c5bfb3eacd08220711fd92725689d1c95f93e8a3
[linux-2.6-microblaze.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/memremap.h>
57 #include <linux/mm_inline.h>
58 #include <linux/swap_cgroup.h>
59 #include <linux/cpu.h>
60 #include <linux/oom.h>
61 #include <linux/lockdep.h>
62 #include <linux/file.h>
63 #include <linux/resume_user_mode.h>
64 #include <linux/psi.h>
65 #include <linux/seq_buf.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70 #include "swap.h"
71
72 #include <linux/uaccess.h>
73
74 #include <trace/events/vmscan.h>
75
76 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77 EXPORT_SYMBOL(memory_cgrp_subsys);
78
79 struct mem_cgroup *root_mem_cgroup __read_mostly;
80
81 /* Active memory cgroup to use from an interrupt context */
82 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
83 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
84
85 /* Socket memory accounting disabled? */
86 static bool cgroup_memory_nosocket __ro_after_init;
87
88 /* Kernel memory accounting disabled? */
89 static bool cgroup_memory_nokmem __ro_after_init;
90
91 /* Whether the swap controller is active */
92 #ifdef CONFIG_MEMCG_SWAP
93 static bool cgroup_memory_noswap __ro_after_init;
94 #else
95 #define cgroup_memory_noswap            1
96 #endif
97
98 #ifdef CONFIG_CGROUP_WRITEBACK
99 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
100 #endif
101
102 /* Whether legacy memory+swap accounting is active */
103 static bool do_memsw_account(void)
104 {
105         return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
106 }
107
108 #define THRESHOLDS_EVENTS_TARGET 128
109 #define SOFTLIMIT_EVENTS_TARGET 1024
110
111 /*
112  * Cgroups above their limits are maintained in a RB-Tree, independent of
113  * their hierarchy representation
114  */
115
116 struct mem_cgroup_tree_per_node {
117         struct rb_root rb_root;
118         struct rb_node *rb_rightmost;
119         spinlock_t lock;
120 };
121
122 struct mem_cgroup_tree {
123         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
124 };
125
126 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
127
128 /* for OOM */
129 struct mem_cgroup_eventfd_list {
130         struct list_head list;
131         struct eventfd_ctx *eventfd;
132 };
133
134 /*
135  * cgroup_event represents events which userspace want to receive.
136  */
137 struct mem_cgroup_event {
138         /*
139          * memcg which the event belongs to.
140          */
141         struct mem_cgroup *memcg;
142         /*
143          * eventfd to signal userspace about the event.
144          */
145         struct eventfd_ctx *eventfd;
146         /*
147          * Each of these stored in a list by the cgroup.
148          */
149         struct list_head list;
150         /*
151          * register_event() callback will be used to add new userspace
152          * waiter for changes related to this event.  Use eventfd_signal()
153          * on eventfd to send notification to userspace.
154          */
155         int (*register_event)(struct mem_cgroup *memcg,
156                               struct eventfd_ctx *eventfd, const char *args);
157         /*
158          * unregister_event() callback will be called when userspace closes
159          * the eventfd or on cgroup removing.  This callback must be set,
160          * if you want provide notification functionality.
161          */
162         void (*unregister_event)(struct mem_cgroup *memcg,
163                                  struct eventfd_ctx *eventfd);
164         /*
165          * All fields below needed to unregister event when
166          * userspace closes eventfd.
167          */
168         poll_table pt;
169         wait_queue_head_t *wqh;
170         wait_queue_entry_t wait;
171         struct work_struct remove;
172 };
173
174 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
175 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
176
177 /* Stuffs for move charges at task migration. */
178 /*
179  * Types of charges to be moved.
180  */
181 #define MOVE_ANON       0x1U
182 #define MOVE_FILE       0x2U
183 #define MOVE_MASK       (MOVE_ANON | MOVE_FILE)
184
185 /* "mc" and its members are protected by cgroup_mutex */
186 static struct move_charge_struct {
187         spinlock_t        lock; /* for from, to */
188         struct mm_struct  *mm;
189         struct mem_cgroup *from;
190         struct mem_cgroup *to;
191         unsigned long flags;
192         unsigned long precharge;
193         unsigned long moved_charge;
194         unsigned long moved_swap;
195         struct task_struct *moving_task;        /* a task moving charges */
196         wait_queue_head_t waitq;                /* a waitq for other context */
197 } mc = {
198         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
199         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
200 };
201
202 /*
203  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
204  * limit reclaim to prevent infinite loops, if they ever occur.
205  */
206 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            100
207 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
208
209 /* for encoding cft->private value on file */
210 enum res_type {
211         _MEM,
212         _MEMSWAP,
213         _KMEM,
214         _TCP,
215 };
216
217 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
218 #define MEMFILE_TYPE(val)       ((val) >> 16 & 0xffff)
219 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
220
221 /*
222  * Iteration constructs for visiting all cgroups (under a tree).  If
223  * loops are exited prematurely (break), mem_cgroup_iter_break() must
224  * be used for reference counting.
225  */
226 #define for_each_mem_cgroup_tree(iter, root)            \
227         for (iter = mem_cgroup_iter(root, NULL, NULL);  \
228              iter != NULL;                              \
229              iter = mem_cgroup_iter(root, iter, NULL))
230
231 #define for_each_mem_cgroup(iter)                       \
232         for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
233              iter != NULL;                              \
234              iter = mem_cgroup_iter(NULL, iter, NULL))
235
236 static inline bool task_is_dying(void)
237 {
238         return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
239                 (current->flags & PF_EXITING);
240 }
241
242 /* Some nice accessors for the vmpressure. */
243 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
244 {
245         if (!memcg)
246                 memcg = root_mem_cgroup;
247         return &memcg->vmpressure;
248 }
249
250 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
251 {
252         return container_of(vmpr, struct mem_cgroup, vmpressure);
253 }
254
255 #ifdef CONFIG_MEMCG_KMEM
256 static DEFINE_SPINLOCK(objcg_lock);
257
258 bool mem_cgroup_kmem_disabled(void)
259 {
260         return cgroup_memory_nokmem;
261 }
262
263 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
264                                       unsigned int nr_pages);
265
266 static void obj_cgroup_release(struct percpu_ref *ref)
267 {
268         struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
269         unsigned int nr_bytes;
270         unsigned int nr_pages;
271         unsigned long flags;
272
273         /*
274          * At this point all allocated objects are freed, and
275          * objcg->nr_charged_bytes can't have an arbitrary byte value.
276          * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
277          *
278          * The following sequence can lead to it:
279          * 1) CPU0: objcg == stock->cached_objcg
280          * 2) CPU1: we do a small allocation (e.g. 92 bytes),
281          *          PAGE_SIZE bytes are charged
282          * 3) CPU1: a process from another memcg is allocating something,
283          *          the stock if flushed,
284          *          objcg->nr_charged_bytes = PAGE_SIZE - 92
285          * 5) CPU0: we do release this object,
286          *          92 bytes are added to stock->nr_bytes
287          * 6) CPU0: stock is flushed,
288          *          92 bytes are added to objcg->nr_charged_bytes
289          *
290          * In the result, nr_charged_bytes == PAGE_SIZE.
291          * This page will be uncharged in obj_cgroup_release().
292          */
293         nr_bytes = atomic_read(&objcg->nr_charged_bytes);
294         WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
295         nr_pages = nr_bytes >> PAGE_SHIFT;
296
297         if (nr_pages)
298                 obj_cgroup_uncharge_pages(objcg, nr_pages);
299
300         spin_lock_irqsave(&objcg_lock, flags);
301         list_del(&objcg->list);
302         spin_unlock_irqrestore(&objcg_lock, flags);
303
304         percpu_ref_exit(ref);
305         kfree_rcu(objcg, rcu);
306 }
307
308 static struct obj_cgroup *obj_cgroup_alloc(void)
309 {
310         struct obj_cgroup *objcg;
311         int ret;
312
313         objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
314         if (!objcg)
315                 return NULL;
316
317         ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
318                               GFP_KERNEL);
319         if (ret) {
320                 kfree(objcg);
321                 return NULL;
322         }
323         INIT_LIST_HEAD(&objcg->list);
324         return objcg;
325 }
326
327 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
328                                   struct mem_cgroup *parent)
329 {
330         struct obj_cgroup *objcg, *iter;
331
332         objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
333
334         spin_lock_irq(&objcg_lock);
335
336         /* 1) Ready to reparent active objcg. */
337         list_add(&objcg->list, &memcg->objcg_list);
338         /* 2) Reparent active objcg and already reparented objcgs to parent. */
339         list_for_each_entry(iter, &memcg->objcg_list, list)
340                 WRITE_ONCE(iter->memcg, parent);
341         /* 3) Move already reparented objcgs to the parent's list */
342         list_splice(&memcg->objcg_list, &parent->objcg_list);
343
344         spin_unlock_irq(&objcg_lock);
345
346         percpu_ref_kill(&objcg->refcnt);
347 }
348
349 /*
350  * A lot of the calls to the cache allocation functions are expected to be
351  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
352  * conditional to this static branch, we'll have to allow modules that does
353  * kmem_cache_alloc and the such to see this symbol as well
354  */
355 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
356 EXPORT_SYMBOL(memcg_kmem_enabled_key);
357 #endif
358
359 /**
360  * mem_cgroup_css_from_page - css of the memcg associated with a page
361  * @page: page of interest
362  *
363  * If memcg is bound to the default hierarchy, css of the memcg associated
364  * with @page is returned.  The returned css remains associated with @page
365  * until it is released.
366  *
367  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
368  * is returned.
369  */
370 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
371 {
372         struct mem_cgroup *memcg;
373
374         memcg = page_memcg(page);
375
376         if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
377                 memcg = root_mem_cgroup;
378
379         return &memcg->css;
380 }
381
382 /**
383  * page_cgroup_ino - return inode number of the memcg a page is charged to
384  * @page: the page
385  *
386  * Look up the closest online ancestor of the memory cgroup @page is charged to
387  * and return its inode number or 0 if @page is not charged to any cgroup. It
388  * is safe to call this function without holding a reference to @page.
389  *
390  * Note, this function is inherently racy, because there is nothing to prevent
391  * the cgroup inode from getting torn down and potentially reallocated a moment
392  * after page_cgroup_ino() returns, so it only should be used by callers that
393  * do not care (such as procfs interfaces).
394  */
395 ino_t page_cgroup_ino(struct page *page)
396 {
397         struct mem_cgroup *memcg;
398         unsigned long ino = 0;
399
400         rcu_read_lock();
401         memcg = page_memcg_check(page);
402
403         while (memcg && !(memcg->css.flags & CSS_ONLINE))
404                 memcg = parent_mem_cgroup(memcg);
405         if (memcg)
406                 ino = cgroup_ino(memcg->css.cgroup);
407         rcu_read_unlock();
408         return ino;
409 }
410
411 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
412                                          struct mem_cgroup_tree_per_node *mctz,
413                                          unsigned long new_usage_in_excess)
414 {
415         struct rb_node **p = &mctz->rb_root.rb_node;
416         struct rb_node *parent = NULL;
417         struct mem_cgroup_per_node *mz_node;
418         bool rightmost = true;
419
420         if (mz->on_tree)
421                 return;
422
423         mz->usage_in_excess = new_usage_in_excess;
424         if (!mz->usage_in_excess)
425                 return;
426         while (*p) {
427                 parent = *p;
428                 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
429                                         tree_node);
430                 if (mz->usage_in_excess < mz_node->usage_in_excess) {
431                         p = &(*p)->rb_left;
432                         rightmost = false;
433                 } else {
434                         p = &(*p)->rb_right;
435                 }
436         }
437
438         if (rightmost)
439                 mctz->rb_rightmost = &mz->tree_node;
440
441         rb_link_node(&mz->tree_node, parent, p);
442         rb_insert_color(&mz->tree_node, &mctz->rb_root);
443         mz->on_tree = true;
444 }
445
446 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
447                                          struct mem_cgroup_tree_per_node *mctz)
448 {
449         if (!mz->on_tree)
450                 return;
451
452         if (&mz->tree_node == mctz->rb_rightmost)
453                 mctz->rb_rightmost = rb_prev(&mz->tree_node);
454
455         rb_erase(&mz->tree_node, &mctz->rb_root);
456         mz->on_tree = false;
457 }
458
459 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
460                                        struct mem_cgroup_tree_per_node *mctz)
461 {
462         unsigned long flags;
463
464         spin_lock_irqsave(&mctz->lock, flags);
465         __mem_cgroup_remove_exceeded(mz, mctz);
466         spin_unlock_irqrestore(&mctz->lock, flags);
467 }
468
469 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
470 {
471         unsigned long nr_pages = page_counter_read(&memcg->memory);
472         unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
473         unsigned long excess = 0;
474
475         if (nr_pages > soft_limit)
476                 excess = nr_pages - soft_limit;
477
478         return excess;
479 }
480
481 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
482 {
483         unsigned long excess;
484         struct mem_cgroup_per_node *mz;
485         struct mem_cgroup_tree_per_node *mctz;
486
487         mctz = soft_limit_tree.rb_tree_per_node[nid];
488         if (!mctz)
489                 return;
490         /*
491          * Necessary to update all ancestors when hierarchy is used.
492          * because their event counter is not touched.
493          */
494         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
495                 mz = memcg->nodeinfo[nid];
496                 excess = soft_limit_excess(memcg);
497                 /*
498                  * We have to update the tree if mz is on RB-tree or
499                  * mem is over its softlimit.
500                  */
501                 if (excess || mz->on_tree) {
502                         unsigned long flags;
503
504                         spin_lock_irqsave(&mctz->lock, flags);
505                         /* if on-tree, remove it */
506                         if (mz->on_tree)
507                                 __mem_cgroup_remove_exceeded(mz, mctz);
508                         /*
509                          * Insert again. mz->usage_in_excess will be updated.
510                          * If excess is 0, no tree ops.
511                          */
512                         __mem_cgroup_insert_exceeded(mz, mctz, excess);
513                         spin_unlock_irqrestore(&mctz->lock, flags);
514                 }
515         }
516 }
517
518 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
519 {
520         struct mem_cgroup_tree_per_node *mctz;
521         struct mem_cgroup_per_node *mz;
522         int nid;
523
524         for_each_node(nid) {
525                 mz = memcg->nodeinfo[nid];
526                 mctz = soft_limit_tree.rb_tree_per_node[nid];
527                 if (mctz)
528                         mem_cgroup_remove_exceeded(mz, mctz);
529         }
530 }
531
532 static struct mem_cgroup_per_node *
533 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
534 {
535         struct mem_cgroup_per_node *mz;
536
537 retry:
538         mz = NULL;
539         if (!mctz->rb_rightmost)
540                 goto done;              /* Nothing to reclaim from */
541
542         mz = rb_entry(mctz->rb_rightmost,
543                       struct mem_cgroup_per_node, tree_node);
544         /*
545          * Remove the node now but someone else can add it back,
546          * we will to add it back at the end of reclaim to its correct
547          * position in the tree.
548          */
549         __mem_cgroup_remove_exceeded(mz, mctz);
550         if (!soft_limit_excess(mz->memcg) ||
551             !css_tryget(&mz->memcg->css))
552                 goto retry;
553 done:
554         return mz;
555 }
556
557 static struct mem_cgroup_per_node *
558 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
559 {
560         struct mem_cgroup_per_node *mz;
561
562         spin_lock_irq(&mctz->lock);
563         mz = __mem_cgroup_largest_soft_limit_node(mctz);
564         spin_unlock_irq(&mctz->lock);
565         return mz;
566 }
567
568 /*
569  * memcg and lruvec stats flushing
570  *
571  * Many codepaths leading to stats update or read are performance sensitive and
572  * adding stats flushing in such codepaths is not desirable. So, to optimize the
573  * flushing the kernel does:
574  *
575  * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
576  *    rstat update tree grow unbounded.
577  *
578  * 2) Flush the stats synchronously on reader side only when there are more than
579  *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
580  *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
581  *    only for 2 seconds due to (1).
582  */
583 static void flush_memcg_stats_dwork(struct work_struct *w);
584 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
585 static DEFINE_SPINLOCK(stats_flush_lock);
586 static DEFINE_PER_CPU(unsigned int, stats_updates);
587 static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
588 static u64 flush_next_time;
589
590 #define FLUSH_TIME (2UL*HZ)
591
592 /*
593  * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
594  * not rely on this as part of an acquired spinlock_t lock. These functions are
595  * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
596  * is sufficient.
597  */
598 static void memcg_stats_lock(void)
599 {
600 #ifdef CONFIG_PREEMPT_RT
601       preempt_disable();
602 #else
603       VM_BUG_ON(!irqs_disabled());
604 #endif
605 }
606
607 static void __memcg_stats_lock(void)
608 {
609 #ifdef CONFIG_PREEMPT_RT
610       preempt_disable();
611 #endif
612 }
613
614 static void memcg_stats_unlock(void)
615 {
616 #ifdef CONFIG_PREEMPT_RT
617       preempt_enable();
618 #endif
619 }
620
621 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
622 {
623         unsigned int x;
624
625         cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
626
627         x = __this_cpu_add_return(stats_updates, abs(val));
628         if (x > MEMCG_CHARGE_BATCH) {
629                 atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
630                 __this_cpu_write(stats_updates, 0);
631         }
632 }
633
634 static void __mem_cgroup_flush_stats(void)
635 {
636         unsigned long flag;
637
638         if (!spin_trylock_irqsave(&stats_flush_lock, flag))
639                 return;
640
641         flush_next_time = jiffies_64 + 2*FLUSH_TIME;
642         cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
643         atomic_set(&stats_flush_threshold, 0);
644         spin_unlock_irqrestore(&stats_flush_lock, flag);
645 }
646
647 void mem_cgroup_flush_stats(void)
648 {
649         if (atomic_read(&stats_flush_threshold) > num_online_cpus())
650                 __mem_cgroup_flush_stats();
651 }
652
653 void mem_cgroup_flush_stats_delayed(void)
654 {
655         if (time_after64(jiffies_64, flush_next_time))
656                 mem_cgroup_flush_stats();
657 }
658
659 static void flush_memcg_stats_dwork(struct work_struct *w)
660 {
661         __mem_cgroup_flush_stats();
662         queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
663 }
664
665 /**
666  * __mod_memcg_state - update cgroup memory statistics
667  * @memcg: the memory cgroup
668  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
669  * @val: delta to add to the counter, can be negative
670  */
671 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
672 {
673         if (mem_cgroup_disabled())
674                 return;
675
676         __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
677         memcg_rstat_updated(memcg, val);
678 }
679
680 /* idx can be of type enum memcg_stat_item or node_stat_item. */
681 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
682 {
683         long x = 0;
684         int cpu;
685
686         for_each_possible_cpu(cpu)
687                 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
688 #ifdef CONFIG_SMP
689         if (x < 0)
690                 x = 0;
691 #endif
692         return x;
693 }
694
695 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
696                               int val)
697 {
698         struct mem_cgroup_per_node *pn;
699         struct mem_cgroup *memcg;
700
701         pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
702         memcg = pn->memcg;
703
704         /*
705          * The caller from rmap relay on disabled preemption becase they never
706          * update their counter from in-interrupt context. For these two
707          * counters we check that the update is never performed from an
708          * interrupt context while other caller need to have disabled interrupt.
709          */
710         __memcg_stats_lock();
711         if (IS_ENABLED(CONFIG_DEBUG_VM) && !IS_ENABLED(CONFIG_PREEMPT_RT)) {
712                 switch (idx) {
713                 case NR_ANON_MAPPED:
714                 case NR_FILE_MAPPED:
715                 case NR_ANON_THPS:
716                 case NR_SHMEM_PMDMAPPED:
717                 case NR_FILE_PMDMAPPED:
718                         WARN_ON_ONCE(!in_task());
719                         break;
720                 default:
721                         WARN_ON_ONCE(!irqs_disabled());
722                 }
723         }
724
725         /* Update memcg */
726         __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
727
728         /* Update lruvec */
729         __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
730
731         memcg_rstat_updated(memcg, val);
732         memcg_stats_unlock();
733 }
734
735 /**
736  * __mod_lruvec_state - update lruvec memory statistics
737  * @lruvec: the lruvec
738  * @idx: the stat item
739  * @val: delta to add to the counter, can be negative
740  *
741  * The lruvec is the intersection of the NUMA node and a cgroup. This
742  * function updates the all three counters that are affected by a
743  * change of state at this level: per-node, per-cgroup, per-lruvec.
744  */
745 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
746                         int val)
747 {
748         /* Update node */
749         __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
750
751         /* Update memcg and lruvec */
752         if (!mem_cgroup_disabled())
753                 __mod_memcg_lruvec_state(lruvec, idx, val);
754 }
755
756 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
757                              int val)
758 {
759         struct page *head = compound_head(page); /* rmap on tail pages */
760         struct mem_cgroup *memcg;
761         pg_data_t *pgdat = page_pgdat(page);
762         struct lruvec *lruvec;
763
764         rcu_read_lock();
765         memcg = page_memcg(head);
766         /* Untracked pages have no memcg, no lruvec. Update only the node */
767         if (!memcg) {
768                 rcu_read_unlock();
769                 __mod_node_page_state(pgdat, idx, val);
770                 return;
771         }
772
773         lruvec = mem_cgroup_lruvec(memcg, pgdat);
774         __mod_lruvec_state(lruvec, idx, val);
775         rcu_read_unlock();
776 }
777 EXPORT_SYMBOL(__mod_lruvec_page_state);
778
779 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
780 {
781         pg_data_t *pgdat = page_pgdat(virt_to_page(p));
782         struct mem_cgroup *memcg;
783         struct lruvec *lruvec;
784
785         rcu_read_lock();
786         memcg = mem_cgroup_from_slab_obj(p);
787
788         /*
789          * Untracked pages have no memcg, no lruvec. Update only the
790          * node. If we reparent the slab objects to the root memcg,
791          * when we free the slab object, we need to update the per-memcg
792          * vmstats to keep it correct for the root memcg.
793          */
794         if (!memcg) {
795                 __mod_node_page_state(pgdat, idx, val);
796         } else {
797                 lruvec = mem_cgroup_lruvec(memcg, pgdat);
798                 __mod_lruvec_state(lruvec, idx, val);
799         }
800         rcu_read_unlock();
801 }
802
803 /**
804  * __count_memcg_events - account VM events in a cgroup
805  * @memcg: the memory cgroup
806  * @idx: the event item
807  * @count: the number of events that occurred
808  */
809 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
810                           unsigned long count)
811 {
812         if (mem_cgroup_disabled())
813                 return;
814
815         memcg_stats_lock();
816         __this_cpu_add(memcg->vmstats_percpu->events[idx], count);
817         memcg_rstat_updated(memcg, count);
818         memcg_stats_unlock();
819 }
820
821 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
822 {
823         return READ_ONCE(memcg->vmstats.events[event]);
824 }
825
826 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
827 {
828         long x = 0;
829         int cpu;
830
831         for_each_possible_cpu(cpu)
832                 x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
833         return x;
834 }
835
836 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
837                                          int nr_pages)
838 {
839         /* pagein of a big page is an event. So, ignore page size */
840         if (nr_pages > 0)
841                 __count_memcg_events(memcg, PGPGIN, 1);
842         else {
843                 __count_memcg_events(memcg, PGPGOUT, 1);
844                 nr_pages = -nr_pages; /* for event */
845         }
846
847         __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
848 }
849
850 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
851                                        enum mem_cgroup_events_target target)
852 {
853         unsigned long val, next;
854
855         val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
856         next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
857         /* from time_after() in jiffies.h */
858         if ((long)(next - val) < 0) {
859                 switch (target) {
860                 case MEM_CGROUP_TARGET_THRESH:
861                         next = val + THRESHOLDS_EVENTS_TARGET;
862                         break;
863                 case MEM_CGROUP_TARGET_SOFTLIMIT:
864                         next = val + SOFTLIMIT_EVENTS_TARGET;
865                         break;
866                 default:
867                         break;
868                 }
869                 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
870                 return true;
871         }
872         return false;
873 }
874
875 /*
876  * Check events in order.
877  *
878  */
879 static void memcg_check_events(struct mem_cgroup *memcg, int nid)
880 {
881         if (IS_ENABLED(CONFIG_PREEMPT_RT))
882                 return;
883
884         /* threshold event is triggered in finer grain than soft limit */
885         if (unlikely(mem_cgroup_event_ratelimit(memcg,
886                                                 MEM_CGROUP_TARGET_THRESH))) {
887                 bool do_softlimit;
888
889                 do_softlimit = mem_cgroup_event_ratelimit(memcg,
890                                                 MEM_CGROUP_TARGET_SOFTLIMIT);
891                 mem_cgroup_threshold(memcg);
892                 if (unlikely(do_softlimit))
893                         mem_cgroup_update_tree(memcg, nid);
894         }
895 }
896
897 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
898 {
899         /*
900          * mm_update_next_owner() may clear mm->owner to NULL
901          * if it races with swapoff, page migration, etc.
902          * So this can be called with p == NULL.
903          */
904         if (unlikely(!p))
905                 return NULL;
906
907         return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
908 }
909 EXPORT_SYMBOL(mem_cgroup_from_task);
910
911 static __always_inline struct mem_cgroup *active_memcg(void)
912 {
913         if (!in_task())
914                 return this_cpu_read(int_active_memcg);
915         else
916                 return current->active_memcg;
917 }
918
919 /**
920  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
921  * @mm: mm from which memcg should be extracted. It can be NULL.
922  *
923  * Obtain a reference on mm->memcg and returns it if successful. If mm
924  * is NULL, then the memcg is chosen as follows:
925  * 1) The active memcg, if set.
926  * 2) current->mm->memcg, if available
927  * 3) root memcg
928  * If mem_cgroup is disabled, NULL is returned.
929  */
930 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
931 {
932         struct mem_cgroup *memcg;
933
934         if (mem_cgroup_disabled())
935                 return NULL;
936
937         /*
938          * Page cache insertions can happen without an
939          * actual mm context, e.g. during disk probing
940          * on boot, loopback IO, acct() writes etc.
941          *
942          * No need to css_get on root memcg as the reference
943          * counting is disabled on the root level in the
944          * cgroup core. See CSS_NO_REF.
945          */
946         if (unlikely(!mm)) {
947                 memcg = active_memcg();
948                 if (unlikely(memcg)) {
949                         /* remote memcg must hold a ref */
950                         css_get(&memcg->css);
951                         return memcg;
952                 }
953                 mm = current->mm;
954                 if (unlikely(!mm))
955                         return root_mem_cgroup;
956         }
957
958         rcu_read_lock();
959         do {
960                 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
961                 if (unlikely(!memcg))
962                         memcg = root_mem_cgroup;
963         } while (!css_tryget(&memcg->css));
964         rcu_read_unlock();
965         return memcg;
966 }
967 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
968
969 static __always_inline bool memcg_kmem_bypass(void)
970 {
971         /* Allow remote memcg charging from any context. */
972         if (unlikely(active_memcg()))
973                 return false;
974
975         /* Memcg to charge can't be determined. */
976         if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
977                 return true;
978
979         return false;
980 }
981
982 /**
983  * mem_cgroup_iter - iterate over memory cgroup hierarchy
984  * @root: hierarchy root
985  * @prev: previously returned memcg, NULL on first invocation
986  * @reclaim: cookie for shared reclaim walks, NULL for full walks
987  *
988  * Returns references to children of the hierarchy below @root, or
989  * @root itself, or %NULL after a full round-trip.
990  *
991  * Caller must pass the return value in @prev on subsequent
992  * invocations for reference counting, or use mem_cgroup_iter_break()
993  * to cancel a hierarchy walk before the round-trip is complete.
994  *
995  * Reclaimers can specify a node in @reclaim to divide up the memcgs
996  * in the hierarchy among all concurrent reclaimers operating on the
997  * same node.
998  */
999 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1000                                    struct mem_cgroup *prev,
1001                                    struct mem_cgroup_reclaim_cookie *reclaim)
1002 {
1003         struct mem_cgroup_reclaim_iter *iter;
1004         struct cgroup_subsys_state *css = NULL;
1005         struct mem_cgroup *memcg = NULL;
1006         struct mem_cgroup *pos = NULL;
1007
1008         if (mem_cgroup_disabled())
1009                 return NULL;
1010
1011         if (!root)
1012                 root = root_mem_cgroup;
1013
1014         rcu_read_lock();
1015
1016         if (reclaim) {
1017                 struct mem_cgroup_per_node *mz;
1018
1019                 mz = root->nodeinfo[reclaim->pgdat->node_id];
1020                 iter = &mz->iter;
1021
1022                 /*
1023                  * On start, join the current reclaim iteration cycle.
1024                  * Exit when a concurrent walker completes it.
