tools headers UAPI: Sync linux/fs.h with the kernel sources
[linux-2.6-microblaze.git] / mm / ksm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *      Izik Eidus
11  *      Andrea Arcangeli
12  *      Chris Wright
13  *      Hugh Dickins
14  */
15
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/fs.h>
19 #include <linux/mman.h>
20 #include <linux/sched.h>
21 #include <linux/sched/mm.h>
22 #include <linux/sched/coredump.h>
23 #include <linux/rwsem.h>
24 #include <linux/pagemap.h>
25 #include <linux/rmap.h>
26 #include <linux/spinlock.h>
27 #include <linux/xxhash.h>
28 #include <linux/delay.h>
29 #include <linux/kthread.h>
30 #include <linux/wait.h>
31 #include <linux/slab.h>
32 #include <linux/rbtree.h>
33 #include <linux/memory.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/swap.h>
36 #include <linux/ksm.h>
37 #include <linux/hashtable.h>
38 #include <linux/freezer.h>
39 #include <linux/oom.h>
40 #include <linux/numa.h>
41
42 #include <asm/tlbflush.h>
43 #include "internal.h"
44
45 #ifdef CONFIG_NUMA
46 #define NUMA(x)         (x)
47 #define DO_NUMA(x)      do { (x); } while (0)
48 #else
49 #define NUMA(x)         (0)
50 #define DO_NUMA(x)      do { } while (0)
51 #endif
52
53 /**
54  * DOC: Overview
55  *
56  * A few notes about the KSM scanning process,
57  * to make it easier to understand the data structures below:
58  *
59  * In order to reduce excessive scanning, KSM sorts the memory pages by their
60  * contents into a data structure that holds pointers to the pages' locations.
61  *
62  * Since the contents of the pages may change at any moment, KSM cannot just
63  * insert the pages into a normal sorted tree and expect it to find anything.
64  * Therefore KSM uses two data structures - the stable and the unstable tree.
65  *
66  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
67  * by their contents.  Because each such page is write-protected, searching on
68  * this tree is fully assured to be working (except when pages are unmapped),
69  * and therefore this tree is called the stable tree.
70  *
71  * The stable tree node includes information required for reverse
72  * mapping from a KSM page to virtual addresses that map this page.
73  *
74  * In order to avoid large latencies of the rmap walks on KSM pages,
75  * KSM maintains two types of nodes in the stable tree:
76  *
77  * * the regular nodes that keep the reverse mapping structures in a
78  *   linked list
79  * * the "chains" that link nodes ("dups") that represent the same
80  *   write protected memory content, but each "dup" corresponds to a
81  *   different KSM page copy of that content
82  *
83  * Internally, the regular nodes, "dups" and "chains" are represented
84  * using the same struct stable_node structure.
85  *
86  * In addition to the stable tree, KSM uses a second data structure called the
87  * unstable tree: this tree holds pointers to pages which have been found to
88  * be "unchanged for a period of time".  The unstable tree sorts these pages
89  * by their contents, but since they are not write-protected, KSM cannot rely
90  * upon the unstable tree to work correctly - the unstable tree is liable to
91  * be corrupted as its contents are modified, and so it is called unstable.
92  *
93  * KSM solves this problem by several techniques:
94  *
95  * 1) The unstable tree is flushed every time KSM completes scanning all
96  *    memory areas, and then the tree is rebuilt again from the beginning.
97  * 2) KSM will only insert into the unstable tree, pages whose hash value
98  *    has not changed since the previous scan of all memory areas.
99  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
100  *    colors of the nodes and not on their contents, assuring that even when
101  *    the tree gets "corrupted" it won't get out of balance, so scanning time
102  *    remains the same (also, searching and inserting nodes in an rbtree uses
103  *    the same algorithm, so we have no overhead when we flush and rebuild).
104  * 4) KSM never flushes the stable tree, which means that even if it were to
105  *    take 10 attempts to find a page in the unstable tree, once it is found,
106  *    it is secured in the stable tree.  (When we scan a new page, we first
107  *    compare it against the stable tree, and then against the unstable tree.)
108  *
109  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
110  * stable trees and multiple unstable trees: one of each for each NUMA node.
111  */
112
113 /**
114  * struct mm_slot - ksm information per mm that is being scanned
115  * @link: link to the mm_slots hash list
116  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
117  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
118  * @mm: the mm that this information is valid for
119  */
120 struct mm_slot {
121         struct hlist_node link;
122         struct list_head mm_list;
123         struct rmap_item *rmap_list;
124         struct mm_struct *mm;
125 };
126
127 /**
128  * struct ksm_scan - cursor for scanning
129  * @mm_slot: the current mm_slot we are scanning
130  * @address: the next address inside that to be scanned
131  * @rmap_list: link to the next rmap to be scanned in the rmap_list
132  * @seqnr: count of completed full scans (needed when removing unstable node)
133  *
134  * There is only the one ksm_scan instance of this cursor structure.
135  */
136 struct ksm_scan {
137         struct mm_slot *mm_slot;
138         unsigned long address;
139         struct rmap_item **rmap_list;
140         unsigned long seqnr;
141 };
142
143 /**
144  * struct stable_node - node of the stable rbtree
145  * @node: rb node of this ksm page in the stable tree
146  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
147  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
148  * @list: linked into migrate_nodes, pending placement in the proper node tree
149  * @hlist: hlist head of rmap_items using this ksm page
150  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
151  * @chain_prune_time: time of the last full garbage collection
152  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
153  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
154  */
155 struct stable_node {
156         union {
157                 struct rb_node node;    /* when node of stable tree */
158                 struct {                /* when listed for migration */
159                         struct list_head *head;
160                         struct {
161                                 struct hlist_node hlist_dup;
162                                 struct list_head list;
163                         };
164                 };
165         };
166         struct hlist_head hlist;
167         union {
168                 unsigned long kpfn;
169                 unsigned long chain_prune_time;
170         };
171         /*
172          * STABLE_NODE_CHAIN can be any negative number in
173          * rmap_hlist_len negative range, but better not -1 to be able
174          * to reliably detect underflows.
175          */
176 #define STABLE_NODE_CHAIN -1024
177         int rmap_hlist_len;
178 #ifdef CONFIG_NUMA
179         int nid;
180 #endif
181 };
182
183 /**
184  * struct rmap_item - reverse mapping item for virtual addresses
185  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
186  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
187  * @nid: NUMA node id of unstable tree in which linked (may not match page)
188  * @mm: the memory structure this rmap_item is pointing into
189  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
190  * @oldchecksum: previous checksum of the page at that virtual address
191  * @node: rb node of this rmap_item in the unstable tree
192  * @head: pointer to stable_node heading this list in the stable tree
193  * @hlist: link into hlist of rmap_items hanging off that stable_node
194  */
195 struct rmap_item {
196         struct rmap_item *rmap_list;
197         union {
198                 struct anon_vma *anon_vma;      /* when stable */
199 #ifdef CONFIG_NUMA
200                 int nid;                /* when node of unstable tree */
201 #endif
202         };
203         struct mm_struct *mm;
204         unsigned long address;          /* + low bits used for flags below */
205         unsigned int oldchecksum;       /* when unstable */
206         union {
207                 struct rb_node node;    /* when node of unstable tree */
208                 struct {                /* when listed from stable tree */
209                         struct stable_node *head;
210                         struct hlist_node hlist;
211                 };
212         };
213 };
214
215 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
216 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
217 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
218
219 /* The stable and unstable tree heads */
220 static struct rb_root one_stable_tree[1] = { RB_ROOT };
221 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
222 static struct rb_root *root_stable_tree = one_stable_tree;
223 static struct rb_root *root_unstable_tree = one_unstable_tree;
224
225 /* Recently migrated nodes of stable tree, pending proper placement */
226 static LIST_HEAD(migrate_nodes);
227 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
228
229 #define MM_SLOTS_HASH_BITS 10
230 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
231
232 static struct mm_slot ksm_mm_head = {
233         .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
234 };
235 static struct ksm_scan ksm_scan = {
236         .mm_slot = &ksm_mm_head,
237 };
238
239 static struct kmem_cache *rmap_item_cache;
240 static struct kmem_cache *stable_node_cache;
241 static struct kmem_cache *mm_slot_cache;
242
243 /* The number of nodes in the stable tree */
244 static unsigned long ksm_pages_shared;
245
246 /* The number of page slots additionally sharing those nodes */
247 static unsigned long ksm_pages_sharing;
248
249 /* The number of nodes in the unstable tree */
250 static unsigned long ksm_pages_unshared;
251
252 /* The number of rmap_items in use: to calculate pages_volatile */
253 static unsigned long ksm_rmap_items;
254
255 /* The number of stable_node chains */
256 static unsigned long ksm_stable_node_chains;
257
258 /* The number of stable_node dups linked to the stable_node chains */
259 static unsigned long ksm_stable_node_dups;
260
261 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
262 static int ksm_stable_node_chains_prune_millisecs = 2000;
263
264 /* Maximum number of page slots sharing a stable node */
265 static int ksm_max_page_sharing = 256;
266
267 /* Number of pages ksmd should scan in one batch */
268 static unsigned int ksm_thread_pages_to_scan = 100;
269
270 /* Milliseconds ksmd should sleep between batches */
271 static unsigned int ksm_thread_sleep_millisecs = 20;
272
273 /* Checksum of an empty (zeroed) page */
274 static unsigned int zero_checksum __read_mostly;
275
276 /* Whether to merge empty (zeroed) pages with actual zero pages */
277 static bool ksm_use_zero_pages __read_mostly;
278
279 #ifdef CONFIG_NUMA
280 /* Zeroed when merging across nodes is not allowed */
281 static unsigned int ksm_merge_across_nodes = 1;
282 static int ksm_nr_node_ids = 1;
283 #else
284 #define ksm_merge_across_nodes  1U
285 #define ksm_nr_node_ids         1
286 #endif
287
288 #define KSM_RUN_STOP    0
289 #define KSM_RUN_MERGE   1
290 #define KSM_RUN_UNMERGE 2
291 #define KSM_RUN_OFFLINE 4
292 static unsigned long ksm_run = KSM_RUN_STOP;
293 static void wait_while_offlining(void);
294
295 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
296 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
297 static DEFINE_MUTEX(ksm_thread_mutex);
298 static DEFINE_SPINLOCK(ksm_mmlist_lock);
299
300 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
301                 sizeof(struct __struct), __alignof__(struct __struct),\
302                 (__flags), NULL)
303
304 static int __init ksm_slab_init(void)
305 {
306         rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
307         if (!rmap_item_cache)
308                 goto out;
309
310         stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
311         if (!stable_node_cache)
312                 goto out_free1;
313
314         mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
315         if (!mm_slot_cache)
316                 goto out_free2;
317
318         return 0;
319
320 out_free2:
321         kmem_cache_destroy(stable_node_cache);
322 out_free1:
323         kmem_cache_destroy(rmap_item_cache);
324 out:
325         return -ENOMEM;
326 }
327
328 static void __init ksm_slab_free(void)
329 {
330         kmem_cache_destroy(mm_slot_cache);
331         kmem_cache_destroy(stable_node_cache);
332         kmem_cache_destroy(rmap_item_cache);
333         mm_slot_cache = NULL;
334 }
335
336 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
337 {
338         return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
339 }
340
341 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
342 {
343         return dup->head == STABLE_NODE_DUP_HEAD;
344 }
345
346 static inline void stable_node_chain_add_dup(struct stable_node *dup,
347                                              struct stable_node *chain)
348 {
349         VM_BUG_ON(is_stable_node_dup(dup));
350         dup->head = STABLE_NODE_DUP_HEAD;
351         VM_BUG_ON(!is_stable_node_chain(chain));
352         hlist_add_head(&dup->hlist_dup, &chain->hlist);
353         ksm_stable_node_dups++;
354 }
355
356 static inline void __stable_node_dup_del(struct stable_node *dup)
357 {
358         VM_BUG_ON(!is_stable_node_dup(dup));
359         hlist_del(&dup->hlist_dup);
360         ksm_stable_node_dups--;
361 }
362
363 static inline void stable_node_dup_del(struct stable_node *dup)
364 {
365         VM_BUG_ON(is_stable_node_chain(dup));
366         if (is_stable_node_dup(dup))
367                 __stable_node_dup_del(dup);
368         else
369                 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
370 #ifdef CONFIG_DEBUG_VM
371         dup->head = NULL;
372 #endif
373 }
374
375 static inline struct rmap_item *alloc_rmap_item(void)
376 {
377         struct rmap_item *rmap_item;
378
379         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
380                                                 __GFP_NORETRY | __GFP_NOWARN);
381         if (rmap_item)
382                 ksm_rmap_items++;
383         return rmap_item;
384 }
385
386 static inline void free_rmap_item(struct rmap_item *rmap_item)
387 {
388         ksm_rmap_items--;
389         rmap_item->mm = NULL;   /* debug safety */
390         kmem_cache_free(rmap_item_cache, rmap_item);
391 }
392
393 static inline struct stable_node *alloc_stable_node(void)
394 {
395         /*
396          * The allocation can take too long with GFP_KERNEL when memory is under
397          * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
398          * grants access to memory reserves, helping to avoid this problem.
