sched/fair: Load balance aggressively for SCHED_IDLE CPUs
[linux-2.6-microblaze.git] / mm / madvise.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *      linux/mm/madvise.c
4  *
5  * Copyright (C) 1999  Linus Torvalds
6  * Copyright (C) 2002  Christoph Hellwig
7  */
8
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/ksm.h>
21 #include <linux/fs.h>
22 #include <linux/file.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/pagewalk.h>
26 #include <linux/swap.h>
27 #include <linux/swapops.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/mmu_notifier.h>
30
31 #include <asm/tlb.h>
32
33 #include "internal.h"
34
35 struct madvise_walk_private {
36         struct mmu_gather *tlb;
37         bool pageout;
38 };
39
40 /*
41  * Any behaviour which results in changes to the vma->vm_flags needs to
42  * take mmap_sem for writing. Others, which simply traverse vmas, need
43  * to only take it for reading.
44  */
45 static int madvise_need_mmap_write(int behavior)
46 {
47         switch (behavior) {
48         case MADV_REMOVE:
49         case MADV_WILLNEED:
50         case MADV_DONTNEED:
51         case MADV_COLD:
52         case MADV_PAGEOUT:
53         case MADV_FREE:
54                 return 0;
55         default:
56                 /* be safe, default to 1. list exceptions explicitly */
57                 return 1;
58         }
59 }
60
61 /*
62  * We can potentially split a vm area into separate
63  * areas, each area with its own behavior.
64  */
65 static long madvise_behavior(struct vm_area_struct *vma,
66                      struct vm_area_struct **prev,
67                      unsigned long start, unsigned long end, int behavior)
68 {
69         struct mm_struct *mm = vma->vm_mm;
70         int error = 0;
71         pgoff_t pgoff;
72         unsigned long new_flags = vma->vm_flags;
73
74         switch (behavior) {
75         case MADV_NORMAL:
76                 new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
77                 break;
78         case MADV_SEQUENTIAL:
79                 new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
80                 break;
81         case MADV_RANDOM:
82                 new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
83                 break;
84         case MADV_DONTFORK:
85                 new_flags |= VM_DONTCOPY;
86                 break;
87         case MADV_DOFORK:
88                 if (vma->vm_flags & VM_IO) {
89                         error = -EINVAL;
90                         goto out;
91                 }
92                 new_flags &= ~VM_DONTCOPY;
93                 break;
94         case MADV_WIPEONFORK:
95                 /* MADV_WIPEONFORK is only supported on anonymous memory. */
96                 if (vma->vm_file || vma->vm_flags & VM_SHARED) {
97                         error = -EINVAL;
98                         goto out;
99                 }
100                 new_flags |= VM_WIPEONFORK;
101                 break;
102         case MADV_KEEPONFORK:
103                 new_flags &= ~VM_WIPEONFORK;
104                 break;
105         case MADV_DONTDUMP:
106                 new_flags |= VM_DONTDUMP;
107                 break;
108         case MADV_DODUMP:
109                 if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL) {
110                         error = -EINVAL;
111                         goto out;
112                 }
113                 new_flags &= ~VM_DONTDUMP;
114                 break;
115         case MADV_MERGEABLE:
116         case MADV_UNMERGEABLE:
117                 error = ksm_madvise(vma, start, end, behavior, &new_flags);
118                 if (error)
119                         goto out_convert_errno;
120                 break;
121         case MADV_HUGEPAGE:
122         case MADV_NOHUGEPAGE:
123                 error = hugepage_madvise(vma, &new_flags, behavior);
124                 if (error)
125                         goto out_convert_errno;
126                 break;
127         }
128
129         if (new_flags == vma->vm_flags) {
130                 *prev = vma;
131                 goto out;
132         }
133
134         pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
135         *prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma,
136                           vma->vm_file, pgoff, vma_policy(vma),
137                           vma->vm_userfaultfd_ctx);
138         if (*prev) {
139                 vma = *prev;
140                 goto success;
141         }
142
143         *prev = vma;
144
145         if (start != vma->vm_start) {
146                 if (unlikely(mm->map_count >= sysctl_max_map_count)) {
147                         error = -ENOMEM;
148                         goto out;
149                 }
150                 error = __split_vma(mm, vma, start, 1);
151                 if (error)
152                         goto out_convert_errno;
153         }
154
155         if (end != vma->vm_end) {
156                 if (unlikely(mm->map_count >= sysctl_max_map_count)) {
157                         error = -ENOMEM;
158                         goto out;
159                 }
160                 error = __split_vma(mm, vma, end, 0);
161                 if (error)
162                         goto out_convert_errno;
163         }
164
165 success:
166         /*
167          * vm_flags is protected by the mmap_sem held in write mode.
