *prealloc = NULL;
942
943 again:
944         progress = 0;
945         init_rss_vec(rss);
946
947         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
948         if (!dst_pte) {
949                 ret = -ENOMEM;
950                 goto out;
951         }
952         src_pte = pte_offset_map(src_pmd, addr);
953         src_ptl = pte_lockptr(src_mm, src_pmd);
954         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
955         orig_src_pte = src_pte;
956         orig_dst_pte = dst_pte;
957         arch_enter_lazy_mmu_mode();
958
959         do {
960                 /*
961                  * We are holding two locks at this point - either of them
962                  * could generate latencies in another task on another CPU.
963                  */
964                 if (progress >= 32) {
965                         progress = 0;
966                         if (need_resched() ||
967                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
968                                 break;
969                 }
970                 if (pte_none(*src_pte)) {
971                         progress++;
972                         continue;
973                 }
974                 if (unlikely(!pte_present(*src_pte))) {
975                         entry.val = copy_nonpresent_pte(dst_mm, src_mm,
976                                                         dst_pte, src_pte,
977                                                         src_vma, addr, rss);
978                         if (entry.val)
979                                 break;
980                         progress += 8;
981                         continue;
982                 }
983                 /* copy_present_pte() will clear `*prealloc' if consumed */
984                 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
985                                        addr, rss, &prealloc);
986                 /*
987                  * If we need a pre-allocated page for this pte, drop the
988                  * locks, allocate, and try again.
989                  */
990                 if (unlikely(ret == -EAGAIN))
991                         break;
992                 if (unlikely(prealloc)) {
993                         /*
994                          * pre-alloc page cannot be reused by next time so as
995                          * to strictly follow mempolicy (e.g., alloc_page_vma()
996                          * will allocate page according to address).  This
997                          * could only happen if one pinned pte changed.
998                          */
999                         put_page(prealloc);
1000                         prealloc = NULL;
1001                 }
1002                 progress += 8;
1003         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1004
1005         arch_leave_lazy_mmu_mode();
1006         spin_unlock(src_ptl);
1007         pte_unmap(orig_src_pte);
1008         add_mm_rss_vec(dst_mm, rss);
1009         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1010         cond_resched();
1011
1012         if (entry.val) {
1013                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1014                         ret = -ENOMEM;
1015                         goto out;
1016                 }
1017                 entry.val = 0;
1018         } else if (ret) {
1019                 WARN_ON_ONCE(ret != -EAGAIN);
1020                 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1021                 if (!prealloc)
1022                         return -ENOMEM;
1023                 /* We've captured and resolved the error. Reset, try again. */
1024                 ret = 0;
1025         }
1026         if (addr != end)
1027                 goto again;
1028 out:
1029         if (unlikely(prealloc))
1030                 put_page(prealloc);
1031         return ret;
1032 }
1033
1034 static inline int
1035 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1036                pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1037                unsigned long end)
1038 {
1039         struct mm_struct *dst_mm = dst_vma->vm_mm;
1040         struct mm_struct *src_mm = src_vma->vm_mm;
1041         pmd_t *src_pmd, *dst_pmd;
1042         unsigned long next;
1043
1044         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1045         if (!dst_pmd)
1046                 return -ENOMEM;
1047         src_pmd = pmd_offset(src_pud, addr);
1048         do {
1049                 next = pmd_addr_end(addr, end);
1050                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1051                         || pmd_devmap(*src_pmd)) {
1052                         int err;
1053                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1054                         err = copy_huge_pmd(dst_mm, src_mm,
1055                                             dst_pmd, src_pmd, addr, src_vma);
1056                         if (err == -ENOMEM)
1057                                 return -ENOMEM;
1058                         if (!err)
1059                                 continue;
1060                         /* fall through */
1061                 }
1062                 if (pmd_none_or_clear_bad(src_pmd))
1063                         continue;
1064                 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1065                                    addr, next))
1066                         return -ENOMEM;
1067         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1068         return 0;
1069 }
1070
1071 static inline int
1072 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1073                p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1074                unsigned long end)
1075 {
1076         struct mm_struct *dst_mm = dst_vma->vm_mm;
1077         struct mm_struct *src_mm = src_vma->vm_mm;
1078         pud_t *src_pud, *dst_pud;
1079         unsigned long next;
1080
1081         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1082         if (!dst_pud)
1083                 return -ENOMEM;
1084         src_pud = pud_offset(src_p4d, addr);
1085         do {
1086                 next = pud_addr_end(addr, end);
1087                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1088                         int err;
1089
1090                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1091                         err = copy_huge_pud(dst_mm, src_mm,
1092                                             dst_pud, src_pud, addr, src_vma);
1093                         if (err == -ENOMEM)
1094                                 return -ENOMEM;
1095                         if (!err)
1096                                 continue;
1097                         /* fall through */
1098                 }
1099                 if (pud_none_or_clear_bad(src_pud))
1100                         continue;
1101                 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1102                                    addr, next))
1103                         return -ENOMEM;
1104         } while (dst_pud++, src_pud++, addr = next, addr != end);
1105         return 0;
1106 }
1107
1108 static inline int
1109 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1110                pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1111                unsigned long end)
1112 {
1113         struct mm_struct *dst_mm = dst_vma->vm_mm;
1114         p4d_t *src_p4d, *dst_p4d;
1115         unsigned long next;
1116
1117         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1118         if (!dst_p4d)
1119                 return -ENOMEM;
1120         src_p4d = p4d_offset(src_pgd, addr);
1121         do {
1122                 next = p4d_addr_end(addr, end);
1123                 if (p4d_none_or_clear_bad(src_p4d))
1124                         continue;
1125                 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1126                                    addr, next))
1127                         return -ENOMEM;
1128         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1129         return 0;
1130 }
1131
1132 int
1133 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1134 {
1135         pgd_t *src_pgd, *dst_pgd;
1136         unsigned long next;
1137         unsigned long addr = src_vma->vm_start;
1138         unsigned long end = src_vma->vm_end;
1139         struct mm_struct *dst_mm = dst_vma->vm_mm;
1140         struct mm_struct *src_mm = src_vma->vm_mm;
1141         struct mmu_notifier_range range;
1142         bool is_cow;
1143         int ret;
1144
1145         /*
1146          * Don't copy ptes where a page fault will fill them correctly.
1147          * Fork becomes much lighter when there are big shared or private
1148          * readonly mappings. The tradeoff is that copy_page_range is more
1149          * efficient than faulting.
1150          */
1151         if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1152             !src_vma->anon_vma)
1153                 return 0;
1154
1155         if (is_vm_hugetlb_page(src_vma))
1156                 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1157
1158         if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1159                 /*
1160                  * We do not free on error cases below as remove_vma
1161                  * gets called on error from higher level routine
1162                  */
1163                 ret = track_pfn_copy(src_vma);
1164                 if (ret)
1165                         return ret;
1166         }
1167
1168         /*
1169          * We need to invalidate the secondary MMU mappings only when
1170          * there could be a permission downgrade on the ptes of the
1171          * parent mm. And a permission downgrade will only happen if
1172          * is_cow_mapping() returns true.
1173          */
1174         is_cow = is_cow_mapping(src_vma->vm_flags);
1175
1176         if (is_cow) {
1177                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1178                                         0, src_vma, src_mm, addr, end);
1179                 mmu_notifier_invalidate_range_start(&range);
1180                 /*
1181                  * Disabling preemption is not needed for the write side, as
1182                  * the read side doesn't spin, but goes to the mmap_lock.
1183                  *
1184                  * Use the raw variant of the seqcount_t write API to avoid
1185                  * lockdep complaining about preemptibility.
1186                  */
1187                 mmap_assert_write_locked(src_mm);
1188                 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1189         }
1190
1191         ret = 0;
1192         dst_pgd = pgd_offset(dst_mm, addr);
1193         src_pgd = pgd_offset(src_mm, addr);
1194         do {
1195                 next = pgd_addr_end(addr, end);
1196                 if (pgd_none_or_clear_bad(src_pgd))
1197                         continue;
1198                 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1199                                             addr, next))) {
1200                         ret = -ENOMEM;
1201                         break;
1202                 }
1203         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1204
1205         if (is_cow) {
1206                 raw_write_seqcount_end(&src_mm->write_protect_seq);
1207                 mmu_notifier_invalidate_range_end(&range);
1208         }
1209         return ret;
1210 }
1211
1212 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1213                                 struct vm_area_struct *vma, pmd_t *pmd,
1214                                 unsigned long addr, unsigned long end,
1215                                 struct zap_details *details)
1216 {
1217         struct mm_struct *mm = tlb->mm;
1218         int force_flush = 0;
1219         int rss[NR_MM_COUNTERS];
1220         spinlock_t *ptl;
1221         pte_t *start_pte;
1222         pte_t *pte;
1223         swp_entry_t entry;
1224
1225         tlb_change_page_size(tlb, PAGE_SIZE);
1226 again:
1227         init_rss_vec(rss);
1228         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1229         pte = start_pte;
1230         flush_tlb_batched_pending(mm);
1231         arch_enter_lazy_mmu_mode();
1232         do {
1233                 pte_t ptent = *pte;
1234                 if (pte_none(ptent))
1235                         continue;
1236
1237                 if (need_resched())
1238                         break;
1239
1240                 if (pte_present(ptent)) {
1241                         struct page *page;
1242
1243                         page = vm_normal_page(vma, addr, ptent);
1244                         if (unlikely(details) && page) {
1245                                 /*
1246                                  * unmap_shared_mapping_pages() wants to
1247                                  * invalidate cache without truncating:
1248                                  * unmap shared but keep private pages.
1249                                  */
1250                                 if (details->check_mapping &&
1251                                     details->check_mapping != page_rmapping(page))
1252                                         continue;
1253                         }
1254                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1255                                                         tlb->fullmm);
1256                         tlb_remove_tlb_entry(tlb, pte, addr);
1257                         if (unlikely(!page))
1258                                 continue;
1259
1260                         if (!PageAnon(page)) {
1261                                 if (pte_dirty(ptent)) {
1262                                         force_flush = 1;
1263                                         set_page_dirty(page);
1264                                 }
1265                                 if (pte_young(ptent) &&
1266                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1267                                         mark_page_accessed(page);
1268                         }
1269                         rss[mm_counter(page)]--;
1270                         page_remove_rmap(page, false);
1271                         if (unlikely(page_mapcount(page) < 0))
1272                                 print_bad_pte(vma, addr, ptent, page);
1273                         if (unlikely(__tlb_remove_page(tlb, page))) {
1274                                 force_flush = 1;
1275                                 addr += PAGE_SIZE;
1276                                 break;
1277                         }
1278                         continue;
1279                 }
1280
1281                 entry = pte_to_swp_entry(ptent);
1282                 if (is_device_private_entry(entry)) {
1283                         struct page *page = device_private_entry_to_page(entry);
1284
1285                         if (unlikely(details && details->check_mapping)) {
1286                                 /*
1287                                  * unmap_shared_mapping_pages() wants to
1288                                  * invalidate cache without truncating:
1289                                  * unmap shared but keep private pages.
1290                                  */
1291                                 if (details->check_mapping !=
1292                                     page_rmapping(page))
1293                                         continue;
1294                         }
1295
1296                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1297                         rss[mm_counter(page)]--;
1298                         page_remove_rmap(page, false);
1299                         put_page(page);
1300                         continue;
1301                 }
1302
1303                 /* If details->check_mapping, we leave swap entries. */
1304                 if (unlikely(details))
1305                         continue;
1306
1307                 if (!non_swap_entry(entry))
1308                         rss[MM_SWAPENTS]--;
1309                 else if (is_migration_entry(entry)) {
1310                         struct page *page;
1311
1312                         page = migration_entry_to_page(entry);
1313                         rss[mm_counter(page)]--;
1314                 }
1315                 if (unlikely(!free_swap_and_cache(entry)))
1316                         print_bad_pte(vma, addr, ptent, NULL);
1317                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1318         } while (pte++, addr += PAGE_SIZE, addr != end);
1319
1320         add_mm_rss_vec(mm, rss);
1321         arch_leave_lazy_mmu_mode();
1322
1323         /* Do the actual TLB flush before dropping ptl */
1324         if (force_flush)
1325                 tlb_flush_mmu_tlbonly(tlb);
1326         pte_unmap_unlock(start_pte, ptl);
1327
1328         /*
1329          * If we forced a TLB flush (either due to running out of
1330          * batch buffers or because we needed to flush dirty TLB
1331          * entries before releasing the ptl), free the batched
1332          * memory too. Restart if we didn't do everything.
1333          */
1334         if (force_flush) {
1335                 force_flush = 0;
1336                 tlb_flush_mmu(tlb);
1337         }
1338
1339         if (addr != end) {
1340                 cond_resched();
1341                 goto again;
1342         }
1343
1344         return addr;
1345 }
1346
1347 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1348                                 struct vm_area_struct *vma, pud_t *pud,
1349                                 unsigned long addr, unsigned long end,
1350                                 struct zap_details *details)
1351 {
1352         pmd_t *pmd;
1353         unsigned long next;
1354
1355         pmd = pmd_offset(pud, addr);
1356         do {
1357                 next = pmd_addr_end(addr, end);
1358                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1359                         if (next - addr != HPAGE_PMD_SIZE)
1360                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1361                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1362                                 goto next;
1363                         /* fall through */
1364                 } else if (details && details->single_page &&
1365                            PageTransCompound(details->single_page) &&
1366                            next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1367                         spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1368                         /*
1369                          * Take and drop THP pmd lock so that we cannot return
1370                          * prematurely, while zap_huge_pmd() has cleared *pmd,
1371                          * but not yet decremented compound_mapcount().
1372                          */
1373                         spin_unlock(ptl);
1374                 }
1375
1376                 /*
1377                  * Here there can be other concurrent MADV_DONTNEED or
1378                  * trans huge page faults running, and if the pmd is
1379                  * none or trans huge it can change under us. This is
1380                  * because MADV_DONTNEED holds the mmap_lock in read
1381                  * mode.
1382                  */
1383                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1384                         goto next;
1385                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1386 next:
1387                 cond_resched();
1388         } while (pmd++, addr = next, addr != end);
1389
1390         return addr;
1391 }
1392
1393 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1394                                 struct vm_area_struct *vma, p4d_t *p4d,
1395                                 unsigned long addr, unsigned long end,
1396                                 struct zap_details *details)
1397 {
1398         pud_t *pud;
1399         unsigned long next;
1400
1401         pud = pud_offset(p4d, addr);
1402         do {
1403                 next = pud_addr_end(addr, end);
1404                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1405                         if (next - addr != HPAGE_PUD_SIZE) {
1406                                 mmap_assert_locked(tlb->mm);
1407                                 split_huge_pud(vma, pud, addr);
1408                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1409                                 goto next;
1410                         /* fall through */
1411                 }
1412                 if (pud_none_or_clear_bad(pud))
1413                         continue;
1414                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1415 next:
1416                 cond_resched();
1417         } while (pud++, addr = next, addr != end);
1418
1419         return addr;
1420 }
1421
1422 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1423                                 struct vm_area_struct *vma, pgd_t *pgd,
1424                                 unsigned long addr, unsigned long end,
1425                                 struct zap_details *details)
1426 {
1427         p4d_t *p4d;
1428         unsigned long next;
1429
1430         p4d = p4d_offset(pgd, addr);
1431         do {
1432                 next = p4d_addr_end(addr, end);
1433                 if (p4d_none_or_clear_bad(p4d))
1434                         continue;
1435                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1436         } while (p4d++, addr = next, addr != end);
1437
1438         return addr;
1439 }
1440
1441 void unmap_page_range(struct mmu_gather *tlb,
1442                              struct vm_area_struct *vma,
1443                              unsigned long addr, unsigned long end,
1444                              struct zap_details *details)
1445 {
1446         pgd_t *pgd;
1447         unsigned long next;
1448
1449         BUG_ON(addr >= end);
1450         tlb_start_vma(tlb, vma);
1451         pgd = pgd_offset(vma->vm_mm, addr);
1452         do {
1453                 next = pgd_addr_end(addr, end);
1454                 if (pgd_none_or_clear_bad(pgd))
1455                         continue;
1456                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1457         } while (pgd++, addr = next, addr != end);
1458         tlb_end_vma(tlb, vma);
1459 }
1460
1461
1462 static void unmap_single_vma(struct mmu_gather *tlb,
1463                 struct vm_area_struct *vma, unsigned long start_addr,
1464                 unsigned long end_addr,
1465                 struct zap_details *details)
1466 {
1467         unsigned long start = max(vma->vm_start, start_addr);
1468         unsigned long end;
1469
1470         if (start >= vma->vm_end)
1471                 return;
1472         end = min(vma->vm_end, end_addr);
1473         if (end <= vma->vm_start)
1474                 return;
1475
1476         if (vma->vm_file)
1477                 uprobe_munmap(vma, start, end);
1478
1479         if (unlikely(vma->vm_flags & VM_PFNMAP))
1480                 untrack_pfn(vma, 0, 0);
1481
1482         if (start != end) {
1483                 if (unlikely(is_vm_hugetlb_page(vma))) {
1484                         /*
1485                          * It is undesirable to test vma->vm_file as it
1486                          * should be non-null for valid hugetlb area.