399          */
400         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
401 }
402
403 static inline void free_stable_node(struct stable_node *stable_node)
404 {
405         VM_BUG_ON(stable_node->rmap_hlist_len &&
406                   !is_stable_node_chain(stable_node));
407         kmem_cache_free(stable_node_cache, stable_node);
408 }
409
410 static inline struct mm_slot *alloc_mm_slot(void)
411 {
412         if (!mm_slot_cache)     /* initialization failed */
413                 return NULL;
414         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
415 }
416
417 static inline void free_mm_slot(struct mm_slot *mm_slot)
418 {
419         kmem_cache_free(mm_slot_cache, mm_slot);
420 }
421
422 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
423 {
424         struct mm_slot *slot;
425
426         hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
427                 if (slot->mm == mm)
428                         return slot;
429
430         return NULL;
431 }
432
433 static void insert_to_mm_slots_hash(struct mm_struct *mm,
434                                     struct mm_slot *mm_slot)
435 {
436         mm_slot->mm = mm;
437         hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
438 }
439
440 /*
441  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
442  * page tables after it has passed through ksm_exit() - which, if necessary,
443  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
444  * a special flag: they can just back out as soon as mm_users goes to zero.
445  * ksm_test_exit() is used throughout to make this test for exit: in some
446  * places for correctness, in some places just to avoid unnecessary work.
447  */
448 static inline bool ksm_test_exit(struct mm_struct *mm)
449 {
450         return atomic_read(&mm->mm_users) == 0;
451 }
452
453 /*
454  * We use break_ksm to break COW on a ksm page: it's a stripped down
455  *
456  *      if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1)
457  *              put_page(page);
458  *
459  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
460  * in case the application has unmapped and remapped mm,addr meanwhile.
461  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
462  * mmap of /dev/mem, where we would not want to touch it.
463  *
464  * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
465  * of the process that owns 'vma'.  We also do not want to enforce
466  * protection keys here anyway.
467  */
468 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
469 {
470         struct page *page;
471         vm_fault_t ret = 0;
472
473         do {
474                 cond_resched();
475                 page = follow_page(vma, addr,
476                                 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
477                 if (IS_ERR_OR_NULL(page))
478                         break;
479                 if (PageKsm(page))
480                         ret = handle_mm_fault(vma, addr,
481                                               FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
482                                               NULL);
483                 else
484                         ret = VM_FAULT_WRITE;
485                 put_page(page);
486         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
487         /*
488          * We must loop because handle_mm_fault() may back out if there's
489          * any difficulty e.g. if pte accessed bit gets updated concurrently.
490          *
491          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
492          * COW has been broken, even if the vma does not permit VM_WRITE;
493          * but note that a concurrent fault might break PageKsm for us.
494          *
495          * VM_FAULT_SIGBUS could occur if we race with truncation of the
496          * backing file, which also invalidates anonymous pages: that's
497          * okay, that truncation will have unmapped the PageKsm for us.
498          *
499          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
500          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
501          * current task has TIF_MEMDIE set, and will be OOM killed on return
502          * to user; and ksmd, having no mm, would never be chosen for that.
503          *
504          * But if the mm is in a limited mem_cgroup, then the fault may fail
505          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
506          * even ksmd can fail in this way - though it's usually breaking ksm
507          * just to undo a merge it made a moment before, so unlikely to oom.
508          *
509          * That's a pity: we might therefore have more kernel pages allocated
510          * than we're counting as nodes in the stable tree; but ksm_do_scan
511          * will retry to break_cow on each pass, so should recover the page
512          * in due course.  The important thing is to not let VM_MERGEABLE
513          * be cleared while any such pages might remain in the area.
514          */
515         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
516 }
517
518 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
519                 unsigned long addr)
520 {
521         struct vm_area_struct *vma;
522         if (ksm_test_exit(mm))
523                 return NULL;
524         vma = find_vma(mm, addr);
525         if (!vma || vma->vm_start > addr)
526                 return NULL;
527         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
528                 return NULL;
529         return vma;
530 }
531
532 static void break_cow(struct rmap_item *rmap_item)
533 {
534         struct mm_struct *mm = rmap_item->mm;
535         unsigned long addr = rmap_item->address;
536         struct vm_area_struct *vma;
537
538         /*
539          * It is not an accident that whenever we want to break COW
540          * to undo, we also need to drop a reference to the anon_vma.
541          */
542         put_anon_vma(rmap_item->anon_vma);
543
544         mmap_read_lock(mm);
545         vma = find_mergeable_vma(mm, addr);
546         if (vma)
547                 break_ksm(vma, addr);
548         mmap_read_unlock(mm);
549 }
550
551 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
552 {
553         struct mm_struct *mm = rmap_item->mm;
554         unsigned long addr = rmap_item->address;
555         struct vm_area_struct *vma;
556         struct page *page;
557
558         mmap_read_lock(mm);
559         vma = find_mergeable_vma(mm, addr);
560         if (!vma)
561                 goto out;
562
563         page = follow_page(vma, addr, FOLL_GET);
564         if (IS_ERR_OR_NULL(page))
565                 goto out;
566         if (PageAnon(page)) {
567                 flush_anon_page(vma, page, addr);
568                 flush_dcache_page(page);
569         } else {
570                 put_page(page);
571 out:
572                 page = NULL;
573         }
574         mmap_read_unlock(mm);
575         return page;
576 }
577
578 /*
579  * This helper is used for getting right index into array of tree roots.
580  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
581  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
582  * every node has its own stable and unstable tree.
583  */
584 static inline int get_kpfn_nid(unsigned long kpfn)
585 {
586         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
587 }
588
589 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
590                                                    struct rb_root *root)
591 {
592         struct stable_node *chain = alloc_stable_node();
593         VM_BUG_ON(is_stable_node_chain(dup));
594         if (likely(chain)) {
595                 INIT_HLIST_HEAD(&chain->hlist);
596                 chain->chain_prune_time = jiffies;
597                 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
598 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
599                 chain->nid = NUMA_NO_NODE; /* debug */
600 #endif
601                 ksm_stable_node_chains++;
602
603                 /*
604                  * Put the stable node chain in the first dimension of
605                  * the stable tree and at the same time remove the old
606                  * stable node.
607                  */
608                 rb_replace_node(&dup->node, &chain->node, root);
609
610                 /*
611                  * Move the old stable node to the second dimension
612                  * queued in the hlist_dup. The invariant is that all
613                  * dup stable_nodes in the chain->hlist point to pages
614                  * that are write protected and have the exact same
615                  * content.
616                  */
617                 stable_node_chain_add_dup(dup, chain);
618         }
619         return chain;
620 }
621
622 static inline void free_stable_node_chain(struct stable_node *chain,
623                                           struct rb_root *root)
624 {
625         rb_erase(&chain->node, root);
626         free_stable_node(chain);
627         ksm_stable_node_chains--;
628 }
629
630 static void remove_node_from_stable_tree(struct stable_node *stable_node)
631 {
632         struct rmap_item *rmap_item;
633
634         /* check it's not STABLE_NODE_CHAIN or negative */
635         BUG_ON(stable_node->rmap_hlist_len < 0);
636
637         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
638                 if (rmap_item->hlist.next)
639                         ksm_pages_sharing--;
640                 else
641                         ksm_pages_shared--;
642                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
643                 stable_node->rmap_hlist_len--;
644                 put_anon_vma(rmap_item->anon_vma);
645                 rmap_item->address &= PAGE_MASK;
646                 cond_resched();
647         }
648
649         /*
650          * We need the second aligned pointer of the migrate_nodes
651          * list_head to stay clear from the rb_parent_color union
652          * (aligned and different than any node) and also different
653          * from &migrate_nodes. This will verify that future list.h changes
654          * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
655          */
656 #if defined(GCC_VERSION) && GCC_VERSION >= 40903
657         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
658         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
659 #endif
660
661         if (stable_node->head == &migrate_nodes)
662                 list_del(&stable_node->list);
663         else
664                 stable_node_dup_del(stable_node);
665         free_stable_node(stable_node);
666 }
667
668 enum get_ksm_page_flags {
669         GET_KSM_PAGE_NOLOCK,
670         GET_KSM_PAGE_LOCK,
671         GET_KSM_PAGE_TRYLOCK
672 };
673
674 /*
675  * get_ksm_page: checks if the page indicated by the stable node
676  * is still its ksm page, despite having held no reference to it.
677  * In which case we can trust the content of the page, and it
678  * returns the gotten page; but if the page has now been zapped,
679  * remove the stale node from the stable tree and return NULL.
680  * But beware, the stable node's page might be being migrated.
681  *
682  * You would expect the stable_node to hold a reference to the ksm page.
683  * But if it increments the page's count, swapping out has to wait for
684  * ksmd to come around again before it can free the page, which may take
685  * seconds or even minutes: much too unresponsive.  So instead we use a
686  * "keyhole reference": access to the ksm page from the stable node peeps
687  * out through its keyhole to see if that page still holds the right key,
688  * pointing back to this stable node.  This relies on freeing a PageAnon
689  * page to reset its page->mapping to NULL, and relies on no other use of
690  * a page to put something that might look like our key in page->mapping.
691  * is on its way to being freed; but it is an anomaly to bear in mind.
692  */
693 static struct page *get_ksm_page(struct stable_node *stable_node,
694                                  enum get_ksm_page_flags flags)
695 {
696         struct page *page;
697         void *expected_mapping;
698         unsigned long kpfn;
699
700         expected_mapping = (void *)((unsigned long)stable_node |
701                                         PAGE_MAPPING_KSM);
702 again:
703         kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
704         page = pfn_to_page(kpfn);
705         if (READ_ONCE(page->mapping) != expected_mapping)
706                 goto stale;
707
708         /*
709          * We cannot do anything with the page while its refcount is 0.
710          * Usually 0 means free, or tail of a higher-order page: in which
711          * case this node is no longer referenced, and should be freed;
712          * however, it might mean that the page is under page_ref_freeze().
713          * The __remove_mapping() case is easy, again the node is now stale;
714          * the same is in reuse_ksm_page() case; but if page is swapcache
715          * in migrate_page_move_mapping(), it might still be our page,
716          * in which case it's essential to keep the node.
717          */
718         while (!get_page_unless_zero(page)) {
719                 /*
720                  * Another check for page->mapping != expected_mapping would
721                  * work here too.  We have chosen the !PageSwapCache test to
722                  * optimize the common case, when the page is or is about to
723                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
724                  * in the ref_freeze section of __remove_mapping(); but Anon
725                  * page->mapping reset to NULL later, in free_pages_prepare().
726                  */
727                 if (!PageSwapCache(page))
728                         goto stale;
729                 cpu_relax();
730         }
731
732         if (READ_ONCE(page->mapping) != expected_mapping) {
733                 put_page(page);
734                 goto stale;
735         }
736
737         if (flags == GET_KSM_PAGE_TRYLOCK) {
738                 if (!trylock_page(page)) {
739                         put_page(page);
740                         return ERR_PTR(-EBUSY);
741                 }
742         } else if (flags == GET_KSM_PAGE_LOCK)
743                 lock_page(page);
744
745         if (flags != GET_KSM_PAGE_NOLOCK) {
746                 if (READ_ONCE(page->mapping) != expected_mapping) {
747                         unlock_page(page);
748                         put_page(page);
749                         goto stale;
750                 }
751         }
752         return page;
753
754 stale:
755         /*
756          * We come here from above when page->mapping or !PageSwapCache
757          * suggests that the node is stale; but it might be under migration.
758          * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
759          * before checking whether node->kpfn has been changed.
760          */
761         smp_rmb();
762         if (READ_ONCE(stable_node->kpfn) != kpfn)
763                 goto again;
764         remove_node_from_stable_tree(stable_node);
765         return NULL;
766 }
767
768 /*
769  * Removing rmap_item from stable or unstable tree.
770  * This function will clean the information from the stable/unstable tree.
771  */
772 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
773 {
774         if (rmap_item->address & STABLE_FLAG) {
775                 struct stable_node *stable_node;
776                 struct page *page;
777
778                 stable_node = rmap_item->head;
779                 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
780                 if (!page)
781                         goto out;
782
783                 hlist_del(&rmap_item->hlist);
784                 unlock_page(page);
785                 put_page(page);
786
787                 if (!hlist_empty(&stable_node->hlist))
788                         ksm_pages_sharing--;
789                 else
790                         ksm_pages_shared--;
791                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
792                 stable_node->rmap_hlist_len--;
793
794                 put_anon_vma(rmap_item->anon_vma);
795                 rmap_item->head = NULL;
796                 rmap_item->address &= PAGE_MASK;
797
798         } else if (rmap_item->address & UNSTABLE_FLAG) {
799                 unsigned char age;
800                 /*
801                  * Usually ksmd can and must skip the rb_erase, because
802                  * root_unstable_tree was already reset to RB_ROOT.
803                  * But be careful when an mm is exiting: do the rb_erase
804                  * if this rmap_item was inserted by this scan, rather
805                  * than left over from before.