1025                  */
1026                 if (!prev)
1027                         reclaim->generation = iter->generation;
1028                 else if (reclaim->generation != iter->generation)
1029                         goto out_unlock;
1030
1031                 while (1) {
1032                         pos = READ_ONCE(iter->position);
1033                         if (!pos || css_tryget(&pos->css))
1034                                 break;
1035                         /*
1036                          * css reference reached zero, so iter->position will
1037                          * be cleared by ->css_released. However, we should not
1038                          * rely on this happening soon, because ->css_released
1039                          * is called from a work queue, and by busy-waiting we
1040                          * might block it. So we clear iter->position right
1041                          * away.
1042                          */
1043                         (void)cmpxchg(&iter->position, pos, NULL);
1044                 }
1045         } else if (prev) {
1046                 pos = prev;
1047         }
1048
1049         if (pos)
1050                 css = &pos->css;
1051
1052         for (;;) {
1053                 css = css_next_descendant_pre(css, &root->css);
1054                 if (!css) {
1055                         /*
1056                          * Reclaimers share the hierarchy walk, and a
1057                          * new one might jump in right at the end of
1058                          * the hierarchy - make sure they see at least
1059                          * one group and restart from the beginning.
1060                          */
1061                         if (!prev)
1062                                 continue;
1063                         break;
1064                 }
1065
1066                 /*
1067                  * Verify the css and acquire a reference.  The root
1068                  * is provided by the caller, so we know it's alive
1069                  * and kicking, and don't take an extra reference.
1070                  */
1071                 if (css == &root->css || css_tryget(css)) {
1072                         memcg = mem_cgroup_from_css(css);
1073                         break;
1074                 }
1075         }
1076
1077         if (reclaim) {
1078                 /*
1079                  * The position could have already been updated by a competing
1080                  * thread, so check that the value hasn't changed since we read
1081                  * it to avoid reclaiming from the same cgroup twice.
1082                  */
1083                 (void)cmpxchg(&iter->position, pos, memcg);
1084
1085                 if (pos)
1086                         css_put(&pos->css);
1087
1088                 if (!memcg)
1089                         iter->generation++;
1090         }
1091
1092 out_unlock:
1093         rcu_read_unlock();
1094         if (prev && prev != root)
1095                 css_put(&prev->css);
1096
1097         return memcg;
1098 }
1099
1100 /**
1101  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1102  * @root: hierarchy root
1103  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1104  */
1105 void mem_cgroup_iter_break(struct mem_cgroup *root,
1106                            struct mem_cgroup *prev)
1107 {
1108         if (!root)
1109                 root = root_mem_cgroup;
1110         if (prev && prev != root)
1111                 css_put(&prev->css);
1112 }
1113
1114 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1115                                         struct mem_cgroup *dead_memcg)
1116 {
1117         struct mem_cgroup_reclaim_iter *iter;
1118         struct mem_cgroup_per_node *mz;
1119         int nid;
1120
1121         for_each_node(nid) {
1122                 mz = from->nodeinfo[nid];
1123                 iter = &mz->iter;
1124                 cmpxchg(&iter->position, dead_memcg, NULL);
1125         }
1126 }
1127
1128 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1129 {
1130         struct mem_cgroup *memcg = dead_memcg;
1131         struct mem_cgroup *last;
1132
1133         do {
1134                 __invalidate_reclaim_iterators(memcg, dead_memcg);
1135                 last = memcg;
1136         } while ((memcg = parent_mem_cgroup(memcg)));
1137
1138         /*
1139          * When cgruop1 non-hierarchy mode is used,
1140          * parent_mem_cgroup() does not walk all the way up to the
1141          * cgroup root (root_mem_cgroup). So we have to handle
1142          * dead_memcg from cgroup root separately.
1143          */
1144         if (last != root_mem_cgroup)
1145                 __invalidate_reclaim_iterators(root_mem_cgroup,
1146                                                 dead_memcg);
1147 }
1148
1149 /**
1150  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1151  * @memcg: hierarchy root
1152  * @fn: function to call for each task
1153  * @arg: argument passed to @fn
1154  *
1155  * This function iterates over tasks attached to @memcg or to any of its
1156  * descendants and calls @fn for each task. If @fn returns a non-zero
1157  * value, the function breaks the iteration loop and returns the value.
1158  * Otherwise, it will iterate over all tasks and return 0.
1159  *
1160  * This function must not be called for the root memory cgroup.
1161  */
1162 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1163                           int (*fn)(struct task_struct *, void *), void *arg)
1164 {
1165         struct mem_cgroup *iter;
1166         int ret = 0;
1167
1168         BUG_ON(memcg == root_mem_cgroup);
1169
1170         for_each_mem_cgroup_tree(iter, memcg) {
1171                 struct css_task_iter it;
1172                 struct task_struct *task;
1173
1174                 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1175                 while (!ret && (task = css_task_iter_next(&it)))
1176                         ret = fn(task, arg);
1177                 css_task_iter_end(&it);
1178                 if (ret) {
1179                         mem_cgroup_iter_break(memcg, iter);
1180                         break;
1181                 }
1182         }
1183         return ret;
1184 }
1185
1186 #ifdef CONFIG_DEBUG_VM
1187 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1188 {
1189         struct mem_cgroup *memcg;
1190
1191         if (mem_cgroup_disabled())
1192                 return;
1193
1194         memcg = folio_memcg(folio);
1195
1196         if (!memcg)
1197                 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != root_mem_cgroup, folio);
1198         else
1199                 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1200 }
1201 #endif
1202
1203 /**
1204  * folio_lruvec_lock - Lock the lruvec for a folio.
1205  * @folio: Pointer to the folio.
1206  *
1207  * These functions are safe to use under any of the following conditions:
1208  * - folio locked
1209  * - folio_test_lru false
1210  * - folio_memcg_lock()
1211  * - folio frozen (refcount of 0)
1212  *
1213  * Return: The lruvec this folio is on with its lock held.
1214  */
1215 struct lruvec *folio_lruvec_lock(struct folio *folio)
1216 {
1217         struct lruvec *lruvec = folio_lruvec(folio);
1218
1219         spin_lock(&lruvec->lru_lock);
1220         lruvec_memcg_debug(lruvec, folio);
1221
1222         return lruvec;
1223 }
1224
1225 /**
1226  * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1227  * @folio: Pointer to the folio.
1228  *
1229  * These functions are safe to use under any of the following conditions:
1230  * - folio locked
1231  * - folio_test_lru false
1232  * - folio_memcg_lock()
1233  * - folio frozen (refcount of 0)
1234  *
1235  * Return: The lruvec this folio is on with its lock held and interrupts
1236  * disabled.
1237  */
1238 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1239 {
1240         struct lruvec *lruvec = folio_lruvec(folio);
1241
1242         spin_lock_irq(&lruvec->lru_lock);
1243         lruvec_memcg_debug(lruvec, folio);
1244
1245         return lruvec;
1246 }
1247
1248 /**
1249  * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1250  * @folio: Pointer to the folio.
1251  * @flags: Pointer to irqsave flags.
1252  *
1253  * These functions are safe to use under any of the following conditions:
1254  * - folio locked
1255  * - folio_test_lru false
1256  * - folio_memcg_lock()
1257  * - folio frozen (refcount of 0)
1258  *
1259  * Return: The lruvec this folio is on with its lock held and interrupts
1260  * disabled.
1261  */
1262 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1263                 unsigned long *flags)
1264 {
1265         struct lruvec *lruvec = folio_lruvec(folio);
1266
1267         spin_lock_irqsave(&lruvec->lru_lock, *flags);
1268         lruvec_memcg_debug(lruvec, folio);
1269
1270         return lruvec;
1271 }
1272
1273 /**
1274  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1275  * @lruvec: mem_cgroup per zone lru vector
1276  * @lru: index of lru list the page is sitting on
1277  * @zid: zone id of the accounted pages
1278  * @nr_pages: positive when adding or negative when removing
1279  *
1280  * This function must be called under lru_lock, just before a page is added
1281  * to or just after a page is removed from an lru list.
1282  */
1283 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1284                                 int zid, int nr_pages)
1285 {
1286         struct mem_cgroup_per_node *mz;
1287         unsigned long *lru_size;
1288         long size;
1289
1290         if (mem_cgroup_disabled())
1291                 return;
1292
1293         mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1294         lru_size = &mz->lru_zone_size[zid][lru];
1295
1296         if (nr_pages < 0)
1297                 *lru_size += nr_pages;
1298
1299         size = *lru_size;
1300         if (WARN_ONCE(size < 0,
1301                 "%s(%p, %d, %d): lru_size %ld\n",
1302                 __func__, lruvec, lru, nr_pages, size)) {
1303                 VM_BUG_ON(1);
1304                 *lru_size = 0;
1305         }
1306
1307         if (nr_pages > 0)
1308                 *lru_size += nr_pages;
1309 }
1310
1311 /**
1312  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1313  * @memcg: the memory cgroup
1314  *
1315  * Returns the maximum amount of memory @mem can be charged with, in
1316  * pages.
1317  */
1318 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1319 {
1320         unsigned long margin = 0;
1321         unsigned long count;
1322         unsigned long limit;
1323
1324         count = page_counter_read(&memcg->memory);
1325         limit = READ_ONCE(memcg->memory.max);
1326         if (count < limit)
1327                 margin = limit - count;
1328
1329         if (do_memsw_account()) {
1330                 count = page_counter_read(&memcg->memsw);
1331                 limit = READ_ONCE(memcg->memsw.max);
1332                 if (count < limit)
1333                         margin = min(margin, limit - count);
1334                 else
1335                         margin = 0;
1336         }
1337
1338         return margin;
1339 }
1340
1341 /*
1342  * A routine for checking "mem" is under move_account() or not.
1343  *
1344  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1345  * moving cgroups. This is for waiting at high-memory pressure
1346  * caused by "move".
1347  */
1348 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1349 {
1350         struct mem_cgroup *from;
1351         struct mem_cgroup *to;
1352         bool ret = false;
1353         /*
1354          * Unlike task_move routines, we access mc.to, mc.from not under
1355          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1356          */
1357         spin_lock(&mc.lock);
1358         from = mc.from;
1359         to = mc.to;
1360         if (!from)
1361                 goto unlock;
1362
1363         ret = mem_cgroup_is_descendant(from, memcg) ||
1364                 mem_cgroup_is_descendant(to, memcg);
1365 unlock:
1366         spin_unlock(&mc.lock);
1367         return ret;
1368 }
1369
1370 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1371 {
1372         if (mc.moving_task && current != mc.moving_task) {
1373                 if (mem_cgroup_under_move(memcg)) {
1374                         DEFINE_WAIT(wait);
1375                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1376                         /* moving charge context might have finished. */
1377                         if (mc.moving_task)
1378                                 schedule();
1379                         finish_wait(&mc.waitq, &wait);
1380                         return true;
1381                 }
1382         }
1383         return false;
1384 }
1385
1386 struct memory_stat {
1387         const char *name;
1388         unsigned int idx;
1389 };
1390
1391 static const struct memory_stat memory_stats[] = {
1392         { "anon",                       NR_ANON_MAPPED                  },
1393         { "file",                       NR_FILE_PAGES                   },
1394         { "kernel",                     MEMCG_KMEM                      },
1395         { "kernel_stack",               NR_KERNEL_STACK_KB              },
1396         { "pagetables",                 NR_PAGETABLE                    },
1397         { "percpu",                     MEMCG_PERCPU_B                  },
1398         { "sock",                       MEMCG_SOCK                      },
1399         { "vmalloc",                    MEMCG_VMALLOC                   },
1400         { "shmem",                      NR_SHMEM                        },
1401 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1402         { "zswap",                      MEMCG_ZSWAP_B                   },
1403         { "zswapped",                   MEMCG_ZSWAPPED                  },
1404 #endif
1405         { "file_mapped",                NR_FILE_MAPPED                  },
1406         { "file_dirty",                 NR_FILE_DIRTY                   },
1407         { "file_writeback",             NR_WRITEBACK                    },
1408 #ifdef CONFIG_SWAP
1409         { "swapcached",                 NR_SWAPCACHE                    },
1410 #endif
1411 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1412         { "anon_thp",                   NR_ANON_THPS                    },
1413         { "file_thp",                   NR_FILE_THPS                    },
1414         { "shmem_thp",                  NR_SHMEM_THPS                   },
1415 #endif
1416         { "inactive_anon",              NR_INACTIVE_ANON                },
1417         { "active_anon",                NR_ACTIVE_ANON                  },
1418         { "inactive_file",              NR_INACTIVE_FILE                },
1419         { "active_file",                NR_ACTIVE_FILE                  },
1420         { "unevictable",                NR_UNEVICTABLE                  },
1421         { "slab_reclaimable",           NR_SLAB_RECLAIMABLE_B           },
1422         { "slab_unreclaimable",         NR_SLAB_UNRECLAIMABLE_B         },
1423
1424         /* The memory events */
1425         { "workingset_refault_anon",    WORKINGSET_REFAULT_ANON         },
1426         { "workingset_refault_file",    WORKINGSET_REFAULT_FILE         },
1427         { "workingset_activate_anon",   WORKINGSET_ACTIVATE_ANON        },
1428         { "workingset_activate_file",   WORKINGSET_ACTIVATE_FILE        },
1429         { "workingset_restore_anon",    WORKINGSET_RESTORE_ANON         },
1430         { "workingset_restore_file",    WORKINGSET_RESTORE_FILE         },
1431         { "workingset_nodereclaim",     WORKINGSET_NODERECLAIM          },
1432 };
1433
1434 /* Translate stat items to the correct unit for memory.stat output */
1435 static int memcg_page_state_unit(int item)
1436 {
1437         switch (item) {
1438         case MEMCG_PERCPU_B:
1439         case MEMCG_ZSWAP_B:
1440         case NR_SLAB_RECLAIMABLE_B:
1441         case NR_SLAB_UNRECLAIMABLE_B:
1442         case WORKINGSET_REFAULT_ANON:
1443         case WORKINGSET_REFAULT_FILE:
1444         case WORKINGSET_ACTIVATE_ANON:
1445         case WORKINGSET_ACTIVATE_FILE:
1446         case WORKINGSET_RESTORE_ANON:
1447         case WORKINGSET_RESTORE_FILE:
1448         case WORKINGSET_NODERECLAIM:
1449                 return 1;
1450         case NR_KERNEL_STACK_KB:
1451                 return SZ_1K;
1452         default:
1453                 return PAGE_SIZE;
1454         }
1455 }
1456
1457 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1458                                                     int item)
1459 {
1460         return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1461 }
1462
1463 /* Subset of vm_event_item to report for memcg event stats */
1464 static const unsigned int memcg_vm_event_stat[] = {
1465         PGSCAN_KSWAPD,
1466         PGSCAN_DIRECT,
1467         PGSTEAL_KSWAPD,
1468         PGSTEAL_DIRECT,
1469         PGFAULT,
1470         PGMAJFAULT,
1471         PGREFILL,
1472         PGACTIVATE,
1473         PGDEACTIVATE,
1474         PGLAZYFREE,
1475         PGLAZYFREED,
1476 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1477         ZSWPIN,
1478         ZSWPOUT,
1479 #endif
1480 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1481         THP_FAULT_ALLOC,
1482         THP_COLLAPSE_ALLOC,
1483 #endif
1484 };
1485
1486 static char *memory_stat_format(struct mem_cgroup *memcg)
1487 {
1488         struct seq_buf s;
1489         int i;
1490
1491         seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1492         if (!s.buffer)
1493                 return NULL;
1494
1495         /*
1496          * Provide statistics on the state of the memory subsystem as
1497          * well as cumulative event counters that show past behavior.
1498          *
1499          * This list is ordered following a combination of these gradients:
1500          * 1) generic big picture -> specifics and details
1501          * 2) reflecting userspace activity -> reflecting kernel heuristics
1502          *
1503          * Current memory state:
1504          */
1505         mem_cgroup_flush_stats();
1506
1507         for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1508                 u64 size;
1509
1510                 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1511                 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1512
1513                 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1514                         size += memcg_page_state_output(memcg,
1515                                                         NR_SLAB_RECLAIMABLE_B);
1516                         seq_buf_printf(&s, "slab %llu\n", size);
1517                 }
1518         }
1519
1520         /* Accumulated memory events */
1521         seq_buf_printf(&s, "pgscan %lu\n",
1522                        memcg_events(memcg, PGSCAN_KSWAPD) +
1523                        memcg_events(memcg, PGSCAN_DIRECT));
1524         seq_buf_printf(&s, "pgsteal %lu\n",
1525                        memcg_events(memcg, PGSTEAL_KSWAPD) +
1526                        memcg_events(memcg, PGSTEAL_DIRECT));
1527
1528         for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++)
1529                 seq_buf_printf(&s, "%s %lu\n",
1530                                vm_event_name(memcg_vm_event_stat[i]),
1531                                memcg_events(memcg, memcg_vm_event_stat[i]));
1532
1533         /* The above should easily fit into one page */
1534         WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1535
1536         return s.buffer;
1537 }
1538
1539 #define K(x) ((x) << (PAGE_SHIFT-10))
1540 /**
1541  * mem_cgroup_print_oom_context: Print OOM information relevant to
1542  * memory controller.
1543  * @memcg: The memory cgroup that went over limit
1544  * @p: Task that is going to be killed
1545  *
1546  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1547  * enabled
1548  */
1549 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1550 {
1551         rcu_read_lock();
1552
1553         if (memcg) {
1554                 pr_cont(",oom_memcg=");
1555                 pr_cont_cgroup_path(memcg->css.cgroup);
1556         } else
1557                 pr_cont(",global_oom");
1558         if (p) {
1559                 pr_cont(",task_memcg=");
1560                 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1561         }
1562         rcu_read_unlock();
1563 }
1564
1565 /**
1566  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1567  * memory controller.
1568  * @memcg: The memory cgroup that went over limit
1569  */
1570 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1571 {
1572         char *buf;
1573
1574         pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1575                 K((u64)page_counter_read(&memcg->memory)),
1576                 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1577         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1578                 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1579                         K((u64)page_counter_read(&memcg->swap)),
1580                         K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1581         else {
1582                 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1583                         K((u64)page_counter_read(&memcg->memsw)),
1584                         K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1585                 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1586                         K((u64)page_counter_read(&memcg->kmem)),
1587                         K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1588         }
1589
1590         pr_info("Memory cgroup stats for ");
1591         pr_cont_cgroup_path(memcg->css.cgroup);
1592         pr_cont(":");
1593         buf = memory_stat_format(memcg);
1594         if (!buf)
1595                 return;
1596         pr_info("%s", buf);
1597         kfree(buf);
1598 }
1599
1600 /*
1601  * Return the memory (and swap, if configured) limit for a memcg.
1602  */
1603 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1604 {
1605         unsigned long max = READ_ONCE(memcg->memory.max);
1606
1607         if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1608                 if (mem_cgroup_swappiness(memcg))
1609                         max += min(READ_ONCE(memcg->swap.max),
1610                                    (unsigned long)total_swap_pages);
1611         } else { /* v1 */
1612                 if (mem_cgroup_swappiness(memcg)) {
1613                         /* Calculate swap excess capacity from memsw limit */
1614                         unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1615
1616                         max += min(swap, (unsigned long)total_swap_pages);
1617                 }
1618         }
1619         return max;
1620 }
1621
1622 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1623 {
1624         return page_counter_read(&memcg->memory);
1625 }
1626
1627 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1628                                      int order)
1629 {
1630         struct oom_control oc = {
1631                 .zonelist = NULL,
1632                 .nodemask = NULL,
1633                 .memcg = memcg,
1634                 .gfp_mask = gfp_mask,
1635                 .order = order,
1636         };
1637         bool ret = true;
1638
1639         if (mutex_lock_killable(&oom_lock))
1640                 return true;
1641
1642         if (mem_cgroup_margin(memcg) >= (1 << order))
1643                 goto unlock;
1644
1645         /*
1646          * A few threads which were not waiting at mutex_lock_killable() can
1647          * fail to bail out. Therefore, check again after holding oom_lock.
1648          */
1649         ret = task_is_dying() || out_of_memory(&oc);
1650
1651 unlock:
1652         mutex_unlock(&oom_lock);
1653         return ret;
1654 }
1655
1656 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1657                                    pg_data_t *pgdat,
1658                                    gfp_t gfp_mask,
1659                                    unsigned long *total_scanned)
1660 {
1661         struct mem_cgroup *victim = NULL;
1662         int total = 0;
1663         int loop = 0;
1664         unsigned long excess;
1665         unsigned long nr_scanned;
1666         struct mem_cgroup_reclaim_cookie reclaim = {
1667                 .pgdat = pgdat,
1668         };
1669
1670         excess = soft_limit_excess(root_memcg);
1671
1672         while (1) {
1673                 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1674                 if (!victim) {
1675                         loop++;
1676                         if (loop >= 2) {
1677                                 /*
1678                                  * If we have not been able to reclaim
1679                                  * anything, it might because there are
1680                                  * no reclaimable pages under this hierarchy
1681                                  */
1682                                 if (!total)
1683                                         break;
1684                                 /*
1685                                  * We want to do more targeted reclaim.
1686                                  * excess >> 2 is not to excessive so as to
1687                                  * reclaim too much, nor too less that we keep
1688                                  * coming back to reclaim from this cgroup
1689                                  */
1690                                 if (total >= (excess >> 2) ||
1691                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1692                                         break;
1693                         }
1694                         continue;
1695                 }
1696                 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1697                                         pgdat, &nr_scanned);
1698                 *total_scanned += nr_scanned;
1699                 if (!soft_limit_excess(root_memcg))
1700                         break;
1701         }
1702         mem_cgroup_iter_break(root_memcg, victim);
1703         return total;
1704 }
1705
1706 #ifdef CONFIG_LOCKDEP
1707 static struct lockdep_map memcg_oom_lock_dep_map = {
1708         .name = "memcg_oom_lock",
1709 };
1710 #endif
1711
1712 static DEFINE_SPINLOCK(memcg_oom_lock);
1713
1714 /*
1715  * Check OOM-Killer is already running under our hierarchy.
1716  * If someone is running, return false.
1717  */
1718 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1719 {
1720         struct mem_cgroup *iter, *failed = NULL;
1721
1722         spin_lock(&memcg_oom_lock);
1723
1724         for_each_mem_cgroup_tree(iter, memcg) {
1725                 if (iter->oom_lock) {
1726                         /*
1727                          * this subtree of our hierarchy is already locked
1728                          * so we cannot give a lock.
1729                          */
1730                         failed = iter;
1731                         mem_cgroup_iter_break(memcg, iter);
1732                         break;
1733                 } else
1734                         iter->oom_lock = true;
1735         }
1736
1737         if (failed) {
1738                 /*
1739                  * OK, we failed to lock the whole subtree so we have
1740                  * to clean up what we set up to the failing subtree
1741                  */
1742                 for_each_mem_cgroup_tree(iter, memcg) {
1743                         if (iter == failed) {
1744                                 mem_cgroup_iter_break(memcg, iter);
1745                                 break;
1746                         }
1747                         iter->oom_lock = false;
1748                 }
1749         } else
1750                 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1751
1752         spin_unlock(&memcg_oom_lock);
1753
1754         return !failed;
1755 }
1756
1757 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1758 {
1759         struct mem_cgroup *iter;
1760
1761         spin_lock(&memcg_oom_lock);
1762         mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1763         for_each_mem_cgroup_tree(iter, memcg)
1764                 iter->oom_lock = false;
1765         spin_unlock(&memcg_oom_lock);
1766 }
1767
1768 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1769 {
1770         struct mem_cgroup *iter;
1771
1772         spin_lock(&memcg_oom_lock);
1773         for_each_mem_cgroup_tree(iter, memcg)
1774                 iter->under_oom++;
1775         spin_unlock(&memcg_oom_lock);
1776 }
1777
1778 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1779 {
1780         struct mem_cgroup *iter;
1781
1782         /*
1783          * Be careful about under_oom underflows because a child memcg
1784          * could have been added after mem_cgroup_mark_under_oom.
1785          */
1786         spin_lock(&memcg_oom_lock);
1787         for_each_mem_cgroup_tree(iter, memcg)
1788                 if (iter->under_oom > 0)
1789                         iter->under_oom--;
1790         spin_unlock(&memcg_oom_lock);
1791 }
1792
1793 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1794
1795 struct oom_wait_info {
1796         struct mem_cgroup *memcg;
1797         wait_queue_entry_t      wait;
1798 };
1799
1800 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1801         unsigned mode, int sync, void *arg)
1802 {
1803         struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1804         struct mem_cgroup *oom_wait_memcg;
1805         struct oom_wait_info *oom_wait_info;
1806
1807         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1808         oom_wait_memcg = oom_wait_info->memcg;
1809
1810         if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1811             !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1812                 return 0;
1813         return autoremove_wake_function(wait, mode, sync, arg);
1814 }
1815
1816 static void memcg_oom_recover(struct mem_cgroup *memcg)
1817 {
1818         /*
1819          * For the following lockless ->under_oom test, the only required
1820          * guarantee is that it must see the state asserted by an OOM when
1821          * this function is called as a result of userland actions
1822          * triggered by the notification of the OOM.  This is trivially
1823          * achieved by invoking mem_cgroup_mark_under_oom() before
1824          * triggering notification.
1825          */
1826         if (memcg && memcg->under_oom)
1827                 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1828 }
1829
1830 /*
1831  * Returns true if successfully killed one or more processes. Though in some
1832  * corner cases it can return true even without killing any process.
1833  */
1834 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1835 {
1836         bool locked, ret;
1837
1838         if (order > PAGE_ALLOC_COSTLY_ORDER)
1839                 return false;
1840
1841         memcg_memory_event(memcg, MEMCG_OOM);
1842
1843         /*
1844          * We are in the middle of the charge context here, so we
1845          * don't want to block when potentially sitting on a callstack
1846          * that holds all kinds of filesystem and mm locks.
1847          *
1848          * cgroup1 allows disabling the OOM killer and waiting for outside
1849          * handling until the charge can succeed; remember the context and put
1850          * the task to sleep at the end of the page fault when all locks are
1851          * released.
1852          *
1853          * On the other hand, in-kernel OOM killer allows for an async victim
1854          * memory reclaim (oom_reaper) and that means that we are not solely
1855          * relying on the oom victim to make a forward progress and we can
1856          * invoke the oom killer here.
1857          *
1858          * Please note that mem_cgroup_out_of_memory might fail to find a
1859          * victim and then we have to bail out from the charge path.
1860          */
1861         if (memcg->oom_kill_disable) {
1862                 if (current->in_user_fault) {
1863                         css_get(&memcg->css);
1864                         current->memcg_in_oom = memcg;
1865                         current->memcg_oom_gfp_mask = mask;
1866                         current->memcg_oom_order = order;
1867                 }
1868                 return false;
1869         }
1870
1871         mem_cgroup_mark_under_oom(memcg);
1872
1873         locked = mem_cgroup_oom_trylock(memcg);
1874
1875         if (locked)
1876                 mem_cgroup_oom_notify(memcg);
1877
1878         mem_cgroup_unmark_under_oom(memcg);
1879         ret = mem_cgroup_out_of_memory(memcg, mask, order);
1880
1881         if (locked)
1882                 mem_cgroup_oom_unlock(memcg);
1883
1884         return ret;
1885 }
1886
1887 /**
1888  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1889  * @handle: actually kill/wait or just clean up the OOM state
1890  *
1891  * This has to be called at the end of a page fault if the memcg OOM
1892  * handler was enabled.
1893  *
1894  * Memcg supports userspace OOM handling where failed allocations must
1895  * sleep on a waitqueue until the userspace task resolves the
1896  * situation.  Sleeping directly in the charge context with all kinds
1897  * of locks held is not a good idea, instead we remember an OOM state
1898  * in the task and mem_cgroup_oom_synchronize() has to be called at
1899  * the end of the page fault to complete the OOM handling.
1900  *
1901  * Returns %true if an ongoing memcg OOM situation was detected and
1902  * completed, %false otherwise.
1903  */
1904 bool mem_cgroup_oom_synchronize(bool handle)
1905 {
1906         struct mem_cgroup *memcg = current->memcg_in_oom;
1907         struct oom_wait_info owait;
1908         bool locked;
1909
1910         /* OOM is global, do not handle */
1911         if (!memcg)
1912                 return false;
1913
1914         if (!handle)
1915                 goto cleanup;
1916
1917         owait.memcg = memcg;
1918         owait.wait.flags = 0;
1919         owait.wait.func = memcg_oom_wake_function;
1920         owait.wait.private = current;
1921         INIT_LIST_HEAD(&owait.wait.entry);
1922
1923         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1924         mem_cgroup_mark_under_oom(memcg);
1925
1926         locked = mem_cgroup_oom_trylock(memcg);
1927
1928         if (locked)
1929                 mem_cgroup_oom_notify(memcg);
1930
1931         if (locked && !memcg->oom_kill_disable) {
1932                 mem_cgroup_unmark_under_oom(memcg);
1933                 finish_wait(&memcg_oom_waitq, &owait.wait);
1934                 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1935                                          current->memcg_oom_order);
1936         } else {
1937                 schedule();
1938                 mem_cgroup_unmark_under_oom(memcg);
1939                 finish_wait(&memcg_oom_waitq, &owait.wait);
1940         }
1941
1942         if (locked) {
1943                 mem_cgroup_oom_unlock(memcg);
1944                 /*
1945                  * There is no guarantee that an OOM-lock contender
1946                  * sees the wakeups triggered by the OOM kill
1947                  * uncharges.  Wake any sleepers explicitly.