168          */
169         vma->vm_flags = new_flags;
170
171 out_convert_errno:
172         /*
173          * madvise() returns EAGAIN if kernel resources, such as
174          * slab, are temporarily unavailable.
175          */
176         if (error == -ENOMEM)
177                 error = -EAGAIN;
178 out:
179         return error;
180 }
181
182 #ifdef CONFIG_SWAP
183 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
184         unsigned long end, struct mm_walk *walk)
185 {
186         pte_t *orig_pte;
187         struct vm_area_struct *vma = walk->private;
188         unsigned long index;
189
190         if (pmd_none_or_trans_huge_or_clear_bad(pmd))
191                 return 0;
192
193         for (index = start; index != end; index += PAGE_SIZE) {
194                 pte_t pte;
195                 swp_entry_t entry;
196                 struct page *page;
197                 spinlock_t *ptl;
198
199                 orig_pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
200                 pte = *(orig_pte + ((index - start) / PAGE_SIZE));
201                 pte_unmap_unlock(orig_pte, ptl);
202
203                 if (pte_present(pte) || pte_none(pte))
204                         continue;
205                 entry = pte_to_swp_entry(pte);
206                 if (unlikely(non_swap_entry(entry)))
207                         continue;
208
209                 page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
210                                                         vma, index, false);
211                 if (page)
212                         put_page(page);
213         }
214
215         return 0;
216 }
217
218 static const struct mm_walk_ops swapin_walk_ops = {
219         .pmd_entry              = swapin_walk_pmd_entry,
220 };
221
222 static void force_shm_swapin_readahead(struct vm_area_struct *vma,
223                 unsigned long start, unsigned long end,
224                 struct address_space *mapping)
225 {
226         pgoff_t index;
227         struct page *page;
228         swp_entry_t swap;
229
230         for (; start < end; start += PAGE_SIZE) {
231                 index = ((start - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
232
233                 page = find_get_entry(mapping, index);
234                 if (!xa_is_value(page)) {
235                         if (page)
236                                 put_page(page);
237                         continue;
238                 }
239                 swap = radix_to_swp_entry(page);
240                 page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
241                                                         NULL, 0, false);
242                 if (page)
243                         put_page(page);
244         }
245
246         lru_add_drain();        /* Push any new pages onto the LRU now */
247 }
248 #endif          /* CONFIG_SWAP */
249
250 /*
251  * Schedule all required I/O operations.  Do not wait for completion.
252  */
253 static long madvise_willneed(struct vm_area_struct *vma,
254                              struct vm_area_struct **prev,
255                              unsigned long start, unsigned long end)
256 {
257         struct file *file = vma->vm_file;
258         loff_t offset;
259
260         *prev = vma;
261 #ifdef CONFIG_SWAP
262         if (!file) {
263                 walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
264                 lru_add_drain(); /* Push any new pages onto the LRU now */
265                 return 0;
266         }
267
268         if (shmem_mapping(file->f_mapping)) {
269                 force_shm_swapin_readahead(vma, start, end,
270                                         file->f_mapping);
271                 return 0;
272         }
273 #else
274         if (!file)
275                 return -EBADF;
276 #endif
277
278         if (IS_DAX(file_inode(file))) {
279                 /* no bad return value, but ignore advice */
280                 return 0;
281         }
282
283         /*
284          * Filesystem's fadvise may need to take various locks.  We need to
285          * explicitly grab a reference because the vma (and hence the
286          * vma's reference to the file) can go away as soon as we drop
287          * mmap_sem.