806                  */
807                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
808                 BUG_ON(age > 1);
809                 if (!age)
810                         rb_erase(&rmap_item->node,
811                                  root_unstable_tree + NUMA(rmap_item->nid));
812                 ksm_pages_unshared--;
813                 rmap_item->address &= PAGE_MASK;
814         }
815 out:
816         cond_resched();         /* we're called from many long loops */
817 }
818
819 static void remove_trailing_rmap_items(struct rmap_item **rmap_list)
820 {
821         while (*rmap_list) {
822                 struct rmap_item *rmap_item = *rmap_list;
823                 *rmap_list = rmap_item->rmap_list;
824                 remove_rmap_item_from_tree(rmap_item);
825                 free_rmap_item(rmap_item);
826         }
827 }
828
829 /*
830  * Though it's very tempting to unmerge rmap_items from stable tree rather
831  * than check every pte of a given vma, the locking doesn't quite work for
832  * that - an rmap_item is assigned to the stable tree after inserting ksm
833  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
834  * rmap_items from parent to child at fork time (so as not to waste time
835  * if exit comes before the next scan reaches it).
836  *
837  * Similarly, although we'd like to remove rmap_items (so updating counts
838  * and freeing memory) when unmerging an area, it's easier to leave that
839  * to the next pass of ksmd - consider, for example, how ksmd might be
840  * in cmp_and_merge_page on one of the rmap_items we would be removing.
841  */
842 static int unmerge_ksm_pages(struct vm_area_struct *vma,
843                              unsigned long start, unsigned long end)
844 {
845         unsigned long addr;
846         int err = 0;
847
848         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
849                 if (ksm_test_exit(vma->vm_mm))
850                         break;
851                 if (signal_pending(current))
852                         err = -ERESTARTSYS;
853                 else
854                         err = break_ksm(vma, addr);
855         }
856         return err;
857 }
858
859 static inline struct stable_node *page_stable_node(struct page *page)
860 {
861         return PageKsm(page) ? page_rmapping(page) : NULL;
862 }
863
864 static inline void set_page_stable_node(struct page *page,
865                                         struct stable_node *stable_node)
866 {
867         page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
868 }
869
870 #ifdef CONFIG_SYSFS
871 /*
872  * Only called through the sysfs control interface:
873  */
874 static int remove_stable_node(struct stable_node *stable_node)
875 {
876         struct page *page;
877         int err;
878
879         page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
880         if (!page) {
881                 /*
882                  * get_ksm_page did remove_node_from_stable_tree itself.
883                  */
884                 return 0;
885         }
886
887         /*
888          * Page could be still mapped if this races with __mmput() running in
889          * between ksm_exit() and exit_mmap(). Just refuse to let
890          * merge_across_nodes/max_page_sharing be switched.
891          */
892         err = -EBUSY;
893         if (!page_mapped(page)) {
894                 /*
895                  * The stable node did not yet appear stale to get_ksm_page(),
896                  * since that allows for an unmapped ksm page to be recognized
897                  * right up until it is freed; but the node is safe to remove.
898                  * This page might be in a pagevec waiting to be freed,
899                  * or it might be PageSwapCache (perhaps under writeback),
900                  * or it might have been removed from swapcache a moment ago.
901                  */
902                 set_page_stable_node(page, NULL);
903                 remove_node_from_stable_tree(stable_node);
904                 err = 0;
905         }
906
907         unlock_page(page);
908         put_page(page);
909         return err;
910 }
911
912 static int remove_stable_node_chain(struct stable_node *stable_node,
913                                     struct rb_root *root)
914 {
915         struct stable_node *dup;
916         struct hlist_node *hlist_safe;
917
918         if (!is_stable_node_chain(stable_node)) {
919                 VM_BUG_ON(is_stable_node_dup(stable_node));
920                 if (remove_stable_node(stable_node))
921                         return true;
922                 else
923                         return false;
924         }
925
926         hlist_for_each_entry_safe(dup, hlist_safe,
927                                   &stable_node->hlist, hlist_dup) {
928                 VM_BUG_ON(!is_stable_node_dup(dup));
929                 if (remove_stable_node(dup))
930                         return true;
931         }
932         BUG_ON(!hlist_empty(&stable_node->hlist));
933         free_stable_node_chain(stable_node, root);
934         return false;
935 }
936
937 static int remove_all_stable_nodes(void)
938 {
939         struct stable_node *stable_node, *next;
940         int nid;
941         int err = 0;
942
943         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
944                 while (root_stable_tree[nid].rb_node) {
945                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
946                                                 struct stable_node, node);
947                         if (remove_stable_node_chain(stable_node,
948                                                      root_stable_tree + nid)) {
949                                 err = -EBUSY;
950                                 break;  /* proceed to next nid */
951                         }
952                         cond_resched();
953                 }
954         }
955         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
956                 if (remove_stable_node(stable_node))
957                         err = -EBUSY;
958                 cond_resched();
959         }
960         return err;
961 }
962
963 static int unmerge_and_remove_all_rmap_items(void)
964 {
965         struct mm_slot *mm_slot;
966         struct mm_struct *mm;
967         struct vm_area_struct *vma;
968         int err = 0;
969
970         spin_lock(&ksm_mmlist_lock);
971         ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
972                                                 struct mm_slot, mm_list);
973         spin_unlock(&ksm_mmlist_lock);
974
975         for (mm_slot = ksm_scan.mm_slot;
976                         mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
977                 mm = mm_slot->mm;
978                 mmap_read_lock(mm);
979                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
980                         if (ksm_test_exit(mm))
981                                 break;
982                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
983                                 continue;
984                         err = unmerge_ksm_pages(vma,
985                                                 vma->vm_start, vma->vm_end);
986                         if (err)
987                                 goto error;
988                 }
989
990                 remove_trailing_rmap_items(&mm_slot->rmap_list);
991                 mmap_read_unlock(mm);
992
993                 spin_lock(&ksm_mmlist_lock);
994                 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
995                                                 struct mm_slot, mm_list);
996                 if (ksm_test_exit(mm)) {
997                         hash_del(&mm_slot->link);
998                         list_del(&mm_slot->mm_list);
999                         spin_unlock(&ksm_mmlist_lock);
1000
1001                         free_mm_slot(mm_slot);
1002                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1003                         mmdrop(mm);
1004                 } else
1005                         spin_unlock(&ksm_mmlist_lock);
1006         }
1007
1008         /* Clean up stable nodes, but don't worry if some are still busy */
1009         remove_all_stable_nodes();
1010         ksm_scan.seqnr = 0;
1011         return 0;
1012
1013 error:
1014         mmap_read_unlock(mm);
1015         spin_lock(&ksm_mmlist_lock);
1016         ksm_scan.mm_slot = &ksm_mm_head;
1017         spin_unlock(&ksm_mmlist_lock);
1018         return err;
1019 }
1020 #endif /* CONFIG_SYSFS */
1021
1022 static u32 calc_checksum(struct page *page)
1023 {
1024         u32 checksum;
1025         void *addr = kmap_atomic(page);
1026         checksum = xxhash(addr, PAGE_SIZE, 0);
1027         kunmap_atomic(addr);
1028         return checksum;
1029 }
1030
1031 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1032                               pte_t *orig_pte)
1033 {
1034         struct mm_struct *mm = vma->vm_mm;
1035         struct page_vma_mapped_walk pvmw = {
1036                 .page = page,
1037                 .vma = vma,
1038         };
1039         int swapped;
1040         int err = -EFAULT;
1041         struct mmu_notifier_range range;
1042
1043         pvmw.address = page_address_in_vma(page, vma);
1044         if (pvmw.address == -EFAULT)
1045                 goto out;
1046
1047         BUG_ON(PageTransCompound(page));
1048
1049         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
1050                                 pvmw.address,
1051                                 pvmw.address + PAGE_SIZE);
1052         mmu_notifier_invalidate_range_start(&range);
1053
1054         if (!page_vma_mapped_walk(&pvmw))
1055                 goto out_mn;
1056         if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1057                 goto out_unlock;
1058
1059         if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1060             (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1061                                                 mm_tlb_flush_pending(mm)) {
1062                 pte_t entry;
1063
1064                 swapped = PageSwapCache(page);
1065                 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1066                 /*
1067                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
1068                  * take any lock, therefore the check that we are going to make
1069                  * with the pagecount against the mapcount is racy and
1070                  * O_DIRECT can happen right after the check.
1071                  * So we clear the pte and flush the tlb before the check
1072                  * this assure us that no O_DIRECT can happen after the check
1073                  * or in the middle of the check.
1074                  *
1075                  * No need to notify as we are downgrading page table to read
1076                  * only not changing it to point to a new page.
1077                  *
1078                  * See Documentation/vm/mmu_notifier.rst
1079                  */
1080                 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1081                 /*
1082                  * Check that no O_DIRECT or similar I/O is in progress on the
1083                  * page
1084                  */
1085                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1086                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1087                         goto out_unlock;
1088                 }
1089                 if (pte_dirty(entry))
1090                         set_page_dirty(page);
1091
1092                 if (pte_protnone(entry))
1093                         entry = pte_mkclean(pte_clear_savedwrite(entry));
1094                 else
1095                         entry = pte_mkclean(pte_wrprotect(entry));
1096                 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1097         }
1098         *orig_pte = *pvmw.pte;
1099         err = 0;
1100
1101 out_unlock:
1102         page_vma_mapped_walk_done(&pvmw);
1103 out_mn:
1104         mmu_notifier_invalidate_range_end(&range);
1105 out:
1106         return err;
1107 }
1108
1109 /**
1110  * replace_page - replace page in vma by new ksm page
1111  * @vma:      vma that holds the pte pointing to page
1112  * @page:     the page we are replacing by kpage
1113  * @kpage:    the ksm page we replace page by
1114  * @orig_pte: the original value of the pte
1115  *
1116  * Returns 0 on success, -EFAULT on failure.
1117  */
1118 static int replace_page(struct vm_area_struct *vma, struct page *page,
1119                         struct page *kpage, pte_t orig_pte)
1120 {
1121         struct mm_struct *mm = vma->vm_mm;
1122         pmd_t *pmd;
1123         pte_t *ptep;
1124         pte_t newpte;
1125         spinlock_t *ptl;
1126         unsigned long addr;
1127         int err = -EFAULT;
1128         struct mmu_notifier_range range;
1129
1130         addr = page_address_in_vma(page, vma);
1131         if (addr == -EFAULT)
1132                 goto out;
1133
1134         pmd = mm_find_pmd(mm, addr);
1135         if (!pmd)
1136                 goto out;
1137
1138         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
1139                                 addr + PAGE_SIZE);
1140         mmu_notifier_invalidate_range_start(&range);
1141
1142         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1143         if (!pte_same(*ptep, orig_pte)) {
1144                 pte_unmap_unlock(ptep, ptl);
1145                 goto out_mn;
1146         }
1147
1148         /*
1149          * No need to check ksm_use_zero_pages here: we can only have a
1150          * zero_page here if ksm_use_zero_pages was enabled already.
1151          */
1152         if (!is_zero_pfn(page_to_pfn(kpage))) {
1153                 get_page(kpage);
1154                 page_add_anon_rmap(kpage, vma, addr, false);
1155                 newpte = mk_pte(kpage, vma->vm_page_prot);
1156         } else {
1157                 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1158                                                vma->vm_page_prot));
1159                 /*
1160                  * We're replacing an anonymous page with a zero page, which is
1161                  * not anonymous. We need to do proper accounting otherwise we
1162                  * will get wrong values in /proc, and a BUG message in dmesg
1163                  * when tearing down the mm.
1164                  */
1165                 dec_mm_counter(mm, MM_ANONPAGES);
1166         }
1167
1168         flush_cache_page(vma, addr, pte_pfn(*ptep));
1169         /*
1170          * No need to notify as we are replacing a read only page with another
1171          * read only page with the same content.
1172          *
1173          * See Documentation/vm/mmu_notifier.rst
1174          */
1175         ptep_clear_flush(vma, addr, ptep);
1176         set_pte_at_notify(mm, addr, ptep, newpte);
1177
1178         page_remove_rmap(page, false);
1179         if (!page_mapped(page))
1180                 try_to_free_swap(page);
1181         put_page(page);
1182
1183         pte_unmap_unlock(ptep, ptl);
1184         err = 0;
1185 out_mn:
1186         mmu_notifier_invalidate_range_end(&range);
1187 out:
1188         return err;
1189 }
1190
1191 /*
1192  * try_to_merge_one_page - take two pages and merge them into one
1193  * @vma: the vma that holds the pte pointing to page
1194  * @page: the PageAnon page that we want to replace with kpage
1195  * @kpage: the PageKsm page that we want to map instead of page,
1196  *         or NULL the first time when we want to use page as kpage.
1197  *
1198  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1199  */
1200 static int try_to_merge_one_page(struct vm_area_struct *vma,
1201                                  struct page *page, struct page *kpage)
1202 {
1203         pte_t orig_pte = __pte(0);
1204         int err = -EFAULT;
1205
1206         if (page == kpage)                      /* ksm page forked */
1207                 return 0;
1208
1209         if (!PageAnon(page))
1210                 goto out;
1211
1212         /*
1213          * We need the page lock to read a stable PageSwapCache in
1214          * write_protect_page().  We use trylock_page() instead of
1215          * lock_page() because we don't want to wait here - we
1216          * prefer to continue scanning and merging different pages,
1217          * then come back to this page when it is unlocked.
1218          */
1219         if (!trylock_page(page))
1220                 goto out;
1221
1222         if (PageTransCompound(page)) {
1223                 if (split_huge_page(page))
1224                         goto out_unlock;
1225         }
1226
1227         /*
1228          * If this anonymous page is mapped only here, its pte may need
1229          * to be write-protected.  If it's mapped elsewhere, all of its
1230          * ptes are necessarily already write-protected.  But in either
1231          * case, we need to lock and check page_count is not raised.