1487                          * However, vm_file will be NULL in the error
1488                          * cleanup path of mmap_region. When
1489                          * hugetlbfs ->mmap method fails,
1490                          * mmap_region() nullifies vma->vm_file
1491                          * before calling this function to clean up.
1492                          * Since no pte has actually been setup, it is
1493                          * safe to do nothing in this case.
1494                          */
1495                         if (vma->vm_file) {
1496                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1497                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1498                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1499                         }
1500                 } else
1501                         unmap_page_range(tlb, vma, start, end, details);
1502         }
1503 }
1504
1505 /**
1506  * unmap_vmas - unmap a range of memory covered by a list of vma's
1507  * @tlb: address of the caller's struct mmu_gather
1508  * @vma: the starting vma
1509  * @start_addr: virtual address at which to start unmapping
1510  * @end_addr: virtual address at which to end unmapping
1511  *
1512  * Unmap all pages in the vma list.
1513  *
1514  * Only addresses between `start' and `end' will be unmapped.
1515  *
1516  * The VMA list must be sorted in ascending virtual address order.
1517  *
1518  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1519  * range after unmap_vmas() returns.  So the only responsibility here is to
1520  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1521  * drops the lock and schedules.
1522  */
1523 void unmap_vmas(struct mmu_gather *tlb,
1524                 struct vm_area_struct *vma, unsigned long start_addr,
1525                 unsigned long end_addr)
1526 {
1527         struct mmu_notifier_range range;
1528
1529         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1530                                 start_addr, end_addr);
1531         mmu_notifier_invalidate_range_start(&range);
1532         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1533                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1534         mmu_notifier_invalidate_range_end(&range);
1535 }
1536
1537 /**
1538  * zap_page_range - remove user pages in a given range
1539  * @vma: vm_area_struct holding the applicable pages
1540  * @start: starting address of pages to zap
1541  * @size: number of bytes to zap
1542  *
1543  * Caller must protect the VMA list
1544  */
1545 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1546                 unsigned long size)
1547 {
1548         struct mmu_notifier_range range;
1549         struct mmu_gather tlb;
1550
1551         lru_add_drain();
1552         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1553                                 start, start + size);
1554         tlb_gather_mmu(&tlb, vma->vm_mm);
1555         update_hiwater_rss(vma->vm_mm);
1556         mmu_notifier_invalidate_range_start(&range);
1557         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1558                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1559         mmu_notifier_invalidate_range_end(&range);
1560         tlb_finish_mmu(&tlb);
1561 }
1562
1563 /**
1564  * zap_page_range_single - remove user pages in a given range
1565  * @vma: vm_area_struct holding the applicable pages
1566  * @address: starting address of pages to zap
1567  * @size: number of bytes to zap
1568  * @details: details of shared cache invalidation
1569  *
1570  * The range must fit into one VMA.
1571  */
1572 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1573                 unsigned long size, struct zap_details *details)
1574 {
1575         struct mmu_notifier_range range;
1576         struct mmu_gather tlb;
1577
1578         lru_add_drain();
1579         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1580                                 address, address + size);
1581         tlb_gather_mmu(&tlb, vma->vm_mm);
1582         update_hiwater_rss(vma->vm_mm);
1583         mmu_notifier_invalidate_range_start(&range);
1584         unmap_single_vma(&tlb, vma, address, range.end, details);
1585         mmu_notifier_invalidate_range_end(&range);
1586         tlb_finish_mmu(&tlb);
1587 }
1588
1589 /**
1590  * zap_vma_ptes - remove ptes mapping the vma
1591  * @vma: vm_area_struct holding ptes to be zapped
1592  * @address: starting address of pages to zap
1593  * @size: number of bytes to zap
1594  *
1595  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1596  *
1597  * The entire address range must be fully contained within the vma.
1598  *
1599  */
1600 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1601                 unsigned long size)
1602 {
1603         if (address < vma->vm_start || address + size > vma->vm_end ||
1604                         !(vma->vm_flags & VM_PFNMAP))
1605                 return;
1606
1607         zap_page_range_single(vma, address, size, NULL);
1608 }
1609 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1610
1611 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1612 {
1613         pgd_t *pgd;
1614         p4d_t *p4d;
1615         pud_t *pud;
1616         pmd_t *pmd;
1617
1618         pgd = pgd_offset(mm, addr);
1619         p4d = p4d_alloc(mm, pgd, addr);
1620         if (!p4d)
1621                 return NULL;
1622         pud = pud_alloc(mm, p4d, addr);
1623         if (!pud)
1624                 return NULL;
1625         pmd = pmd_alloc(mm, pud, addr);
1626         if (!pmd)
1627                 return NULL;
1628
1629         VM_BUG_ON(pmd_trans_huge(*pmd));
1630         return pmd;
1631 }
1632
1633 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1634                         spinlock_t **ptl)
1635 {
1636         pmd_t *pmd = walk_to_pmd(mm, addr);
1637
1638         if (!pmd)
1639                 return NULL;
1640         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1641 }
1642
1643 static int validate_page_before_insert(struct page *page)
1644 {
1645         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1646                 return -EINVAL;
1647         flush_dcache_page(page);
1648         return 0;
1649 }
1650
1651 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1652                         unsigned long addr, struct page *page, pgprot_t prot)
1653 {
1654         if (!pte_none(*pte))
1655                 return -EBUSY;
1656         /* Ok, finally just insert the thing.. */
1657         get_page(page);
1658         inc_mm_counter_fast(mm, mm_counter_file(page));
1659         page_add_file_rmap(page, false);
1660         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1661         return 0;
1662 }
1663
1664 /*
1665  * This is the old fallback for page remapping.
1666  *
1667  * For historical reasons, it only allows reserved pages. Only
1668  * old drivers should use this, and they needed to mark their
1669  * pages reserved for the old functions anyway.
1670  */
1671 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1672                         struct page *page, pgprot_t prot)
1673 {
1674         struct mm_struct *mm = vma->vm_mm;
1675         int retval;
1676         pte_t *pte;
1677         spinlock_t *ptl;
1678
1679         retval = validate_page_before_insert(page);
1680         if (retval)
1681                 goto out;
1682         retval = -ENOMEM;
1683         pte = get_locked_pte(mm, addr, &ptl);
1684         if (!pte)
1685                 goto out;
1686         retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1687         pte_unmap_unlock(pte, ptl);
1688 out:
1689         return retval;
1690 }
1691
1692 #ifdef pte_index
1693 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1694                         unsigned long addr, struct page *page, pgprot_t prot)
1695 {
1696         int err;
1697
1698         if (!page_count(page))
1699                 return -EINVAL;
1700         err = validate_page_before_insert(page);
1701         if (err)
1702                 return err;
1703         return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1704 }
1705
1706 /* insert_pages() amortizes the cost of spinlock operations
1707  * when inserting pages in a loop. Arch *must* define pte_index.
1708  */
1709 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1710                         struct page **pages, unsigned long *num, pgprot_t prot)
1711 {
1712         pmd_t *pmd = NULL;
1713         pte_t *start_pte, *pte;
1714         spinlock_t *pte_lock;
1715         struct mm_struct *const mm = vma->vm_mm;
1716         unsigned long curr_page_idx = 0;
1717         unsigned long remaining_pages_total = *num;
1718         unsigned long pages_to_write_in_pmd;
1719         int ret;
1720 more:
1721         ret = -EFAULT;
1722         pmd = walk_to_pmd(mm, addr);
1723         if (!pmd)
1724                 goto out;
1725
1726         pages_to_write_in_pmd = min_t(unsigned long,
1727                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1728
1729         /* Allocate the PTE if necessary; takes PMD lock once only. */
1730         ret = -ENOMEM;
1731         if (pte_alloc(mm, pmd))
1732                 goto out;
1733
1734         while (pages_to_write_in_pmd) {
1735                 int pte_idx = 0;
1736                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1737
1738                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1739                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1740                         int err = insert_page_in_batch_locked(mm, pte,
1741                                 addr, pages[curr_page_idx], prot);
1742                         if (unlikely(err)) {
1743                                 pte_unmap_unlock(start_pte, pte_lock);
1744                                 ret = err;
1745                                 remaining_pages_total -= pte_idx;
1746                                 goto out;
1747                         }
1748                         addr += PAGE_SIZE;
1749                         ++curr_page_idx;
1750                 }
1751                 pte_unmap_unlock(start_pte, pte_lock);
1752                 pages_to_write_in_pmd -= batch_size;
1753                 remaining_pages_total -= batch_size;
1754         }
1755         if (remaining_pages_total)
1756                 goto more;
1757         ret = 0;
1758 out:
1759         *num = remaining_pages_total;
1760         return ret;
1761 }
1762 #endif  /* ifdef pte_index */
1763
1764 /**
1765  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1766  * @vma: user vma to map to
1767  * @addr: target start user address of these pages
1768  * @pages: source kernel pages
1769  * @num: in: number of pages to map. out: number of pages that were *not*
1770  * mapped. (0 means all pages were successfully mapped).
1771  *
1772  * Preferred over vm_insert_page() when inserting multiple pages.
1773  *
1774  * In case of error, we may have mapped a subset of the provided
1775  * pages. It is the caller's responsibility to account for this case.
1776  *
1777  * The same restrictions apply as in vm_insert_page().
1778  */
1779 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1780                         struct page **pages, unsigned long *num)
1781 {
1782 #ifdef pte_index
1783         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1784
1785         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1786                 return -EFAULT;
1787         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1788                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1789                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1790                 vma->vm_flags |= VM_MIXEDMAP;
1791         }
1792         /* Defer page refcount checking till we're about to map that page. */
1793         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1794 #else
1795         unsigned long idx = 0, pgcount = *num;
1796         int err = -EINVAL;
1797
1798         for (; idx < pgcount; ++idx) {
1799                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1800                 if (err)
1801                         break;
1802         }
1803         *num = pgcount - idx;
1804         return err;
1805 #endif  /* ifdef pte_index */
1806 }
1807 EXPORT_SYMBOL(vm_insert_pages);
1808
1809 /**
1810  * vm_insert_page - insert single page into user vma
1811  * @vma: user vma to map to
1812  * @addr: target user address of this page
1813  * @page: source kernel page
1814  *
1815  * This allows drivers to insert individual pages they've allocated
1816  * into a user vma.
1817  *
1818  * The page has to be a nice clean _individual_ kernel allocation.
1819  * If you allocate a compound page, you need to have marked it as
1820  * such (__GFP_COMP), or manually just split the page up yourself
1821  * (see split_page()).
1822  *
1823  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1824  * took an arbitrary page protection parameter. This doesn't allow
1825  * that. Your vma protection will have to be set up correctly, which
1826  * means that if you want a shared writable mapping, you'd better
1827  * ask for a shared writable mapping!
1828  *
1829  * The page does not need to be reserved.
1830  *
1831  * Usually this function is called from f_op->mmap() handler
1832  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1833  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1834  * function from other places, for example from page-fault handler.
1835  *
1836  * Return: %0 on success, negative error code otherwise.
1837  */
1838 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1839                         struct page *page)
1840 {
1841         if (addr < vma->vm_start || addr >= vma->vm_end)
1842                 return -EFAULT;
1843         if (!page_count(page))
1844                 return -EINVAL;
1845         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1846                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1847                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1848                 vma->vm_flags |= VM_MIXEDMAP;
1849         }
1850         return insert_page(vma, addr, page, vma->vm_page_prot);
1851 }
1852 EXPORT_SYMBOL(vm_insert_page);
1853
1854 /*
1855  * __vm_map_pages - maps range of kernel pages into user vma
1856  * @vma: user vma to map to
1857  * @pages: pointer to array of source kernel pages
1858  * @num: number of pages in page array
1859  * @offset: user's requested vm_pgoff
1860  *
1861  * This allows drivers to map range of kernel pages into a user vma.
1862  *
1863  * Return: 0 on success and error code otherwise.
1864  */
1865 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1866                                 unsigned long num, unsigned long offset)
1867 {
1868         unsigned long count = vma_pages(vma);
1869         unsigned long uaddr = vma->vm_start;
1870         int ret, i;
1871
1872         /* Fail if the user requested offset is beyond the end of the object */
1873         if (offset >= num)
1874                 return -ENXIO;
1875
1876         /* Fail if the user requested size exceeds available object size */
1877         if (count > num - offset)
1878                 return -ENXIO;
1879
1880         for (i = 0; i < count; i++) {
1881                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1882                 if (ret < 0)
1883                         return ret;
1884                 uaddr += PAGE_SIZE;
1885         }
1886
1887         return 0;
1888 }
1889
1890 /**
1891  * vm_map_pages - maps range of kernel pages starts with non zero offset
1892  * @vma: user vma to map to
1893  * @pages: pointer to array of source kernel pages
1894  * @num: number of pages in page array
1895  *
1896  * Maps an object consisting of @num pages, catering for the user's
1897  * requested vm_pgoff
1898  *
1899  * If we fail to insert any page into the vma, the function will return
1900  * immediately leaving any previously inserted pages present.  Callers
1901  * from the mmap handler may immediately return the error as their caller
1902  * will destroy the vma, removing any successfully inserted pages. Other
1903  * callers should make their own arrangements for calling unmap_region().
1904  *
1905  * Context: Process context. Called by mmap handlers.
1906  * Return: 0 on success and error code otherwise.
1907  */
1908 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1909                                 unsigned long num)
1910 {
1911         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1912 }
1913 EXPORT_SYMBOL(vm_map_pages);
1914
1915 /**
1916  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1917  * @vma: user vma to map to
1918  * @pages: pointer to array of source kernel pages
1919  * @num: number of pages in page array
1920  *
1921  * Similar to vm_map_pages(), except that it explicitly sets the offset
1922  * to 0. This function is intended for the drivers that did not consider
1923  * vm_pgoff.
1924  *
1925  * Context: Process context. Called by mmap handlers.
1926  * Return: 0 on success and error code otherwise.
1927  */
1928 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1929                                 unsigned long num)
1930 {
1931         return __vm_map_pages(vma, pages, num, 0);
1932 }
1933 EXPORT_SYMBOL(vm_map_pages_zero);
1934
1935 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1936                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1937 {
1938         struct mm_struct *mm = vma->vm_mm;
1939         pte_t *pte, entry;
1940         spinlock_t *ptl;
1941
1942         pte = get_locked_pte(mm, addr, &ptl);
1943         if (!pte)
1944                 return VM_FAULT_OOM;
1945         if (!pte_none(*pte)) {
1946                 if (mkwrite) {
1947                         /*
1948                          * For read faults on private mappings the PFN passed
1949                          * in may not match the PFN we have mapped if the
1950                          * mapped PFN is a writeable COW page.  In the mkwrite
1951                          * case we are creating a writable PTE for a shared
1952                          * mapping and we expect the PFNs to match. If they
1953                          * don't match, we are likely racing with block
1954                          * allocation and mapping invalidation so just skip the
1955                          * update.
1956                          */
1957                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1958                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1959                                 goto out_unlock;
1960                         }
1961                         entry = pte_mkyoung(*pte);
1962                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1963                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1964                                 update_mmu_cache(vma, addr, pte);
1965                 }
1966                 goto out_unlock;
1967         }
1968
1969         /* Ok, finally just insert the thing.. */
1970         if (pfn_t_devmap(pfn))
1971                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1972         else
1973                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1974
1975         if (mkwrite) {
1976                 entry = pte_mkyoung(entry);
1977                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1978         }
1979
1980         set_pte_at(mm, addr, pte, entry);
1981         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1982
1983 out_unlock:
1984         pte_unmap_unlock(pte, ptl);
1985         return VM_FAULT_NOPAGE;
1986 }
1987
1988 /**
1989  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1990  * @vma: user vma to map to
1991  * @addr: target user address of this page
1992  * @pfn: source kernel pfn
1993  * @pgprot: pgprot flags for the inserted page
1994  *
1995  * This is exactly like vmf_insert_pfn(), except that it allows drivers
1996  * to override pgprot on a per-page basis.
1997  *
1998  * This only makes sense for IO mappings, and it makes no sense for
1999  * COW mappings.  In general, using multiple vmas is preferable;
2000  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2001  * impractical.
2002  *
2003  * See vmf_insert_mixed_prot() for a discussion of the implication of using
2004  * a value of @pgprot different from that of @vma->vm_page_prot.
2005  *
2006  * Context: Process context.  May allocate using %GFP_KERNEL.
2007  * Return: vm_fault_t value.
2008  */
2009 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2010                         unsigned long pfn, pgprot_t pgprot)
2011 {
2012         /*
2013          * Technically, architectures with pte_special can avoid all these
2014          * restrictions (same for remap_pfn_range).  However we would like
2015          * consistency in testing and feature parity among all, so we should
2016          * try to keep these invariants in place for everybody.