288          */
289         *prev = NULL;   /* tell sys_madvise we drop mmap_sem */
290         get_file(file);
291         up_read(&current->mm->mmap_sem);
292         offset = (loff_t)(start - vma->vm_start)
293                         + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
294         vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
295         fput(file);
296         down_read(&current->mm->mmap_sem);
297         return 0;
298 }
299
300 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
301                                 unsigned long addr, unsigned long end,
302                                 struct mm_walk *walk)
303 {
304         struct madvise_walk_private *private = walk->private;
305         struct mmu_gather *tlb = private->tlb;
306         bool pageout = private->pageout;
307         struct mm_struct *mm = tlb->mm;
308         struct vm_area_struct *vma = walk->vma;
309         pte_t *orig_pte, *pte, ptent;
310         spinlock_t *ptl;
311         struct page *page = NULL;
312         LIST_HEAD(page_list);
313
314         if (fatal_signal_pending(current))
315                 return -EINTR;
316
317 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
318         if (pmd_trans_huge(*pmd)) {
319                 pmd_t orig_pmd;
320                 unsigned long next = pmd_addr_end(addr, end);
321
322                 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
323                 ptl = pmd_trans_huge_lock(pmd, vma);
324                 if (!ptl)
325                         return 0;
326
327                 orig_pmd = *pmd;
328                 if (is_huge_zero_pmd(orig_pmd))
329                         goto huge_unlock;
330
331                 if (unlikely(!pmd_present(orig_pmd))) {
332                         VM_BUG_ON(thp_migration_supported() &&
333                                         !is_pmd_migration_entry(orig_pmd));
334                         goto huge_unlock;
335                 }
336
337                 page = pmd_page(orig_pmd);
338                 if (next - addr != HPAGE_PMD_SIZE) {
339                         int err;
340
341                         if (page_mapcount(page) != 1)
342                                 goto huge_unlock;
343
344                         get_page(page);
345                         spin_unlock(ptl);
346                         lock_page(page);
347                         err = split_huge_page(page);
348                         unlock_page(page);
349                         put_page(page);
350                         if (!err)
351                                 goto regular_page;
352                         return 0;
353                 }
354
355                 if (pmd_young(orig_pmd)) {
356                         pmdp_invalidate(vma, addr, pmd);
357                         orig_pmd = pmd_mkold(orig_pmd);
358
359                         set_pmd_at(mm, addr, pmd, orig_pmd);
360                         tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
361                 }
362
363                 ClearPageReferenced(page);
364                 test_and_clear_page_young(page);
365                 if (pageout) {
366                         if (!isolate_lru_page(page)) {
367                                 if (PageUnevictable(page))
368                                         putback_lru_page(page);
369                                 else
370                                         list_add(&page->lru, &page_list);
371                         }
372                 } else
373                         deactivate_page(page);
374 huge_unlock:
375                 spin_unlock(ptl);
376                 if (pageout)
377                         reclaim_pages(&page_list);
378                 return 0;
379         }
380
381         if (pmd_trans_unstable(pmd))
382                 return 0;
383 regular_page:
384 #endif
385         tlb_change_page_size(tlb, PAGE_SIZE);
386         orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
387         flush_tlb_batched_pending(mm);
388         arch_enter_lazy_mmu_mode();
389         for (; addr < end; pte++, addr += PAGE_SIZE) {
390                 ptent = *pte;
391
392                 if (pte_none(ptent))
393                         continue;
394
395                 if (!pte_present(ptent))
396                         continue;
397
398                 page = vm_normal_page(vma, addr, ptent);
399                 if (!page)
400                         continue;
401
402                 /*
403                  * Creating a THP page is expensive so split it only if we
404                  * are sure it's worth. Split it if we are only owner.
405                  */
406                 if (PageTransCompound(page)) {
407                         if (page_mapcount(page) != 1)
408                                 break;
409                         get_page(page);
410                         if (!trylock_page(page)) {
411                                 put_page(page);
412                                 break;
413                         }
414                         pte_unmap_unlock(orig_pte, ptl);
415                         if (split_huge_page(page)) {
416                                 unlock_page(page);
417                                 put_page(page);
418                                 pte_offset_map_lock(mm, pmd, addr, &ptl);
419                                 break;
420                         }
421                         unlock_page(page);
422                         put_page(page);
423                         pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
424                         pte--;
425                         addr -= PAGE_SIZE;
426                         continue;
427                 }
428
429                 VM_BUG_ON_PAGE(PageTransCompound(page), page);
430
431                 if (pte_young(ptent)) {
432                         ptent = ptep_get_and_clear_full(mm, addr, pte,
433                                                         tlb->fullmm);
434                         ptent = pte_mkold(ptent);
435                         set_pte_at(mm, addr, pte, ptent);
436                         tlb_remove_tlb_entry(tlb, pte, addr);
437                 }
438
439                 /*
440                  * We are deactivating a page for accelerating reclaiming.
441                  * VM couldn't reclaim the page unless we clear PG_young.
442                  * As a side effect, it makes confuse idle-page tracking
443                  * because they will miss recent referenced history.