1232          */
1233         if (write_protect_page(vma, page, &orig_pte) == 0) {
1234                 if (!kpage) {
1235                         /*
1236                          * While we hold page lock, upgrade page from
1237                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1238                          * stable_tree_insert() will update stable_node.
1239                          */
1240                         set_page_stable_node(page, NULL);
1241                         mark_page_accessed(page);
1242                         /*
1243                          * Page reclaim just frees a clean page with no dirty
1244                          * ptes: make sure that the ksm page would be swapped.
1245                          */
1246                         if (!PageDirty(page))
1247                                 SetPageDirty(page);
1248                         err = 0;
1249                 } else if (pages_identical(page, kpage))
1250                         err = replace_page(vma, page, kpage, orig_pte);
1251         }
1252
1253         if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1254                 munlock_vma_page(page);
1255                 if (!PageMlocked(kpage)) {
1256                         unlock_page(page);
1257                         lock_page(kpage);
1258                         mlock_vma_page(kpage);
1259                         page = kpage;           /* for final unlock */
1260                 }
1261         }
1262
1263 out_unlock:
1264         unlock_page(page);
1265 out:
1266         return err;
1267 }
1268
1269 /*
1270  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1271  * but no new kernel page is allocated: kpage must already be a ksm page.
1272  *
1273  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1274  */
1275 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1276                                       struct page *page, struct page *kpage)
1277 {
1278         struct mm_struct *mm = rmap_item->mm;
1279         struct vm_area_struct *vma;
1280         int err = -EFAULT;
1281
1282         mmap_read_lock(mm);
1283         vma = find_mergeable_vma(mm, rmap_item->address);
1284         if (!vma)
1285                 goto out;
1286
1287         err = try_to_merge_one_page(vma, page, kpage);
1288         if (err)
1289                 goto out;
1290
1291         /* Unstable nid is in union with stable anon_vma: remove first */
1292         remove_rmap_item_from_tree(rmap_item);
1293
1294         /* Must get reference to anon_vma while still holding mmap_lock */
1295         rmap_item->anon_vma = vma->anon_vma;
1296         get_anon_vma(vma->anon_vma);
1297 out:
1298         mmap_read_unlock(mm);
1299         return err;
1300 }
1301
1302 /*
1303  * try_to_merge_two_pages - take two identical pages and prepare them
1304  * to be merged into one page.
1305  *
1306  * This function returns the kpage if we successfully merged two identical
1307  * pages into one ksm page, NULL otherwise.
1308  *
1309  * Note that this function upgrades page to ksm page: if one of the pages
1310  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1311  */
1312 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1313                                            struct page *page,
1314                                            struct rmap_item *tree_rmap_item,
1315                                            struct page *tree_page)
1316 {
1317         int err;
1318
1319         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1320         if (!err) {
1321                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1322                                                         tree_page, page);
1323                 /*
1324                  * If that fails, we have a ksm page with only one pte
1325                  * pointing to it: so break it.
1326                  */
1327                 if (err)
1328                         break_cow(rmap_item);
1329         }
1330         return err ? NULL : page;
1331 }
1332
1333 static __always_inline
1334 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1335 {
1336         VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1337         /*
1338          * Check that at least one mapping still exists, otherwise
1339          * there's no much point to merge and share with this
1340          * stable_node, as the underlying tree_page of the other
1341          * sharer is going to be freed soon.
1342          */
1343         return stable_node->rmap_hlist_len &&
1344                 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1345 }
1346
1347 static __always_inline
1348 bool is_page_sharing_candidate(struct stable_node *stable_node)
1349 {
1350         return __is_page_sharing_candidate(stable_node, 0);
1351 }
1352
1353 static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1354                                     struct stable_node **_stable_node,
1355                                     struct rb_root *root,
1356                                     bool prune_stale_stable_nodes)
1357 {
1358         struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1359         struct hlist_node *hlist_safe;
1360         struct page *_tree_page, *tree_page = NULL;
1361         int nr = 0;
1362         int found_rmap_hlist_len;
1363
1364         if (!prune_stale_stable_nodes ||
1365             time_before(jiffies, stable_node->chain_prune_time +
1366                         msecs_to_jiffies(
1367                                 ksm_stable_node_chains_prune_millisecs)))
1368                 prune_stale_stable_nodes = false;
1369         else
1370                 stable_node->chain_prune_time = jiffies;
1371
1372         hlist_for_each_entry_safe(dup, hlist_safe,
1373                                   &stable_node->hlist, hlist_dup) {
1374                 cond_resched();
1375                 /*
1376                  * We must walk all stable_node_dup to prune the stale
1377                  * stable nodes during lookup.
1378                  *
1379                  * get_ksm_page can drop the nodes from the
1380                  * stable_node->hlist if they point to freed pages
1381                  * (that's why we do a _safe walk). The "dup"
1382                  * stable_node parameter itself will be freed from
1383                  * under us if it returns NULL.
1384                  */
1385                 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1386                 if (!_tree_page)
1387                         continue;
1388                 nr += 1;
1389                 if (is_page_sharing_candidate(dup)) {
1390                         if (!found ||
1391                             dup->rmap_hlist_len > found_rmap_hlist_len) {
1392                                 if (found)
1393                                         put_page(tree_page);
1394                                 found = dup;
1395                                 found_rmap_hlist_len = found->rmap_hlist_len;
1396                                 tree_page = _tree_page;
1397
1398                                 /* skip put_page for found dup */
1399                                 if (!prune_stale_stable_nodes)
1400                                         break;
1401                                 continue;
1402                         }
1403                 }
1404                 put_page(_tree_page);
1405         }
1406
1407         if (found) {
1408                 /*
1409                  * nr is counting all dups in the chain only if
1410                  * prune_stale_stable_nodes is true, otherwise we may
1411                  * break the loop at nr == 1 even if there are
1412                  * multiple entries.
1413                  */
1414                 if (prune_stale_stable_nodes && nr == 1) {
1415                         /*
1416                          * If there's not just one entry it would
1417                          * corrupt memory, better BUG_ON. In KSM
1418                          * context with no lock held it's not even
1419                          * fatal.
1420                          */
1421                         BUG_ON(stable_node->hlist.first->next);
1422
1423                         /*
1424                          * There's just one entry and it is below the
1425                          * deduplication limit so drop the chain.
1426                          */
1427                         rb_replace_node(&stable_node->node, &found->node,
1428                                         root);
1429                         free_stable_node(stable_node);
1430                         ksm_stable_node_chains--;
1431                         ksm_stable_node_dups--;
1432                         /*
1433                          * NOTE: the caller depends on the stable_node
1434                          * to be equal to stable_node_dup if the chain
1435                          * was collapsed.
1436                          */
1437                         *_stable_node = found;
1438                         /*
1439                          * Just for robustness, as stable_node is
1440                          * otherwise left as a stable pointer, the
1441                          * compiler shall optimize it away at build
1442                          * time.
1443                          */
1444                         stable_node = NULL;
1445                 } else if (stable_node->hlist.first != &found->hlist_dup &&
1446                            __is_page_sharing_candidate(found, 1)) {
1447                         /*
1448                          * If the found stable_node dup can accept one
1449                          * more future merge (in addition to the one
1450                          * that is underway) and is not at the head of
1451                          * the chain, put it there so next search will
1452                          * be quicker in the !prune_stale_stable_nodes
1453                          * case.
1454                          *
1455                          * NOTE: it would be inaccurate to use nr > 1
1456                          * instead of checking the hlist.first pointer
1457                          * directly, because in the
1458                          * prune_stale_stable_nodes case "nr" isn't
1459                          * the position of the found dup in the chain,
1460                          * but the total number of dups in the chain.
1461                          */
1462                         hlist_del(&found->hlist_dup);
1463                         hlist_add_head(&found->hlist_dup,
1464                                        &stable_node->hlist);
1465                 }
1466         }
1467
1468         *_stable_node_dup = found;
1469         return tree_page;
1470 }
1471
1472 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1473                                                struct rb_root *root)
1474 {
1475         if (!is_stable_node_chain(stable_node))
1476                 return stable_node;
1477         if (hlist_empty(&stable_node->hlist)) {
1478                 free_stable_node_chain(stable_node, root);
1479                 return NULL;
1480         }
1481         return hlist_entry(stable_node->hlist.first,
1482                            typeof(*stable_node), hlist_dup);
1483 }
1484
1485 /*
1486  * Like for get_ksm_page, this function can free the *_stable_node and
1487  * *_stable_node_dup if the returned tree_page is NULL.
1488  *
1489  * It can also free and overwrite *_stable_node with the found
1490  * stable_node_dup if the chain is collapsed (in which case
1491  * *_stable_node will be equal to *_stable_node_dup like if the chain
1492  * never existed). It's up to the caller to verify tree_page is not
1493  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1494  *
1495  * *_stable_node_dup is really a second output parameter of this
1496  * function and will be overwritten in all cases, the caller doesn't
1497  * need to initialize it.
1498  */
1499 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1500                                         struct stable_node **_stable_node,
1501                                         struct rb_root *root,
1502                                         bool prune_stale_stable_nodes)
1503 {
1504         struct stable_node *stable_node = *_stable_node;
1505         if (!is_stable_node_chain(stable_node)) {
1506                 if (is_page_sharing_candidate(stable_node)) {
1507                         *_stable_node_dup = stable_node;
1508                         return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1509                 }
1510                 /*
1511                  * _stable_node_dup set to NULL means the stable_node
1512                  * reached the ksm_max_page_sharing limit.
1513                  */
1514                 *_stable_node_dup = NULL;
1515                 return NULL;
1516         }
1517         return stable_node_dup(_stable_node_dup, _stable_node, root,
1518                                prune_stale_stable_nodes);
1519 }
1520
1521 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1522                                                 struct stable_node **s_n,
1523                                                 struct rb_root *root)
1524 {
1525         return __stable_node_chain(s_n_d, s_n, root, true);
1526 }
1527
1528 static __always_inline struct page *chain(struct stable_node **s_n_d,
1529                                           struct stable_node *s_n,
1530                                           struct rb_root *root)
1531 {
1532         struct stable_node *old_stable_node = s_n;
1533         struct page *tree_page;
1534
1535         tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1536         /* not pruning dups so s_n cannot have changed */
1537         VM_BUG_ON(s_n != old_stable_node);
1538         return tree_page;
1539 }
1540
1541 /*
1542  * stable_tree_search - search for page inside the stable tree
1543  *
1544  * This function checks if there is a page inside the stable tree
1545  * with identical content to the page that we are scanning right now.
1546  *
1547  * This function returns the stable tree node of identical content if found,
1548  * NULL otherwise.
1549  */
1550 static struct page *stable_tree_search(struct page *page)
1551 {
1552         int nid;
1553         struct rb_root *root;
1554         struct rb_node **new;
1555         struct rb_node *parent;
1556         struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1557         struct stable_node *page_node;
1558
1559         page_node = page_stable_node(page);
1560         if (page_node && page_node->head != &migrate_nodes) {
1561                 /* ksm page forked */
1562                 get_page(page);
1563                 return page;
1564         }
1565
1566         nid = get_kpfn_nid(page_to_pfn(page));
1567         root = root_stable_tree + nid;
1568 again:
1569         new = &root->rb_node;
1570         parent = NULL;
1571
1572         while (*new) {
1573                 struct page *tree_page;
1574                 int ret;
1575
1576                 cond_resched();
1577                 stable_node = rb_entry(*new, struct stable_node, node);
1578                 stable_node_any = NULL;
1579                 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1580                 /*
1581                  * NOTE: stable_node may have been freed by
1582                  * chain_prune() if the returned stable_node_dup is
1583                  * not NULL. stable_node_dup may have been inserted in
1584                  * the rbtree instead as a regular stable_node (in
1585                  * order to collapse the stable_node chain if a single
1586                  * stable_node dup was found in it). In such case the
1587                  * stable_node is overwritten by the calleee to point
1588                  * to the stable_node_dup that was collapsed in the
1589                  * stable rbtree and stable_node will be equal to
1590                  * stable_node_dup like if the chain never existed.
1591                  */
1592                 if (!stable_node_dup) {
1593                         /*
1594                          * Either all stable_node dups were full in
1595                          * this stable_node chain, or this chain was
1596                          * empty and should be rb_erased.
1597                          */
1598                         stable_node_any = stable_node_dup_any(stable_node,
1599                                                               root);
1600                         if (!stable_node_any) {
1601                                 /* rb_erase just run */
1602                                 goto again;
1603                         }
1604                         /*
1605                          * Take any of the stable_node dups page of
1606                          * this stable_node chain to let the tree walk
1607                          * continue. All KSM pages belonging to the
1608                          * stable_node dups in a stable_node chain
1609                          * have the same content and they're
1610                          * write protected at all times. Any will work
1611                          * fine to continue the walk.
1612                          */
1613                         tree_page = get_ksm_page(stable_node_any,
1614                                                  GET_KSM_PAGE_NOLOCK);
1615                 }
1616                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1617                 if (!tree_page) {
1618                         /*
1619                          * If we walked over a stale stable_node,
1620                          * get_ksm_page() will call rb_erase() and it
1621                          * may rebalance the tree from under us. So
1622                          * restart the search from scratch. Returning
1623                          * NULL would be safe too, but we'd generate
1624                          * false negative insertions just because some
1625                          * stable_node was stale.