2017          */
2018         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2019         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2020                                                 (VM_PFNMAP|VM_MIXEDMAP));
2021         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2022         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2023
2024         if (addr < vma->vm_start || addr >= vma->vm_end)
2025                 return VM_FAULT_SIGBUS;
2026
2027         if (!pfn_modify_allowed(pfn, pgprot))
2028                 return VM_FAULT_SIGBUS;
2029
2030         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2031
2032         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2033                         false);
2034 }
2035 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2036
2037 /**
2038  * vmf_insert_pfn - insert single pfn into user vma
2039  * @vma: user vma to map to
2040  * @addr: target user address of this page
2041  * @pfn: source kernel pfn
2042  *
2043  * Similar to vm_insert_page, this allows drivers to insert individual pages
2044  * they've allocated into a user vma. Same comments apply.
2045  *
2046  * This function should only be called from a vm_ops->fault handler, and
2047  * in that case the handler should return the result of this function.
2048  *
2049  * vma cannot be a COW mapping.
2050  *
2051  * As this is called only for pages that do not currently exist, we
2052  * do not need to flush old virtual caches or the TLB.
2053  *
2054  * Context: Process context.  May allocate using %GFP_KERNEL.
2055  * Return: vm_fault_t value.
2056  */
2057 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2058                         unsigned long pfn)
2059 {
2060         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2061 }
2062 EXPORT_SYMBOL(vmf_insert_pfn);
2063
2064 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2065 {
2066         /* these checks mirror the abort conditions in vm_normal_page */
2067         if (vma->vm_flags & VM_MIXEDMAP)
2068                 return true;
2069         if (pfn_t_devmap(pfn))
2070                 return true;
2071         if (pfn_t_special(pfn))
2072                 return true;
2073         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2074                 return true;
2075         return false;
2076 }
2077
2078 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2079                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2080                 bool mkwrite)
2081 {
2082         int err;
2083
2084         BUG_ON(!vm_mixed_ok(vma, pfn));
2085
2086         if (addr < vma->vm_start || addr >= vma->vm_end)
2087                 return VM_FAULT_SIGBUS;
2088
2089         track_pfn_insert(vma, &pgprot, pfn);
2090
2091         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2092                 return VM_FAULT_SIGBUS;
2093
2094         /*
2095          * If we don't have pte special, then we have to use the pfn_valid()
2096          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2097          * refcount the page if pfn_valid is true (hence insert_page rather
2098          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2099          * without pte special, it would there be refcounted as a normal page.
2100          */
2101         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2102             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2103                 struct page *page;
2104
2105                 /*
2106                  * At this point we are committed to insert_page()
2107                  * regardless of whether the caller specified flags that
2108                  * result in pfn_t_has_page() == false.
2109                  */
2110                 page = pfn_to_page(pfn_t_to_pfn(pfn));
2111                 err = insert_page(vma, addr, page, pgprot);
2112         } else {
2113                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2114         }
2115
2116         if (err == -ENOMEM)
2117                 return VM_FAULT_OOM;
2118         if (err < 0 && err != -EBUSY)
2119                 return VM_FAULT_SIGBUS;
2120
2121         return VM_FAULT_NOPAGE;
2122 }
2123
2124 /**
2125  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2126  * @vma: user vma to map to
2127  * @addr: target user address of this page
2128  * @pfn: source kernel pfn
2129  * @pgprot: pgprot flags for the inserted page
2130  *
2131  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2132  * to override pgprot on a per-page basis.
2133  *
2134  * Typically this function should be used by drivers to set caching- and
2135  * encryption bits different than those of @vma->vm_page_prot, because
2136  * the caching- or encryption mode may not be known at mmap() time.
2137  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2138  * to set caching and encryption bits for those vmas (except for COW pages).
2139  * This is ensured by core vm only modifying these page table entries using
2140  * functions that don't touch caching- or encryption bits, using pte_modify()
2141  * if needed. (See for example mprotect()).
2142  * Also when new page-table entries are created, this is only done using the
2143  * fault() callback, and never using the value of vma->vm_page_prot,
2144  * except for page-table entries that point to anonymous pages as the result
2145  * of COW.
2146  *
2147  * Context: Process context.  May allocate using %GFP_KERNEL.
2148  * Return: vm_fault_t value.
2149  */
2150 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2151                                  pfn_t pfn, pgprot_t pgprot)
2152 {
2153         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2154 }
2155 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2156
2157 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2158                 pfn_t pfn)
2159 {
2160         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2161 }
2162 EXPORT_SYMBOL(vmf_insert_mixed);
2163
2164 /*
2165  *  If the insertion of PTE failed because someone else already added a
2166  *  different entry in the mean time, we treat that as success as we assume
2167  *  the same entry was actually inserted.
2168  */
2169 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2170                 unsigned long addr, pfn_t pfn)
2171 {
2172         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2173 }
2174 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2175
2176 /*
2177  * maps a range of physical memory into the requested pages. the old
2178  * mappings are removed. any references to nonexistent pages results
2179  * in null mappings (currently treated as "copy-on-access")
2180  */
2181 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2182                         unsigned long addr, unsigned long end,
2183                         unsigned long pfn, pgprot_t prot)
2184 {
2185         pte_t *pte, *mapped_pte;
2186         spinlock_t *ptl;
2187         int err = 0;
2188
2189         mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2190         if (!pte)
2191                 return -ENOMEM;
2192         arch_enter_lazy_mmu_mode();
2193         do {
2194                 BUG_ON(!pte_none(*pte));
2195                 if (!pfn_modify_allowed(pfn, prot)) {
2196                         err = -EACCES;
2197                         break;
2198                 }
2199                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2200                 pfn++;
2201         } while (pte++, addr += PAGE_SIZE, addr != end);
2202         arch_leave_lazy_mmu_mode();
2203         pte_unmap_unlock(mapped_pte, ptl);
2204         return err;
2205 }
2206
2207 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2208                         unsigned long addr, unsigned long end,
2209                         unsigned long pfn, pgprot_t prot)
2210 {
2211         pmd_t *pmd;
2212         unsigned long next;
2213         int err;
2214
2215         pfn -= addr >> PAGE_SHIFT;
2216         pmd = pmd_alloc(mm, pud, addr);
2217         if (!pmd)
2218                 return -ENOMEM;
2219         VM_BUG_ON(pmd_trans_huge(*pmd));
2220         do {
2221                 next = pmd_addr_end(addr, end);
2222                 err = remap_pte_range(mm, pmd, addr, next,
2223                                 pfn + (addr >> PAGE_SHIFT), prot);
2224                 if (err)
2225                         return err;
2226         } while (pmd++, addr = next, addr != end);
2227         return 0;
2228 }
2229
2230 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2231                         unsigned long addr, unsigned long end,
2232                         unsigned long pfn, pgprot_t prot)
2233 {
2234         pud_t *pud;
2235         unsigned long next;
2236         int err;
2237
2238         pfn -= addr >> PAGE_SHIFT;
2239         pud = pud_alloc(mm, p4d, addr);
2240         if (!pud)
2241                 return -ENOMEM;
2242         do {
2243                 next = pud_addr_end(addr, end);
2244                 err = remap_pmd_range(mm, pud, addr, next,
2245                                 pfn + (addr >> PAGE_SHIFT), prot);
2246                 if (err)
2247                         return err;
2248         } while (pud++, addr = next, addr != end);
2249         return 0;
2250 }
2251
2252 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2253                         unsigned long addr, unsigned long end,
2254                         unsigned long pfn, pgprot_t prot)
2255 {
2256         p4d_t *p4d;
2257         unsigned long next;
2258         int err;
2259
2260         pfn -= addr >> PAGE_SHIFT;
2261         p4d = p4d_alloc(mm, pgd, addr);
2262         if (!p4d)
2263                 return -ENOMEM;
2264         do {
2265                 next = p4d_addr_end(addr, end);
2266                 err = remap_pud_range(mm, p4d, addr, next,
2267                                 pfn + (addr >> PAGE_SHIFT), prot);
2268                 if (err)
2269                         return err;
2270         } while (p4d++, addr = next, addr != end);
2271         return 0;
2272 }
2273
2274 /*
2275  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2276  * must have pre-validated the caching bits of the pgprot_t.
2277  */
2278 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2279                 unsigned long pfn, unsigned long size, pgprot_t prot)
2280 {
2281         pgd_t *pgd;
2282         unsigned long next;
2283         unsigned long end = addr + PAGE_ALIGN(size);
2284         struct mm_struct *mm = vma->vm_mm;
2285         int err;
2286
2287         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2288                 return -EINVAL;
2289
2290         /*
2291          * Physically remapped pages are special. Tell the
2292          * rest of the world about it:
2293          *   VM_IO tells people not to look at these pages
2294          *      (accesses can have side effects).
2295          *   VM_PFNMAP tells the core MM that the base pages are just
2296          *      raw PFN mappings, and do not have a "struct page" associated
2297          *      with them.
2298          *   VM_DONTEXPAND
2299          *      Disable vma merging and expanding with mremap().
2300          *   VM_DONTDUMP
2301          *      Omit vma from core dump, even when VM_IO turned off.
2302          *
2303          * There's a horrible special case to handle copy-on-write
2304          * behaviour that some programs depend on. We mark the "original"
2305          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2306          * See vm_normal_page() for details.
2307          */
2308         if (is_cow_mapping(vma->vm_flags)) {
2309                 if (addr != vma->vm_start || end != vma->vm_end)
2310                         return -EINVAL;
2311                 vma->vm_pgoff = pfn;
2312         }
2313
2314         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2315
2316         BUG_ON(addr >= end);
2317         pfn -= addr >> PAGE_SHIFT;
2318         pgd = pgd_offset(mm, addr);
2319         flush_cache_range(vma, addr, end);
2320         do {
2321                 next = pgd_addr_end(addr, end);
2322                 err = remap_p4d_range(mm, pgd, addr, next,
2323                                 pfn + (addr >> PAGE_SHIFT), prot);
2324                 if (err)
2325                         return err;
2326         } while (pgd++, addr = next, addr != end);
2327
2328         return 0;
2329 }
2330
2331 /**
2332  * remap_pfn_range - remap kernel memory to userspace
2333  * @vma: user vma to map to
2334  * @addr: target page aligned user address to start at
2335  * @pfn: page frame number of kernel physical memory address
2336  * @size: size of mapping area
2337  * @prot: page protection flags for this mapping
2338  *
2339  * Note: this is only safe if the mm semaphore is held when called.
2340  *
2341  * Return: %0 on success, negative error code otherwise.
2342  */
2343 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2344                     unsigned long pfn, unsigned long size, pgprot_t prot)
2345 {
2346         int err;
2347
2348         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2349         if (err)
2350                 return -EINVAL;
2351
2352         err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2353         if (err)
2354                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2355         return err;
2356 }
2357 EXPORT_SYMBOL(remap_pfn_range);
2358
2359 /**
2360  * vm_iomap_memory - remap memory to userspace
2361  * @vma: user vma to map to
2362  * @start: start of the physical memory to be mapped
2363  * @len: size of area
2364  *
2365  * This is a simplified io_remap_pfn_range() for common driver use. The
2366  * driver just needs to give us the physical memory range to be mapped,
2367  * we'll figure out the rest from the vma information.
2368  *
2369  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2370  * whatever write-combining details or similar.
2371  *
2372  * Return: %0 on success, negative error code otherwise.
2373  */
2374 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2375 {
2376         unsigned long vm_len, pfn, pages;
2377
2378         /* Check that the physical memory area passed in looks valid */
2379         if (start + len < start)
2380                 return -EINVAL;
2381         /*
2382          * You *really* shouldn't map things that aren't page-aligned,
2383          * but we've historically allowed it because IO memory might
2384          * just have smaller alignment.
2385          */
2386         len += start & ~PAGE_MASK;
2387         pfn = start >> PAGE_SHIFT;
2388         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2389         if (pfn + pages < pfn)
2390                 return -EINVAL;
2391
2392         /* We start the mapping 'vm_pgoff' pages into the area */
2393         if (vma->vm_pgoff > pages)
2394                 return -EINVAL;
2395         pfn += vma->vm_pgoff;
2396         pages -= vma->vm_pgoff;
2397
2398         /* Can we fit all of the mapping? */
2399         vm_len = vma->vm_end - vma->vm_start;
2400         if (vm_len >> PAGE_SHIFT > pages)
2401                 return -EINVAL;
2402
2403         /* Ok, let it rip */
2404         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2405 }
2406 EXPORT_SYMBOL(vm_iomap_memory);
2407
2408 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2409                                      unsigned long addr, unsigned long end,
2410                                      pte_fn_t fn, void *data, bool create,
2411                                      pgtbl_mod_mask *mask)
2412 {
2413         pte_t *pte, *mapped_pte;
2414         int err = 0;
2415         spinlock_t *ptl;
2416
2417         if (create) {
2418                 mapped_pte = pte = (mm == &init_mm) ?
2419                         pte_alloc_kernel_track(pmd, addr, mask) :
2420                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2421                 if (!pte)
2422                         return -ENOMEM;
2423         } else {
2424                 mapped_pte = pte = (mm == &init_mm) ?
2425                         pte_offset_kernel(pmd, addr) :
2426                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2427         }
2428
2429         BUG_ON(pmd_huge(*pmd));
2430
2431         arch_enter_lazy_mmu_mode();
2432
2433         if (fn) {
2434                 do {
2435                         if (create || !pte_none(*pte)) {
2436                                 err = fn(pte++, addr, data);
2437                                 if (err)
2438                                         break;
2439                         }
2440                 } while (addr += PAGE_SIZE, addr != end);
2441         }
2442         *mask |= PGTBL_PTE_MODIFIED;
2443
2444         arch_leave_lazy_mmu_mode();
2445
2446         if (mm != &init_mm)
2447                 pte_unmap_unlock(mapped_pte, ptl);
2448         return err;
2449 }
2450
2451 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2452                                      unsigned long addr, unsigned long end,
2453                                      pte_fn_t fn, void *data, bool create,
2454                                      pgtbl_mod_mask *mask)
2455 {
2456         pmd_t *pmd;
2457         unsigned long next;
2458         int err = 0;
2459
2460         BUG_ON(pud_huge(*pud));
2461
2462         if (create) {
2463                 pmd = pmd_alloc_track(mm, pud, addr, mask);
2464                 if (!pmd)
2465                         return -ENOMEM;
2466         } else {
2467                 pmd = pmd_offset(pud, addr);
2468         }
2469         do {
2470                 next = pmd_addr_end(addr, end);
2471                 if (pmd_none(*pmd) && !create)
2472                         continue;
2473                 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2474                         return -EINVAL;
2475                 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2476                         if (!create)
2477                                 continue;
2478                         pmd_clear_bad(pmd);
2479                 }
2480                 err = apply_to_pte_range(mm, pmd, addr, next,
2481                                          fn, data, create, mask);
2482                 if (err)
2483                         break;
2484         } while (pmd++, addr = next, addr != end);
2485
2486         return err;
2487 }
2488
2489 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2490                                      unsigned long addr, unsigned long end,
2491                                      pte_fn_t fn, void *data, bool create,
2492                                      pgtbl_mod_mask *mask)
2493 {
2494         pud_t *pud;
2495         unsigned long next;
2496         int err = 0;
2497
2498         if (create) {
2499                 pud = pud_alloc_track(mm, p4d, addr, mask);
2500                 if (!pud)
2501                         return -ENOMEM;
2502         } else {
2503                 pud = pud_offset(p4d, addr);
2504         }
2505         do {
2506                 next = pud_addr_end(addr, end);
2507                 if (pud_none(*pud) && !create)
2508                         continue;
2509                 if (WARN_ON_ONCE(pud_leaf(*pud)))
2510                         return -EINVAL;
2511                 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2512                         if (!create)
2513                                 continue;
2514                         pud_clear_bad(pud);
2515                 }
2516                 err = apply_to_pmd_range(mm, pud, addr, next,
2517                                          fn, data, create, mask);
2518                 if (err)
2519                         break;
2520         } while (pud++, addr = next, addr != end);
2521
2522         return err;
2523 }
2524
2525 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2526                                      unsigned long addr, unsigned long end,
2527                                      pte_fn_t fn, void *data, bool create,
2528                                      pgtbl_mod_mask *mask)
2529 {
2530         p4d_t *p4d;
2531         unsigned long next;
2532         int err = 0;
2533
2534         if (create) {
2535                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2536                 if (!p4d)
2537                         return -ENOMEM;
2538         } else {
2539                 p4d = p4d_offset(pgd, addr);
2540         }
2541         do {
2542                 next = p4d_addr_end(addr, end);
2543                 if (p4d_none(*p4d) && !create)
2544                         continue;
2545                 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2546                         return -EINVAL;
2547                 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2548                         if (!create)
2549                                 continue;
2550                         p4d_clear_bad(p4d);
2551                 }
2552                 err = apply_to_pud_range(mm, p4d, addr, next,
2553                                          fn, data, create, mask);
2554                 if (err)
2555                         break;
2556         } while (p4d++, addr = next, addr != end);
2557
2558         return err;
2559 }
2560
2561 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2562                                  unsigned long size, pte_fn_t fn,
2563                                  void *data, bool create)
2564 {
2565         pgd_t *pgd;
2566         unsigned long start = addr, next;
2567         unsigned long end = addr + size;
2568         pgtbl_mod_mask mask = 0;
2569         int err = 0;
2570
2571         if (WARN_ON(addr >= end))
2572                 return -EINVAL;
2573
2574         pgd = pgd_offset(mm, addr);
2575         do {
2576                 next = pgd_addr_end(addr, end);
2577                 if (pgd_none(*pgd) && !create)
2578                         continue;
2579                 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2580                         return -EINVAL;
2581                 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2582                         if (!create)
2583                                 continue;
2584                         pgd_clear_bad(pgd);
2585                 }
2586                 err = apply_to_p4d_range(mm, pgd, addr, next,
2587                                          fn, data, create, &mask);
2588                 if (err)
2589                         break;
2590         } while (pgd++, addr = next, addr != end);
2591
2592         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2593                 arch_sync_kernel_mappings(start, start + size);
2594
2595         return err;
2596 }
2597
2598 /*
2599  * Scan a region of virtual memory, filling in page tables as necessary
2600  * and calling a provided function on each leaf page table.
