Linux 6.9-rc1
[linux-2.6-microblaze.git] / mm / madvise.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *      linux/mm/madvise.c
4  *
5  * Copyright (C) 1999  Linus Torvalds
6  * Copyright (C) 2002  Christoph Hellwig
7  */
8
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/sched/mm.h>
21 #include <linux/mm_inline.h>
22 #include <linux/string.h>
23 #include <linux/uio.h>
24 #include <linux/ksm.h>
25 #include <linux/fs.h>
26 #include <linux/file.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagewalk.h>
30 #include <linux/swap.h>
31 #include <linux/swapops.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/mmu_notifier.h>
34
35 #include <asm/tlb.h>
36
37 #include "internal.h"
38 #include "swap.h"
39
40 struct madvise_walk_private {
41         struct mmu_gather *tlb;
42         bool pageout;
43 };
44
45 /*
46  * Any behaviour which results in changes to the vma->vm_flags needs to
47  * take mmap_lock for writing. Others, which simply traverse vmas, need
48  * to only take it for reading.
49  */
50 static int madvise_need_mmap_write(int behavior)
51 {
52         switch (behavior) {
53         case MADV_REMOVE:
54         case MADV_WILLNEED:
55         case MADV_DONTNEED:
56         case MADV_DONTNEED_LOCKED:
57         case MADV_COLD:
58         case MADV_PAGEOUT:
59         case MADV_FREE:
60         case MADV_POPULATE_READ:
61         case MADV_POPULATE_WRITE:
62                 return 0;
63         default:
64                 /* be safe, default to 1. list exceptions explicitly */
65                 return 1;
66         }
67 }
68
69 #ifdef CONFIG_ANON_VMA_NAME
70 struct anon_vma_name *anon_vma_name_alloc(const char *name)
71 {
72         struct anon_vma_name *anon_name;
73         size_t count;
74
75         /* Add 1 for NUL terminator at the end of the anon_name->name */
76         count = strlen(name) + 1;
77         anon_name = kmalloc(struct_size(anon_name, name, count), GFP_KERNEL);
78         if (anon_name) {
79                 kref_init(&anon_name->kref);
80                 memcpy(anon_name->name, name, count);
81         }
82
83         return anon_name;
84 }
85
86 void anon_vma_name_free(struct kref *kref)
87 {
88         struct anon_vma_name *anon_name =
89                         container_of(kref, struct anon_vma_name, kref);
90         kfree(anon_name);
91 }
92
93 struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
94 {
95         mmap_assert_locked(vma->vm_mm);
96
97         if (vma->vm_file)
98                 return NULL;
99
100         return vma->anon_name;
101 }
102
103 /* mmap_lock should be write-locked */
104 static int replace_anon_vma_name(struct vm_area_struct *vma,
105                                  struct anon_vma_name *anon_name)
106 {
107         struct anon_vma_name *orig_name = anon_vma_name(vma);
108
109         if (!anon_name) {
110                 vma->anon_name = NULL;
111                 anon_vma_name_put(orig_name);
112                 return 0;
113         }
114
115         if (anon_vma_name_eq(orig_name, anon_name))
116                 return 0;
117
118         vma->anon_name = anon_vma_name_reuse(anon_name);
119         anon_vma_name_put(orig_name);
120
121         return 0;
122 }
123 #else /* CONFIG_ANON_VMA_NAME */
124 static int replace_anon_vma_name(struct vm_area_struct *vma,
125                                  struct anon_vma_name *anon_name)
126 {
127         if (anon_name)
128                 return -EINVAL;
129
130         return 0;
131 }
132 #endif /* CONFIG_ANON_VMA_NAME */
133 /*
134  * Update the vm_flags on region of a vma, splitting it or merging it as
135  * necessary.  Must be called with mmap_sem held for writing;
136  * Caller should ensure anon_name stability by raising its refcount even when
137  * anon_name belongs to a valid vma because this function might free that vma.
138  */
139 static int madvise_update_vma(struct vm_area_struct *vma,
140                               struct vm_area_struct **prev, unsigned long start,
141                               unsigned long end, unsigned long new_flags,
142                               struct anon_vma_name *anon_name)
143 {
144         struct mm_struct *mm = vma->vm_mm;
145         int error;
146         pgoff_t pgoff;
147
148         if (new_flags == vma->vm_flags && anon_vma_name_eq(anon_vma_name(vma), anon_name)) {
149                 *prev = vma;
150                 return 0;
151         }
152
153         pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
154         *prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma,
155                           vma->vm_file, pgoff, vma_policy(vma),
156                           vma->vm_userfaultfd_ctx, anon_name);
157         if (*prev) {
158                 vma = *prev;
159                 goto success;
160         }
161
162         *prev = vma;
163
164         if (start != vma->vm_start) {
165                 if (unlikely(mm->map_count >= sysctl_max_map_count))
166                         return -ENOMEM;
167                 error = __split_vma(mm, vma, start, 1);
168                 if (error)
169                         return error;
170         }
171
172         if (end != vma->vm_end) {
173                 if (unlikely(mm->map_count >= sysctl_max_map_count))
174                         return -ENOMEM;
175                 error = __split_vma(mm, vma, end, 0);
176                 if (error)
177                         return error;
178         }
179
180 success:
181         /*
182          * vm_flags is protected by the mmap_lock held in write mode.