1948                  */
1949                 memcg_oom_recover(memcg);
1950         }
1951 cleanup:
1952         current->memcg_in_oom = NULL;
1953         css_put(&memcg->css);
1954         return true;
1955 }
1956
1957 /**
1958  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1959  * @victim: task to be killed by the OOM killer
1960  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1961  *
1962  * Returns a pointer to a memory cgroup, which has to be cleaned up
1963  * by killing all belonging OOM-killable tasks.
1964  *
1965  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1966  */
1967 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1968                                             struct mem_cgroup *oom_domain)
1969 {
1970         struct mem_cgroup *oom_group = NULL;
1971         struct mem_cgroup *memcg;
1972
1973         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1974                 return NULL;
1975
1976         if (!oom_domain)
1977                 oom_domain = root_mem_cgroup;
1978
1979         rcu_read_lock();
1980
1981         memcg = mem_cgroup_from_task(victim);
1982         if (memcg == root_mem_cgroup)
1983                 goto out;
1984
1985         /*
1986          * If the victim task has been asynchronously moved to a different
1987          * memory cgroup, we might end up killing tasks outside oom_domain.
1988          * In this case it's better to ignore memory.group.oom.
1989          */
1990         if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1991                 goto out;
1992
1993         /*
1994          * Traverse the memory cgroup hierarchy from the victim task's
1995          * cgroup up to the OOMing cgroup (or root) to find the
1996          * highest-level memory cgroup with oom.group set.
1997          */
1998         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1999                 if (memcg->oom_group)
2000                         oom_group = memcg;
2001
2002                 if (memcg == oom_domain)
2003                         break;
2004         }
2005
2006         if (oom_group)
2007                 css_get(&oom_group->css);
2008 out:
2009         rcu_read_unlock();
2010
2011         return oom_group;
2012 }
2013
2014 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2015 {
2016         pr_info("Tasks in ");
2017         pr_cont_cgroup_path(memcg->css.cgroup);
2018         pr_cont(" are going to be killed due to memory.oom.group set\n");
2019 }
2020
2021 /**
2022  * folio_memcg_lock - Bind a folio to its memcg.
2023  * @folio: The folio.
2024  *
2025  * This function prevents unlocked LRU folios from being moved to
2026  * another cgroup.
2027  *
2028  * It ensures lifetime of the bound memcg.  The caller is responsible
2029  * for the lifetime of the folio.
2030  */
2031 void folio_memcg_lock(struct folio *folio)
2032 {
2033         struct mem_cgroup *memcg;
2034         unsigned long flags;
2035
2036         /*
2037          * The RCU lock is held throughout the transaction.  The fast
2038          * path can get away without acquiring the memcg->move_lock
2039          * because page moving starts with an RCU grace period.
2040          */
2041         rcu_read_lock();
2042
2043         if (mem_cgroup_disabled())
2044                 return;
2045 again:
2046         memcg = folio_memcg(folio);
2047         if (unlikely(!memcg))
2048                 return;
2049
2050 #ifdef CONFIG_PROVE_LOCKING
2051         local_irq_save(flags);
2052         might_lock(&memcg->move_lock);
2053         local_irq_restore(flags);
2054 #endif
2055
2056         if (atomic_read(&memcg->moving_account) <= 0)
2057                 return;
2058
2059         spin_lock_irqsave(&memcg->move_lock, flags);
2060         if (memcg != folio_memcg(folio)) {
2061                 spin_unlock_irqrestore(&memcg->move_lock, flags);
2062                 goto again;
2063         }
2064
2065         /*
2066          * When charge migration first begins, we can have multiple
2067          * critical sections holding the fast-path RCU lock and one
2068          * holding the slowpath move_lock. Track the task who has the
2069          * move_lock for unlock_page_memcg().
2070          */
2071         memcg->move_lock_task = current;
2072         memcg->move_lock_flags = flags;
2073 }
2074
2075 void lock_page_memcg(struct page *page)
2076 {
2077         folio_memcg_lock(page_folio(page));
2078 }
2079
2080 static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2081 {
2082         if (memcg && memcg->move_lock_task == current) {
2083                 unsigned long flags = memcg->move_lock_flags;
2084
2085                 memcg->move_lock_task = NULL;
2086                 memcg->move_lock_flags = 0;
2087
2088                 spin_unlock_irqrestore(&memcg->move_lock, flags);
2089         }
2090
2091         rcu_read_unlock();
2092 }
2093
2094 /**
2095  * folio_memcg_unlock - Release the binding between a folio and its memcg.
2096  * @folio: The folio.
2097  *
2098  * This releases the binding created by folio_memcg_lock().  This does
2099  * not change the accounting of this folio to its memcg, but it does
2100  * permit others to change it.
2101  */
2102 void folio_memcg_unlock(struct folio *folio)
2103 {
2104         __folio_memcg_unlock(folio_memcg(folio));
2105 }
2106
2107 void unlock_page_memcg(struct page *page)
2108 {
2109         folio_memcg_unlock(page_folio(page));
2110 }
2111
2112 struct memcg_stock_pcp {
2113         local_lock_t stock_lock;
2114         struct mem_cgroup *cached; /* this never be root cgroup */
2115         unsigned int nr_pages;
2116
2117 #ifdef CONFIG_MEMCG_KMEM
2118         struct obj_cgroup *cached_objcg;
2119         struct pglist_data *cached_pgdat;
2120         unsigned int nr_bytes;
2121         int nr_slab_reclaimable_b;
2122         int nr_slab_unreclaimable_b;
2123 #endif
2124
2125         struct work_struct work;
2126         unsigned long flags;
2127 #define FLUSHING_CACHED_CHARGE  0
2128 };
2129 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2130         .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2131 };
2132 static DEFINE_MUTEX(percpu_charge_mutex);
2133
2134 #ifdef CONFIG_MEMCG_KMEM
2135 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2136 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2137                                      struct mem_cgroup *root_memcg);
2138 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2139
2140 #else
2141 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2142 {
2143         return NULL;
2144 }
2145 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2146                                      struct mem_cgroup *root_memcg)
2147 {
2148         return false;
2149 }
2150 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2151 {
2152 }
2153 #endif
2154
2155 /**
2156  * consume_stock: Try to consume stocked charge on this cpu.
2157  * @memcg: memcg to consume from.
2158  * @nr_pages: how many pages to charge.
2159  *
2160  * The charges will only happen if @memcg matches the current cpu's memcg
2161  * stock, and at least @nr_pages are available in that stock.  Failure to
2162  * service an allocation will refill the stock.
2163  *
2164  * returns true if successful, false otherwise.
2165  */
2166 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2167 {
2168         struct memcg_stock_pcp *stock;
2169         unsigned long flags;
2170         bool ret = false;
2171
2172         if (nr_pages > MEMCG_CHARGE_BATCH)
2173                 return ret;
2174
2175         local_lock_irqsave(&memcg_stock.stock_lock, flags);
2176
2177         stock = this_cpu_ptr(&memcg_stock);
2178         if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2179                 stock->nr_pages -= nr_pages;
2180                 ret = true;
2181         }
2182
2183         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2184
2185         return ret;
2186 }
2187
2188 /*
2189  * Returns stocks cached in percpu and reset cached information.
2190  */
2191 static void drain_stock(struct memcg_stock_pcp *stock)
2192 {
2193         struct mem_cgroup *old = stock->cached;
2194
2195         if (!old)
2196                 return;
2197
2198         if (stock->nr_pages) {
2199                 page_counter_uncharge(&old->memory, stock->nr_pages);
2200                 if (do_memsw_account())
2201                         page_counter_uncharge(&old->memsw, stock->nr_pages);
2202                 stock->nr_pages = 0;
2203         }
2204
2205         css_put(&old->css);
2206         stock->cached = NULL;
2207 }
2208
2209 static void drain_local_stock(struct work_struct *dummy)
2210 {
2211         struct memcg_stock_pcp *stock;
2212         struct obj_cgroup *old = NULL;
2213         unsigned long flags;
2214
2215         /*
2216          * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2217          * drain_stock races is that we always operate on local CPU stock
2218          * here with IRQ disabled
2219          */
2220         local_lock_irqsave(&memcg_stock.stock_lock, flags);
2221
2222         stock = this_cpu_ptr(&memcg_stock);
2223         old = drain_obj_stock(stock);
2224         drain_stock(stock);
2225         clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2226
2227         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2228         if (old)
2229                 obj_cgroup_put(old);
2230 }
2231
2232 /*
2233  * Cache charges(val) to local per_cpu area.
2234  * This will be consumed by consume_stock() function, later.
2235  */
2236 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2237 {
2238         struct memcg_stock_pcp *stock;
2239
2240         stock = this_cpu_ptr(&memcg_stock);
2241         if (stock->cached != memcg) { /* reset if necessary */
2242                 drain_stock(stock);
2243                 css_get(&memcg->css);
2244                 stock->cached = memcg;
2245         }
2246         stock->nr_pages += nr_pages;
2247
2248         if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2249                 drain_stock(stock);
2250 }
2251
2252 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2253 {
2254         unsigned long flags;
2255
2256         local_lock_irqsave(&memcg_stock.stock_lock, flags);
2257         __refill_stock(memcg, nr_pages);
2258         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2259 }
2260
2261 /*
2262  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2263  * of the hierarchy under it.
2264  */
2265 static void drain_all_stock(struct mem_cgroup *root_memcg)
2266 {
2267         int cpu, curcpu;
2268
2269         /* If someone's already draining, avoid adding running more workers. */
2270         if (!mutex_trylock(&percpu_charge_mutex))
2271                 return;
2272         /*
2273          * Notify other cpus that system-wide "drain" is running
2274          * We do not care about races with the cpu hotplug because cpu down
2275          * as well as workers from this path always operate on the local
2276          * per-cpu data. CPU up doesn't touch memcg_stock at all.
2277          */
2278         migrate_disable();
2279         curcpu = smp_processor_id();
2280         for_each_online_cpu(cpu) {
2281                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2282                 struct mem_cgroup *memcg;
2283                 bool flush = false;
2284
2285                 rcu_read_lock();
2286                 memcg = stock->cached;
2287                 if (memcg && stock->nr_pages &&
2288                     mem_cgroup_is_descendant(memcg, root_memcg))
2289                         flush = true;
2290                 else if (obj_stock_flush_required(stock, root_memcg))
2291                         flush = true;
2292                 rcu_read_unlock();
2293
2294                 if (flush &&
2295                     !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2296                         if (cpu == curcpu)
2297                                 drain_local_stock(&stock->work);
2298                         else
2299                                 schedule_work_on(cpu, &stock->work);
2300                 }
2301         }
2302         migrate_enable();
2303         mutex_unlock(&percpu_charge_mutex);
2304 }
2305
2306 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2307 {
2308         struct memcg_stock_pcp *stock;
2309
2310         stock = &per_cpu(memcg_stock, cpu);
2311         drain_stock(stock);
2312
2313         return 0;
2314 }
2315
2316 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2317                                   unsigned int nr_pages,
2318                                   gfp_t gfp_mask)
2319 {
2320         unsigned long nr_reclaimed = 0;
2321
2322         do {
2323                 unsigned long pflags;
2324
2325                 if (page_counter_read(&memcg->memory) <=
2326                     READ_ONCE(memcg->memory.high))
2327                         continue;
2328
2329                 memcg_memory_event(memcg, MEMCG_HIGH);
2330
2331                 psi_memstall_enter(&pflags);
2332                 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2333                                                              gfp_mask, true);
2334                 psi_memstall_leave(&pflags);
2335         } while ((memcg = parent_mem_cgroup(memcg)) &&
2336                  !mem_cgroup_is_root(memcg));
2337
2338         return nr_reclaimed;
2339 }
2340
2341 static void high_work_func(struct work_struct *work)
2342 {
2343         struct mem_cgroup *memcg;
2344
2345         memcg = container_of(work, struct mem_cgroup, high_work);
2346         reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2347 }
2348
2349 /*
2350  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2351  * enough to still cause a significant slowdown in most cases, while still
2352  * allowing diagnostics and tracing to proceed without becoming stuck.
2353  */
2354 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2355
2356 /*
2357  * When calculating the delay, we use these either side of the exponentiation to
2358  * maintain precision and scale to a reasonable number of jiffies (see the table
2359  * below.
2360  *
2361  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2362  *   overage ratio to a delay.
2363  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2364  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2365  *   to produce a reasonable delay curve.
2366  *
2367  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2368  * reasonable delay curve compared to precision-adjusted overage, not
2369  * penalising heavily at first, but still making sure that growth beyond the
2370  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2371  * example, with a high of 100 megabytes:
2372  *
2373  *  +-------+------------------------+
2374  *  | usage | time to allocate in ms |
2375  *  +-------+------------------------+
2376  *  | 100M  |                      0 |
2377  *  | 101M  |                      6 |
2378  *  | 102M  |                     25 |
2379  *  | 103M  |                     57 |
2380  *  | 104M  |                    102 |
2381  *  | 105M  |                    159 |
2382  *  | 106M  |                    230 |
2383  *  | 107M  |                    313 |
2384  *  | 108M  |                    409 |
2385  *  | 109M  |                    518 |
2386  *  | 110M  |                    639 |
2387  *  | 111M  |                    774 |
2388  *  | 112M  |                    921 |
2389  *  | 113M  |                   1081 |
2390  *  | 114M  |                   1254 |
2391  *  | 115M  |                   1439 |
2392  *  | 116M  |                   1638 |
2393  *  | 117M  |                   1849 |
2394  *  | 118M  |                   2000 |
2395  *  | 119M  |                   2000 |
2396  *  | 120M  |                   2000 |
2397  *  +-------+------------------------+
2398  */
2399  #define MEMCG_DELAY_PRECISION_SHIFT 20
2400  #define MEMCG_DELAY_SCALING_SHIFT 14
2401
2402 static u64 calculate_overage(unsigned long usage, unsigned long high)
2403 {
2404         u64 overage;
2405
2406         if (usage <= high)
2407                 return 0;
2408
2409         /*
2410          * Prevent division by 0 in overage calculation by acting as if
2411          * it was a threshold of 1 page
2412          */
2413         high = max(high, 1UL);
2414
2415         overage = usage - high;
2416         overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2417         return div64_u64(overage, high);
2418 }
2419
2420 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2421 {
2422         u64 overage, max_overage = 0;
2423
2424         do {
2425                 overage = calculate_overage(page_counter_read(&memcg->memory),
2426                                             READ_ONCE(memcg->memory.high));
2427                 max_overage = max(overage, max_overage);
2428         } while ((memcg = parent_mem_cgroup(memcg)) &&
2429                  !mem_cgroup_is_root(memcg));
2430
2431         return max_overage;
2432 }
2433
2434 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2435 {
2436         u64 overage, max_overage = 0;
2437
2438         do {
2439                 overage = calculate_overage(page_counter_read(&memcg->swap),
2440                                             READ_ONCE(memcg->swap.high));
2441                 if (overage)
2442                         memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2443                 max_overage = max(overage, max_overage);
2444         } while ((memcg = parent_mem_cgroup(memcg)) &&
2445                  !mem_cgroup_is_root(memcg));
2446
2447         return max_overage;
2448 }
2449
2450 /*
2451  * Get the number of jiffies that we should penalise a mischievous cgroup which
2452  * is exceeding its memory.high by checking both it and its ancestors.
2453  */
2454 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2455                                           unsigned int nr_pages,
2456                                           u64 max_overage)
2457 {
2458         unsigned long penalty_jiffies;
2459
2460         if (!max_overage)
2461                 return 0;
2462
2463         /*
2464          * We use overage compared to memory.high to calculate the number of
2465          * jiffies to sleep (penalty_jiffies). Ideally this value should be
2466          * fairly lenient on small overages, and increasingly harsh when the
2467          * memcg in question makes it clear that it has no intention of stopping
2468          * its crazy behaviour, so we exponentially increase the delay based on
2469          * overage amount.
2470          */
2471         penalty_jiffies = max_overage * max_overage * HZ;
2472         penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2473         penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2474
2475         /*
2476          * Factor in the task's own contribution to the overage, such that four
2477          * N-sized allocations are throttled approximately the same as one
2478          * 4N-sized allocation.
2479          *
2480          * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2481          * larger the current charge patch is than that.
2482          */
2483         return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2484 }
2485
2486 /*
2487  * Scheduled by try_charge() to be executed from the userland return path
2488  * and reclaims memory over the high limit.
2489  */
2490 void mem_cgroup_handle_over_high(void)
2491 {
2492         unsigned long penalty_jiffies;
2493         unsigned long pflags;
2494         unsigned long nr_reclaimed;
2495         unsigned int nr_pages = current->memcg_nr_pages_over_high;
2496         int nr_retries = MAX_RECLAIM_RETRIES;
2497         struct mem_cgroup *memcg;
2498         bool in_retry = false;
2499
2500         if (likely(!nr_pages))
2501                 return;
2502
2503         memcg = get_mem_cgroup_from_mm(current->mm);
2504         current->memcg_nr_pages_over_high = 0;
2505
2506 retry_reclaim:
2507         /*
2508          * The allocating task should reclaim at least the batch size, but for
2509          * subsequent retries we only want to do what's necessary to prevent oom
2510          * or breaching resource isolation.
2511          *
2512          * This is distinct from memory.max or page allocator behaviour because
2513          * memory.high is currently batched, whereas memory.max and the page
2514          * allocator run every time an allocation is made.
2515          */
2516         nr_reclaimed = reclaim_high(memcg,
2517                                     in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2518                                     GFP_KERNEL);
2519
2520         /*
2521          * memory.high is breached and reclaim is unable to keep up. Throttle
2522          * allocators proactively to slow down excessive growth.
2523          */
2524         penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2525                                                mem_find_max_overage(memcg));
2526
2527         penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2528                                                 swap_find_max_overage(memcg));
2529
2530         /*
2531          * Clamp the max delay per usermode return so as to still keep the
2532          * application moving forwards and also permit diagnostics, albeit
2533          * extremely slowly.
2534          */
2535         penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2536
2537         /*
2538          * Don't sleep if the amount of jiffies this memcg owes us is so low
2539          * that it's not even worth doing, in an attempt to be nice to those who
2540          * go only a small amount over their memory.high value and maybe haven't
2541          * been aggressively reclaimed enough yet.
2542          */
2543         if (penalty_jiffies <= HZ / 100)
2544                 goto out;
2545
2546         /*
2547          * If reclaim is making forward progress but we're still over
2548          * memory.high, we want to encourage that rather than doing allocator
2549          * throttling.
2550          */
2551         if (nr_reclaimed || nr_retries--) {
2552                 in_retry = true;
2553                 goto retry_reclaim;
2554         }
2555
2556         /*
2557          * If we exit early, we're guaranteed to die (since
2558          * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2559          * need to account for any ill-begotten jiffies to pay them off later.
2560          */
2561         psi_memstall_enter(&pflags);
2562         schedule_timeout_killable(penalty_jiffies);
2563         psi_memstall_leave(&pflags);
2564
2565 out:
2566         css_put(&memcg->css);
2567 }
2568
2569 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2570                         unsigned int nr_pages)
2571 {
2572         unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2573         int nr_retries = MAX_RECLAIM_RETRIES;
2574         struct mem_cgroup *mem_over_limit;
2575         struct page_counter *counter;
2576         unsigned long nr_reclaimed;
2577         bool passed_oom = false;
2578         bool may_swap = true;
2579         bool drained = false;
2580         unsigned long pflags;
2581
2582 retry:
2583         if (consume_stock(memcg, nr_pages))
2584                 return 0;
2585
2586         if (!do_memsw_account() ||
2587             page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2588                 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2589                         goto done_restock;
2590                 if (do_memsw_account())
2591                         page_counter_uncharge(&memcg->memsw, batch);
2592                 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2593         } else {
2594                 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2595                 may_swap = false;
2596         }
2597
2598         if (batch > nr_pages) {
2599                 batch = nr_pages;
2600                 goto retry;
2601         }
2602
2603         /*
2604          * Prevent unbounded recursion when reclaim operations need to
2605          * allocate memory. This might exceed the limits temporarily,
2606          * but we prefer facilitating memory reclaim and getting back
2607          * under the limit over triggering OOM kills in these cases.
2608          */
2609         if (unlikely(current->flags & PF_MEMALLOC))
2610                 goto force;
2611
2612         if (unlikely(task_in_memcg_oom(current)))
2613                 goto nomem;
2614
2615         if (!gfpflags_allow_blocking(gfp_mask))
2616                 goto nomem;
2617
2618         memcg_memory_event(mem_over_limit, MEMCG_MAX);
2619
2620         psi_memstall_enter(&pflags);
2621         nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2622                                                     gfp_mask, may_swap);
2623         psi_memstall_leave(&pflags);
2624
2625         if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2626                 goto retry;
2627
2628         if (!drained) {
2629                 drain_all_stock(mem_over_limit);
2630                 drained = true;
2631                 goto retry;
2632         }
2633
2634         if (gfp_mask & __GFP_NORETRY)
2635                 goto nomem;
2636         /*
2637          * Even though the limit is exceeded at this point, reclaim
2638          * may have been able to free some pages.  Retry the charge
2639          * before killing the task.
2640          *
2641          * Only for regular pages, though: huge pages are rather
2642          * unlikely to succeed so close to the limit, and we fall back
2643          * to regular pages anyway in case of failure.
2644          */
2645         if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2646                 goto retry;
2647         /*
2648          * At task move, charge accounts can be doubly counted. So, it's
2649          * better to wait until the end of task_move if something is going on.
2650          */
2651         if (mem_cgroup_wait_acct_move(mem_over_limit))
2652                 goto retry;
2653
2654         if (nr_retries--)
2655                 goto retry;
2656
2657         if (gfp_mask & __GFP_RETRY_MAYFAIL)
2658                 goto nomem;
2659
2660         /* Avoid endless loop for tasks bypassed by the oom killer */
2661         if (passed_oom && task_is_dying())
2662                 goto nomem;
2663
2664         /*
2665          * keep retrying as long as the memcg oom killer is able to make
2666          * a forward progress or bypass the charge if the oom killer
2667          * couldn't make any progress.
2668          */
2669         if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2670                            get_order(nr_pages * PAGE_SIZE))) {
2671                 passed_oom = true;
2672                 nr_retries = MAX_RECLAIM_RETRIES;
2673                 goto retry;
2674         }
2675 nomem:
2676         /*
2677          * Memcg doesn't have a dedicated reserve for atomic
2678          * allocations. But like the global atomic pool, we need to
2679          * put the burden of reclaim on regular allocation requests
2680          * and let these go through as privileged allocations.
2681          */
2682         if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2683                 return -ENOMEM;
2684 force:
2685         /*
2686          * The allocation either can't fail or will lead to more memory
2687          * being freed very soon.  Allow memory usage go over the limit
2688          * temporarily by force charging it.
2689          */
2690         page_counter_charge(&memcg->memory, nr_pages);
2691         if (do_memsw_account())
2692                 page_counter_charge(&memcg->memsw, nr_pages);
2693
2694         return 0;
2695
2696 done_restock:
2697         if (batch > nr_pages)
2698                 refill_stock(memcg, batch - nr_pages);
2699
2700         /*
2701          * If the hierarchy is above the normal consumption range, schedule
2702          * reclaim on returning to userland.  We can perform reclaim here
2703          * if __GFP_RECLAIM but let's always punt for simplicity and so that
2704          * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2705          * not recorded as it most likely matches current's and won't
2706          * change in the meantime.  As high limit is checked again before
2707          * reclaim, the cost of mismatch is negligible.
2708          */
2709         do {
2710                 bool mem_high, swap_high;
2711
2712                 mem_high = page_counter_read(&memcg->memory) >
2713                         READ_ONCE(memcg->memory.high);
2714                 swap_high = page_counter_read(&memcg->swap) >
2715                         READ_ONCE(memcg->swap.high);
2716
2717                 /* Don't bother a random interrupted task */
2718                 if (!in_task()) {
2719                         if (mem_high) {
2720                                 schedule_work(&memcg->high_work);
2721                                 break;
2722                         }
2723                         continue;
2724                 }
2725
2726                 if (mem_high || swap_high) {
2727                         /*
2728                          * The allocating tasks in this cgroup will need to do
2729                          * reclaim or be throttled to prevent further growth
2730                          * of the memory or swap footprints.
2731                          *
2732                          * Target some best-effort fairness between the tasks,
2733                          * and distribute reclaim work and delay penalties
2734                          * based on how much each task is actually allocating.
2735                          */
2736                         current->memcg_nr_pages_over_high += batch;
2737                         set_notify_resume(current);
2738                         break;
2739                 }
2740         } while ((memcg = parent_mem_cgroup(memcg)));
2741
2742         if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2743             !(current->flags & PF_MEMALLOC) &&
2744             gfpflags_allow_blocking(gfp_mask)) {
2745                 mem_cgroup_handle_over_high();
2746         }
2747         return 0;
2748 }
2749
2750 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2751                              unsigned int nr_pages)
2752 {
2753         if (mem_cgroup_is_root(memcg))
2754                 return 0;
2755
2756         return try_charge_memcg(memcg, gfp_mask, nr_pages);
2757 }
2758
2759 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2760 {
2761         if (mem_cgroup_is_root(memcg))
2762                 return;
2763
2764         page_counter_uncharge(&memcg->memory, nr_pages);
2765         if (do_memsw_account())
2766                 page_counter_uncharge(&memcg->memsw, nr_pages);
2767 }
2768
2769 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2770 {
2771         VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2772         /*
2773          * Any of the following ensures page's memcg stability:
2774          *
2775          * - the page lock
2776          * - LRU isolation
2777          * - lock_page_memcg()
2778          * - exclusive reference
2779          */
2780         folio->memcg_data = (unsigned long)memcg;
2781 }
2782
2783 #ifdef CONFIG_MEMCG_KMEM
2784 /*
2785  * The allocated objcg pointers array is not accounted directly.
2786  * Moreover, it should not come from DMA buffer and is not readily
2787  * reclaimable. So those GFP bits should be masked off.
2788  */
2789 #define OBJCGS_CLEAR_MASK       (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2790
2791 /*
2792  * mod_objcg_mlstate() may be called with irq enabled, so
2793  * mod_memcg_lruvec_state() should be used.
2794  */
2795 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2796                                      struct pglist_data *pgdat,
2797                                      enum node_stat_item idx, int nr)
2798 {
2799         struct mem_cgroup *memcg;
2800         struct lruvec *lruvec;
2801
2802         rcu_read_lock();
2803         memcg = obj_cgroup_memcg(objcg);
2804         lruvec = mem_cgroup_lruvec(memcg, pgdat);
2805         mod_memcg_lruvec_state(lruvec, idx, nr);
2806         rcu_read_unlock();
2807 }
2808
2809 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2810                                  gfp_t gfp, bool new_slab)
2811 {
2812         unsigned int objects = objs_per_slab(s, slab);
2813         unsigned long memcg_data;
2814         void *vec;
2815
2816         gfp &= ~OBJCGS_CLEAR_MASK;
2817         vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2818                            slab_nid(slab));
2819         if (!vec)
2820                 return -ENOMEM;
2821
2822         memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2823         if (new_slab) {
2824                 /*
2825                  * If the slab is brand new and nobody can yet access its
2826                  * memcg_data, no synchronization is required and memcg_data can
2827                  * be simply assigned.
2828                  */
2829                 slab->memcg_data = memcg_data;
2830         } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2831                 /*
2832                  * If the slab is already in use, somebody can allocate and
2833                  * assign obj_cgroups in parallel. In this case the existing
2834                  * objcg vector should be reused.
2835                  */
2836                 kfree(vec);
2837                 return 0;
2838         }
2839
2840         kmemleak_not_leak(vec);
2841         return 0;
2842 }
2843
2844 static __always_inline
2845 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2846 {
2847         /*
2848          * Slab objects are accounted individually, not per-page.
2849          * Memcg membership data for each individual object is saved in
2850          * slab->memcg_data.
2851          */
2852         if (folio_test_slab(folio)) {
2853                 struct obj_cgroup **objcgs;
2854                 struct slab *slab;
2855                 unsigned int off;
2856
2857                 slab = folio_slab(folio);
2858                 objcgs = slab_objcgs(slab);
2859                 if (!objcgs)
2860                         return NULL;
2861
2862                 off = obj_to_index(slab->slab_cache, slab, p);
2863                 if (objcgs[off])
2864                         return obj_cgroup_memcg(objcgs[off]);
2865
2866                 return NULL;
2867         }
2868
2869         /*
2870          * page_memcg_check() is used here, because in theory we can encounter
2871          * a folio where the slab flag has been cleared already, but
2872          * slab->memcg_data has not been freed yet
2873          * page_memcg_check(page) will guarantee that a proper memory
2874          * cgroup pointer or NULL will be returned.