2601  */
2602 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2603                         unsigned long size, pte_fn_t fn, void *data)
2604 {
2605         return __apply_to_page_range(mm, addr, size, fn, data, true);
2606 }
2607 EXPORT_SYMBOL_GPL(apply_to_page_range);
2608
2609 /*
2610  * Scan a region of virtual memory, calling a provided function on
2611  * each leaf page table where it exists.
2612  *
2613  * Unlike apply_to_page_range, this does _not_ fill in page tables
2614  * where they are absent.
2615  */
2616 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2617                                  unsigned long size, pte_fn_t fn, void *data)
2618 {
2619         return __apply_to_page_range(mm, addr, size, fn, data, false);
2620 }
2621 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2622
2623 /*
2624  * handle_pte_fault chooses page fault handler according to an entry which was
2625  * read non-atomically.  Before making any commitment, on those architectures
2626  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2627  * parts, do_swap_page must check under lock before unmapping the pte and
2628  * proceeding (but do_wp_page is only called after already making such a check;
2629  * and do_anonymous_page can safely check later on).
2630  */
2631 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2632                                 pte_t *page_table, pte_t orig_pte)
2633 {
2634         int same = 1;
2635 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2636         if (sizeof(pte_t) > sizeof(unsigned long)) {
2637                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2638                 spin_lock(ptl);
2639                 same = pte_same(*page_table, orig_pte);
2640                 spin_unlock(ptl);
2641         }
2642 #endif
2643         pte_unmap(page_table);
2644         return same;
2645 }
2646
2647 static inline bool cow_user_page(struct page *dst, struct page *src,
2648                                  struct vm_fault *vmf)
2649 {
2650         bool ret;
2651         void *kaddr;
2652         void __user *uaddr;
2653         bool locked = false;
2654         struct vm_area_struct *vma = vmf->vma;
2655         struct mm_struct *mm = vma->vm_mm;
2656         unsigned long addr = vmf->address;
2657
2658         if (likely(src)) {
2659                 copy_user_highpage(dst, src, addr, vma);
2660                 return true;
2661         }
2662
2663         /*
2664          * If the source page was a PFN mapping, we don't have
2665          * a "struct page" for it. We do a best-effort copy by
2666          * just copying from the original user address. If that
2667          * fails, we just zero-fill it. Live with it.
2668          */
2669         kaddr = kmap_atomic(dst);
2670         uaddr = (void __user *)(addr & PAGE_MASK);
2671
2672         /*
2673          * On architectures with software "accessed" bits, we would
2674          * take a double page fault, so mark it accessed here.
2675          */
2676         if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2677                 pte_t entry;
2678
2679                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2680                 locked = true;
2681                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2682                         /*
2683                          * Other thread has already handled the fault
2684                          * and update local tlb only
2685                          */
2686                         update_mmu_tlb(vma, addr, vmf->pte);
2687                         ret = false;
2688                         goto pte_unlock;
2689                 }
2690
2691                 entry = pte_mkyoung(vmf->orig_pte);
2692                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2693                         update_mmu_cache(vma, addr, vmf->pte);
2694         }
2695
2696         /*
2697          * This really shouldn't fail, because the page is there
2698          * in the page tables. But it might just be unreadable,
2699          * in which case we just give up and fill the result with
2700          * zeroes.
2701          */
2702         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2703                 if (locked)
2704                         goto warn;
2705
2706                 /* Re-validate under PTL if the page is still mapped */
2707                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2708                 locked = true;
2709                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2710                         /* The PTE changed under us, update local tlb */
2711                         update_mmu_tlb(vma, addr, vmf->pte);
2712                         ret = false;
2713                         goto pte_unlock;
2714                 }
2715
2716                 /*
2717                  * The same page can be mapped back since last copy attempt.
2718                  * Try to copy again under PTL.
2719                  */
2720                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2721                         /*
2722                          * Give a warn in case there can be some obscure
2723                          * use-case
2724                          */
2725 warn:
2726                         WARN_ON_ONCE(1);
2727                         clear_page(kaddr);
2728                 }
2729         }
2730
2731         ret = true;
2732
2733 pte_unlock:
2734         if (locked)
2735                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2736         kunmap_atomic(kaddr);
2737         flush_dcache_page(dst);
2738
2739         return ret;
2740 }
2741
2742 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2743 {
2744         struct file *vm_file = vma->vm_file;
2745
2746         if (vm_file)
2747                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2748
2749         /*
2750          * Special mappings (e.g. VDSO) do not have any file so fake
2751          * a default GFP_KERNEL for them.
2752          */
2753         return GFP_KERNEL;
2754 }
2755
2756 /*
2757  * Notify the address space that the page is about to become writable so that
2758  * it can prohibit this or wait for the page to get into an appropriate state.
2759  *
2760  * We do this without the lock held, so that it can sleep if it needs to.
2761  */
2762 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2763 {
2764         vm_fault_t ret;
2765         struct page *page = vmf->page;
2766         unsigned int old_flags = vmf->flags;
2767
2768         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2769
2770         if (vmf->vma->vm_file &&
2771             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2772                 return VM_FAULT_SIGBUS;
2773
2774         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2775         /* Restore original flags so that caller is not surprised */
2776         vmf->flags = old_flags;
2777         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2778                 return ret;
2779         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2780                 lock_page(page);
2781                 if (!page->mapping) {
2782                         unlock_page(page);
2783                         return 0; /* retry */
2784                 }
2785                 ret |= VM_FAULT_LOCKED;
2786         } else
2787                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2788         return ret;
2789 }
2790
2791 /*
2792  * Handle dirtying of a page in shared file mapping on a write fault.
2793  *
2794  * The function expects the page to be locked and unlocks it.
2795  */
2796 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2797 {
2798         struct vm_area_struct *vma = vmf->vma;
2799         struct address_space *mapping;
2800         struct page *page = vmf->page;
2801         bool dirtied;
2802         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2803
2804         dirtied = set_page_dirty(page);
2805         VM_BUG_ON_PAGE(PageAnon(page), page);
2806         /*
2807          * Take a local copy of the address_space - page.mapping may be zeroed
2808          * by truncate after unlock_page().   The address_space itself remains
2809          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2810          * release semantics to prevent the compiler from undoing this copying.
2811          */
2812         mapping = page_rmapping(page);
2813         unlock_page(page);
2814
2815         if (!page_mkwrite)
2816                 file_update_time(vma->vm_file);
2817
2818         /*
2819          * Throttle page dirtying rate down to writeback speed.
2820          *
2821          * mapping may be NULL here because some device drivers do not
2822          * set page.mapping but still dirty their pages
2823          *
2824          * Drop the mmap_lock before waiting on IO, if we can. The file
2825          * is pinning the mapping, as per above.
2826          */
2827         if ((dirtied || page_mkwrite) && mapping) {
2828                 struct file *fpin;
2829
2830                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2831                 balance_dirty_pages_ratelimited(mapping);
2832                 if (fpin) {
2833                         fput(fpin);
2834                         return VM_FAULT_RETRY;
2835                 }
2836         }
2837
2838         return 0;
2839 }
2840
2841 /*
2842  * Handle write page faults for pages that can be reused in the current vma
2843  *
2844  * This can happen either due to the mapping being with the VM_SHARED flag,
2845  * or due to us being the last reference standing to the page. In either
2846  * case, all we need to do here is to mark the page as writable and update
2847  * any related book-keeping.
2848  */
2849 static inline void wp_page_reuse(struct vm_fault *vmf)
2850         __releases(vmf->ptl)
2851 {
2852         struct vm_area_struct *vma = vmf->vma;
2853         struct page *page = vmf->page;
2854         pte_t entry;
2855         /*
2856          * Clear the pages cpupid information as the existing
2857          * information potentially belongs to a now completely
2858          * unrelated process.
2859          */
2860         if (page)
2861                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2862
2863         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2864         entry = pte_mkyoung(vmf->orig_pte);
2865         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2866         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2867                 update_mmu_cache(vma, vmf->address, vmf->pte);
2868         pte_unmap_unlock(vmf->pte, vmf->ptl);
2869         count_vm_event(PGREUSE);
2870 }
2871
2872 /*
2873  * Handle the case of a page which we actually need to copy to a new page.
2874  *
2875  * Called with mmap_lock locked and the old page referenced, but
2876  * without the ptl held.
2877  *
2878  * High level logic flow:
2879  *
2880  * - Allocate a page, copy the content of the old page to the new one.
2881  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2882  * - Take the PTL. If the pte changed, bail out and release the allocated page
2883  * - If the pte is still the way we remember it, update the page table and all
2884  *   relevant references. This includes dropping the reference the page-table
2885  *   held to the old page, as well as updating the rmap.
2886  * - In any case, unlock the PTL and drop the reference we took to the old page.
2887  */
2888 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2889 {
2890         struct vm_area_struct *vma = vmf->vma;
2891         struct mm_struct *mm = vma->vm_mm;
2892         struct page *old_page = vmf->page;
2893         struct page *new_page = NULL;
2894         pte_t entry;
2895         int page_copied = 0;
2896         struct mmu_notifier_range range;
2897
2898         if (unlikely(anon_vma_prepare(vma)))
2899                 goto oom;
2900
2901         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2902                 new_page = alloc_zeroed_user_highpage_movable(vma,
2903                                                               vmf->address);
2904                 if (!new_page)
2905                         goto oom;
2906         } else {
2907                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2908                                 vmf->address);
2909                 if (!new_page)
2910                         goto oom;
2911
2912                 if (!cow_user_page(new_page, old_page, vmf)) {
2913                         /*
2914                          * COW failed, if the fault was solved by other,
2915                          * it's fine. If not, userspace would re-fault on
2916                          * the same address and we will handle the fault
2917                          * from the second attempt.
2918                          */
2919                         put_page(new_page);
2920                         if (old_page)
2921                                 put_page(old_page);
2922                         return 0;
2923                 }
2924         }
2925
2926         if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2927                 goto oom_free_new;
2928         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2929
2930         __SetPageUptodate(new_page);
2931
2932         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2933                                 vmf->address & PAGE_MASK,
2934                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2935         mmu_notifier_invalidate_range_start(&range);
2936
2937         /*
2938          * Re-check the pte - we dropped the lock
2939          */
2940         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2941         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2942                 if (old_page) {
2943                         if (!PageAnon(old_page)) {
2944                                 dec_mm_counter_fast(mm,
2945                                                 mm_counter_file(old_page));
2946                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2947                         }
2948                 } else {
2949                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2950                 }
2951                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2952                 entry = mk_pte(new_page, vma->vm_page_prot);
2953                 entry = pte_sw_mkyoung(entry);
2954                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2955
2956                 /*
2957                  * Clear the pte entry and flush it first, before updating the
2958                  * pte with the new entry, to keep TLBs on different CPUs in
2959                  * sync. This code used to set the new PTE then flush TLBs, but
2960                  * that left a window where the new PTE could be loaded into
2961                  * some TLBs while the old PTE remains in others.
2962                  */
2963                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2964                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2965                 lru_cache_add_inactive_or_unevictable(new_page, vma);
2966                 /*
2967                  * We call the notify macro here because, when using secondary
2968                  * mmu page tables (such as kvm shadow page tables), we want the
2969                  * new page to be mapped directly into the secondary page table.
2970                  */
2971                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2972                 update_mmu_cache(vma, vmf->address, vmf->pte);
2973                 if (old_page) {
2974                         /*
2975                          * Only after switching the pte to the new page may
2976                          * we remove the mapcount here. Otherwise another
2977                          * process may come and find the rmap count decremented
2978                          * before the pte is switched to the new page, and
2979                          * "reuse" the old page writing into it while our pte
2980                          * here still points into it and can be read by other
2981                          * threads.
2982                          *
2983                          * The critical issue is to order this
2984                          * page_remove_rmap with the ptp_clear_flush above.
2985                          * Those stores are ordered by (if nothing else,)
2986                          * the barrier present in the atomic_add_negative
2987                          * in page_remove_rmap.
2988                          *
2989                          * Then the TLB flush in ptep_clear_flush ensures that
2990                          * no process can access the old page before the
2991                          * decremented mapcount is visible. And the old page
2992                          * cannot be reused until after the decremented
2993                          * mapcount is visible. So transitively, TLBs to
2994                          * old page will be flushed before it can be reused.
2995                          */
2996                         page_remove_rmap(old_page, false);
2997                 }
2998
2999                 /* Free the old page.. */
3000                 new_page = old_page;
3001                 page_copied = 1;
3002         } else {
3003                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3004         }
3005
3006         if (new_page)
3007                 put_page(new_page);
3008
3009         pte_unmap_unlock(vmf->pte, vmf->ptl);
3010         /*
3011          * No need to double call mmu_notifier->invalidate_range() callback as
3012          * the above ptep_clear_flush_notify() did already call it.
3013          */
3014         mmu_notifier_invalidate_range_only_end(&range);
3015         if (old_page) {
3016                 /*
3017                  * Don't let another task, with possibly unlocked vma,
3018                  * keep the mlocked page.
3019                  */
3020                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
3021                         lock_page(old_page);    /* LRU manipulation */
3022                         if (PageMlocked(old_page))
3023                                 munlock_vma_page(old_page);
3024                         unlock_page(old_page);
3025                 }
3026                 put_page(old_page);
3027         }
3028         return page_copied ? VM_FAULT_WRITE : 0;
3029 oom_free_new:
3030         put_page(new_page);
3031 oom:
3032         if (old_page)
3033                 put_page(old_page);
3034         return VM_FAULT_OOM;
3035 }
3036
3037 /**
3038  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3039  *                        writeable once the page is prepared
3040  *
3041  * @vmf: structure describing the fault
3042  *
3043  * This function handles all that is needed to finish a write page fault in a
3044  * shared mapping due to PTE being read-only once the mapped page is prepared.
3045  * It handles locking of PTE and modifying it.
3046  *
3047  * The function expects the page to be locked or other protection against
3048  * concurrent faults / writeback (such as DAX radix tree locks).
3049  *
3050  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
3051  * we acquired PTE lock.
3052  */
3053 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3054 {
3055         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3056         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3057                                        &vmf->ptl);
3058         /*
3059          * We might have raced with another page fault while we released the
3060          * pte_offset_map_lock.
3061          */
3062         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3063                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3064                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3065                 return VM_FAULT_NOPAGE;
3066         }
3067         wp_page_reuse(vmf);
3068         return 0;
3069 }
3070
3071 /*
3072  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3073  * mapping
3074  */
3075 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3076 {
3077         struct vm_area_struct *vma = vmf->vma;
3078
3079         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3080                 vm_fault_t ret;
3081
3082                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3083                 vmf->flags |= FAULT_FLAG_MKWRITE;
3084                 ret = vma->vm_ops->pfn_mkwrite(vmf);
3085                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3086                         return ret;
3087                 return finish_mkwrite_fault(vmf);
3088         }
3089         wp_page_reuse(vmf);
3090         return VM_FAULT_WRITE;
3091 }
3092
3093 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3094         __releases(vmf->ptl)
3095 {
3096         struct vm_area_struct *vma = vmf->vma;
3097         vm_fault_t ret = VM_FAULT_WRITE;
3098
3099         get_page(vmf->page);
3100
3101         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3102                 vm_fault_t tmp;
3103
3104                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3105                 tmp = do_page_mkwrite(vmf);
3106                 if (unlikely(!tmp || (tmp &
3107                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3108                         put_page(vmf->page);
3109                         return tmp;
3110                 }
3111                 tmp = finish_mkwrite_fault(vmf);
3112                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3113                         unlock_page(vmf->page);
3114                         put_page(vmf->page);
3115                         return tmp;
3116                 }
3117         } else {
3118                 wp_page_reuse(vmf);
3119                 lock_page(vmf->page);
3120         }
3121         ret |= fault_dirty_shared_page(vmf);
3122         put_page(vmf->page);
3123
3124         return ret;
3125 }
3126
3127 /*
3128  * This routine handles present pages, when users try to write
3129  * to a shared page. It is done by copying the page to a new address
3130  * and decrementing the shared-page counter for the old page.
3131  *
3132  * Note that this routine assumes that the protection checks have been
3133  * done by the caller (the low-level page fault routine in most cases).
3134  * Thus we can safely just mark it writable once we've done any necessary
3135  * COW.
3136  *
3137  * We also mark the page dirty at this point even though the page will
3138  * change only once the write actually happens. This avoids a few races,
3139  * and potentially makes it more efficient.