183          */
184         vma->vm_flags = new_flags;
185         if (!vma->vm_file) {
186                 error = replace_anon_vma_name(vma, anon_name);
187                 if (error)
188                         return error;
189         }
190
191         return 0;
192 }
193
194 #ifdef CONFIG_SWAP
195 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
196         unsigned long end, struct mm_walk *walk)
197 {
198         struct vm_area_struct *vma = walk->private;
199         unsigned long index;
200         struct swap_iocb *splug = NULL;
201
202         if (pmd_none_or_trans_huge_or_clear_bad(pmd))
203                 return 0;
204
205         for (index = start; index != end; index += PAGE_SIZE) {
206                 pte_t pte;
207                 swp_entry_t entry;
208                 struct page *page;
209                 spinlock_t *ptl;
210                 pte_t *ptep;
211
212                 ptep = pte_offset_map_lock(vma->vm_mm, pmd, index, &ptl);
213                 pte = *ptep;
214                 pte_unmap_unlock(ptep, ptl);
215
216                 if (!is_swap_pte(pte))
217                         continue;
218                 entry = pte_to_swp_entry(pte);
219                 if (unlikely(non_swap_entry(entry)))
220                         continue;
221
222                 page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
223                                              vma, index, false, &splug);
224                 if (page)
225                         put_page(page);
226         }
227         swap_read_unplug(splug);
228
229         return 0;
230 }
231
232 static const struct mm_walk_ops swapin_walk_ops = {
233         .pmd_entry              = swapin_walk_pmd_entry,
234 };
235
236 static void force_shm_swapin_readahead(struct vm_area_struct *vma,
237                 unsigned long start, unsigned long end,
238                 struct address_space *mapping)
239 {
240         XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start));
241         pgoff_t end_index = linear_page_index(vma, end + PAGE_SIZE - 1);
242         struct page *page;
243         struct swap_iocb *splug = NULL;
244
245         rcu_read_lock();
246         xas_for_each(&xas, page, end_index) {
247                 swp_entry_t swap;
248
249                 if (!xa_is_value(page))
250                         continue;
251                 swap = radix_to_swp_entry(page);
252                 /* There might be swapin error entries in shmem mapping. */
253                 if (non_swap_entry(swap))
254                         continue;
255                 xas_pause(&xas);
256                 rcu_read_unlock();
257
258                 page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
259                                              NULL, 0, false, &splug);
260                 if (page)
261                         put_page(page);
262
263                 rcu_read_lock();
264         }
265         rcu_read_unlock();
266         swap_read_unplug(splug);
267
268         lru_add_drain();        /* Push any new pages onto the LRU now */
269 }
270 #endif          /* CONFIG_SWAP */
271
272 /*
273  * Schedule all required I/O operations.  Do not wait for completion.
274  */
275 static long madvise_willneed(struct vm_area_struct *vma,
276                              struct vm_area_struct **prev,
277                              unsigned long start, unsigned long end)
278 {
279         struct mm_struct *mm = vma->vm_mm;
280         struct file *file = vma->vm_file;
281         loff_t offset;
282
283         *prev = vma;
284 #ifdef CONFIG_SWAP
285         if (!file) {
286                 walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
287                 lru_add_drain(); /* Push any new pages onto the LRU now */
288                 return 0;
289         }
290
291         if (shmem_mapping(file->f_mapping)) {
292                 force_shm_swapin_readahead(vma, start, end,
293                                         file->f_mapping);
294                 return 0;
295         }
296 #else
297         if (!file)
298                 return -EBADF;
299 #endif
300
301         if (IS_DAX(file_inode(file))) {
302                 /* no bad return value, but ignore advice */
303                 return 0;
304         }
305
306         /*
307          * Filesystem's fadvise may need to take various locks.  We need to
308          * explicitly grab a reference because the vma (and hence the
309          * vma's reference to the file) can go away as soon as we drop
310          * mmap_lock.
311          */
312         *prev = NULL;   /* tell sys_madvise we drop mmap_lock */
313         get_file(file);
314         offset = (loff_t)(start - vma->vm_start)
315                         + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
316         mmap_read_unlock(mm);
317         vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
318         fput(file);
319         mmap_read_lock(mm);
320         return 0;
321 }
322
323 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
324                                 unsigned long addr, unsigned long end,
325                                 struct mm_walk *walk)
326 {
327         struct madvise_walk_private *private = walk->private;
328         struct mmu_gather *tlb = private->tlb;
329         bool pageout = private->pageout;
330         struct mm_struct *mm = tlb->mm;
331         struct vm_area_struct *vma = walk->vma;
332         pte_t *orig_pte, *pte, ptent;
333         spinlock_t *ptl;
334         struct page *page = NULL;
335         LIST_HEAD(page_list);
336
337         if (fatal_signal_pending(current))
338                 return -EINTR;
339
340 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
341         if (pmd_trans_huge(*pmd)) {
342                 pmd_t orig_pmd;
343                 unsigned long next = pmd_addr_end(addr, end);
344
345                 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
346                 ptl = pmd_trans_huge_lock(pmd, vma);
347                 if (!ptl)
348                         return 0;
349
350                 orig_pmd = *pmd;
351                 if (is_huge_zero_pmd(orig_pmd))
352                         goto huge_unlock;
353
354                 if (unlikely(!pmd_present(orig_pmd))) {
355                         VM_BUG_ON(thp_migration_supported() &&
356                                         !is_pmd_migration_entry(orig_pmd));
357                         goto huge_unlock;
358                 }
359
360                 page = pmd_page(orig_pmd);
361
362                 /* Do not interfere with other mappings of this page */
363                 if (page_mapcount(page) != 1)
364                         goto huge_unlock;
365
366                 if (next - addr != HPAGE_PMD_SIZE) {
367                         int err;
368
369                         get_page(page);
370                         spin_unlock(ptl);
371                         lock_page(page);
372                         err = split_huge_page(page);
373                         unlock_page(page);
374                         put_page(page);
375                         if (!err)
376                                 goto regular_page;
377                         return 0;
378                 }
379
380                 if (pmd_young(orig_pmd)) {
381                         pmdp_invalidate(vma, addr, pmd);
382                         orig_pmd = pmd_mkold(orig_pmd);
383
384                         set_pmd_at(mm, addr, pmd, orig_pmd);
385                         tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
386                 }
387
388                 ClearPageReferenced(page);
389                 test_and_clear_page_young(page);
390                 if (pageout) {
391                         if (!isolate_lru_page(page)) {
392                                 if (PageUnevictable(page))
393                                         putback_lru_page(page);
394                                 else
395                                         list_add(&page->lru, &page_list);
396                         }
397                 } else
398                         deactivate_page(page);
399 huge_unlock:
400                 spin_unlock(ptl);
401                 if (pageout)
402                         reclaim_pages(&page_list);
403                 return 0;
404         }
405
406 regular_page:
407         if (pmd_trans_unstable(pmd))
408                 return 0;
409 #endif
410         tlb_change_page_size(tlb, PAGE_SIZE);
411         orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
412         flush_tlb_batched_pending(mm);
413         arch_enter_lazy_mmu_mode();
414         for (; addr < end; pte++, addr += PAGE_SIZE) {
415                 ptent = *pte;
416
417                 if (pte_none(ptent))
418                         continue;
419
420                 if (!pte_present(ptent))
421                         continue;
422
423                 page = vm_normal_page(vma, addr, ptent);
424                 if (!page || is_zone_device_page(page))
425                         continue;
426
427                 /*
428                  * Creating a THP page is expensive so split it only if we
429                  * are sure it's worth. Split it if we are only owner.