2875          */
2876         return page_memcg_check(folio_page(folio, 0));
2877 }
2878
2879 /*
2880  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2881  *
2882  * A passed kernel object can be a slab object, vmalloc object or a generic
2883  * kernel page, so different mechanisms for getting the memory cgroup pointer
2884  * should be used.
2885  *
2886  * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2887  * can not know for sure how the kernel object is implemented.
2888  * mem_cgroup_from_obj() can be safely used in such cases.
2889  *
2890  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2891  * cgroup_mutex, etc.
2892  */
2893 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2894 {
2895         struct folio *folio;
2896
2897         if (mem_cgroup_disabled())
2898                 return NULL;
2899
2900         if (unlikely(is_vmalloc_addr(p)))
2901                 folio = page_folio(vmalloc_to_page(p));
2902         else
2903                 folio = virt_to_folio(p);
2904
2905         return mem_cgroup_from_obj_folio(folio, p);
2906 }
2907
2908 /*
2909  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2910  * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
2911  * allocated using vmalloc().
2912  *
2913  * A passed kernel object must be a slab object or a generic kernel page.
2914  *
2915  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2916  * cgroup_mutex, etc.
2917  */
2918 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
2919 {
2920         if (mem_cgroup_disabled())
2921                 return NULL;
2922
2923         return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
2924 }
2925
2926 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
2927 {
2928         struct obj_cgroup *objcg = NULL;
2929
2930         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2931                 objcg = rcu_dereference(memcg->objcg);
2932                 if (objcg && obj_cgroup_tryget(objcg))
2933                         break;
2934                 objcg = NULL;
2935         }
2936         return objcg;
2937 }
2938
2939 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2940 {
2941         struct obj_cgroup *objcg = NULL;
2942         struct mem_cgroup *memcg;
2943
2944         if (memcg_kmem_bypass())
2945                 return NULL;
2946
2947         rcu_read_lock();
2948         if (unlikely(active_memcg()))
2949                 memcg = active_memcg();
2950         else
2951                 memcg = mem_cgroup_from_task(current);
2952         objcg = __get_obj_cgroup_from_memcg(memcg);
2953         rcu_read_unlock();
2954         return objcg;
2955 }
2956
2957 struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
2958 {
2959         struct obj_cgroup *objcg;
2960
2961         if (!memcg_kmem_enabled() || memcg_kmem_bypass())
2962                 return NULL;
2963
2964         if (PageMemcgKmem(page)) {
2965                 objcg = __folio_objcg(page_folio(page));
2966                 obj_cgroup_get(objcg);
2967         } else {
2968                 struct mem_cgroup *memcg;
2969
2970                 rcu_read_lock();
2971                 memcg = __folio_memcg(page_folio(page));
2972                 if (memcg)
2973                         objcg = __get_obj_cgroup_from_memcg(memcg);
2974                 else
2975                         objcg = NULL;
2976                 rcu_read_unlock();
2977         }
2978         return objcg;
2979 }
2980
2981 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2982 {
2983         mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
2984         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
2985                 if (nr_pages > 0)
2986                         page_counter_charge(&memcg->kmem, nr_pages);
2987                 else
2988                         page_counter_uncharge(&memcg->kmem, -nr_pages);
2989         }
2990 }
2991
2992
2993 /*
2994  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2995  * @objcg: object cgroup to uncharge
2996  * @nr_pages: number of pages to uncharge
2997  */
2998 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2999                                       unsigned int nr_pages)
3000 {
3001         struct mem_cgroup *memcg;
3002
3003         memcg = get_mem_cgroup_from_objcg(objcg);
3004
3005         memcg_account_kmem(memcg, -nr_pages);
3006         refill_stock(memcg, nr_pages);
3007
3008         css_put(&memcg->css);
3009 }
3010
3011 /*
3012  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3013  * @objcg: object cgroup to charge
3014  * @gfp: reclaim mode
3015  * @nr_pages: number of pages to charge
3016  *
3017  * Returns 0 on success, an error code on failure.
3018  */
3019 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3020                                    unsigned int nr_pages)
3021 {
3022         struct mem_cgroup *memcg;
3023         int ret;
3024
3025         memcg = get_mem_cgroup_from_objcg(objcg);
3026
3027         ret = try_charge_memcg(memcg, gfp, nr_pages);
3028         if (ret)
3029                 goto out;
3030
3031         memcg_account_kmem(memcg, nr_pages);
3032 out:
3033         css_put(&memcg->css);
3034
3035         return ret;
3036 }
3037
3038 /**
3039  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3040  * @page: page to charge
3041  * @gfp: reclaim mode
3042  * @order: allocation order
3043  *
3044  * Returns 0 on success, an error code on failure.
3045  */
3046 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3047 {
3048         struct obj_cgroup *objcg;
3049         int ret = 0;
3050
3051         objcg = get_obj_cgroup_from_current();
3052         if (objcg) {
3053                 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3054                 if (!ret) {
3055                         page->memcg_data = (unsigned long)objcg |
3056                                 MEMCG_DATA_KMEM;
3057                         return 0;
3058                 }
3059                 obj_cgroup_put(objcg);
3060         }
3061         return ret;
3062 }
3063
3064 /**
3065  * __memcg_kmem_uncharge_page: uncharge a kmem page
3066  * @page: page to uncharge
3067  * @order: allocation order
3068  */
3069 void __memcg_kmem_uncharge_page(struct page *page, int order)
3070 {
3071         struct folio *folio = page_folio(page);
3072         struct obj_cgroup *objcg;
3073         unsigned int nr_pages = 1 << order;
3074
3075         if (!folio_memcg_kmem(folio))
3076                 return;
3077
3078         objcg = __folio_objcg(folio);
3079         obj_cgroup_uncharge_pages(objcg, nr_pages);
3080         folio->memcg_data = 0;
3081         obj_cgroup_put(objcg);
3082 }
3083
3084 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3085                      enum node_stat_item idx, int nr)
3086 {
3087         struct memcg_stock_pcp *stock;
3088         struct obj_cgroup *old = NULL;
3089         unsigned long flags;
3090         int *bytes;
3091
3092         local_lock_irqsave(&memcg_stock.stock_lock, flags);
3093         stock = this_cpu_ptr(&memcg_stock);
3094
3095         /*
3096          * Save vmstat data in stock and skip vmstat array update unless
3097          * accumulating over a page of vmstat data or when pgdat or idx
3098          * changes.
3099          */
3100         if (stock->cached_objcg != objcg) {
3101                 old = drain_obj_stock(stock);
3102                 obj_cgroup_get(objcg);
3103                 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3104                                 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3105                 stock->cached_objcg = objcg;
3106                 stock->cached_pgdat = pgdat;
3107         } else if (stock->cached_pgdat != pgdat) {
3108                 /* Flush the existing cached vmstat data */
3109                 struct pglist_data *oldpg = stock->cached_pgdat;
3110
3111                 if (stock->nr_slab_reclaimable_b) {
3112                         mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3113                                           stock->nr_slab_reclaimable_b);
3114                         stock->nr_slab_reclaimable_b = 0;
3115                 }
3116                 if (stock->nr_slab_unreclaimable_b) {
3117                         mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3118                                           stock->nr_slab_unreclaimable_b);
3119                         stock->nr_slab_unreclaimable_b = 0;
3120                 }
3121                 stock->cached_pgdat = pgdat;
3122         }
3123
3124         bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3125                                                : &stock->nr_slab_unreclaimable_b;
3126         /*
3127          * Even for large object >= PAGE_SIZE, the vmstat data will still be
3128          * cached locally at least once before pushing it out.
3129          */
3130         if (!*bytes) {
3131                 *bytes = nr;
3132                 nr = 0;
3133         } else {
3134                 *bytes += nr;
3135                 if (abs(*bytes) > PAGE_SIZE) {
3136                         nr = *bytes;
3137                         *bytes = 0;
3138                 } else {
3139                         nr = 0;
3140                 }
3141         }
3142         if (nr)
3143                 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3144
3145         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3146         if (old)
3147                 obj_cgroup_put(old);
3148 }
3149
3150 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3151 {
3152         struct memcg_stock_pcp *stock;
3153         unsigned long flags;
3154         bool ret = false;
3155
3156         local_lock_irqsave(&memcg_stock.stock_lock, flags);
3157
3158         stock = this_cpu_ptr(&memcg_stock);
3159         if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3160                 stock->nr_bytes -= nr_bytes;
3161                 ret = true;
3162         }
3163
3164         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3165
3166         return ret;
3167 }
3168
3169 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3170 {
3171         struct obj_cgroup *old = stock->cached_objcg;
3172
3173         if (!old)
3174                 return NULL;
3175
3176         if (stock->nr_bytes) {
3177                 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3178                 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3179
3180                 if (nr_pages) {
3181                         struct mem_cgroup *memcg;
3182
3183                         memcg = get_mem_cgroup_from_objcg(old);
3184
3185                         memcg_account_kmem(memcg, -nr_pages);
3186                         __refill_stock(memcg, nr_pages);
3187
3188                         css_put(&memcg->css);
3189                 }
3190
3191                 /*
3192                  * The leftover is flushed to the centralized per-memcg value.
3193                  * On the next attempt to refill obj stock it will be moved
3194                  * to a per-cpu stock (probably, on an other CPU), see
3195                  * refill_obj_stock().
3196                  *
3197                  * How often it's flushed is a trade-off between the memory
3198                  * limit enforcement accuracy and potential CPU contention,
3199                  * so it might be changed in the future.
3200                  */
3201                 atomic_add(nr_bytes, &old->nr_charged_bytes);
3202                 stock->nr_bytes = 0;
3203         }
3204
3205         /*
3206          * Flush the vmstat data in current stock
3207          */
3208         if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3209                 if (stock->nr_slab_reclaimable_b) {
3210                         mod_objcg_mlstate(old, stock->cached_pgdat,
3211                                           NR_SLAB_RECLAIMABLE_B,
3212                                           stock->nr_slab_reclaimable_b);
3213                         stock->nr_slab_reclaimable_b = 0;
3214                 }
3215                 if (stock->nr_slab_unreclaimable_b) {
3216                         mod_objcg_mlstate(old, stock->cached_pgdat,
3217                                           NR_SLAB_UNRECLAIMABLE_B,
3218                                           stock->nr_slab_unreclaimable_b);
3219                         stock->nr_slab_unreclaimable_b = 0;
3220                 }
3221                 stock->cached_pgdat = NULL;
3222         }
3223
3224         stock->cached_objcg = NULL;
3225         /*
3226          * The `old' objects needs to be released by the caller via
3227          * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3228          */
3229         return old;
3230 }
3231
3232 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3233                                      struct mem_cgroup *root_memcg)
3234 {
3235         struct mem_cgroup *memcg;
3236
3237         if (stock->cached_objcg) {
3238                 memcg = obj_cgroup_memcg(stock->cached_objcg);
3239                 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3240                         return true;
3241         }
3242
3243         return false;
3244 }
3245
3246 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3247                              bool allow_uncharge)
3248 {
3249         struct memcg_stock_pcp *stock;
3250         struct obj_cgroup *old = NULL;
3251         unsigned long flags;
3252         unsigned int nr_pages = 0;
3253
3254         local_lock_irqsave(&memcg_stock.stock_lock, flags);
3255
3256         stock = this_cpu_ptr(&memcg_stock);
3257         if (stock->cached_objcg != objcg) { /* reset if necessary */
3258                 old = drain_obj_stock(stock);
3259                 obj_cgroup_get(objcg);
3260                 stock->cached_objcg = objcg;
3261                 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3262                                 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3263                 allow_uncharge = true;  /* Allow uncharge when objcg changes */
3264         }
3265         stock->nr_bytes += nr_bytes;
3266
3267         if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3268                 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3269                 stock->nr_bytes &= (PAGE_SIZE - 1);
3270         }
3271
3272         local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3273         if (old)
3274                 obj_cgroup_put(old);
3275
3276         if (nr_pages)
3277                 obj_cgroup_uncharge_pages(objcg, nr_pages);
3278 }
3279
3280 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3281 {
3282         unsigned int nr_pages, nr_bytes;
3283         int ret;
3284
3285         if (consume_obj_stock(objcg, size))
3286                 return 0;
3287
3288         /*
3289          * In theory, objcg->nr_charged_bytes can have enough
3290          * pre-charged bytes to satisfy the allocation. However,
3291          * flushing objcg->nr_charged_bytes requires two atomic
3292          * operations, and objcg->nr_charged_bytes can't be big.
3293          * The shared objcg->nr_charged_bytes can also become a
3294          * performance bottleneck if all tasks of the same memcg are
3295          * trying to update it. So it's better to ignore it and try
3296          * grab some new pages. The stock's nr_bytes will be flushed to
3297          * objcg->nr_charged_bytes later on when objcg changes.
3298          *
3299          * The stock's nr_bytes may contain enough pre-charged bytes
3300          * to allow one less page from being charged, but we can't rely
3301          * on the pre-charged bytes not being changed outside of
3302          * consume_obj_stock() or refill_obj_stock(). So ignore those
3303          * pre-charged bytes as well when charging pages. To avoid a
3304          * page uncharge right after a page charge, we set the
3305          * allow_uncharge flag to false when calling refill_obj_stock()
3306          * to temporarily allow the pre-charged bytes to exceed the page
3307          * size limit. The maximum reachable value of the pre-charged
3308          * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3309          * race.
3310          */
3311         nr_pages = size >> PAGE_SHIFT;
3312         nr_bytes = size & (PAGE_SIZE - 1);
3313
3314         if (nr_bytes)
3315                 nr_pages += 1;
3316
3317         ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3318         if (!ret && nr_bytes)
3319                 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3320
3321         return ret;
3322 }
3323
3324 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3325 {
3326         refill_obj_stock(objcg, size, true);
3327 }
3328
3329 #endif /* CONFIG_MEMCG_KMEM */
3330
3331 /*
3332  * Because page_memcg(head) is not set on tails, set it now.
3333  */
3334 void split_page_memcg(struct page *head, unsigned int nr)
3335 {
3336         struct folio *folio = page_folio(head);
3337         struct mem_cgroup *memcg = folio_memcg(folio);
3338         int i;
3339
3340         if (mem_cgroup_disabled() || !memcg)
3341                 return;
3342
3343         for (i = 1; i < nr; i++)
3344                 folio_page(folio, i)->memcg_data = folio->memcg_data;
3345
3346         if (folio_memcg_kmem(folio))
3347                 obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3348         else
3349                 css_get_many(&memcg->css, nr - 1);
3350 }
3351
3352 #ifdef CONFIG_MEMCG_SWAP
3353 /**
3354  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3355  * @entry: swap entry to be moved
3356  * @from:  mem_cgroup which the entry is moved from
3357  * @to:  mem_cgroup which the entry is moved to
3358  *
3359  * It succeeds only when the swap_cgroup's record for this entry is the same
3360  * as the mem_cgroup's id of @from.
3361  *
3362  * Returns 0 on success, -EINVAL on failure.
3363  *
3364  * The caller must have charged to @to, IOW, called page_counter_charge() about
3365  * both res and memsw, and called css_get().
3366  */
3367 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3368                                 struct mem_cgroup *from, struct mem_cgroup *to)
3369 {
3370         unsigned short old_id, new_id;
3371
3372         old_id = mem_cgroup_id(from);
3373         new_id = mem_cgroup_id(to);
3374
3375         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3376                 mod_memcg_state(from, MEMCG_SWAP, -1);
3377                 mod_memcg_state(to, MEMCG_SWAP, 1);
3378                 return 0;
3379         }
3380         return -EINVAL;
3381 }
3382 #else
3383 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3384                                 struct mem_cgroup *from, struct mem_cgroup *to)
3385 {
3386         return -EINVAL;
3387 }
3388 #endif
3389
3390 static DEFINE_MUTEX(memcg_max_mutex);
3391
3392 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3393                                  unsigned long max, bool memsw)
3394 {
3395         bool enlarge = false;
3396         bool drained = false;
3397         int ret;
3398         bool limits_invariant;
3399         struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3400
3401         do {
3402                 if (signal_pending(current)) {
3403                         ret = -EINTR;
3404                         break;
3405                 }
3406
3407                 mutex_lock(&memcg_max_mutex);
3408                 /*
3409                  * Make sure that the new limit (memsw or memory limit) doesn't
3410                  * break our basic invariant rule memory.max <= memsw.max.
3411                  */
3412                 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3413                                            max <= memcg->memsw.max;
3414                 if (!limits_invariant) {
3415                         mutex_unlock(&memcg_max_mutex);
3416                         ret = -EINVAL;
3417                         break;
3418                 }
3419                 if (max > counter->max)
3420                         enlarge = true;
3421                 ret = page_counter_set_max(counter, max);
3422                 mutex_unlock(&memcg_max_mutex);
3423
3424                 if (!ret)
3425                         break;
3426
3427                 if (!drained) {
3428                         drain_all_stock(memcg);
3429                         drained = true;
3430                         continue;
3431                 }
3432
3433                 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3434                                         GFP_KERNEL, !memsw)) {
3435                         ret = -EBUSY;
3436                         break;
3437                 }
3438         } while (true);
3439
3440         if (!ret && enlarge)
3441                 memcg_oom_recover(memcg);
3442
3443         return ret;
3444 }
3445
3446 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3447                                             gfp_t gfp_mask,
3448                                             unsigned long *total_scanned)
3449 {
3450         unsigned long nr_reclaimed = 0;
3451         struct mem_cgroup_per_node *mz, *next_mz = NULL;
3452         unsigned long reclaimed;
3453         int loop = 0;
3454         struct mem_cgroup_tree_per_node *mctz;
3455         unsigned long excess;
3456
3457         if (order > 0)
3458                 return 0;
3459
3460         mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3461
3462         /*
3463          * Do not even bother to check the largest node if the root
3464          * is empty. Do it lockless to prevent lock bouncing. Races
3465          * are acceptable as soft limit is best effort anyway.
3466          */
3467         if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3468                 return 0;
3469
3470         /*
3471          * This loop can run a while, specially if mem_cgroup's continuously
3472          * keep exceeding their soft limit and putting the system under
3473          * pressure
3474          */
3475         do {
3476                 if (next_mz)
3477                         mz = next_mz;
3478                 else
3479                         mz = mem_cgroup_largest_soft_limit_node(mctz);
3480                 if (!mz)
3481                         break;
3482
3483                 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3484                                                     gfp_mask, total_scanned);
3485                 nr_reclaimed += reclaimed;
3486                 spin_lock_irq(&mctz->lock);
3487
3488                 /*
3489                  * If we failed to reclaim anything from this memory cgroup
3490                  * it is time to move on to the next cgroup
3491                  */
3492                 next_mz = NULL;
3493                 if (!reclaimed)
3494                         next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3495
3496                 excess = soft_limit_excess(mz->memcg);
3497                 /*
3498                  * One school of thought says that we should not add
3499                  * back the node to the tree if reclaim returns 0.
3500                  * But our reclaim could return 0, simply because due
3501                  * to priority we are exposing a smaller subset of
3502                  * memory to reclaim from. Consider this as a longer
3503                  * term TODO.
3504                  */
3505                 /* If excess == 0, no tree ops */
3506                 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3507                 spin_unlock_irq(&mctz->lock);
3508                 css_put(&mz->memcg->css);
3509                 loop++;
3510                 /*
3511                  * Could not reclaim anything and there are no more
3512                  * mem cgroups to try or we seem to be looping without
3513                  * reclaiming anything.
3514                  */
3515                 if (!nr_reclaimed &&
3516                         (next_mz == NULL ||
3517                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3518                         break;
3519         } while (!nr_reclaimed);
3520         if (next_mz)
3521                 css_put(&next_mz->memcg->css);
3522         return nr_reclaimed;
3523 }
3524
3525 /*
3526  * Reclaims as many pages from the given memcg as possible.
3527  *
3528  * Caller is responsible for holding css reference for memcg.
3529  */
3530 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3531 {
3532         int nr_retries = MAX_RECLAIM_RETRIES;
3533
3534         /* we call try-to-free pages for make this cgroup empty */
3535         lru_add_drain_all();
3536
3537         drain_all_stock(memcg);
3538
3539         /* try to free all pages in this cgroup */
3540         while (nr_retries && page_counter_read(&memcg->memory)) {
3541                 if (signal_pending(current))
3542                         return -EINTR;
3543
3544                 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true))
3545                         nr_retries--;
3546         }
3547
3548         return 0;
3549 }
3550
3551 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3552                                             char *buf, size_t nbytes,
3553                                             loff_t off)
3554 {
3555         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3556
3557         if (mem_cgroup_is_root(memcg))
3558                 return -EINVAL;
3559         return mem_cgroup_force_empty(memcg) ?: nbytes;
3560 }
3561
3562 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3563                                      struct cftype *cft)
3564 {
3565         return 1;
3566 }
3567
3568 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3569                                       struct cftype *cft, u64 val)
3570 {
3571         if (val == 1)
3572                 return 0;
3573
3574         pr_warn_once("Non-hierarchical mode is deprecated. "
3575                      "Please report your usecase to linux-mm@kvack.org if you "
3576                      "depend on this functionality.\n");
3577
3578         return -EINVAL;
3579 }
3580
3581 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3582 {
3583         unsigned long val;
3584
3585         if (mem_cgroup_is_root(memcg)) {
3586                 mem_cgroup_flush_stats();
3587                 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3588                         memcg_page_state(memcg, NR_ANON_MAPPED);
3589                 if (swap)
3590                         val += memcg_page_state(memcg, MEMCG_SWAP);
3591         } else {
3592                 if (!swap)
3593                         val = page_counter_read(&memcg->memory);
3594                 else
3595                         val = page_counter_read(&memcg->memsw);
3596         }
3597         return val;
3598 }
3599
3600 enum {
3601         RES_USAGE,
3602         RES_LIMIT,
3603         RES_MAX_USAGE,
3604         RES_FAILCNT,
3605         RES_SOFT_LIMIT,
3606 };
3607
3608 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3609                                struct cftype *cft)
3610 {
3611         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3612         struct page_counter *counter;
3613
3614         switch (MEMFILE_TYPE(cft->private)) {
3615         case _MEM:
3616                 counter = &memcg->memory;
3617                 break;
3618         case _MEMSWAP:
3619                 counter = &memcg->memsw;
3620                 break;
3621         case _KMEM:
3622                 counter = &memcg->kmem;
3623                 break;
3624         case _TCP:
3625                 counter = &memcg->tcpmem;
3626                 break;
3627         default:
3628                 BUG();
3629         }
3630
3631         switch (MEMFILE_ATTR(cft->private)) {
3632         case RES_USAGE:
3633                 if (counter == &memcg->memory)
3634                         return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3635                 if (counter == &memcg->memsw)
3636                         return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3637                 return (u64)page_counter_read(counter) * PAGE_SIZE;
3638         case RES_LIMIT:
3639                 return (u64)counter->max * PAGE_SIZE;
3640         case RES_MAX_USAGE:
3641                 return (u64)counter->watermark * PAGE_SIZE;
3642         case RES_FAILCNT:
3643                 return counter->failcnt;
3644         case RES_SOFT_LIMIT:
3645                 return (u64)memcg->soft_limit * PAGE_SIZE;
3646         default:
3647                 BUG();
3648         }
3649 }
3650
3651 #ifdef CONFIG_MEMCG_KMEM
3652 static int memcg_online_kmem(struct mem_cgroup *memcg)
3653 {
3654         struct obj_cgroup *objcg;
3655
3656         if (mem_cgroup_kmem_disabled())
3657                 return 0;
3658
3659         if (unlikely(mem_cgroup_is_root(memcg)))
3660                 return 0;
3661
3662         objcg = obj_cgroup_alloc();
3663         if (!objcg)
3664                 return -ENOMEM;
3665
3666         objcg->memcg = memcg;
3667         rcu_assign_pointer(memcg->objcg, objcg);
3668
3669         static_branch_enable(&memcg_kmem_enabled_key);
3670
3671         memcg->kmemcg_id = memcg->id.id;
3672
3673         return 0;
3674 }
3675
3676 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3677 {
3678         struct mem_cgroup *parent;
3679
3680         if (mem_cgroup_kmem_disabled())
3681                 return;
3682
3683         if (unlikely(mem_cgroup_is_root(memcg)))
3684                 return;
3685
3686         parent = parent_mem_cgroup(memcg);
3687         if (!parent)
3688                 parent = root_mem_cgroup;
3689
3690         memcg_reparent_objcgs(memcg, parent);
3691
3692         /*
3693          * After we have finished memcg_reparent_objcgs(), all list_lrus
3694          * corresponding to this cgroup are guaranteed to remain empty.
3695          * The ordering is imposed by list_lru_node->lock taken by
3696          * memcg_reparent_list_lrus().
3697          */
3698         memcg_reparent_list_lrus(memcg, parent);
3699 }
3700 #else
3701 static int memcg_online_kmem(struct mem_cgroup *memcg)
3702 {
3703         return 0;
3704 }
3705 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3706 {
3707 }
3708 #endif /* CONFIG_MEMCG_KMEM */
3709
3710 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3711 {
3712         int ret;
3713
3714         mutex_lock(&memcg_max_mutex);
3715
3716         ret = page_counter_set_max(&memcg->tcpmem, max);
3717         if (ret)
3718                 goto out;
3719
3720         if (!memcg->tcpmem_active) {
3721                 /*
3722                  * The active flag needs to be written after the static_key
3723                  * update. This is what guarantees that the socket activation
3724                  * function is the last one to run. See mem_cgroup_sk_alloc()
3725                  * for details, and note that we don't mark any socket as
3726                  * belonging to this memcg until that flag is up.
3727                  *
3728                  * We need to do this, because static_keys will span multiple
3729                  * sites, but we can't control their order. If we mark a socket
3730                  * as accounted, but the accounting functions are not patched in
3731                  * yet, we'll lose accounting.
3732                  *
3733                  * We never race with the readers in mem_cgroup_sk_alloc(),
3734                  * because when this value change, the code to process it is not
3735                  * patched in yet.
3736                  */
3737                 static_branch_inc(&memcg_sockets_enabled_key);
3738                 memcg->tcpmem_active = true;
3739         }
3740 out:
3741         mutex_unlock(&memcg_max_mutex);
3742         return ret;
3743 }
3744
3745 /*
3746  * The user of this function is...
3747  * RES_LIMIT.
3748  */
3749 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3750                                 char *buf, size_t nbytes, loff_t off)
3751 {
3752         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3753         unsigned long nr_pages;
3754         int ret;
3755
3756         buf = strstrip(buf);
3757         ret = page_counter_memparse(buf, "-1", &nr_pages);
3758         if (ret)
3759                 return ret;
3760
3761         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3762         case RES_LIMIT:
3763                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3764                         ret = -EINVAL;
3765                         break;
3766                 }
3767                 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3768                 case _MEM:
3769                         ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3770                         break;
3771                 case _MEMSWAP:
3772                         ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3773                         break;
3774                 case _KMEM:
3775                         /* kmem.limit_in_bytes is deprecated. */
3776                         ret = -EOPNOTSUPP;
3777                         break;
3778                 case _TCP:
3779                         ret = memcg_update_tcp_max(memcg, nr_pages);
3780                         break;
3781                 }
3782                 break;
3783         case RES_SOFT_LIMIT:
3784                 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3785                         ret = -EOPNOTSUPP;
3786                 } else {
3787                         memcg->soft_limit = nr_pages;
3788                         ret = 0;
3789                 }
3790                 break;
3791         }
3792         return ret ?: nbytes;
3793 }
3794
3795 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3796                                 size_t nbytes, loff_t off)
3797 {
3798         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3799         struct page_counter *counter;
3800
3801         switch (MEMFILE_TYPE(of_cft(of)->private)) {
3802         case _MEM:
3803                 counter = &memcg->memory;
3804                 break;
3805         case _MEMSWAP:
3806                 counter = &memcg->memsw;
3807                 break;
3808         case _KMEM:
3809                 counter = &memcg->kmem;
3810                 break;
3811         case _TCP:
3812                 counter = &memcg->tcpmem;
3813                 break;
3814         default:
3815                 BUG();
3816         }
3817
3818         switch (MEMFILE_ATTR(of_cft(of)->private)) {
3819         case RES_MAX_USAGE:
3820                 page_counter_reset_watermark(counter);
3821                 break;
3822         case RES_FAILCNT:
3823                 counter->failcnt = 0;
3824                 break;
3825         default:
3826                 BUG();
3827         }
3828
3829         return nbytes;
3830 }
3831
3832 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3833                                         struct cftype *cft)
3834 {
3835         return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3836 }
3837
3838 #ifdef CONFIG_MMU
3839 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3840                                         struct cftype *cft, u64 val)
3841 {
3842         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3843
3844         if (val & ~MOVE_MASK)
3845                 return -EINVAL;
3846
3847         /*
3848          * No kind of locking is needed in here, because ->can_attach() will
3849          * check this value once in the beginning of the process, and then carry
3850          * on with stale data. This means that changes to this value will only
3851          * affect task migrations starting after the change.