1626                          */
1627                         goto again;
1628                 }
1629
1630                 ret = memcmp_pages(page, tree_page);
1631                 put_page(tree_page);
1632
1633                 parent = *new;
1634                 if (ret < 0)
1635                         new = &parent->rb_left;
1636                 else if (ret > 0)
1637                         new = &parent->rb_right;
1638                 else {
1639                         if (page_node) {
1640                                 VM_BUG_ON(page_node->head != &migrate_nodes);
1641                                 /*
1642                                  * Test if the migrated page should be merged
1643                                  * into a stable node dup. If the mapcount is
1644                                  * 1 we can migrate it with another KSM page
1645                                  * without adding it to the chain.
1646                                  */
1647                                 if (page_mapcount(page) > 1)
1648                                         goto chain_append;
1649                         }
1650
1651                         if (!stable_node_dup) {
1652                                 /*
1653                                  * If the stable_node is a chain and
1654                                  * we got a payload match in memcmp
1655                                  * but we cannot merge the scanned
1656                                  * page in any of the existing
1657                                  * stable_node dups because they're
1658                                  * all full, we need to wait the
1659                                  * scanned page to find itself a match
1660                                  * in the unstable tree to create a
1661                                  * brand new KSM page to add later to
1662                                  * the dups of this stable_node.
1663                                  */
1664                                 return NULL;
1665                         }
1666
1667                         /*
1668                          * Lock and unlock the stable_node's page (which
1669                          * might already have been migrated) so that page
1670                          * migration is sure to notice its raised count.
1671                          * It would be more elegant to return stable_node
1672                          * than kpage, but that involves more changes.
1673                          */
1674                         tree_page = get_ksm_page(stable_node_dup,
1675                                                  GET_KSM_PAGE_TRYLOCK);
1676
1677                         if (PTR_ERR(tree_page) == -EBUSY)
1678                                 return ERR_PTR(-EBUSY);
1679
1680                         if (unlikely(!tree_page))
1681                                 /*
1682                                  * The tree may have been rebalanced,
1683                                  * so re-evaluate parent and new.
1684                                  */
1685                                 goto again;
1686                         unlock_page(tree_page);
1687
1688                         if (get_kpfn_nid(stable_node_dup->kpfn) !=
1689                             NUMA(stable_node_dup->nid)) {
1690                                 put_page(tree_page);
1691                                 goto replace;
1692                         }
1693                         return tree_page;
1694                 }
1695         }
1696
1697         if (!page_node)
1698                 return NULL;
1699
1700         list_del(&page_node->list);
1701         DO_NUMA(page_node->nid = nid);
1702         rb_link_node(&page_node->node, parent, new);
1703         rb_insert_color(&page_node->node, root);
1704 out:
1705         if (is_page_sharing_candidate(page_node)) {
1706                 get_page(page);
1707                 return page;
1708         } else
1709                 return NULL;
1710
1711 replace:
1712         /*
1713          * If stable_node was a chain and chain_prune collapsed it,
1714          * stable_node has been updated to be the new regular
1715          * stable_node. A collapse of the chain is indistinguishable
1716          * from the case there was no chain in the stable
1717          * rbtree. Otherwise stable_node is the chain and
1718          * stable_node_dup is the dup to replace.
1719          */
1720         if (stable_node_dup == stable_node) {
1721                 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1722                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1723                 /* there is no chain */
1724                 if (page_node) {
1725                         VM_BUG_ON(page_node->head != &migrate_nodes);
1726                         list_del(&page_node->list);
1727                         DO_NUMA(page_node->nid = nid);
1728                         rb_replace_node(&stable_node_dup->node,
1729                                         &page_node->node,
1730                                         root);
1731                         if (is_page_sharing_candidate(page_node))
1732                                 get_page(page);
1733                         else
1734                                 page = NULL;
1735                 } else {
1736                         rb_erase(&stable_node_dup->node, root);
1737                         page = NULL;
1738                 }
1739         } else {
1740                 VM_BUG_ON(!is_stable_node_chain(stable_node));
1741                 __stable_node_dup_del(stable_node_dup);
1742                 if (page_node) {
1743                         VM_BUG_ON(page_node->head != &migrate_nodes);
1744                         list_del(&page_node->list);
1745                         DO_NUMA(page_node->nid = nid);
1746                         stable_node_chain_add_dup(page_node, stable_node);
1747                         if (is_page_sharing_candidate(page_node))
1748                                 get_page(page);
1749                         else
1750                                 page = NULL;
1751                 } else {
1752                         page = NULL;
1753                 }
1754         }
1755         stable_node_dup->head = &migrate_nodes;
1756         list_add(&stable_node_dup->list, stable_node_dup->head);
1757         return page;
1758
1759 chain_append:
1760         /* stable_node_dup could be null if it reached the limit */
1761         if (!stable_node_dup)
1762                 stable_node_dup = stable_node_any;
1763         /*
1764          * If stable_node was a chain and chain_prune collapsed it,
1765          * stable_node has been updated to be the new regular
1766          * stable_node. A collapse of the chain is indistinguishable
1767          * from the case there was no chain in the stable
1768          * rbtree. Otherwise stable_node is the chain and
1769          * stable_node_dup is the dup to replace.
1770          */
1771         if (stable_node_dup == stable_node) {
1772                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1773                 /* chain is missing so create it */
1774                 stable_node = alloc_stable_node_chain(stable_node_dup,
1775                                                       root);
1776                 if (!stable_node)
1777                         return NULL;
1778         }
1779         /*
1780          * Add this stable_node dup that was
1781          * migrated to the stable_node chain
1782          * of the current nid for this page
1783          * content.
1784          */
1785         VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1786         VM_BUG_ON(page_node->head != &migrate_nodes);
1787         list_del(&page_node->list);
1788         DO_NUMA(page_node->nid = nid);
1789         stable_node_chain_add_dup(page_node, stable_node);
1790         goto out;
1791 }
1792
1793 /*
1794  * stable_tree_insert - insert stable tree node pointing to new ksm page
1795  * into the stable tree.
1796  *
1797  * This function returns the stable tree node just allocated on success,
1798  * NULL otherwise.
1799  */
1800 static struct stable_node *stable_tree_insert(struct page *kpage)
1801 {
1802         int nid;
1803         unsigned long kpfn;
1804         struct rb_root *root;
1805         struct rb_node **new;
1806         struct rb_node *parent;
1807         struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1808         bool need_chain = false;
1809
1810         kpfn = page_to_pfn(kpage);
1811         nid = get_kpfn_nid(kpfn);
1812         root = root_stable_tree + nid;
1813 again:
1814         parent = NULL;
1815         new = &root->rb_node;
1816
1817         while (*new) {
1818                 struct page *tree_page;
1819                 int ret;
1820
1821                 cond_resched();
1822                 stable_node = rb_entry(*new, struct stable_node, node);
1823                 stable_node_any = NULL;
1824                 tree_page = chain(&stable_node_dup, stable_node, root);
1825                 if (!stable_node_dup) {
1826                         /*
1827                          * Either all stable_node dups were full in
1828                          * this stable_node chain, or this chain was
1829                          * empty and should be rb_erased.
1830                          */
1831                         stable_node_any = stable_node_dup_any(stable_node,
1832                                                               root);
1833                         if (!stable_node_any) {
1834                                 /* rb_erase just run */
1835                                 goto again;
1836                         }
1837                         /*
1838                          * Take any of the stable_node dups page of
1839                          * this stable_node chain to let the tree walk
1840                          * continue. All KSM pages belonging to the
1841                          * stable_node dups in a stable_node chain
1842                          * have the same content and they're
1843                          * write protected at all times. Any will work
1844                          * fine to continue the walk.
1845                          */
1846                         tree_page = get_ksm_page(stable_node_any,
1847                                                  GET_KSM_PAGE_NOLOCK);
1848                 }
1849                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1850                 if (!tree_page) {
1851                         /*
1852                          * If we walked over a stale stable_node,
1853                          * get_ksm_page() will call rb_erase() and it
1854                          * may rebalance the tree from under us. So
1855                          * restart the search from scratch. Returning
1856                          * NULL would be safe too, but we'd generate
1857                          * false negative insertions just because some
1858                          * stable_node was stale.
1859                          */
1860                         goto again;
1861                 }
1862
1863                 ret = memcmp_pages(kpage, tree_page);
1864                 put_page(tree_page);
1865
1866                 parent = *new;
1867                 if (ret < 0)
1868                         new = &parent->rb_left;
1869                 else if (ret > 0)
1870                         new = &parent->rb_right;
1871                 else {
1872                         need_chain = true;
1873                         break;
1874                 }
1875         }
1876
1877         stable_node_dup = alloc_stable_node();
1878         if (!stable_node_dup)
1879                 return NULL;
1880
1881         INIT_HLIST_HEAD(&stable_node_dup->hlist);
1882         stable_node_dup->kpfn = kpfn;
1883         set_page_stable_node(kpage, stable_node_dup);
1884         stable_node_dup->rmap_hlist_len = 0;
1885         DO_NUMA(stable_node_dup->nid = nid);
1886         if (!need_chain) {
1887                 rb_link_node(&stable_node_dup->node, parent, new);
1888                 rb_insert_color(&stable_node_dup->node, root);
1889         } else {
1890                 if (!is_stable_node_chain(stable_node)) {
1891                         struct stable_node *orig = stable_node;
1892                         /* chain is missing so create it */
1893                         stable_node = alloc_stable_node_chain(orig, root);
1894                         if (!stable_node) {
1895                                 free_stable_node(stable_node_dup);
1896                                 return NULL;
1897                         }
1898                 }
1899                 stable_node_chain_add_dup(stable_node_dup, stable_node);
1900         }
1901
1902         return stable_node_dup;
1903 }
1904
1905 /*
1906  * unstable_tree_search_insert - search for identical page,
1907  * else insert rmap_item into the unstable tree.
1908  *
1909  * This function searches for a page in the unstable tree identical to the
1910  * page currently being scanned; and if no identical page is found in the
1911  * tree, we insert rmap_item as a new object into the unstable tree.
1912  *
1913  * This function returns pointer to rmap_item found to be identical
1914  * to the currently scanned page, NULL otherwise.
1915  *
1916  * This function does both searching and inserting, because they share
1917  * the same walking algorithm in an rbtree.
1918  */
1919 static
1920 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1921                                               struct page *page,
1922                                               struct page **tree_pagep)
1923 {
1924         struct rb_node **new;
1925         struct rb_root *root;
1926         struct rb_node *parent = NULL;
1927         int nid;
1928
1929         nid = get_kpfn_nid(page_to_pfn(page));
1930         root = root_unstable_tree + nid;
1931         new = &root->rb_node;
1932
1933         while (*new) {
1934                 struct rmap_item *tree_rmap_item;
1935                 struct page *tree_page;
1936                 int ret;
1937
1938                 cond_resched();
1939                 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1940                 tree_page = get_mergeable_page(tree_rmap_item);
1941                 if (!tree_page)
1942                         return NULL;
1943
1944                 /*
1945                  * Don't substitute a ksm page for a forked page.
1946                  */
1947                 if (page == tree_page) {
1948                         put_page(tree_page);
1949                         return NULL;
1950                 }
1951
1952                 ret = memcmp_pages(page, tree_page);
1953
1954                 parent = *new;
1955                 if (ret < 0) {
1956                         put_page(tree_page);
1957                         new = &parent->rb_left;
1958                 } else if (ret > 0) {
1959                         put_page(tree_page);
1960                         new = &parent->rb_right;
1961                 } else if (!ksm_merge_across_nodes &&
1962                            page_to_nid(tree_page) != nid) {
1963                         /*
1964                          * If tree_page has been migrated to another NUMA node,
1965                          * it will be flushed out and put in the right unstable
1966                          * tree next time: only merge with it when across_nodes.
1967                          */
1968                         put_page(tree_page);
1969                         return NULL;
1970                 } else {
1971                         *tree_pagep = tree_page;
1972                         return tree_rmap_item;
1973                 }
1974         }
1975
1976         rmap_item->address |= UNSTABLE_FLAG;
1977         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1978         DO_NUMA(rmap_item->nid = nid);
1979         rb_link_node(&rmap_item->node, parent, new);
1980         rb_insert_color(&rmap_item->node, root);
1981
1982         ksm_pages_unshared++;
1983         return NULL;
1984 }
1985
1986 /*
1987  * stable_tree_append - add another rmap_item to the linked list of
1988  * rmap_items hanging off a given node of the stable tree, all sharing
1989  * the same ksm page.
1990  */
1991 static void stable_tree_append(struct rmap_item *rmap_item,
1992                                struct stable_node *stable_node,
1993                                bool max_page_sharing_bypass)
1994 {
1995         /*
1996          * rmap won't find this mapping if we don't insert the
1997          * rmap_item in the right stable_node
1998          * duplicate. page_migration could break later if rmap breaks,
1999          * so we can as well crash here. We really need to check for
2000          * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2001          * for other negative values as an underflow if detected here
2002          * for the first time (and not when decreasing rmap_hlist_len)
2003          * would be sign of memory corruption in the stable_node.
