watchdog: bcm_kona_wdt: Use correct return value for bcm_kona_wdt_probe()
[linux-2.6-microblaze.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74
75 #include <trace/events/kmem.h>
76
77 #include <asm/io.h>
78 #include <asm/mmu_context.h>
79 #include <asm/pgalloc.h>
80 #include <linux/uaccess.h>
81 #include <asm/tlb.h>
82 #include <asm/tlbflush.h>
83
84 #include "internal.h"
85
86 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
87 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
88 #endif
89
90 #ifndef CONFIG_NEED_MULTIPLE_NODES
91 /* use the per-pgdat data instead for discontigmem - mbligh */
92 unsigned long max_mapnr;
93 EXPORT_SYMBOL(max_mapnr);
94
95 struct page *mem_map;
96 EXPORT_SYMBOL(mem_map);
97 #endif
98
99 /*
100  * A number of key systems in x86 including ioremap() rely on the assumption
101  * that high_memory defines the upper bound on direct map memory, then end
102  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
103  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
104  * and ZONE_HIGHMEM.
105  */
106 void *high_memory;
107 EXPORT_SYMBOL(high_memory);
108
109 /*
110  * Randomize the address space (stacks, mmaps, brk, etc.).
111  *
112  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
113  *   as ancient (libc5 based) binaries can segfault. )
114  */
115 int randomize_va_space __read_mostly =
116 #ifdef CONFIG_COMPAT_BRK
117                                         1;
118 #else
119                                         2;
120 #endif
121
122 #ifndef arch_faults_on_old_pte
123 static inline bool arch_faults_on_old_pte(void)
124 {
125         /*
126          * Those arches which don't have hw access flag feature need to
127          * implement their own helper. By default, "true" means pagefault
128          * will be hit on old pte.
129          */
130         return true;
131 }
132 #endif
133
134 static int __init disable_randmaps(char *s)
135 {
136         randomize_va_space = 0;
137         return 1;
138 }
139 __setup("norandmaps", disable_randmaps);
140
141 unsigned long zero_pfn __read_mostly;
142 EXPORT_SYMBOL(zero_pfn);
143
144 unsigned long highest_memmap_pfn __read_mostly;
145
146 /*
147  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
148  */
149 static int __init init_zero_pfn(void)
150 {
151         zero_pfn = page_to_pfn(ZERO_PAGE(0));
152         return 0;
153 }
154 core_initcall(init_zero_pfn);
155
156 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
157 {
158         trace_rss_stat(mm, member, count);
159 }
160
161 #if defined(SPLIT_RSS_COUNTING)
162
163 void sync_mm_rss(struct mm_struct *mm)
164 {
165         int i;
166
167         for (i = 0; i < NR_MM_COUNTERS; i++) {
168                 if (current->rss_stat.count[i]) {
169                         add_mm_counter(mm, i, current->rss_stat.count[i]);
170                         current->rss_stat.count[i] = 0;
171                 }
172         }
173         current->rss_stat.events = 0;
174 }
175
176 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
177 {
178         struct task_struct *task = current;
179
180         if (likely(task->mm == mm))
181                 task->rss_stat.count[member] += val;
182         else
183                 add_mm_counter(mm, member, val);
184 }
185 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
186 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
187
188 /* sync counter once per 64 page faults */
189 #define TASK_RSS_EVENTS_THRESH  (64)
190 static void check_sync_rss_stat(struct task_struct *task)
191 {
192         if (unlikely(task != current))
193                 return;
194         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
195                 sync_mm_rss(task->mm);
196 }
197 #else /* SPLIT_RSS_COUNTING */
198
199 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
200 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
201
202 static void check_sync_rss_stat(struct task_struct *task)
203 {
204 }
205
206 #endif /* SPLIT_RSS_COUNTING */
207
208 /*
209  * Note: this doesn't free the actual pages themselves. That
210  * has been handled earlier when unmapping all the memory regions.
211  */
212 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
213                            unsigned long addr)
214 {
215         pgtable_t token = pmd_pgtable(*pmd);
216         pmd_clear(pmd);
217         pte_free_tlb(tlb, token, addr);
218         mm_dec_nr_ptes(tlb->mm);
219 }
220
221 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
222                                 unsigned long addr, unsigned long end,
223                                 unsigned long floor, unsigned long ceiling)
224 {
225         pmd_t *pmd;
226         unsigned long next;
227         unsigned long start;
228
229         start = addr;
230         pmd = pmd_offset(pud, addr);
231         do {
232                 next = pmd_addr_end(addr, end);
233                 if (pmd_none_or_clear_bad(pmd))
234                         continue;
235                 free_pte_range(tlb, pmd, addr);
236         } while (pmd++, addr = next, addr != end);
237
238         start &= PUD_MASK;
239         if (start < floor)
240                 return;
241         if (ceiling) {
242                 ceiling &= PUD_MASK;
243                 if (!ceiling)
244                         return;
245         }
246         if (end - 1 > ceiling - 1)
247                 return;
248
249         pmd = pmd_offset(pud, start);
250         pud_clear(pud);
251         pmd_free_tlb(tlb, pmd, start);
252         mm_dec_nr_pmds(tlb->mm);
253 }
254
255 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
256                                 unsigned long addr, unsigned long end,
257                                 unsigned long floor, unsigned long ceiling)
258 {
259         pud_t *pud;
260         unsigned long next;
261         unsigned long start;
262
263         start = addr;
264         pud = pud_offset(p4d, addr);
265         do {
266                 next = pud_addr_end(addr, end);
267                 if (pud_none_or_clear_bad(pud))
268                         continue;
269                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
270         } while (pud++, addr = next, addr != end);
271
272         start &= P4D_MASK;
273         if (start < floor)
274                 return;
275         if (ceiling) {
276                 ceiling &= P4D_MASK;
277                 if (!ceiling)
278                         return;
279         }
280         if (end - 1 > ceiling - 1)
281                 return;
282
283         pud = pud_offset(p4d, start);
284         p4d_clear(p4d);
285         pud_free_tlb(tlb, pud, start);
286         mm_dec_nr_puds(tlb->mm);
287 }
288
289 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
290                                 unsigned long addr, unsigned long end,
291                                 unsigned long floor, unsigned long ceiling)
292 {
293         p4d_t *p4d;
294         unsigned long next;
295         unsigned long start;
296
297         start = addr;
298         p4d = p4d_offset(pgd, addr);
299         do {
300                 next = p4d_addr_end(addr, end);
301                 if (p4d_none_or_clear_bad(p4d))
302                         continue;
303                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
304         } while (p4d++, addr = next, addr != end);
305
306         start &= PGDIR_MASK;
307         if (start < floor)
308                 return;
309         if (ceiling) {
310                 ceiling &= PGDIR_MASK;
311                 if (!ceiling)
312                         return;
313         }
314         if (end - 1 > ceiling - 1)
315                 return;
316
317         p4d = p4d_offset(pgd, start);
318         pgd_clear(pgd);
319         p4d_free_tlb(tlb, p4d, start);
320 }
321
322 /*
323  * This function frees user-level page tables of a process.
324  */
325 void free_pgd_range(struct mmu_gather *tlb,
326                         unsigned long addr, unsigned long end,
327                         unsigned long floor, unsigned long ceiling)
328 {
329         pgd_t *pgd;
330         unsigned long next;
331
332         /*
333          * The next few lines have given us lots of grief...
334          *
335          * Why are we testing PMD* at this top level?  Because often
336          * there will be no work to do at all, and we'd prefer not to
337          * go all the way down to the bottom just to discover that.
338          *
339          * Why all these "- 1"s?  Because 0 represents both the bottom
340          * of the address space and the top of it (using -1 for the
341          * top wouldn't help much: the masks would do the wrong thing).
342          * The rule is that addr 0 and floor 0 refer to the bottom of
343          * the address space, but end 0 and ceiling 0 refer to the top
344          * Comparisons need to use "end - 1" and "ceiling - 1" (though
345          * that end 0 case should be mythical).
346          *
347          * Wherever addr is brought up or ceiling brought down, we must
348          * be careful to reject "the opposite 0" before it confuses the
349          * subsequent tests.  But what about where end is brought down
350          * by PMD_SIZE below? no, end can't go down to 0 there.
351          *
352          * Whereas we round start (addr) and ceiling down, by different
353          * masks at different levels, in order to test whether a table
354          * now has no other vmas using it, so can be freed, we don't
355          * bother to round floor or end up - the tests don't need that.
356          */
357
358         addr &= PMD_MASK;
359         if (addr < floor) {
360                 addr += PMD_SIZE;
361                 if (!addr)
362                         return;
363         }
364         if (ceiling) {
365                 ceiling &= PMD_MASK;
366                 if (!ceiling)
367                         return;
368         }
369         if (end - 1 > ceiling - 1)
370                 end -= PMD_SIZE;
371         if (addr > end - 1)
372                 return;
373         /*
374          * We add page table cache pages with PAGE_SIZE,
375          * (see pte_free_tlb()), flush the tlb if we need
376          */
377         tlb_change_page_size(tlb, PAGE_SIZE);
378         pgd = pgd_offset(tlb->mm, addr);
379         do {
380                 next = pgd_addr_end(addr, end);
381                 if (pgd_none_or_clear_bad(pgd))
382                         continue;
383                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
384         } while (pgd++, addr = next, addr != end);
385 }
386
387 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
388                 unsigned long floor, unsigned long ceiling)
389 {
390         while (vma) {
391                 struct vm_area_struct *next = vma->vm_next;
392                 unsigned long addr = vma->vm_start;
393
394                 /*
395                  * Hide vma from rmap and truncate_pagecache before freeing
396                  * pgtables
397                  */
398                 unlink_anon_vmas(vma);
399                 unlink_file_vma(vma);
400
401                 if (is_vm_hugetlb_page(vma)) {
402                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
403                                 floor, next ? next->vm_start : ceiling);
404                 } else {
405                         /*
406                          * Optimization: gather nearby vmas into one call down
407                          */
408                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
409                                && !is_vm_hugetlb_page(next)) {
410                                 vma = next;
411                                 next = vma->vm_next;
412                                 unlink_anon_vmas(vma);
413                                 unlink_file_vma(vma);
414                         }
415                         free_pgd_range(tlb, addr, vma->vm_end,
416                                 floor, next ? next->vm_start : ceiling);
417                 }
418                 vma = next;
419         }
420 }
421
422 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
423 {
424         spinlock_t *ptl;
425         pgtable_t new = pte_alloc_one(mm);
426         if (!new)
427                 return -ENOMEM;
428
429         /*
430          * Ensure all pte setup (eg. pte page lock and page clearing) are
431          * visible before the pte is made visible to other CPUs by being
432          * put into page tables.
433          *
434          * The other side of the story is the pointer chasing in the page
435          * table walking code (when walking the page table without locking;
436          * ie. most of the time). Fortunately, these data accesses consist
437          * of a chain of data-dependent loads, meaning most CPUs (alpha
438          * being the notable exception) will already guarantee loads are
439          * seen in-order. See the alpha page table accessors for the
440          * smp_read_barrier_depends() barriers in page table walking code.
441          */
442         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
443
444         ptl = pmd_lock(mm, pmd);
445         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
446                 mm_inc_nr_ptes(mm);
447                 pmd_populate(mm, pmd, new);
448                 new = NULL;
449         }
450         spin_unlock(ptl);
451         if (new)
452                 pte_free(mm, new);
453         return 0;
454 }
455
456 int __pte_alloc_kernel(pmd_t *pmd)
457 {
458         pte_t *new = pte_alloc_one_kernel(&init_mm);
459         if (!new)
460                 return -ENOMEM;
461
462         smp_wmb(); /* See comment in __pte_alloc */
463
464         spin_lock(&init_mm.page_table_lock);
465         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
466                 pmd_populate_kernel(&init_mm, pmd, new);
467                 new = NULL;
468         }
469         spin_unlock(&init_mm.page_table_lock);
470         if (new)
471                 pte_free_kernel(&init_mm, new);
472         return 0;
473 }
474
475 static inline void init_rss_vec(int *rss)
476 {
477         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
478 }
479
480 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
481 {
482         int i;
483
484         if (current->mm == mm)
485                 sync_mm_rss(mm);
486         for (i = 0; i < NR_MM_COUNTERS; i++)
487                 if (rss[i])
488                         add_mm_counter(mm, i, rss[i]);
489 }
490
491 /*
492  * This function is called to print an error when a bad pte
493  * is found. For example, we might have a PFN-mapped pte in
494  * a region that doesn't allow it.
495  *
496  * The calling function must still handle the error.
497  */
498 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
499                           pte_t pte, struct page *page)
500 {
501         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
502         p4d_t *p4d = p4d_offset(pgd, addr);
503         pud_t *pud = pud_offset(p4d, addr);
504         pmd_t *pmd = pmd_offset(pud, addr);
505         struct address_space *mapping;
506         pgoff_t index;
507         static unsigned long resume;
508         static unsigned long nr_shown;
509         static unsigned long nr_unshown;
510
511         /*
512          * Allow a burst of 60 reports, then keep quiet for that minute;
513          * or allow a steady drip of one report per second.
514          */
515         if (nr_shown == 60) {
516                 if (time_before(jiffies, resume)) {
517                         nr_unshown++;
518                         return;
519                 }
520                 if (nr_unshown) {
521                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
522                                  nr_unshown);
523                         nr_unshown = 0;
524                 }
525                 nr_shown = 0;
526         }
527         if (nr_shown++ == 0)
528                 resume = jiffies + 60 * HZ;
529
530         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
531         index = linear_page_index(vma, addr);
532
533         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
534                  current->comm,
535                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
536         if (page)
537                 dump_page(page, "bad pte");
538         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
539                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
540         pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
541                  vma->vm_file,
542                  vma->vm_ops ? vma->vm_ops->fault : NULL,
543                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
544                  mapping ? mapping->a_ops->readpage : NULL);
545         dump_stack();
546         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
547 }
548
549 /*
550  * vm_normal_page -- This function gets the "struct page" associated with a pte.
551  *
552  * "Special" mappings do not wish to be associated with a "struct page" (either
553  * it doesn't exist, or it exists but they don't want to touch it). In this
554  * case, NULL is returned here. "Normal" mappings do have a struct page.
555  *
556  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
557  * pte bit, in which case this function is trivial. Secondly, an architecture
558  * may not have a spare pte bit, which requires a more complicated scheme,
559  * described below.
560  *
561  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
562  * special mapping (even if there are underlying and valid "struct pages").
563  * COWed pages of a VM_PFNMAP are always normal.
564  *
565  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
566  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
567  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
568  * mapping will always honor the rule
569  *
570  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
571  *
572  * And for normal mappings this is false.
573  *
574  * This restricts such mappings to be a linear translation from virtual address
575  * to pfn. To get around this restriction, we allow arbitrary mappings so long
576  * as the vma is not a COW mapping; in that case, we know that all ptes are
577  * special (because none can have been COWed).
578  *
579  *
580  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
581  *
582  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
583  * page" backing, however the difference is that _all_ pages with a struct
584  * page (that is, those where pfn_valid is true) are refcounted and considered
585  * normal pages by the VM. The disadvantage is that pages are refcounted
586  * (which can be slower and simply not an option for some PFNMAP users). The
587  * advantage is that we don't have to follow the strict linearity rule of
588  * PFNMAP mappings in order to support COWable mappings.
589  *
590  */
591 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
592                             pte_t pte)
593 {
594         unsigned long pfn = pte_pfn(pte);
595
596         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
597                 if (likely(!pte_special(pte)))
598                         goto check_pfn;
599                 if (vma->vm_ops && vma->vm_ops->find_special_page)
600                         return vma->vm_ops->find_special_page(vma, addr);
601                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
602                         return NULL;
603                 if (is_zero_pfn(pfn))
604                         return NULL;
605                 if (pte_devmap(pte))
606                         return NULL;
607
608                 print_bad_pte(vma, addr, pte, NULL);
609                 return NULL;
610         }
611
612         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
613
614         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
615                 if (vma->vm_flags & VM_MIXEDMAP) {
616                         if (!pfn_valid(pfn))
617                                 return NULL;
618                         goto out;
619                 } else {
620                         unsigned long off;
621                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
622                         if (pfn == vma->vm_pgoff + off)
623                                 return NULL;
624                         if (!is_cow_mapping(vma->vm_flags))
625                                 return NULL;
626                 }
627         }
628
629         if (is_zero_pfn(pfn))
630                 return NULL;
631
632 check_pfn:
633         if (unlikely(pfn > highest_memmap_pfn)) {
634                 print_bad_pte(vma, addr, pte, NULL);
635                 return NULL;
636         }
637
638         /*
639          * NOTE! We still have PageReserved() pages in the page tables.
640          * eg. VDSO mappings can cause them to exist.
641          */
642 out:
643         return pfn_to_page(pfn);
644 }
645
646 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
647 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
648                                 pmd_t pmd)
649 {
650         unsigned long pfn = pmd_pfn(pmd);
651
652         /*
653          * There is no pmd_special() but there may be special pmds, e.g.
654          * in a direct-access (dax) mapping, so let's just replicate the
655          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
656          */
657         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
658                 if (vma->vm_flags & VM_MIXEDMAP) {
659                         if (!pfn_valid(pfn))
660                                 return NULL;
661                         goto out;
662                 } else {
663                         unsigned long off;
664                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
665                         if (pfn == vma->vm_pgoff + off)
666                                 return NULL;
667                         if (!is_cow_mapping(vma->vm_flags))
668                                 return NULL;
669                 }
670         }
671
672         if (pmd_devmap(pmd))
673                 return NULL;
674         if (is_huge_zero_pmd(pmd))
675                 return NULL;
676         if (unlikely(pfn > highest_memmap_pfn))
677                 return NULL;
678
679         /*
680          * NOTE! We still have PageReserved() pages in the page tables.
681          * eg. VDSO mappings can cause them to exist.
682          */
683 out:
684         return pfn_to_page(pfn);
685 }
686 #endif
687
688 /*
689  * copy one vm_area from one task to the other. Assumes the page tables
690  * already present in the new task to be cleared in the whole range
691  * covered by this vma.
692  */
693
694 static inline unsigned long
695 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
696                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
697                 unsigned long addr, int *rss)
698 {
699         unsigned long vm_flags = vma->vm_flags;
700         pte_t pte = *src_pte;
701         struct page *page;
702
703         /* pte contains position in swap or file, so copy. */
704         if (unlikely(!pte_present(pte))) {
705                 swp_entry_t entry = pte_to_swp_entry(pte);
706
707                 if (likely(!non_swap_entry(entry))) {
708                         if (swap_duplicate(entry) < 0)
709                                 return entry.val;
710
711                         /* make sure dst_mm is on swapoff's mmlist. */
712                         if (unlikely(list_empty(&dst_mm->mmlist))) {
713                                 spin_lock(&mmlist_lock);
714                                 if (list_empty(&dst_mm->mmlist))
715                                         list_add(&dst_mm->mmlist,
716                                                         &src_mm->mmlist);
717                                 spin_unlock(&mmlist_lock);
718                         }
719                         rss[MM_SWAPENTS]++;
720                 } else if (is_migration_entry(entry)) {
721                         page = migration_entry_to_page(entry);
722
723                         rss[mm_counter(page)]++;
724
725                         if (is_write_migration_entry(entry) &&
726                                         is_cow_mapping(vm_flags)) {
727                                 /*
728                                  * COW mappings require pages in both
729                                  * parent and child to be set to read.