3140  *
3141  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3142  * but allow concurrent faults), with pte both mapped and locked.
3143  * We return with mmap_lock still held, but pte unmapped and unlocked.
3144  */
3145 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3146         __releases(vmf->ptl)
3147 {
3148         struct vm_area_struct *vma = vmf->vma;
3149
3150         if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3151                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3152                 return handle_userfault(vmf, VM_UFFD_WP);
3153         }
3154
3155         /*
3156          * Userfaultfd write-protect can defer flushes. Ensure the TLB
3157          * is flushed in this case before copying.
3158          */
3159         if (unlikely(userfaultfd_wp(vmf->vma) &&
3160                      mm_tlb_flush_pending(vmf->vma->vm_mm)))
3161                 flush_tlb_page(vmf->vma, vmf->address);
3162
3163         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3164         if (!vmf->page) {
3165                 /*
3166                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3167                  * VM_PFNMAP VMA.
3168                  *
3169                  * We should not cow pages in a shared writeable mapping.
3170                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
3171                  */
3172                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3173                                      (VM_WRITE|VM_SHARED))
3174                         return wp_pfn_shared(vmf);
3175
3176                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3177                 return wp_page_copy(vmf);
3178         }
3179
3180         /*
3181          * Take out anonymous pages first, anonymous shared vmas are
3182          * not dirty accountable.
3183          */
3184         if (PageAnon(vmf->page)) {
3185                 struct page *page = vmf->page;
3186
3187                 /* PageKsm() doesn't necessarily raise the page refcount */
3188                 if (PageKsm(page) || page_count(page) != 1)
3189                         goto copy;
3190                 if (!trylock_page(page))
3191                         goto copy;
3192                 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3193                         unlock_page(page);
3194                         goto copy;
3195                 }
3196                 /*
3197                  * Ok, we've got the only map reference, and the only
3198                  * page count reference, and the page is locked,
3199                  * it's dark out, and we're wearing sunglasses. Hit it.
3200                  */
3201                 unlock_page(page);
3202                 wp_page_reuse(vmf);
3203                 return VM_FAULT_WRITE;
3204         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3205                                         (VM_WRITE|VM_SHARED))) {
3206                 return wp_page_shared(vmf);
3207         }
3208 copy:
3209         /*
3210          * Ok, we need to copy. Oh, well..
3211          */
3212         get_page(vmf->page);
3213
3214         pte_unmap_unlock(vmf->pte, vmf->ptl);
3215         return wp_page_copy(vmf);
3216 }
3217
3218 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3219                 unsigned long start_addr, unsigned long end_addr,
3220                 struct zap_details *details)
3221 {
3222         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3223 }
3224
3225 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3226                                             struct zap_details *details)
3227 {
3228         struct vm_area_struct *vma;
3229         pgoff_t vba, vea, zba, zea;
3230
3231         vma_interval_tree_foreach(vma, root,
3232                         details->first_index, details->last_index) {
3233
3234                 vba = vma->vm_pgoff;
3235                 vea = vba + vma_pages(vma) - 1;
3236                 zba = details->first_index;
3237                 if (zba < vba)
3238                         zba = vba;
3239                 zea = details->last_index;
3240                 if (zea > vea)
3241                         zea = vea;
3242
3243                 unmap_mapping_range_vma(vma,
3244                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3245                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3246                                 details);
3247         }
3248 }
3249
3250 /**
3251  * unmap_mapping_page() - Unmap single page from processes.
3252  * @page: The locked page to be unmapped.
3253  *
3254  * Unmap this page from any userspace process which still has it mmaped.
3255  * Typically, for efficiency, the range of nearby pages has already been
3256  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3257  * truncation or invalidation holds the lock on a page, it may find that
3258  * the page has been remapped again: and then uses unmap_mapping_page()
3259  * to unmap it finally.
3260  */
3261 void unmap_mapping_page(struct page *page)
3262 {
3263         struct address_space *mapping = page->mapping;
3264         struct zap_details details = { };
3265
3266         VM_BUG_ON(!PageLocked(page));
3267         VM_BUG_ON(PageTail(page));
3268
3269         details.check_mapping = mapping;
3270         details.first_index = page->index;
3271         details.last_index = page->index + thp_nr_pages(page) - 1;
3272         details.single_page = page;
3273
3274         i_mmap_lock_write(mapping);
3275         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3276                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3277         i_mmap_unlock_write(mapping);
3278 }
3279
3280 /**
3281  * unmap_mapping_pages() - Unmap pages from processes.
3282  * @mapping: The address space containing pages to be unmapped.
3283  * @start: Index of first page to be unmapped.
3284  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3285  * @even_cows: Whether to unmap even private COWed pages.
3286  *
3287  * Unmap the pages in this address space from any userspace process which
3288  * has them mmaped.  Generally, you want to remove COWed pages as well when
3289  * a file is being truncated, but not when invalidating pages from the page
3290  * cache.
3291  */
3292 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3293                 pgoff_t nr, bool even_cows)
3294 {
3295         struct zap_details details = { };
3296
3297         details.check_mapping = even_cows ? NULL : mapping;
3298         details.first_index = start;
3299         details.last_index = start + nr - 1;
3300         if (details.last_index < details.first_index)
3301                 details.last_index = ULONG_MAX;
3302
3303         i_mmap_lock_write(mapping);
3304         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3305                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3306         i_mmap_unlock_write(mapping);
3307 }
3308
3309 /**
3310  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3311  * address_space corresponding to the specified byte range in the underlying
3312  * file.
3313  *
3314  * @mapping: the address space containing mmaps to be unmapped.
3315  * @holebegin: byte in first page to unmap, relative to the start of
3316  * the underlying file.  This will be rounded down to a PAGE_SIZE
3317  * boundary.  Note that this is different from truncate_pagecache(), which
3318  * must keep the partial page.  In contrast, we must get rid of
3319  * partial pages.
3320  * @holelen: size of prospective hole in bytes.  This will be rounded
3321  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3322  * end of the file.
3323  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3324  * but 0 when invalidating pagecache, don't throw away private data.
3325  */
3326 void unmap_mapping_range(struct address_space *mapping,
3327                 loff_t const holebegin, loff_t const holelen, int even_cows)
3328 {
3329         pgoff_t hba = holebegin >> PAGE_SHIFT;
3330         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3331
3332         /* Check for overflow. */
3333         if (sizeof(holelen) > sizeof(hlen)) {
3334                 long long holeend =
3335                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3336                 if (holeend & ~(long long)ULONG_MAX)
3337                         hlen = ULONG_MAX - hba + 1;
3338         }
3339
3340         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3341 }
3342 EXPORT_SYMBOL(unmap_mapping_range);
3343
3344 /*
3345  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3346  * but allow concurrent faults), and pte mapped but not yet locked.
3347  * We return with pte unmapped and unlocked.
3348  *
3349  * We return with the mmap_lock locked or unlocked in the same cases
3350  * as does filemap_fault().
3351  */
3352 vm_fault_t do_swap_page(struct vm_fault *vmf)
3353 {
3354         struct vm_area_struct *vma = vmf->vma;
3355         struct page *page = NULL, *swapcache;
3356         swp_entry_t entry;
3357         pte_t pte;
3358         int locked;
3359         int exclusive = 0;
3360         vm_fault_t ret = 0;
3361         void *shadow = NULL;
3362
3363         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3364                 goto out;
3365
3366         entry = pte_to_swp_entry(vmf->orig_pte);
3367         if (unlikely(non_swap_entry(entry))) {
3368                 if (is_migration_entry(entry)) {
3369                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3370                                              vmf->address);
3371                 } else if (is_device_private_entry(entry)) {
3372                         vmf->page = device_private_entry_to_page(entry);
3373                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3374                 } else if (is_hwpoison_entry(entry)) {
3375                         ret = VM_FAULT_HWPOISON;
3376                 } else {
3377                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3378                         ret = VM_FAULT_SIGBUS;
3379                 }
3380                 goto out;
3381         }
3382
3383
3384         delayacct_set_flag(current, DELAYACCT_PF_SWAPIN);
3385         page = lookup_swap_cache(entry, vma, vmf->address);
3386         swapcache = page;
3387
3388         if (!page) {
3389                 struct swap_info_struct *si = swp_swap_info(entry);
3390
3391                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3392                     __swap_count(entry) == 1) {
3393                         /* skip swapcache */
3394                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3395                                                         vmf->address);
3396                         if (page) {
3397                                 __SetPageLocked(page);
3398                                 __SetPageSwapBacked(page);
3399
3400                                 if (mem_cgroup_swapin_charge_page(page,
3401                                         vma->vm_mm, GFP_KERNEL, entry)) {
3402                                         ret = VM_FAULT_OOM;
3403                                         goto out_page;
3404                                 }
3405                                 mem_cgroup_swapin_uncharge_swap(entry);
3406
3407                                 shadow = get_shadow_from_swap_cache(entry);
3408                                 if (shadow)
3409                                         workingset_refault(page, shadow);
3410
3411                                 lru_cache_add(page);
3412
3413                                 /* To provide entry to swap_readpage() */
3414                                 set_page_private(page, entry.val);
3415                                 swap_readpage(page, true);
3416                                 set_page_private(page, 0);
3417                         }
3418                 } else {
3419                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3420                                                 vmf);
3421                         swapcache = page;
3422                 }
3423
3424                 if (!page) {
3425                         /*
3426                          * Back out if somebody else faulted in this pte
3427                          * while we released the pte lock.
3428                          */
3429                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3430                                         vmf->address, &vmf->ptl);
3431                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3432                                 ret = VM_FAULT_OOM;
3433                         delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3434                         goto unlock;
3435                 }
3436
3437                 /* Had to read the page from swap area: Major fault */
3438                 ret = VM_FAULT_MAJOR;
3439                 count_vm_event(PGMAJFAULT);
3440                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3441         } else if (PageHWPoison(page)) {
3442                 /*
3443                  * hwpoisoned dirty swapcache pages are kept for killing
3444                  * owner processes (which may be unknown at hwpoison time)
3445                  */
3446                 ret = VM_FAULT_HWPOISON;
3447                 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3448                 goto out_release;
3449         }
3450
3451         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3452
3453         delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3454         if (!locked) {
3455                 ret |= VM_FAULT_RETRY;
3456                 goto out_release;
3457         }
3458
3459         /*
3460          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3461          * release the swapcache from under us.  The page pin, and pte_same
3462          * test below, are not enough to exclude that.  Even if it is still
3463          * swapcache, we need to check that the page's swap has not changed.
3464          */
3465         if (unlikely((!PageSwapCache(page) ||
3466                         page_private(page) != entry.val)) && swapcache)
3467                 goto out_page;
3468
3469         page = ksm_might_need_to_copy(page, vma, vmf->address);
3470         if (unlikely(!page)) {
3471                 ret = VM_FAULT_OOM;
3472                 page = swapcache;
3473                 goto out_page;
3474         }
3475
3476         cgroup_throttle_swaprate(page, GFP_KERNEL);
3477
3478         /*
3479          * Back out if somebody else already faulted in this pte.
3480          */
3481         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3482                         &vmf->ptl);
3483         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3484                 goto out_nomap;
3485
3486         if (unlikely(!PageUptodate(page))) {
3487                 ret = VM_FAULT_SIGBUS;
3488                 goto out_nomap;
3489         }
3490
3491         /*
3492          * The page isn't present yet, go ahead with the fault.
3493          *
3494          * Be careful about the sequence of operations here.
3495          * To get its accounting right, reuse_swap_page() must be called
3496          * while the page is counted on swap but not yet in mapcount i.e.
3497          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3498          * must be called after the swap_free(), or it will never succeed.
3499          */
3500
3501         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3502         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3503         pte = mk_pte(page, vma->vm_page_prot);
3504         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3505                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3506                 vmf->flags &= ~FAULT_FLAG_WRITE;
3507                 ret |= VM_FAULT_WRITE;
3508                 exclusive = RMAP_EXCLUSIVE;
3509         }
3510         flush_icache_page(vma, page);
3511         if (pte_swp_soft_dirty(vmf->orig_pte))
3512                 pte = pte_mksoft_dirty(pte);
3513         if (pte_swp_uffd_wp(vmf->orig_pte)) {
3514                 pte = pte_mkuffd_wp(pte);
3515                 pte = pte_wrprotect(pte);
3516         }
3517         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3518         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3519         vmf->orig_pte = pte;
3520
3521         /* ksm created a completely new copy */
3522         if (unlikely(page != swapcache && swapcache)) {
3523                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3524                 lru_cache_add_inactive_or_unevictable(page, vma);
3525         } else {
3526                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3527         }
3528
3529         swap_free(entry);
3530         if (mem_cgroup_swap_full(page) ||
3531             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3532                 try_to_free_swap(page);
3533         unlock_page(page);
3534         if (page != swapcache && swapcache) {
3535                 /*
3536                  * Hold the lock to avoid the swap entry to be reused
3537                  * until we take the PT lock for the pte_same() check
3538                  * (to avoid false positives from pte_same). For
3539                  * further safety release the lock after the swap_free
3540                  * so that the swap count won't change under a
3541                  * parallel locked swapcache.
3542                  */
3543                 unlock_page(swapcache);
3544                 put_page(swapcache);
3545         }
3546
3547         if (vmf->flags & FAULT_FLAG_WRITE) {
3548                 ret |= do_wp_page(vmf);
3549                 if (ret & VM_FAULT_ERROR)
3550                         ret &= VM_FAULT_ERROR;
3551                 goto out;
3552         }
3553
3554         /* No need to invalidate - it was non-present before */
3555         update_mmu_cache(vma, vmf->address, vmf->pte);
3556 unlock:
3557         pte_unmap_unlock(vmf->pte, vmf->ptl);
3558 out:
3559         return ret;
3560 out_nomap:
3561         pte_unmap_unlock(vmf->pte, vmf->ptl);
3562 out_page:
3563         unlock_page(page);
3564 out_release:
3565         put_page(page);
3566         if (page != swapcache && swapcache) {
3567                 unlock_page(swapcache);
3568                 put_page(swapcache);
3569         }
3570         return ret;
3571 }
3572
3573 /*
3574  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3575  * but allow concurrent faults), and pte mapped but not yet locked.
3576  * We return with mmap_lock still held, but pte unmapped and unlocked.
3577  */
3578 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3579 {
3580         struct vm_area_struct *vma = vmf->vma;
3581         struct page *page;
3582         vm_fault_t ret = 0;
3583         pte_t entry;
3584
3585         /* File mapping without ->vm_ops ? */
3586         if (vma->vm_flags & VM_SHARED)
3587                 return VM_FAULT_SIGBUS;
3588
3589         /*
3590          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3591          * pte_offset_map() on pmds where a huge pmd might be created
3592          * from a different thread.
3593          *
3594          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3595          * parallel threads are excluded by other means.
3596          *
3597          * Here we only have mmap_read_lock(mm).
3598          */
3599         if (pte_alloc(vma->vm_mm, vmf->pmd))
3600                 return VM_FAULT_OOM;
3601
3602         /* See comment in handle_pte_fault() */
3603         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3604                 return 0;
3605
3606         /* Use the zero-page for reads */
3607         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3608                         !mm_forbids_zeropage(vma->vm_mm)) {
3609                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3610                                                 vma->vm_page_prot));
3611                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3612                                 vmf->address, &vmf->ptl);
3613                 if (!pte_none(*vmf->pte)) {
3614                         update_mmu_tlb(vma, vmf->address, vmf->pte);
3615                         goto unlock;
3616                 }
3617                 ret = check_stable_address_space(vma->vm_mm);
3618                 if (ret)
3619                         goto unlock;
3620                 /* Deliver the page fault to userland, check inside PT lock */
3621                 if (userfaultfd_missing(vma)) {
3622                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3623                         return handle_userfault(vmf, VM_UFFD_MISSING);
3624                 }
3625                 goto setpte;
3626         }
3627
3628         /* Allocate our own private page. */
3629         if (unlikely(anon_vma_prepare(vma)))
3630                 goto oom;
3631         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3632         if (!page)
3633                 goto oom;
3634
3635         if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3636                 goto oom_free_page;
3637         cgroup_throttle_swaprate(page, GFP_KERNEL);
3638
3639         /*
3640          * The memory barrier inside __SetPageUptodate makes sure that
3641          * preceding stores to the page contents become visible before
3642          * the set_pte_at() write.