2004          */
2005         BUG_ON(stable_node->rmap_hlist_len < 0);
2006
2007         stable_node->rmap_hlist_len++;
2008         if (!max_page_sharing_bypass)
2009                 /* possibly non fatal but unexpected overflow, only warn */
2010                 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2011                              ksm_max_page_sharing);
2012
2013         rmap_item->head = stable_node;
2014         rmap_item->address |= STABLE_FLAG;
2015         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2016
2017         if (rmap_item->hlist.next)
2018                 ksm_pages_sharing++;
2019         else
2020                 ksm_pages_shared++;
2021 }
2022
2023 /*
2024  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2025  * if not, compare checksum to previous and if it's the same, see if page can
2026  * be inserted into the unstable tree, or merged with a page already there and
2027  * both transferred to the stable tree.
2028  *
2029  * @page: the page that we are searching identical page to.
2030  * @rmap_item: the reverse mapping into the virtual address of this page
2031  */
2032 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2033 {
2034         struct mm_struct *mm = rmap_item->mm;
2035         struct rmap_item *tree_rmap_item;
2036         struct page *tree_page = NULL;
2037         struct stable_node *stable_node;
2038         struct page *kpage;
2039         unsigned int checksum;
2040         int err;
2041         bool max_page_sharing_bypass = false;
2042
2043         stable_node = page_stable_node(page);
2044         if (stable_node) {
2045                 if (stable_node->head != &migrate_nodes &&
2046                     get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2047                     NUMA(stable_node->nid)) {
2048                         stable_node_dup_del(stable_node);
2049                         stable_node->head = &migrate_nodes;
2050                         list_add(&stable_node->list, stable_node->head);
2051                 }
2052                 if (stable_node->head != &migrate_nodes &&
2053                     rmap_item->head == stable_node)
2054                         return;
2055                 /*
2056                  * If it's a KSM fork, allow it to go over the sharing limit
2057                  * without warnings.
2058                  */
2059                 if (!is_page_sharing_candidate(stable_node))
2060                         max_page_sharing_bypass = true;
2061         }
2062
2063         /* We first start with searching the page inside the stable tree */
2064         kpage = stable_tree_search(page);
2065         if (kpage == page && rmap_item->head == stable_node) {
2066                 put_page(kpage);
2067                 return;
2068         }
2069
2070         remove_rmap_item_from_tree(rmap_item);
2071
2072         if (kpage) {
2073                 if (PTR_ERR(kpage) == -EBUSY)
2074                         return;
2075
2076                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2077                 if (!err) {
2078                         /*
2079                          * The page was successfully merged:
2080                          * add its rmap_item to the stable tree.
2081                          */
2082                         lock_page(kpage);
2083                         stable_tree_append(rmap_item, page_stable_node(kpage),
2084                                            max_page_sharing_bypass);
2085                         unlock_page(kpage);
2086                 }
2087                 put_page(kpage);
2088                 return;
2089         }
2090
2091         /*
2092          * If the hash value of the page has changed from the last time
2093          * we calculated it, this page is changing frequently: therefore we
2094          * don't want to insert it in the unstable tree, and we don't want
2095          * to waste our time searching for something identical to it there.
2096          */
2097         checksum = calc_checksum(page);
2098         if (rmap_item->oldchecksum != checksum) {
2099                 rmap_item->oldchecksum = checksum;
2100                 return;
2101         }
2102
2103         /*
2104          * Same checksum as an empty page. We attempt to merge it with the
2105          * appropriate zero page if the user enabled this via sysfs.
2106          */
2107         if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2108                 struct vm_area_struct *vma;
2109
2110                 mmap_read_lock(mm);
2111                 vma = find_mergeable_vma(mm, rmap_item->address);
2112                 if (vma) {
2113                         err = try_to_merge_one_page(vma, page,
2114                                         ZERO_PAGE(rmap_item->address));
2115                 } else {
2116                         /*
2117                          * If the vma is out of date, we do not need to
2118                          * continue.
2119                          */
2120                         err = 0;
2121                 }
2122                 mmap_read_unlock(mm);
2123                 /*
2124                  * In case of failure, the page was not really empty, so we
2125                  * need to continue. Otherwise we're done.
2126                  */
2127                 if (!err)
2128                         return;
2129         }
2130         tree_rmap_item =
2131                 unstable_tree_search_insert(rmap_item, page, &tree_page);
2132         if (tree_rmap_item) {
2133                 bool split;
2134
2135                 kpage = try_to_merge_two_pages(rmap_item, page,
2136                                                 tree_rmap_item, tree_page);
2137                 /*
2138                  * If both pages we tried to merge belong to the same compound
2139                  * page, then we actually ended up increasing the reference
2140                  * count of the same compound page twice, and split_huge_page
2141                  * failed.
2142                  * Here we set a flag if that happened, and we use it later to
2143                  * try split_huge_page again. Since we call put_page right
2144                  * afterwards, the reference count will be correct and
2145                  * split_huge_page should succeed.
2146                  */
2147                 split = PageTransCompound(page)
2148                         && compound_head(page) == compound_head(tree_page);
2149                 put_page(tree_page);
2150                 if (kpage) {
2151                         /*
2152                          * The pages were successfully merged: insert new
2153                          * node in the stable tree and add both rmap_items.
2154                          */
2155                         lock_page(kpage);
2156                         stable_node = stable_tree_insert(kpage);
2157                         if (stable_node) {
2158                                 stable_tree_append(tree_rmap_item, stable_node,
2159                                                    false);
2160                                 stable_tree_append(rmap_item, stable_node,
2161                                                    false);
2162                         }
2163                         unlock_page(kpage);
2164
2165                         /*
2166                          * If we fail to insert the page into the stable tree,
2167                          * we will have 2 virtual addresses that are pointing
2168                          * to a ksm page left outside the stable tree,
2169                          * in which case we need to break_cow on both.
2170                          */
2171                         if (!stable_node) {
2172                                 break_cow(tree_rmap_item);
2173                                 break_cow(rmap_item);
2174                         }
2175                 } else if (split) {
2176                         /*
2177                          * We are here if we tried to merge two pages and
2178                          * failed because they both belonged to the same
2179                          * compound page. We will split the page now, but no
2180                          * merging will take place.
2181                          * We do not want to add the cost of a full lock; if
2182                          * the page is locked, it is better to skip it and
2183                          * perhaps try again later.
2184                          */
2185                         if (!trylock_page(page))
2186                                 return;
2187                         split_huge_page(page);
2188                         unlock_page(page);
2189                 }
2190         }
2191 }
2192
2193 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2194                                             struct rmap_item **rmap_list,
2195                                             unsigned long addr)
2196 {
2197         struct rmap_item *rmap_item;
2198
2199         while (*rmap_list) {
2200                 rmap_item = *rmap_list;
2201                 if ((rmap_item->address & PAGE_MASK) == addr)
2202                         return rmap_item;
2203                 if (rmap_item->address > addr)
2204                         break;
2205                 *rmap_list = rmap_item->rmap_list;
2206                 remove_rmap_item_from_tree(rmap_item);
2207                 free_rmap_item(rmap_item);
2208         }
2209
2210         rmap_item = alloc_rmap_item();
2211         if (rmap_item) {
2212                 /* It has already been zeroed */
2213                 rmap_item->mm = mm_slot->mm;
2214                 rmap_item->address = addr;
2215                 rmap_item->rmap_list = *rmap_list;
2216                 *rmap_list = rmap_item;
2217         }
2218         return rmap_item;
2219 }
2220
2221 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2222 {
2223         struct mm_struct *mm;
2224         struct mm_slot *slot;
2225         struct vm_area_struct *vma;
2226         struct rmap_item *rmap_item;
2227         int nid;
2228
2229         if (list_empty(&ksm_mm_head.mm_list))
2230                 return NULL;
2231
2232         slot = ksm_scan.mm_slot;
2233         if (slot == &ksm_mm_head) {
2234                 /*
2235                  * A number of pages can hang around indefinitely on per-cpu
2236                  * pagevecs, raised page count preventing write_protect_page
2237                  * from merging them.  Though it doesn't really matter much,
2238                  * it is puzzling to see some stuck in pages_volatile until
2239                  * other activity jostles them out, and they also prevented
2240                  * LTP's KSM test from succeeding deterministically; so drain
2241                  * them here (here rather than on entry to ksm_do_scan(),
2242                  * so we don't IPI too often when pages_to_scan is set low).
2243                  */
2244                 lru_add_drain_all();
2245
2246                 /*
2247                  * Whereas stale stable_nodes on the stable_tree itself
2248                  * get pruned in the regular course of stable_tree_search(),
2249                  * those moved out to the migrate_nodes list can accumulate:
2250                  * so prune them once before each full scan.
2251                  */
2252                 if (!ksm_merge_across_nodes) {
2253                         struct stable_node *stable_node, *next;
2254                         struct page *page;
2255
2256                         list_for_each_entry_safe(stable_node, next,
2257                                                  &migrate_nodes, list) {
2258                                 page = get_ksm_page(stable_node,
2259                                                     GET_KSM_PAGE_NOLOCK);
2260                                 if (page)
2261                                         put_page(page);
2262                                 cond_resched();
2263                         }
2264                 }
2265
2266                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2267                         root_unstable_tree[nid] = RB_ROOT;
2268
2269                 spin_lock(&ksm_mmlist_lock);
2270                 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2271                 ksm_scan.mm_slot = slot;
2272                 spin_unlock(&ksm_mmlist_lock);
2273                 /*
2274                  * Although we tested list_empty() above, a racing __ksm_exit
2275                  * of the last mm on the list may have removed it since then.
2276                  */
2277                 if (slot == &ksm_mm_head)
2278                         return NULL;
2279 next_mm:
2280                 ksm_scan.address = 0;
2281                 ksm_scan.rmap_list = &slot->rmap_list;
2282         }
2283
2284         mm = slot->mm;
2285         mmap_read_lock(mm);
2286         if (ksm_test_exit(mm))
2287                 vma = NULL;
2288         else
2289                 vma = find_vma(mm, ksm_scan.address);
2290
2291         for (; vma; vma = vma->vm_next) {
2292                 if (!(vma->vm_flags & VM_MERGEABLE))
2293                         continue;
2294                 if (ksm_scan.address < vma->vm_start)
2295                         ksm_scan.address = vma->vm_start;
2296                 if (!vma->anon_vma)
2297                         ksm_scan.address = vma->vm_end;
2298
2299                 while (ksm_scan.address < vma->vm_end) {
2300                         if (ksm_test_exit(mm))
2301                                 break;
2302                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2303                         if (IS_ERR_OR_NULL(*page)) {
2304                                 ksm_scan.address += PAGE_SIZE;
2305                                 cond_resched();
2306                                 continue;
2307                         }
2308                         if (PageAnon(*page)) {
2309                                 flush_anon_page(vma, *page, ksm_scan.address);
2310                                 flush_dcache_page(*page);
2311                                 rmap_item = get_next_rmap_item(slot,
2312                                         ksm_scan.rmap_list, ksm_scan.address);
2313                                 if (rmap_item) {
2314                                         ksm_scan.rmap_list =
2315                                                         &rmap_item->rmap_list;
2316                                         ksm_scan.address += PAGE_SIZE;
2317                                 } else
2318                                         put_page(*page);
2319                                 mmap_read_unlock(mm);
2320                                 return rmap_item;
2321                         }
2322                         put_page(*page);
2323                         ksm_scan.address += PAGE_SIZE;
2324                         cond_resched();
2325                 }
2326         }
2327
2328         if (ksm_test_exit(mm)) {
2329                 ksm_scan.address = 0;
2330                 ksm_scan.rmap_list = &slot->rmap_list;
2331         }
2332         /*
2333          * Nuke all the rmap_items that are above this current rmap:
2334          * because there were no VM_MERGEABLE vmas with such addresses.
2335          */
2336         remove_trailing_rmap_items(ksm_scan.rmap_list);
2337
2338         spin_lock(&ksm_mmlist_lock);
2339         ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2340                                                 struct mm_slot, mm_list);
2341         if (ksm_scan.address == 0) {
2342                 /*
2343                  * We've completed a full scan of all vmas, holding mmap_lock
2344                  * throughout, and found no VM_MERGEABLE: so do the same as
2345                  * __ksm_exit does to remove this mm from all our lists now.
2346                  * This applies either when cleaning up after __ksm_exit
2347                  * (but beware: we can reach here even before __ksm_exit),
2348                  * or when all VM_MERGEABLE areas have been unmapped (and
2349                  * mmap_lock then protects against race with MADV_MERGEABLE).
2350                  */
2351                 hash_del(&slot->link);
2352                 list_del(&slot->mm_list);
2353                 spin_unlock(&ksm_mmlist_lock);
2354
2355                 free_mm_slot(slot);
2356                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2357                 mmap_read_unlock(mm);
2358                 mmdrop(mm);
2359         } else {
2360                 mmap_read_unlock(mm);
2361                 /*
2362                  * mmap_read_unlock(mm) first because after
2363                  * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2364                  * already have been freed under us by __ksm_exit()
2365                  * because the "mm_slot" is still hashed and
2366                  * ksm_scan.mm_slot doesn't point to it anymore.