444                  */
445                 ClearPageReferenced(page);
446                 test_and_clear_page_young(page);
447                 if (pageout) {
448                         if (!isolate_lru_page(page)) {
449                                 if (PageUnevictable(page))
450                                         putback_lru_page(page);
451                                 else
452                                         list_add(&page->lru, &page_list);
453                         }
454                 } else
455                         deactivate_page(page);
456         }
457
458         arch_leave_lazy_mmu_mode();
459         pte_unmap_unlock(orig_pte, ptl);
460         if (pageout)
461                 reclaim_pages(&page_list);
462         cond_resched();
463
464         return 0;
465 }
466
467 static const struct mm_walk_ops cold_walk_ops = {
468         .pmd_entry = madvise_cold_or_pageout_pte_range,
469 };
470
471 static void madvise_cold_page_range(struct mmu_gather *tlb,
472                              struct vm_area_struct *vma,
473                              unsigned long addr, unsigned long end)
474 {
475         struct madvise_walk_private walk_private = {
476                 .pageout = false,
477                 .tlb = tlb,
478         };
479
480         tlb_start_vma(tlb, vma);
481         walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
482         tlb_end_vma(tlb, vma);
483 }
484
485 static long madvise_cold(struct vm_area_struct *vma,
486                         struct vm_area_struct **prev,
487                         unsigned long start_addr, unsigned long end_addr)
488 {
489         struct mm_struct *mm = vma->vm_mm;
490         struct mmu_gather tlb;
491
492         *prev = vma;
493         if (!can_madv_lru_vma(vma))
494                 return -EINVAL;
495
496         lru_add_drain();
497         tlb_gather_mmu(&tlb, mm, start_addr, end_addr);
498         madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
499         tlb_finish_mmu(&tlb, start_addr, end_addr);
500
501         return 0;
502 }
503
504 static void madvise_pageout_page_range(struct mmu_gather *tlb,
505                              struct vm_area_struct *vma,
506                              unsigned long addr, unsigned long end)
507 {
508         struct madvise_walk_private walk_private = {
509                 .pageout = true,
510                 .tlb = tlb,
511         };
512
513         tlb_start_vma(tlb, vma);
514         walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
515         tlb_end_vma(tlb, vma);
516 }
517
518 static inline bool can_do_pageout(struct vm_area_struct *vma)
519 {
520         if (vma_is_anonymous(vma))
521                 return true;
522         if (!vma->vm_file)
523                 return false;
524         /*
525          * paging out pagecache only for non-anonymous mappings that correspond
526          * to the files the calling process could (if tried) open for writing;
527          * otherwise we'd be including shared non-exclusive mappings, which
528          * opens a side channel.
529          */
530         return inode_owner_or_capable(file_inode(vma->vm_file)) ||
531                 inode_permission(file_inode(vma->vm_file), MAY_WRITE) == 0;
532 }
533
534 static long madvise_pageout(struct vm_area_struct *vma,
535                         struct vm_area_struct **prev,
536                         unsigned long start_addr, unsigned long end_addr)
537 {
538         struct mm_struct *mm = vma->vm_mm;
539         struct mmu_gather tlb;
540
541         *prev = vma;
542         if (!can_madv_lru_vma(vma))
543                 return -EINVAL;
544
545         if (!can_do_pageout(vma))
546                 return 0;
547
548         lru_add_drain();
549         tlb_gather_mmu(&tlb, mm, start_addr, end_addr);
550         madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
551         tlb_finish_mmu(&tlb, start_addr, end_addr);
552
553         return 0;
554 }
555
556 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
557                                 unsigned long end, struct mm_walk *walk)
558
559 {
560         struct mmu_gather *tlb = walk->private;
561         struct mm_struct *mm = tlb->mm;
562         struct vm_area_struct *vma = walk->vma;
563         spinlock_t *ptl;
564         pte_t *orig_pte, *pte, ptent;
565         struct page *page;
566         int nr_swap = 0;
567         unsigned long next;
568
569         next = pmd_addr_end(addr, end);
570         if (pmd_trans_huge(*pmd))
571                 if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
572                         goto next;
573
574         if (pmd_trans_unstable(pmd))
575                 return 0;
576
577         tlb_change_page_size(tlb, PAGE_SIZE);
578         orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
579         flush_tlb_batched_pending(mm);
580         arch_enter_lazy_mmu_mode();
581         for (; addr != end; pte++, addr += PAGE_SIZE) {
582                 ptent = *pte;
583
584                 if (pte_none(ptent))
585                         continue;
586                 /*
587                  * If the pte has swp_entry, just clear page table to
588                  * prevent swap-in which is more expensive rather than
589                  * (page allocation + zeroing).
590                  */
591                 if (!pte_present(ptent)) {
592                         swp_entry_t entry;
593
594                         entry = pte_to_swp_entry(ptent);
595                         if (non_swap_entry(entry))
596                                 continue;
597                         nr_swap--;
598                         free_swap_and_cache(entry);
599                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
600                         continue;
601                 }
602
603                 page = vm_normal_page(vma, addr, ptent);
604                 if (!page)
605                         continue;
606
607                 /*
608                  * If pmd isn't transhuge but the page is THP and
609                  * is owned by only this process, split it and
610                  * deactivate all pages.