3643          */
3644         __SetPageUptodate(page);
3645
3646         entry = mk_pte(page, vma->vm_page_prot);
3647         entry = pte_sw_mkyoung(entry);
3648         if (vma->vm_flags & VM_WRITE)
3649                 entry = pte_mkwrite(pte_mkdirty(entry));
3650
3651         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3652                         &vmf->ptl);
3653         if (!pte_none(*vmf->pte)) {
3654                 update_mmu_cache(vma, vmf->address, vmf->pte);
3655                 goto release;
3656         }
3657
3658         ret = check_stable_address_space(vma->vm_mm);
3659         if (ret)
3660                 goto release;
3661
3662         /* Deliver the page fault to userland, check inside PT lock */
3663         if (userfaultfd_missing(vma)) {
3664                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3665                 put_page(page);
3666                 return handle_userfault(vmf, VM_UFFD_MISSING);
3667         }
3668
3669         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3670         page_add_new_anon_rmap(page, vma, vmf->address, false);
3671         lru_cache_add_inactive_or_unevictable(page, vma);
3672 setpte:
3673         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3674
3675         /* No need to invalidate - it was non-present before */
3676         update_mmu_cache(vma, vmf->address, vmf->pte);
3677 unlock:
3678         pte_unmap_unlock(vmf->pte, vmf->ptl);
3679         return ret;
3680 release:
3681         put_page(page);
3682         goto unlock;
3683 oom_free_page:
3684         put_page(page);
3685 oom:
3686         return VM_FAULT_OOM;
3687 }
3688
3689 /*
3690  * The mmap_lock must have been held on entry, and may have been
3691  * released depending on flags and vma->vm_ops->fault() return value.
3692  * See filemap_fault() and __lock_page_retry().
3693  */
3694 static vm_fault_t __do_fault(struct vm_fault *vmf)
3695 {
3696         struct vm_area_struct *vma = vmf->vma;
3697         vm_fault_t ret;
3698
3699         /*
3700          * Preallocate pte before we take page_lock because this might lead to
3701          * deadlocks for memcg reclaim which waits for pages under writeback:
3702          *                              lock_page(A)
3703          *                              SetPageWriteback(A)
3704          *                              unlock_page(A)
3705          * lock_page(B)
3706          *                              lock_page(B)
3707          * pte_alloc_one
3708          *   shrink_page_list
3709          *     wait_on_page_writeback(A)
3710          *                              SetPageWriteback(B)
3711          *                              unlock_page(B)
3712          *                              # flush A, B to clear the writeback
3713          */
3714         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3715                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3716                 if (!vmf->prealloc_pte)
3717                         return VM_FAULT_OOM;
3718                 smp_wmb(); /* See comment in __pte_alloc() */
3719         }
3720
3721         ret = vma->vm_ops->fault(vmf);
3722         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3723                             VM_FAULT_DONE_COW)))
3724                 return ret;
3725
3726         if (unlikely(PageHWPoison(vmf->page))) {
3727                 if (ret & VM_FAULT_LOCKED)
3728                         unlock_page(vmf->page);
3729                 put_page(vmf->page);
3730                 vmf->page = NULL;
3731                 return VM_FAULT_HWPOISON;
3732         }
3733
3734         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3735                 lock_page(vmf->page);
3736         else
3737                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3738
3739         return ret;
3740 }
3741
3742 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3743 static void deposit_prealloc_pte(struct vm_fault *vmf)
3744 {
3745         struct vm_area_struct *vma = vmf->vma;
3746
3747         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3748         /*
3749          * We are going to consume the prealloc table,
3750          * count that as nr_ptes.
3751          */
3752         mm_inc_nr_ptes(vma->vm_mm);
3753         vmf->prealloc_pte = NULL;
3754 }
3755
3756 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3757 {
3758         struct vm_area_struct *vma = vmf->vma;
3759         bool write = vmf->flags & FAULT_FLAG_WRITE;
3760         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3761         pmd_t entry;
3762         int i;
3763         vm_fault_t ret = VM_FAULT_FALLBACK;
3764
3765         if (!transhuge_vma_suitable(vma, haddr))
3766                 return ret;
3767
3768         page = compound_head(page);
3769         if (compound_order(page) != HPAGE_PMD_ORDER)
3770                 return ret;
3771
3772         /*
3773          * Archs like ppc64 need additional space to store information
3774          * related to pte entry. Use the preallocated table for that.
3775          */
3776         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3777                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3778                 if (!vmf->prealloc_pte)
3779                         return VM_FAULT_OOM;
3780                 smp_wmb(); /* See comment in __pte_alloc() */
3781         }
3782
3783         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3784         if (unlikely(!pmd_none(*vmf->pmd)))
3785                 goto out;
3786
3787         for (i = 0; i < HPAGE_PMD_NR; i++)
3788                 flush_icache_page(vma, page + i);
3789
3790         entry = mk_huge_pmd(page, vma->vm_page_prot);
3791         if (write)
3792                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3793
3794         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3795         page_add_file_rmap(page, true);
3796         /*
3797          * deposit and withdraw with pmd lock held
3798          */
3799         if (arch_needs_pgtable_deposit())
3800                 deposit_prealloc_pte(vmf);
3801
3802         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3803
3804         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3805
3806         /* fault is handled */
3807         ret = 0;
3808         count_vm_event(THP_FILE_MAPPED);
3809 out:
3810         spin_unlock(vmf->ptl);
3811         return ret;
3812 }
3813 #else
3814 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3815 {
3816         return VM_FAULT_FALLBACK;
3817 }
3818 #endif
3819
3820 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3821 {
3822         struct vm_area_struct *vma = vmf->vma;
3823         bool write = vmf->flags & FAULT_FLAG_WRITE;
3824         bool prefault = vmf->address != addr;
3825         pte_t entry;
3826
3827         flush_icache_page(vma, page);
3828         entry = mk_pte(page, vma->vm_page_prot);
3829
3830         if (prefault && arch_wants_old_prefaulted_pte())
3831                 entry = pte_mkold(entry);
3832         else
3833                 entry = pte_sw_mkyoung(entry);
3834
3835         if (write)
3836                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3837         /* copy-on-write page */
3838         if (write && !(vma->vm_flags & VM_SHARED)) {
3839                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3840                 page_add_new_anon_rmap(page, vma, addr, false);
3841                 lru_cache_add_inactive_or_unevictable(page, vma);
3842         } else {
3843                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3844                 page_add_file_rmap(page, false);
3845         }
3846         set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
3847 }
3848
3849 /**
3850  * finish_fault - finish page fault once we have prepared the page to fault
3851  *
3852  * @vmf: structure describing the fault
3853  *
3854  * This function handles all that is needed to finish a page fault once the
3855  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3856  * given page, adds reverse page mapping, handles memcg charges and LRU
3857  * addition.
3858  *
3859  * The function expects the page to be locked and on success it consumes a
3860  * reference of a page being mapped (for the PTE which maps it).
3861  *
3862  * Return: %0 on success, %VM_FAULT_ code in case of error.
3863  */
3864 vm_fault_t finish_fault(struct vm_fault *vmf)
3865 {
3866         struct vm_area_struct *vma = vmf->vma;
3867         struct page *page;
3868         vm_fault_t ret;
3869
3870         /* Did we COW the page? */
3871         if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
3872                 page = vmf->cow_page;
3873         else
3874                 page = vmf->page;
3875
3876         /*
3877          * check even for read faults because we might have lost our CoWed
3878          * page
3879          */
3880         if (!(vma->vm_flags & VM_SHARED)) {
3881                 ret = check_stable_address_space(vma->vm_mm);
3882                 if (ret)
3883                         return ret;
3884         }
3885
3886         if (pmd_none(*vmf->pmd)) {
3887                 if (PageTransCompound(page)) {
3888                         ret = do_set_pmd(vmf, page);
3889                         if (ret != VM_FAULT_FALLBACK)
3890                                 return ret;
3891                 }
3892
3893                 if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
3894                         return VM_FAULT_OOM;
3895         }
3896
3897         /* See comment in handle_pte_fault() */
3898         if (pmd_devmap_trans_unstable(vmf->pmd))
3899                 return 0;
3900
3901         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3902                                       vmf->address, &vmf->ptl);
3903         ret = 0;
3904         /* Re-check under ptl */
3905         if (likely(pte_none(*vmf->pte)))
3906                 do_set_pte(vmf, page, vmf->address);
3907         else
3908                 ret = VM_FAULT_NOPAGE;
3909
3910         update_mmu_tlb(vma, vmf->address, vmf->pte);
3911         pte_unmap_unlock(vmf->pte, vmf->ptl);
3912         return ret;
3913 }
3914
3915 static unsigned long fault_around_bytes __read_mostly =
3916         rounddown_pow_of_two(65536);
3917
3918 #ifdef CONFIG_DEBUG_FS
3919 static int fault_around_bytes_get(void *data, u64 *val)
3920 {
3921         *val = fault_around_bytes;
3922         return 0;
3923 }
3924
3925 /*
3926  * fault_around_bytes must be rounded down to the nearest page order as it's
3927  * what do_fault_around() expects to see.
3928  */
3929 static int fault_around_bytes_set(void *data, u64 val)
3930 {
3931         if (val / PAGE_SIZE > PTRS_PER_PTE)
3932                 return -EINVAL;
3933         if (val > PAGE_SIZE)
3934                 fault_around_bytes = rounddown_pow_of_two(val);
3935         else
3936                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3937         return 0;
3938 }
3939 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3940                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3941
3942 static int __init fault_around_debugfs(void)
3943 {
3944         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3945                                    &fault_around_bytes_fops);
3946         return 0;
3947 }
3948 late_initcall(fault_around_debugfs);
3949 #endif
3950
3951 /*
3952  * do_fault_around() tries to map few pages around the fault address. The hope
3953  * is that the pages will be needed soon and this will lower the number of
3954  * faults to handle.
3955  *
3956  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3957  * not ready to be mapped: not up-to-date, locked, etc.
3958  *
3959  * This function is called with the page table lock taken. In the split ptlock
3960  * case the page table lock only protects only those entries which belong to
3961  * the page table corresponding to the fault address.
3962  *
3963  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3964  * only once.
3965  *
3966  * fault_around_bytes defines how many bytes we'll try to map.
3967  * do_fault_around() expects it to be set to a power of two less than or equal
3968  * to PTRS_PER_PTE.
3969  *
3970  * The virtual address of the area that we map is naturally aligned to
3971  * fault_around_bytes rounded down to the machine page size
3972  * (and therefore to page order).  This way it's easier to guarantee
3973  * that we don't cross page table boundaries.
3974  */
3975 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3976 {
3977         unsigned long address = vmf->address, nr_pages, mask;
3978         pgoff_t start_pgoff = vmf->pgoff;
3979         pgoff_t end_pgoff;
3980         int off;
3981
3982         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3983         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3984
3985         address = max(address & mask, vmf->vma->vm_start);
3986         off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3987         start_pgoff -= off;
3988
3989         /*
3990          *  end_pgoff is either the end of the page table, the end of
3991          *  the vma or nr_pages from start_pgoff, depending what is nearest.
3992          */
3993         end_pgoff = start_pgoff -
3994                 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3995                 PTRS_PER_PTE - 1;
3996         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3997                         start_pgoff + nr_pages - 1);
3998
3999         if (pmd_none(*vmf->pmd)) {
4000                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4001                 if (!vmf->prealloc_pte)
4002                         return VM_FAULT_OOM;
4003                 smp_wmb(); /* See comment in __pte_alloc() */
4004         }
4005
4006         return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4007 }
4008
4009 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4010 {
4011         struct vm_area_struct *vma = vmf->vma;
4012         vm_fault_t ret = 0;
4013
4014         /*
4015          * Let's call ->map_pages() first and use ->fault() as fallback
4016          * if page by the offset is not ready to be mapped (cold cache or
4017          * something).
4018          */
4019         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4020                 ret = do_fault_around(vmf);
4021                 if (ret)
4022                         return ret;
4023         }
4024
4025         ret = __do_fault(vmf);
4026         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4027                 return ret;
4028
4029         ret |= finish_fault(vmf);
4030         unlock_page(vmf->page);
4031         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4032                 put_page(vmf->page);
4033         return ret;
4034 }
4035
4036 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4037 {
4038         struct vm_area_struct *vma = vmf->vma;
4039         vm_fault_t ret;
4040
4041         if (unlikely(anon_vma_prepare(vma)))
4042                 return VM_FAULT_OOM;
4043
4044         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4045         if (!vmf->cow_page)
4046                 return VM_FAULT_OOM;
4047
4048         if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
4049                 put_page(vmf->cow_page);
4050                 return VM_FAULT_OOM;
4051         }
4052         cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4053
4054         ret = __do_fault(vmf);
4055         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4056                 goto uncharge_out;
4057         if (ret & VM_FAULT_DONE_COW)
4058                 return ret;
4059
4060         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4061         __SetPageUptodate(vmf->cow_page);
4062
4063         ret |= finish_fault(vmf);
4064         unlock_page(vmf->page);
4065         put_page(vmf->page);
4066         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4067                 goto uncharge_out;
4068         return ret;
4069 uncharge_out:
4070         put_page(vmf->cow_page);
4071         return ret;
4072 }
4073
4074 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4075 {
4076         struct vm_area_struct *vma = vmf->vma;
4077         vm_fault_t ret, tmp;
4078
4079         ret = __do_fault(vmf);
4080         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4081                 return ret;
4082
4083         /*
4084          * Check if the backing address space wants to know that the page is
4085          * about to become writable
4086          */
4087         if (vma->vm_ops->page_mkwrite) {
4088                 unlock_page(vmf->page);
4089                 tmp = do_page_mkwrite(vmf);
4090                 if (unlikely(!tmp ||
4091                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4092                         put_page(vmf->page);
4093                         return tmp;
4094                 }
4095         }
4096
4097         ret |= finish_fault(vmf);
4098         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4099                                         VM_FAULT_RETRY))) {
4100                 unlock_page(vmf->page);
4101                 put_page(vmf->page);
4102                 return ret;
4103         }
4104
4105         ret |= fault_dirty_shared_page(vmf);
4106         return ret;
4107 }
4108
4109 /*
4110  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4111  * but allow concurrent faults).
4112  * The mmap_lock may have been released depending on flags and our
4113  * return value.  See filemap_fault() and __lock_page_or_retry().
4114  * If mmap_lock is released, vma may become invalid (for example
4115  * by other thread calling munmap()).
4116  */
4117 static vm_fault_t do_fault(struct vm_fault *vmf)
4118 {
4119         struct vm_area_struct *vma = vmf->vma;
4120         struct mm_struct *vm_mm = vma->vm_mm;
4121         vm_fault_t ret;
4122
4123         /*
4124          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4125          */
4126         if (!vma->vm_ops->fault) {
4127                 /*
4128                  * If we find a migration pmd entry or a none pmd entry, which
4129                  * should never happen, return SIGBUS
4130                  */
4131                 if (unlikely(!pmd_present(*vmf->pmd)))
4132                         ret = VM_FAULT_SIGBUS;
4133                 else {
4134                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4135                                                        vmf->pmd,
4136                                                        vmf->address,
4137                                                        &vmf->ptl);
4138                         /*
4139                          * Make sure this is not a temporary clearing of pte
4140                          * by holding ptl and checking again. A R/M/W update
4141                          * of pte involves: take ptl, clearing the pte so that
4142                          * we don't have concurrent modification by hardware
4143                          * followed by an update.
4144                          */
4145                         if (unlikely(pte_none(*vmf->pte)))
4146                                 ret = VM_FAULT_SIGBUS;
4147                         else
4148                                 ret = VM_FAULT_NOPAGE;
4149
4150                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4151                 }
4152         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4153                 ret = do_read_fault(vmf);
4154         else if (!(vma->vm_flags & VM_SHARED))
4155                 ret = do_cow_fault(vmf);
4156         else
4157                 ret = do_shared_fault(vmf);
4158
4159         /* preallocated pagetable is unused: free it */
4160         if (vmf->prealloc_pte) {
4161                 pte_free(vm_mm, vmf->prealloc_pte);
4162                 vmf->prealloc_pte = NULL;
4163         }
4164         return ret;
4165 }
4166
4167 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4168                                 unsigned long addr, int page_nid,
4169                                 int *flags)
4170 {
4171         get_page(page);
4172
4173         count_vm_numa_event(NUMA_HINT_FAULTS);
4174         if (page_nid == numa_node_id()) {
4175                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4176                 *flags |= TNF_FAULT_LOCAL;
4177         }
4178
4179         return mpol_misplaced(page, vma, addr);
4180 }
4181
4182 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4183 {
4184         struct vm_area_struct *vma = vmf->vma;
4185         struct page *page = NULL;
4186         int page_nid = NUMA_NO_NODE;
4187         int last_cpupid;
4188         int target_nid;
4189         pte_t pte, old_pte;
4190         bool was_writable = pte_savedwrite(vmf->orig_pte);
4191         int flags = 0;
4192
4193         /*
4194          * The "pte" at this point cannot be used safely without
4195          * validation through pte_unmap_same(). It's of NUMA type but
4196          * the pfn may be screwed if the read is non atomic.
4197          */
4198         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4199         spin_lock(vmf->ptl);
4200         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4201                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4202                 goto out;
4203         }
4204
4205         /* Get the normal PTE  */
4206         old_pte = ptep_get(vmf->pte);
4207         pte = pte_modify(old_pte, vma->vm_page_prot);
4208
4209         page = vm_normal_page(vma, vmf->address, pte);
4210         if (!page)
4211                 goto out_map;
4212
4213         /* TODO: handle PTE-mapped THP */
4214         if (PageCompound(page))
4215                 goto out_map;
4216
4217         /*
4218          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4219          * much anyway since they can be in shared cache state. This misses
4220          * the case where a mapping is writable but the process never writes
4221          * to it but pte_write gets cleared during protection updates and
4222          * pte_dirty has unpredictable behaviour between PTE scan updates,
4223          * background writeback, dirty balancing and application behaviour.