730                                  */
731                                 make_migration_entry_read(&entry);
732                                 pte = swp_entry_to_pte(entry);
733                                 if (pte_swp_soft_dirty(*src_pte))
734                                         pte = pte_swp_mksoft_dirty(pte);
735                                 if (pte_swp_uffd_wp(*src_pte))
736                                         pte = pte_swp_mkuffd_wp(pte);
737                                 set_pte_at(src_mm, addr, src_pte, pte);
738                         }
739                 } else if (is_device_private_entry(entry)) {
740                         page = device_private_entry_to_page(entry);
741
742                         /*
743                          * Update rss count even for unaddressable pages, as
744                          * they should treated just like normal pages in this
745                          * respect.
746                          *
747                          * We will likely want to have some new rss counters
748                          * for unaddressable pages, at some point. But for now
749                          * keep things as they are.
750                          */
751                         get_page(page);
752                         rss[mm_counter(page)]++;
753                         page_dup_rmap(page, false);
754
755                         /*
756                          * We do not preserve soft-dirty information, because so
757                          * far, checkpoint/restore is the only feature that
758                          * requires that. And checkpoint/restore does not work
759                          * when a device driver is involved (you cannot easily
760                          * save and restore device driver state).
761                          */
762                         if (is_write_device_private_entry(entry) &&
763                             is_cow_mapping(vm_flags)) {
764                                 make_device_private_entry_read(&entry);
765                                 pte = swp_entry_to_pte(entry);
766                                 if (pte_swp_uffd_wp(*src_pte))
767                                         pte = pte_swp_mkuffd_wp(pte);
768                                 set_pte_at(src_mm, addr, src_pte, pte);
769                         }
770                 }
771                 goto out_set_pte;
772         }
773
774         /*
775          * If it's a COW mapping, write protect it both
776          * in the parent and the child
777          */
778         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
779                 ptep_set_wrprotect(src_mm, addr, src_pte);
780                 pte = pte_wrprotect(pte);
781         }
782
783         /*
784          * If it's a shared mapping, mark it clean in
785          * the child
786          */
787         if (vm_flags & VM_SHARED)
788                 pte = pte_mkclean(pte);
789         pte = pte_mkold(pte);
790
791         /*
792          * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
793          * does not have the VM_UFFD_WP, which means that the uffd
794          * fork event is not enabled.
795          */
796         if (!(vm_flags & VM_UFFD_WP))
797                 pte = pte_clear_uffd_wp(pte);
798
799         page = vm_normal_page(vma, addr, pte);
800         if (page) {
801                 get_page(page);
802                 page_dup_rmap(page, false);
803                 rss[mm_counter(page)]++;
804         }
805
806 out_set_pte:
807         set_pte_at(dst_mm, addr, dst_pte, pte);
808         return 0;
809 }
810
811 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
812                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
813                    unsigned long addr, unsigned long end)
814 {
815         pte_t *orig_src_pte, *orig_dst_pte;
816         pte_t *src_pte, *dst_pte;
817         spinlock_t *src_ptl, *dst_ptl;
818         int progress = 0;
819         int rss[NR_MM_COUNTERS];
820         swp_entry_t entry = (swp_entry_t){0};
821
822 again:
823         init_rss_vec(rss);
824
825         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
826         if (!dst_pte)
827                 return -ENOMEM;
828         src_pte = pte_offset_map(src_pmd, addr);
829         src_ptl = pte_lockptr(src_mm, src_pmd);
830         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
831         orig_src_pte = src_pte;
832         orig_dst_pte = dst_pte;
833         arch_enter_lazy_mmu_mode();
834
835         do {
836                 /*
837                  * We are holding two locks at this point - either of them
838                  * could generate latencies in another task on another CPU.
839                  */
840                 if (progress >= 32) {
841                         progress = 0;
842                         if (need_resched() ||
843                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
844                                 break;
845                 }
846                 if (pte_none(*src_pte)) {
847                         progress++;
848                         continue;
849                 }
850                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
851                                                         vma, addr, rss);
852                 if (entry.val)
853                         break;
854                 progress += 8;
855         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
856
857         arch_leave_lazy_mmu_mode();
858         spin_unlock(src_ptl);
859         pte_unmap(orig_src_pte);
860         add_mm_rss_vec(dst_mm, rss);
861         pte_unmap_unlock(orig_dst_pte, dst_ptl);
862         cond_resched();
863
864         if (entry.val) {
865                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
866                         return -ENOMEM;
867                 progress = 0;
868         }
869         if (addr != end)
870                 goto again;
871         return 0;
872 }
873
874 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
875                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
876                 unsigned long addr, unsigned long end)
877 {
878         pmd_t *src_pmd, *dst_pmd;
879         unsigned long next;
880
881         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
882         if (!dst_pmd)
883                 return -ENOMEM;
884         src_pmd = pmd_offset(src_pud, addr);
885         do {
886                 next = pmd_addr_end(addr, end);
887                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
888                         || pmd_devmap(*src_pmd)) {
889                         int err;
890                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
891                         err = copy_huge_pmd(dst_mm, src_mm,
892                                             dst_pmd, src_pmd, addr, vma);
893                         if (err == -ENOMEM)
894                                 return -ENOMEM;
895                         if (!err)
896                                 continue;
897                         /* fall through */
898                 }
899                 if (pmd_none_or_clear_bad(src_pmd))
900                         continue;
901                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
902                                                 vma, addr, next))
903                         return -ENOMEM;
904         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
905         return 0;
906 }
907
908 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
909                 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
910                 unsigned long addr, unsigned long end)
911 {
912         pud_t *src_pud, *dst_pud;
913         unsigned long next;
914
915         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
916         if (!dst_pud)
917                 return -ENOMEM;
918         src_pud = pud_offset(src_p4d, addr);
919         do {
920                 next = pud_addr_end(addr, end);
921                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
922                         int err;
923
924                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
925                         err = copy_huge_pud(dst_mm, src_mm,
926                                             dst_pud, src_pud, addr, vma);
927                         if (err == -ENOMEM)
928                                 return -ENOMEM;
929                         if (!err)
930                                 continue;
931                         /* fall through */
932                 }
933                 if (pud_none_or_clear_bad(src_pud))
934                         continue;
935                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
936                                                 vma, addr, next))
937                         return -ENOMEM;
938         } while (dst_pud++, src_pud++, addr = next, addr != end);
939         return 0;
940 }
941
942 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
943                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
944                 unsigned long addr, unsigned long end)
945 {
946         p4d_t *src_p4d, *dst_p4d;
947         unsigned long next;
948
949         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
950         if (!dst_p4d)
951                 return -ENOMEM;
952         src_p4d = p4d_offset(src_pgd, addr);
953         do {
954                 next = p4d_addr_end(addr, end);
955                 if (p4d_none_or_clear_bad(src_p4d))
956                         continue;
957                 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
958                                                 vma, addr, next))
959                         return -ENOMEM;
960         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
961         return 0;
962 }
963
964 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
965                 struct vm_area_struct *vma)
966 {
967         pgd_t *src_pgd, *dst_pgd;
968         unsigned long next;
969         unsigned long addr = vma->vm_start;
970         unsigned long end = vma->vm_end;
971         struct mmu_notifier_range range;
972         bool is_cow;
973         int ret;
974
975         /*
976          * Don't copy ptes where a page fault will fill them correctly.
977          * Fork becomes much lighter when there are big shared or private
978          * readonly mappings. The tradeoff is that copy_page_range is more
979          * efficient than faulting.
980          */
981         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
982                         !vma->anon_vma)
983                 return 0;
984
985         if (is_vm_hugetlb_page(vma))
986                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
987
988         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
989                 /*
990                  * We do not free on error cases below as remove_vma
991                  * gets called on error from higher level routine
992                  */
993                 ret = track_pfn_copy(vma);
994                 if (ret)
995                         return ret;
996         }
997
998         /*
999          * We need to invalidate the secondary MMU mappings only when
1000          * there could be a permission downgrade on the ptes of the
1001          * parent mm. And a permission downgrade will only happen if
1002          * is_cow_mapping() returns true.
1003          */
1004         is_cow = is_cow_mapping(vma->vm_flags);
1005
1006         if (is_cow) {
1007                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1008                                         0, vma, src_mm, addr, end);
1009                 mmu_notifier_invalidate_range_start(&range);
1010         }
1011
1012         ret = 0;
1013         dst_pgd = pgd_offset(dst_mm, addr);
1014         src_pgd = pgd_offset(src_mm, addr);
1015         do {
1016                 next = pgd_addr_end(addr, end);
1017                 if (pgd_none_or_clear_bad(src_pgd))
1018                         continue;
1019                 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1020                                             vma, addr, next))) {
1021                         ret = -ENOMEM;
1022                         break;
1023                 }
1024         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1025
1026         if (is_cow)
1027                 mmu_notifier_invalidate_range_end(&range);
1028         return ret;
1029 }
1030
1031 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1032                                 struct vm_area_struct *vma, pmd_t *pmd,
1033                                 unsigned long addr, unsigned long end,
1034                                 struct zap_details *details)
1035 {
1036         struct mm_struct *mm = tlb->mm;
1037         int force_flush = 0;
1038         int rss[NR_MM_COUNTERS];
1039         spinlock_t *ptl;
1040         pte_t *start_pte;
1041         pte_t *pte;
1042         swp_entry_t entry;
1043
1044         tlb_change_page_size(tlb, PAGE_SIZE);
1045 again:
1046         init_rss_vec(rss);
1047         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1048         pte = start_pte;
1049         flush_tlb_batched_pending(mm);
1050         arch_enter_lazy_mmu_mode();
1051         do {
1052                 pte_t ptent = *pte;
1053                 if (pte_none(ptent))
1054                         continue;
1055
1056                 if (need_resched())
1057                         break;
1058
1059                 if (pte_present(ptent)) {
1060                         struct page *page;
1061
1062                         page = vm_normal_page(vma, addr, ptent);
1063                         if (unlikely(details) && page) {
1064                                 /*
1065                                  * unmap_shared_mapping_pages() wants to
1066                                  * invalidate cache without truncating:
1067                                  * unmap shared but keep private pages.
1068                                  */
1069                                 if (details->check_mapping &&
1070                                     details->check_mapping != page_rmapping(page))
1071                                         continue;
1072                         }
1073                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1074                                                         tlb->fullmm);
1075                         tlb_remove_tlb_entry(tlb, pte, addr);
1076                         if (unlikely(!page))
1077                                 continue;
1078
1079                         if (!PageAnon(page)) {
1080                                 if (pte_dirty(ptent)) {
1081                                         force_flush = 1;
1082                                         set_page_dirty(page);
1083                                 }
1084                                 if (pte_young(ptent) &&
1085                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1086                                         mark_page_accessed(page);
1087                         }
1088                         rss[mm_counter(page)]--;
1089                         page_remove_rmap(page, false);
1090                         if (unlikely(page_mapcount(page) < 0))
1091                                 print_bad_pte(vma, addr, ptent, page);
1092                         if (unlikely(__tlb_remove_page(tlb, page))) {
1093                                 force_flush = 1;
1094                                 addr += PAGE_SIZE;
1095                                 break;
1096                         }
1097                         continue;
1098                 }
1099
1100                 entry = pte_to_swp_entry(ptent);
1101                 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1102                         struct page *page = device_private_entry_to_page(entry);
1103
1104                         if (unlikely(details && details->check_mapping)) {
1105                                 /*
1106                                  * unmap_shared_mapping_pages() wants to
1107                                  * invalidate cache without truncating:
1108                                  * unmap shared but keep private pages.
1109                                  */
1110                                 if (details->check_mapping !=
1111                                     page_rmapping(page))
1112                                         continue;
1113                         }
1114
1115                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1116                         rss[mm_counter(page)]--;
1117                         page_remove_rmap(page, false);
1118                         put_page(page);
1119                         continue;
1120                 }
1121
1122                 /* If details->check_mapping, we leave swap entries. */
1123                 if (unlikely(details))
1124                         continue;
1125
1126                 if (!non_swap_entry(entry))
1127                         rss[MM_SWAPENTS]--;
1128                 else if (is_migration_entry(entry)) {
1129                         struct page *page;
1130
1131                         page = migration_entry_to_page(entry);
1132                         rss[mm_counter(page)]--;
1133                 }
1134                 if (unlikely(!free_swap_and_cache(entry)))
1135                         print_bad_pte(vma, addr, ptent, NULL);
1136                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1137         } while (pte++, addr += PAGE_SIZE, addr != end);
1138
1139         add_mm_rss_vec(mm, rss);
1140         arch_leave_lazy_mmu_mode();
1141
1142         /* Do the actual TLB flush before dropping ptl */
1143         if (force_flush)
1144                 tlb_flush_mmu_tlbonly(tlb);
1145         pte_unmap_unlock(start_pte, ptl);
1146
1147         /*
1148          * If we forced a TLB flush (either due to running out of
1149          * batch buffers or because we needed to flush dirty TLB
1150          * entries before releasing the ptl), free the batched
1151          * memory too. Restart if we didn't do everything.
1152          */
1153         if (force_flush) {
1154                 force_flush = 0;
1155                 tlb_flush_mmu(tlb);
1156         }
1157
1158         if (addr != end) {
1159                 cond_resched();
1160                 goto again;
1161         }
1162
1163         return addr;
1164 }
1165
1166 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1167                                 struct vm_area_struct *vma, pud_t *pud,
1168                                 unsigned long addr, unsigned long end,
1169                                 struct zap_details *details)
1170 {
1171         pmd_t *pmd;
1172         unsigned long next;
1173
1174         pmd = pmd_offset(pud, addr);
1175         do {
1176                 next = pmd_addr_end(addr, end);
1177                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1178                         if (next - addr != HPAGE_PMD_SIZE)
1179                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1180                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1181                                 goto next;
1182                         /* fall through */
1183                 }
1184                 /*
1185                  * Here there can be other concurrent MADV_DONTNEED or
1186                  * trans huge page faults running, and if the pmd is
1187                  * none or trans huge it can change under us. This is
1188                  * because MADV_DONTNEED holds the mmap_lock in read
1189                  * mode.
1190                  */
1191                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1192                         goto next;
1193                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1194 next:
1195                 cond_resched();
1196         } while (pmd++, addr = next, addr != end);
1197
1198         return addr;
1199 }
1200
1201 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1202                                 struct vm_area_struct *vma, p4d_t *p4d,
1203                                 unsigned long addr, unsigned long end,
1204                                 struct zap_details *details)
1205 {
1206         pud_t *pud;
1207         unsigned long next;
1208
1209         pud = pud_offset(p4d, addr);
1210         do {
1211                 next = pud_addr_end(addr, end);
1212                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1213                         if (next - addr != HPAGE_PUD_SIZE) {
1214                                 mmap_assert_locked(tlb->mm);
1215                                 split_huge_pud(vma, pud, addr);
1216                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1217                                 goto next;
1218                         /* fall through */
1219                 }
1220                 if (pud_none_or_clear_bad(pud))
1221                         continue;
1222                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1223 next:
1224                 cond_resched();
1225         } while (pud++, addr = next, addr != end);
1226
1227         return addr;
1228 }
1229
1230 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1231                                 struct vm_area_struct *vma, pgd_t *pgd,
1232                                 unsigned long addr, unsigned long end,
1233                                 struct zap_details *details)
1234 {
1235         p4d_t *p4d;
1236         unsigned long next;
1237
1238         p4d = p4d_offset(pgd, addr);
1239         do {
1240                 next = p4d_addr_end(addr, end);
1241                 if (p4d_none_or_clear_bad(p4d))
1242                         continue;
1243                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1244         } while (p4d++, addr = next, addr != end);
1245
1246         return addr;
1247 }
1248
1249 void unmap_page_range(struct mmu_gather *tlb,
1250                              struct vm_area_struct *vma,
1251                              unsigned long addr, unsigned long end,
1252                              struct zap_details *details)
1253 {
1254         pgd_t *pgd;
1255         unsigned long next;
1256
1257         BUG_ON(addr >= end);
1258         tlb_start_vma(tlb, vma);
1259         pgd = pgd_offset(vma->vm_mm, addr);
1260         do {
1261                 next = pgd_addr_end(addr, end);
1262                 if (pgd_none_or_clear_bad(pgd))
1263                         continue;
1264                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1265         } while (pgd++, addr = next, addr != end);
1266         tlb_end_vma(tlb, vma);
1267 }
1268
1269
1270 static void unmap_single_vma(struct mmu_gather *tlb,
1271                 struct vm_area_struct *vma, unsigned long start_addr,
1272                 unsigned long end_addr,
1273                 struct zap_details *details)
1274 {
1275         unsigned long start = max(vma->vm_start, start_addr);
1276         unsigned long end;
1277
1278         if (start >= vma->vm_end)
1279                 return;
1280         end = min(vma->vm_end, end_addr);
1281         if (end <= vma->vm_start)
1282                 return;
1283
1284         if (vma->vm_file)
1285                 uprobe_munmap(vma, start, end);
1286
1287         if (unlikely(vma->vm_flags & VM_PFNMAP))
1288                 untrack_pfn(vma, 0, 0);
1289
1290         if (start != end) {
1291                 if (unlikely(is_vm_hugetlb_page(vma))) {
1292                         /*
1293                          * It is undesirable to test vma->vm_file as it
1294                          * should be non-null for valid hugetlb area.
1295                          * However, vm_file will be NULL in the error
1296                          * cleanup path of mmap_region. When
1297                          * hugetlbfs ->mmap method fails,
1298                          * mmap_region() nullifies vma->vm_file
1299                          * before calling this function to clean up.
1300                          * Since no pte has actually been setup, it is
1301                          * safe to do nothing in this case.
1302                          */
1303                         if (vma->vm_file) {
1304                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1305                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1306                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1307                         }
1308                 } else
1309                         unmap_page_range(tlb, vma, start, end, details);
1310         }
1311 }
1312
1313 /**
1314  * unmap_vmas - unmap a range of memory covered by a list of vma's
1315  * @tlb: address of the caller's struct mmu_gather
1316  * @vma: the starting vma
1317  * @start_addr: virtual address at which to start unmapping
1318  * @end_addr: virtual address at which to end unmapping
1319  *
1320  * Unmap all pages in the vma list.
1321  *
1322  * Only addresses between `start' and `end' will be unmapped.
1323  *
1324  * The VMA list must be sorted in ascending virtual address order.
1325  *
1326  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1327  * range after unmap_vmas() returns.  So the only responsibility here is to
1328  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1329  * drops the lock and schedules.