611                  */
612                 if (PageTransCompound(page)) {
613                         if (page_mapcount(page) != 1)
614                                 goto out;
615                         get_page(page);
616                         if (!trylock_page(page)) {
617                                 put_page(page);
618                                 goto out;
619                         }
620                         pte_unmap_unlock(orig_pte, ptl);
621                         if (split_huge_page(page)) {
622                                 unlock_page(page);
623                                 put_page(page);
624                                 pte_offset_map_lock(mm, pmd, addr, &ptl);
625                                 goto out;
626                         }
627                         unlock_page(page);
628                         put_page(page);
629                         pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
630                         pte--;
631                         addr -= PAGE_SIZE;
632                         continue;
633                 }
634
635                 VM_BUG_ON_PAGE(PageTransCompound(page), page);
636
637                 if (PageSwapCache(page) || PageDirty(page)) {
638                         if (!trylock_page(page))
639                                 continue;
640                         /*
641                          * If page is shared with others, we couldn't clear
642                          * PG_dirty of the page.
643                          */
644                         if (page_mapcount(page) != 1) {
645                                 unlock_page(page);
646                                 continue;
647                         }
648
649                         if (PageSwapCache(page) && !try_to_free_swap(page)) {
650                                 unlock_page(page);
651                                 continue;
652                         }
653
654                         ClearPageDirty(page);
655                         unlock_page(page);
656                 }
657
658                 if (pte_young(ptent) || pte_dirty(ptent)) {
659                         /*
660                          * Some of architecture(ex, PPC) don't update TLB
661                          * with set_pte_at and tlb_remove_tlb_entry so for
662                          * the portability, remap the pte with old|clean
663                          * after pte clearing.
664                          */
665                         ptent = ptep_get_and_clear_full(mm, addr, pte,
666                                                         tlb->fullmm);
667
668                         ptent = pte_mkold(ptent);
669                         ptent = pte_mkclean(ptent);
670                         set_pte_at(mm, addr, pte, ptent);
671                         tlb_remove_tlb_entry(tlb, pte, addr);
672                 }
673                 mark_page_lazyfree(page);
674         }
675 out:
676         if (nr_swap) {
677                 if (current->mm == mm)
678                         sync_mm_rss(mm);
679
680                 add_mm_counter(mm, MM_SWAPENTS, nr_swap);
681         }
682         arch_leave_lazy_mmu_mode();
683         pte_unmap_unlock(orig_pte, ptl);
684         cond_resched();
685 next:
686         return 0;
687 }
688
689 static const struct mm_walk_ops madvise_free_walk_ops = {
690         .pmd_entry              = madvise_free_pte_range,
691 };
692
693 static int madvise_free_single_vma(struct vm_area_struct *vma,
694                         unsigned long start_addr, unsigned long end_addr)
695 {
696         struct mm_struct *mm = vma->vm_mm;
697         struct mmu_notifier_range range;
698         struct mmu_gather tlb;
699
700         /* MADV_FREE works for only anon vma at the moment */
701         if (!vma_is_anonymous(vma))
702                 return -EINVAL;
703
704         range.start = max(vma->vm_start, start_addr);
705         if (range.start >= vma->vm_end)
706                 return -EINVAL;
707         range.end = min(vma->vm_end, end_addr);
708         if (range.end <= vma->vm_start)
709                 return -EINVAL;
710         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
711                                 range.start, range.end);
712
713         lru_add_drain();
714         tlb_gather_mmu(&tlb, mm, range.start, range.end);
715         update_hiwater_rss(mm);
716
717         mmu_notifier_invalidate_range_start(&range);
718         tlb_start_vma(&tlb, vma);
719         walk_page_range(vma->vm_mm, range.start, range.end,
720                         &madvise_free_walk_ops, &tlb);
721         tlb_end_vma(&tlb, vma);
722         mmu_notifier_invalidate_range_end(&range);
723         tlb_finish_mmu(&tlb, range.start, range.end);
724
725         return 0;
726 }
727
728 /*
729  * Application no longer needs these pages.  If the pages are dirty,
730  * it's OK to just throw them away.  The app will be more careful about
731  * data it wants to keep.  Be sure to free swap resources too.  The
732  * zap_page_range call sets things up for shrink_active_list to actually free
733  * these pages later if no one else has touched them in the meantime,
734  * although we could add these pages to a global reuse list for
735  * shrink_active_list to pick up before reclaiming other pages.