2367                  */
2368                 spin_unlock(&ksm_mmlist_lock);
2369         }
2370
2371         /* Repeat until we've completed scanning the whole list */
2372         slot = ksm_scan.mm_slot;
2373         if (slot != &ksm_mm_head)
2374                 goto next_mm;
2375
2376         ksm_scan.seqnr++;
2377         return NULL;
2378 }
2379
2380 /**
2381  * ksm_do_scan  - the ksm scanner main worker function.
2382  * @scan_npages:  number of pages we want to scan before we return.
2383  */
2384 static void ksm_do_scan(unsigned int scan_npages)
2385 {
2386         struct rmap_item *rmap_item;
2387         struct page *page;
2388
2389         while (scan_npages-- && likely(!freezing(current))) {
2390                 cond_resched();
2391                 rmap_item = scan_get_next_rmap_item(&page);
2392                 if (!rmap_item)
2393                         return;
2394                 cmp_and_merge_page(page, rmap_item);
2395                 put_page(page);
2396         }
2397 }
2398
2399 static int ksmd_should_run(void)
2400 {
2401         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2402 }
2403
2404 static int ksm_scan_thread(void *nothing)
2405 {
2406         unsigned int sleep_ms;
2407
2408         set_freezable();
2409         set_user_nice(current, 5);
2410
2411         while (!kthread_should_stop()) {
2412                 mutex_lock(&ksm_thread_mutex);
2413                 wait_while_offlining();
2414                 if (ksmd_should_run())
2415                         ksm_do_scan(ksm_thread_pages_to_scan);
2416                 mutex_unlock(&ksm_thread_mutex);
2417
2418                 try_to_freeze();
2419
2420                 if (ksmd_should_run()) {
2421                         sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2422                         wait_event_interruptible_timeout(ksm_iter_wait,
2423                                 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2424                                 msecs_to_jiffies(sleep_ms));
2425                 } else {
2426                         wait_event_freezable(ksm_thread_wait,
2427                                 ksmd_should_run() || kthread_should_stop());
2428                 }
2429         }
2430         return 0;
2431 }
2432
2433 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2434                 unsigned long end, int advice, unsigned long *vm_flags)
2435 {
2436         struct mm_struct *mm = vma->vm_mm;
2437         int err;
2438
2439         switch (advice) {
2440         case MADV_MERGEABLE:
2441                 /*
2442                  * Be somewhat over-protective for now!
2443                  */
2444                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2445                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2446                                  VM_HUGETLB | VM_MIXEDMAP))
2447                         return 0;               /* just ignore the advice */
2448
2449                 if (vma_is_dax(vma))
2450                         return 0;
2451
2452 #ifdef VM_SAO
2453                 if (*vm_flags & VM_SAO)
2454                         return 0;
2455 #endif
2456 #ifdef VM_SPARC_ADI
2457                 if (*vm_flags & VM_SPARC_ADI)
2458                         return 0;
2459 #endif
2460
2461                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2462                         err = __ksm_enter(mm);
2463                         if (err)
2464                                 return err;
2465                 }
2466
2467                 *vm_flags |= VM_MERGEABLE;
2468                 break;
2469
2470         case MADV_UNMERGEABLE:
2471                 if (!(*vm_flags & VM_MERGEABLE))
2472                         return 0;               /* just ignore the advice */
2473
2474                 if (vma->anon_vma) {
2475                         err = unmerge_ksm_pages(vma, start, end);
2476                         if (err)
2477                                 return err;
2478                 }
2479
2480                 *vm_flags &= ~VM_MERGEABLE;
2481                 break;
2482         }
2483
2484         return 0;
2485 }
2486 EXPORT_SYMBOL_GPL(ksm_madvise);
2487
2488 int __ksm_enter(struct mm_struct *mm)
2489 {
2490         struct mm_slot *mm_slot;
2491         int needs_wakeup;
2492
2493         mm_slot = alloc_mm_slot();
2494         if (!mm_slot)
2495                 return -ENOMEM;
2496
2497         /* Check ksm_run too?  Would need tighter locking */
2498         needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2499
2500         spin_lock(&ksm_mmlist_lock);
2501         insert_to_mm_slots_hash(mm, mm_slot);
2502         /*
2503          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2504          * insert just behind the scanning cursor, to let the area settle
2505          * down a little; when fork is followed by immediate exec, we don't
2506          * want ksmd to waste time setting up and tearing down an rmap_list.
2507          *
2508          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2509          * scanning cursor, otherwise KSM pages in newly forked mms will be
2510          * missed: then we might as well insert at the end of the list.
2511          */
2512         if (ksm_run & KSM_RUN_UNMERGE)
2513                 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2514         else
2515                 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2516         spin_unlock(&ksm_mmlist_lock);
2517
2518         set_bit(MMF_VM_MERGEABLE, &mm->flags);
2519         mmgrab(mm);
2520
2521         if (needs_wakeup)
2522                 wake_up_interruptible(&ksm_thread_wait);
2523
2524         return 0;
2525 }
2526
2527 void __ksm_exit(struct mm_struct *mm)
2528 {
2529         struct mm_slot *mm_slot;
2530         int easy_to_free = 0;
2531
2532         /*
2533          * This process is exiting: if it's straightforward (as is the
2534          * case when ksmd was never running), free mm_slot immediately.
2535          * But if it's at the cursor or has rmap_items linked to it, use
2536          * mmap_lock to synchronize with any break_cows before pagetables
2537          * are freed, and leave the mm_slot on the list for ksmd to free.
2538          * Beware: ksm may already have noticed it exiting and freed the slot.
2539          */
2540
2541         spin_lock(&ksm_mmlist_lock);
2542         mm_slot = get_mm_slot(mm);
2543         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2544                 if (!mm_slot->rmap_list) {
2545                         hash_del(&mm_slot->link);
2546                         list_del(&mm_slot->mm_list);
2547                         easy_to_free = 1;
2548                 } else {
2549                         list_move(&mm_slot->mm_list,
2550                                   &ksm_scan.mm_slot->mm_list);
2551                 }
2552         }
2553         spin_unlock(&ksm_mmlist_lock);
2554
2555         if (easy_to_free) {
2556                 free_mm_slot(mm_slot);
2557                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2558                 mmdrop(mm);
2559         } else if (mm_slot) {
2560                 mmap_write_lock(mm);
2561                 mmap_write_unlock(mm);
2562         }
2563 }
2564
2565 struct page *ksm_might_need_to_copy(struct page *page,
2566                         struct vm_area_struct *vma, unsigned long address)
2567 {
2568         struct anon_vma *anon_vma = page_anon_vma(page);
2569         struct page *new_page;
2570
2571         if (PageKsm(page)) {
2572                 if (page_stable_node(page) &&
2573                     !(ksm_run & KSM_RUN_UNMERGE))
2574                         return page;    /* no need to copy it */
2575         } else if (!anon_vma) {
2576                 return page;            /* no need to copy it */
2577         } else if (anon_vma->root == vma->anon_vma->root &&
2578                  page->index == linear_page_index(vma, address)) {
2579                 return page;            /* still no need to copy it */
2580         }
2581         if (!PageUptodate(page))
2582                 return page;            /* let do_swap_page report the error */
2583
2584         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2585         if (new_page && mem_cgroup_charge(new_page, vma->vm_mm, GFP_KERNEL)) {
2586                 put_page(new_page);
2587                 new_page = NULL;
2588         }
2589         if (new_page) {
2590                 copy_user_highpage(new_page, page, address, vma);
2591
2592                 SetPageDirty(new_page);
2593                 __SetPageUptodate(new_page);
2594                 __SetPageLocked(new_page);
2595         }
2596
2597         return new_page;
2598 }
2599
2600 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2601 {
2602         struct stable_node *stable_node;
2603         struct rmap_item *rmap_item;
2604         int search_new_forks = 0;
2605
2606         VM_BUG_ON_PAGE(!PageKsm(page), page);
2607
2608         /*
2609          * Rely on the page lock to protect against concurrent modifications
2610          * to that page's node of the stable tree.
2611          */
2612         VM_BUG_ON_PAGE(!PageLocked(page), page);
2613
2614         stable_node = page_stable_node(page);
2615         if (!stable_node)
2616                 return;
2617 again:
2618         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2619                 struct anon_vma *anon_vma = rmap_item->anon_vma;
2620                 struct anon_vma_chain *vmac;
2621                 struct vm_area_struct *vma;
2622
2623                 cond_resched();
2624                 anon_vma_lock_read(anon_vma);
2625                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2626                                                0, ULONG_MAX) {
2627                         unsigned long addr;
2628
2629                         cond_resched();
2630                         vma = vmac->vma;
2631
2632                         /* Ignore the stable/unstable/sqnr flags */
2633                         addr = rmap_item->address & PAGE_MASK;
2634
2635                         if (addr < vma->vm_start || addr >= vma->vm_end)
2636                                 continue;
2637                         /*
2638                          * Initially we examine only the vma which covers this
2639                          * rmap_item; but later, if there is still work to do,
2640                          * we examine covering vmas in other mms: in case they
2641                          * were forked from the original since ksmd passed.
2642                          */
2643                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2644                                 continue;
2645
2646                         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2647                                 continue;
2648
2649                         if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
2650                                 anon_vma_unlock_read(anon_vma);
2651                                 return;
2652                         }
2653                         if (rwc->done && rwc->done(page)) {
2654                                 anon_vma_unlock_read(anon_vma);
2655                                 return;
2656                         }
2657                 }
2658                 anon_vma_unlock_read(anon_vma);
2659         }
2660         if (!search_new_forks++)
2661                 goto again;
2662 }
2663
2664 #ifdef CONFIG_MIGRATION
2665 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2666 {
2667         struct stable_node *stable_node;
2668
2669         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2670         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2671         VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2672
2673         stable_node = page_stable_node(newpage);
2674         if (stable_node) {
2675                 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2676                 stable_node->kpfn = page_to_pfn(newpage);
2677                 /*
2678                  * newpage->mapping was set in advance; now we need smp_wmb()
2679                  * to make sure that the new stable_node->kpfn is visible
2680                  * to get_ksm_page() before it can see that oldpage->mapping
2681                  * has gone stale (or that PageSwapCache has been cleared).
2682                  */
2683                 smp_wmb();
2684                 set_page_stable_node(oldpage, NULL);
2685         }
2686 }
2687 #endif /* CONFIG_MIGRATION */
2688
2689 #ifdef CONFIG_MEMORY_HOTREMOVE
2690 static void wait_while_offlining(void)
2691 {
2692         while (ksm_run & KSM_RUN_OFFLINE) {
2693                 mutex_unlock(&ksm_thread_mutex);
2694                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2695                             TASK_UNINTERRUPTIBLE);
2696                 mutex_lock(&ksm_thread_mutex);
2697         }
2698 }
2699
2700 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2701                                          unsigned long start_pfn,
2702                                          unsigned long end_pfn)
2703 {
2704         if (stable_node->kpfn >= start_pfn &&
2705             stable_node->kpfn < end_pfn) {
2706                 /*
2707                  * Don't get_ksm_page, page has already gone:
2708                  * which is why we keep kpfn instead of page*
2709                  */
2710                 remove_node_from_stable_tree(stable_node);
2711                 return true;
2712         }
2713         return false;
2714 }
2715
2716 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2717                                            unsigned long start_pfn,
2718                                            unsigned long end_pfn,
2719                                            struct rb_root *root)
2720 {
2721         struct stable_node *dup;
2722         struct hlist_node *hlist_safe;
2723
2724         if (!is_stable_node_chain(stable_node)) {
2725                 VM_BUG_ON(is_stable_node_dup(stable_node));
2726                 return stable_node_dup_remove_range(stable_node, start_pfn,
2727                                                     end_pfn);
2728         }
2729
2730         hlist_for_each_entry_safe(dup, hlist_safe,
2731                                   &stable_node->hlist, hlist_dup) {
2732                 VM_BUG_ON(!is_stable_node_dup(dup));
2733                 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2734         }
2735         if (hlist_empty(&stable_node->hlist)) {
2736                 free_stable_node_chain(stable_node, root);
2737                 return true; /* notify caller that tree was rebalanced */
2738         } else
2739                 return false;
2740 }
2741
2742 static void ksm_check_stable_tree(unsigned long start_pfn,
2743                                   unsigned long end_pfn)
2744 {
2745         struct stable_node *stable_node, *next;
2746         struct rb_node *node;
2747         int nid;
2748
2749         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2750                 node = rb_first(root_stable_tree + nid);
2751                 while (node) {
2752                         stable_node = rb_entry(node, struct stable_node, node);
2753                         if (stable_node_chain_remove_range(stable_node,
2754                                                            start_pfn, end_pfn,
2755                                                            root_stable_tree +
2756                                                            nid))
2757                                 node = rb_first(root_stable_tree + nid);
2758                         else
2759                                 node = rb_next(node);
2760                         cond_resched();
2761                 }
2762         }
2763         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2764                 if (stable_node->kpfn >= start_pfn &&
2765                     stable_node->kpfn < end_pfn)
2766                         remove_node_from_stable_tree(stable_node);
2767                 cond_resched();
2768         }
2769 }
2770
2771 static int ksm_memory_callback(struct notifier_block *self,
2772                                unsigned long action, void *arg)
2773 {
2774         struct memory_notify *mn = arg;
2775
2776         switch (action) {
2777         case MEM_GOING_OFFLINE:
2778                 /*
2779                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2780                  * and remove_all_stable_nodes() while memory is going offline:
2781                  * it is unsafe for them to touch the stable tree at this time.