1330  */
1331 void unmap_vmas(struct mmu_gather *tlb,
1332                 struct vm_area_struct *vma, unsigned long start_addr,
1333                 unsigned long end_addr)
1334 {
1335         struct mmu_notifier_range range;
1336
1337         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1338                                 start_addr, end_addr);
1339         mmu_notifier_invalidate_range_start(&range);
1340         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1341                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1342         mmu_notifier_invalidate_range_end(&range);
1343 }
1344
1345 /**
1346  * zap_page_range - remove user pages in a given range
1347  * @vma: vm_area_struct holding the applicable pages
1348  * @start: starting address of pages to zap
1349  * @size: number of bytes to zap
1350  *
1351  * Caller must protect the VMA list
1352  */
1353 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1354                 unsigned long size)
1355 {
1356         struct mmu_notifier_range range;
1357         struct mmu_gather tlb;
1358
1359         lru_add_drain();
1360         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1361                                 start, start + size);
1362         tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1363         update_hiwater_rss(vma->vm_mm);
1364         mmu_notifier_invalidate_range_start(&range);
1365         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1366                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1367         mmu_notifier_invalidate_range_end(&range);
1368         tlb_finish_mmu(&tlb, start, range.end);
1369 }
1370
1371 /**
1372  * zap_page_range_single - remove user pages in a given range
1373  * @vma: vm_area_struct holding the applicable pages
1374  * @address: starting address of pages to zap
1375  * @size: number of bytes to zap
1376  * @details: details of shared cache invalidation
1377  *
1378  * The range must fit into one VMA.
1379  */
1380 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1381                 unsigned long size, struct zap_details *details)
1382 {
1383         struct mmu_notifier_range range;
1384         struct mmu_gather tlb;
1385
1386         lru_add_drain();
1387         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1388                                 address, address + size);
1389         tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1390         update_hiwater_rss(vma->vm_mm);
1391         mmu_notifier_invalidate_range_start(&range);
1392         unmap_single_vma(&tlb, vma, address, range.end, details);
1393         mmu_notifier_invalidate_range_end(&range);
1394         tlb_finish_mmu(&tlb, address, range.end);
1395 }
1396
1397 /**
1398  * zap_vma_ptes - remove ptes mapping the vma
1399  * @vma: vm_area_struct holding ptes to be zapped
1400  * @address: starting address of pages to zap
1401  * @size: number of bytes to zap
1402  *
1403  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1404  *
1405  * The entire address range must be fully contained within the vma.
1406  *
1407  */
1408 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1409                 unsigned long size)
1410 {
1411         if (address < vma->vm_start || address + size > vma->vm_end ||
1412                         !(vma->vm_flags & VM_PFNMAP))
1413                 return;
1414
1415         zap_page_range_single(vma, address, size, NULL);
1416 }
1417 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1418
1419 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1420 {
1421         pgd_t *pgd;
1422         p4d_t *p4d;
1423         pud_t *pud;
1424         pmd_t *pmd;
1425
1426         pgd = pgd_offset(mm, addr);
1427         p4d = p4d_alloc(mm, pgd, addr);
1428         if (!p4d)
1429                 return NULL;
1430         pud = pud_alloc(mm, p4d, addr);
1431         if (!pud)
1432                 return NULL;
1433         pmd = pmd_alloc(mm, pud, addr);
1434         if (!pmd)
1435                 return NULL;
1436
1437         VM_BUG_ON(pmd_trans_huge(*pmd));
1438         return pmd;
1439 }
1440
1441 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1442                         spinlock_t **ptl)
1443 {
1444         pmd_t *pmd = walk_to_pmd(mm, addr);
1445
1446         if (!pmd)
1447                 return NULL;
1448         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1449 }
1450
1451 static int validate_page_before_insert(struct page *page)
1452 {
1453         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1454                 return -EINVAL;
1455         flush_dcache_page(page);
1456         return 0;
1457 }
1458
1459 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1460                         unsigned long addr, struct page *page, pgprot_t prot)
1461 {
1462         if (!pte_none(*pte))
1463                 return -EBUSY;
1464         /* Ok, finally just insert the thing.. */
1465         get_page(page);
1466         inc_mm_counter_fast(mm, mm_counter_file(page));
1467         page_add_file_rmap(page, false);
1468         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1469         return 0;
1470 }
1471
1472 /*
1473  * This is the old fallback for page remapping.
1474  *
1475  * For historical reasons, it only allows reserved pages. Only
1476  * old drivers should use this, and they needed to mark their
1477  * pages reserved for the old functions anyway.
1478  */
1479 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1480                         struct page *page, pgprot_t prot)
1481 {
1482         struct mm_struct *mm = vma->vm_mm;
1483         int retval;
1484         pte_t *pte;
1485         spinlock_t *ptl;
1486
1487         retval = validate_page_before_insert(page);
1488         if (retval)
1489                 goto out;
1490         retval = -ENOMEM;
1491         pte = get_locked_pte(mm, addr, &ptl);
1492         if (!pte)
1493                 goto out;
1494         retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1495         pte_unmap_unlock(pte, ptl);
1496 out:
1497         return retval;
1498 }
1499
1500 #ifdef pte_index
1501 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1502                         unsigned long addr, struct page *page, pgprot_t prot)
1503 {
1504         int err;
1505
1506         if (!page_count(page))
1507                 return -EINVAL;
1508         err = validate_page_before_insert(page);
1509         if (err)
1510                 return err;
1511         return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1512 }
1513
1514 /* insert_pages() amortizes the cost of spinlock operations
1515  * when inserting pages in a loop. Arch *must* define pte_index.
1516  */
1517 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1518                         struct page **pages, unsigned long *num, pgprot_t prot)
1519 {
1520         pmd_t *pmd = NULL;
1521         pte_t *start_pte, *pte;
1522         spinlock_t *pte_lock;
1523         struct mm_struct *const mm = vma->vm_mm;
1524         unsigned long curr_page_idx = 0;
1525         unsigned long remaining_pages_total = *num;
1526         unsigned long pages_to_write_in_pmd;
1527         int ret;
1528 more:
1529         ret = -EFAULT;
1530         pmd = walk_to_pmd(mm, addr);
1531         if (!pmd)
1532                 goto out;
1533
1534         pages_to_write_in_pmd = min_t(unsigned long,
1535                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1536
1537         /* Allocate the PTE if necessary; takes PMD lock once only. */
1538         ret = -ENOMEM;
1539         if (pte_alloc(mm, pmd))
1540                 goto out;
1541
1542         while (pages_to_write_in_pmd) {
1543                 int pte_idx = 0;
1544                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1545
1546                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1547                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1548                         int err = insert_page_in_batch_locked(mm, pte,
1549                                 addr, pages[curr_page_idx], prot);
1550                         if (unlikely(err)) {
1551                                 pte_unmap_unlock(start_pte, pte_lock);
1552                                 ret = err;
1553                                 remaining_pages_total -= pte_idx;
1554                                 goto out;
1555                         }
1556                         addr += PAGE_SIZE;
1557                         ++curr_page_idx;
1558                 }
1559                 pte_unmap_unlock(start_pte, pte_lock);
1560                 pages_to_write_in_pmd -= batch_size;
1561                 remaining_pages_total -= batch_size;
1562         }
1563         if (remaining_pages_total)
1564                 goto more;
1565         ret = 0;
1566 out:
1567         *num = remaining_pages_total;
1568         return ret;
1569 }
1570 #endif  /* ifdef pte_index */
1571
1572 /**
1573  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1574  * @vma: user vma to map to
1575  * @addr: target start user address of these pages
1576  * @pages: source kernel pages
1577  * @num: in: number of pages to map. out: number of pages that were *not*
1578  * mapped. (0 means all pages were successfully mapped).
1579  *
1580  * Preferred over vm_insert_page() when inserting multiple pages.
1581  *
1582  * In case of error, we may have mapped a subset of the provided
1583  * pages. It is the caller's responsibility to account for this case.
1584  *
1585  * The same restrictions apply as in vm_insert_page().
1586  */
1587 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1588                         struct page **pages, unsigned long *num)
1589 {
1590 #ifdef pte_index
1591         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1592
1593         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1594                 return -EFAULT;
1595         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1596                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1597                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1598                 vma->vm_flags |= VM_MIXEDMAP;
1599         }
1600         /* Defer page refcount checking till we're about to map that page. */
1601         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1602 #else
1603         unsigned long idx = 0, pgcount = *num;
1604         int err = -EINVAL;
1605
1606         for (; idx < pgcount; ++idx) {
1607                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1608                 if (err)
1609                         break;
1610         }
1611         *num = pgcount - idx;
1612         return err;
1613 #endif  /* ifdef pte_index */
1614 }
1615 EXPORT_SYMBOL(vm_insert_pages);
1616
1617 /**
1618  * vm_insert_page - insert single page into user vma
1619  * @vma: user vma to map to
1620  * @addr: target user address of this page
1621  * @page: source kernel page
1622  *
1623  * This allows drivers to insert individual pages they've allocated
1624  * into a user vma.
1625  *
1626  * The page has to be a nice clean _individual_ kernel allocation.
1627  * If you allocate a compound page, you need to have marked it as
1628  * such (__GFP_COMP), or manually just split the page up yourself
1629  * (see split_page()).
1630  *
1631  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1632  * took an arbitrary page protection parameter. This doesn't allow
1633  * that. Your vma protection will have to be set up correctly, which
1634  * means that if you want a shared writable mapping, you'd better
1635  * ask for a shared writable mapping!
1636  *
1637  * The page does not need to be reserved.
1638  *
1639  * Usually this function is called from f_op->mmap() handler
1640  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1641  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1642  * function from other places, for example from page-fault handler.
1643  *
1644  * Return: %0 on success, negative error code otherwise.
1645  */
1646 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1647                         struct page *page)
1648 {
1649         if (addr < vma->vm_start || addr >= vma->vm_end)
1650                 return -EFAULT;
1651         if (!page_count(page))
1652                 return -EINVAL;
1653         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1654                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1655                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1656                 vma->vm_flags |= VM_MIXEDMAP;
1657         }
1658         return insert_page(vma, addr, page, vma->vm_page_prot);
1659 }
1660 EXPORT_SYMBOL(vm_insert_page);
1661
1662 /*
1663  * __vm_map_pages - maps range of kernel pages into user vma
1664  * @vma: user vma to map to
1665  * @pages: pointer to array of source kernel pages
1666  * @num: number of pages in page array
1667  * @offset: user's requested vm_pgoff
1668  *
1669  * This allows drivers to map range of kernel pages into a user vma.
1670  *
1671  * Return: 0 on success and error code otherwise.
1672  */
1673 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1674                                 unsigned long num, unsigned long offset)
1675 {
1676         unsigned long count = vma_pages(vma);
1677         unsigned long uaddr = vma->vm_start;
1678         int ret, i;
1679
1680         /* Fail if the user requested offset is beyond the end of the object */
1681         if (offset >= num)
1682                 return -ENXIO;
1683
1684         /* Fail if the user requested size exceeds available object size */
1685         if (count > num - offset)
1686                 return -ENXIO;
1687
1688         for (i = 0; i < count; i++) {
1689                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1690                 if (ret < 0)
1691                         return ret;
1692                 uaddr += PAGE_SIZE;
1693         }
1694
1695         return 0;
1696 }
1697
1698 /**
1699  * vm_map_pages - maps range of kernel pages starts with non zero offset
1700  * @vma: user vma to map to
1701  * @pages: pointer to array of source kernel pages
1702  * @num: number of pages in page array
1703  *
1704  * Maps an object consisting of @num pages, catering for the user's
1705  * requested vm_pgoff
1706  *
1707  * If we fail to insert any page into the vma, the function will return
1708  * immediately leaving any previously inserted pages present.  Callers
1709  * from the mmap handler may immediately return the error as their caller
1710  * will destroy the vma, removing any successfully inserted pages. Other
1711  * callers should make their own arrangements for calling unmap_region().
1712  *
1713  * Context: Process context. Called by mmap handlers.
1714  * Return: 0 on success and error code otherwise.
1715  */
1716 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1717                                 unsigned long num)
1718 {
1719         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1720 }
1721 EXPORT_SYMBOL(vm_map_pages);
1722
1723 /**
1724  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1725  * @vma: user vma to map to
1726  * @pages: pointer to array of source kernel pages
1727  * @num: number of pages in page array
1728  *
1729  * Similar to vm_map_pages(), except that it explicitly sets the offset
1730  * to 0. This function is intended for the drivers that did not consider
1731  * vm_pgoff.
1732  *
1733  * Context: Process context. Called by mmap handlers.
1734  * Return: 0 on success and error code otherwise.
1735  */
1736 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1737                                 unsigned long num)
1738 {
1739         return __vm_map_pages(vma, pages, num, 0);
1740 }
1741 EXPORT_SYMBOL(vm_map_pages_zero);
1742
1743 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1744                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1745 {
1746         struct mm_struct *mm = vma->vm_mm;
1747         pte_t *pte, entry;
1748         spinlock_t *ptl;
1749
1750         pte = get_locked_pte(mm, addr, &ptl);
1751         if (!pte)
1752                 return VM_FAULT_OOM;
1753         if (!pte_none(*pte)) {
1754                 if (mkwrite) {
1755                         /*
1756                          * For read faults on private mappings the PFN passed
1757                          * in may not match the PFN we have mapped if the
1758                          * mapped PFN is a writeable COW page.  In the mkwrite
1759                          * case we are creating a writable PTE for a shared
1760                          * mapping and we expect the PFNs to match. If they
1761                          * don't match, we are likely racing with block
1762                          * allocation and mapping invalidation so just skip the
1763                          * update.
1764                          */
1765                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1766                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1767                                 goto out_unlock;
1768                         }
1769                         entry = pte_mkyoung(*pte);
1770                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1771                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1772                                 update_mmu_cache(vma, addr, pte);
1773                 }
1774                 goto out_unlock;
1775         }
1776
1777         /* Ok, finally just insert the thing.. */
1778         if (pfn_t_devmap(pfn))
1779                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1780         else
1781                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1782
1783         if (mkwrite) {
1784                 entry = pte_mkyoung(entry);
1785                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1786         }
1787
1788         set_pte_at(mm, addr, pte, entry);
1789         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1790
1791 out_unlock:
1792         pte_unmap_unlock(pte, ptl);
1793         return VM_FAULT_NOPAGE;
1794 }
1795
1796 /**
1797  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1798  * @vma: user vma to map to
1799  * @addr: target user address of this page
1800  * @pfn: source kernel pfn
1801  * @pgprot: pgprot flags for the inserted page
1802  *
1803  * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1804  * to override pgprot on a per-page basis.
1805  *
1806  * This only makes sense for IO mappings, and it makes no sense for
1807  * COW mappings.  In general, using multiple vmas is preferable;
1808  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1809  * impractical.
1810  *
1811  * See vmf_insert_mixed_prot() for a discussion of the implication of using
1812  * a value of @pgprot different from that of @vma->vm_page_prot.
1813  *
1814  * Context: Process context.  May allocate using %GFP_KERNEL.
1815  * Return: vm_fault_t value.
1816  */
1817 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1818                         unsigned long pfn, pgprot_t pgprot)
1819 {
1820         /*
1821          * Technically, architectures with pte_special can avoid all these
1822          * restrictions (same for remap_pfn_range).  However we would like
1823          * consistency in testing and feature parity among all, so we should
1824          * try to keep these invariants in place for everybody.
1825          */
1826         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1827         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1828                                                 (VM_PFNMAP|VM_MIXEDMAP));
1829         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1830         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1831
1832         if (addr < vma->vm_start || addr >= vma->vm_end)
1833                 return VM_FAULT_SIGBUS;
1834
1835         if (!pfn_modify_allowed(pfn, pgprot))
1836                 return VM_FAULT_SIGBUS;
1837
1838         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1839
1840         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1841                         false);
1842 }
1843 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1844
1845 /**
1846  * vmf_insert_pfn - insert single pfn into user vma
1847  * @vma: user vma to map to
1848  * @addr: target user address of this page
1849  * @pfn: source kernel pfn
1850  *
1851  * Similar to vm_insert_page, this allows drivers to insert individual pages
1852  * they've allocated into a user vma. Same comments apply.
1853  *
1854  * This function should only be called from a vm_ops->fault handler, and
1855  * in that case the handler should return the result of this function.
1856  *
1857  * vma cannot be a COW mapping.
1858  *
1859  * As this is called only for pages that do not currently exist, we
1860  * do not need to flush old virtual caches or the TLB.
1861  *
1862  * Context: Process context.  May allocate using %GFP_KERNEL.
1863  * Return: vm_fault_t value.
1864  */
1865 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1866                         unsigned long pfn)
1867 {
1868         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1869 }
1870 EXPORT_SYMBOL(vmf_insert_pfn);
1871
1872 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1873 {
1874         /* these checks mirror the abort conditions in vm_normal_page */
1875         if (vma->vm_flags & VM_MIXEDMAP)
1876                 return true;
1877         if (pfn_t_devmap(pfn))
1878                 return true;
1879         if (pfn_t_special(pfn))
1880                 return true;
1881         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1882                 return true;
1883         return false;
1884 }
1885
1886 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1887                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
1888                 bool mkwrite)
1889 {
1890         int err;
1891
1892         BUG_ON(!vm_mixed_ok(vma, pfn));
1893
1894         if (addr < vma->vm_start || addr >= vma->vm_end)
1895                 return VM_FAULT_SIGBUS;
1896
1897         track_pfn_insert(vma, &pgprot, pfn);
1898
1899         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1900                 return VM_FAULT_SIGBUS;
1901
1902         /*
1903          * If we don't have pte special, then we have to use the pfn_valid()
1904          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1905          * refcount the page if pfn_valid is true (hence insert_page rather
1906          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1907          * without pte special, it would there be refcounted as a normal page.
1908          */
1909         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1910             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1911                 struct page *page;
1912
1913                 /*
1914                  * At this point we are committed to insert_page()
1915                  * regardless of whether the caller specified flags that
1916                  * result in pfn_t_has_page() == false.
1917                  */
1918                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1919                 err = insert_page(vma, addr, page, pgprot);
1920         } else {
1921                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1922         }
1923
1924         if (err == -ENOMEM)
1925                 return VM_FAULT_OOM;
1926         if (err < 0 && err != -EBUSY)
1927                 return VM_FAULT_SIGBUS;
1928
1929         return VM_FAULT_NOPAGE;
1930 }
1931
1932 /**
1933  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
1934  * @vma: user vma to map to
1935  * @addr: target user address of this page
1936  * @pfn: source kernel pfn
1937  * @pgprot: pgprot flags for the inserted page
1938  *
1939  * This is exactly like vmf_insert_mixed(), except that it allows drivers to
1940  * to override pgprot on a per-page basis.
1941  *
1942  * Typically this function should be used by drivers to set caching- and
1943  * encryption bits different than those of @vma->vm_page_prot, because
1944  * the caching- or encryption mode may not be known at mmap() time.
1945  * This is ok as long as @vma->vm_page_prot is not used by the core vm
1946  * to set caching and encryption bits for those vmas (except for COW pages).