430                  */
431                 if (PageTransCompound(page)) {
432                         if (page_mapcount(page) != 1)
433                                 break;
434                         get_page(page);
435                         if (!trylock_page(page)) {
436                                 put_page(page);
437                                 break;
438                         }
439                         pte_unmap_unlock(orig_pte, ptl);
440                         if (split_huge_page(page)) {
441                                 unlock_page(page);
442                                 put_page(page);
443                                 orig_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
444                                 break;
445                         }
446                         unlock_page(page);
447                         put_page(page);
448                         orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
449                         pte--;
450                         addr -= PAGE_SIZE;
451                         continue;
452                 }
453
454                 /* Do not interfere with other mappings of this page */
455                 if (page_mapcount(page) != 1)
456                         continue;
457
458                 VM_BUG_ON_PAGE(PageTransCompound(page), page);
459
460                 if (pte_young(ptent)) {
461                         ptent = ptep_get_and_clear_full(mm, addr, pte,
462                                                         tlb->fullmm);
463                         ptent = pte_mkold(ptent);
464                         set_pte_at(mm, addr, pte, ptent);
465                         tlb_remove_tlb_entry(tlb, pte, addr);
466                 }
467
468                 /*
469                  * We are deactivating a page for accelerating reclaiming.
470                  * VM couldn't reclaim the page unless we clear PG_young.
471                  * As a side effect, it makes confuse idle-page tracking
472                  * because they will miss recent referenced history.
473                  */
474                 ClearPageReferenced(page);
475                 test_and_clear_page_young(page);
476                 if (pageout) {
477                         if (!isolate_lru_page(page)) {
478                                 if (PageUnevictable(page))
479                                         putback_lru_page(page);
480                                 else
481                                         list_add(&page->lru, &page_list);
482                         }
483                 } else
484                         deactivate_page(page);
485         }
486
487         arch_leave_lazy_mmu_mode();
488         pte_unmap_unlock(orig_pte, ptl);
489         if (pageout)
490                 reclaim_pages(&page_list);
491         cond_resched();
492
493         return 0;
494 }
495
496 static const struct mm_walk_ops cold_walk_ops = {
497         .pmd_entry = madvise_cold_or_pageout_pte_range,
498 };
499
500 static void madvise_cold_page_range(struct mmu_gather *tlb,
501                              struct vm_area_struct *vma,
502                              unsigned long addr, unsigned long end)
503 {
504         struct madvise_walk_private walk_private = {
505                 .pageout = false,
506                 .tlb = tlb,
507         };
508
509         tlb_start_vma(tlb, vma);
510         walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
511         tlb_end_vma(tlb, vma);
512 }
513
514 static inline bool can_madv_lru_vma(struct vm_area_struct *vma)
515 {
516         return !(vma->vm_flags & (VM_LOCKED|VM_PFNMAP|VM_HUGETLB));
517 }
518
519 static long madvise_cold(struct vm_area_struct *vma,
520                         struct vm_area_struct **prev,
521                         unsigned long start_addr, unsigned long end_addr)
522 {
523         struct mm_struct *mm = vma->vm_mm;
524         struct mmu_gather tlb;
525
526         *prev = vma;
527         if (!can_madv_lru_vma(vma))
528                 return -EINVAL;
529
530         lru_add_drain();
531         tlb_gather_mmu(&tlb, mm);
532         madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
533         tlb_finish_mmu(&tlb);
534
535         return 0;
536 }
537
538 static void madvise_pageout_page_range(struct mmu_gather *tlb,
539                              struct vm_area_struct *vma,
540                              unsigned long addr, unsigned long end)
541 {
542         struct madvise_walk_private walk_private = {
543                 .pageout = true,
544                 .tlb = tlb,
545         };
546
547         tlb_start_vma(tlb, vma);
548         walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
549         tlb_end_vma(tlb, vma);
550 }
551
552 static inline bool can_do_pageout(struct vm_area_struct *vma)
553 {
554         if (vma_is_anonymous(vma))
555                 return true;
556         if (!vma->vm_file)
557                 return false;
558         /*
559          * paging out pagecache only for non-anonymous mappings that correspond
560          * to the files the calling process could (if tried) open for writing;
561          * otherwise we'd be including shared non-exclusive mappings, which
562          * opens a side channel.
563          */
564         return inode_owner_or_capable(&init_user_ns,
565                                       file_inode(vma->vm_file)) ||
566                file_permission(vma->vm_file, MAY_WRITE) == 0;
567 }
568
569 static long madvise_pageout(struct vm_area_struct *vma,
570                         struct vm_area_struct **prev,
571                         unsigned long start_addr, unsigned long end_addr)
572 {
573         struct mm_struct *mm = vma->vm_mm;
574         struct mmu_gather tlb;
575
576         *prev = vma;
577         if (!can_madv_lru_vma(vma))
578                 return -EINVAL;
579
580         if (!can_do_pageout(vma))
581                 return 0;
582
583         lru_add_drain();
584         tlb_gather_mmu(&tlb, mm);
585         madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
586         tlb_finish_mmu(&tlb);
587
588         return 0;
589 }
590
591 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
592                                 unsigned long end, struct mm_walk *walk)
593
594 {
595         struct mmu_gather *tlb = walk->private;
596         struct mm_struct *mm = tlb->mm;
597         struct vm_area_struct *vma = walk->vma;
598         spinlock_t *ptl;
599         pte_t *orig_pte, *pte, ptent;
600         struct page *page;
601         int nr_swap = 0;
602         unsigned long next;
603
604         next = pmd_addr_end(addr, end);
605         if (pmd_trans_huge(*pmd))
606                 if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
607                         goto next;
608
609         if (pmd_trans_unstable(pmd))
610                 return 0;
611
612         tlb_change_page_size(tlb, PAGE_SIZE);
613         orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
614         flush_tlb_batched_pending(mm);
615         arch_enter_lazy_mmu_mode();
616         for (; addr != end; pte++, addr += PAGE_SIZE) {
617                 ptent = *pte;
618
619                 if (pte_none(ptent))
620                         continue;
621                 /*
622                  * If the pte has swp_entry, just clear page table to
623                  * prevent swap-in which is more expensive rather than
624                  * (page allocation + zeroing).