736  *
737  * NB: This interface discards data rather than pushes it out to swap,
738  * as some implementations do.  This has performance implications for
739  * applications like large transactional databases which want to discard
740  * pages in anonymous maps after committing to backing store the data
741  * that was kept in them.  There is no reason to write this data out to
742  * the swap area if the application is discarding it.
743  *
744  * An interface that causes the system to free clean pages and flush
745  * dirty pages is already available as msync(MS_INVALIDATE).
746  */
747 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
748                                         unsigned long start, unsigned long end)
749 {
750         zap_page_range(vma, start, end - start);
751         return 0;
752 }
753
754 static long madvise_dontneed_free(struct vm_area_struct *vma,
755                                   struct vm_area_struct **prev,
756                                   unsigned long start, unsigned long end,
757                                   int behavior)
758 {
759         *prev = vma;
760         if (!can_madv_lru_vma(vma))
761                 return -EINVAL;
762
763         if (!userfaultfd_remove(vma, start, end)) {
764                 *prev = NULL; /* mmap_sem has been dropped, prev is stale */
765
766                 down_read(&current->mm->mmap_sem);
767                 vma = find_vma(current->mm, start);
768                 if (!vma)
769                         return -ENOMEM;
770                 if (start < vma->vm_start) {
771                         /*
772                          * This "vma" under revalidation is the one
773                          * with the lowest vma->vm_start where start
774                          * is also < vma->vm_end. If start <
775                          * vma->vm_start it means an hole materialized
776                          * in the user address space within the
777                          * virtual range passed to MADV_DONTNEED
778                          * or MADV_FREE.
779                          */
780                         return -ENOMEM;
781                 }
782                 if (!can_madv_lru_vma(vma))
783                         return -EINVAL;
784                 if (end > vma->vm_end) {
785                         /*
786                          * Don't fail if end > vma->vm_end. If the old
787                          * vma was splitted while the mmap_sem was
788                          * released the effect of the concurrent
789                          * operation may not cause madvise() to
790                          * have an undefined result. There may be an
791                          * adjacent next vma that we'll walk
792                          * next. userfaultfd_remove() will generate an
793                          * UFFD_EVENT_REMOVE repetition on the
794                          * end-vma->vm_end range, but the manager can
795                          * handle a repetition fine.
796                          */
797                         end = vma->vm_end;
798                 }
799                 VM_WARN_ON(start >= end);
800         }
801
802         if (behavior == MADV_DONTNEED)
803                 return madvise_dontneed_single_vma(vma, start, end);
804         else if (behavior == MADV_FREE)
805                 return madvise_free_single_vma(vma, start, end);
806         else
807                 return -EINVAL;
808 }
809
810 /*
811  * Application wants to free up the pages and associated backing store.
812  * This is effectively punching a hole into the middle of a file.
813  */
814 static long madvise_remove(struct vm_area_struct *vma,
815                                 struct vm_area_struct **prev,
816                                 unsigned long start, unsigned long end)
817 {
818         loff_t offset;
819         int error;
820         struct file *f;
821
822         *prev = NULL;   /* tell sys_madvise we drop mmap_sem */
823
824         if (vma->vm_flags & VM_LOCKED)
825                 return -EINVAL;
826
827         f = vma->vm_file;
828
829         if (!f || !f->f_mapping || !f->f_mapping->host) {
830                         return -EINVAL;
831         }
832
833         if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
834                 return -EACCES;
835
836         offset = (loff_t)(start - vma->vm_start)
837                         + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
838
839         /*
840          * Filesystem's fallocate may need to take i_mutex.  We need to
841          * explicitly grab a reference because the vma (and hence the
842          * vma's reference to the file) can go away as soon as we drop
843          * mmap_sem.
844          */
845         get_file(f);
846         if (userfaultfd_remove(vma, start, end)) {
847                 /* mmap_sem was not released by userfaultfd_remove() */
848                 up_read(&current->mm->mmap_sem);
849         }
850         error = vfs_fallocate(f,
851                                 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
852                                 offset, end - start);
853         fput(f);
854         down_read(&current->mm->mmap_sem);
855         return error;
856 }
857
858 #ifdef CONFIG_MEMORY_FAILURE
859 /*
860  * Error injection support for memory error handling.
861  */
862 static int madvise_inject_error(int behavior,
863                 unsigned long start, unsigned long end)
864 {
865         struct page *page;
866         struct zone *zone;
867         unsigned long size;
868
869         if (!capable(CAP_SYS_ADMIN))
870                 return -EPERM;
871
872
873         for (; start < end; start += size) {
874                 unsigned long pfn;
875                 int ret;
876
877                 ret = get_user_pages_fast(start, 1, 0, &page);
878                 if (ret != 1)
879                         return ret;
880                 pfn = page_to_pfn(page);
881
882                 /*
883                  * When soft offlining hugepages, after migrating the page
884                  * we dissolve it, therefore in the second loop "page" will
885                  * no longer be a compound page.