1947  * This is ensured by core vm only modifying these page table entries using
1948  * functions that don't touch caching- or encryption bits, using pte_modify()
1949  * if needed. (See for example mprotect()).
1950  * Also when new page-table entries are created, this is only done using the
1951  * fault() callback, and never using the value of vma->vm_page_prot,
1952  * except for page-table entries that point to anonymous pages as the result
1953  * of COW.
1954  *
1955  * Context: Process context.  May allocate using %GFP_KERNEL.
1956  * Return: vm_fault_t value.
1957  */
1958 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
1959                                  pfn_t pfn, pgprot_t pgprot)
1960 {
1961         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
1962 }
1963 EXPORT_SYMBOL(vmf_insert_mixed_prot);
1964
1965 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1966                 pfn_t pfn)
1967 {
1968         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
1969 }
1970 EXPORT_SYMBOL(vmf_insert_mixed);
1971
1972 /*
1973  *  If the insertion of PTE failed because someone else already added a
1974  *  different entry in the mean time, we treat that as success as we assume
1975  *  the same entry was actually inserted.
1976  */
1977 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1978                 unsigned long addr, pfn_t pfn)
1979 {
1980         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
1981 }
1982 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1983
1984 /*
1985  * maps a range of physical memory into the requested pages. the old
1986  * mappings are removed. any references to nonexistent pages results
1987  * in null mappings (currently treated as "copy-on-access")
1988  */
1989 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1990                         unsigned long addr, unsigned long end,
1991                         unsigned long pfn, pgprot_t prot)
1992 {
1993         pte_t *pte;
1994         spinlock_t *ptl;
1995         int err = 0;
1996
1997         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1998         if (!pte)
1999                 return -ENOMEM;
2000         arch_enter_lazy_mmu_mode();
2001         do {
2002                 BUG_ON(!pte_none(*pte));
2003                 if (!pfn_modify_allowed(pfn, prot)) {
2004                         err = -EACCES;
2005                         break;
2006                 }
2007                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2008                 pfn++;
2009         } while (pte++, addr += PAGE_SIZE, addr != end);
2010         arch_leave_lazy_mmu_mode();
2011         pte_unmap_unlock(pte - 1, ptl);
2012         return err;
2013 }
2014
2015 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2016                         unsigned long addr, unsigned long end,
2017                         unsigned long pfn, pgprot_t prot)
2018 {
2019         pmd_t *pmd;
2020         unsigned long next;
2021         int err;
2022
2023         pfn -= addr >> PAGE_SHIFT;
2024         pmd = pmd_alloc(mm, pud, addr);
2025         if (!pmd)
2026                 return -ENOMEM;
2027         VM_BUG_ON(pmd_trans_huge(*pmd));
2028         do {
2029                 next = pmd_addr_end(addr, end);
2030                 err = remap_pte_range(mm, pmd, addr, next,
2031                                 pfn + (addr >> PAGE_SHIFT), prot);
2032                 if (err)
2033                         return err;
2034         } while (pmd++, addr = next, addr != end);
2035         return 0;
2036 }
2037
2038 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2039                         unsigned long addr, unsigned long end,
2040                         unsigned long pfn, pgprot_t prot)
2041 {
2042         pud_t *pud;
2043         unsigned long next;
2044         int err;
2045
2046         pfn -= addr >> PAGE_SHIFT;
2047         pud = pud_alloc(mm, p4d, addr);
2048         if (!pud)
2049                 return -ENOMEM;
2050         do {
2051                 next = pud_addr_end(addr, end);
2052                 err = remap_pmd_range(mm, pud, addr, next,
2053                                 pfn + (addr >> PAGE_SHIFT), prot);
2054                 if (err)
2055                         return err;
2056         } while (pud++, addr = next, addr != end);
2057         return 0;
2058 }
2059
2060 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2061                         unsigned long addr, unsigned long end,
2062                         unsigned long pfn, pgprot_t prot)
2063 {
2064         p4d_t *p4d;
2065         unsigned long next;
2066         int err;
2067
2068         pfn -= addr >> PAGE_SHIFT;
2069         p4d = p4d_alloc(mm, pgd, addr);
2070         if (!p4d)
2071                 return -ENOMEM;
2072         do {
2073                 next = p4d_addr_end(addr, end);
2074                 err = remap_pud_range(mm, p4d, addr, next,
2075                                 pfn + (addr >> PAGE_SHIFT), prot);
2076                 if (err)
2077                         return err;
2078         } while (p4d++, addr = next, addr != end);
2079         return 0;
2080 }
2081
2082 /**
2083  * remap_pfn_range - remap kernel memory to userspace
2084  * @vma: user vma to map to
2085  * @addr: target user address to start at
2086  * @pfn: page frame number of kernel physical memory address
2087  * @size: size of mapping area
2088  * @prot: page protection flags for this mapping
2089  *
2090  * Note: this is only safe if the mm semaphore is held when called.
2091  *
2092  * Return: %0 on success, negative error code otherwise.
2093  */
2094 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2095                     unsigned long pfn, unsigned long size, pgprot_t prot)
2096 {
2097         pgd_t *pgd;
2098         unsigned long next;
2099         unsigned long end = addr + PAGE_ALIGN(size);
2100         struct mm_struct *mm = vma->vm_mm;
2101         unsigned long remap_pfn = pfn;
2102         int err;
2103
2104         /*
2105          * Physically remapped pages are special. Tell the
2106          * rest of the world about it:
2107          *   VM_IO tells people not to look at these pages
2108          *      (accesses can have side effects).
2109          *   VM_PFNMAP tells the core MM that the base pages are just
2110          *      raw PFN mappings, and do not have a "struct page" associated
2111          *      with them.
2112          *   VM_DONTEXPAND
2113          *      Disable vma merging and expanding with mremap().
2114          *   VM_DONTDUMP
2115          *      Omit vma from core dump, even when VM_IO turned off.
2116          *
2117          * There's a horrible special case to handle copy-on-write
2118          * behaviour that some programs depend on. We mark the "original"
2119          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2120          * See vm_normal_page() for details.
2121          */
2122         if (is_cow_mapping(vma->vm_flags)) {
2123                 if (addr != vma->vm_start || end != vma->vm_end)
2124                         return -EINVAL;
2125                 vma->vm_pgoff = pfn;
2126         }
2127
2128         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2129         if (err)
2130                 return -EINVAL;
2131
2132         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2133
2134         BUG_ON(addr >= end);
2135         pfn -= addr >> PAGE_SHIFT;
2136         pgd = pgd_offset(mm, addr);
2137         flush_cache_range(vma, addr, end);
2138         do {
2139                 next = pgd_addr_end(addr, end);
2140                 err = remap_p4d_range(mm, pgd, addr, next,
2141                                 pfn + (addr >> PAGE_SHIFT), prot);
2142                 if (err)
2143                         break;
2144         } while (pgd++, addr = next, addr != end);
2145
2146         if (err)
2147                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2148
2149         return err;
2150 }
2151 EXPORT_SYMBOL(remap_pfn_range);
2152
2153 /**
2154  * vm_iomap_memory - remap memory to userspace
2155  * @vma: user vma to map to
2156  * @start: start of the physical memory to be mapped
2157  * @len: size of area
2158  *
2159  * This is a simplified io_remap_pfn_range() for common driver use. The
2160  * driver just needs to give us the physical memory range to be mapped,
2161  * we'll figure out the rest from the vma information.
2162  *
2163  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2164  * whatever write-combining details or similar.
2165  *
2166  * Return: %0 on success, negative error code otherwise.
2167  */
2168 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2169 {
2170         unsigned long vm_len, pfn, pages;
2171
2172         /* Check that the physical memory area passed in looks valid */
2173         if (start + len < start)
2174                 return -EINVAL;
2175         /*
2176          * You *really* shouldn't map things that aren't page-aligned,
2177          * but we've historically allowed it because IO memory might
2178          * just have smaller alignment.
2179          */
2180         len += start & ~PAGE_MASK;
2181         pfn = start >> PAGE_SHIFT;
2182         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2183         if (pfn + pages < pfn)
2184                 return -EINVAL;
2185
2186         /* We start the mapping 'vm_pgoff' pages into the area */
2187         if (vma->vm_pgoff > pages)
2188                 return -EINVAL;
2189         pfn += vma->vm_pgoff;
2190         pages -= vma->vm_pgoff;
2191
2192         /* Can we fit all of the mapping? */
2193         vm_len = vma->vm_end - vma->vm_start;
2194         if (vm_len >> PAGE_SHIFT > pages)
2195                 return -EINVAL;
2196
2197         /* Ok, let it rip */
2198         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2199 }
2200 EXPORT_SYMBOL(vm_iomap_memory);
2201
2202 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2203                                      unsigned long addr, unsigned long end,
2204                                      pte_fn_t fn, void *data, bool create)
2205 {
2206         pte_t *pte;
2207         int err = 0;
2208         spinlock_t *uninitialized_var(ptl);
2209
2210         if (create) {
2211                 pte = (mm == &init_mm) ?
2212                         pte_alloc_kernel(pmd, addr) :
2213                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2214                 if (!pte)
2215                         return -ENOMEM;
2216         } else {
2217                 pte = (mm == &init_mm) ?
2218                         pte_offset_kernel(pmd, addr) :
2219                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2220         }
2221
2222         BUG_ON(pmd_huge(*pmd));
2223
2224         arch_enter_lazy_mmu_mode();
2225
2226         do {
2227                 if (create || !pte_none(*pte)) {
2228                         err = fn(pte++, addr, data);
2229                         if (err)
2230                                 break;
2231                 }
2232         } while (addr += PAGE_SIZE, addr != end);
2233
2234         arch_leave_lazy_mmu_mode();
2235
2236         if (mm != &init_mm)
2237                 pte_unmap_unlock(pte-1, ptl);
2238         return err;
2239 }
2240
2241 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2242                                      unsigned long addr, unsigned long end,
2243                                      pte_fn_t fn, void *data, bool create)
2244 {
2245         pmd_t *pmd;
2246         unsigned long next;
2247         int err = 0;
2248
2249         BUG_ON(pud_huge(*pud));
2250
2251         if (create) {
2252                 pmd = pmd_alloc(mm, pud, addr);
2253                 if (!pmd)
2254                         return -ENOMEM;
2255         } else {
2256                 pmd = pmd_offset(pud, addr);
2257         }
2258         do {
2259                 next = pmd_addr_end(addr, end);
2260                 if (create || !pmd_none_or_clear_bad(pmd)) {
2261                         err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2262                                                  create);
2263                         if (err)
2264                                 break;
2265                 }
2266         } while (pmd++, addr = next, addr != end);
2267         return err;
2268 }
2269
2270 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2271                                      unsigned long addr, unsigned long end,
2272                                      pte_fn_t fn, void *data, bool create)
2273 {
2274         pud_t *pud;
2275         unsigned long next;
2276         int err = 0;
2277
2278         if (create) {
2279                 pud = pud_alloc(mm, p4d, addr);
2280                 if (!pud)
2281                         return -ENOMEM;
2282         } else {
2283                 pud = pud_offset(p4d, addr);
2284         }
2285         do {
2286                 next = pud_addr_end(addr, end);
2287                 if (create || !pud_none_or_clear_bad(pud)) {
2288                         err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2289                                                  create);
2290                         if (err)
2291                                 break;
2292                 }
2293         } while (pud++, addr = next, addr != end);
2294         return err;
2295 }
2296
2297 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2298                                      unsigned long addr, unsigned long end,
2299                                      pte_fn_t fn, void *data, bool create)
2300 {
2301         p4d_t *p4d;
2302         unsigned long next;
2303         int err = 0;
2304
2305         if (create) {
2306                 p4d = p4d_alloc(mm, pgd, addr);
2307                 if (!p4d)
2308                         return -ENOMEM;
2309         } else {
2310                 p4d = p4d_offset(pgd, addr);
2311         }
2312         do {
2313                 next = p4d_addr_end(addr, end);
2314                 if (create || !p4d_none_or_clear_bad(p4d)) {
2315                         err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2316                                                  create);
2317                         if (err)
2318                                 break;
2319                 }
2320         } while (p4d++, addr = next, addr != end);
2321         return err;
2322 }
2323
2324 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2325                                  unsigned long size, pte_fn_t fn,
2326                                  void *data, bool create)
2327 {
2328         pgd_t *pgd;
2329         unsigned long next;
2330         unsigned long end = addr + size;
2331         int err = 0;
2332
2333         if (WARN_ON(addr >= end))
2334                 return -EINVAL;
2335
2336         pgd = pgd_offset(mm, addr);
2337         do {
2338                 next = pgd_addr_end(addr, end);
2339                 if (!create && pgd_none_or_clear_bad(pgd))
2340                         continue;
2341                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create);
2342                 if (err)
2343                         break;
2344         } while (pgd++, addr = next, addr != end);
2345
2346         return err;
2347 }
2348
2349 /*
2350  * Scan a region of virtual memory, filling in page tables as necessary
2351  * and calling a provided function on each leaf page table.
2352  */
2353 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2354                         unsigned long size, pte_fn_t fn, void *data)
2355 {
2356         return __apply_to_page_range(mm, addr, size, fn, data, true);
2357 }
2358 EXPORT_SYMBOL_GPL(apply_to_page_range);
2359
2360 /*
2361  * Scan a region of virtual memory, calling a provided function on
2362  * each leaf page table where it exists.
2363  *
2364  * Unlike apply_to_page_range, this does _not_ fill in page tables
2365  * where they are absent.
2366  */
2367 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2368                                  unsigned long size, pte_fn_t fn, void *data)
2369 {
2370         return __apply_to_page_range(mm, addr, size, fn, data, false);
2371 }
2372 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2373
2374 /*
2375  * handle_pte_fault chooses page fault handler according to an entry which was
2376  * read non-atomically.  Before making any commitment, on those architectures
2377  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2378  * parts, do_swap_page must check under lock before unmapping the pte and
2379  * proceeding (but do_wp_page is only called after already making such a check;
2380  * and do_anonymous_page can safely check later on).
2381  */
2382 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2383                                 pte_t *page_table, pte_t orig_pte)
2384 {
2385         int same = 1;
2386 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2387         if (sizeof(pte_t) > sizeof(unsigned long)) {
2388                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2389                 spin_lock(ptl);
2390                 same = pte_same(*page_table, orig_pte);
2391                 spin_unlock(ptl);
2392         }
2393 #endif
2394         pte_unmap(page_table);
2395         return same;
2396 }
2397
2398 static inline bool cow_user_page(struct page *dst, struct page *src,
2399                                  struct vm_fault *vmf)
2400 {
2401         bool ret;
2402         void *kaddr;
2403         void __user *uaddr;
2404         bool locked = false;
2405         struct vm_area_struct *vma = vmf->vma;
2406         struct mm_struct *mm = vma->vm_mm;
2407         unsigned long addr = vmf->address;
2408
2409         debug_dma_assert_idle(src);
2410
2411         if (likely(src)) {
2412                 copy_user_highpage(dst, src, addr, vma);
2413                 return true;
2414         }
2415
2416         /*
2417          * If the source page was a PFN mapping, we don't have
2418          * a "struct page" for it. We do a best-effort copy by
2419          * just copying from the original user address. If that
2420          * fails, we just zero-fill it. Live with it.
2421          */
2422         kaddr = kmap_atomic(dst);
2423         uaddr = (void __user *)(addr & PAGE_MASK);
2424
2425         /*
2426          * On architectures with software "accessed" bits, we would
2427          * take a double page fault, so mark it accessed here.
2428          */
2429         if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2430                 pte_t entry;
2431
2432                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2433                 locked = true;
2434                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2435                         /*
2436                          * Other thread has already handled the fault
2437                          * and update local tlb only
2438                          */
2439                         update_mmu_tlb(vma, addr, vmf->pte);
2440                         ret = false;
2441                         goto pte_unlock;
2442                 }
2443
2444                 entry = pte_mkyoung(vmf->orig_pte);
2445                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2446                         update_mmu_cache(vma, addr, vmf->pte);
2447         }
2448
2449         /*
2450          * This really shouldn't fail, because the page is there
2451          * in the page tables. But it might just be unreadable,
2452          * in which case we just give up and fill the result with
2453          * zeroes.
2454          */
2455         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2456                 if (locked)
2457                         goto warn;
2458
2459                 /* Re-validate under PTL if the page is still mapped */
2460                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2461                 locked = true;
2462                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2463                         /* The PTE changed under us, update local tlb */
2464                         update_mmu_tlb(vma, addr, vmf->pte);
2465                         ret = false;
2466                         goto pte_unlock;
2467                 }
2468
2469                 /*
2470                  * The same page can be mapped back since last copy attempt.
2471                  * Try to copy again under PTL.
2472                  */
2473                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2474                         /*
2475                          * Give a warn in case there can be some obscure
2476                          * use-case
2477                          */
2478 warn:
2479                         WARN_ON_ONCE(1);
2480                         clear_page(kaddr);
2481                 }
2482         }
2483
2484         ret = true;
2485
2486 pte_unlock:
2487         if (locked)
2488                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2489         kunmap_atomic(kaddr);
2490         flush_dcache_page(dst);
2491
2492         return ret;
2493 }
2494
2495 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2496 {
2497         struct file *vm_file = vma->vm_file;
2498
2499         if (vm_file)
2500                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2501
2502         /*
2503          * Special mappings (e.g. VDSO) do not have any file so fake
2504          * a default GFP_KERNEL for them.
2505          */
2506         return GFP_KERNEL;
2507 }
2508
2509 /*
2510  * Notify the address space that the page is about to become writable so that
2511  * it can prohibit this or wait for the page to get into an appropriate state.
2512  *
2513  * We do this without the lock held, so that it can sleep if it needs to.
2514  */
2515 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2516 {
2517         vm_fault_t ret;
2518         struct page *page = vmf->page;
2519         unsigned int old_flags = vmf->flags;
2520
2521         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2522
2523         if (vmf->vma->vm_file &&
2524             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2525                 return VM_FAULT_SIGBUS;
2526
2527         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2528         /* Restore original flags so that caller is not surprised */
2529         vmf->flags = old_flags;
2530         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2531                 return ret;
2532         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2533                 lock_page(page);
2534                 if (!page->mapping) {
2535                         unlock_page(page);
2536                         return 0; /* retry */
2537                 }
2538                 ret |= VM_FAULT_LOCKED;
2539         } else
2540                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2541         return ret;
2542 }
2543
2544 /*
2545  * Handle dirtying of a page in shared file mapping on a write fault.
2546  *
2547  * The function expects the page to be locked and unlocks it.
2548  */
2549 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2550 {
2551         struct vm_area_struct *vma = vmf->vma;
2552         struct address_space *mapping;
2553         struct page *page = vmf->page;
2554         bool dirtied;
2555         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2556
2557         dirtied = set_page_dirty(page);
2558         VM_BUG_ON_PAGE(PageAnon(page), page);
2559         /*
2560          * Take a local copy of the address_space - page.mapping may be zeroed
2561          * by truncate after unlock_page().   The address_space itself remains
2562          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2563          * release semantics to prevent the compiler from undoing this copying.