625                  */
626                 if (!pte_present(ptent)) {
627                         swp_entry_t entry;
628
629                         entry = pte_to_swp_entry(ptent);
630                         if (!non_swap_entry(entry)) {
631                                 nr_swap--;
632                                 free_swap_and_cache(entry);
633                                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
634                         } else if (is_hwpoison_entry(entry) ||
635                                    is_swapin_error_entry(entry)) {
636                                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
637                         }
638                         continue;
639                 }
640
641                 page = vm_normal_page(vma, addr, ptent);
642                 if (!page || is_zone_device_page(page))
643                         continue;
644
645                 /*
646                  * If pmd isn't transhuge but the page is THP and
647                  * is owned by only this process, split it and
648                  * deactivate all pages.
649                  */
650                 if (PageTransCompound(page)) {
651                         if (page_mapcount(page) != 1)
652                                 goto out;
653                         get_page(page);
654                         if (!trylock_page(page)) {
655                                 put_page(page);
656                                 goto out;
657                         }
658                         pte_unmap_unlock(orig_pte, ptl);
659                         if (split_huge_page(page)) {
660                                 unlock_page(page);
661                                 put_page(page);
662                                 orig_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
663                                 goto out;
664                         }
665                         unlock_page(page);
666                         put_page(page);
667                         orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
668                         pte--;
669                         addr -= PAGE_SIZE;
670                         continue;
671                 }
672
673                 VM_BUG_ON_PAGE(PageTransCompound(page), page);
674
675                 if (PageSwapCache(page) || PageDirty(page)) {
676                         if (!trylock_page(page))
677                                 continue;
678                         /*
679                          * If page is shared with others, we couldn't clear
680                          * PG_dirty of the page.
681                          */
682                         if (page_mapcount(page) != 1) {
683                                 unlock_page(page);
684                                 continue;
685                         }
686
687                         if (PageSwapCache(page) && !try_to_free_swap(page)) {
688                                 unlock_page(page);
689                                 continue;
690                         }
691
692                         ClearPageDirty(page);
693                         unlock_page(page);
694                 }
695
696                 if (pte_young(ptent) || pte_dirty(ptent)) {
697                         /*
698                          * Some of architecture(ex, PPC) don't update TLB
699                          * with set_pte_at and tlb_remove_tlb_entry so for
700                          * the portability, remap the pte with old|clean
701                          * after pte clearing.
702                          */
703                         ptent = ptep_get_and_clear_full(mm, addr, pte,
704                                                         tlb->fullmm);
705
706                         ptent = pte_mkold(ptent);
707                         ptent = pte_mkclean(ptent);
708                         set_pte_at(mm, addr, pte, ptent);
709                         tlb_remove_tlb_entry(tlb, pte, addr);
710                 }
711                 mark_page_lazyfree(page);
712         }
713 out:
714         if (nr_swap) {
715                 if (current->mm == mm)
716                         sync_mm_rss(mm);
717
718                 add_mm_counter(mm, MM_SWAPENTS, nr_swap);
719         }
720         arch_leave_lazy_mmu_mode();
721         pte_unmap_unlock(orig_pte, ptl);
722         cond_resched();
723 next:
724         return 0;
725 }
726
727 static const struct mm_walk_ops madvise_free_walk_ops = {
728         .pmd_entry              = madvise_free_pte_range,
729 };
730
731 static int madvise_free_single_vma(struct vm_area_struct *vma,
732                         unsigned long start_addr, unsigned long end_addr)
733 {
734         struct mm_struct *mm = vma->vm_mm;
735         struct mmu_notifier_range range;
736         struct mmu_gather tlb;
737
738         /* MADV_FREE works for only anon vma at the moment */
739         if (!vma_is_anonymous(vma))
740                 return -EINVAL;
741
742         range.start = max(vma->vm_start, start_addr);
743         if (range.start >= vma->vm_end)
744                 return -EINVAL;
745         range.end = min(vma->vm_end, end_addr);
746         if (range.end <= vma->vm_start)
747                 return -EINVAL;
748         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
749                                 range.start, range.end);
750
751         lru_add_drain();
752         tlb_gather_mmu(&tlb, mm);
753         update_hiwater_rss(mm);
754
755         mmu_notifier_invalidate_range_start(&range);
756         tlb_start_vma(&tlb, vma);
757         walk_page_range(vma->vm_mm, range.start, range.end,
758                         &madvise_free_walk_ops, &tlb);
759         tlb_end_vma(&tlb, vma);
760         mmu_notifier_invalidate_range_end(&range);
761         tlb_finish_mmu(&tlb);
762
763         return 0;
764 }
765
766 /*
767  * Application no longer needs these pages.  If the pages are dirty,
768  * it's OK to just throw them away.  The app will be more careful about
769  * data it wants to keep.  Be sure to free swap resources too.  The
770  * zap_page_range call sets things up for shrink_active_list to actually free
771  * these pages later if no one else has touched them in the meantime,
772  * although we could add these pages to a global reuse list for
773  * shrink_active_list to pick up before reclaiming other pages.
774  *
775  * NB: This interface discards data rather than pushes it out to swap,
776  * as some implementations do.  This has performance implications for
777  * applications like large transactional databases which want to discard
778  * pages in anonymous maps after committing to backing store the data
779  * that was kept in them.  There is no reason to write this data out to
780  * the swap area if the application is discarding it.
781  *
782  * An interface that causes the system to free clean pages and flush
783  * dirty pages is already available as msync(MS_INVALIDATE).