3852          */
3853         memcg->move_charge_at_immigrate = val;
3854         return 0;
3855 }
3856 #else
3857 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3858                                         struct cftype *cft, u64 val)
3859 {
3860         return -ENOSYS;
3861 }
3862 #endif
3863
3864 #ifdef CONFIG_NUMA
3865
3866 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3867 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3868 #define LRU_ALL      ((1 << NR_LRU_LISTS) - 1)
3869
3870 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3871                                 int nid, unsigned int lru_mask, bool tree)
3872 {
3873         struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3874         unsigned long nr = 0;
3875         enum lru_list lru;
3876
3877         VM_BUG_ON((unsigned)nid >= nr_node_ids);
3878
3879         for_each_lru(lru) {
3880                 if (!(BIT(lru) & lru_mask))
3881                         continue;
3882                 if (tree)
3883                         nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3884                 else
3885                         nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3886         }
3887         return nr;
3888 }
3889
3890 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3891                                              unsigned int lru_mask,
3892                                              bool tree)
3893 {
3894         unsigned long nr = 0;
3895         enum lru_list lru;
3896
3897         for_each_lru(lru) {
3898                 if (!(BIT(lru) & lru_mask))
3899                         continue;
3900                 if (tree)
3901                         nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3902                 else
3903                         nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3904         }
3905         return nr;
3906 }
3907
3908 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3909 {
3910         struct numa_stat {
3911                 const char *name;
3912                 unsigned int lru_mask;
3913         };
3914
3915         static const struct numa_stat stats[] = {
3916                 { "total", LRU_ALL },
3917                 { "file", LRU_ALL_FILE },
3918                 { "anon", LRU_ALL_ANON },
3919                 { "unevictable", BIT(LRU_UNEVICTABLE) },
3920         };
3921         const struct numa_stat *stat;
3922         int nid;
3923         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3924
3925         mem_cgroup_flush_stats();
3926
3927         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3928                 seq_printf(m, "%s=%lu", stat->name,
3929                            mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3930                                                    false));
3931                 for_each_node_state(nid, N_MEMORY)
3932                         seq_printf(m, " N%d=%lu", nid,
3933                                    mem_cgroup_node_nr_lru_pages(memcg, nid,
3934                                                         stat->lru_mask, false));
3935                 seq_putc(m, '\n');
3936         }
3937
3938         for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3939
3940                 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3941                            mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3942                                                    true));
3943                 for_each_node_state(nid, N_MEMORY)
3944                         seq_printf(m, " N%d=%lu", nid,
3945                                    mem_cgroup_node_nr_lru_pages(memcg, nid,
3946                                                         stat->lru_mask, true));
3947                 seq_putc(m, '\n');
3948         }
3949
3950         return 0;
3951 }
3952 #endif /* CONFIG_NUMA */
3953
3954 static const unsigned int memcg1_stats[] = {
3955         NR_FILE_PAGES,
3956         NR_ANON_MAPPED,
3957 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3958         NR_ANON_THPS,
3959 #endif
3960         NR_SHMEM,
3961         NR_FILE_MAPPED,
3962         NR_FILE_DIRTY,
3963         NR_WRITEBACK,
3964         MEMCG_SWAP,
3965 };
3966
3967 static const char *const memcg1_stat_names[] = {
3968         "cache",
3969         "rss",
3970 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3971         "rss_huge",
3972 #endif
3973         "shmem",
3974         "mapped_file",
3975         "dirty",
3976         "writeback",
3977         "swap",
3978 };
3979
3980 /* Universal VM events cgroup1 shows, original sort order */
3981 static const unsigned int memcg1_events[] = {
3982         PGPGIN,
3983         PGPGOUT,
3984         PGFAULT,
3985         PGMAJFAULT,
3986 };
3987
3988 static int memcg_stat_show(struct seq_file *m, void *v)
3989 {
3990         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3991         unsigned long memory, memsw;
3992         struct mem_cgroup *mi;
3993         unsigned int i;
3994
3995         BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3996
3997         mem_cgroup_flush_stats();
3998
3999         for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4000                 unsigned long nr;
4001
4002                 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4003                         continue;
4004                 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4005                 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4006         }
4007
4008         for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4009                 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4010                            memcg_events_local(memcg, memcg1_events[i]));
4011
4012         for (i = 0; i < NR_LRU_LISTS; i++)
4013                 seq_printf(m, "%s %lu\n", lru_list_name(i),
4014                            memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4015                            PAGE_SIZE);
4016
4017         /* Hierarchical information */
4018         memory = memsw = PAGE_COUNTER_MAX;
4019         for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4020                 memory = min(memory, READ_ONCE(mi->memory.max));
4021                 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4022         }
4023         seq_printf(m, "hierarchical_memory_limit %llu\n",
4024                    (u64)memory * PAGE_SIZE);
4025         if (do_memsw_account())
4026                 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4027                            (u64)memsw * PAGE_SIZE);
4028
4029         for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4030                 unsigned long nr;
4031
4032                 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4033                         continue;
4034                 nr = memcg_page_state(memcg, memcg1_stats[i]);
4035                 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4036                                                 (u64)nr * PAGE_SIZE);
4037         }
4038
4039         for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4040                 seq_printf(m, "total_%s %llu\n",
4041                            vm_event_name(memcg1_events[i]),
4042                            (u64)memcg_events(memcg, memcg1_events[i]));
4043
4044         for (i = 0; i < NR_LRU_LISTS; i++)
4045                 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4046                            (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4047                            PAGE_SIZE);
4048
4049 #ifdef CONFIG_DEBUG_VM
4050         {
4051                 pg_data_t *pgdat;
4052                 struct mem_cgroup_per_node *mz;
4053                 unsigned long anon_cost = 0;
4054                 unsigned long file_cost = 0;
4055
4056                 for_each_online_pgdat(pgdat) {
4057                         mz = memcg->nodeinfo[pgdat->node_id];
4058
4059                         anon_cost += mz->lruvec.anon_cost;
4060                         file_cost += mz->lruvec.file_cost;
4061                 }
4062                 seq_printf(m, "anon_cost %lu\n", anon_cost);
4063                 seq_printf(m, "file_cost %lu\n", file_cost);
4064         }
4065 #endif
4066
4067         return 0;
4068 }
4069
4070 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4071                                       struct cftype *cft)
4072 {
4073         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4074
4075         return mem_cgroup_swappiness(memcg);
4076 }
4077
4078 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4079                                        struct cftype *cft, u64 val)
4080 {
4081         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4082
4083         if (val > 200)
4084                 return -EINVAL;
4085
4086         if (!mem_cgroup_is_root(memcg))
4087                 memcg->swappiness = val;
4088         else
4089                 vm_swappiness = val;
4090
4091         return 0;
4092 }
4093
4094 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4095 {
4096         struct mem_cgroup_threshold_ary *t;
4097         unsigned long usage;
4098         int i;
4099
4100         rcu_read_lock();
4101         if (!swap)
4102                 t = rcu_dereference(memcg->thresholds.primary);
4103         else
4104                 t = rcu_dereference(memcg->memsw_thresholds.primary);
4105
4106         if (!t)
4107                 goto unlock;
4108
4109         usage = mem_cgroup_usage(memcg, swap);
4110
4111         /*
4112          * current_threshold points to threshold just below or equal to usage.
4113          * If it's not true, a threshold was crossed after last
4114          * call of __mem_cgroup_threshold().
4115          */
4116         i = t->current_threshold;
4117
4118         /*
4119          * Iterate backward over array of thresholds starting from
4120          * current_threshold and check if a threshold is crossed.
4121          * If none of thresholds below usage is crossed, we read
4122          * only one element of the array here.
4123          */
4124         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4125                 eventfd_signal(t->entries[i].eventfd, 1);
4126
4127         /* i = current_threshold + 1 */
4128         i++;
4129
4130         /*
4131          * Iterate forward over array of thresholds starting from
4132          * current_threshold+1 and check if a threshold is crossed.
4133          * If none of thresholds above usage is crossed, we read
4134          * only one element of the array here.
4135          */
4136         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4137                 eventfd_signal(t->entries[i].eventfd, 1);
4138
4139         /* Update current_threshold */
4140         t->current_threshold = i - 1;
4141 unlock:
4142         rcu_read_unlock();
4143 }
4144
4145 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4146 {
4147         while (memcg) {
4148                 __mem_cgroup_threshold(memcg, false);
4149                 if (do_memsw_account())
4150                         __mem_cgroup_threshold(memcg, true);
4151
4152                 memcg = parent_mem_cgroup(memcg);
4153         }
4154 }
4155
4156 static int compare_thresholds(const void *a, const void *b)
4157 {
4158         const struct mem_cgroup_threshold *_a = a;
4159         const struct mem_cgroup_threshold *_b = b;
4160
4161         if (_a->threshold > _b->threshold)
4162                 return 1;
4163
4164         if (_a->threshold < _b->threshold)
4165                 return -1;
4166
4167         return 0;
4168 }
4169
4170 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4171 {
4172         struct mem_cgroup_eventfd_list *ev;
4173
4174         spin_lock(&memcg_oom_lock);
4175
4176         list_for_each_entry(ev, &memcg->oom_notify, list)
4177                 eventfd_signal(ev->eventfd, 1);
4178
4179         spin_unlock(&memcg_oom_lock);
4180         return 0;
4181 }
4182
4183 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4184 {
4185         struct mem_cgroup *iter;
4186
4187         for_each_mem_cgroup_tree(iter, memcg)
4188                 mem_cgroup_oom_notify_cb(iter);
4189 }
4190
4191 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4192         struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4193 {
4194         struct mem_cgroup_thresholds *thresholds;
4195         struct mem_cgroup_threshold_ary *new;
4196         unsigned long threshold;
4197         unsigned long usage;
4198         int i, size, ret;
4199
4200         ret = page_counter_memparse(args, "-1", &threshold);
4201         if (ret)
4202                 return ret;
4203
4204         mutex_lock(&memcg->thresholds_lock);
4205
4206         if (type == _MEM) {
4207                 thresholds = &memcg->thresholds;
4208                 usage = mem_cgroup_usage(memcg, false);
4209         } else if (type == _MEMSWAP) {
4210                 thresholds = &memcg->memsw_thresholds;
4211                 usage = mem_cgroup_usage(memcg, true);
4212         } else
4213                 BUG();
4214
4215         /* Check if a threshold crossed before adding a new one */
4216         if (thresholds->primary)
4217                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4218
4219         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4220
4221         /* Allocate memory for new array of thresholds */
4222         new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4223         if (!new) {
4224                 ret = -ENOMEM;
4225                 goto unlock;
4226         }
4227         new->size = size;
4228
4229         /* Copy thresholds (if any) to new array */
4230         if (thresholds->primary)
4231                 memcpy(new->entries, thresholds->primary->entries,
4232                        flex_array_size(new, entries, size - 1));
4233
4234         /* Add new threshold */
4235         new->entries[size - 1].eventfd = eventfd;
4236         new->entries[size - 1].threshold = threshold;
4237
4238         /* Sort thresholds. Registering of new threshold isn't time-critical */
4239         sort(new->entries, size, sizeof(*new->entries),
4240                         compare_thresholds, NULL);
4241
4242         /* Find current threshold */
4243         new->current_threshold = -1;
4244         for (i = 0; i < size; i++) {
4245                 if (new->entries[i].threshold <= usage) {
4246                         /*
4247                          * new->current_threshold will not be used until
4248                          * rcu_assign_pointer(), so it's safe to increment
4249                          * it here.
4250                          */
4251                         ++new->current_threshold;
4252                 } else
4253                         break;
4254         }
4255
4256         /* Free old spare buffer and save old primary buffer as spare */
4257         kfree(thresholds->spare);
4258         thresholds->spare = thresholds->primary;
4259
4260         rcu_assign_pointer(thresholds->primary, new);
4261
4262         /* To be sure that nobody uses thresholds */
4263         synchronize_rcu();
4264
4265 unlock:
4266         mutex_unlock(&memcg->thresholds_lock);
4267
4268         return ret;
4269 }
4270
4271 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4272         struct eventfd_ctx *eventfd, const char *args)
4273 {
4274         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4275 }
4276
4277 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4278         struct eventfd_ctx *eventfd, const char *args)
4279 {
4280         return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4281 }
4282
4283 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4284         struct eventfd_ctx *eventfd, enum res_type type)
4285 {
4286         struct mem_cgroup_thresholds *thresholds;
4287         struct mem_cgroup_threshold_ary *new;
4288         unsigned long usage;
4289         int i, j, size, entries;
4290
4291         mutex_lock(&memcg->thresholds_lock);
4292
4293         if (type == _MEM) {
4294                 thresholds = &memcg->thresholds;
4295                 usage = mem_cgroup_usage(memcg, false);
4296         } else if (type == _MEMSWAP) {
4297                 thresholds = &memcg->memsw_thresholds;
4298                 usage = mem_cgroup_usage(memcg, true);
4299         } else
4300                 BUG();
4301
4302         if (!thresholds->primary)
4303                 goto unlock;
4304
4305         /* Check if a threshold crossed before removing */
4306         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4307
4308         /* Calculate new number of threshold */
4309         size = entries = 0;
4310         for (i = 0; i < thresholds->primary->size; i++) {
4311                 if (thresholds->primary->entries[i].eventfd != eventfd)
4312                         size++;
4313                 else
4314                         entries++;
4315         }
4316
4317         new = thresholds->spare;
4318
4319         /* If no items related to eventfd have been cleared, nothing to do */
4320         if (!entries)
4321                 goto unlock;
4322
4323         /* Set thresholds array to NULL if we don't have thresholds */
4324         if (!size) {
4325                 kfree(new);
4326                 new = NULL;
4327                 goto swap_buffers;
4328         }
4329
4330         new->size = size;
4331
4332         /* Copy thresholds and find current threshold */
4333         new->current_threshold = -1;
4334         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4335                 if (thresholds->primary->entries[i].eventfd == eventfd)
4336                         continue;
4337
4338                 new->entries[j] = thresholds->primary->entries[i];
4339                 if (new->entries[j].threshold <= usage) {
4340                         /*
4341                          * new->current_threshold will not be used
4342                          * until rcu_assign_pointer(), so it's safe to increment
4343                          * it here.
4344                          */
4345                         ++new->current_threshold;
4346                 }
4347                 j++;
4348         }
4349
4350 swap_buffers:
4351         /* Swap primary and spare array */
4352         thresholds->spare = thresholds->primary;
4353
4354         rcu_assign_pointer(thresholds->primary, new);
4355
4356         /* To be sure that nobody uses thresholds */
4357         synchronize_rcu();
4358
4359         /* If all events are unregistered, free the spare array */
4360         if (!new) {
4361                 kfree(thresholds->spare);
4362                 thresholds->spare = NULL;
4363         }
4364 unlock:
4365         mutex_unlock(&memcg->thresholds_lock);
4366 }
4367
4368 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4369         struct eventfd_ctx *eventfd)
4370 {
4371         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4372 }
4373
4374 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4375         struct eventfd_ctx *eventfd)
4376 {
4377         return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4378 }
4379
4380 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4381         struct eventfd_ctx *eventfd, const char *args)
4382 {
4383         struct mem_cgroup_eventfd_list *event;
4384
4385         event = kmalloc(sizeof(*event), GFP_KERNEL);
4386         if (!event)
4387                 return -ENOMEM;
4388
4389         spin_lock(&memcg_oom_lock);
4390
4391         event->eventfd = eventfd;
4392         list_add(&event->list, &memcg->oom_notify);
4393
4394         /* already in OOM ? */
4395         if (memcg->under_oom)
4396                 eventfd_signal(eventfd, 1);
4397         spin_unlock(&memcg_oom_lock);
4398
4399         return 0;
4400 }
4401
4402 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4403         struct eventfd_ctx *eventfd)
4404 {
4405         struct mem_cgroup_eventfd_list *ev, *tmp;
4406
4407         spin_lock(&memcg_oom_lock);
4408
4409         list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4410                 if (ev->eventfd == eventfd) {
4411                         list_del(&ev->list);
4412                         kfree(ev);
4413                 }
4414         }
4415
4416         spin_unlock(&memcg_oom_lock);
4417 }
4418
4419 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4420 {
4421         struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4422
4423         seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4424         seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4425         seq_printf(sf, "oom_kill %lu\n",
4426                    atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4427         return 0;
4428 }
4429
4430 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4431         struct cftype *cft, u64 val)
4432 {
4433         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4434
4435         /* cannot set to root cgroup and only 0 and 1 are allowed */
4436         if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4437                 return -EINVAL;
4438
4439         memcg->oom_kill_disable = val;
4440         if (!val)
4441                 memcg_oom_recover(memcg);
4442
4443         return 0;
4444 }
4445
4446 #ifdef CONFIG_CGROUP_WRITEBACK
4447
4448 #include <trace/events/writeback.h>
4449
4450 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4451 {
4452         return wb_domain_init(&memcg->cgwb_domain, gfp);
4453 }
4454
4455 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4456 {
4457         wb_domain_exit(&memcg->cgwb_domain);
4458 }
4459
4460 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4461 {
4462         wb_domain_size_changed(&memcg->cgwb_domain);
4463 }
4464
4465 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4466 {
4467         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4468
4469         if (!memcg->css.parent)
4470                 return NULL;
4471
4472         return &memcg->cgwb_domain;
4473 }
4474
4475 /**
4476  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4477  * @wb: bdi_writeback in question
4478  * @pfilepages: out parameter for number of file pages
4479  * @pheadroom: out parameter for number of allocatable pages according to memcg
4480  * @pdirty: out parameter for number of dirty pages
4481  * @pwriteback: out parameter for number of pages under writeback
4482  *
4483  * Determine the numbers of file, headroom, dirty, and writeback pages in
4484  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4485  * is a bit more involved.
4486  *
4487  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4488  * headroom is calculated as the lowest headroom of itself and the
4489  * ancestors.  Note that this doesn't consider the actual amount of
4490  * available memory in the system.  The caller should further cap
4491  * *@pheadroom accordingly.
4492  */
4493 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4494                          unsigned long *pheadroom, unsigned long *pdirty,
4495                          unsigned long *pwriteback)
4496 {
4497         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4498         struct mem_cgroup *parent;
4499
4500         mem_cgroup_flush_stats();
4501
4502         *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4503         *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4504         *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4505                         memcg_page_state(memcg, NR_ACTIVE_FILE);
4506
4507         *pheadroom = PAGE_COUNTER_MAX;
4508         while ((parent = parent_mem_cgroup(memcg))) {
4509                 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4510                                             READ_ONCE(memcg->memory.high));
4511                 unsigned long used = page_counter_read(&memcg->memory);
4512
4513                 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4514                 memcg = parent;
4515         }
4516 }
4517
4518 /*
4519  * Foreign dirty flushing
4520  *
4521  * There's an inherent mismatch between memcg and writeback.  The former
4522  * tracks ownership per-page while the latter per-inode.  This was a
4523  * deliberate design decision because honoring per-page ownership in the
4524  * writeback path is complicated, may lead to higher CPU and IO overheads
4525  * and deemed unnecessary given that write-sharing an inode across
4526  * different cgroups isn't a common use-case.
4527  *
4528  * Combined with inode majority-writer ownership switching, this works well
4529  * enough in most cases but there are some pathological cases.  For
4530  * example, let's say there are two cgroups A and B which keep writing to
4531  * different but confined parts of the same inode.  B owns the inode and
4532  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4533  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4534  * triggering background writeback.  A will be slowed down without a way to
4535  * make writeback of the dirty pages happen.
4536  *
4537  * Conditions like the above can lead to a cgroup getting repeatedly and
4538  * severely throttled after making some progress after each
4539  * dirty_expire_interval while the underlying IO device is almost
4540  * completely idle.
4541  *
4542  * Solving this problem completely requires matching the ownership tracking
4543  * granularities between memcg and writeback in either direction.  However,
4544  * the more egregious behaviors can be avoided by simply remembering the
4545  * most recent foreign dirtying events and initiating remote flushes on
4546  * them when local writeback isn't enough to keep the memory clean enough.
4547  *
4548  * The following two functions implement such mechanism.  When a foreign
4549  * page - a page whose memcg and writeback ownerships don't match - is
4550  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4551  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4552  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4553  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4554  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4555  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4556  * limited to MEMCG_CGWB_FRN_CNT.
4557  *
4558  * The mechanism only remembers IDs and doesn't hold any object references.
4559  * As being wrong occasionally doesn't matter, updates and accesses to the
4560  * records are lockless and racy.
4561  */
4562 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4563                                              struct bdi_writeback *wb)
4564 {
4565         struct mem_cgroup *memcg = folio_memcg(folio);
4566         struct memcg_cgwb_frn *frn;
4567         u64 now = get_jiffies_64();
4568         u64 oldest_at = now;
4569         int oldest = -1;
4570         int i;
4571
4572         trace_track_foreign_dirty(folio, wb);
4573
4574         /*
4575          * Pick the slot to use.  If there is already a slot for @wb, keep
4576          * using it.  If not replace the oldest one which isn't being
4577          * written out.
4578          */
4579         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4580                 frn = &memcg->cgwb_frn[i];
4581                 if (frn->bdi_id == wb->bdi->id &&
4582                     frn->memcg_id == wb->memcg_css->id)
4583                         break;
4584                 if (time_before64(frn->at, oldest_at) &&
4585                     atomic_read(&frn->done.cnt) == 1) {
4586                         oldest = i;
4587                         oldest_at = frn->at;
4588                 }
4589         }
4590
4591         if (i < MEMCG_CGWB_FRN_CNT) {
4592                 /*
4593                  * Re-using an existing one.  Update timestamp lazily to
4594                  * avoid making the cacheline hot.  We want them to be
4595                  * reasonably up-to-date and significantly shorter than
4596                  * dirty_expire_interval as that's what expires the record.
4597                  * Use the shorter of 1s and dirty_expire_interval / 8.
4598                  */
4599                 unsigned long update_intv =
4600                         min_t(unsigned long, HZ,
4601                               msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4602
4603                 if (time_before64(frn->at, now - update_intv))
4604                         frn->at = now;
4605         } else if (oldest >= 0) {
4606                 /* replace the oldest free one */
4607                 frn = &memcg->cgwb_frn[oldest];
4608                 frn->bdi_id = wb->bdi->id;
4609                 frn->memcg_id = wb->memcg_css->id;
4610                 frn->at = now;
4611         }
4612 }
4613
4614 /* issue foreign writeback flushes for recorded foreign dirtying events */
4615 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4616 {
4617         struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4618         unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4619         u64 now = jiffies_64;
4620         int i;
4621
4622         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4623                 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4624
4625                 /*
4626                  * If the record is older than dirty_expire_interval,
4627                  * writeback on it has already started.  No need to kick it
4628                  * off again.  Also, don't start a new one if there's
4629                  * already one in flight.
4630                  */
4631                 if (time_after64(frn->at, now - intv) &&
4632                     atomic_read(&frn->done.cnt) == 1) {
4633                         frn->at = 0;
4634                         trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4635                         cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4636                                                WB_REASON_FOREIGN_FLUSH,
4637                                                &frn->done);
4638                 }
4639         }
4640 }
4641
4642 #else   /* CONFIG_CGROUP_WRITEBACK */
4643
4644 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4645 {
4646         return 0;
4647 }
4648
4649 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4650 {
4651 }
4652
4653 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4654 {
4655 }
4656
4657 #endif  /* CONFIG_CGROUP_WRITEBACK */
4658
4659 /*
4660  * DO NOT USE IN NEW FILES.
4661  *
4662  * "cgroup.event_control" implementation.
4663  *
4664  * This is way over-engineered.  It tries to support fully configurable
4665  * events for each user.  Such level of flexibility is completely
4666  * unnecessary especially in the light of the planned unified hierarchy.
4667  *
4668  * Please deprecate this and replace with something simpler if at all
4669  * possible.
4670  */
4671
4672 /*
4673  * Unregister event and free resources.
4674  *
4675  * Gets called from workqueue.
4676  */
4677 static void memcg_event_remove(struct work_struct *work)
4678 {
4679         struct mem_cgroup_event *event =
4680                 container_of(work, struct mem_cgroup_event, remove);
4681         struct mem_cgroup *memcg = event->memcg;
4682
4683         remove_wait_queue(event->wqh, &event->wait);
4684
4685         event->unregister_event(memcg, event->eventfd);
4686
4687         /* Notify userspace the event is going away. */
4688         eventfd_signal(event->eventfd, 1);
4689
4690         eventfd_ctx_put(event->eventfd);
4691         kfree(event);
4692         css_put(&memcg->css);
4693 }
4694
4695 /*
4696  * Gets called on EPOLLHUP on eventfd when user closes it.
4697  *
4698  * Called with wqh->lock held and interrupts disabled.
4699  */
4700 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4701                             int sync, void *key)
4702 {
4703         struct mem_cgroup_event *event =
4704                 container_of(wait, struct mem_cgroup_event, wait);
4705         struct mem_cgroup *memcg = event->memcg;
4706         __poll_t flags = key_to_poll(key);
4707
4708         if (flags & EPOLLHUP) {
4709                 /*
4710                  * If the event has been detached at cgroup removal, we
4711                  * can simply return knowing the other side will cleanup
4712                  * for us.
4713                  *
4714                  * We can't race against event freeing since the other
4715                  * side will require wqh->lock via remove_wait_queue(),
4716                  * which we hold.
4717                  */
4718                 spin_lock(&memcg->event_list_lock);
4719                 if (!list_empty(&event->list)) {
4720                         list_del_init(&event->list);
4721                         /*
4722                          * We are in atomic context, but cgroup_event_remove()
4723                          * may sleep, so we have to call it in workqueue.
4724                          */
4725                         schedule_work(&event->remove);
4726                 }
4727                 spin_unlock(&memcg->event_list_lock);
4728         }
4729
4730         return 0;
4731 }
4732
4733 static void memcg_event_ptable_queue_proc(struct file *file,
4734                 wait_queue_head_t *wqh, poll_table *pt)
4735 {
4736         struct mem_cgroup_event *event =
4737                 container_of(pt, struct mem_cgroup_event, pt);
4738
4739         event->wqh = wqh;
4740         add_wait_queue(wqh, &event->wait);
4741 }
4742
4743 /*
4744  * DO NOT USE IN NEW FILES.
4745  *
4746  * Parse input and register new cgroup event handler.
4747  *
4748  * Input must be in format '<event_fd> <control_fd> <args>'.
4749  * Interpretation of args is defined by control file implementation.
4750  */
4751 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4752                                          char *buf, size_t nbytes, loff_t off)
4753 {
4754         struct cgroup_subsys_state *css = of_css(of);
4755         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4756         struct mem_cgroup_event *event;
4757         struct cgroup_subsys_state *cfile_css;
4758         unsigned int efd, cfd;
4759         struct fd efile;
4760         struct fd cfile;
4761         const char *name;
4762         char *endp;
4763         int ret;
4764
4765         if (IS_ENABLED(CONFIG_PREEMPT_RT))
4766                 return -EOPNOTSUPP;
4767
4768         buf = strstrip(buf);
4769
4770         efd = simple_strtoul(buf, &endp, 10);
4771         if (*endp != ' ')
4772                 return -EINVAL;
4773         buf = endp + 1;
4774
4775         cfd = simple_strtoul(buf, &endp, 10);
4776         if ((*endp != ' ') && (*endp != '\0'))
4777                 return -EINVAL;
4778         buf = endp + 1;
4779
4780         event = kzalloc(sizeof(*event), GFP_KERNEL);
4781         if (!event)
4782                 return -ENOMEM;
4783
4784         event->memcg = memcg;
4785         INIT_LIST_HEAD(&event->list);
4786         init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4787         init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4788         INIT_WORK(&event->remove, memcg_event_remove);
4789
4790         efile = fdget(efd);
4791         if (!efile.file) {
4792                 ret = -EBADF;
4793                 goto out_kfree;
4794         }
4795
4796         event->eventfd = eventfd_ctx_fileget(efile.file);
4797         if (IS_ERR(event->eventfd)) {
4798                 ret = PTR_ERR(event->eventfd);
4799                 goto out_put_efile;
4800         }
4801
4802         cfile = fdget(cfd);
4803         if (!cfile.file) {
4804                 ret = -EBADF;
4805                 goto out_put_eventfd;
4806         }
4807
4808         /* the process need read permission on control file */
4809         /* AV: shouldn't we check that it's been opened for read instead? */
4810         ret = file_permission(cfile.file, MAY_READ);
4811         if (ret < 0)
4812                 goto out_put_cfile;
4813
4814         /*
4815          * Determine the event callbacks and set them in @event.  This used
4816          * to be done via struct cftype but cgroup core no longer knows
4817          * about these events.  The following is crude but the whole thing
4818          * is for compatibility anyway.