2564          */
2565         mapping = page_rmapping(page);
2566         unlock_page(page);
2567
2568         if (!page_mkwrite)
2569                 file_update_time(vma->vm_file);
2570
2571         /*
2572          * Throttle page dirtying rate down to writeback speed.
2573          *
2574          * mapping may be NULL here because some device drivers do not
2575          * set page.mapping but still dirty their pages
2576          *
2577          * Drop the mmap_lock before waiting on IO, if we can. The file
2578          * is pinning the mapping, as per above.
2579          */
2580         if ((dirtied || page_mkwrite) && mapping) {
2581                 struct file *fpin;
2582
2583                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2584                 balance_dirty_pages_ratelimited(mapping);
2585                 if (fpin) {
2586                         fput(fpin);
2587                         return VM_FAULT_RETRY;
2588                 }
2589         }
2590
2591         return 0;
2592 }
2593
2594 /*
2595  * Handle write page faults for pages that can be reused in the current vma
2596  *
2597  * This can happen either due to the mapping being with the VM_SHARED flag,
2598  * or due to us being the last reference standing to the page. In either
2599  * case, all we need to do here is to mark the page as writable and update
2600  * any related book-keeping.
2601  */
2602 static inline void wp_page_reuse(struct vm_fault *vmf)
2603         __releases(vmf->ptl)
2604 {
2605         struct vm_area_struct *vma = vmf->vma;
2606         struct page *page = vmf->page;
2607         pte_t entry;
2608         /*
2609          * Clear the pages cpupid information as the existing
2610          * information potentially belongs to a now completely
2611          * unrelated process.
2612          */
2613         if (page)
2614                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2615
2616         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2617         entry = pte_mkyoung(vmf->orig_pte);
2618         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2619         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2620                 update_mmu_cache(vma, vmf->address, vmf->pte);
2621         pte_unmap_unlock(vmf->pte, vmf->ptl);
2622 }
2623
2624 /*
2625  * Handle the case of a page which we actually need to copy to a new page.
2626  *
2627  * Called with mmap_lock locked and the old page referenced, but
2628  * without the ptl held.
2629  *
2630  * High level logic flow:
2631  *
2632  * - Allocate a page, copy the content of the old page to the new one.
2633  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2634  * - Take the PTL. If the pte changed, bail out and release the allocated page
2635  * - If the pte is still the way we remember it, update the page table and all
2636  *   relevant references. This includes dropping the reference the page-table
2637  *   held to the old page, as well as updating the rmap.
2638  * - In any case, unlock the PTL and drop the reference we took to the old page.
2639  */
2640 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2641 {
2642         struct vm_area_struct *vma = vmf->vma;
2643         struct mm_struct *mm = vma->vm_mm;
2644         struct page *old_page = vmf->page;
2645         struct page *new_page = NULL;
2646         pte_t entry;
2647         int page_copied = 0;
2648         struct mmu_notifier_range range;
2649
2650         if (unlikely(anon_vma_prepare(vma)))
2651                 goto oom;
2652
2653         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2654                 new_page = alloc_zeroed_user_highpage_movable(vma,
2655                                                               vmf->address);
2656                 if (!new_page)
2657                         goto oom;
2658         } else {
2659                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2660                                 vmf->address);
2661                 if (!new_page)
2662                         goto oom;
2663
2664                 if (!cow_user_page(new_page, old_page, vmf)) {
2665                         /*
2666                          * COW failed, if the fault was solved by other,
2667                          * it's fine. If not, userspace would re-fault on
2668                          * the same address and we will handle the fault
2669                          * from the second attempt.
2670                          */
2671                         put_page(new_page);
2672                         if (old_page)
2673                                 put_page(old_page);
2674                         return 0;
2675                 }
2676         }
2677
2678         if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2679                 goto oom_free_new;
2680         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2681
2682         __SetPageUptodate(new_page);
2683
2684         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2685                                 vmf->address & PAGE_MASK,
2686                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2687         mmu_notifier_invalidate_range_start(&range);
2688
2689         /*
2690          * Re-check the pte - we dropped the lock
2691          */
2692         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2693         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2694                 if (old_page) {
2695                         if (!PageAnon(old_page)) {
2696                                 dec_mm_counter_fast(mm,
2697                                                 mm_counter_file(old_page));
2698                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2699                         }
2700                 } else {
2701                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2702                 }
2703                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2704                 entry = mk_pte(new_page, vma->vm_page_prot);
2705                 entry = pte_sw_mkyoung(entry);
2706                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2707                 /*
2708                  * Clear the pte entry and flush it first, before updating the
2709                  * pte with the new entry. This will avoid a race condition
2710                  * seen in the presence of one thread doing SMC and another
2711                  * thread doing COW.
2712                  */
2713                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2714                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2715                 lru_cache_add_active_or_unevictable(new_page, vma);
2716                 /*
2717                  * We call the notify macro here because, when using secondary
2718                  * mmu page tables (such as kvm shadow page tables), we want the
2719                  * new page to be mapped directly into the secondary page table.
2720                  */
2721                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2722                 update_mmu_cache(vma, vmf->address, vmf->pte);
2723                 if (old_page) {
2724                         /*
2725                          * Only after switching the pte to the new page may
2726                          * we remove the mapcount here. Otherwise another
2727                          * process may come and find the rmap count decremented
2728                          * before the pte is switched to the new page, and
2729                          * "reuse" the old page writing into it while our pte
2730                          * here still points into it and can be read by other
2731                          * threads.
2732                          *
2733                          * The critical issue is to order this
2734                          * page_remove_rmap with the ptp_clear_flush above.
2735                          * Those stores are ordered by (if nothing else,)
2736                          * the barrier present in the atomic_add_negative
2737                          * in page_remove_rmap.
2738                          *
2739                          * Then the TLB flush in ptep_clear_flush ensures that
2740                          * no process can access the old page before the
2741                          * decremented mapcount is visible. And the old page
2742                          * cannot be reused until after the decremented
2743                          * mapcount is visible. So transitively, TLBs to
2744                          * old page will be flushed before it can be reused.
2745                          */
2746                         page_remove_rmap(old_page, false);
2747                 }
2748
2749                 /* Free the old page.. */
2750                 new_page = old_page;
2751                 page_copied = 1;
2752         } else {
2753                 update_mmu_tlb(vma, vmf->address, vmf->pte);
2754         }
2755
2756         if (new_page)
2757                 put_page(new_page);
2758
2759         pte_unmap_unlock(vmf->pte, vmf->ptl);
2760         /*
2761          * No need to double call mmu_notifier->invalidate_range() callback as
2762          * the above ptep_clear_flush_notify() did already call it.
2763          */
2764         mmu_notifier_invalidate_range_only_end(&range);
2765         if (old_page) {
2766                 /*
2767                  * Don't let another task, with possibly unlocked vma,
2768                  * keep the mlocked page.
2769                  */
2770                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2771                         lock_page(old_page);    /* LRU manipulation */
2772                         if (PageMlocked(old_page))
2773                                 munlock_vma_page(old_page);
2774                         unlock_page(old_page);
2775                 }
2776                 put_page(old_page);
2777         }
2778         return page_copied ? VM_FAULT_WRITE : 0;
2779 oom_free_new:
2780         put_page(new_page);
2781 oom:
2782         if (old_page)
2783                 put_page(old_page);
2784         return VM_FAULT_OOM;
2785 }
2786
2787 /**
2788  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2789  *                        writeable once the page is prepared
2790  *
2791  * @vmf: structure describing the fault
2792  *
2793  * This function handles all that is needed to finish a write page fault in a
2794  * shared mapping due to PTE being read-only once the mapped page is prepared.
2795  * It handles locking of PTE and modifying it.
2796  *
2797  * The function expects the page to be locked or other protection against
2798  * concurrent faults / writeback (such as DAX radix tree locks).
2799  *
2800  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2801  * we acquired PTE lock.
2802  */
2803 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2804 {
2805         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2806         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2807                                        &vmf->ptl);
2808         /*
2809          * We might have raced with another page fault while we released the
2810          * pte_offset_map_lock.
2811          */
2812         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2813                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
2814                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2815                 return VM_FAULT_NOPAGE;
2816         }
2817         wp_page_reuse(vmf);
2818         return 0;
2819 }
2820
2821 /*
2822  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2823  * mapping
2824  */
2825 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2826 {
2827         struct vm_area_struct *vma = vmf->vma;
2828
2829         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2830                 vm_fault_t ret;
2831
2832                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2833                 vmf->flags |= FAULT_FLAG_MKWRITE;
2834                 ret = vma->vm_ops->pfn_mkwrite(vmf);
2835                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2836                         return ret;
2837                 return finish_mkwrite_fault(vmf);
2838         }
2839         wp_page_reuse(vmf);
2840         return VM_FAULT_WRITE;
2841 }
2842
2843 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2844         __releases(vmf->ptl)
2845 {
2846         struct vm_area_struct *vma = vmf->vma;
2847         vm_fault_t ret = VM_FAULT_WRITE;
2848
2849         get_page(vmf->page);
2850
2851         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2852                 vm_fault_t tmp;
2853
2854                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2855                 tmp = do_page_mkwrite(vmf);
2856                 if (unlikely(!tmp || (tmp &
2857                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2858                         put_page(vmf->page);
2859                         return tmp;
2860                 }
2861                 tmp = finish_mkwrite_fault(vmf);
2862                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2863                         unlock_page(vmf->page);
2864                         put_page(vmf->page);
2865                         return tmp;
2866                 }
2867         } else {
2868                 wp_page_reuse(vmf);
2869                 lock_page(vmf->page);
2870         }
2871         ret |= fault_dirty_shared_page(vmf);
2872         put_page(vmf->page);
2873
2874         return ret;
2875 }
2876
2877 /*
2878  * This routine handles present pages, when users try to write
2879  * to a shared page. It is done by copying the page to a new address
2880  * and decrementing the shared-page counter for the old page.
2881  *
2882  * Note that this routine assumes that the protection checks have been
2883  * done by the caller (the low-level page fault routine in most cases).
2884  * Thus we can safely just mark it writable once we've done any necessary
2885  * COW.
2886  *
2887  * We also mark the page dirty at this point even though the page will
2888  * change only once the write actually happens. This avoids a few races,
2889  * and potentially makes it more efficient.
2890  *
2891  * We enter with non-exclusive mmap_lock (to exclude vma changes,
2892  * but allow concurrent faults), with pte both mapped and locked.
2893  * We return with mmap_lock still held, but pte unmapped and unlocked.
2894  */
2895 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2896         __releases(vmf->ptl)
2897 {
2898         struct vm_area_struct *vma = vmf->vma;
2899
2900         if (userfaultfd_pte_wp(vma, *vmf->pte)) {
2901                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2902                 return handle_userfault(vmf, VM_UFFD_WP);
2903         }
2904
2905         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2906         if (!vmf->page) {
2907                 /*
2908                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2909                  * VM_PFNMAP VMA.
2910                  *
2911                  * We should not cow pages in a shared writeable mapping.
2912                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2913                  */
2914                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2915                                      (VM_WRITE|VM_SHARED))
2916                         return wp_pfn_shared(vmf);
2917
2918                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2919                 return wp_page_copy(vmf);
2920         }
2921
2922         /*
2923          * Take out anonymous pages first, anonymous shared vmas are
2924          * not dirty accountable.
2925          */
2926         if (PageAnon(vmf->page)) {
2927                 int total_map_swapcount;
2928                 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2929                                            page_count(vmf->page) != 1))
2930                         goto copy;
2931                 if (!trylock_page(vmf->page)) {
2932                         get_page(vmf->page);
2933                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2934                         lock_page(vmf->page);
2935                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2936                                         vmf->address, &vmf->ptl);
2937                         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2938                                 update_mmu_tlb(vma, vmf->address, vmf->pte);
2939                                 unlock_page(vmf->page);
2940                                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2941                                 put_page(vmf->page);
2942                                 return 0;
2943                         }
2944                         put_page(vmf->page);
2945                 }
2946                 if (PageKsm(vmf->page)) {
2947                         bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2948                                                      vmf->address);
2949                         unlock_page(vmf->page);
2950                         if (!reused)
2951                                 goto copy;
2952                         wp_page_reuse(vmf);
2953                         return VM_FAULT_WRITE;
2954                 }
2955                 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2956                         if (total_map_swapcount == 1) {
2957                                 /*
2958                                  * The page is all ours. Move it to
2959                                  * our anon_vma so the rmap code will
2960                                  * not search our parent or siblings.
2961                                  * Protected against the rmap code by
2962                                  * the page lock.
2963                                  */
2964                                 page_move_anon_rmap(vmf->page, vma);
2965                         }
2966                         unlock_page(vmf->page);
2967                         wp_page_reuse(vmf);
2968                         return VM_FAULT_WRITE;
2969                 }
2970                 unlock_page(vmf->page);
2971         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2972                                         (VM_WRITE|VM_SHARED))) {
2973                 return wp_page_shared(vmf);
2974         }
2975 copy:
2976         /*
2977          * Ok, we need to copy. Oh, well..
2978          */
2979         get_page(vmf->page);
2980
2981         pte_unmap_unlock(vmf->pte, vmf->ptl);
2982         return wp_page_copy(vmf);
2983 }
2984
2985 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2986                 unsigned long start_addr, unsigned long end_addr,
2987                 struct zap_details *details)
2988 {
2989         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2990 }
2991
2992 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2993                                             struct zap_details *details)
2994 {
2995         struct vm_area_struct *vma;
2996         pgoff_t vba, vea, zba, zea;
2997
2998         vma_interval_tree_foreach(vma, root,
2999                         details->first_index, details->last_index) {
3000
3001                 vba = vma->vm_pgoff;
3002                 vea = vba + vma_pages(vma) - 1;
3003                 zba = details->first_index;
3004                 if (zba < vba)
3005                         zba = vba;
3006                 zea = details->last_index;
3007                 if (zea > vea)
3008                         zea = vea;
3009
3010                 unmap_mapping_range_vma(vma,
3011                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3012                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3013                                 details);
3014         }
3015 }
3016
3017 /**
3018  * unmap_mapping_pages() - Unmap pages from processes.
3019  * @mapping: The address space containing pages to be unmapped.
3020  * @start: Index of first page to be unmapped.
3021  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3022  * @even_cows: Whether to unmap even private COWed pages.
3023  *
3024  * Unmap the pages in this address space from any userspace process which
3025  * has them mmaped.  Generally, you want to remove COWed pages as well when
3026  * a file is being truncated, but not when invalidating pages from the page
3027  * cache.
3028  */
3029 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3030                 pgoff_t nr, bool even_cows)
3031 {
3032         struct zap_details details = { };
3033
3034         details.check_mapping = even_cows ? NULL : mapping;
3035         details.first_index = start;
3036         details.last_index = start + nr - 1;
3037         if (details.last_index < details.first_index)
3038                 details.last_index = ULONG_MAX;
3039
3040         i_mmap_lock_write(mapping);
3041         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3042                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3043         i_mmap_unlock_write(mapping);
3044 }
3045
3046 /**
3047  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3048  * address_space corresponding to the specified byte range in the underlying
3049  * file.
3050  *
3051  * @mapping: the address space containing mmaps to be unmapped.
3052  * @holebegin: byte in first page to unmap, relative to the start of
3053  * the underlying file.  This will be rounded down to a PAGE_SIZE
3054  * boundary.  Note that this is different from truncate_pagecache(), which
3055  * must keep the partial page.  In contrast, we must get rid of
3056  * partial pages.
3057  * @holelen: size of prospective hole in bytes.  This will be rounded
3058  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3059  * end of the file.
3060  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3061  * but 0 when invalidating pagecache, don't throw away private data.
3062  */
3063 void unmap_mapping_range(struct address_space *mapping,
3064                 loff_t const holebegin, loff_t const holelen, int even_cows)
3065 {
3066         pgoff_t hba = holebegin >> PAGE_SHIFT;
3067         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3068
3069         /* Check for overflow. */
3070         if (sizeof(holelen) > sizeof(hlen)) {
3071                 long long holeend =
3072                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3073                 if (holeend & ~(long long)ULONG_MAX)
3074                         hlen = ULONG_MAX - hba + 1;
3075         }
3076
3077         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3078 }
3079 EXPORT_SYMBOL(unmap_mapping_range);
3080
3081 /*
3082  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3083  * but allow concurrent faults), and pte mapped but not yet locked.
3084  * We return with pte unmapped and unlocked.
3085  *
3086  * We return with the mmap_lock locked or unlocked in the same cases
3087  * as does filemap_fault().
3088  */
3089 vm_fault_t do_swap_page(struct vm_fault *vmf)
3090 {
3091         struct vm_area_struct *vma = vmf->vma;
3092         struct page *page = NULL, *swapcache;
3093         swp_entry_t entry;
3094         pte_t pte;
3095         int locked;
3096         int exclusive = 0;
3097         vm_fault_t ret = 0;
3098
3099         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3100                 goto out;
3101
3102         entry = pte_to_swp_entry(vmf->orig_pte);
3103         if (unlikely(non_swap_entry(entry))) {
3104                 if (is_migration_entry(entry)) {
3105                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3106                                              vmf->address);
3107                 } else if (is_device_private_entry(entry)) {
3108                         vmf->page = device_private_entry_to_page(entry);
3109                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3110                 } else if (is_hwpoison_entry(entry)) {
3111                         ret = VM_FAULT_HWPOISON;
3112                 } else {
3113                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3114                         ret = VM_FAULT_SIGBUS;
3115                 }
3116                 goto out;
3117         }
3118
3119
3120         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3121         page = lookup_swap_cache(entry, vma, vmf->address);
3122         swapcache = page;
3123
3124         if (!page) {
3125                 struct swap_info_struct *si = swp_swap_info(entry);
3126
3127                 if (si->flags & SWP_SYNCHRONOUS_IO &&
3128                                 __swap_count(entry) == 1) {
3129                         /* skip swapcache */
3130                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3131                                                         vmf->address);
3132                         if (page) {
3133                                 int err;
3134
3135                                 __SetPageLocked(page);
3136                                 __SetPageSwapBacked(page);
3137                                 set_page_private(page, entry.val);
3138
3139                                 /* Tell memcg to use swap ownership records */
3140                                 SetPageSwapCache(page);
3141                                 err = mem_cgroup_charge(page, vma->vm_mm,
3142                                                         GFP_KERNEL);
3143                                 ClearPageSwapCache(page);
3144                                 if (err) {
3145                                         ret = VM_FAULT_OOM;
3146                                         goto out_page;
3147                                 }
3148
3149                                 /*
3150                                  * XXX: Move to lru_cache_add() when it
3151                                  * supports new vs putback
3152                                  */
3153                                 spin_lock_irq(&page_pgdat(page)->lru_lock);
3154                                 lru_note_cost_page(page);
3155                                 spin_unlock_irq(&page_pgdat(page)->lru_lock);
3156
3157                                 lru_cache_add(page);
3158                                 swap_readpage(page, true);
3159                         }
3160                 } else {
3161                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3162                                                 vmf);
3163                         swapcache = page;
3164                 }
3165
3166                 if (!page) {
3167                         /*
3168                          * Back out if somebody else faulted in this pte
3169                          * while we released the pte lock.