784  */
785 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
786                                         unsigned long start, unsigned long end)
787 {
788         zap_page_range(vma, start, end - start);
789         return 0;
790 }
791
792 static bool madvise_dontneed_free_valid_vma(struct vm_area_struct *vma,
793                                             unsigned long start,
794                                             unsigned long *end,
795                                             int behavior)
796 {
797         if (!is_vm_hugetlb_page(vma)) {
798                 unsigned int forbidden = VM_PFNMAP;
799
800                 if (behavior != MADV_DONTNEED_LOCKED)
801                         forbidden |= VM_LOCKED;
802
803                 return !(vma->vm_flags & forbidden);
804         }
805
806         if (behavior != MADV_DONTNEED && behavior != MADV_DONTNEED_LOCKED)
807                 return false;
808         if (start & ~huge_page_mask(hstate_vma(vma)))
809                 return false;
810
811         *end = ALIGN(*end, huge_page_size(hstate_vma(vma)));
812         return true;
813 }
814
815 static long madvise_dontneed_free(struct vm_area_struct *vma,
816                                   struct vm_area_struct **prev,
817                                   unsigned long start, unsigned long end,
818                                   int behavior)
819 {
820         struct mm_struct *mm = vma->vm_mm;
821
822         *prev = vma;
823         if (!madvise_dontneed_free_valid_vma(vma, start, &end, behavior))
824                 return -EINVAL;
825
826         if (!userfaultfd_remove(vma, start, end)) {
827                 *prev = NULL; /* mmap_lock has been dropped, prev is stale */
828
829                 mmap_read_lock(mm);
830                 vma = find_vma(mm, start);
831                 if (!vma)
832                         return -ENOMEM;
833                 if (start < vma->vm_start) {
834                         /*
835                          * This "vma" under revalidation is the one
836                          * with the lowest vma->vm_start where start
837                          * is also < vma->vm_end. If start <
838                          * vma->vm_start it means an hole materialized
839                          * in the user address space within the
840                          * virtual range passed to MADV_DONTNEED
841                          * or MADV_FREE.
842                          */
843                         return -ENOMEM;
844                 }
845                 /*
846                  * Potential end adjustment for hugetlb vma is OK as
847                  * the check below keeps end within vma.
848                  */
849                 if (!madvise_dontneed_free_valid_vma(vma, start, &end,
850                                                      behavior))
851                         return -EINVAL;
852                 if (end > vma->vm_end) {
853                         /*
854                          * Don't fail if end > vma->vm_end. If the old
855                          * vma was split while the mmap_lock was
856                          * released the effect of the concurrent
857                          * operation may not cause madvise() to
858                          * have an undefined result. There may be an
859                          * adjacent next vma that we'll walk
860                          * next. userfaultfd_remove() will generate an
861                          * UFFD_EVENT_REMOVE repetition on the
862                          * end-vma->vm_end range, but the manager can
863                          * handle a repetition fine.
864                          */
865                         end = vma->vm_end;
866                 }
867                 VM_WARN_ON(start >= end);
868         }
869
870         if (behavior == MADV_DONTNEED || behavior == MADV_DONTNEED_LOCKED)
871                 return madvise_dontneed_single_vma(vma, start, end);
872         else if (behavior == MADV_FREE)
873                 return madvise_free_single_vma(vma, start, end);
874         else
875                 return -EINVAL;
876 }
877
878 static long madvise_populate(struct vm_area_struct *vma,
879                              struct vm_area_struct **prev,
880                              unsigned long start, unsigned long end,
881                              int behavior)
882 {
883         const bool write = behavior == MADV_POPULATE_WRITE;
884         struct mm_struct *mm = vma->vm_mm;
885         unsigned long tmp_end;
886         int locked = 1;
887         long pages;
888
889         *prev = vma;
890
891         while (start < end) {
892                 /*
893                  * We might have temporarily dropped the lock. For example,
894                  * our VMA might have been split.
895                  */
896                 if (!vma || start >= vma->vm_end) {
897                         vma = vma_lookup(mm, start);
898                         if (!vma)
899                                 return -ENOMEM;
900                 }
901
902                 tmp_end = min_t(unsigned long, end, vma->vm_end);
903                 /* Populate (prefault) page tables readable/writable. */
904                 pages = faultin_vma_page_range(vma, start, tmp_end, write,
905                                                &locked);
906                 if (!locked) {
907                         mmap_read_lock(mm);
908                         locked = 1;
909                         *prev = NULL;
910                         vma = NULL;
911                 }
912                 if (pages < 0) {
913                         switch (pages) {
914                         case -EINTR:
915                                 return -EINTR;
916                         case -EINVAL: /* Incompatible mappings / permissions. */
917                                 return -EINVAL;
918                         case -EHWPOISON:
919                                 return -EHWPOISON;
920                         case -EFAULT: /* VM_FAULT_SIGBUS or VM_FAULT_SIGSEGV */
921                                 return -EFAULT;
922                         default:
923                                 pr_warn_once("%s: unhandled return value: %ld\n",
924                                              __func__, pages);
925                                 fallthrough;
926                         case -ENOMEM:
927                                 return -ENOMEM;
928                         }
929                 }
930                 start += pages * PAGE_SIZE;
931         }
932         return 0;
933 }
934
935 /*
936  * Application wants to free up the pages and associated backing store.
937  * This is effectively punching a hole into the middle of a file.
938  */
939 static long madvise_remove(struct vm_area_struct *vma,
940                                 struct vm_area_struct **prev,
941                                 unsigned long start, unsigned long end)
942 {
943         loff_t offset;
944         int error;
945         struct file *f;
946         struct mm_struct *mm = vma->vm_mm;
947
948         *prev = NULL;   /* tell sys_madvise we drop mmap_lock */
949
950         if (vma->vm_flags & VM_LOCKED)
951                 return -EINVAL;
952
953         f = vma->vm_file;
954
955         if (!f || !f->f_mapping || !f->f_mapping->host) {
956                         return -EINVAL;
957         }
958
959         if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
960                 return -EACCES;
961
962         offset = (loff_t)(start - vma->vm_start)
963                         + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
964
965         /*
966          * Filesystem's fallocate may need to take i_rwsem.  We need to
967          * explicitly grab a reference because the vma (and hence the
968          * vma's reference to the file) can go away as soon as we drop
969          * mmap_lock.