886                  */
887                 size = page_size(compound_head(page));
888
889                 if (PageHWPoison(page)) {
890                         put_page(page);
891                         continue;
892                 }
893
894                 if (behavior == MADV_SOFT_OFFLINE) {
895                         pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
896                                         pfn, start);
897
898                         ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
899                         if (ret)
900                                 return ret;
901                         continue;
902                 }
903
904                 pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
905                                 pfn, start);
906
907                 /*
908                  * Drop the page reference taken by get_user_pages_fast(). In
909                  * the absence of MF_COUNT_INCREASED the memory_failure()
910                  * routine is responsible for pinning the page to prevent it
911                  * from being released back to the page allocator.
912                  */
913                 put_page(page);
914                 ret = memory_failure(pfn, 0);
915                 if (ret)
916                         return ret;
917         }
918
919         /* Ensure that all poisoned pages are removed from per-cpu lists */
920         for_each_populated_zone(zone)
921                 drain_all_pages(zone);
922
923         return 0;
924 }
925 #endif
926
927 static long
928 madvise_vma(struct vm_area_struct *vma, struct vm_area_struct **prev,
929                 unsigned long start, unsigned long end, int behavior)
930 {
931         switch (behavior) {
932         case MADV_REMOVE:
933                 return madvise_remove(vma, prev, start, end);
934         case MADV_WILLNEED:
935                 return madvise_willneed(vma, prev, start, end);
936         case MADV_COLD:
937                 return madvise_cold(vma, prev, start, end);
938         case MADV_PAGEOUT:
939                 return madvise_pageout(vma, prev, start, end);
940         case MADV_FREE:
941         case MADV_DONTNEED:
942                 return madvise_dontneed_free(vma, prev, start, end, behavior);
943         default:
944                 return madvise_behavior(vma, prev, start, end, behavior);
945         }
946 }
947
948 static bool
949 madvise_behavior_valid(int behavior)
950 {
951         switch (behavior) {
952         case MADV_DOFORK:
953         case MADV_DONTFORK:
954         case MADV_NORMAL:
955         case MADV_SEQUENTIAL:
956         case MADV_RANDOM:
957         case MADV_REMOVE:
958         case MADV_WILLNEED:
959         case MADV_DONTNEED:
960         case MADV_FREE:
961         case MADV_COLD:
962         case MADV_PAGEOUT:
963 #ifdef CONFIG_KSM
964         case MADV_MERGEABLE:
965         case MADV_UNMERGEABLE:
966 #endif
967 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
968         case MADV_HUGEPAGE:
969         case MADV_NOHUGEPAGE:
970 #endif
971         case MADV_DONTDUMP:
972         case MADV_DODUMP:
973         case MADV_WIPEONFORK:
974         case MADV_KEEPONFORK:
975 #ifdef CONFIG_MEMORY_FAILURE
976         case MADV_SOFT_OFFLINE:
977         case MADV_HWPOISON:
978 #endif
979                 return true;
980
981         default:
982                 return false;
983         }
984 }
985
986 /*
987  * The madvise(2) system call.
988  *
989  * Applications can use madvise() to advise the kernel how it should
990  * handle paging I/O in this VM area.  The idea is to help the kernel
991  * use appropriate read-ahead and caching techniques.  The information
992  * provided is advisory only, and can be safely disregarded by the
993  * kernel without affecting the correct operation of the application.
994  *
995  * behavior values:
996  *  MADV_NORMAL - the default behavior is to read clusters.  This
997  *              results in some read-ahead and read-behind.
998  *  MADV_RANDOM - the system should read the minimum amount of data
999  *              on any access, since it is unlikely that the appli-
1000  *              cation will need more than what it asks for.
1001  *  MADV_SEQUENTIAL - pages in the given range will probably be accessed
1002  *              once, so they can be aggressively read ahead, and
1003  *              can be freed soon after they are accessed.
1004  *  MADV_WILLNEED - the application is notifying the system to read
1005  *              some pages ahead.
1006  *  MADV_DONTNEED - the application is finished with the given range,
1007  *              so the kernel can free resources associated with it.
1008  *  MADV_FREE - the application marks pages in the given range as lazy free,
1009  *              where actual purges are postponed until memory pressure happens.
1010  *  MADV_REMOVE - the application wants to free up the given range of
1011  *              pages and associated backing store.
1012  *  MADV_DONTFORK - omit this area from child's address space when forking:
1013  *              typically, to avoid COWing pages pinned by get_user_pages().