3170                          */
3171                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3172                                         vmf->address, &vmf->ptl);
3173                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3174                                 ret = VM_FAULT_OOM;
3175                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3176                         goto unlock;
3177                 }
3178
3179                 /* Had to read the page from swap area: Major fault */
3180                 ret = VM_FAULT_MAJOR;
3181                 count_vm_event(PGMAJFAULT);
3182                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3183         } else if (PageHWPoison(page)) {
3184                 /*
3185                  * hwpoisoned dirty swapcache pages are kept for killing
3186                  * owner processes (which may be unknown at hwpoison time)
3187                  */
3188                 ret = VM_FAULT_HWPOISON;
3189                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3190                 goto out_release;
3191         }
3192
3193         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3194
3195         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3196         if (!locked) {
3197                 ret |= VM_FAULT_RETRY;
3198                 goto out_release;
3199         }
3200
3201         /*
3202          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3203          * release the swapcache from under us.  The page pin, and pte_same
3204          * test below, are not enough to exclude that.  Even if it is still
3205          * swapcache, we need to check that the page's swap has not changed.
3206          */
3207         if (unlikely((!PageSwapCache(page) ||
3208                         page_private(page) != entry.val)) && swapcache)
3209                 goto out_page;
3210
3211         page = ksm_might_need_to_copy(page, vma, vmf->address);
3212         if (unlikely(!page)) {
3213                 ret = VM_FAULT_OOM;
3214                 page = swapcache;
3215                 goto out_page;
3216         }
3217
3218         cgroup_throttle_swaprate(page, GFP_KERNEL);
3219
3220         /*
3221          * Back out if somebody else already faulted in this pte.
3222          */
3223         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3224                         &vmf->ptl);
3225         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3226                 goto out_nomap;
3227
3228         if (unlikely(!PageUptodate(page))) {
3229                 ret = VM_FAULT_SIGBUS;
3230                 goto out_nomap;
3231         }
3232
3233         /*
3234          * The page isn't present yet, go ahead with the fault.
3235          *
3236          * Be careful about the sequence of operations here.
3237          * To get its accounting right, reuse_swap_page() must be called
3238          * while the page is counted on swap but not yet in mapcount i.e.
3239          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3240          * must be called after the swap_free(), or it will never succeed.
3241          */
3242
3243         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3244         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3245         pte = mk_pte(page, vma->vm_page_prot);
3246         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3247                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3248                 vmf->flags &= ~FAULT_FLAG_WRITE;
3249                 ret |= VM_FAULT_WRITE;
3250                 exclusive = RMAP_EXCLUSIVE;
3251         }
3252         flush_icache_page(vma, page);
3253         if (pte_swp_soft_dirty(vmf->orig_pte))
3254                 pte = pte_mksoft_dirty(pte);
3255         if (pte_swp_uffd_wp(vmf->orig_pte)) {
3256                 pte = pte_mkuffd_wp(pte);
3257                 pte = pte_wrprotect(pte);
3258         }
3259         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3260         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3261         vmf->orig_pte = pte;
3262
3263         /* ksm created a completely new copy */
3264         if (unlikely(page != swapcache && swapcache)) {
3265                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3266                 lru_cache_add_active_or_unevictable(page, vma);
3267         } else {
3268                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3269                 activate_page(page);
3270         }
3271
3272         swap_free(entry);
3273         if (mem_cgroup_swap_full(page) ||
3274             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3275                 try_to_free_swap(page);
3276         unlock_page(page);
3277         if (page != swapcache && swapcache) {
3278                 /*
3279                  * Hold the lock to avoid the swap entry to be reused
3280                  * until we take the PT lock for the pte_same() check
3281                  * (to avoid false positives from pte_same). For
3282                  * further safety release the lock after the swap_free
3283                  * so that the swap count won't change under a
3284                  * parallel locked swapcache.
3285                  */
3286                 unlock_page(swapcache);
3287                 put_page(swapcache);
3288         }
3289
3290         if (vmf->flags & FAULT_FLAG_WRITE) {
3291                 ret |= do_wp_page(vmf);
3292                 if (ret & VM_FAULT_ERROR)
3293                         ret &= VM_FAULT_ERROR;
3294                 goto out;
3295         }
3296
3297         /* No need to invalidate - it was non-present before */
3298         update_mmu_cache(vma, vmf->address, vmf->pte);
3299 unlock:
3300         pte_unmap_unlock(vmf->pte, vmf->ptl);
3301 out:
3302         return ret;
3303 out_nomap:
3304         pte_unmap_unlock(vmf->pte, vmf->ptl);
3305 out_page:
3306         unlock_page(page);
3307 out_release:
3308         put_page(page);
3309         if (page != swapcache && swapcache) {
3310                 unlock_page(swapcache);
3311                 put_page(swapcache);
3312         }
3313         return ret;
3314 }
3315
3316 /*
3317  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3318  * but allow concurrent faults), and pte mapped but not yet locked.
3319  * We return with mmap_lock still held, but pte unmapped and unlocked.
3320  */
3321 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3322 {
3323         struct vm_area_struct *vma = vmf->vma;
3324         struct page *page;
3325         vm_fault_t ret = 0;
3326         pte_t entry;
3327
3328         /* File mapping without ->vm_ops ? */
3329         if (vma->vm_flags & VM_SHARED)
3330                 return VM_FAULT_SIGBUS;
3331
3332         /*
3333          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3334          * pte_offset_map() on pmds where a huge pmd might be created
3335          * from a different thread.
3336          *
3337          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3338          * parallel threads are excluded by other means.
3339          *
3340          * Here we only have mmap_read_lock(mm).
3341          */
3342         if (pte_alloc(vma->vm_mm, vmf->pmd))
3343                 return VM_FAULT_OOM;
3344
3345         /* See the comment in pte_alloc_one_map() */
3346         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3347                 return 0;
3348
3349         /* Use the zero-page for reads */
3350         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3351                         !mm_forbids_zeropage(vma->vm_mm)) {
3352                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3353                                                 vma->vm_page_prot));
3354                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3355                                 vmf->address, &vmf->ptl);
3356                 if (!pte_none(*vmf->pte)) {
3357                         update_mmu_tlb(vma, vmf->address, vmf->pte);
3358                         goto unlock;
3359                 }
3360                 ret = check_stable_address_space(vma->vm_mm);
3361                 if (ret)
3362                         goto unlock;
3363                 /* Deliver the page fault to userland, check inside PT lock */
3364                 if (userfaultfd_missing(vma)) {
3365                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3366                         return handle_userfault(vmf, VM_UFFD_MISSING);
3367                 }
3368                 goto setpte;
3369         }
3370
3371         /* Allocate our own private page. */
3372         if (unlikely(anon_vma_prepare(vma)))
3373                 goto oom;
3374         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3375         if (!page)
3376                 goto oom;
3377
3378         if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3379                 goto oom_free_page;
3380         cgroup_throttle_swaprate(page, GFP_KERNEL);
3381
3382         /*
3383          * The memory barrier inside __SetPageUptodate makes sure that
3384          * preceding stores to the page contents become visible before
3385          * the set_pte_at() write.
3386          */
3387         __SetPageUptodate(page);
3388
3389         entry = mk_pte(page, vma->vm_page_prot);
3390         entry = pte_sw_mkyoung(entry);
3391         if (vma->vm_flags & VM_WRITE)
3392                 entry = pte_mkwrite(pte_mkdirty(entry));
3393
3394         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3395                         &vmf->ptl);
3396         if (!pte_none(*vmf->pte)) {
3397                 update_mmu_cache(vma, vmf->address, vmf->pte);
3398                 goto release;
3399         }
3400
3401         ret = check_stable_address_space(vma->vm_mm);
3402         if (ret)
3403                 goto release;
3404
3405         /* Deliver the page fault to userland, check inside PT lock */
3406         if (userfaultfd_missing(vma)) {
3407                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3408                 put_page(page);
3409                 return handle_userfault(vmf, VM_UFFD_MISSING);
3410         }
3411
3412         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3413         page_add_new_anon_rmap(page, vma, vmf->address, false);
3414         lru_cache_add_active_or_unevictable(page, vma);
3415 setpte:
3416         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3417
3418         /* No need to invalidate - it was non-present before */
3419         update_mmu_cache(vma, vmf->address, vmf->pte);
3420 unlock:
3421         pte_unmap_unlock(vmf->pte, vmf->ptl);
3422         return ret;
3423 release:
3424         put_page(page);
3425         goto unlock;
3426 oom_free_page:
3427         put_page(page);
3428 oom:
3429         return VM_FAULT_OOM;
3430 }
3431
3432 /*
3433  * The mmap_lock must have been held on entry, and may have been
3434  * released depending on flags and vma->vm_ops->fault() return value.
3435  * See filemap_fault() and __lock_page_retry().
3436  */
3437 static vm_fault_t __do_fault(struct vm_fault *vmf)
3438 {
3439         struct vm_area_struct *vma = vmf->vma;
3440         vm_fault_t ret;
3441
3442         /*
3443          * Preallocate pte before we take page_lock because this might lead to
3444          * deadlocks for memcg reclaim which waits for pages under writeback:
3445          *                              lock_page(A)
3446          *                              SetPageWriteback(A)
3447          *                              unlock_page(A)
3448          * lock_page(B)
3449          *                              lock_page(B)
3450          * pte_alloc_pne
3451          *   shrink_page_list
3452          *     wait_on_page_writeback(A)
3453          *                              SetPageWriteback(B)
3454          *                              unlock_page(B)
3455          *                              # flush A, B to clear the writeback
3456          */
3457         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3458                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3459                 if (!vmf->prealloc_pte)
3460                         return VM_FAULT_OOM;
3461                 smp_wmb(); /* See comment in __pte_alloc() */
3462         }
3463
3464         ret = vma->vm_ops->fault(vmf);
3465         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3466                             VM_FAULT_DONE_COW)))
3467                 return ret;
3468
3469         if (unlikely(PageHWPoison(vmf->page))) {
3470                 if (ret & VM_FAULT_LOCKED)
3471                         unlock_page(vmf->page);
3472                 put_page(vmf->page);
3473                 vmf->page = NULL;
3474                 return VM_FAULT_HWPOISON;
3475         }
3476
3477         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3478                 lock_page(vmf->page);
3479         else
3480                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3481
3482         return ret;
3483 }
3484
3485 /*
3486  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3487  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3488  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3489  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3490  */
3491 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3492 {
3493         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3494 }
3495
3496 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3497 {
3498         struct vm_area_struct *vma = vmf->vma;
3499
3500         if (!pmd_none(*vmf->pmd))
3501                 goto map_pte;
3502         if (vmf->prealloc_pte) {
3503                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3504                 if (unlikely(!pmd_none(*vmf->pmd))) {
3505                         spin_unlock(vmf->ptl);
3506                         goto map_pte;
3507                 }
3508
3509                 mm_inc_nr_ptes(vma->vm_mm);
3510                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3511                 spin_unlock(vmf->ptl);
3512                 vmf->prealloc_pte = NULL;
3513         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3514                 return VM_FAULT_OOM;
3515         }
3516 map_pte:
3517         /*
3518          * If a huge pmd materialized under us just retry later.  Use
3519          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3520          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3521          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3522          * running immediately after a huge pmd fault in a different thread of
3523          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3524          * All we have to ensure is that it is a regular pmd that we can walk
3525          * with pte_offset_map() and we can do that through an atomic read in
3526          * C, which is what pmd_trans_unstable() provides.
3527          */
3528         if (pmd_devmap_trans_unstable(vmf->pmd))
3529                 return VM_FAULT_NOPAGE;
3530
3531         /*
3532          * At this point we know that our vmf->pmd points to a page of ptes
3533          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3534          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3535          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3536          * be valid and we will re-check to make sure the vmf->pte isn't
3537          * pte_none() under vmf->ptl protection when we return to
3538          * alloc_set_pte().
3539          */
3540         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3541                         &vmf->ptl);
3542         return 0;
3543 }
3544
3545 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3546 static void deposit_prealloc_pte(struct vm_fault *vmf)
3547 {
3548         struct vm_area_struct *vma = vmf->vma;
3549
3550         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3551         /*
3552          * We are going to consume the prealloc table,
3553          * count that as nr_ptes.
3554          */
3555         mm_inc_nr_ptes(vma->vm_mm);
3556         vmf->prealloc_pte = NULL;
3557 }
3558
3559 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3560 {
3561         struct vm_area_struct *vma = vmf->vma;
3562         bool write = vmf->flags & FAULT_FLAG_WRITE;
3563         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3564         pmd_t entry;
3565         int i;
3566         vm_fault_t ret;
3567
3568         if (!transhuge_vma_suitable(vma, haddr))
3569                 return VM_FAULT_FALLBACK;
3570
3571         ret = VM_FAULT_FALLBACK;
3572         page = compound_head(page);
3573
3574         /*
3575          * Archs like ppc64 need additonal space to store information
3576          * related to pte entry. Use the preallocated table for that.
3577          */
3578         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3579                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3580                 if (!vmf->prealloc_pte)
3581                         return VM_FAULT_OOM;
3582                 smp_wmb(); /* See comment in __pte_alloc() */
3583         }
3584
3585         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3586         if (unlikely(!pmd_none(*vmf->pmd)))
3587                 goto out;
3588
3589         for (i = 0; i < HPAGE_PMD_NR; i++)
3590                 flush_icache_page(vma, page + i);
3591
3592         entry = mk_huge_pmd(page, vma->vm_page_prot);
3593         if (write)
3594                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3595
3596         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3597         page_add_file_rmap(page, true);
3598         /*
3599          * deposit and withdraw with pmd lock held
3600          */
3601         if (arch_needs_pgtable_deposit())
3602                 deposit_prealloc_pte(vmf);
3603
3604         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3605
3606         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3607
3608         /* fault is handled */
3609         ret = 0;
3610         count_vm_event(THP_FILE_MAPPED);
3611 out:
3612         spin_unlock(vmf->ptl);
3613         return ret;
3614 }
3615 #else
3616 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3617 {
3618         BUILD_BUG();
3619         return 0;
3620 }
3621 #endif
3622
3623 /**
3624  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3625  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3626  *
3627  * @vmf: fault environment
3628  * @page: page to map
3629  *
3630  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3631  * return.
3632  *
3633  * Target users are page handler itself and implementations of
3634  * vm_ops->map_pages.
3635  *
3636  * Return: %0 on success, %VM_FAULT_ code in case of error.
3637  */
3638 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
3639 {
3640         struct vm_area_struct *vma = vmf->vma;
3641         bool write = vmf->flags & FAULT_FLAG_WRITE;
3642         pte_t entry;
3643         vm_fault_t ret;
3644
3645         if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3646                 ret = do_set_pmd(vmf, page);
3647                 if (ret != VM_FAULT_FALLBACK)
3648                         return ret;
3649         }
3650
3651         if (!vmf->pte) {
3652                 ret = pte_alloc_one_map(vmf);
3653                 if (ret)
3654                         return ret;
3655         }
3656
3657         /* Re-check under ptl */
3658         if (unlikely(!pte_none(*vmf->pte))) {
3659                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3660                 return VM_FAULT_NOPAGE;
3661         }
3662
3663         flush_icache_page(vma, page);
3664         entry = mk_pte(page, vma->vm_page_prot);
3665         entry = pte_sw_mkyoung(entry);
3666         if (write)
3667                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3668         /* copy-on-write page */
3669         if (write && !(vma->vm_flags & VM_SHARED)) {
3670                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3671                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3672                 lru_cache_add_active_or_unevictable(page, vma);
3673         } else {
3674                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3675                 page_add_file_rmap(page, false);
3676         }
3677         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3678
3679         /* no need to invalidate: a not-present page won't be cached */
3680         update_mmu_cache(vma, vmf->address, vmf->pte);
3681
3682         return 0;
3683 }
3684
3685
3686 /**
3687  * finish_fault - finish page fault once we have prepared the page to fault
3688  *
3689  * @vmf: structure describing the fault
3690  *
3691  * This function handles all that is needed to finish a page fault once the
3692  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3693  * given page, adds reverse page mapping, handles memcg charges and LRU
3694  * addition.
3695  *
3696  * The function expects the page to be locked and on success it consumes a
3697  * reference of a page being mapped (for the PTE which maps it).
3698  *
3699  * Return: %0 on success, %VM_FAULT_ code in case of error.
3700  */
3701 vm_fault_t finish_fault(struct vm_fault *vmf)
3702 {
3703         struct page *page;
3704         vm_fault_t ret = 0;
3705
3706         /* Did we COW the page? */
3707         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3708             !(vmf->vma->vm_flags & VM_SHARED))
3709                 page = vmf->cow_page;
3710         else
3711                 page = vmf->page;
3712
3713         /*
3714          * check even for read faults because we might have lost our CoWed
3715          * page
3716          */
3717         if (!(vmf->vma->vm_flags & VM_SHARED))
3718                 ret = check_stable_address_space(vmf->vma->vm_mm);
3719         if (!ret)
3720                 ret = alloc_set_pte(vmf, page);
3721         if (vmf->pte)
3722                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3723         return ret;
3724 }
3725
3726 static unsigned long fault_around_bytes __read_mostly =
3727         rounddown_pow_of_two(65536);
3728
3729 #ifdef CONFIG_DEBUG_FS
3730 static int fault_around_bytes_get(void *data, u64 *val)
3731 {
3732         *val = fault_around_bytes;
3733         return 0;
3734 }
3735
3736 /*
3737  * fault_around_bytes must be rounded down to the nearest page order as it's
3738  * what do_fault_around() expects to see.
3739  */
3740 static int fault_around_bytes_set(void *data, u64 val)
3741 {
3742         if (val / PAGE_SIZE > PTRS_PER_PTE)
3743                 return -EINVAL;
3744         if (val > PAGE_SIZE)
3745                 fault_around_bytes = rounddown_pow_of_two(val);
3746         else
3747                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3748         return 0;
3749 }
3750 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3751                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3752
3753 static int __init fault_around_debugfs(void)
3754 {
3755         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3756                                    &fault_around_bytes_fops);
3757         return 0;
3758 }
3759 late_initcall(fault_around_debugfs);
3760 #endif
3761
3762 /*
3763  * do_fault_around() tries to map few pages around the fault address. The hope
3764  * is that the pages will be needed soon and this will lower the number of
3765  * faults to handle.
3766  *
3767  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3768  * not ready to be mapped: not up-to-date, locked, etc.
3769  *
3770  * This function is called with the page table lock taken. In the split ptlock
3771  * case the page table lock only protects only those entries which belong to
3772  * the page table corresponding to the fault address.
3773  *
3774  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3775  * only once.
3776  *
3777  * fault_around_bytes defines how many bytes we'll try to map.
3778  * do_fault_around() expects it to be set to a power of two less than or equal
3779  * to PTRS_PER_PTE.