970          */
971         get_file(f);
972         if (userfaultfd_remove(vma, start, end)) {
973                 /* mmap_lock was not released by userfaultfd_remove() */
974                 mmap_read_unlock(mm);
975         }
976         error = vfs_fallocate(f,
977                                 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
978                                 offset, end - start);
979         fput(f);
980         mmap_read_lock(mm);
981         return error;
982 }
983
984 /*
985  * Apply an madvise behavior to a region of a vma.  madvise_update_vma
986  * will handle splitting a vm area into separate areas, each area with its own
987  * behavior.
988  */
989 static int madvise_vma_behavior(struct vm_area_struct *vma,
990                                 struct vm_area_struct **prev,
991                                 unsigned long start, unsigned long end,
992                                 unsigned long behavior)
993 {
994         int error;
995         struct anon_vma_name *anon_name;
996         unsigned long new_flags = vma->vm_flags;
997
998         switch (behavior) {
999         case MADV_REMOVE:
1000                 return madvise_remove(vma, prev, start, end);
1001         case MADV_WILLNEED:
1002                 return madvise_willneed(vma, prev, start, end);
1003         case MADV_COLD:
1004                 return madvise_cold(vma, prev, start, end);
1005         case MADV_PAGEOUT:
1006                 return madvise_pageout(vma, prev, start, end);
1007         case MADV_FREE:
1008         case MADV_DONTNEED:
1009         case MADV_DONTNEED_LOCKED:
1010                 return madvise_dontneed_free(vma, prev, start, end, behavior);
1011         case MADV_POPULATE_READ:
1012         case MADV_POPULATE_WRITE:
1013                 return madvise_populate(vma, prev, start, end, behavior);
1014         case MADV_NORMAL:
1015                 new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
1016                 break;
1017         case MADV_SEQUENTIAL:
1018                 new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
1019                 break;
1020         case MADV_RANDOM:
1021                 new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
1022                 break;
1023         case MADV_DONTFORK:
1024                 new_flags |= VM_DONTCOPY;
1025                 break;
1026         case MADV_DOFORK:
1027                 if (vma->vm_flags & VM_IO)
1028                         return -EINVAL;
1029                 new_flags &= ~VM_DONTCOPY;
1030                 break;
1031         case MADV_WIPEONFORK:
1032                 /* MADV_WIPEONFORK is only supported on anonymous memory. */
1033                 if (vma->vm_file || vma->vm_flags & VM_SHARED)
1034                         return -EINVAL;
1035                 new_flags |= VM_WIPEONFORK;
1036                 break;
1037         case MADV_KEEPONFORK:
1038                 new_flags &= ~VM_WIPEONFORK;
1039                 break;
1040         case MADV_DONTDUMP:
1041                 new_flags |= VM_DONTDUMP;
1042                 break;
1043         case MADV_DODUMP:
1044                 if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL)
1045                         return -EINVAL;
1046                 new_flags &= ~VM_DONTDUMP;
1047                 break;
1048         case MADV_MERGEABLE:
1049         case MADV_UNMERGEABLE:
1050                 error = ksm_madvise(vma, start, end, behavior, &new_flags);
1051                 if (error)
1052                         goto out;
1053                 break;
1054         case MADV_HUGEPAGE:
1055         case MADV_NOHUGEPAGE:
1056                 error = hugepage_madvise(vma, &new_flags, behavior);
1057                 if (error)
1058                         goto out;
1059                 break;
1060         }
1061
1062         anon_name = anon_vma_name(vma);
1063         anon_vma_name_get(anon_name);
1064         error = madvise_update_vma(vma, prev, start, end, new_flags,
1065                                    anon_name);
1066         anon_vma_name_put(anon_name);
1067
1068 out:
1069         /*
1070          * madvise() returns EAGAIN if kernel resources, such as
1071          * slab, are temporarily unavailable.
1072          */
1073         if (error == -ENOMEM)
1074                 error = -EAGAIN;
1075         return error;
1076 }
1077
1078 #ifdef CONFIG_MEMORY_FAILURE
1079 /*
1080  * Error injection support for memory error handling.
1081  */
1082 static int madvise_inject_error(int behavior,
1083                 unsigned long start, unsigned long end)
1084 {
1085         unsigned long size;
1086
1087         if (!capable(CAP_SYS_ADMIN))
1088                 return -EPERM;
1089
1090
1091         for (; start < end; start += size) {
1092                 unsigned long pfn;
1093                 struct page *page;
1094                 int ret;
1095
1096                 ret = get_user_pages_fast(start, 1, 0, &page);
1097                 if (ret != 1)
1098                         return ret;
1099                 pfn = page_to_pfn(page);
1100
1101                 /*
1102                  * When soft offlining hugepages, after migrating the page
1103                  * we dissolve it, therefore in the second loop "page" will
1104                  * no longer be a compound page.
1105                  */
1106                 size = page_size(compound_head(page));
1107
1108                 if (behavior == MADV_SOFT_OFFLINE) {
1109                         pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
1110                                  pfn, start);
1111                         ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
1112                 } else {
1113                         pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
1114                                  pfn, start);
1115                         ret = memory_failure(pfn, MF_COUNT_INCREASED | MF_SW_SIMULATED);
1116                         if (ret == -EOPNOTSUPP)
1117                                 ret = 0;
1118                 }
1119
1120                 if (ret)
1121                         return ret;
1122         }
1123
1124         return 0;
1125 }
1126 #endif
1127
1128 static bool
1129 madvise_behavior_valid(int behavior)
1130 {
1131         switch (behavior) {
1132         case MADV_DOFORK:
1133         case MADV_DONTFORK:
1134         case MADV_NORMAL:
1135         case MADV_SEQUENTIAL:
1136         case MADV_RANDOM:
1137         case MADV_REMOVE:
1138         case MADV_WILLNEED:
1139         case MADV_DONTNEED:
1140         case MADV_DONTNEED_LOCKED:
1141         case MADV_FREE:
1142         case MADV_COLD:
1143         case MADV_PAGEOUT:
1144         case MADV_POPULATE_READ:
1145         case MADV_POPULATE_WRITE:
1146 #ifdef CONFIG_KSM
1147         case MADV_MERGEABLE:
1148         case MADV_UNMERGEABLE:
1149 #endif
1150 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1151         case MADV_HUGEPAGE:
1152         case MADV_NOHUGEPAGE:
1153 #endif
1154         case MADV_DONTDUMP:
1155         case MADV_DODUMP:
1156         case MADV_WIPEONFORK:
1157         case MADV_KEEPONFORK:
1158 #ifdef CONFIG_MEMORY_FAILURE
1159         case MADV_SOFT_OFFLINE:
1160         case MADV_HWPOISON:
1161 #endif
1162                 return true;
1163
1164         default:
1165                 return false;
1166         }
1167 }
1168
1169 static bool
1170 process_madvise_behavior_valid(int behavior)
1171 {
1172         switch (behavior) {
1173         case MADV_COLD:
1174         case MADV_PAGEOUT:
1175         case MADV_WILLNEED:
1176                 return true;
1177         default:
1178                 return false;
1179         }
1180 }
1181
1182 /*
1183  * Walk the vmas in range [start,end), and call the visit function on each one.