1014  *  MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1015  *  MADV_WIPEONFORK - present the child process with zero-filled memory in this
1016  *              range after a fork.
1017  *  MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1018  *  MADV_HWPOISON - trigger memory error handler as if the given memory range
1019  *              were corrupted by unrecoverable hardware memory failure.
1020  *  MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1021  *  MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1022  *              this area with pages of identical content from other such areas.
1023  *  MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1024  *  MADV_HUGEPAGE - the application wants to back the given range by transparent
1025  *              huge pages in the future. Existing pages might be coalesced and
1026  *              new pages might be allocated as THP.
1027  *  MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1028  *              transparent huge pages so the existing pages will not be
1029  *              coalesced into THP and new pages will not be allocated as THP.
1030  *  MADV_DONTDUMP - the application wants to prevent pages in the given range
1031  *              from being included in its core dump.
1032  *  MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1033  *
1034  * return values:
1035  *  zero    - success
1036  *  -EINVAL - start + len < 0, start is not page-aligned,
1037  *              "behavior" is not a valid value, or application
1038  *              is attempting to release locked or shared pages,
1039  *              or the specified address range includes file, Huge TLB,
1040  *              MAP_SHARED or VMPFNMAP range.
1041  *  -ENOMEM - addresses in the specified range are not currently
1042  *              mapped, or are outside the AS of the process.
1043  *  -EIO    - an I/O error occurred while paging in data.
1044  *  -EBADF  - map exists, but area maps something that isn't a file.
1045  *  -EAGAIN - a kernel resource was temporarily unavailable.
1046  */
1047 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1048 {
1049         unsigned long end, tmp;
1050         struct vm_area_struct *vma, *prev;
1051         int unmapped_error = 0;
1052         int error = -EINVAL;
1053         int write;
1054         size_t len;
1055         struct blk_plug plug;
1056
1057         start = untagged_addr(start);
1058
1059         if (!madvise_behavior_valid(behavior))
1060                 return error;
1061
1062         if (!PAGE_ALIGNED(start))
1063                 return error;
1064         len = PAGE_ALIGN(len_in);
1065
1066         /* Check to see whether len was rounded up from small -ve to zero */
1067         if (len_in && !len)
1068                 return error;
1069
1070         end = start + len;
1071         if (end < start)
1072                 return error;
1073
1074         error = 0;
1075         if (end == start)
1076                 return error;
1077
1078 #ifdef CONFIG_MEMORY_FAILURE
1079         if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1080                 return madvise_inject_error(behavior, start, start + len_in);
1081 #endif
1082
1083         write = madvise_need_mmap_write(behavior);
1084         if (write) {
1085                 if (down_write_killable(&current->mm->mmap_sem))
1086                         return -EINTR;
1087         } else {
1088                 down_read(&current->mm->mmap_sem);
1089         }
1090
1091         /*
1092          * If the interval [start,end) covers some unmapped address
1093          * ranges, just ignore them, but return -ENOMEM at the end.
1094          * - different from the way of handling in mlock etc.
1095          */
1096         vma = find_vma_prev(current->mm, start, &prev);
1097         if (vma && start > vma->vm_start)
1098                 prev = vma;
1099
1100         blk_start_plug(&plug);
1101         for (;;) {
1102                 /* Still start < end. */
1103                 error = -ENOMEM;
1104                 if (!vma)
1105                         goto out;
1106
1107                 /* Here start < (end|vma->vm_end). */
1108                 if (start < vma->vm_start) {
1109                         unmapped_error = -ENOMEM;
1110                         start = vma->vm_start;
1111                         if (start >= end)
1112                                 goto out;
1113                 }
1114
1115                 /* Here vma->vm_start <= start < (end|vma->vm_end) */
1116                 tmp = vma->vm_end;
1117                 if (end < tmp)
1118                         tmp = end;
1119
1120                 /* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1121                 error = madvise_vma(vma, &prev, start, tmp, behavior);
1122                 if (error)
1123                         goto out;
1124                 start = tmp;
1125                 if (prev && start < prev->vm_end)
1126                         start = prev->vm_end;
1127                 error = unmapped_error;
1128                 if (start >= end)
1129                         goto out;
1130                 if (prev)
1131                         vma = prev->vm_next;
1132                 else    /* madvise_remove dropped mmap_sem */
1133                         vma = find_vma(current->mm, start);
1134         }
1135 out:
1136         blk_finish_plug(&plug);
1137         if (write)
1138                 up_write(&current->mm->mmap_sem);
1139         else
1140                 up_read(&current->mm->mmap_sem);
1141
1142         return error;
1143 }