3780  *
3781  * The virtual address of the area that we map is naturally aligned to
3782  * fault_around_bytes rounded down to the machine page size
3783  * (and therefore to page order).  This way it's easier to guarantee
3784  * that we don't cross page table boundaries.
3785  */
3786 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3787 {
3788         unsigned long address = vmf->address, nr_pages, mask;
3789         pgoff_t start_pgoff = vmf->pgoff;
3790         pgoff_t end_pgoff;
3791         int off;
3792         vm_fault_t ret = 0;
3793
3794         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3795         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3796
3797         vmf->address = max(address & mask, vmf->vma->vm_start);
3798         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3799         start_pgoff -= off;
3800
3801         /*
3802          *  end_pgoff is either the end of the page table, the end of
3803          *  the vma or nr_pages from start_pgoff, depending what is nearest.
3804          */
3805         end_pgoff = start_pgoff -
3806                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3807                 PTRS_PER_PTE - 1;
3808         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3809                         start_pgoff + nr_pages - 1);
3810
3811         if (pmd_none(*vmf->pmd)) {
3812                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3813                 if (!vmf->prealloc_pte)
3814                         goto out;
3815                 smp_wmb(); /* See comment in __pte_alloc() */
3816         }
3817
3818         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3819
3820         /* Huge page is mapped? Page fault is solved */
3821         if (pmd_trans_huge(*vmf->pmd)) {
3822                 ret = VM_FAULT_NOPAGE;
3823                 goto out;
3824         }
3825
3826         /* ->map_pages() haven't done anything useful. Cold page cache? */
3827         if (!vmf->pte)
3828                 goto out;
3829
3830         /* check if the page fault is solved */
3831         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3832         if (!pte_none(*vmf->pte))
3833                 ret = VM_FAULT_NOPAGE;
3834         pte_unmap_unlock(vmf->pte, vmf->ptl);
3835 out:
3836         vmf->address = address;
3837         vmf->pte = NULL;
3838         return ret;
3839 }
3840
3841 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3842 {
3843         struct vm_area_struct *vma = vmf->vma;
3844         vm_fault_t ret = 0;
3845
3846         /*
3847          * Let's call ->map_pages() first and use ->fault() as fallback
3848          * if page by the offset is not ready to be mapped (cold cache or
3849          * something).
3850          */
3851         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3852                 ret = do_fault_around(vmf);
3853                 if (ret)
3854                         return ret;
3855         }
3856
3857         ret = __do_fault(vmf);
3858         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3859                 return ret;
3860
3861         ret |= finish_fault(vmf);
3862         unlock_page(vmf->page);
3863         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3864                 put_page(vmf->page);
3865         return ret;
3866 }
3867
3868 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3869 {
3870         struct vm_area_struct *vma = vmf->vma;
3871         vm_fault_t ret;
3872
3873         if (unlikely(anon_vma_prepare(vma)))
3874                 return VM_FAULT_OOM;
3875
3876         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3877         if (!vmf->cow_page)
3878                 return VM_FAULT_OOM;
3879
3880         if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
3881                 put_page(vmf->cow_page);
3882                 return VM_FAULT_OOM;
3883         }
3884         cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
3885
3886         ret = __do_fault(vmf);
3887         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3888                 goto uncharge_out;
3889         if (ret & VM_FAULT_DONE_COW)
3890                 return ret;
3891
3892         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3893         __SetPageUptodate(vmf->cow_page);
3894
3895         ret |= finish_fault(vmf);
3896         unlock_page(vmf->page);
3897         put_page(vmf->page);
3898         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3899                 goto uncharge_out;
3900         return ret;
3901 uncharge_out:
3902         put_page(vmf->cow_page);
3903         return ret;
3904 }
3905
3906 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3907 {
3908         struct vm_area_struct *vma = vmf->vma;
3909         vm_fault_t ret, tmp;
3910
3911         ret = __do_fault(vmf);
3912         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3913                 return ret;
3914
3915         /*
3916          * Check if the backing address space wants to know that the page is
3917          * about to become writable
3918          */
3919         if (vma->vm_ops->page_mkwrite) {
3920                 unlock_page(vmf->page);
3921                 tmp = do_page_mkwrite(vmf);
3922                 if (unlikely(!tmp ||
3923                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3924                         put_page(vmf->page);
3925                         return tmp;
3926                 }
3927         }
3928
3929         ret |= finish_fault(vmf);
3930         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3931                                         VM_FAULT_RETRY))) {
3932                 unlock_page(vmf->page);
3933                 put_page(vmf->page);
3934                 return ret;
3935         }
3936
3937         ret |= fault_dirty_shared_page(vmf);
3938         return ret;
3939 }
3940
3941 /*
3942  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3943  * but allow concurrent faults).
3944  * The mmap_lock may have been released depending on flags and our
3945  * return value.  See filemap_fault() and __lock_page_or_retry().
3946  * If mmap_lock is released, vma may become invalid (for example
3947  * by other thread calling munmap()).
3948  */
3949 static vm_fault_t do_fault(struct vm_fault *vmf)
3950 {
3951         struct vm_area_struct *vma = vmf->vma;
3952         struct mm_struct *vm_mm = vma->vm_mm;
3953         vm_fault_t ret;
3954
3955         /*
3956          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3957          */
3958         if (!vma->vm_ops->fault) {
3959                 /*
3960                  * If we find a migration pmd entry or a none pmd entry, which
3961                  * should never happen, return SIGBUS
3962                  */
3963                 if (unlikely(!pmd_present(*vmf->pmd)))
3964                         ret = VM_FAULT_SIGBUS;
3965                 else {
3966                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3967                                                        vmf->pmd,
3968                                                        vmf->address,
3969                                                        &vmf->ptl);
3970                         /*
3971                          * Make sure this is not a temporary clearing of pte
3972                          * by holding ptl and checking again. A R/M/W update
3973                          * of pte involves: take ptl, clearing the pte so that
3974                          * we don't have concurrent modification by hardware
3975                          * followed by an update.
3976                          */
3977                         if (unlikely(pte_none(*vmf->pte)))
3978                                 ret = VM_FAULT_SIGBUS;
3979                         else
3980                                 ret = VM_FAULT_NOPAGE;
3981
3982                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3983                 }
3984         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3985                 ret = do_read_fault(vmf);
3986         else if (!(vma->vm_flags & VM_SHARED))
3987                 ret = do_cow_fault(vmf);
3988         else
3989                 ret = do_shared_fault(vmf);
3990
3991         /* preallocated pagetable is unused: free it */
3992         if (vmf->prealloc_pte) {
3993                 pte_free(vm_mm, vmf->prealloc_pte);
3994                 vmf->prealloc_pte = NULL;
3995         }
3996         return ret;
3997 }
3998
3999 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4000                                 unsigned long addr, int page_nid,
4001                                 int *flags)
4002 {
4003         get_page(page);
4004
4005         count_vm_numa_event(NUMA_HINT_FAULTS);
4006         if (page_nid == numa_node_id()) {
4007                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4008                 *flags |= TNF_FAULT_LOCAL;
4009         }
4010
4011         return mpol_misplaced(page, vma, addr);
4012 }
4013
4014 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4015 {
4016         struct vm_area_struct *vma = vmf->vma;
4017         struct page *page = NULL;
4018         int page_nid = NUMA_NO_NODE;
4019         int last_cpupid;
4020         int target_nid;
4021         bool migrated = false;
4022         pte_t pte, old_pte;
4023         bool was_writable = pte_savedwrite(vmf->orig_pte);
4024         int flags = 0;
4025
4026         /*
4027          * The "pte" at this point cannot be used safely without
4028          * validation through pte_unmap_same(). It's of NUMA type but
4029          * the pfn may be screwed if the read is non atomic.
4030          */
4031         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4032         spin_lock(vmf->ptl);
4033         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4034                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4035                 goto out;
4036         }
4037
4038         /*
4039          * Make it present again, Depending on how arch implementes non
4040          * accessible ptes, some can allow access by kernel mode.
4041          */
4042         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4043         pte = pte_modify(old_pte, vma->vm_page_prot);
4044         pte = pte_mkyoung(pte);
4045         if (was_writable)
4046                 pte = pte_mkwrite(pte);
4047         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4048         update_mmu_cache(vma, vmf->address, vmf->pte);
4049
4050         page = vm_normal_page(vma, vmf->address, pte);
4051         if (!page) {
4052                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4053                 return 0;
4054         }
4055
4056         /* TODO: handle PTE-mapped THP */
4057         if (PageCompound(page)) {
4058                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4059                 return 0;
4060         }
4061
4062         /*
4063          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4064          * much anyway since they can be in shared cache state. This misses
4065          * the case where a mapping is writable but the process never writes
4066          * to it but pte_write gets cleared during protection updates and
4067          * pte_dirty has unpredictable behaviour between PTE scan updates,
4068          * background writeback, dirty balancing and application behaviour.
4069          */
4070         if (!pte_write(pte))
4071                 flags |= TNF_NO_GROUP;
4072
4073         /*
4074          * Flag if the page is shared between multiple address spaces. This
4075          * is later used when determining whether to group tasks together
4076          */
4077         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4078                 flags |= TNF_SHARED;
4079
4080         last_cpupid = page_cpupid_last(page);
4081         page_nid = page_to_nid(page);
4082         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4083                         &flags);
4084         pte_unmap_unlock(vmf->pte, vmf->ptl);
4085         if (target_nid == NUMA_NO_NODE) {
4086                 put_page(page);
4087                 goto out;
4088         }
4089
4090         /* Migrate to the requested node */
4091         migrated = migrate_misplaced_page(page, vma, target_nid);
4092         if (migrated) {
4093                 page_nid = target_nid;
4094                 flags |= TNF_MIGRATED;
4095         } else
4096                 flags |= TNF_MIGRATE_FAIL;
4097
4098 out:
4099         if (page_nid != NUMA_NO_NODE)
4100                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4101         return 0;
4102 }
4103
4104 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4105 {
4106         if (vma_is_anonymous(vmf->vma))
4107                 return do_huge_pmd_anonymous_page(vmf);
4108         if (vmf->vma->vm_ops->huge_fault)
4109                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4110         return VM_FAULT_FALLBACK;
4111 }
4112
4113 /* `inline' is required to avoid gcc 4.1.2 build error */
4114 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4115 {
4116         if (vma_is_anonymous(vmf->vma)) {
4117                 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4118                         return handle_userfault(vmf, VM_UFFD_WP);
4119                 return do_huge_pmd_wp_page(vmf, orig_pmd);
4120         }
4121         if (vmf->vma->vm_ops->huge_fault) {
4122                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4123
4124                 if (!(ret & VM_FAULT_FALLBACK))
4125                         return ret;
4126         }
4127
4128         /* COW or write-notify handled on pte level: split pmd. */
4129         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4130
4131         return VM_FAULT_FALLBACK;
4132 }
4133
4134 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4135 {
4136 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4137         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4138         /* No support for anonymous transparent PUD pages yet */
4139         if (vma_is_anonymous(vmf->vma))
4140                 goto split;
4141         if (vmf->vma->vm_ops->huge_fault) {
4142                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4143
4144                 if (!(ret & VM_FAULT_FALLBACK))
4145                         return ret;
4146         }
4147 split:
4148         /* COW or write-notify not handled on PUD level: split pud.*/
4149         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4150 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4151         return VM_FAULT_FALLBACK;
4152 }
4153
4154 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4155 {
4156 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4157         /* No support for anonymous transparent PUD pages yet */
4158         if (vma_is_anonymous(vmf->vma))
4159                 return VM_FAULT_FALLBACK;
4160         if (vmf->vma->vm_ops->huge_fault)
4161                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4162 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4163         return VM_FAULT_FALLBACK;
4164 }
4165
4166 /*
4167  * These routines also need to handle stuff like marking pages dirty
4168  * and/or accessed for architectures that don't do it in hardware (most
4169  * RISC architectures).  The early dirtying is also good on the i386.
4170  *
4171  * There is also a hook called "update_mmu_cache()" that architectures
4172  * with external mmu caches can use to update those (ie the Sparc or
4173  * PowerPC hashed page tables that act as extended TLBs).
4174  *
4175  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4176  * concurrent faults).
4177  *
4178  * The mmap_lock may have been released depending on flags and our return value.
4179  * See filemap_fault() and __lock_page_or_retry().
4180  */
4181 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4182 {
4183         pte_t entry;
4184
4185         if (unlikely(pmd_none(*vmf->pmd))) {
4186                 /*
4187                  * Leave __pte_alloc() until later: because vm_ops->fault may
4188                  * want to allocate huge page, and if we expose page table
4189                  * for an instant, it will be difficult to retract from
4190                  * concurrent faults and from rmap lookups.
4191                  */
4192                 vmf->pte = NULL;
4193         } else {
4194                 /* See comment in pte_alloc_one_map() */
4195                 if (pmd_devmap_trans_unstable(vmf->pmd))
4196                         return 0;
4197                 /*
4198                  * A regular pmd is established and it can't morph into a huge
4199                  * pmd from under us anymore at this point because we hold the
4200                  * mmap_lock read mode and khugepaged takes it in write mode.
4201                  * So now it's safe to run pte_offset_map().
4202                  */
4203                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4204                 vmf->orig_pte = *vmf->pte;
4205
4206                 /*
4207                  * some architectures can have larger ptes than wordsize,
4208                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4209                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4210                  * accesses.  The code below just needs a consistent view
4211                  * for the ifs and we later double check anyway with the
4212                  * ptl lock held. So here a barrier will do.
4213                  */
4214                 barrier();
4215                 if (pte_none(vmf->orig_pte)) {
4216                         pte_unmap(vmf->pte);
4217                         vmf->pte = NULL;
4218                 }
4219         }
4220
4221         if (!vmf->pte) {
4222                 if (vma_is_anonymous(vmf->vma))
4223                         return do_anonymous_page(vmf);
4224                 else
4225                         return do_fault(vmf);
4226         }
4227
4228         if (!pte_present(vmf->orig_pte))
4229                 return do_swap_page(vmf);
4230
4231         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4232                 return do_numa_page(vmf);
4233
4234         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4235         spin_lock(vmf->ptl);
4236         entry = vmf->orig_pte;
4237         if (unlikely(!pte_same(*vmf->pte, entry))) {
4238                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4239                 goto unlock;
4240         }
4241         if (vmf->flags & FAULT_FLAG_WRITE) {
4242                 if (!pte_write(entry))
4243                         return do_wp_page(vmf);
4244                 entry = pte_mkdirty(entry);
4245         }
4246         entry = pte_mkyoung(entry);
4247         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4248                                 vmf->flags & FAULT_FLAG_WRITE)) {
4249                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4250         } else {
4251                 /*
4252                  * This is needed only for protection faults but the arch code
4253                  * is not yet telling us if this is a protection fault or not.
4254                  * This still avoids useless tlb flushes for .text page faults
4255                  * with threads.
4256                  */
4257                 if (vmf->flags & FAULT_FLAG_WRITE)
4258                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4259         }
4260 unlock:
4261         pte_unmap_unlock(vmf->pte, vmf->ptl);
4262         return 0;
4263 }
4264
4265 /*
4266  * By the time we get here, we already hold the mm semaphore
4267  *
4268  * The mmap_lock may have been released depending on flags and our
4269  * return value.  See filemap_fault() and __lock_page_or_retry().
4270  */
4271 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4272                 unsigned long address, unsigned int flags)
4273 {
4274         struct vm_fault vmf = {
4275                 .vma = vma,
4276                 .address = address & PAGE_MASK,
4277                 .flags = flags,
4278                 .pgoff = linear_page_index(vma, address),
4279                 .gfp_mask = __get_fault_gfp_mask(vma),
4280         };
4281         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4282         struct mm_struct *mm = vma->vm_mm;
4283         pgd_t *pgd;
4284         p4d_t *p4d;
4285         vm_fault_t ret;
4286
4287         pgd = pgd_offset(mm, address);
4288         p4d = p4d_alloc(mm, pgd, address);
4289         if (!p4d)
4290                 return VM_FAULT_OOM;
4291
4292         vmf.pud = pud_alloc(mm, p4d, address);
4293         if (!vmf.pud)
4294                 return VM_FAULT_OOM;
4295 retry_pud:
4296         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4297                 ret = create_huge_pud(&vmf);
4298                 if (!(ret & VM_FAULT_FALLBACK))
4299                         return ret;
4300         } else {
4301                 pud_t orig_pud = *vmf.pud;
4302
4303                 barrier();
4304                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4305
4306                         /* NUMA case for anonymous PUDs would go here */
4307
4308                         if (dirty && !pud_write(orig_pud)) {
4309                                 ret = wp_huge_pud(&vmf, orig_pud);
4310                                 if (!(ret & VM_FAULT_FALLBACK))
4311                                         return ret;
4312                         } else {
4313                                 huge_pud_set_accessed(&vmf, orig_pud);
4314                                 return 0;
4315                         }
4316                 }
4317         }
4318
4319         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4320         if (!vmf.pmd)
4321                 return VM_FAULT_OOM;
4322
4323         /* Huge pud page fault raced with pmd_alloc? */
4324         if (pud_trans_unstable(vmf.pud))
4325                 goto retry_pud;
4326
4327         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4328                 ret = create_huge_pmd(&vmf);
4329                 if (!(ret & VM_FAULT_FALLBACK))
4330                         return ret;
4331         } else {
4332                 pmd_t orig_pmd = *vmf.pmd;
4333
4334                 barrier();
4335                 if (unlikely(is_swap_pmd(orig_pmd))) {
4336                         VM_BUG_ON(thp_migration_supported() &&
4337                                           !is_pmd_migration_entry(orig_pmd));
4338                         if (is_pmd_migration_entry(orig_pmd))
4339                                 pmd_migration_entry_wait(mm, vmf.pmd);
4340                         return 0;
4341                 }
4342                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4343                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4344                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4345
4346                         if (dirty && !pmd_write(orig_pmd)) {
4347                                 ret = wp_huge_pmd(&vmf, orig_pmd);
4348                                 if (!(ret & VM_FAULT_FALLBACK))
4349                                         return ret;
4350                         } else {
4351                                 huge_pmd_set_accessed(&vmf, orig_pmd);
4352                                 return 0;
4353                         }
4354                 }
4355         }
4356
4357         return handle_pte_fault(&vmf);
4358 }
4359
4360 /*
4361  * By the time we get here, we already hold the mm semaphore
4362  *
4363  * The mmap_lock may have been released depending on flags and our
4364  * return value.  See filemap_fault() and __lock_page_or_retry().
4365  */
4366 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4367                 unsigned int flags)
4368 {
4369         vm_fault_t ret;
4370
4371         __set_current_state(TASK_RUNNING);
4372
4373         count_vm_event(PGFAULT);
4374         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4375
4376         /* do counter updates before entering really critical section. */
4377         check_sync_rss_stat(current);
4378
4379         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4380                                             flags & FAULT_FLAG_INSTRUCTION,
4381                                             flags & FAULT_FLAG_REMOTE))
4382                 return VM_FAULT_SIGSEGV;
4383
4384         /*
4385          * Enable the memcg OOM handling for faults triggered in user
4386          * space.  Kernel faults are handled more gracefully.