1184  * The visit function will get start and end parameters that cover the overlap
1185  * between the current vma and the original range.  Any unmapped regions in the
1186  * original range will result in this function returning -ENOMEM while still
1187  * calling the visit function on all of the existing vmas in the range.
1188  * Must be called with the mmap_lock held for reading or writing.
1189  */
1190 static
1191 int madvise_walk_vmas(struct mm_struct *mm, unsigned long start,
1192                       unsigned long end, unsigned long arg,
1193                       int (*visit)(struct vm_area_struct *vma,
1194                                    struct vm_area_struct **prev, unsigned long start,
1195                                    unsigned long end, unsigned long arg))
1196 {
1197         struct vm_area_struct *vma;
1198         struct vm_area_struct *prev;
1199         unsigned long tmp;
1200         int unmapped_error = 0;
1201
1202         /*
1203          * If the interval [start,end) covers some unmapped address
1204          * ranges, just ignore them, but return -ENOMEM at the end.
1205          * - different from the way of handling in mlock etc.
1206          */
1207         vma = find_vma_prev(mm, start, &prev);
1208         if (vma && start > vma->vm_start)
1209                 prev = vma;
1210
1211         for (;;) {
1212                 int error;
1213
1214                 /* Still start < end. */
1215                 if (!vma)
1216                         return -ENOMEM;
1217
1218                 /* Here start < (end|vma->vm_end). */
1219                 if (start < vma->vm_start) {
1220                         unmapped_error = -ENOMEM;
1221                         start = vma->vm_start;
1222                         if (start >= end)
1223                                 break;
1224                 }
1225
1226                 /* Here vma->vm_start <= start < (end|vma->vm_end) */
1227                 tmp = vma->vm_end;
1228                 if (end < tmp)
1229                         tmp = end;
1230
1231                 /* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1232                 error = visit(vma, &prev, start, tmp, arg);
1233                 if (error)
1234                         return error;
1235                 start = tmp;
1236                 if (prev && start < prev->vm_end)
1237                         start = prev->vm_end;
1238                 if (start >= end)
1239                         break;
1240                 if (prev)
1241                         vma = prev->vm_next;
1242                 else    /* madvise_remove dropped mmap_lock */
1243                         vma = find_vma(mm, start);
1244         }
1245
1246         return unmapped_error;
1247 }
1248
1249 #ifdef CONFIG_ANON_VMA_NAME
1250 static int madvise_vma_anon_name(struct vm_area_struct *vma,
1251                                  struct vm_area_struct **prev,
1252                                  unsigned long start, unsigned long end,
1253                                  unsigned long anon_name)
1254 {
1255         int error;
1256
1257         /* Only anonymous mappings can be named */
1258         if (vma->vm_file)
1259                 return -EBADF;
1260
1261         error = madvise_update_vma(vma, prev, start, end, vma->vm_flags,
1262                                    (struct anon_vma_name *)anon_name);
1263
1264         /*
1265          * madvise() returns EAGAIN if kernel resources, such as
1266          * slab, are temporarily unavailable.
1267          */
1268         if (error == -ENOMEM)
1269                 error = -EAGAIN;
1270         return error;
1271 }
1272
1273 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
1274                           unsigned long len_in, struct anon_vma_name *anon_name)
1275 {
1276         unsigned long end;
1277         unsigned long len;
1278
1279         if (start & ~PAGE_MASK)
1280                 return -EINVAL;
1281         len = (len_in + ~PAGE_MASK) & PAGE_MASK;
1282
1283         /* Check to see whether len was rounded up from small -ve to zero */
1284         if (len_in && !len)
1285                 return -EINVAL;
1286
1287         end = start + len;
1288         if (end < start)
1289                 return -EINVAL;
1290
1291         if (end == start)
1292                 return 0;
1293
1294         return madvise_walk_vmas(mm, start, end, (unsigned long)anon_name,
1295                                  madvise_vma_anon_name);
1296 }
1297 #endif /* CONFIG_ANON_VMA_NAME */
1298 /*
1299  * The madvise(2) system call.
1300  *
1301  * Applications can use madvise() to advise the kernel how it should
1302  * handle paging I/O in this VM area.  The idea is to help the kernel
1303  * use appropriate read-ahead and caching techniques.  The information
1304  * provided is advisory only, and can be safely disregarded by the
1305  * kernel without affecting the correct operation of the application.
1306  *
1307  * behavior values:
1308  *  MADV_NORMAL - the default behavior is to read clusters.  This
1309  *              results in some read-ahead and read-behind.
1310  *  MADV_RANDOM - the system should read the minimum amount of data
1311  *              on any access, since it is unlikely that the appli-
1312  *              cation will need more than what it asks for.
1313  *  MADV_SEQUENTIAL - pages in the given range will probably be accessed
1314  *              once, so they can be aggressively read ahead, and
1315  *              can be freed soon after they are accessed.
1316  *  MADV_WILLNEED - the application is notifying the system to read
1317  *              some pages ahead.
1318  *  MADV_DONTNEED - the application is finished with the given range,
1319  *              so the kernel can free resources associated with it.
1320  *  MADV_FREE - the application marks pages in the given range as lazy free,
1321  *              where actual purges are postponed until memory pressure happens.
