clk: zynqmp: fix memory leak in zynqmp_register_clocks
[linux-2.6-microblaze.git] / mm / mapping_dirty_helpers.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/hugetlb.h>
4 #include <linux/bitops.h>
5 #include <linux/mmu_notifier.h>
6 #include <asm/cacheflush.h>
7 #include <asm/tlbflush.h>
8
9 /**
10  * struct wp_walk - Private struct for pagetable walk callbacks
11  * @range: Range for mmu notifiers
12  * @tlbflush_start: Address of first modified pte
13  * @tlbflush_end: Address of last modified pte + 1
14  * @total: Total number of modified ptes
15  */
16 struct wp_walk {
17         struct mmu_notifier_range range;
18         unsigned long tlbflush_start;
19         unsigned long tlbflush_end;
20         unsigned long total;
21 };
22
23 /**
24  * wp_pte - Write-protect a pte
25  * @pte: Pointer to the pte
26  * @addr: The virtual page address
27  * @walk: pagetable walk callback argument
28  *
29  * The function write-protects a pte and records the range in
30  * virtual address space of touched ptes for efficient range TLB flushes.
31  */
32 static int wp_pte(pte_t *pte, unsigned long addr, unsigned long end,
33                   struct mm_walk *walk)
34 {
35         struct wp_walk *wpwalk = walk->private;
36         pte_t ptent = *pte;
37
38         if (pte_write(ptent)) {
39                 pte_t old_pte = ptep_modify_prot_start(walk->vma, addr, pte);
40
41                 ptent = pte_wrprotect(old_pte);
42                 ptep_modify_prot_commit(walk->vma, addr, pte, old_pte, ptent);
43                 wpwalk->total++;
44                 wpwalk->tlbflush_start = min(wpwalk->tlbflush_start, addr);
45                 wpwalk->tlbflush_end = max(wpwalk->tlbflush_end,
46                                            addr + PAGE_SIZE);
47         }
48
49         return 0;
50 }
51
52 /**
53  * struct clean_walk - Private struct for the clean_record_pte function.
54  * @base: struct wp_walk we derive from
55  * @bitmap_pgoff: Address_space Page offset of the first bit in @bitmap
56  * @bitmap: Bitmap with one bit for each page offset in the address_space range
57  * covered.
58  * @start: Address_space page offset of first modified pte relative
59  * to @bitmap_pgoff
60  * @end: Address_space page offset of last modified pte relative
61  * to @bitmap_pgoff
62  */
63 struct clean_walk {
64         struct wp_walk base;
65         pgoff_t bitmap_pgoff;
66         unsigned long *bitmap;
67         pgoff_t start;
68         pgoff_t end;
69 };
70
71 #define to_clean_walk(_wpwalk) container_of(_wpwalk, struct clean_walk, base)
72
73 /**
74  * clean_record_pte - Clean a pte and record its address space offset in a
75  * bitmap
76  * @pte: Pointer to the pte
77  * @addr: The virtual page address
78  * @walk: pagetable walk callback argument
79  *
80  * The function cleans a pte and records the range in
81  * virtual address space of touched ptes for efficient TLB flushes.
82  * It also records dirty ptes in a bitmap representing page offsets
83  * in the address_space, as well as the first and last of the bits
84  * touched.
85  */
86 static int clean_record_pte(pte_t *pte, unsigned long addr,
87                             unsigned long end, struct mm_walk *walk)
88 {
89         struct wp_walk *wpwalk = walk->private;
90         struct clean_walk *cwalk = to_clean_walk(wpwalk);
91         pte_t ptent = *pte;
92
93         if (pte_dirty(ptent)) {
94                 pgoff_t pgoff = ((addr - walk->vma->vm_start) >> PAGE_SHIFT) +
95                         walk->vma->vm_pgoff - cwalk->bitmap_pgoff;
96                 pte_t old_pte = ptep_modify_prot_start(walk->vma, addr, pte);
97
98                 ptent = pte_mkclean(old_pte);
99                 ptep_modify_prot_commit(walk->vma, addr, pte, old_pte, ptent);
100
101                 wpwalk->total++;
102                 wpwalk->tlbflush_start = min(wpwalk->tlbflush_start, addr);
103                 wpwalk->tlbflush_end = max(wpwalk->tlbflush_end,
104                                            addr + PAGE_SIZE);
105
106                 __set_bit(pgoff, cwalk->bitmap);
107                 cwalk->start = min(cwalk->start, pgoff);
108                 cwalk->end = max(cwalk->end, pgoff + 1);
109         }
110
111         return 0;
112 }
113
114 /*
115  * wp_clean_pmd_entry - The pagewalk pmd callback.