4819          *
4820          * DO NOT ADD NEW FILES.
4821          */
4822         name = cfile.file->f_path.dentry->d_name.name;
4823
4824         if (!strcmp(name, "memory.usage_in_bytes")) {
4825                 event->register_event = mem_cgroup_usage_register_event;
4826                 event->unregister_event = mem_cgroup_usage_unregister_event;
4827         } else if (!strcmp(name, "memory.oom_control")) {
4828                 event->register_event = mem_cgroup_oom_register_event;
4829                 event->unregister_event = mem_cgroup_oom_unregister_event;
4830         } else if (!strcmp(name, "memory.pressure_level")) {
4831                 event->register_event = vmpressure_register_event;
4832                 event->unregister_event = vmpressure_unregister_event;
4833         } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4834                 event->register_event = memsw_cgroup_usage_register_event;
4835                 event->unregister_event = memsw_cgroup_usage_unregister_event;
4836         } else {
4837                 ret = -EINVAL;
4838                 goto out_put_cfile;
4839         }
4840
4841         /*
4842          * Verify @cfile should belong to @css.  Also, remaining events are
4843          * automatically removed on cgroup destruction but the removal is
4844          * asynchronous, so take an extra ref on @css.
4845          */
4846         cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4847                                                &memory_cgrp_subsys);
4848         ret = -EINVAL;
4849         if (IS_ERR(cfile_css))
4850                 goto out_put_cfile;
4851         if (cfile_css != css) {
4852                 css_put(cfile_css);
4853                 goto out_put_cfile;
4854         }
4855
4856         ret = event->register_event(memcg, event->eventfd, buf);
4857         if (ret)
4858                 goto out_put_css;
4859
4860         vfs_poll(efile.file, &event->pt);
4861
4862         spin_lock_irq(&memcg->event_list_lock);
4863         list_add(&event->list, &memcg->event_list);
4864         spin_unlock_irq(&memcg->event_list_lock);
4865
4866         fdput(cfile);
4867         fdput(efile);
4868
4869         return nbytes;
4870
4871 out_put_css:
4872         css_put(css);
4873 out_put_cfile:
4874         fdput(cfile);
4875 out_put_eventfd:
4876         eventfd_ctx_put(event->eventfd);
4877 out_put_efile:
4878         fdput(efile);
4879 out_kfree:
4880         kfree(event);
4881
4882         return ret;
4883 }
4884
4885 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4886 static int mem_cgroup_slab_show(struct seq_file *m, void *p)
4887 {
4888         /*
4889          * Deprecated.
4890          * Please, take a look at tools/cgroup/memcg_slabinfo.py .
4891          */
4892         return 0;
4893 }
4894 #endif
4895
4896 static struct cftype mem_cgroup_legacy_files[] = {
4897         {
4898                 .name = "usage_in_bytes",
4899                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4900                 .read_u64 = mem_cgroup_read_u64,
4901         },
4902         {
4903                 .name = "max_usage_in_bytes",
4904                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4905                 .write = mem_cgroup_reset,
4906                 .read_u64 = mem_cgroup_read_u64,
4907         },
4908         {
4909                 .name = "limit_in_bytes",
4910                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4911                 .write = mem_cgroup_write,
4912                 .read_u64 = mem_cgroup_read_u64,
4913         },
4914         {
4915                 .name = "soft_limit_in_bytes",
4916                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4917                 .write = mem_cgroup_write,
4918                 .read_u64 = mem_cgroup_read_u64,
4919         },
4920         {
4921                 .name = "failcnt",
4922                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4923                 .write = mem_cgroup_reset,
4924                 .read_u64 = mem_cgroup_read_u64,
4925         },
4926         {
4927                 .name = "stat",
4928                 .seq_show = memcg_stat_show,
4929         },
4930         {
4931                 .name = "force_empty",
4932                 .write = mem_cgroup_force_empty_write,
4933         },
4934         {
4935                 .name = "use_hierarchy",
4936                 .write_u64 = mem_cgroup_hierarchy_write,
4937                 .read_u64 = mem_cgroup_hierarchy_read,
4938         },
4939         {
4940                 .name = "cgroup.event_control",         /* XXX: for compat */
4941                 .write = memcg_write_event_control,
4942                 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4943         },
4944         {
4945                 .name = "swappiness",
4946                 .read_u64 = mem_cgroup_swappiness_read,
4947                 .write_u64 = mem_cgroup_swappiness_write,
4948         },
4949         {
4950                 .name = "move_charge_at_immigrate",
4951                 .read_u64 = mem_cgroup_move_charge_read,
4952                 .write_u64 = mem_cgroup_move_charge_write,
4953         },
4954         {
4955                 .name = "oom_control",
4956                 .seq_show = mem_cgroup_oom_control_read,
4957                 .write_u64 = mem_cgroup_oom_control_write,
4958         },
4959         {
4960                 .name = "pressure_level",
4961         },
4962 #ifdef CONFIG_NUMA
4963         {
4964                 .name = "numa_stat",
4965                 .seq_show = memcg_numa_stat_show,
4966         },
4967 #endif
4968         {
4969                 .name = "kmem.limit_in_bytes",
4970                 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4971                 .write = mem_cgroup_write,
4972                 .read_u64 = mem_cgroup_read_u64,
4973         },
4974         {
4975                 .name = "kmem.usage_in_bytes",
4976                 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4977                 .read_u64 = mem_cgroup_read_u64,
4978         },
4979         {
4980                 .name = "kmem.failcnt",
4981                 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4982                 .write = mem_cgroup_reset,
4983                 .read_u64 = mem_cgroup_read_u64,
4984         },
4985         {
4986                 .name = "kmem.max_usage_in_bytes",
4987                 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4988                 .write = mem_cgroup_reset,
4989                 .read_u64 = mem_cgroup_read_u64,
4990         },
4991 #if defined(CONFIG_MEMCG_KMEM) && \
4992         (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4993         {
4994                 .name = "kmem.slabinfo",
4995                 .seq_show = mem_cgroup_slab_show,
4996         },
4997 #endif
4998         {
4999                 .name = "kmem.tcp.limit_in_bytes",
5000                 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5001                 .write = mem_cgroup_write,
5002                 .read_u64 = mem_cgroup_read_u64,
5003         },
5004         {
5005                 .name = "kmem.tcp.usage_in_bytes",
5006                 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5007                 .read_u64 = mem_cgroup_read_u64,
5008         },
5009         {
5010                 .name = "kmem.tcp.failcnt",
5011                 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5012                 .write = mem_cgroup_reset,
5013                 .read_u64 = mem_cgroup_read_u64,
5014         },
5015         {
5016                 .name = "kmem.tcp.max_usage_in_bytes",
5017                 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5018                 .write = mem_cgroup_reset,
5019                 .read_u64 = mem_cgroup_read_u64,
5020         },
5021         { },    /* terminate */
5022 };
5023
5024 /*
5025  * Private memory cgroup IDR
5026  *
5027  * Swap-out records and page cache shadow entries need to store memcg
5028  * references in constrained space, so we maintain an ID space that is
5029  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5030  * memory-controlled cgroups to 64k.
5031  *
5032  * However, there usually are many references to the offline CSS after
5033  * the cgroup has been destroyed, such as page cache or reclaimable
5034  * slab objects, that don't need to hang on to the ID. We want to keep
5035  * those dead CSS from occupying IDs, or we might quickly exhaust the
5036  * relatively small ID space and prevent the creation of new cgroups
5037  * even when there are much fewer than 64k cgroups - possibly none.
5038  *
5039  * Maintain a private 16-bit ID space for memcg, and allow the ID to
5040  * be freed and recycled when it's no longer needed, which is usually
5041  * when the CSS is offlined.
5042  *
5043  * The only exception to that are records of swapped out tmpfs/shmem
5044  * pages that need to be attributed to live ancestors on swapin. But
5045  * those references are manageable from userspace.
5046  */
5047
5048 static DEFINE_IDR(mem_cgroup_idr);
5049
5050 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5051 {
5052         if (memcg->id.id > 0) {
5053                 idr_remove(&mem_cgroup_idr, memcg->id.id);
5054                 memcg->id.id = 0;
5055         }
5056 }
5057
5058 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5059                                                   unsigned int n)
5060 {
5061         refcount_add(n, &memcg->id.ref);
5062 }
5063
5064 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5065 {
5066         if (refcount_sub_and_test(n, &memcg->id.ref)) {
5067                 mem_cgroup_id_remove(memcg);
5068
5069                 /* Memcg ID pins CSS */
5070                 css_put(&memcg->css);
5071         }
5072 }
5073
5074 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5075 {
5076         mem_cgroup_id_put_many(memcg, 1);
5077 }
5078
5079 /**
5080  * mem_cgroup_from_id - look up a memcg from a memcg id
5081  * @id: the memcg id to look up
5082  *
5083  * Caller must hold rcu_read_lock().
5084  */
5085 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5086 {
5087         WARN_ON_ONCE(!rcu_read_lock_held());
5088         return idr_find(&mem_cgroup_idr, id);
5089 }
5090
5091 #ifdef CONFIG_SHRINKER_DEBUG
5092 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5093 {
5094         struct cgroup *cgrp;
5095         struct cgroup_subsys_state *css;
5096         struct mem_cgroup *memcg;
5097
5098         cgrp = cgroup_get_from_id(ino);
5099         if (!cgrp)
5100                 return ERR_PTR(-ENOENT);
5101
5102         css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5103         if (css)
5104                 memcg = container_of(css, struct mem_cgroup, css);
5105         else
5106                 memcg = ERR_PTR(-ENOENT);
5107
5108         cgroup_put(cgrp);
5109
5110         return memcg;
5111 }
5112 #endif
5113
5114 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5115 {
5116         struct mem_cgroup_per_node *pn;
5117
5118         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5119         if (!pn)
5120                 return 1;
5121
5122         pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5123                                                    GFP_KERNEL_ACCOUNT);
5124         if (!pn->lruvec_stats_percpu) {
5125                 kfree(pn);
5126                 return 1;
5127         }
5128
5129         lruvec_init(&pn->lruvec);
5130         pn->memcg = memcg;
5131
5132         memcg->nodeinfo[node] = pn;
5133         return 0;
5134 }
5135
5136 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5137 {
5138         struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5139
5140         if (!pn)
5141                 return;
5142
5143         free_percpu(pn->lruvec_stats_percpu);
5144         kfree(pn);
5145 }
5146
5147 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5148 {
5149         int node;
5150
5151         for_each_node(node)
5152                 free_mem_cgroup_per_node_info(memcg, node);
5153         free_percpu(memcg->vmstats_percpu);
5154         kfree(memcg);
5155 }
5156
5157 static void mem_cgroup_free(struct mem_cgroup *memcg)
5158 {
5159         memcg_wb_domain_exit(memcg);
5160         __mem_cgroup_free(memcg);
5161 }
5162
5163 static struct mem_cgroup *mem_cgroup_alloc(void)
5164 {
5165         struct mem_cgroup *memcg;
5166         int node;
5167         int __maybe_unused i;
5168         long error = -ENOMEM;
5169
5170         memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5171         if (!memcg)
5172                 return ERR_PTR(error);
5173
5174         memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5175                                  1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5176         if (memcg->id.id < 0) {
5177                 error = memcg->id.id;
5178                 goto fail;
5179         }
5180
5181         memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5182                                                  GFP_KERNEL_ACCOUNT);
5183         if (!memcg->vmstats_percpu)
5184                 goto fail;
5185
5186         for_each_node(node)
5187                 if (alloc_mem_cgroup_per_node_info(memcg, node))
5188                         goto fail;
5189
5190         if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5191                 goto fail;
5192
5193         INIT_WORK(&memcg->high_work, high_work_func);
5194         INIT_LIST_HEAD(&memcg->oom_notify);
5195         mutex_init(&memcg->thresholds_lock);
5196         spin_lock_init(&memcg->move_lock);
5197         vmpressure_init(&memcg->vmpressure);
5198         INIT_LIST_HEAD(&memcg->event_list);
5199         spin_lock_init(&memcg->event_list_lock);
5200         memcg->socket_pressure = jiffies;
5201 #ifdef CONFIG_MEMCG_KMEM
5202         memcg->kmemcg_id = -1;
5203         INIT_LIST_HEAD(&memcg->objcg_list);
5204 #endif
5205 #ifdef CONFIG_CGROUP_WRITEBACK
5206         INIT_LIST_HEAD(&memcg->cgwb_list);
5207         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5208                 memcg->cgwb_frn[i].done =
5209                         __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5210 #endif
5211 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5212         spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5213         INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5214         memcg->deferred_split_queue.split_queue_len = 0;
5215 #endif
5216         idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5217         return memcg;
5218 fail:
5219         mem_cgroup_id_remove(memcg);
5220         __mem_cgroup_free(memcg);
5221         return ERR_PTR(error);
5222 }
5223
5224 static struct cgroup_subsys_state * __ref
5225 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5226 {
5227         struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5228         struct mem_cgroup *memcg, *old_memcg;
5229
5230         old_memcg = set_active_memcg(parent);
5231         memcg = mem_cgroup_alloc();
5232         set_active_memcg(old_memcg);
5233         if (IS_ERR(memcg))
5234                 return ERR_CAST(memcg);
5235
5236         page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5237         memcg->soft_limit = PAGE_COUNTER_MAX;
5238 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5239         memcg->zswap_max = PAGE_COUNTER_MAX;
5240 #endif
5241         page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5242         if (parent) {
5243                 memcg->swappiness = mem_cgroup_swappiness(parent);
5244                 memcg->oom_kill_disable = parent->oom_kill_disable;
5245
5246                 page_counter_init(&memcg->memory, &parent->memory);
5247                 page_counter_init(&memcg->swap, &parent->swap);
5248                 page_counter_init(&memcg->kmem, &parent->kmem);
5249                 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5250         } else {
5251                 page_counter_init(&memcg->memory, NULL);
5252                 page_counter_init(&memcg->swap, NULL);
5253                 page_counter_init(&memcg->kmem, NULL);
5254                 page_counter_init(&memcg->tcpmem, NULL);
5255
5256                 root_mem_cgroup = memcg;
5257                 return &memcg->css;
5258         }
5259
5260         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5261                 static_branch_inc(&memcg_sockets_enabled_key);
5262
5263         return &memcg->css;
5264 }
5265
5266 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5267 {
5268         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5269
5270         if (memcg_online_kmem(memcg))
5271                 goto remove_id;
5272
5273         /*
5274          * A memcg must be visible for expand_shrinker_info()
5275          * by the time the maps are allocated. So, we allocate maps
5276          * here, when for_each_mem_cgroup() can't skip it.
5277          */
5278         if (alloc_shrinker_info(memcg))
5279                 goto offline_kmem;
5280
5281         /* Online state pins memcg ID, memcg ID pins CSS */
5282         refcount_set(&memcg->id.ref, 1);
5283         css_get(css);
5284
5285         if (unlikely(mem_cgroup_is_root(memcg)))
5286                 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5287                                    2UL*HZ);
5288         return 0;
5289 offline_kmem:
5290         memcg_offline_kmem(memcg);
5291 remove_id:
5292         mem_cgroup_id_remove(memcg);
5293         return -ENOMEM;
5294 }
5295
5296 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5297 {
5298         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5299         struct mem_cgroup_event *event, *tmp;
5300
5301         /*
5302          * Unregister events and notify userspace.
5303          * Notify userspace about cgroup removing only after rmdir of cgroup
5304          * directory to avoid race between userspace and kernelspace.
5305          */
5306         spin_lock_irq(&memcg->event_list_lock);
5307         list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5308                 list_del_init(&event->list);
5309                 schedule_work(&event->remove);
5310         }
5311         spin_unlock_irq(&memcg->event_list_lock);
5312
5313         page_counter_set_min(&memcg->memory, 0);
5314         page_counter_set_low(&memcg->memory, 0);
5315
5316         memcg_offline_kmem(memcg);
5317         reparent_shrinker_deferred(memcg);
5318         wb_memcg_offline(memcg);
5319
5320         drain_all_stock(memcg);
5321
5322         mem_cgroup_id_put(memcg);
5323 }
5324
5325 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5326 {
5327         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5328
5329         invalidate_reclaim_iterators(memcg);
5330 }
5331
5332 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5333 {
5334         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5335         int __maybe_unused i;
5336
5337 #ifdef CONFIG_CGROUP_WRITEBACK
5338         for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5339                 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5340 #endif
5341         if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5342                 static_branch_dec(&memcg_sockets_enabled_key);
5343
5344         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5345                 static_branch_dec(&memcg_sockets_enabled_key);
5346
5347         vmpressure_cleanup(&memcg->vmpressure);
5348         cancel_work_sync(&memcg->high_work);
5349         mem_cgroup_remove_from_trees(memcg);
5350         free_shrinker_info(memcg);
5351         mem_cgroup_free(memcg);
5352 }
5353
5354 /**
5355  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5356  * @css: the target css
5357  *
5358  * Reset the states of the mem_cgroup associated with @css.  This is
5359  * invoked when the userland requests disabling on the default hierarchy
5360  * but the memcg is pinned through dependency.  The memcg should stop
5361  * applying policies and should revert to the vanilla state as it may be
5362  * made visible again.
5363  *
5364  * The current implementation only resets the essential configurations.
5365  * This needs to be expanded to cover all the visible parts.
5366  */
5367 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5368 {
5369         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5370
5371         page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5372         page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5373         page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5374         page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5375         page_counter_set_min(&memcg->memory, 0);
5376         page_counter_set_low(&memcg->memory, 0);
5377         page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5378         memcg->soft_limit = PAGE_COUNTER_MAX;
5379         page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5380         memcg_wb_domain_size_changed(memcg);
5381 }
5382
5383 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5384 {
5385         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5386         struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5387         struct memcg_vmstats_percpu *statc;
5388         long delta, v;
5389         int i, nid;
5390
5391         statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5392
5393         for (i = 0; i < MEMCG_NR_STAT; i++) {
5394                 /*
5395                  * Collect the aggregated propagation counts of groups
5396                  * below us. We're in a per-cpu loop here and this is
5397                  * a global counter, so the first cycle will get them.
5398                  */
5399                 delta = memcg->vmstats.state_pending[i];
5400                 if (delta)
5401                         memcg->vmstats.state_pending[i] = 0;
5402
5403                 /* Add CPU changes on this level since the last flush */
5404                 v = READ_ONCE(statc->state[i]);
5405                 if (v != statc->state_prev[i]) {
5406                         delta += v - statc->state_prev[i];
5407                         statc->state_prev[i] = v;
5408                 }
5409
5410                 if (!delta)
5411                         continue;
5412
5413                 /* Aggregate counts on this level and propagate upwards */
5414                 memcg->vmstats.state[i] += delta;
5415                 if (parent)
5416                         parent->vmstats.state_pending[i] += delta;
5417         }
5418
5419         for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5420                 delta = memcg->vmstats.events_pending[i];
5421                 if (delta)
5422                         memcg->vmstats.events_pending[i] = 0;
5423
5424                 v = READ_ONCE(statc->events[i]);
5425                 if (v != statc->events_prev[i]) {
5426                         delta += v - statc->events_prev[i];
5427                         statc->events_prev[i] = v;
5428                 }
5429
5430                 if (!delta)
5431                         continue;
5432
5433                 memcg->vmstats.events[i] += delta;
5434                 if (parent)
5435                         parent->vmstats.events_pending[i] += delta;
5436         }
5437
5438         for_each_node_state(nid, N_MEMORY) {
5439                 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5440                 struct mem_cgroup_per_node *ppn = NULL;
5441                 struct lruvec_stats_percpu *lstatc;
5442
5443                 if (parent)
5444                         ppn = parent->nodeinfo[nid];
5445
5446                 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5447
5448                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5449                         delta = pn->lruvec_stats.state_pending[i];
5450                         if (delta)
5451                                 pn->lruvec_stats.state_pending[i] = 0;
5452
5453                         v = READ_ONCE(lstatc->state[i]);
5454                         if (v != lstatc->state_prev[i]) {
5455                                 delta += v - lstatc->state_prev[i];
5456                                 lstatc->state_prev[i] = v;
5457                         }
5458
5459                         if (!delta)
5460                                 continue;
5461
5462                         pn->lruvec_stats.state[i] += delta;
5463                         if (ppn)
5464                                 ppn->lruvec_stats.state_pending[i] += delta;
5465                 }
5466         }
5467 }
5468
5469 #ifdef CONFIG_MMU
5470 /* Handlers for move charge at task migration. */
5471 static int mem_cgroup_do_precharge(unsigned long count)
5472 {
5473         int ret;
5474
5475         /* Try a single bulk charge without reclaim first, kswapd may wake */
5476         ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5477         if (!ret) {
5478                 mc.precharge += count;
5479                 return ret;
5480         }
5481
5482         /* Try charges one by one with reclaim, but do not retry */
5483         while (count--) {
5484                 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5485                 if (ret)
5486                         return ret;
5487                 mc.precharge++;
5488                 cond_resched();
5489         }
5490         return 0;
5491 }
5492
5493 union mc_target {
5494         struct page     *page;
5495         swp_entry_t     ent;
5496 };
5497
5498 enum mc_target_type {
5499         MC_TARGET_NONE = 0,
5500         MC_TARGET_PAGE,
5501         MC_TARGET_SWAP,
5502         MC_TARGET_DEVICE,
5503 };
5504
5505 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5506                                                 unsigned long addr, pte_t ptent)
5507 {
5508         struct page *page = vm_normal_page(vma, addr, ptent);
5509
5510         if (!page || !page_mapped(page))
5511                 return NULL;
5512         if (PageAnon(page)) {
5513                 if (!(mc.flags & MOVE_ANON))
5514                         return NULL;
5515         } else {
5516                 if (!(mc.flags & MOVE_FILE))
5517                         return NULL;
5518         }
5519         if (!get_page_unless_zero(page))
5520                 return NULL;
5521
5522         return page;
5523 }
5524
5525 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5526 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5527                         pte_t ptent, swp_entry_t *entry)
5528 {
5529         struct page *page = NULL;
5530         swp_entry_t ent = pte_to_swp_entry(ptent);
5531
5532         if (!(mc.flags & MOVE_ANON))
5533                 return NULL;
5534
5535         /*
5536          * Handle device private pages that are not accessible by the CPU, but
5537          * stored as special swap entries in the page table.
5538          */
5539         if (is_device_private_entry(ent)) {
5540                 page = pfn_swap_entry_to_page(ent);
5541                 if (!get_page_unless_zero(page))
5542                         return NULL;
5543                 return page;
5544         }
5545
5546         if (non_swap_entry(ent))
5547                 return NULL;
5548
5549         /*
5550          * Because lookup_swap_cache() updates some statistics counter,
5551          * we call find_get_page() with swapper_space directly.
5552          */
5553         page = find_get_page(swap_address_space(ent), swp_offset(ent));
5554         entry->val = ent.val;
5555
5556         return page;
5557 }
5558 #else
5559 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5560                         pte_t ptent, swp_entry_t *entry)
5561 {
5562         return NULL;
5563 }
5564 #endif
5565
5566 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5567                         unsigned long addr, pte_t ptent)
5568 {
5569         if (!vma->vm_file) /* anonymous vma */
5570                 return NULL;
5571         if (!(mc.flags & MOVE_FILE))
5572                 return NULL;
5573
5574         /* page is moved even if it's not RSS of this task(page-faulted). */
5575         /* shmem/tmpfs may report page out on swap: account for that too. */
5576         return find_get_incore_page(vma->vm_file->f_mapping,
5577                         linear_page_index(vma, addr));
5578 }
5579
5580 /**
5581  * mem_cgroup_move_account - move account of the page
5582  * @page: the page
5583  * @compound: charge the page as compound or small page
5584  * @from: mem_cgroup which the page is moved from.
5585  * @to: mem_cgroup which the page is moved to. @from != @to.
5586  *
5587  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5588  *
5589  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5590  * from old cgroup.
5591  */
5592 static int mem_cgroup_move_account(struct page *page,
5593                                    bool compound,
5594                                    struct mem_cgroup *from,
5595                                    struct mem_cgroup *to)
5596 {
5597         struct folio *folio = page_folio(page);
5598         struct lruvec *from_vec, *to_vec;
5599         struct pglist_data *pgdat;
5600         unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5601         int nid, ret;
5602
5603         VM_BUG_ON(from == to);
5604         VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5605         VM_BUG_ON(compound && !folio_test_large(folio));
5606
5607         /*
5608          * Prevent mem_cgroup_migrate() from looking at
5609          * page's memory cgroup of its source page while we change it.
5610          */
5611         ret = -EBUSY;
5612         if (!folio_trylock(folio))
5613                 goto out;
5614
5615         ret = -EINVAL;
5616         if (folio_memcg(folio) != from)
5617                 goto out_unlock;
5618
5619         pgdat = folio_pgdat(folio);
5620         from_vec = mem_cgroup_lruvec(from, pgdat);
5621         to_vec = mem_cgroup_lruvec(to, pgdat);
5622
5623         folio_memcg_lock(folio);
5624
5625         if (folio_test_anon(folio)) {
5626                 if (folio_mapped(folio)) {
5627                         __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5628                         __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5629                         if (folio_test_transhuge(folio)) {
5630                                 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5631                                                    -nr_pages);
5632                                 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5633                                                    nr_pages);
5634                         }
5635                 }
5636         } else {
5637                 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5638                 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5639
5640                 if (folio_test_swapbacked(folio)) {
5641                         __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5642                         __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5643                 }
5644
5645                 if (folio_mapped(folio)) {
5646                         __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5647                         __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5648                 }
5649
5650                 if (folio_test_dirty(folio)) {
5651                         struct address_space *mapping = folio_mapping(folio);
5652
5653                         if (mapping_can_writeback(mapping)) {
5654                                 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5655                                                    -nr_pages);
5656                                 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5657                                                    nr_pages);
5658                         }
5659                 }
5660         }
5661
5662         if (folio_test_writeback(folio)) {
5663                 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5664                 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5665         }
5666
5667         /*
5668          * All state has been migrated, let's switch to the new memcg.
5669          *
5670          * It is safe to change page's memcg here because the page
5671          * is referenced, charged, isolated, and locked: we can't race
5672          * with (un)charging, migration, LRU putback, or anything else
5673          * that would rely on a stable page's memory cgroup.
5674          *
5675          * Note that lock_page_memcg is a memcg lock, not a page lock,
5676          * to save space. As soon as we switch page's memory cgroup to a
5677          * new memcg that isn't locked, the above state can change
5678          * concurrently again. Make sure we're truly done with it.
5679          */
5680         smp_mb();
5681
5682         css_get(&to->css);
5683         css_put(&from->css);
5684
5685         folio->memcg_data = (unsigned long)to;
5686
5687         __folio_memcg_unlock(from);
5688
5689         ret = 0;
5690         nid = folio_nid(folio);
5691
5692         local_irq_disable();
5693         mem_cgroup_charge_statistics(to, nr_pages);
5694         memcg_check_events(to, nid);
5695         mem_cgroup_charge_statistics(from, -nr_pages);
5696         memcg_check_events(from, nid);
5697         local_irq_enable();
5698 out_unlock:
5699         folio_unlock(folio);
5700 out:
5701         return ret;
5702 }
5703
5704 /**
5705  * get_mctgt_type - get target type of moving charge
5706  * @vma: the vma the pte to be checked belongs
5707  * @addr: the address corresponding to the pte to be checked
5708  * @ptent: the pte to be checked
5709  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5710  *
5711  * Returns
5712  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5713  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5714  *     move charge. if @target is not NULL, the page is stored in target->page
5715  *     with extra refcnt got(Callers should handle it).
5716  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5717  *     target for charge migration. if @target is not NULL, the entry is stored
5718  *     in target->ent.
5719  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is device memory and
5720  *   thus not on the lru.
5721  *     For now we such page is charge like a regular page would be as for all
5722  *     intent and purposes it is just special memory taking the place of a
5723  *     regular page.
5724  *
5725  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5726  *
5727  * Called with pte lock held.
5728  */
5729
5730 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5731                 unsigned long addr, pte_t ptent, union mc_target *target)
5732 {
5733         struct page *page = NULL;
5734         enum mc_target_type ret = MC_TARGET_NONE;
5735         swp_entry_t ent = { .val = 0 };
5736
5737         if (pte_present(ptent))
5738                 page = mc_handle_present_pte(vma, addr, ptent);
5739         else if (pte_none_mostly(ptent))
5740                 /*
5741                  * PTE markers should be treated as a none pte here, separated
5742                  * from other swap handling below.
5743                  */
5744                 page = mc_handle_file_pte(vma, addr, ptent);
5745         else if (is_swap_pte(ptent))
5746                 page = mc_handle_swap_pte(vma, ptent, &ent);
5747
5748         if (!page && !ent.val)
5749                 return ret;
5750         if (page) {
5751                 /*
5752                  * Do only loose check w/o serialization.
5753                  * mem_cgroup_move_account() checks the page is valid or
5754                  * not under LRU exclusion.