4224          */
4225         if (!was_writable)
4226                 flags |= TNF_NO_GROUP;
4227
4228         /*
4229          * Flag if the page is shared between multiple address spaces. This
4230          * is later used when determining whether to group tasks together
4231          */
4232         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4233                 flags |= TNF_SHARED;
4234
4235         last_cpupid = page_cpupid_last(page);
4236         page_nid = page_to_nid(page);
4237         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4238                         &flags);
4239         if (target_nid == NUMA_NO_NODE) {
4240                 put_page(page);
4241                 goto out_map;
4242         }
4243         pte_unmap_unlock(vmf->pte, vmf->ptl);
4244
4245         /* Migrate to the requested node */
4246         if (migrate_misplaced_page(page, vma, target_nid)) {
4247                 page_nid = target_nid;
4248                 flags |= TNF_MIGRATED;
4249         } else {
4250                 flags |= TNF_MIGRATE_FAIL;
4251                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4252                 spin_lock(vmf->ptl);
4253                 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4254                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4255                         goto out;
4256                 }
4257                 goto out_map;
4258         }
4259
4260 out:
4261         if (page_nid != NUMA_NO_NODE)
4262                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4263         return 0;
4264 out_map:
4265         /*
4266          * Make it present again, depending on how arch implements
4267          * non-accessible ptes, some can allow access by kernel mode.
4268          */
4269         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4270         pte = pte_modify(old_pte, vma->vm_page_prot);
4271         pte = pte_mkyoung(pte);
4272         if (was_writable)
4273                 pte = pte_mkwrite(pte);
4274         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4275         update_mmu_cache(vma, vmf->address, vmf->pte);
4276         pte_unmap_unlock(vmf->pte, vmf->ptl);
4277         goto out;
4278 }
4279
4280 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4281 {
4282         if (vma_is_anonymous(vmf->vma))
4283                 return do_huge_pmd_anonymous_page(vmf);
4284         if (vmf->vma->vm_ops->huge_fault)
4285                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4286         return VM_FAULT_FALLBACK;
4287 }
4288
4289 /* `inline' is required to avoid gcc 4.1.2 build error */
4290 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4291 {
4292         if (vma_is_anonymous(vmf->vma)) {
4293                 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4294                         return handle_userfault(vmf, VM_UFFD_WP);
4295                 return do_huge_pmd_wp_page(vmf, orig_pmd);
4296         }
4297         if (vmf->vma->vm_ops->huge_fault) {
4298                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4299
4300                 if (!(ret & VM_FAULT_FALLBACK))
4301                         return ret;
4302         }
4303
4304         /* COW or write-notify handled on pte level: split pmd. */
4305         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4306
4307         return VM_FAULT_FALLBACK;
4308 }
4309
4310 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4311 {
4312 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4313         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4314         /* No support for anonymous transparent PUD pages yet */
4315         if (vma_is_anonymous(vmf->vma))
4316                 goto split;
4317         if (vmf->vma->vm_ops->huge_fault) {
4318                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4319
4320                 if (!(ret & VM_FAULT_FALLBACK))
4321                         return ret;
4322         }
4323 split:
4324         /* COW or write-notify not handled on PUD level: split pud.*/
4325         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4326 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4327         return VM_FAULT_FALLBACK;
4328 }
4329
4330 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4331 {
4332 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4333         /* No support for anonymous transparent PUD pages yet */
4334         if (vma_is_anonymous(vmf->vma))
4335                 return VM_FAULT_FALLBACK;
4336         if (vmf->vma->vm_ops->huge_fault)
4337                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4338 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4339         return VM_FAULT_FALLBACK;
4340 }
4341
4342 /*
4343  * These routines also need to handle stuff like marking pages dirty
4344  * and/or accessed for architectures that don't do it in hardware (most
4345  * RISC architectures).  The early dirtying is also good on the i386.
4346  *
4347  * There is also a hook called "update_mmu_cache()" that architectures
4348  * with external mmu caches can use to update those (ie the Sparc or
4349  * PowerPC hashed page tables that act as extended TLBs).
4350  *
4351  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4352  * concurrent faults).
4353  *
4354  * The mmap_lock may have been released depending on flags and our return value.
4355  * See filemap_fault() and __lock_page_or_retry().
4356  */
4357 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4358 {
4359         pte_t entry;
4360
4361         if (unlikely(pmd_none(*vmf->pmd))) {
4362                 /*
4363                  * Leave __pte_alloc() until later: because vm_ops->fault may
4364                  * want to allocate huge page, and if we expose page table
4365                  * for an instant, it will be difficult to retract from
4366                  * concurrent faults and from rmap lookups.
4367                  */
4368                 vmf->pte = NULL;
4369         } else {
4370                 /*
4371                  * If a huge pmd materialized under us just retry later.  Use
4372                  * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4373                  * of pmd_trans_huge() to ensure the pmd didn't become
4374                  * pmd_trans_huge under us and then back to pmd_none, as a
4375                  * result of MADV_DONTNEED running immediately after a huge pmd
4376                  * fault in a different thread of this mm, in turn leading to a
4377                  * misleading pmd_trans_huge() retval. All we have to ensure is
4378                  * that it is a regular pmd that we can walk with
4379                  * pte_offset_map() and we can do that through an atomic read
4380                  * in C, which is what pmd_trans_unstable() provides.
4381                  */
4382                 if (pmd_devmap_trans_unstable(vmf->pmd))
4383                         return 0;
4384                 /*
4385                  * A regular pmd is established and it can't morph into a huge
4386                  * pmd from under us anymore at this point because we hold the
4387                  * mmap_lock read mode and khugepaged takes it in write mode.
4388                  * So now it's safe to run pte_offset_map().
4389                  */
4390                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4391                 vmf->orig_pte = *vmf->pte;
4392
4393                 /*
4394                  * some architectures can have larger ptes than wordsize,
4395                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4396                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4397                  * accesses.  The code below just needs a consistent view
4398                  * for the ifs and we later double check anyway with the
4399                  * ptl lock held. So here a barrier will do.
4400                  */
4401                 barrier();
4402                 if (pte_none(vmf->orig_pte)) {
4403                         pte_unmap(vmf->pte);
4404                         vmf->pte = NULL;
4405                 }
4406         }
4407
4408         if (!vmf->pte) {
4409                 if (vma_is_anonymous(vmf->vma))
4410                         return do_anonymous_page(vmf);
4411                 else
4412                         return do_fault(vmf);
4413         }
4414
4415         if (!pte_present(vmf->orig_pte))
4416                 return do_swap_page(vmf);
4417
4418         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4419                 return do_numa_page(vmf);
4420
4421         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4422         spin_lock(vmf->ptl);
4423         entry = vmf->orig_pte;
4424         if (unlikely(!pte_same(*vmf->pte, entry))) {
4425                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4426                 goto unlock;
4427         }
4428         if (vmf->flags & FAULT_FLAG_WRITE) {
4429                 if (!pte_write(entry))
4430                         return do_wp_page(vmf);
4431                 entry = pte_mkdirty(entry);
4432         }
4433         entry = pte_mkyoung(entry);
4434         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4435                                 vmf->flags & FAULT_FLAG_WRITE)) {
4436                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4437         } else {
4438                 /* Skip spurious TLB flush for retried page fault */
4439                 if (vmf->flags & FAULT_FLAG_TRIED)
4440                         goto unlock;
4441                 /*
4442                  * This is needed only for protection faults but the arch code
4443                  * is not yet telling us if this is a protection fault or not.
4444                  * This still avoids useless tlb flushes for .text page faults
4445                  * with threads.
4446                  */
4447                 if (vmf->flags & FAULT_FLAG_WRITE)
4448                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4449         }
4450 unlock:
4451         pte_unmap_unlock(vmf->pte, vmf->ptl);
4452         return 0;
4453 }
4454
4455 /*
4456  * By the time we get here, we already hold the mm semaphore
4457  *
4458  * The mmap_lock may have been released depending on flags and our
4459  * return value.  See filemap_fault() and __lock_page_or_retry().
4460  */
4461 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4462                 unsigned long address, unsigned int flags)
4463 {
4464         struct vm_fault vmf = {
4465                 .vma = vma,
4466                 .address = address & PAGE_MASK,
4467                 .flags = flags,
4468                 .pgoff = linear_page_index(vma, address),
4469                 .gfp_mask = __get_fault_gfp_mask(vma),
4470         };
4471         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4472         struct mm_struct *mm = vma->vm_mm;
4473         pgd_t *pgd;
4474         p4d_t *p4d;
4475         vm_fault_t ret;
4476
4477         pgd = pgd_offset(mm, address);
4478         p4d = p4d_alloc(mm, pgd, address);
4479         if (!p4d)
4480                 return VM_FAULT_OOM;
4481
4482         vmf.pud = pud_alloc(mm, p4d, address);
4483         if (!vmf.pud)
4484                 return VM_FAULT_OOM;
4485 retry_pud:
4486         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4487                 ret = create_huge_pud(&vmf);
4488                 if (!(ret & VM_FAULT_FALLBACK))
4489                         return ret;
4490         } else {
4491                 pud_t orig_pud = *vmf.pud;
4492
4493                 barrier();
4494                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4495
4496                         /* NUMA case for anonymous PUDs would go here */
4497
4498                         if (dirty && !pud_write(orig_pud)) {
4499                                 ret = wp_huge_pud(&vmf, orig_pud);
4500                                 if (!(ret & VM_FAULT_FALLBACK))
4501                                         return ret;
4502                         } else {
4503                                 huge_pud_set_accessed(&vmf, orig_pud);
4504                                 return 0;
4505                         }
4506                 }
4507         }
4508
4509         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4510         if (!vmf.pmd)
4511                 return VM_FAULT_OOM;
4512
4513         /* Huge pud page fault raced with pmd_alloc? */
4514         if (pud_trans_unstable(vmf.pud))
4515                 goto retry_pud;
4516
4517         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4518                 ret = create_huge_pmd(&vmf);
4519                 if (!(ret & VM_FAULT_FALLBACK))
4520                         return ret;
4521         } else {
4522                 pmd_t orig_pmd = *vmf.pmd;
4523
4524                 barrier();
4525                 if (unlikely(is_swap_pmd(orig_pmd))) {
4526                         VM_BUG_ON(thp_migration_supported() &&
4527                                           !is_pmd_migration_entry(orig_pmd));
4528                         if (is_pmd_migration_entry(orig_pmd))
4529                                 pmd_migration_entry_wait(mm, vmf.pmd);
4530                         return 0;
4531                 }
4532                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4533                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4534                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4535
4536                         if (dirty && !pmd_write(orig_pmd)) {
4537                                 ret = wp_huge_pmd(&vmf, orig_pmd);
4538                                 if (!(ret & VM_FAULT_FALLBACK))
4539                                         return ret;
4540                         } else {
4541                                 huge_pmd_set_accessed(&vmf, orig_pmd);
4542                                 return 0;
4543                         }
4544                 }
4545         }
4546
4547         return handle_pte_fault(&vmf);
4548 }
4549
4550 /**
4551  * mm_account_fault - Do page fault accounting
4552  *
4553  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4554  *        of perf event counters, but we'll still do the per-task accounting to
4555  *        the task who triggered this page fault.
4556  * @address: the faulted address.
4557  * @flags: the fault flags.
4558  * @ret: the fault retcode.
4559  *
4560  * This will take care of most of the page fault accounting.  Meanwhile, it
4561  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4562  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4563  * still be in per-arch page fault handlers at the entry of page fault.
4564  */
4565 static inline void mm_account_fault(struct pt_regs *regs,
4566                                     unsigned long address, unsigned int flags,
4567                                     vm_fault_t ret)
4568 {
4569         bool major;
4570
4571         /*
4572          * We don't do accounting for some specific faults:
4573          *
4574          * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4575          *   includes arch_vma_access_permitted() failing before reaching here.
4576          *   So this is not a "this many hardware page faults" counter.  We
4577          *   should use the hw profiling for that.
4578          *
4579          * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4580          *   once they're completed.
4581          */
4582         if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4583                 return;
4584
4585         /*
4586          * We define the fault as a major fault when the final successful fault
4587          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4588          * handle it immediately previously).
4589          */
4590         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4591
4592         if (major)
4593                 current->maj_flt++;
4594         else
4595                 current->min_flt++;
4596
4597         /*
4598          * If the fault is done for GUP, regs will be NULL.  We only do the
4599          * accounting for the per thread fault counters who triggered the
4600          * fault, and we skip the perf event updates.
4601          */
4602         if (!regs)
4603                 return;
4604
4605         if (major)
4606                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4607         else
4608                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4609 }
4610
4611 /*
4612  * By the time we get here, we already hold the mm semaphore
4613  *
4614  * The mmap_lock may have been released depending on flags and our
4615  * return value.  See filemap_fault() and __lock_page_or_retry().
4616  */
4617 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4618                            unsigned int flags, struct pt_regs *regs)
4619 {
4620         vm_fault_t ret;
4621
4622         __set_current_state(TASK_RUNNING);
4623
4624         count_vm_event(PGFAULT);
4625         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4626
4627         /* do counter updates before entering really critical section. */
4628         check_sync_rss_stat(current);
4629
4630         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4631                                             flags & FAULT_FLAG_INSTRUCTION,
4632                                             flags & FAULT_FLAG_REMOTE))
4633                 return VM_FAULT_SIGSEGV;
4634
4635         /*
4636          * Enable the memcg OOM handling for faults triggered in user
4637          * space.  Kernel faults are handled more gracefully.
4638          */
4639         if (flags & FAULT_FLAG_USER)
4640                 mem_cgroup_enter_user_fault();
4641
4642         if (unlikely(is_vm_hugetlb_page(vma)))
4643                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4644         else
4645                 ret = __handle_mm_fault(vma, address, flags);
4646
4647         if (flags & FAULT_FLAG_USER) {
4648                 mem_cgroup_exit_user_fault();
4649                 /*
4650                  * The task may have entered a memcg OOM situation but
4651                  * if the allocation error was handled gracefully (no
4652                  * VM_FAULT_OOM), there is no need to kill anything.
4653                  * Just clean up the OOM state peacefully.
4654                  */
4655                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4656                         mem_cgroup_oom_synchronize(false);
4657         }
4658
4659         mm_account_fault(regs, address, flags, ret);
4660
4661         return ret;
4662 }
4663 EXPORT_SYMBOL_GPL(handle_mm_fault);
4664
4665 #ifndef __PAGETABLE_P4D_FOLDED
4666 /*
4667  * Allocate p4d page table.
4668  * We've already handled the fast-path in-line.
4669  */
4670 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4671 {
4672         p4d_t *new = p4d_alloc_one(mm, address);
4673         if (!new)
4674                 return -ENOMEM;
4675
4676         smp_wmb(); /* See comment in __pte_alloc */
4677
4678         spin_lock(&mm->page_table_lock);
4679         if (pgd_present(*pgd))          /* Another has populated it */
4680                 p4d_free(mm, new);
4681         else
4682                 pgd_populate(mm, pgd, new);
4683         spin_unlock(&mm->page_table_lock);
4684         return 0;
4685 }
4686 #endif /* __PAGETABLE_P4D_FOLDED */
4687
4688 #ifndef __PAGETABLE_PUD_FOLDED
4689 /*
4690  * Allocate page upper directory.
4691  * We've already handled the fast-path in-line.
4692  */
4693 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4694 {
4695         pud_t *new = pud_alloc_one(mm, address);
4696         if (!new)
4697                 return -ENOMEM;
4698
4699         smp_wmb(); /* See comment in __pte_alloc */
4700
4701         spin_lock(&mm->page_table_lock);
4702         if (!p4d_present(*p4d)) {
4703                 mm_inc_nr_puds(mm);
4704                 p4d_populate(mm, p4d, new);
4705         } else  /* Another has populated it */
4706                 pud_free(mm, new);
4707         spin_unlock(&mm->page_table_lock);
4708         return 0;
4709 }
4710 #endif /* __PAGETABLE_PUD_FOLDED */
4711
4712 #ifndef __PAGETABLE_PMD_FOLDED
4713 /*
4714  * Allocate page middle directory.
4715  * We've already handled the fast-path in-line.