116  *
117  * Dirty-tracking should take place on the PTE level, so
118  * WARN() if encountering a dirty huge pmd.
119  * Furthermore, never split huge pmds, since that currently
120  * causes dirty info loss. The pagefault handler should do
121  * that if needed.
122  */
123 static int wp_clean_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long end,
124                               struct mm_walk *walk)
125 {
126         pmd_t pmdval = pmd_read_atomic(pmd);
127
128         if (!pmd_trans_unstable(&pmdval))
129                 return 0;
130
131         if (pmd_none(pmdval)) {
132                 walk->action = ACTION_AGAIN;
133                 return 0;
134         }
135
136         /* Huge pmd, present or migrated */
137         walk->action = ACTION_CONTINUE;
138         if (pmd_trans_huge(pmdval) || pmd_devmap(pmdval))
139                 WARN_ON(pmd_write(pmdval) || pmd_dirty(pmdval));
140
141         return 0;
142 }
143
144 /*
145  * wp_clean_pud_entry - The pagewalk pud callback.
146  *
147  * Dirty-tracking should take place on the PTE level, so
148  * WARN() if encountering a dirty huge puds.
149  * Furthermore, never split huge puds, since that currently
150  * causes dirty info loss. The pagefault handler should do
151  * that if needed.
152  */
153 static int wp_clean_pud_entry(pud_t *pud, unsigned long addr, unsigned long end,
154                               struct mm_walk *walk)
155 {
156         pud_t pudval = READ_ONCE(*pud);
157
158         if (!pud_trans_unstable(&pudval))
159                 return 0;
160
161         if (pud_none(pudval)) {
162                 walk->action = ACTION_AGAIN;
163                 return 0;
164         }
165
166         /* Huge pud */
167         walk->action = ACTION_CONTINUE;
168         if (pud_trans_huge(pudval) || pud_devmap(pudval))
169                 WARN_ON(pud_write(pudval) || pud_dirty(pudval));
170
171         return 0;
172 }
173
174 /*
175  * wp_clean_pre_vma - The pagewalk pre_vma callback.
176  *
177  * The pre_vma callback performs the cache flush, stages the tlb flush
178  * and calls the necessary mmu notifiers.
179  */
180 static int wp_clean_pre_vma(unsigned long start, unsigned long end,
181                             struct mm_walk *walk)
182 {
183         struct wp_walk *wpwalk = walk->private;
184
185         wpwalk->tlbflush_start = end;
186         wpwalk->tlbflush_end = start;
187
188         mmu_notifier_range_init(&wpwalk->range, MMU_NOTIFY_PROTECTION_PAGE, 0,
189                                 walk->vma, walk->mm, start, end);
190         mmu_notifier_invalidate_range_start(&wpwalk->range);
191         flush_cache_range(walk->vma, start, end);
192
193         /*
194          * We're not using tlb_gather_mmu() since typically
195          * only a small subrange of PTEs are affected, whereas
196          * tlb_gather_mmu() records the full range.
197          */
198         inc_tlb_flush_pending(walk->mm);
199
200         return 0;
201 }
202
203 /*
204  * wp_clean_post_vma - The pagewalk post_vma callback.
205  *
206  * The post_vma callback performs the tlb flush and calls necessary mmu
207  * notifiers.
208  */
209 static void wp_clean_post_vma(struct mm_walk *walk)
210 {
211         struct wp_walk *wpwalk = walk->private;
212
213         if (mm_tlb_flush_nested(walk->mm))
214                 flush_tlb_range(walk->vma, wpwalk->range.start,
215                                 wpwalk->range.end);
216         else if (wpwalk->tlbflush_end > wpwalk->tlbflush_start)
217                 flush_tlb_range(walk->vma, wpwalk->tlbflush_start,
218                                 wpwalk->tlbflush_end);
219
220         mmu_notifier_invalidate_range_end(&wpwalk->range);
221         dec_tlb_flush_pending(walk->mm);
222 }
223
224 /*
225  * wp_clean_test_walk - The pagewalk test_walk callback.
226  *
227  * Won't perform dirty-tracking on COW, read-only or HUGETLB vmas.