4387          */
4388         if (flags & FAULT_FLAG_USER)
4389                 mem_cgroup_enter_user_fault();
4390
4391         if (unlikely(is_vm_hugetlb_page(vma)))
4392                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4393         else
4394                 ret = __handle_mm_fault(vma, address, flags);
4395
4396         if (flags & FAULT_FLAG_USER) {
4397                 mem_cgroup_exit_user_fault();
4398                 /*
4399                  * The task may have entered a memcg OOM situation but
4400                  * if the allocation error was handled gracefully (no
4401                  * VM_FAULT_OOM), there is no need to kill anything.
4402                  * Just clean up the OOM state peacefully.
4403                  */
4404                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4405                         mem_cgroup_oom_synchronize(false);
4406         }
4407
4408         return ret;
4409 }
4410 EXPORT_SYMBOL_GPL(handle_mm_fault);
4411
4412 #ifndef __PAGETABLE_P4D_FOLDED
4413 /*
4414  * Allocate p4d page table.
4415  * We've already handled the fast-path in-line.
4416  */
4417 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4418 {
4419         p4d_t *new = p4d_alloc_one(mm, address);
4420         if (!new)
4421                 return -ENOMEM;
4422
4423         smp_wmb(); /* See comment in __pte_alloc */
4424
4425         spin_lock(&mm->page_table_lock);
4426         if (pgd_present(*pgd))          /* Another has populated it */
4427                 p4d_free(mm, new);
4428         else
4429                 pgd_populate(mm, pgd, new);
4430         spin_unlock(&mm->page_table_lock);
4431         return 0;
4432 }
4433 #endif /* __PAGETABLE_P4D_FOLDED */
4434
4435 #ifndef __PAGETABLE_PUD_FOLDED
4436 /*
4437  * Allocate page upper directory.
4438  * We've already handled the fast-path in-line.
4439  */
4440 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4441 {
4442         pud_t *new = pud_alloc_one(mm, address);
4443         if (!new)
4444                 return -ENOMEM;
4445
4446         smp_wmb(); /* See comment in __pte_alloc */
4447
4448         spin_lock(&mm->page_table_lock);
4449         if (!p4d_present(*p4d)) {
4450                 mm_inc_nr_puds(mm);
4451                 p4d_populate(mm, p4d, new);
4452         } else  /* Another has populated it */
4453                 pud_free(mm, new);
4454         spin_unlock(&mm->page_table_lock);
4455         return 0;
4456 }
4457 #endif /* __PAGETABLE_PUD_FOLDED */
4458
4459 #ifndef __PAGETABLE_PMD_FOLDED
4460 /*
4461  * Allocate page middle directory.
4462  * We've already handled the fast-path in-line.
4463  */
4464 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4465 {
4466         spinlock_t *ptl;
4467         pmd_t *new = pmd_alloc_one(mm, address);
4468         if (!new)
4469                 return -ENOMEM;
4470
4471         smp_wmb(); /* See comment in __pte_alloc */
4472
4473         ptl = pud_lock(mm, pud);
4474         if (!pud_present(*pud)) {
4475                 mm_inc_nr_pmds(mm);
4476                 pud_populate(mm, pud, new);
4477         } else  /* Another has populated it */
4478                 pmd_free(mm, new);
4479         spin_unlock(ptl);
4480         return 0;
4481 }
4482 #endif /* __PAGETABLE_PMD_FOLDED */
4483
4484 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4485                             struct mmu_notifier_range *range,
4486                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4487 {
4488         pgd_t *pgd;
4489         p4d_t *p4d;
4490         pud_t *pud;
4491         pmd_t *pmd;
4492         pte_t *ptep;
4493
4494         pgd = pgd_offset(mm, address);
4495         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4496                 goto out;
4497
4498         p4d = p4d_offset(pgd, address);
4499         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4500                 goto out;
4501
4502         pud = pud_offset(p4d, address);
4503         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4504                 goto out;
4505
4506         pmd = pmd_offset(pud, address);
4507         VM_BUG_ON(pmd_trans_huge(*pmd));
4508
4509         if (pmd_huge(*pmd)) {
4510                 if (!pmdpp)
4511                         goto out;
4512
4513                 if (range) {
4514                         mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4515                                                 NULL, mm, address & PMD_MASK,
4516                                                 (address & PMD_MASK) + PMD_SIZE);
4517                         mmu_notifier_invalidate_range_start(range);
4518                 }
4519                 *ptlp = pmd_lock(mm, pmd);
4520                 if (pmd_huge(*pmd)) {
4521                         *pmdpp = pmd;
4522                         return 0;
4523                 }
4524                 spin_unlock(*ptlp);
4525                 if (range)
4526                         mmu_notifier_invalidate_range_end(range);
4527         }
4528
4529         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4530                 goto out;
4531
4532         if (range) {
4533                 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4534                                         address & PAGE_MASK,
4535                                         (address & PAGE_MASK) + PAGE_SIZE);
4536                 mmu_notifier_invalidate_range_start(range);
4537         }
4538         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4539         if (!pte_present(*ptep))
4540                 goto unlock;
4541         *ptepp = ptep;
4542         return 0;
4543 unlock:
4544         pte_unmap_unlock(ptep, *ptlp);
4545         if (range)
4546                 mmu_notifier_invalidate_range_end(range);
4547 out:
4548         return -EINVAL;
4549 }
4550
4551 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4552                              pte_t **ptepp, spinlock_t **ptlp)
4553 {
4554         int res;
4555
4556         /* (void) is needed to make gcc happy */
4557         (void) __cond_lock(*ptlp,
4558                            !(res = __follow_pte_pmd(mm, address, NULL,
4559                                                     ptepp, NULL, ptlp)));
4560         return res;
4561 }
4562
4563 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4564                    struct mmu_notifier_range *range,
4565                    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4566 {
4567         int res;
4568
4569         /* (void) is needed to make gcc happy */
4570         (void) __cond_lock(*ptlp,
4571                            !(res = __follow_pte_pmd(mm, address, range,
4572                                                     ptepp, pmdpp, ptlp)));
4573         return res;
4574 }
4575 EXPORT_SYMBOL(follow_pte_pmd);
4576
4577 /**
4578  * follow_pfn - look up PFN at a user virtual address
4579  * @vma: memory mapping
4580  * @address: user virtual address
4581  * @pfn: location to store found PFN
4582  *
4583  * Only IO mappings and raw PFN mappings are allowed.
4584  *
4585  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4586  */
4587 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4588         unsigned long *pfn)
4589 {
4590         int ret = -EINVAL;
4591         spinlock_t *ptl;
4592         pte_t *ptep;
4593
4594         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4595                 return ret;
4596
4597         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4598         if (ret)
4599                 return ret;
4600         *pfn = pte_pfn(*ptep);
4601         pte_unmap_unlock(ptep, ptl);
4602         return 0;
4603 }
4604 EXPORT_SYMBOL(follow_pfn);
4605
4606 #ifdef CONFIG_HAVE_IOREMAP_PROT
4607 int follow_phys(struct vm_area_struct *vma,
4608                 unsigned long address, unsigned int flags,
4609                 unsigned long *prot, resource_size_t *phys)
4610 {
4611         int ret = -EINVAL;
4612         pte_t *ptep, pte;
4613         spinlock_t *ptl;
4614
4615         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4616                 goto out;
4617
4618         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4619                 goto out;
4620         pte = *ptep;
4621
4622         if ((flags & FOLL_WRITE) && !pte_write(pte))
4623                 goto unlock;
4624
4625         *prot = pgprot_val(pte_pgprot(pte));
4626         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4627
4628         ret = 0;
4629 unlock:
4630         pte_unmap_unlock(ptep, ptl);
4631 out:
4632         return ret;
4633 }
4634
4635 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4636                         void *buf, int len, int write)
4637 {
4638         resource_size_t phys_addr;
4639         unsigned long prot = 0;
4640         void __iomem *maddr;
4641         int offset = addr & (PAGE_SIZE-1);
4642
4643         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4644                 return -EINVAL;
4645
4646         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4647         if (!maddr)
4648                 return -ENOMEM;
4649
4650         if (write)
4651                 memcpy_toio(maddr + offset, buf, len);
4652         else
4653                 memcpy_fromio(buf, maddr + offset, len);
4654         iounmap(maddr);
4655
4656         return len;
4657 }
4658 EXPORT_SYMBOL_GPL(generic_access_phys);
4659 #endif
4660
4661 /*
4662  * Access another process' address space as given in mm.  If non-NULL, use the
4663  * given task for page fault accounting.
4664  */
4665 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4666                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4667 {
4668         struct vm_area_struct *vma;
4669         void *old_buf = buf;
4670         int write = gup_flags & FOLL_WRITE;
4671
4672         if (mmap_read_lock_killable(mm))
4673                 return 0;
4674
4675         /* ignore errors, just check how much was successfully transferred */
4676         while (len) {
4677                 int bytes, ret, offset;
4678                 void *maddr;
4679                 struct page *page = NULL;
4680
4681                 ret = get_user_pages_remote(tsk, mm, addr, 1,
4682                                 gup_flags, &page, &vma, NULL);
4683                 if (ret <= 0) {
4684 #ifndef CONFIG_HAVE_IOREMAP_PROT
4685                         break;
4686 #else
4687                         /*
4688                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4689                          * we can access using slightly different code.
4690                          */
4691                         vma = find_vma(mm, addr);
4692                         if (!vma || vma->vm_start > addr)
4693                                 break;
4694                         if (vma->vm_ops && vma->vm_ops->access)
4695                                 ret = vma->vm_ops->access(vma, addr, buf,
4696                                                           len, write);
4697                         if (ret <= 0)
4698                                 break;
4699                         bytes = ret;
4700 #endif
4701                 } else {
4702                         bytes = len;
4703                         offset = addr & (PAGE_SIZE-1);
4704                         if (bytes > PAGE_SIZE-offset)
4705                                 bytes = PAGE_SIZE-offset;
4706
4707                         maddr = kmap(page);
4708                         if (write) {
4709                                 copy_to_user_page(vma, page, addr,
4710                                                   maddr + offset, buf, bytes);
4711                                 set_page_dirty_lock(page);
4712                         } else {
4713                                 copy_from_user_page(vma, page, addr,
4714                                                     buf, maddr + offset, bytes);
4715                         }
4716                         kunmap(page);
4717                         put_page(page);
4718                 }
4719                 len -= bytes;
4720                 buf += bytes;
4721                 addr += bytes;
4722         }
4723         mmap_read_unlock(mm);
4724
4725         return buf - old_buf;
4726 }
4727
4728 /**
4729  * access_remote_vm - access another process' address space
4730  * @mm:         the mm_struct of the target address space
4731  * @addr:       start address to access
4732  * @buf:        source or destination buffer
4733  * @len:        number of bytes to transfer
4734  * @gup_flags:  flags modifying lookup behaviour
4735  *
4736  * The caller must hold a reference on @mm.
4737  *
4738  * Return: number of bytes copied from source to destination.
4739  */
4740 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4741                 void *buf, int len, unsigned int gup_flags)
4742 {
4743         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4744 }
4745
4746 /*
4747  * Access another process' address space.
4748  * Source/target buffer must be kernel space,
4749  * Do not walk the page table directly, use get_user_pages
4750  */
4751 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4752                 void *buf, int len, unsigned int gup_flags)
4753 {
4754         struct mm_struct *mm;
4755         int ret;
4756
4757         mm = get_task_mm(tsk);
4758         if (!mm)
4759                 return 0;
4760
4761         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4762
4763         mmput(mm);
4764
4765         return ret;
4766 }
4767 EXPORT_SYMBOL_GPL(access_process_vm);
4768
4769 /*
4770  * Print the name of a VMA.
4771  */
4772 void print_vma_addr(char *prefix, unsigned long ip)
4773 {
4774         struct mm_struct *mm = current->mm;
4775         struct vm_area_struct *vma;
4776
4777         /*
4778          * we might be running from an atomic context so we cannot sleep
4779          */
4780         if (!mmap_read_trylock(mm))
4781                 return;
4782
4783         vma = find_vma(mm, ip);
4784         if (vma && vma->vm_file) {
4785                 struct file *f = vma->vm_file;
4786                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4787                 if (buf) {
4788                         char *p;
4789
4790                         p = file_path(f, buf, PAGE_SIZE);
4791                         if (IS_ERR(p))
4792                                 p = "?";
4793                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4794                                         vma->vm_start,
4795                                         vma->vm_end - vma->vm_start);
4796                         free_page((unsigned long)buf);
4797                 }
4798         }
4799         mmap_read_unlock(mm);
4800 }
4801
4802 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4803 void __might_fault(const char *file, int line)
4804 {
4805         /*
4806          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4807          * holding the mmap_lock, this is safe because kernel memory doesn't
4808          * get paged out, therefore we'll never actually fault, and the
4809          * below annotations will generate false positives.
4810          */
4811         if (uaccess_kernel())
4812                 return;
4813         if (pagefault_disabled())
4814                 return;
4815         __might_sleep(file, line, 0);
4816 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4817         if (current->mm)
4818                 might_lock_read(&current->mm->mmap_lock);
4819 #endif
4820 }
4821 EXPORT_SYMBOL(__might_fault);
4822 #endif
4823
4824 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4825 /*
4826  * Process all subpages of the specified huge page with the specified
4827  * operation.  The target subpage will be processed last to keep its
4828  * cache lines hot.
4829  */
4830 static inline void process_huge_page(
4831         unsigned long addr_hint, unsigned int pages_per_huge_page,
4832         void (*process_subpage)(unsigned long addr, int idx, void *arg),
4833         void *arg)
4834 {
4835         int i, n, base, l;
4836         unsigned long addr = addr_hint &
4837                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4838
4839         /* Process target subpage last to keep its cache lines hot */
4840         might_sleep();
4841         n = (addr_hint - addr) / PAGE_SIZE;
4842         if (2 * n <= pages_per_huge_page) {
4843                 /* If target subpage in first half of huge page */
4844                 base = 0;
4845                 l = n;
4846                 /* Process subpages at the end of huge page */
4847                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4848                         cond_resched();
4849                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4850                 }
4851         } else {
4852                 /* If target subpage in second half of huge page */
4853                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4854                 l = pages_per_huge_page - n;
4855                 /* Process subpages at the begin of huge page */
4856                 for (i = 0; i < base; i++) {
4857                         cond_resched();
4858                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4859                 }
4860         }
4861         /*
4862          * Process remaining subpages in left-right-left-right pattern
4863          * towards the target subpage
4864          */
4865         for (i = 0; i < l; i++) {
4866                 int left_idx = base + i;
4867                 int right_idx = base + 2 * l - 1 - i;
4868
4869                 cond_resched();
4870                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4871                 cond_resched();
4872                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4873         }
4874 }
4875
4876 static void clear_gigantic_page(struct page *page,
4877                                 unsigned long addr,
4878                                 unsigned int pages_per_huge_page)
4879 {
4880         int i;
4881         struct page *p = page;
4882
4883         might_sleep();
4884         for (i = 0; i < pages_per_huge_page;
4885              i++, p = mem_map_next(p, page, i)) {
4886                 cond_resched();
4887                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4888         }
4889 }
4890
4891 static void clear_subpage(unsigned long addr, int idx, void *arg)
4892 {
4893         struct page *page = arg;
4894
4895         clear_user_highpage(page + idx, addr);
4896 }
4897
4898 void clear_huge_page(struct page *page,
4899                      unsigned long addr_hint, unsigned int pages_per_huge_page)
4900 {
4901         unsigned long addr = addr_hint &
4902                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4903
4904         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4905                 clear_gigantic_page(page, addr, pages_per_huge_page);
4906                 return;
4907         }
4908
4909         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4910 }
4911
4912 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4913                                     unsigned long addr,
4914                                     struct vm_area_struct *vma,
4915                                     unsigned int pages_per_huge_page)
4916 {
4917         int i;
4918         struct page *dst_base = dst;
4919         struct page *src_base = src;
4920
4921         for (i = 0; i < pages_per_huge_page; ) {
4922                 cond_resched();
4923                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4924
4925                 i++;
4926                 dst = mem_map_next(dst, dst_base, i);
4927                 src = mem_map_next(src, src_base, i);
4928         }
4929 }
4930
4931 struct copy_subpage_arg {
4932         struct page *dst;
4933         struct page *src;
4934         struct vm_area_struct *vma;
4935 };
4936
4937 static void copy_subpage(unsigned long addr, int idx, void *arg)
4938 {
4939         struct copy_subpage_arg *copy_arg = arg;
4940
4941         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4942                            addr, copy_arg->vma);
4943 }
4944
4945 void copy_user_huge_page(struct page *dst, struct page *src,
4946                          unsigned long addr_hint, struct vm_area_struct *vma,
4947                          unsigned int pages_per_huge_page)
4948 {
4949         unsigned long addr = addr_hint &
4950                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4951         struct copy_subpage_arg arg = {
4952                 .dst = dst,
4953                 .src = src,
4954                 .vma = vma,
4955         };
4956
4957         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4958                 copy_user_gigantic_page(dst, src, addr, vma,
4959                                         pages_per_huge_page);
4960                 return;
4961         }
4962
4963         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4964 }
4965
4966 long copy_huge_page_from_user(struct page *dst_page,
4967                                 const void __user *usr_src,
4968                                 unsigned int pages_per_huge_page,
4969                                 bool allow_pagefault)
4970 {
4971         void *src = (void *)usr_src;
4972         void *page_kaddr;
4973         unsigned long i, rc = 0;
4974         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4975
4976         for (i = 0; i < pages_per_huge_page; i++) {
4977                 if (allow_pagefault)
4978                         page_kaddr = kmap(dst_page + i);
4979                 else
4980                         page_kaddr = kmap_atomic(dst_page + i);
4981                 rc = copy_from_user(page_kaddr,
4982                                 (const void __user *)(src + i * PAGE_SIZE),
4983                                 PAGE_SIZE);
4984                 if (allow_pagefault)
4985                         kunmap(dst_page + i);
4986                 else
4987                         kunmap_atomic(page_kaddr);
4988
4989                 ret_val -= (PAGE_SIZE - rc);
4990                 if (rc)
4991                         break;
4992
4993                 cond_resched();
4994         }
4995         return ret_val;
4996 }
4997 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4998
4999 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5000
5001 static struct kmem_cache *page_ptl_cachep;
5002
5003 void __init ptlock_cache_init(void)
5004 {
5005         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5006                         SLAB_PANIC, NULL);
5007 }
5008
5009 bool ptlock_alloc(struct page *page)
5010 {
5011         spinlock_t *ptl;
5012
5013         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5014         if (!ptl)
5015                 return false;
5016         page->ptl = ptl;
5017         return true;
5018 }
5019
5020 void ptlock_free(struct page *page)
5021 {
5022         kmem_cache_free(page_ptl_cachep, page->ptl);
5023 }
5024 #endif