4716  */
4717 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4718 {
4719         spinlock_t *ptl;
4720         pmd_t *new = pmd_alloc_one(mm, address);
4721         if (!new)
4722                 return -ENOMEM;
4723
4724         smp_wmb(); /* See comment in __pte_alloc */
4725
4726         ptl = pud_lock(mm, pud);
4727         if (!pud_present(*pud)) {
4728                 mm_inc_nr_pmds(mm);
4729                 pud_populate(mm, pud, new);
4730         } else  /* Another has populated it */
4731                 pmd_free(mm, new);
4732         spin_unlock(ptl);
4733         return 0;
4734 }
4735 #endif /* __PAGETABLE_PMD_FOLDED */
4736
4737 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4738                           struct mmu_notifier_range *range, pte_t **ptepp,
4739                           pmd_t **pmdpp, spinlock_t **ptlp)
4740 {
4741         pgd_t *pgd;
4742         p4d_t *p4d;
4743         pud_t *pud;
4744         pmd_t *pmd;
4745         pte_t *ptep;
4746
4747         pgd = pgd_offset(mm, address);
4748         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4749                 goto out;
4750
4751         p4d = p4d_offset(pgd, address);
4752         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4753                 goto out;
4754
4755         pud = pud_offset(p4d, address);
4756         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4757                 goto out;
4758
4759         pmd = pmd_offset(pud, address);
4760         VM_BUG_ON(pmd_trans_huge(*pmd));
4761
4762         if (pmd_huge(*pmd)) {
4763                 if (!pmdpp)
4764                         goto out;
4765
4766                 if (range) {
4767                         mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4768                                                 NULL, mm, address & PMD_MASK,
4769                                                 (address & PMD_MASK) + PMD_SIZE);
4770                         mmu_notifier_invalidate_range_start(range);
4771                 }
4772                 *ptlp = pmd_lock(mm, pmd);
4773                 if (pmd_huge(*pmd)) {
4774                         *pmdpp = pmd;
4775                         return 0;
4776                 }
4777                 spin_unlock(*ptlp);
4778                 if (range)
4779                         mmu_notifier_invalidate_range_end(range);
4780         }
4781
4782         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4783                 goto out;
4784
4785         if (range) {
4786                 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4787                                         address & PAGE_MASK,
4788                                         (address & PAGE_MASK) + PAGE_SIZE);
4789                 mmu_notifier_invalidate_range_start(range);
4790         }
4791         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4792         if (!pte_present(*ptep))
4793                 goto unlock;
4794         *ptepp = ptep;
4795         return 0;
4796 unlock:
4797         pte_unmap_unlock(ptep, *ptlp);
4798         if (range)
4799                 mmu_notifier_invalidate_range_end(range);
4800 out:
4801         return -EINVAL;
4802 }
4803
4804 /**
4805  * follow_pte - look up PTE at a user virtual address
4806  * @mm: the mm_struct of the target address space
4807  * @address: user virtual address
4808  * @ptepp: location to store found PTE
4809  * @ptlp: location to store the lock for the PTE
4810  *
4811  * On a successful return, the pointer to the PTE is stored in @ptepp;
4812  * the corresponding lock is taken and its location is stored in @ptlp.
4813  * The contents of the PTE are only stable until @ptlp is released;
4814  * any further use, if any, must be protected against invalidation
4815  * with MMU notifiers.
4816  *
4817  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
4818  * should be taken for read.
4819  *
4820  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
4821  * it is not a good general-purpose API.
4822  *
4823  * Return: zero on success, -ve otherwise.
4824  */
4825 int follow_pte(struct mm_struct *mm, unsigned long address,
4826                pte_t **ptepp, spinlock_t **ptlp)
4827 {
4828         return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4829 }
4830 EXPORT_SYMBOL_GPL(follow_pte);
4831
4832 /**
4833  * follow_pfn - look up PFN at a user virtual address
4834  * @vma: memory mapping
4835  * @address: user virtual address
4836  * @pfn: location to store found PFN
4837  *
4838  * Only IO mappings and raw PFN mappings are allowed.
4839  *
4840  * This function does not allow the caller to read the permissions
4841  * of the PTE.  Do not use it.
4842  *
4843  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4844  */
4845 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4846         unsigned long *pfn)
4847 {
4848         int ret = -EINVAL;
4849         spinlock_t *ptl;
4850         pte_t *ptep;
4851
4852         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4853                 return ret;
4854
4855         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4856         if (ret)
4857                 return ret;
4858         *pfn = pte_pfn(*ptep);
4859         pte_unmap_unlock(ptep, ptl);
4860         return 0;
4861 }
4862 EXPORT_SYMBOL(follow_pfn);
4863
4864 #ifdef CONFIG_HAVE_IOREMAP_PROT
4865 int follow_phys(struct vm_area_struct *vma,
4866                 unsigned long address, unsigned int flags,
4867                 unsigned long *prot, resource_size_t *phys)
4868 {
4869         int ret = -EINVAL;
4870         pte_t *ptep, pte;
4871         spinlock_t *ptl;
4872
4873         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4874                 goto out;
4875
4876         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4877                 goto out;
4878         pte = *ptep;
4879
4880         if ((flags & FOLL_WRITE) && !pte_write(pte))
4881                 goto unlock;
4882
4883         *prot = pgprot_val(pte_pgprot(pte));
4884         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4885
4886         ret = 0;
4887 unlock:
4888         pte_unmap_unlock(ptep, ptl);
4889 out:
4890         return ret;
4891 }
4892
4893 /**
4894  * generic_access_phys - generic implementation for iomem mmap access
4895  * @vma: the vma to access
4896  * @addr: userspace address, not relative offset within @vma
4897  * @buf: buffer to read/write
4898  * @len: length of transfer
4899  * @write: set to FOLL_WRITE when writing, otherwise reading
4900  *
4901  * This is a generic implementation for &vm_operations_struct.access for an
4902  * iomem mapping. This callback is used by access_process_vm() when the @vma is
4903  * not page based.
4904  */
4905 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4906                         void *buf, int len, int write)
4907 {
4908         resource_size_t phys_addr;
4909         unsigned long prot = 0;
4910         void __iomem *maddr;
4911         pte_t *ptep, pte;
4912         spinlock_t *ptl;
4913         int offset = offset_in_page(addr);
4914         int ret = -EINVAL;
4915
4916         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4917                 return -EINVAL;
4918
4919 retry:
4920         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
4921                 return -EINVAL;
4922         pte = *ptep;
4923         pte_unmap_unlock(ptep, ptl);
4924
4925         prot = pgprot_val(pte_pgprot(pte));
4926         phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4927
4928         if ((write & FOLL_WRITE) && !pte_write(pte))
4929                 return -EINVAL;
4930
4931         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4932         if (!maddr)
4933                 return -ENOMEM;
4934
4935         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
4936                 goto out_unmap;
4937
4938         if (!pte_same(pte, *ptep)) {
4939                 pte_unmap_unlock(ptep, ptl);
4940                 iounmap(maddr);
4941
4942                 goto retry;
4943         }
4944
4945         if (write)
4946                 memcpy_toio(maddr + offset, buf, len);
4947         else
4948                 memcpy_fromio(buf, maddr + offset, len);
4949         ret = len;
4950         pte_unmap_unlock(ptep, ptl);
4951 out_unmap:
4952         iounmap(maddr);
4953
4954         return ret;
4955 }
4956 EXPORT_SYMBOL_GPL(generic_access_phys);
4957 #endif
4958
4959 /*
4960  * Access another process' address space as given in mm.
4961  */
4962 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
4963                        int len, unsigned int gup_flags)
4964 {
4965         struct vm_area_struct *vma;
4966         void *old_buf = buf;
4967         int write = gup_flags & FOLL_WRITE;
4968
4969         if (mmap_read_lock_killable(mm))
4970                 return 0;
4971
4972         /* ignore errors, just check how much was successfully transferred */
4973         while (len) {
4974                 int bytes, ret, offset;
4975                 void *maddr;
4976                 struct page *page = NULL;
4977
4978                 ret = get_user_pages_remote(mm, addr, 1,
4979                                 gup_flags, &page, &vma, NULL);
4980                 if (ret <= 0) {
4981 #ifndef CONFIG_HAVE_IOREMAP_PROT
4982                         break;
4983 #else
4984                         /*
4985                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4986                          * we can access using slightly different code.
4987                          */
4988                         vma = find_vma(mm, addr);
4989                         if (!vma || vma->vm_start > addr)
4990                                 break;
4991                         if (vma->vm_ops && vma->vm_ops->access)
4992                                 ret = vma->vm_ops->access(vma, addr, buf,
4993                                                           len, write);
4994                         if (ret <= 0)
4995                                 break;
4996                         bytes = ret;
4997 #endif
4998                 } else {
4999                         bytes = len;
5000                         offset = addr & (PAGE_SIZE-1);
5001                         if (bytes > PAGE_SIZE-offset)
5002                                 bytes = PAGE_SIZE-offset;
5003
5004                         maddr = kmap(page);
5005                         if (write) {
5006                                 copy_to_user_page(vma, page, addr,
5007                                                   maddr + offset, buf, bytes);
5008                                 set_page_dirty_lock(page);
5009                         } else {
5010                                 copy_from_user_page(vma, page, addr,
5011                                                     buf, maddr + offset, bytes);
5012                         }
5013                         kunmap(page);
5014                         put_page(page);
5015                 }
5016                 len -= bytes;
5017                 buf += bytes;
5018                 addr += bytes;
5019         }
5020         mmap_read_unlock(mm);
5021
5022         return buf - old_buf;
5023 }
5024
5025 /**
5026  * access_remote_vm - access another process' address space
5027  * @mm:         the mm_struct of the target address space
5028  * @addr:       start address to access
5029  * @buf:        source or destination buffer
5030  * @len:        number of bytes to transfer
5031  * @gup_flags:  flags modifying lookup behaviour
5032  *
5033  * The caller must hold a reference on @mm.
5034  *
5035  * Return: number of bytes copied from source to destination.
5036  */
5037 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5038                 void *buf, int len, unsigned int gup_flags)
5039 {
5040         return __access_remote_vm(mm, addr, buf, len, gup_flags);
5041 }
5042
5043 /*
5044  * Access another process' address space.
5045  * Source/target buffer must be kernel space,
5046  * Do not walk the page table directly, use get_user_pages
5047  */
5048 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5049                 void *buf, int len, unsigned int gup_flags)
5050 {
5051         struct mm_struct *mm;
5052         int ret;
5053
5054         mm = get_task_mm(tsk);
5055         if (!mm)
5056                 return 0;
5057
5058         ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5059
5060         mmput(mm);
5061
5062         return ret;
5063 }
5064 EXPORT_SYMBOL_GPL(access_process_vm);
5065
5066 /*
5067  * Print the name of a VMA.
5068  */
5069 void print_vma_addr(char *prefix, unsigned long ip)
5070 {
5071         struct mm_struct *mm = current->mm;
5072         struct vm_area_struct *vma;
5073
5074         /*
5075          * we might be running from an atomic context so we cannot sleep
5076          */
5077         if (!mmap_read_trylock(mm))
5078                 return;
5079
5080         vma = find_vma(mm, ip);
5081         if (vma && vma->vm_file) {
5082                 struct file *f = vma->vm_file;
5083                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5084                 if (buf) {
5085                         char *p;
5086
5087                         p = file_path(f, buf, PAGE_SIZE);
5088                         if (IS_ERR(p))
5089                                 p = "?";
5090                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5091                                         vma->vm_start,
5092                                         vma->vm_end - vma->vm_start);
5093                         free_page((unsigned long)buf);
5094                 }
5095         }
5096         mmap_read_unlock(mm);
5097 }
5098
5099 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5100 void __might_fault(const char *file, int line)
5101 {
5102         /*
5103          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5104          * holding the mmap_lock, this is safe because kernel memory doesn't
5105          * get paged out, therefore we'll never actually fault, and the
5106          * below annotations will generate false positives.
5107          */
5108         if (uaccess_kernel())
5109                 return;
5110         if (pagefault_disabled())
5111                 return;
5112         __might_sleep(file, line, 0);
5113 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5114         if (current->mm)
5115                 might_lock_read(&current->mm->mmap_lock);
5116 #endif
5117 }
5118 EXPORT_SYMBOL(__might_fault);
5119 #endif
5120
5121 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5122 /*
5123  * Process all subpages of the specified huge page with the specified
5124  * operation.  The target subpage will be processed last to keep its
5125  * cache lines hot.
5126  */
5127 static inline void process_huge_page(
5128         unsigned long addr_hint, unsigned int pages_per_huge_page,
5129         void (*process_subpage)(unsigned long addr, int idx, void *arg),
5130         void *arg)
5131 {
5132         int i, n, base, l;
5133         unsigned long addr = addr_hint &
5134                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5135
5136         /* Process target subpage last to keep its cache lines hot */
5137         might_sleep();
5138         n = (addr_hint - addr) / PAGE_SIZE;
5139         if (2 * n <= pages_per_huge_page) {
5140                 /* If target subpage in first half of huge page */
5141                 base = 0;
5142                 l = n;
5143                 /* Process subpages at the end of huge page */
5144                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5145                         cond_resched();
5146                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5147                 }
5148         } else {
5149                 /* If target subpage in second half of huge page */
5150                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5151                 l = pages_per_huge_page - n;
5152                 /* Process subpages at the begin of huge page */
5153                 for (i = 0; i < base; i++) {
5154                         cond_resched();
5155                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5156                 }
5157         }
5158         /*
5159          * Process remaining subpages in left-right-left-right pattern
5160          * towards the target subpage
5161          */
5162         for (i = 0; i < l; i++) {
5163                 int left_idx = base + i;
5164                 int right_idx = base + 2 * l - 1 - i;
5165
5166                 cond_resched();
5167                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5168                 cond_resched();
5169                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5170         }
5171 }
5172
5173 static void clear_gigantic_page(struct page *page,
5174                                 unsigned long addr,
5175                                 unsigned int pages_per_huge_page)
5176 {
5177         int i;
5178         struct page *p = page;
5179
5180         might_sleep();
5181         for (i = 0; i < pages_per_huge_page;
5182              i++, p = mem_map_next(p, page, i)) {
5183                 cond_resched();
5184                 clear_user_highpage(p, addr + i * PAGE_SIZE);
5185         }
5186 }
5187
5188 static void clear_subpage(unsigned long addr, int idx, void *arg)
5189 {
5190         struct page *page = arg;
5191
5192         clear_user_highpage(page + idx, addr);
5193 }
5194
5195 void clear_huge_page(struct page *page,
5196                      unsigned long addr_hint, unsigned int pages_per_huge_page)
5197 {
5198         unsigned long addr = addr_hint &
5199                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5200
5201         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5202                 clear_gigantic_page(page, addr, pages_per_huge_page);
5203                 return;
5204         }
5205
5206         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5207 }
5208
5209 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5210                                     unsigned long addr,
5211                                     struct vm_area_struct *vma,
5212                                     unsigned int pages_per_huge_page)
5213 {
5214         int i;
5215         struct page *dst_base = dst;
5216         struct page *src_base = src;
5217
5218         for (i = 0; i < pages_per_huge_page; ) {
5219                 cond_resched();
5220                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5221
5222                 i++;
5223                 dst = mem_map_next(dst, dst_base, i);
5224                 src = mem_map_next(src, src_base, i);
5225         }
5226 }
5227
5228 struct copy_subpage_arg {
5229         struct page *dst;
5230         struct page *src;
5231         struct vm_area_struct *vma;
5232 };
5233
5234 static void copy_subpage(unsigned long addr, int idx, void *arg)
5235 {
5236         struct copy_subpage_arg *copy_arg = arg;
5237
5238         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5239                            addr, copy_arg->vma);
5240 }
5241
5242 void copy_user_huge_page(struct page *dst, struct page *src,
5243                          unsigned long addr_hint, struct vm_area_struct *vma,
5244                          unsigned int pages_per_huge_page)
5245 {
5246         unsigned long addr = addr_hint &
5247                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5248         struct copy_subpage_arg arg = {
5249                 .dst = dst,
5250                 .src = src,
5251                 .vma = vma,
5252         };
5253
5254         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5255                 copy_user_gigantic_page(dst, src, addr, vma,
5256                                         pages_per_huge_page);
5257                 return;
5258         }
5259
5260         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5261 }
5262
5263 long copy_huge_page_from_user(struct page *dst_page,
5264                                 const void __user *usr_src,
5265                                 unsigned int pages_per_huge_page,
5266                                 bool allow_pagefault)
5267 {
5268         void *src = (void *)usr_src;
5269         void *page_kaddr;
5270         unsigned long i, rc = 0;
5271         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5272         struct page *subpage = dst_page;
5273
5274         for (i = 0; i < pages_per_huge_page;
5275              i++, subpage = mem_map_next(subpage, dst_page, i)) {
5276                 if (allow_pagefault)
5277                         page_kaddr = kmap(subpage);
5278                 else
5279                         page_kaddr = kmap_atomic(subpage);
5280                 rc = copy_from_user(page_kaddr,
5281                                 (const void __user *)(src + i * PAGE_SIZE),
5282                                 PAGE_SIZE);
5283                 if (allow_pagefault)
5284                         kunmap(subpage);
5285                 else
5286                         kunmap_atomic(page_kaddr);
5287
5288                 ret_val -= (PAGE_SIZE - rc);
5289                 if (rc)
5290                         break;
5291
5292                 cond_resched();
5293         }
5294         return ret_val;
5295 }
5296 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5297
5298 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5299
5300 static struct kmem_cache *page_ptl_cachep;
5301
5302 void __init ptlock_cache_init(void)
5303 {
5304         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5305                         SLAB_PANIC, NULL);
5306 }
5307
5308 bool ptlock_alloc(struct page *page)
5309 {
5310         spinlock_t *ptl;
5311
5312         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5313         if (!ptl)
5314                 return false;
5315         page->ptl = ptl;
5316         return true;
5317 }
5318
5319 void ptlock_free(struct page *page)
5320 {
5321         kmem_cache_free(page_ptl_cachep, page->ptl);
5322 }
5323 #endif