5755                  */
5756                 if (page_memcg(page) == mc.from) {
5757                         ret = MC_TARGET_PAGE;
5758                         if (is_device_private_page(page) ||
5759                             is_device_coherent_page(page))
5760                                 ret = MC_TARGET_DEVICE;
5761                         if (target)
5762                                 target->page = page;
5763                 }
5764                 if (!ret || !target)
5765                         put_page(page);
5766         }
5767         /*
5768          * There is a swap entry and a page doesn't exist or isn't charged.
5769          * But we cannot move a tail-page in a THP.
5770          */
5771         if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5772             mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5773                 ret = MC_TARGET_SWAP;
5774                 if (target)
5775                         target->ent = ent;
5776         }
5777         return ret;
5778 }
5779
5780 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5781 /*
5782  * We don't consider PMD mapped swapping or file mapped pages because THP does
5783  * not support them for now.
5784  * Caller should make sure that pmd_trans_huge(pmd) is true.
5785  */
5786 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5787                 unsigned long addr, pmd_t pmd, union mc_target *target)
5788 {
5789         struct page *page = NULL;
5790         enum mc_target_type ret = MC_TARGET_NONE;
5791
5792         if (unlikely(is_swap_pmd(pmd))) {
5793                 VM_BUG_ON(thp_migration_supported() &&
5794                                   !is_pmd_migration_entry(pmd));
5795                 return ret;
5796         }
5797         page = pmd_page(pmd);
5798         VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5799         if (!(mc.flags & MOVE_ANON))
5800                 return ret;
5801         if (page_memcg(page) == mc.from) {
5802                 ret = MC_TARGET_PAGE;
5803                 if (target) {
5804                         get_page(page);
5805                         target->page = page;
5806                 }
5807         }
5808         return ret;
5809 }
5810 #else
5811 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5812                 unsigned long addr, pmd_t pmd, union mc_target *target)
5813 {
5814         return MC_TARGET_NONE;
5815 }
5816 #endif
5817
5818 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5819                                         unsigned long addr, unsigned long end,
5820                                         struct mm_walk *walk)
5821 {
5822         struct vm_area_struct *vma = walk->vma;
5823         pte_t *pte;
5824         spinlock_t *ptl;
5825
5826         ptl = pmd_trans_huge_lock(pmd, vma);
5827         if (ptl) {
5828                 /*
5829                  * Note their can not be MC_TARGET_DEVICE for now as we do not
5830                  * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5831                  * this might change.
5832                  */
5833                 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5834                         mc.precharge += HPAGE_PMD_NR;
5835                 spin_unlock(ptl);
5836                 return 0;
5837         }
5838
5839         if (pmd_trans_unstable(pmd))
5840                 return 0;
5841         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5842         for (; addr != end; pte++, addr += PAGE_SIZE)
5843                 if (get_mctgt_type(vma, addr, *pte, NULL))
5844                         mc.precharge++; /* increment precharge temporarily */
5845         pte_unmap_unlock(pte - 1, ptl);
5846         cond_resched();
5847
5848         return 0;
5849 }
5850
5851 static const struct mm_walk_ops precharge_walk_ops = {
5852         .pmd_entry      = mem_cgroup_count_precharge_pte_range,
5853 };
5854
5855 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5856 {
5857         unsigned long precharge;
5858
5859         mmap_read_lock(mm);
5860         walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5861         mmap_read_unlock(mm);
5862
5863         precharge = mc.precharge;
5864         mc.precharge = 0;
5865
5866         return precharge;
5867 }
5868
5869 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5870 {
5871         unsigned long precharge = mem_cgroup_count_precharge(mm);
5872
5873         VM_BUG_ON(mc.moving_task);
5874         mc.moving_task = current;
5875         return mem_cgroup_do_precharge(precharge);
5876 }
5877
5878 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5879 static void __mem_cgroup_clear_mc(void)
5880 {
5881         struct mem_cgroup *from = mc.from;
5882         struct mem_cgroup *to = mc.to;
5883
5884         /* we must uncharge all the leftover precharges from mc.to */
5885         if (mc.precharge) {
5886                 cancel_charge(mc.to, mc.precharge);
5887                 mc.precharge = 0;
5888         }
5889         /*
5890          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5891          * we must uncharge here.
5892          */
5893         if (mc.moved_charge) {
5894                 cancel_charge(mc.from, mc.moved_charge);
5895                 mc.moved_charge = 0;
5896         }
5897         /* we must fixup refcnts and charges */
5898         if (mc.moved_swap) {
5899                 /* uncharge swap account from the old cgroup */
5900                 if (!mem_cgroup_is_root(mc.from))
5901                         page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5902
5903                 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5904
5905                 /*
5906                  * we charged both to->memory and to->memsw, so we
5907                  * should uncharge to->memory.
5908                  */
5909                 if (!mem_cgroup_is_root(mc.to))
5910                         page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5911
5912                 mc.moved_swap = 0;
5913         }
5914         memcg_oom_recover(from);
5915         memcg_oom_recover(to);
5916         wake_up_all(&mc.waitq);
5917 }
5918
5919 static void mem_cgroup_clear_mc(void)
5920 {
5921         struct mm_struct *mm = mc.mm;
5922
5923         /*
5924          * we must clear moving_task before waking up waiters at the end of
5925          * task migration.
5926          */
5927         mc.moving_task = NULL;
5928         __mem_cgroup_clear_mc();
5929         spin_lock(&mc.lock);
5930         mc.from = NULL;
5931         mc.to = NULL;
5932         mc.mm = NULL;
5933         spin_unlock(&mc.lock);
5934
5935         mmput(mm);
5936 }
5937
5938 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5939 {
5940         struct cgroup_subsys_state *css;
5941         struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5942         struct mem_cgroup *from;
5943         struct task_struct *leader, *p;
5944         struct mm_struct *mm;
5945         unsigned long move_flags;
5946         int ret = 0;
5947
5948         /* charge immigration isn't supported on the default hierarchy */
5949         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5950                 return 0;
5951
5952         /*
5953          * Multi-process migrations only happen on the default hierarchy
5954          * where charge immigration is not used.  Perform charge
5955          * immigration if @tset contains a leader and whine if there are
5956          * multiple.
5957          */
5958         p = NULL;
5959         cgroup_taskset_for_each_leader(leader, css, tset) {
5960                 WARN_ON_ONCE(p);
5961                 p = leader;
5962                 memcg = mem_cgroup_from_css(css);
5963         }
5964         if (!p)
5965                 return 0;
5966
5967         /*
5968          * We are now committed to this value whatever it is. Changes in this
5969          * tunable will only affect upcoming migrations, not the current one.
5970          * So we need to save it, and keep it going.
5971          */
5972         move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5973         if (!move_flags)
5974                 return 0;
5975
5976         from = mem_cgroup_from_task(p);
5977
5978         VM_BUG_ON(from == memcg);
5979
5980         mm = get_task_mm(p);
5981         if (!mm)
5982                 return 0;
5983         /* We move charges only when we move a owner of the mm */
5984         if (mm->owner == p) {
5985                 VM_BUG_ON(mc.from);
5986                 VM_BUG_ON(mc.to);
5987                 VM_BUG_ON(mc.precharge);
5988                 VM_BUG_ON(mc.moved_charge);
5989                 VM_BUG_ON(mc.moved_swap);
5990
5991                 spin_lock(&mc.lock);
5992                 mc.mm = mm;
5993                 mc.from = from;
5994                 mc.to = memcg;
5995                 mc.flags = move_flags;
5996                 spin_unlock(&mc.lock);
5997                 /* We set mc.moving_task later */
5998
5999                 ret = mem_cgroup_precharge_mc(mm);
6000                 if (ret)
6001                         mem_cgroup_clear_mc();
6002         } else {
6003                 mmput(mm);
6004         }
6005         return ret;
6006 }
6007
6008 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6009 {
6010         if (mc.to)
6011                 mem_cgroup_clear_mc();
6012 }
6013
6014 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6015                                 unsigned long addr, unsigned long end,
6016                                 struct mm_walk *walk)
6017 {
6018         int ret = 0;
6019         struct vm_area_struct *vma = walk->vma;
6020         pte_t *pte;
6021         spinlock_t *ptl;
6022         enum mc_target_type target_type;
6023         union mc_target target;
6024         struct page *page;
6025
6026         ptl = pmd_trans_huge_lock(pmd, vma);
6027         if (ptl) {
6028                 if (mc.precharge < HPAGE_PMD_NR) {
6029                         spin_unlock(ptl);
6030                         return 0;
6031                 }
6032                 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6033                 if (target_type == MC_TARGET_PAGE) {
6034                         page = target.page;
6035                         if (!isolate_lru_page(page)) {
6036                                 if (!mem_cgroup_move_account(page, true,
6037                                                              mc.from, mc.to)) {
6038                                         mc.precharge -= HPAGE_PMD_NR;
6039                                         mc.moved_charge += HPAGE_PMD_NR;
6040                                 }
6041                                 putback_lru_page(page);
6042                         }
6043                         put_page(page);
6044                 } else if (target_type == MC_TARGET_DEVICE) {
6045                         page = target.page;
6046                         if (!mem_cgroup_move_account(page, true,
6047                                                      mc.from, mc.to)) {
6048                                 mc.precharge -= HPAGE_PMD_NR;
6049                                 mc.moved_charge += HPAGE_PMD_NR;
6050                         }
6051                         put_page(page);
6052                 }
6053                 spin_unlock(ptl);
6054                 return 0;
6055         }
6056
6057         if (pmd_trans_unstable(pmd))
6058                 return 0;
6059 retry:
6060         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6061         for (; addr != end; addr += PAGE_SIZE) {
6062                 pte_t ptent = *(pte++);
6063                 bool device = false;
6064                 swp_entry_t ent;
6065
6066                 if (!mc.precharge)
6067                         break;
6068
6069                 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6070                 case MC_TARGET_DEVICE:
6071                         device = true;
6072                         fallthrough;
6073                 case MC_TARGET_PAGE:
6074                         page = target.page;
6075                         /*
6076                          * We can have a part of the split pmd here. Moving it
6077                          * can be done but it would be too convoluted so simply
6078                          * ignore such a partial THP and keep it in original
6079                          * memcg. There should be somebody mapping the head.
6080                          */
6081                         if (PageTransCompound(page))
6082                                 goto put;
6083                         if (!device && isolate_lru_page(page))
6084                                 goto put;
6085                         if (!mem_cgroup_move_account(page, false,
6086                                                 mc.from, mc.to)) {
6087                                 mc.precharge--;
6088                                 /* we uncharge from mc.from later. */
6089                                 mc.moved_charge++;
6090                         }
6091                         if (!device)
6092                                 putback_lru_page(page);
6093 put:                    /* get_mctgt_type() gets the page */
6094                         put_page(page);
6095                         break;
6096                 case MC_TARGET_SWAP:
6097                         ent = target.ent;
6098                         if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6099                                 mc.precharge--;
6100                                 mem_cgroup_id_get_many(mc.to, 1);
6101                                 /* we fixup other refcnts and charges later. */
6102                                 mc.moved_swap++;
6103                         }
6104                         break;
6105                 default:
6106                         break;
6107                 }
6108         }
6109         pte_unmap_unlock(pte - 1, ptl);
6110         cond_resched();
6111
6112         if (addr != end) {
6113                 /*
6114                  * We have consumed all precharges we got in can_attach().
6115                  * We try charge one by one, but don't do any additional
6116                  * charges to mc.to if we have failed in charge once in attach()
6117                  * phase.
6118                  */
6119                 ret = mem_cgroup_do_precharge(1);
6120                 if (!ret)
6121                         goto retry;
6122         }
6123
6124         return ret;
6125 }
6126
6127 static const struct mm_walk_ops charge_walk_ops = {
6128         .pmd_entry      = mem_cgroup_move_charge_pte_range,
6129 };
6130
6131 static void mem_cgroup_move_charge(void)
6132 {
6133         lru_add_drain_all();
6134         /*
6135          * Signal lock_page_memcg() to take the memcg's move_lock
6136          * while we're moving its pages to another memcg. Then wait
6137          * for already started RCU-only updates to finish.
6138          */
6139         atomic_inc(&mc.from->moving_account);
6140         synchronize_rcu();
6141 retry:
6142         if (unlikely(!mmap_read_trylock(mc.mm))) {
6143                 /*
6144                  * Someone who are holding the mmap_lock might be waiting in
6145                  * waitq. So we cancel all extra charges, wake up all waiters,
6146                  * and retry. Because we cancel precharges, we might not be able
6147                  * to move enough charges, but moving charge is a best-effort
6148                  * feature anyway, so it wouldn't be a big problem.
6149                  */
6150                 __mem_cgroup_clear_mc();
6151                 cond_resched();
6152                 goto retry;
6153         }
6154         /*
6155          * When we have consumed all precharges and failed in doing
6156          * additional charge, the page walk just aborts.
6157          */
6158         walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6159                         NULL);
6160
6161         mmap_read_unlock(mc.mm);
6162         atomic_dec(&mc.from->moving_account);
6163 }
6164
6165 static void mem_cgroup_move_task(void)
6166 {
6167         if (mc.to) {
6168                 mem_cgroup_move_charge();
6169                 mem_cgroup_clear_mc();
6170         }
6171 }
6172 #else   /* !CONFIG_MMU */
6173 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6174 {
6175         return 0;
6176 }
6177 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6178 {
6179 }
6180 static void mem_cgroup_move_task(void)
6181 {
6182 }
6183 #endif
6184
6185 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6186 {
6187         if (value == PAGE_COUNTER_MAX)
6188                 seq_puts(m, "max\n");
6189         else
6190                 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6191
6192         return 0;
6193 }
6194
6195 static u64 memory_current_read(struct cgroup_subsys_state *css,
6196                                struct cftype *cft)
6197 {
6198         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6199
6200         return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6201 }
6202
6203 static u64 memory_peak_read(struct cgroup_subsys_state *css,
6204                             struct cftype *cft)
6205 {
6206         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6207
6208         return (u64)memcg->memory.watermark * PAGE_SIZE;
6209 }
6210
6211 static int memory_min_show(struct seq_file *m, void *v)
6212 {
6213         return seq_puts_memcg_tunable(m,
6214                 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6215 }
6216
6217 static ssize_t memory_min_write(struct kernfs_open_file *of,
6218                                 char *buf, size_t nbytes, loff_t off)
6219 {
6220         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6221         unsigned long min;
6222         int err;
6223
6224         buf = strstrip(buf);
6225         err = page_counter_memparse(buf, "max", &min);
6226         if (err)
6227                 return err;
6228
6229         page_counter_set_min(&memcg->memory, min);
6230
6231         return nbytes;
6232 }
6233
6234 static int memory_low_show(struct seq_file *m, void *v)
6235 {
6236         return seq_puts_memcg_tunable(m,
6237                 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6238 }
6239
6240 static ssize_t memory_low_write(struct kernfs_open_file *of,
6241                                 char *buf, size_t nbytes, loff_t off)
6242 {
6243         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6244         unsigned long low;
6245         int err;
6246
6247         buf = strstrip(buf);
6248         err = page_counter_memparse(buf, "max", &low);
6249         if (err)
6250                 return err;
6251
6252         page_counter_set_low(&memcg->memory, low);
6253
6254         return nbytes;
6255 }
6256
6257 static int memory_high_show(struct seq_file *m, void *v)
6258 {
6259         return seq_puts_memcg_tunable(m,
6260                 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6261 }
6262
6263 static ssize_t memory_high_write(struct kernfs_open_file *of,
6264                                  char *buf, size_t nbytes, loff_t off)
6265 {
6266         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6267         unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6268         bool drained = false;
6269         unsigned long high;
6270         int err;
6271
6272         buf = strstrip(buf);
6273         err = page_counter_memparse(buf, "max", &high);
6274         if (err)
6275                 return err;
6276
6277         page_counter_set_high(&memcg->memory, high);
6278
6279         for (;;) {
6280                 unsigned long nr_pages = page_counter_read(&memcg->memory);
6281                 unsigned long reclaimed;
6282
6283                 if (nr_pages <= high)
6284                         break;
6285
6286                 if (signal_pending(current))
6287                         break;
6288
6289                 if (!drained) {
6290                         drain_all_stock(memcg);
6291                         drained = true;
6292                         continue;
6293                 }
6294
6295                 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6296                                                          GFP_KERNEL, true);
6297
6298                 if (!reclaimed && !nr_retries--)
6299                         break;
6300         }
6301
6302         memcg_wb_domain_size_changed(memcg);
6303         return nbytes;
6304 }
6305
6306 static int memory_max_show(struct seq_file *m, void *v)
6307 {
6308         return seq_puts_memcg_tunable(m,
6309                 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6310 }
6311
6312 static ssize_t memory_max_write(struct kernfs_open_file *of,
6313                                 char *buf, size_t nbytes, loff_t off)
6314 {
6315         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6316         unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6317         bool drained = false;
6318         unsigned long max;
6319         int err;
6320
6321         buf = strstrip(buf);
6322         err = page_counter_memparse(buf, "max", &max);
6323         if (err)
6324                 return err;
6325
6326         xchg(&memcg->memory.max, max);
6327
6328         for (;;) {
6329                 unsigned long nr_pages = page_counter_read(&memcg->memory);
6330
6331                 if (nr_pages <= max)
6332                         break;
6333
6334                 if (signal_pending(current))
6335                         break;
6336
6337                 if (!drained) {
6338                         drain_all_stock(memcg);
6339                         drained = true;
6340                         continue;
6341                 }
6342
6343                 if (nr_reclaims) {
6344                         if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6345                                                           GFP_KERNEL, true))
6346                                 nr_reclaims--;
6347                         continue;
6348                 }
6349
6350                 memcg_memory_event(memcg, MEMCG_OOM);
6351                 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6352                         break;
6353         }
6354
6355         memcg_wb_domain_size_changed(memcg);
6356         return nbytes;
6357 }
6358
6359 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6360 {
6361         seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6362         seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6363         seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6364         seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6365         seq_printf(m, "oom_kill %lu\n",
6366                    atomic_long_read(&events[MEMCG_OOM_KILL]));
6367         seq_printf(m, "oom_group_kill %lu\n",
6368                    atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6369 }
6370
6371 static int memory_events_show(struct seq_file *m, void *v)
6372 {
6373         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6374
6375         __memory_events_show(m, memcg->memory_events);
6376         return 0;
6377 }
6378
6379 static int memory_events_local_show(struct seq_file *m, void *v)
6380 {
6381         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6382
6383         __memory_events_show(m, memcg->memory_events_local);
6384         return 0;
6385 }
6386
6387 static int memory_stat_show(struct seq_file *m, void *v)
6388 {
6389         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6390         char *buf;
6391
6392         buf = memory_stat_format(memcg);
6393         if (!buf)
6394                 return -ENOMEM;
6395         seq_puts(m, buf);
6396         kfree(buf);
6397         return 0;
6398 }
6399
6400 #ifdef CONFIG_NUMA
6401 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6402                                                      int item)
6403 {
6404         return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6405 }
6406
6407 static int memory_numa_stat_show(struct seq_file *m, void *v)
6408 {
6409         int i;
6410         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6411
6412         mem_cgroup_flush_stats();
6413
6414         for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6415                 int nid;
6416
6417                 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6418                         continue;
6419
6420                 seq_printf(m, "%s", memory_stats[i].name);
6421                 for_each_node_state(nid, N_MEMORY) {
6422                         u64 size;
6423                         struct lruvec *lruvec;
6424
6425                         lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6426                         size = lruvec_page_state_output(lruvec,
6427                                                         memory_stats[i].idx);
6428                         seq_printf(m, " N%d=%llu", nid, size);
6429                 }
6430                 seq_putc(m, '\n');
6431         }
6432
6433         return 0;
6434 }
6435 #endif
6436
6437 static int memory_oom_group_show(struct seq_file *m, void *v)
6438 {
6439         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6440
6441         seq_printf(m, "%d\n", memcg->oom_group);
6442
6443         return 0;
6444 }
6445
6446 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6447                                       char *buf, size_t nbytes, loff_t off)
6448 {
6449         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6450         int ret, oom_group;
6451
6452         buf = strstrip(buf);
6453         if (!buf)
6454                 return -EINVAL;
6455
6456         ret = kstrtoint(buf, 0, &oom_group);
6457         if (ret)
6458                 return ret;
6459
6460         if (oom_group != 0 && oom_group != 1)
6461                 return -EINVAL;
6462
6463         memcg->oom_group = oom_group;
6464
6465         return nbytes;
6466 }
6467
6468 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6469                               size_t nbytes, loff_t off)
6470 {
6471         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6472         unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6473         unsigned long nr_to_reclaim, nr_reclaimed = 0;
6474         int err;
6475
6476         buf = strstrip(buf);
6477         err = page_counter_memparse(buf, "", &nr_to_reclaim);
6478         if (err)
6479                 return err;
6480
6481         while (nr_reclaimed < nr_to_reclaim) {
6482                 unsigned long reclaimed;
6483
6484                 if (signal_pending(current))
6485                         return -EINTR;
6486
6487                 /*
6488                  * This is the final attempt, drain percpu lru caches in the
6489                  * hope of introducing more evictable pages for
6490                  * try_to_free_mem_cgroup_pages().
6491                  */
6492                 if (!nr_retries)
6493                         lru_add_drain_all();
6494
6495                 reclaimed = try_to_free_mem_cgroup_pages(memcg,
6496                                                 nr_to_reclaim - nr_reclaimed,
6497                                                 GFP_KERNEL, true);
6498
6499                 if (!reclaimed && !nr_retries--)
6500                         return -EAGAIN;
6501
6502                 nr_reclaimed += reclaimed;
6503         }
6504
6505         return nbytes;
6506 }
6507
6508 static struct cftype memory_files[] = {
6509         {
6510                 .name = "current",
6511                 .flags = CFTYPE_NOT_ON_ROOT,
6512                 .read_u64 = memory_current_read,
6513         },
6514         {
6515                 .name = "peak",
6516                 .flags = CFTYPE_NOT_ON_ROOT,
6517                 .read_u64 = memory_peak_read,
6518         },
6519         {
6520                 .name = "min",
6521                 .flags = CFTYPE_NOT_ON_ROOT,
6522                 .seq_show = memory_min_show,
6523                 .write = memory_min_write,
6524         },
6525         {
6526                 .name = "low",
6527                 .flags = CFTYPE_NOT_ON_ROOT,
6528                 .seq_show = memory_low_show,
6529                 .write = memory_low_write,
6530         },
6531         {
6532                 .name = "high",
6533                 .flags = CFTYPE_NOT_ON_ROOT,
6534                 .seq_show = memory_high_show,
6535                 .write = memory_high_write,
6536         },
6537         {
6538                 .name = "max",
6539                 .flags = CFTYPE_NOT_ON_ROOT,
6540                 .seq_show = memory_max_show,
6541                 .write = memory_max_write,
6542         },
6543         {
6544                 .name = "events",
6545                 .flags = CFTYPE_NOT_ON_ROOT,
6546                 .file_offset = offsetof(struct mem_cgroup, events_file),
6547                 .seq_show = memory_events_show,
6548         },
6549         {
6550                 .name = "events.local",
6551                 .flags = CFTYPE_NOT_ON_ROOT,
6552                 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6553                 .seq_show = memory_events_local_show,
6554         },
6555         {
6556                 .name = "stat",
6557                 .seq_show = memory_stat_show,
6558         },
6559 #ifdef CONFIG_NUMA
6560         {
6561                 .name = "numa_stat",
6562                 .seq_show = memory_numa_stat_show,
6563         },
6564 #endif
6565         {
6566                 .name = "oom.group",
6567                 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6568                 .seq_show = memory_oom_group_show,
6569                 .write = memory_oom_group_write,
6570         },
6571         {
6572                 .name = "reclaim",
6573                 .flags = CFTYPE_NS_DELEGATABLE,
6574                 .write = memory_reclaim,
6575         },
6576         { }     /* terminate */
6577 };
6578
6579 struct cgroup_subsys memory_cgrp_subsys = {
6580         .css_alloc = mem_cgroup_css_alloc,
6581         .css_online = mem_cgroup_css_online,
6582         .css_offline = mem_cgroup_css_offline,
6583         .css_released = mem_cgroup_css_released,
6584         .css_free = mem_cgroup_css_free,
6585         .css_reset = mem_cgroup_css_reset,
6586         .css_rstat_flush = mem_cgroup_css_rstat_flush,
6587         .can_attach = mem_cgroup_can_attach,
6588         .cancel_attach = mem_cgroup_cancel_attach,
6589         .post_attach = mem_cgroup_move_task,
6590         .dfl_cftypes = memory_files,
6591         .legacy_cftypes = mem_cgroup_legacy_files,
6592         .early_init = 0,
6593 };
6594
6595 /*
6596  * This function calculates an individual cgroup's effective
6597  * protection which is derived from its own memory.min/low, its
6598  * parent's and siblings' settings, as well as the actual memory
6599  * distribution in the tree.
6600  *
6601  * The following rules apply to the effective protection values:
6602  *
6603  * 1. At the first level of reclaim, effective protection is equal to
6604  *    the declared protection in memory.min and memory.low.
6605  *
6606  * 2. To enable safe delegation of the protection configuration, at
6607  *    subsequent levels the effective protection is capped to the
6608  *    parent's effective protection.
6609  *
6610  * 3. To make complex and dynamic subtrees easier to configure, the
6611  *    user is allowed to overcommit the declared protection at a given
6612  *    level. If that is the case, the parent's effective protection is
6613  *    distributed to the children in proportion to how much protection
6614  *    they have declared and how much of it they are utilizing.
6615  *
6616  *    This makes distribution proportional, but also work-conserving:
6617  *    if one cgroup claims much more protection than it uses memory,
6618  *    the unused remainder is available to its siblings.
6619  *
6620  * 4. Conversely, when the declared protection is undercommitted at a
6621  *    given level, the distribution of the larger parental protection
6622  *    budget is NOT proportional. A cgroup's protection from a sibling
6623  *    is capped to its own memory.min/low setting.
6624  *
6625  * 5. However, to allow protecting recursive subtrees from each other
6626  *    without having to declare each individual cgroup's fixed share
6627  *    of the ancestor's claim to protection, any unutilized -
6628  *    "floating" - protection from up the tree is distributed in
6629  *    proportion to each cgroup's *usage*. This makes the protection
6630  *    neutral wrt sibling cgroups and lets them compete freely over
6631  *    the shared parental protection budget, but it protects the
6632  *    subtree as a whole from neighboring subtrees.
6633  *
6634  * Note that 4. and 5. are not in conflict: 4. is about protecting
6635  * against immediate siblings whereas 5. is about protecting against
6636  * neighboring subtrees.
6637  */
6638 static unsigned long effective_protection(unsigned long usage,
6639                                           unsigned long parent_usage,
6640                                           unsigned long setting,
6641                                           unsigned long parent_effective,
6642                                           unsigned long siblings_protected)
6643 {
6644         unsigned long protected;
6645         unsigned long ep;
6646
6647         protected = min(usage, setting);
6648         /*
6649          * If all cgroups at this level combined claim and use more
6650          * protection then what the parent affords them, distribute
6651          * shares in proportion to utilization.
6652          *
6653          * We are using actual utilization rather than the statically
6654          * claimed protection in order to be work-conserving: claimed
6655          * but unused protection is available to siblings that would
6656          * otherwise get a smaller chunk than what they claimed.
6657          */
6658         if (siblings_protected > parent_effective)
6659                 return protected * parent_effective / siblings_protected;
6660
6661         /*
6662          * Ok, utilized protection of all children is within what the
6663          * parent affords them, so we know whatever this child claims
6664          * and utilizes is effectively protected.
6665          *
6666          * If there is unprotected usage beyond this value, reclaim
6667          * will apply pressure in proportion to that amount.
6668          *
6669          * If there is unutilized protection, the cgroup will be fully
6670          * shielded from reclaim, but we do return a smaller value for
6671          * protection than what the group could enjoy in theory. This
6672          * is okay. With the overcommit distribution above, effective
6673          * protection is always dependent on how memory is actually
6674          * consumed among the siblings anyway.
6675          */
6676         ep = protected;
6677
6678         /*
6679          * If the children aren't claiming (all of) the protection
6680          * afforded to them by the parent, distribute the remainder in
6681          * proportion to the (unprotected) memory of each cgroup. That
6682          * way, cgroups that aren't explicitly prioritized wrt each
6683          * other compete freely over the allowance, but they are
6684          * collectively protected from neighboring trees.
6685          *
6686          * We're using unprotected memory for the weight so that if
6687          * some cgroups DO claim explicit protection, we don't protect
6688          * the same bytes twice.
6689          *
6690          * Check both usage and parent_usage against the respective
6691          * protected values. One should imply the other, but they
6692          * aren't read atomically - make sure the division is sane.