228  */
229 static int wp_clean_test_walk(unsigned long start, unsigned long end,
230                               struct mm_walk *walk)
231 {
232         unsigned long vm_flags = READ_ONCE(walk->vma->vm_flags);
233
234         /* Skip non-applicable VMAs */
235         if ((vm_flags & (VM_SHARED | VM_MAYWRITE | VM_HUGETLB)) !=
236             (VM_SHARED | VM_MAYWRITE))
237                 return 1;
238
239         return 0;
240 }
241
242 static const struct mm_walk_ops clean_walk_ops = {
243         .pte_entry = clean_record_pte,
244         .pmd_entry = wp_clean_pmd_entry,
245         .pud_entry = wp_clean_pud_entry,
246         .test_walk = wp_clean_test_walk,
247         .pre_vma = wp_clean_pre_vma,
248         .post_vma = wp_clean_post_vma
249 };
250
251 static const struct mm_walk_ops wp_walk_ops = {
252         .pte_entry = wp_pte,
253         .pmd_entry = wp_clean_pmd_entry,
254         .pud_entry = wp_clean_pud_entry,
255         .test_walk = wp_clean_test_walk,
256         .pre_vma = wp_clean_pre_vma,
257         .post_vma = wp_clean_post_vma
258 };
259
260 /**
261  * wp_shared_mapping_range - Write-protect all ptes in an address space range
262  * @mapping: The address_space we want to write protect
263  * @first_index: The first page offset in the range
264  * @nr: Number of incremental page offsets to cover
265  *
266  * Note: This function currently skips transhuge page-table entries, since
267  * it's intended for dirty-tracking on the PTE level. It will warn on
268  * encountering transhuge write-enabled entries, though, and can easily be
269  * extended to handle them as well.
270  *
271  * Return: The number of ptes actually write-protected. Note that
272  * already write-protected ptes are not counted.
273  */
274 unsigned long wp_shared_mapping_range(struct address_space *mapping,
275                                       pgoff_t first_index, pgoff_t nr)
276 {
277         struct wp_walk wpwalk = { .total = 0 };
278
279         i_mmap_lock_read(mapping);
280         WARN_ON(walk_page_mapping(mapping, first_index, nr, &wp_walk_ops,
281                                   &wpwalk));
282         i_mmap_unlock_read(mapping);
283
284         return wpwalk.total;
285 }
286 EXPORT_SYMBOL_GPL(wp_shared_mapping_range);
287
288 /**
289  * clean_record_shared_mapping_range - Clean and record all ptes in an
290  * address space range
291  * @mapping: The address_space we want to clean
292  * @first_index: The first page offset in the range
293  * @nr: Number of incremental page offsets to cover
294  * @bitmap_pgoff: The page offset of the first bit in @bitmap
295  * @bitmap: Pointer to a bitmap of at least @nr bits. The bitmap needs to
296  * cover the whole range @first_index..@first_index + @nr.
297  * @start: Pointer to number of the first set bit in @bitmap.
298  * is modified as new bits are set by the function.
299  * @end: Pointer to the number of the last set bit in @bitmap.
300  * none set. The value is modified as new bits are set by the function.
301  *
302  * Note: When this function returns there is no guarantee that a CPU has
303  * not already dirtied new ptes. However it will not clean any ptes not
304  * reported in the bitmap. The guarantees are as follows:
305  * a) All ptes dirty when the function starts executing will end up recorded
306  *    in the bitmap.
307  * b) All ptes dirtied after that will either remain dirty, be recorded in the
308  *    bitmap or both.
309  *
310  * If a caller needs to make sure all dirty ptes are picked up and none
311  * additional are added, it first needs to write-protect the address-space
312  * range and make sure new writers are blocked in page_mkwrite() or
313  * pfn_mkwrite(). And then after a TLB flush following the write-protection
314  * pick up all dirty bits.
315  *
316  * Note: This function currently skips transhuge page-table entries, since
317  * it's intended for dirty-tracking on the PTE level. It will warn on
318  * encountering transhuge dirty entries, though, and can easily be extended
319  * to handle them as well.
320  *
321  * Return: The number of dirty ptes actually cleaned.
322  */
323 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
324                                                 pgoff_t first_index, pgoff_t nr,
325                                                 pgoff_t bitmap_pgoff,
326                                                 unsigned long *bitmap,
327                                                 pgoff_t *start,
328                                                 pgoff_t *end)
329 {
330         bool none_set = (*start >= *end);
331         struct clean_walk cwalk = {
332                 .base = { .total = 0 },
333                 .bitmap_pgoff = bitmap_pgoff,
334                 .bitmap = bitmap,
335                 .start = none_set ? nr : *start,
336                 .end = none_set ? 0 : *end,
337         };
338
339         i_mmap_lock_read(mapping);
340         WARN_ON(walk_page_mapping(mapping, first_index, nr, &clean_walk_ops,
341                                   &cwalk.base));
342         i_mmap_unlock_read(mapping);
343
344         *start = cwalk.start;
345         *end = cwalk.end;
346
347         return cwalk.base.total;
348 }
349 EXPORT_SYMBOL_GPL(clean_record_shared_mapping_range);