1322  *  MADV_REMOVE - the application wants to free up the given range of
1323  *              pages and associated backing store.
1324  *  MADV_DONTFORK - omit this area from child's address space when forking:
1325  *              typically, to avoid COWing pages pinned by get_user_pages().
1326  *  MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1327  *  MADV_WIPEONFORK - present the child process with zero-filled memory in this
1328  *              range after a fork.
1329  *  MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1330  *  MADV_HWPOISON - trigger memory error handler as if the given memory range
1331  *              were corrupted by unrecoverable hardware memory failure.
1332  *  MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1333  *  MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1334  *              this area with pages of identical content from other such areas.
1335  *  MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1336  *  MADV_HUGEPAGE - the application wants to back the given range by transparent
1337  *              huge pages in the future. Existing pages might be coalesced and
1338  *              new pages might be allocated as THP.
1339  *  MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1340  *              transparent huge pages so the existing pages will not be
1341  *              coalesced into THP and new pages will not be allocated as THP.
1342  *  MADV_DONTDUMP - the application wants to prevent pages in the given range
1343  *              from being included in its core dump.
1344  *  MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1345  *  MADV_COLD - the application is not expected to use this memory soon,
1346  *              deactivate pages in this range so that they can be reclaimed
1347  *              easily if memory pressure happens.
1348  *  MADV_PAGEOUT - the application is not expected to use this memory soon,
1349  *              page out the pages in this range immediately.
1350  *  MADV_POPULATE_READ - populate (prefault) page tables readable by
1351  *              triggering read faults if required
1352  *  MADV_POPULATE_WRITE - populate (prefault) page tables writable by
1353  *              triggering write faults if required
1354  *
1355  * return values:
1356  *  zero    - success
1357  *  -EINVAL - start + len < 0, start is not page-aligned,
1358  *              "behavior" is not a valid value, or application
1359  *              is attempting to release locked or shared pages,
1360  *              or the specified address range includes file, Huge TLB,
1361  *              MAP_SHARED or VMPFNMAP range.
1362  *  -ENOMEM - addresses in the specified range are not currently
1363  *              mapped, or are outside the AS of the process.
1364  *  -EIO    - an I/O error occurred while paging in data.
1365  *  -EBADF  - map exists, but area maps something that isn't a file.
1366  *  -EAGAIN - a kernel resource was temporarily unavailable.
1367  */
1368 int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior)
1369 {
1370         unsigned long end;
1371         int error;
1372         int write;
1373         size_t len;
1374         struct blk_plug plug;
1375
1376         start = untagged_addr(start);
1377
1378         if (!madvise_behavior_valid(behavior))
1379                 return -EINVAL;
1380
1381         if (!PAGE_ALIGNED(start))
1382                 return -EINVAL;
1383         len = PAGE_ALIGN(len_in);
1384
1385         /* Check to see whether len was rounded up from small -ve to zero */
1386         if (len_in && !len)
1387                 return -EINVAL;
1388
1389         end = start + len;
1390         if (end < start)
1391                 return -EINVAL;
1392
1393         if (end == start)
1394                 return 0;
1395
1396 #ifdef CONFIG_MEMORY_FAILURE
1397         if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1398                 return madvise_inject_error(behavior, start, start + len_in);
1399 #endif
1400
1401         write = madvise_need_mmap_write(behavior);
1402         if (write) {
1403                 if (mmap_write_lock_killable(mm))
1404                         return -EINTR;
1405         } else {
1406                 mmap_read_lock(mm);
1407         }
1408
1409         blk_start_plug(&plug);
1410         error = madvise_walk_vmas(mm, start, end, behavior,
1411                         madvise_vma_behavior);
1412         blk_finish_plug(&plug);
1413         if (write)
1414                 mmap_write_unlock(mm);
1415         else
1416                 mmap_read_unlock(mm);
1417
1418         return error;
1419 }
1420
1421 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1422 {
1423         return do_madvise(current->mm, start, len_in, behavior);
1424 }
1425
1426 SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec,
1427                 size_t, vlen, int, behavior, unsigned int, flags)
1428 {
1429         ssize_t ret;
1430         struct iovec iovstack[UIO_FASTIOV], iovec;
1431         struct iovec *iov = iovstack;
1432         struct iov_iter iter;
1433         struct task_struct *task;
1434         struct mm_struct *mm;
1435         size_t total_len;
1436         unsigned int f_flags;
1437
1438         if (flags != 0) {
1439                 ret = -EINVAL;
1440                 goto out;
1441         }
1442
1443         ret = import_iovec(READ, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter);
1444         if (ret < 0)
1445                 goto out;
1446
1447         task = pidfd_get_task(pidfd, &f_flags);
1448         if (IS_ERR(task)) {
1449                 ret = PTR_ERR(task);
1450                 goto free_iov;
1451         }
1452
1453         if (!process_madvise_behavior_valid(behavior)) {
1454                 ret = -EINVAL;
1455                 goto release_task;
1456         }
1457
1458         /* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */
1459         mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1460         if (IS_ERR_OR_NULL(mm)) {
1461                 ret = IS_ERR(mm) ? PTR_ERR(mm) : -ESRCH;
1462                 goto release_task;
1463         }
1464
1465         /*
1466          * Require CAP_SYS_NICE for influencing process performance. Note that
1467          * only non-destructive hints are currently supported.
1468          */
1469         if (!capable(CAP_SYS_NICE)) {
1470                 ret = -EPERM;
1471                 goto release_mm;
1472         }
1473
1474         total_len = iov_iter_count(&iter);
1475
1476         while (iov_iter_count(&iter)) {
1477                 iovec = iov_iter_iovec(&iter);
1478                 ret = do_madvise(mm, (unsigned long)iovec.iov_base,
1479                                         iovec.iov_len, behavior);
1480                 if (ret < 0)
1481                         break;
1482                 iov_iter_advance(&iter, iovec.iov_len);
1483         }
1484
1485         ret = (total_len - iov_iter_count(&iter)) ? : ret;
1486
1487 release_mm:
1488         mmput(mm);
1489 release_task:
1490         put_task_struct(task);
1491 free_iov:
1492         kfree(iov);
1493 out:
1494         return ret;
1495 }