6693          */
6694         if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6695                 return ep;
6696         if (parent_effective > siblings_protected &&
6697             parent_usage > siblings_protected &&
6698             usage > protected) {
6699                 unsigned long unclaimed;
6700
6701                 unclaimed = parent_effective - siblings_protected;
6702                 unclaimed *= usage - protected;
6703                 unclaimed /= parent_usage - siblings_protected;
6704
6705                 ep += unclaimed;
6706         }
6707
6708         return ep;
6709 }
6710
6711 /**
6712  * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6713  * @root: the top ancestor of the sub-tree being checked
6714  * @memcg: the memory cgroup to check
6715  *
6716  * WARNING: This function is not stateless! It can only be used as part
6717  *          of a top-down tree iteration, not for isolated queries.
6718  */
6719 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6720                                      struct mem_cgroup *memcg)
6721 {
6722         unsigned long usage, parent_usage;
6723         struct mem_cgroup *parent;
6724
6725         if (mem_cgroup_disabled())
6726                 return;
6727
6728         if (!root)
6729                 root = root_mem_cgroup;
6730
6731         /*
6732          * Effective values of the reclaim targets are ignored so they
6733          * can be stale. Have a look at mem_cgroup_protection for more
6734          * details.
6735          * TODO: calculation should be more robust so that we do not need
6736          * that special casing.
6737          */
6738         if (memcg == root)
6739                 return;
6740
6741         usage = page_counter_read(&memcg->memory);
6742         if (!usage)
6743                 return;
6744
6745         parent = parent_mem_cgroup(memcg);
6746
6747         if (parent == root) {
6748                 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6749                 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6750                 return;
6751         }
6752
6753         parent_usage = page_counter_read(&parent->memory);
6754
6755         WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6756                         READ_ONCE(memcg->memory.min),
6757                         READ_ONCE(parent->memory.emin),
6758                         atomic_long_read(&parent->memory.children_min_usage)));
6759
6760         WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6761                         READ_ONCE(memcg->memory.low),
6762                         READ_ONCE(parent->memory.elow),
6763                         atomic_long_read(&parent->memory.children_low_usage)));
6764 }
6765
6766 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6767                         gfp_t gfp)
6768 {
6769         long nr_pages = folio_nr_pages(folio);
6770         int ret;
6771
6772         ret = try_charge(memcg, gfp, nr_pages);
6773         if (ret)
6774                 goto out;
6775
6776         css_get(&memcg->css);
6777         commit_charge(folio, memcg);
6778
6779         local_irq_disable();
6780         mem_cgroup_charge_statistics(memcg, nr_pages);
6781         memcg_check_events(memcg, folio_nid(folio));
6782         local_irq_enable();
6783 out:
6784         return ret;
6785 }
6786
6787 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
6788 {
6789         struct mem_cgroup *memcg;
6790         int ret;
6791
6792         memcg = get_mem_cgroup_from_mm(mm);
6793         ret = charge_memcg(folio, memcg, gfp);
6794         css_put(&memcg->css);
6795
6796         return ret;
6797 }
6798
6799 /**
6800  * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6801  * @page: page to charge
6802  * @mm: mm context of the victim
6803  * @gfp: reclaim mode
6804  * @entry: swap entry for which the page is allocated
6805  *
6806  * This function charges a page allocated for swapin. Please call this before
6807  * adding the page to the swapcache.
6808  *
6809  * Returns 0 on success. Otherwise, an error code is returned.
6810  */
6811 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6812                                   gfp_t gfp, swp_entry_t entry)
6813 {
6814         struct folio *folio = page_folio(page);
6815         struct mem_cgroup *memcg;
6816         unsigned short id;
6817         int ret;
6818
6819         if (mem_cgroup_disabled())
6820                 return 0;
6821
6822         id = lookup_swap_cgroup_id(entry);
6823         rcu_read_lock();
6824         memcg = mem_cgroup_from_id(id);
6825         if (!memcg || !css_tryget_online(&memcg->css))
6826                 memcg = get_mem_cgroup_from_mm(mm);
6827         rcu_read_unlock();
6828
6829         ret = charge_memcg(folio, memcg, gfp);
6830
6831         css_put(&memcg->css);
6832         return ret;
6833 }
6834
6835 /*
6836  * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6837  * @entry: swap entry for which the page is charged
6838  *
6839  * Call this function after successfully adding the charged page to swapcache.
6840  *
6841  * Note: This function assumes the page for which swap slot is being uncharged
6842  * is order 0 page.
6843  */
6844 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6845 {
6846         /*
6847          * Cgroup1's unified memory+swap counter has been charged with the
6848          * new swapcache page, finish the transfer by uncharging the swap
6849          * slot. The swap slot would also get uncharged when it dies, but
6850          * it can stick around indefinitely and we'd count the page twice
6851          * the entire time.
6852          *
6853          * Cgroup2 has separate resource counters for memory and swap,
6854          * so this is a non-issue here. Memory and swap charge lifetimes
6855          * correspond 1:1 to page and swap slot lifetimes: we charge the
6856          * page to memory here, and uncharge swap when the slot is freed.
6857          */
6858         if (!mem_cgroup_disabled() && do_memsw_account()) {
6859                 /*
6860                  * The swap entry might not get freed for a long time,
6861                  * let's not wait for it.  The page already received a
6862                  * memory+swap charge, drop the swap entry duplicate.
6863                  */
6864                 mem_cgroup_uncharge_swap(entry, 1);
6865         }
6866 }
6867
6868 struct uncharge_gather {
6869         struct mem_cgroup *memcg;
6870         unsigned long nr_memory;
6871         unsigned long pgpgout;
6872         unsigned long nr_kmem;
6873         int nid;
6874 };
6875
6876 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6877 {
6878         memset(ug, 0, sizeof(*ug));
6879 }
6880
6881 static void uncharge_batch(const struct uncharge_gather *ug)
6882 {
6883         unsigned long flags;
6884
6885         if (ug->nr_memory) {
6886                 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6887                 if (do_memsw_account())
6888                         page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6889                 if (ug->nr_kmem)
6890                         memcg_account_kmem(ug->memcg, -ug->nr_kmem);
6891                 memcg_oom_recover(ug->memcg);
6892         }
6893
6894         local_irq_save(flags);
6895         __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6896         __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6897         memcg_check_events(ug->memcg, ug->nid);
6898         local_irq_restore(flags);
6899
6900         /* drop reference from uncharge_folio */
6901         css_put(&ug->memcg->css);
6902 }
6903
6904 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
6905 {
6906         long nr_pages;
6907         struct mem_cgroup *memcg;
6908         struct obj_cgroup *objcg;
6909
6910         VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
6911
6912         /*
6913          * Nobody should be changing or seriously looking at
6914          * folio memcg or objcg at this point, we have fully
6915          * exclusive access to the folio.
6916          */
6917         if (folio_memcg_kmem(folio)) {
6918                 objcg = __folio_objcg(folio);
6919                 /*
6920                  * This get matches the put at the end of the function and
6921                  * kmem pages do not hold memcg references anymore.
6922                  */
6923                 memcg = get_mem_cgroup_from_objcg(objcg);
6924         } else {
6925                 memcg = __folio_memcg(folio);
6926         }
6927
6928         if (!memcg)
6929                 return;
6930
6931         if (ug->memcg != memcg) {
6932                 if (ug->memcg) {
6933                         uncharge_batch(ug);
6934                         uncharge_gather_clear(ug);
6935                 }
6936                 ug->memcg = memcg;
6937                 ug->nid = folio_nid(folio);
6938
6939                 /* pairs with css_put in uncharge_batch */
6940                 css_get(&memcg->css);
6941         }
6942
6943         nr_pages = folio_nr_pages(folio);
6944
6945         if (folio_memcg_kmem(folio)) {
6946                 ug->nr_memory += nr_pages;
6947                 ug->nr_kmem += nr_pages;
6948
6949                 folio->memcg_data = 0;
6950                 obj_cgroup_put(objcg);
6951         } else {
6952                 /* LRU pages aren't accounted at the root level */
6953                 if (!mem_cgroup_is_root(memcg))
6954                         ug->nr_memory += nr_pages;
6955                 ug->pgpgout++;
6956
6957                 folio->memcg_data = 0;
6958         }
6959
6960         css_put(&memcg->css);
6961 }
6962
6963 void __mem_cgroup_uncharge(struct folio *folio)
6964 {
6965         struct uncharge_gather ug;
6966
6967         /* Don't touch folio->lru of any random page, pre-check: */
6968         if (!folio_memcg(folio))
6969                 return;
6970
6971         uncharge_gather_clear(&ug);
6972         uncharge_folio(folio, &ug);
6973         uncharge_batch(&ug);
6974 }
6975
6976 /**
6977  * __mem_cgroup_uncharge_list - uncharge a list of page
6978  * @page_list: list of pages to uncharge
6979  *
6980  * Uncharge a list of pages previously charged with
6981  * __mem_cgroup_charge().
6982  */
6983 void __mem_cgroup_uncharge_list(struct list_head *page_list)
6984 {
6985         struct uncharge_gather ug;
6986         struct folio *folio;
6987
6988         uncharge_gather_clear(&ug);
6989         list_for_each_entry(folio, page_list, lru)
6990                 uncharge_folio(folio, &ug);
6991         if (ug.memcg)
6992                 uncharge_batch(&ug);
6993 }
6994
6995 /**
6996  * mem_cgroup_migrate - Charge a folio's replacement.
6997  * @old: Currently circulating folio.
6998  * @new: Replacement folio.
6999  *
7000  * Charge @new as a replacement folio for @old. @old will
7001  * be uncharged upon free.
7002  *
7003  * Both folios must be locked, @new->mapping must be set up.
7004  */
7005 void mem_cgroup_migrate(struct folio *old, struct folio *new)
7006 {
7007         struct mem_cgroup *memcg;
7008         long nr_pages = folio_nr_pages(new);
7009         unsigned long flags;
7010
7011         VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7012         VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7013         VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7014         VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
7015
7016         if (mem_cgroup_disabled())
7017                 return;
7018
7019         /* Page cache replacement: new folio already charged? */
7020         if (folio_memcg(new))
7021                 return;
7022
7023         memcg = folio_memcg(old);
7024         VM_WARN_ON_ONCE_FOLIO(!memcg, old);
7025         if (!memcg)
7026                 return;
7027
7028         /* Force-charge the new page. The old one will be freed soon */
7029         if (!mem_cgroup_is_root(memcg)) {
7030                 page_counter_charge(&memcg->memory, nr_pages);
7031                 if (do_memsw_account())
7032                         page_counter_charge(&memcg->memsw, nr_pages);
7033         }
7034
7035         css_get(&memcg->css);
7036         commit_charge(new, memcg);
7037
7038         local_irq_save(flags);
7039         mem_cgroup_charge_statistics(memcg, nr_pages);
7040         memcg_check_events(memcg, folio_nid(new));
7041         local_irq_restore(flags);
7042 }
7043
7044 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7045 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7046
7047 void mem_cgroup_sk_alloc(struct sock *sk)
7048 {
7049         struct mem_cgroup *memcg;
7050
7051         if (!mem_cgroup_sockets_enabled)
7052                 return;
7053
7054         /* Do not associate the sock with unrelated interrupted task's memcg. */
7055         if (!in_task())
7056                 return;
7057
7058         rcu_read_lock();
7059         memcg = mem_cgroup_from_task(current);
7060         if (memcg == root_mem_cgroup)
7061                 goto out;
7062         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7063                 goto out;
7064         if (css_tryget(&memcg->css))
7065                 sk->sk_memcg = memcg;
7066 out:
7067         rcu_read_unlock();
7068 }
7069
7070 void mem_cgroup_sk_free(struct sock *sk)
7071 {
7072         if (sk->sk_memcg)
7073                 css_put(&sk->sk_memcg->css);
7074 }
7075
7076 /**
7077  * mem_cgroup_charge_skmem - charge socket memory
7078  * @memcg: memcg to charge
7079  * @nr_pages: number of pages to charge
7080  * @gfp_mask: reclaim mode
7081  *
7082  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7083  * @memcg's configured limit, %false if it doesn't.
7084  */
7085 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7086                              gfp_t gfp_mask)
7087 {
7088         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7089                 struct page_counter *fail;
7090
7091                 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7092                         memcg->tcpmem_pressure = 0;
7093                         return true;
7094                 }
7095                 memcg->tcpmem_pressure = 1;
7096                 if (gfp_mask & __GFP_NOFAIL) {
7097                         page_counter_charge(&memcg->tcpmem, nr_pages);
7098                         return true;
7099                 }
7100                 return false;
7101         }
7102
7103         if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7104                 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7105                 return true;
7106         }
7107
7108         return false;
7109 }
7110
7111 /**
7112  * mem_cgroup_uncharge_skmem - uncharge socket memory
7113  * @memcg: memcg to uncharge
7114  * @nr_pages: number of pages to uncharge
7115  */
7116 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7117 {
7118         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7119                 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7120                 return;
7121         }
7122
7123         mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7124
7125         refill_stock(memcg, nr_pages);
7126 }
7127
7128 static int __init cgroup_memory(char *s)
7129 {
7130         char *token;
7131
7132         while ((token = strsep(&s, ",")) != NULL) {
7133                 if (!*token)
7134                         continue;
7135                 if (!strcmp(token, "nosocket"))
7136                         cgroup_memory_nosocket = true;
7137                 if (!strcmp(token, "nokmem"))
7138                         cgroup_memory_nokmem = true;
7139         }
7140         return 1;
7141 }
7142 __setup("cgroup.memory=", cgroup_memory);
7143
7144 /*
7145  * subsys_initcall() for memory controller.
7146  *
7147  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7148  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7149  * basically everything that doesn't depend on a specific mem_cgroup structure
7150  * should be initialized from here.
7151  */
7152 static int __init mem_cgroup_init(void)
7153 {
7154         int cpu, node;
7155
7156         /*
7157          * Currently s32 type (can refer to struct batched_lruvec_stat) is
7158          * used for per-memcg-per-cpu caching of per-node statistics. In order
7159          * to work fine, we should make sure that the overfill threshold can't
7160          * exceed S32_MAX / PAGE_SIZE.
7161          */
7162         BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7163
7164         cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7165                                   memcg_hotplug_cpu_dead);
7166
7167         for_each_possible_cpu(cpu)
7168                 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7169                           drain_local_stock);
7170
7171         for_each_node(node) {
7172                 struct mem_cgroup_tree_per_node *rtpn;
7173
7174                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7175                                     node_online(node) ? node : NUMA_NO_NODE);
7176
7177                 rtpn->rb_root = RB_ROOT;
7178                 rtpn->rb_rightmost = NULL;
7179                 spin_lock_init(&rtpn->lock);
7180                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7181         }
7182
7183         return 0;
7184 }
7185 subsys_initcall(mem_cgroup_init);
7186
7187 #ifdef CONFIG_MEMCG_SWAP
7188 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7189 {
7190         while (!refcount_inc_not_zero(&memcg->id.ref)) {
7191                 /*
7192                  * The root cgroup cannot be destroyed, so it's refcount must
7193                  * always be >= 1.
7194                  */
7195                 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7196                         VM_BUG_ON(1);
7197                         break;
7198                 }
7199                 memcg = parent_mem_cgroup(memcg);
7200                 if (!memcg)
7201                         memcg = root_mem_cgroup;
7202         }
7203         return memcg;
7204 }
7205
7206 /**
7207  * mem_cgroup_swapout - transfer a memsw charge to swap
7208  * @folio: folio whose memsw charge to transfer
7209  * @entry: swap entry to move the charge to
7210  *
7211  * Transfer the memsw charge of @folio to @entry.
7212  */
7213 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7214 {
7215         struct mem_cgroup *memcg, *swap_memcg;
7216         unsigned int nr_entries;
7217         unsigned short oldid;
7218
7219         VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7220         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7221
7222         if (mem_cgroup_disabled())
7223                 return;
7224
7225         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7226                 return;
7227
7228         memcg = folio_memcg(folio);
7229
7230         VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7231         if (!memcg)
7232                 return;
7233
7234         /*
7235          * In case the memcg owning these pages has been offlined and doesn't
7236          * have an ID allocated to it anymore, charge the closest online
7237          * ancestor for the swap instead and transfer the memory+swap charge.
7238          */
7239         swap_memcg = mem_cgroup_id_get_online(memcg);
7240         nr_entries = folio_nr_pages(folio);
7241         /* Get references for the tail pages, too */
7242         if (nr_entries > 1)
7243                 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7244         oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7245                                    nr_entries);
7246         VM_BUG_ON_FOLIO(oldid, folio);
7247         mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7248
7249         folio->memcg_data = 0;
7250
7251         if (!mem_cgroup_is_root(memcg))
7252                 page_counter_uncharge(&memcg->memory, nr_entries);
7253
7254         if (!cgroup_memory_noswap && memcg != swap_memcg) {
7255                 if (!mem_cgroup_is_root(swap_memcg))
7256                         page_counter_charge(&swap_memcg->memsw, nr_entries);
7257                 page_counter_uncharge(&memcg->memsw, nr_entries);
7258         }
7259
7260         /*
7261          * Interrupts should be disabled here because the caller holds the
7262          * i_pages lock which is taken with interrupts-off. It is
7263          * important here to have the interrupts disabled because it is the
7264          * only synchronisation we have for updating the per-CPU variables.
7265          */
7266         memcg_stats_lock();
7267         mem_cgroup_charge_statistics(memcg, -nr_entries);
7268         memcg_stats_unlock();
7269         memcg_check_events(memcg, folio_nid(folio));
7270
7271         css_put(&memcg->css);
7272 }
7273
7274 /**
7275  * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7276  * @folio: folio being added to swap
7277  * @entry: swap entry to charge
7278  *
7279  * Try to charge @folio's memcg for the swap space at @entry.
7280  *
7281  * Returns 0 on success, -ENOMEM on failure.
7282  */
7283 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
7284 {
7285         unsigned int nr_pages = folio_nr_pages(folio);
7286         struct page_counter *counter;
7287         struct mem_cgroup *memcg;
7288         unsigned short oldid;
7289
7290         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7291                 return 0;
7292
7293         memcg = folio_memcg(folio);
7294
7295         VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7296         if (!memcg)
7297                 return 0;
7298
7299         if (!entry.val) {
7300                 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7301                 return 0;
7302         }
7303
7304         memcg = mem_cgroup_id_get_online(memcg);
7305
7306         if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7307             !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7308                 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7309                 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7310                 mem_cgroup_id_put(memcg);
7311                 return -ENOMEM;
7312         }
7313
7314         /* Get references for the tail pages, too */
7315         if (nr_pages > 1)
7316                 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7317         oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7318         VM_BUG_ON_FOLIO(oldid, folio);
7319         mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7320
7321         return 0;
7322 }
7323
7324 /**
7325  * __mem_cgroup_uncharge_swap - uncharge swap space
7326  * @entry: swap entry to uncharge
7327  * @nr_pages: the amount of swap space to uncharge
7328  */
7329 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7330 {
7331         struct mem_cgroup *memcg;
7332         unsigned short id;
7333
7334         id = swap_cgroup_record(entry, 0, nr_pages);
7335         rcu_read_lock();
7336         memcg = mem_cgroup_from_id(id);
7337         if (memcg) {
7338                 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7339                         if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7340                                 page_counter_uncharge(&memcg->swap, nr_pages);
7341                         else
7342                                 page_counter_uncharge(&memcg->memsw, nr_pages);
7343                 }
7344                 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7345                 mem_cgroup_id_put_many(memcg, nr_pages);
7346         }
7347         rcu_read_unlock();
7348 }
7349
7350 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7351 {
7352         long nr_swap_pages = get_nr_swap_pages();
7353
7354         if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7355                 return nr_swap_pages;
7356         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7357                 nr_swap_pages = min_t(long, nr_swap_pages,
7358                                       READ_ONCE(memcg->swap.max) -
7359                                       page_counter_read(&memcg->swap));
7360         return nr_swap_pages;
7361 }
7362
7363 bool mem_cgroup_swap_full(struct page *page)
7364 {
7365         struct mem_cgroup *memcg;
7366
7367         VM_BUG_ON_PAGE(!PageLocked(page), page);
7368
7369         if (vm_swap_full())
7370                 return true;
7371         if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7372                 return false;
7373
7374         memcg = page_memcg(page);
7375         if (!memcg)
7376                 return false;
7377
7378         for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7379                 unsigned long usage = page_counter_read(&memcg->swap);
7380
7381                 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7382                     usage * 2 >= READ_ONCE(memcg->swap.max))
7383                         return true;
7384         }
7385
7386         return false;
7387 }
7388
7389 static int __init setup_swap_account(char *s)
7390 {
7391         if (!strcmp(s, "1"))
7392                 cgroup_memory_noswap = false;
7393         else if (!strcmp(s, "0"))
7394                 cgroup_memory_noswap = true;
7395         return 1;
7396 }
7397 __setup("swapaccount=", setup_swap_account);
7398
7399 static u64 swap_current_read(struct cgroup_subsys_state *css,
7400                              struct cftype *cft)
7401 {
7402         struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7403
7404         return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7405 }
7406
7407 static int swap_high_show(struct seq_file *m, void *v)
7408 {
7409         return seq_puts_memcg_tunable(m,
7410                 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7411 }
7412
7413 static ssize_t swap_high_write(struct kernfs_open_file *of,
7414                                char *buf, size_t nbytes, loff_t off)
7415 {
7416         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7417         unsigned long high;
7418         int err;
7419
7420         buf = strstrip(buf);
7421         err = page_counter_memparse(buf, "max", &high);
7422         if (err)
7423                 return err;
7424
7425         page_counter_set_high(&memcg->swap, high);
7426
7427         return nbytes;
7428 }
7429
7430 static int swap_max_show(struct seq_file *m, void *v)
7431 {
7432         return seq_puts_memcg_tunable(m,
7433                 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7434 }
7435
7436 static ssize_t swap_max_write(struct kernfs_open_file *of,
7437                               char *buf, size_t nbytes, loff_t off)
7438 {
7439         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7440         unsigned long max;
7441         int err;
7442
7443         buf = strstrip(buf);
7444         err = page_counter_memparse(buf, "max", &max);
7445         if (err)
7446                 return err;
7447
7448         xchg(&memcg->swap.max, max);
7449
7450         return nbytes;
7451 }
7452
7453 static int swap_events_show(struct seq_file *m, void *v)
7454 {
7455         struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7456
7457         seq_printf(m, "high %lu\n",
7458                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7459         seq_printf(m, "max %lu\n",
7460                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7461         seq_printf(m, "fail %lu\n",
7462                    atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7463
7464         return 0;
7465 }
7466
7467 static struct cftype swap_files[] = {
7468         {
7469                 .name = "swap.current",
7470                 .flags = CFTYPE_NOT_ON_ROOT,
7471                 .read_u64 = swap_current_read,
7472         },
7473         {
7474                 .name = "swap.high",
7475                 .flags = CFTYPE_NOT_ON_ROOT,
7476                 .seq_show = swap_high_show,
7477                 .write = swap_high_write,
7478         },
7479         {
7480                 .name = "swap.max",
7481                 .flags = CFTYPE_NOT_ON_ROOT,
7482                 .seq_show = swap_max_show,
7483                 .write = swap_max_write,
7484         },
7485         {
7486                 .name = "swap.events",
7487                 .flags = CFTYPE_NOT_ON_ROOT,
7488                 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7489                 .seq_show = swap_events_show,
7490         },
7491         { }     /* terminate */
7492 };
7493
7494 static struct cftype memsw_files[] = {
7495         {
7496                 .name = "memsw.usage_in_bytes",
7497                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7498                 .read_u64 = mem_cgroup_read_u64,
7499         },
7500         {
7501                 .name = "memsw.max_usage_in_bytes",
7502                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7503                 .write = mem_cgroup_reset,
7504                 .read_u64 = mem_cgroup_read_u64,
7505         },
7506         {
7507                 .name = "memsw.limit_in_bytes",
7508                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7509                 .write = mem_cgroup_write,
7510                 .read_u64 = mem_cgroup_read_u64,
7511         },
7512         {
7513                 .name = "memsw.failcnt",
7514                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7515                 .write = mem_cgroup_reset,
7516                 .read_u64 = mem_cgroup_read_u64,
7517         },
7518         { },    /* terminate */
7519 };
7520
7521 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7522 /**
7523  * obj_cgroup_may_zswap - check if this cgroup can zswap
7524  * @objcg: the object cgroup
7525  *
7526  * Check if the hierarchical zswap limit has been reached.
7527  *
7528  * This doesn't check for specific headroom, and it is not atomic
7529  * either. But with zswap, the size of the allocation is only known
7530  * once compression has occured, and this optimistic pre-check avoids
7531  * spending cycles on compression when there is already no room left
7532  * or zswap is disabled altogether somewhere in the hierarchy.
7533  */
7534 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
7535 {
7536         struct mem_cgroup *memcg, *original_memcg;
7537         bool ret = true;
7538
7539         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7540                 return true;
7541
7542         original_memcg = get_mem_cgroup_from_objcg(objcg);
7543         for (memcg = original_memcg; memcg != root_mem_cgroup;
7544              memcg = parent_mem_cgroup(memcg)) {
7545                 unsigned long max = READ_ONCE(memcg->zswap_max);
7546                 unsigned long pages;
7547
7548                 if (max == PAGE_COUNTER_MAX)
7549                         continue;
7550                 if (max == 0) {
7551                         ret = false;
7552                         break;
7553                 }
7554
7555                 cgroup_rstat_flush(memcg->css.cgroup);
7556                 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
7557                 if (pages < max)
7558                         continue;
7559                 ret = false;
7560                 break;
7561         }
7562         mem_cgroup_put(original_memcg);
7563         return ret;
7564 }
7565
7566 /**
7567  * obj_cgroup_charge_zswap - charge compression backend memory
7568  * @objcg: the object cgroup
7569  * @size: size of compressed object
7570  *
7571  * This forces the charge after obj_cgroup_may_swap() allowed
7572  * compression and storage in zwap for this cgroup to go ahead.
7573  */
7574 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
7575 {
7576         struct mem_cgroup *memcg;
7577
7578         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7579                 return;
7580
7581         VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
7582
7583         /* PF_MEMALLOC context, charging must succeed */
7584         if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
7585                 VM_WARN_ON_ONCE(1);
7586
7587         rcu_read_lock();
7588         memcg = obj_cgroup_memcg(objcg);
7589         mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
7590         mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
7591         rcu_read_unlock();
7592 }
7593
7594 /**
7595  * obj_cgroup_uncharge_zswap - uncharge compression backend memory
7596  * @objcg: the object cgroup
7597  * @size: size of compressed object
7598  *
7599  * Uncharges zswap memory on page in.
7600  */
7601 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
7602 {
7603         struct mem_cgroup *memcg;
7604
7605         if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7606                 return;
7607
7608         obj_cgroup_uncharge(objcg, size);
7609
7610         rcu_read_lock();
7611         memcg = obj_cgroup_memcg(objcg);
7612         mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
7613         mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
7614         rcu_read_unlock();
7615 }
7616
7617 static u64 zswap_current_read(struct cgroup_subsys_state *css,
7618                               struct cftype *cft)
7619 {
7620         cgroup_rstat_flush(css->cgroup);
7621         return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
7622 }
7623
7624 static int zswap_max_show(struct seq_file *m, void *v)
7625 {
7626         return seq_puts_memcg_tunable(m,
7627                 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
7628 }
7629
7630 static ssize_t zswap_max_write(struct kernfs_open_file *of,
7631                                char *buf, size_t nbytes, loff_t off)
7632 {
7633         struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7634         unsigned long max;
7635         int err;
7636
7637         buf = strstrip(buf);
7638         err = page_counter_memparse(buf, "max", &max);
7639         if (err)
7640                 return err;
7641
7642         xchg(&memcg->zswap_max, max);
7643
7644         return nbytes;
7645 }
7646
7647 static struct cftype zswap_files[] = {
7648         {
7649                 .name = "zswap.current",
7650                 .flags = CFTYPE_NOT_ON_ROOT,
7651                 .read_u64 = zswap_current_read,
7652         },
7653         {
7654                 .name = "zswap.max",
7655                 .flags = CFTYPE_NOT_ON_ROOT,
7656                 .seq_show = zswap_max_show,
7657                 .write = zswap_max_write,
7658         },
7659         { }     /* terminate */
7660 };
7661 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
7662
7663 /*
7664  * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7665  * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7666  * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7667  * boot parameter. This may result in premature OOPS inside
7668  * mem_cgroup_get_nr_swap_pages() function in corner cases.
7669  */
7670 static int __init mem_cgroup_swap_init(void)
7671 {
7672         /* No memory control -> no swap control */
7673         if (mem_cgroup_disabled())
7674                 cgroup_memory_noswap = true;
7675
7676         if (cgroup_memory_noswap)
7677                 return 0;
7678
7679         WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7680         WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7681 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7682         WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
7683 #endif
7684         return 0;
7685 }
7686 core_initcall(mem_cgroup_swap_init);
7687
7688 #endif /* CONFIG_MEMCG_SWAP */