2782                  * But unmerge_ksm_pages(), rmap lookups and other entry points
2783                  * which do not need the ksm_thread_mutex are all safe.
2784                  */
2785                 mutex_lock(&ksm_thread_mutex);
2786                 ksm_run |= KSM_RUN_OFFLINE;
2787                 mutex_unlock(&ksm_thread_mutex);
2788                 break;
2789
2790         case MEM_OFFLINE:
2791                 /*
2792                  * Most of the work is done by page migration; but there might
2793                  * be a few stable_nodes left over, still pointing to struct
2794                  * pages which have been offlined: prune those from the tree,
2795                  * otherwise get_ksm_page() might later try to access a
2796                  * non-existent struct page.
2797                  */
2798                 ksm_check_stable_tree(mn->start_pfn,
2799                                       mn->start_pfn + mn->nr_pages);
2800                 fallthrough;
2801         case MEM_CANCEL_OFFLINE:
2802                 mutex_lock(&ksm_thread_mutex);
2803                 ksm_run &= ~KSM_RUN_OFFLINE;
2804                 mutex_unlock(&ksm_thread_mutex);
2805
2806                 smp_mb();       /* wake_up_bit advises this */
2807                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2808                 break;
2809         }
2810         return NOTIFY_OK;
2811 }
2812 #else
2813 static void wait_while_offlining(void)
2814 {
2815 }
2816 #endif /* CONFIG_MEMORY_HOTREMOVE */
2817
2818 #ifdef CONFIG_SYSFS
2819 /*
2820  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2821  */
2822
2823 #define KSM_ATTR_RO(_name) \
2824         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2825 #define KSM_ATTR(_name) \
2826         static struct kobj_attribute _name##_attr = \
2827                 __ATTR(_name, 0644, _name##_show, _name##_store)
2828
2829 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2830                                     struct kobj_attribute *attr, char *buf)
2831 {
2832         return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
2833 }
2834
2835 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2836                                      struct kobj_attribute *attr,
2837                                      const char *buf, size_t count)
2838 {
2839         unsigned int msecs;
2840         int err;
2841
2842         err = kstrtouint(buf, 10, &msecs);
2843         if (err)
2844                 return -EINVAL;
2845
2846         ksm_thread_sleep_millisecs = msecs;
2847         wake_up_interruptible(&ksm_iter_wait);
2848
2849         return count;
2850 }
2851 KSM_ATTR(sleep_millisecs);
2852
2853 static ssize_t pages_to_scan_show(struct kobject *kobj,
2854                                   struct kobj_attribute *attr, char *buf)
2855 {
2856         return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
2857 }
2858
2859 static ssize_t pages_to_scan_store(struct kobject *kobj,
2860                                    struct kobj_attribute *attr,
2861                                    const char *buf, size_t count)
2862 {
2863         unsigned int nr_pages;
2864         int err;
2865
2866         err = kstrtouint(buf, 10, &nr_pages);
2867         if (err)
2868                 return -EINVAL;
2869
2870         ksm_thread_pages_to_scan = nr_pages;
2871
2872         return count;
2873 }
2874 KSM_ATTR(pages_to_scan);
2875
2876 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2877                         char *buf)
2878 {
2879         return sysfs_emit(buf, "%lu\n", ksm_run);
2880 }
2881
2882 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2883                          const char *buf, size_t count)
2884 {
2885         unsigned int flags;
2886         int err;
2887
2888         err = kstrtouint(buf, 10, &flags);
2889         if (err)
2890                 return -EINVAL;
2891         if (flags > KSM_RUN_UNMERGE)
2892                 return -EINVAL;
2893
2894         /*
2895          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2896          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2897          * breaking COW to free the pages_shared (but leaves mm_slots
2898          * on the list for when ksmd may be set running again).
2899          */
2900
2901         mutex_lock(&ksm_thread_mutex);
2902         wait_while_offlining();
2903         if (ksm_run != flags) {
2904                 ksm_run = flags;
2905                 if (flags & KSM_RUN_UNMERGE) {
2906                         set_current_oom_origin();
2907                         err = unmerge_and_remove_all_rmap_items();
2908                         clear_current_oom_origin();
2909                         if (err) {
2910                                 ksm_run = KSM_RUN_STOP;
2911                                 count = err;
2912                         }
2913                 }
2914         }
2915         mutex_unlock(&ksm_thread_mutex);
2916
2917         if (flags & KSM_RUN_MERGE)
2918                 wake_up_interruptible(&ksm_thread_wait);
2919
2920         return count;
2921 }
2922 KSM_ATTR(run);
2923
2924 #ifdef CONFIG_NUMA
2925 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2926                                        struct kobj_attribute *attr, char *buf)
2927 {
2928         return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
2929 }
2930
2931 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2932                                    struct kobj_attribute *attr,
2933                                    const char *buf, size_t count)
2934 {
2935         int err;
2936         unsigned long knob;
2937
2938         err = kstrtoul(buf, 10, &knob);
2939         if (err)
2940                 return err;
2941         if (knob > 1)
2942                 return -EINVAL;
2943
2944         mutex_lock(&ksm_thread_mutex);
2945         wait_while_offlining();
2946         if (ksm_merge_across_nodes != knob) {
2947                 if (ksm_pages_shared || remove_all_stable_nodes())
2948                         err = -EBUSY;
2949                 else if (root_stable_tree == one_stable_tree) {
2950                         struct rb_root *buf;
2951                         /*
2952                          * This is the first time that we switch away from the
2953                          * default of merging across nodes: must now allocate
2954                          * a buffer to hold as many roots as may be needed.
2955                          * Allocate stable and unstable together:
2956                          * MAXSMP NODES_SHIFT 10 will use 16kB.
2957                          */
2958                         buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2959                                       GFP_KERNEL);
2960                         /* Let us assume that RB_ROOT is NULL is zero */
2961                         if (!buf)
2962                                 err = -ENOMEM;
2963                         else {
2964                                 root_stable_tree = buf;
2965                                 root_unstable_tree = buf + nr_node_ids;
2966                                 /* Stable tree is empty but not the unstable */
2967                                 root_unstable_tree[0] = one_unstable_tree[0];
2968                         }
2969                 }
2970                 if (!err) {
2971                         ksm_merge_across_nodes = knob;
2972                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2973                 }
2974         }
2975         mutex_unlock(&ksm_thread_mutex);
2976
2977         return err ? err : count;
2978 }
2979 KSM_ATTR(merge_across_nodes);
2980 #endif
2981
2982 static ssize_t use_zero_pages_show(struct kobject *kobj,
2983                                    struct kobj_attribute *attr, char *buf)
2984 {
2985         return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
2986 }
2987 static ssize_t use_zero_pages_store(struct kobject *kobj,
2988                                    struct kobj_attribute *attr,
2989                                    const char *buf, size_t count)
2990 {
2991         int err;
2992         bool value;
2993
2994         err = kstrtobool(buf, &value);
2995         if (err)
2996                 return -EINVAL;
2997
2998         ksm_use_zero_pages = value;
2999
3000         return count;
3001 }
3002 KSM_ATTR(use_zero_pages);
3003
3004 static ssize_t max_page_sharing_show(struct kobject *kobj,
3005                                      struct kobj_attribute *attr, char *buf)
3006 {
3007         return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3008 }
3009
3010 static ssize_t max_page_sharing_store(struct kobject *kobj,
3011                                       struct kobj_attribute *attr,
3012                                       const char *buf, size_t count)
3013 {
3014         int err;
3015         int knob;
3016
3017         err = kstrtoint(buf, 10, &knob);
3018         if (err)
3019                 return err;
3020         /*
3021          * When a KSM page is created it is shared by 2 mappings. This
3022          * being a signed comparison, it implicitly verifies it's not
3023          * negative.
3024          */
3025         if (knob < 2)
3026                 return -EINVAL;
3027
3028         if (READ_ONCE(ksm_max_page_sharing) == knob)
3029                 return count;
3030
3031         mutex_lock(&ksm_thread_mutex);
3032         wait_while_offlining();
3033         if (ksm_max_page_sharing != knob) {
3034                 if (ksm_pages_shared || remove_all_stable_nodes())
3035                         err = -EBUSY;
3036                 else
3037                         ksm_max_page_sharing = knob;
3038         }
3039         mutex_unlock(&ksm_thread_mutex);
3040
3041         return err ? err : count;
3042 }
3043 KSM_ATTR(max_page_sharing);
3044
3045 static ssize_t pages_shared_show(struct kobject *kobj,
3046                                  struct kobj_attribute *attr, char *buf)
3047 {
3048         return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3049 }
3050 KSM_ATTR_RO(pages_shared);
3051
3052 static ssize_t pages_sharing_show(struct kobject *kobj,
3053                                   struct kobj_attribute *attr, char *buf)
3054 {
3055         return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3056 }
3057 KSM_ATTR_RO(pages_sharing);
3058
3059 static ssize_t pages_unshared_show(struct kobject *kobj,
3060                                    struct kobj_attribute *attr, char *buf)
3061 {
3062         return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3063 }
3064 KSM_ATTR_RO(pages_unshared);
3065
3066 static ssize_t pages_volatile_show(struct kobject *kobj,
3067                                    struct kobj_attribute *attr, char *buf)
3068 {
3069         long ksm_pages_volatile;
3070
3071         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3072                                 - ksm_pages_sharing - ksm_pages_unshared;
3073         /*
3074          * It was not worth any locking to calculate that statistic,
3075          * but it might therefore sometimes be negative: conceal that.
3076          */
3077         if (ksm_pages_volatile < 0)
3078                 ksm_pages_volatile = 0;
3079         return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3080 }
3081 KSM_ATTR_RO(pages_volatile);
3082
3083 static ssize_t stable_node_dups_show(struct kobject *kobj,
3084                                      struct kobj_attribute *attr, char *buf)
3085 {
3086         return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3087 }
3088 KSM_ATTR_RO(stable_node_dups);
3089
3090 static ssize_t stable_node_chains_show(struct kobject *kobj,
3091                                        struct kobj_attribute *attr, char *buf)
3092 {
3093         return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3094 }
3095 KSM_ATTR_RO(stable_node_chains);
3096
3097 static ssize_t
3098 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3099                                         struct kobj_attribute *attr,
3100                                         char *buf)
3101 {
3102         return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3103 }
3104
3105 static ssize_t
3106 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3107                                          struct kobj_attribute *attr,
3108                                          const char *buf, size_t count)
3109 {
3110         unsigned long msecs;
3111         int err;
3112
3113         err = kstrtoul(buf, 10, &msecs);
3114         if (err || msecs > UINT_MAX)
3115                 return -EINVAL;
3116
3117         ksm_stable_node_chains_prune_millisecs = msecs;
3118
3119         return count;
3120 }
3121 KSM_ATTR(stable_node_chains_prune_millisecs);
3122
3123 static ssize_t full_scans_show(struct kobject *kobj,
3124                                struct kobj_attribute *attr, char *buf)
3125 {
3126         return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3127 }
3128 KSM_ATTR_RO(full_scans);
3129
3130 static struct attribute *ksm_attrs[] = {
3131         &sleep_millisecs_attr.attr,
3132         &pages_to_scan_attr.attr,
3133         &run_attr.attr,
3134         &pages_shared_attr.attr,
3135         &pages_sharing_attr.attr,
3136         &pages_unshared_attr.attr,
3137         &pages_volatile_attr.attr,
3138         &full_scans_attr.attr,
3139 #ifdef CONFIG_NUMA
3140         &merge_across_nodes_attr.attr,
3141 #endif
3142         &max_page_sharing_attr.attr,
3143         &stable_node_chains_attr.attr,
3144         &stable_node_dups_attr.attr,
3145         &stable_node_chains_prune_millisecs_attr.attr,
3146         &use_zero_pages_attr.attr,
3147         NULL,
3148 };
3149
3150 static const struct attribute_group ksm_attr_group = {
3151         .attrs = ksm_attrs,
3152         .name = "ksm",
3153 };
3154 #endif /* CONFIG_SYSFS */
3155
3156 static int __init ksm_init(void)
3157 {
3158         struct task_struct *ksm_thread;
3159         int err;
3160
3161         /* The correct value depends on page size and endianness */
3162         zero_checksum = calc_checksum(ZERO_PAGE(0));
3163         /* Default to false for backwards compatibility */
3164         ksm_use_zero_pages = false;
3165
3166         err = ksm_slab_init();
3167         if (err)
3168                 goto out;
3169
3170         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3171         if (IS_ERR(ksm_thread)) {
3172                 pr_err("ksm: creating kthread failed\n");
3173                 err = PTR_ERR(ksm_thread);
3174                 goto out_free;
3175         }
3176
3177 #ifdef CONFIG_SYSFS
3178         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3179         if (err) {
3180                 pr_err("ksm: register sysfs failed\n");
3181                 kthread_stop(ksm_thread);
3182                 goto out_free;
3183         }
3184 #else
3185         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
3186
3187 #endif /* CONFIG_SYSFS */
3188
3189 #ifdef CONFIG_MEMORY_HOTREMOVE
3190         /* There is no significance to this priority 100 */
3191         hotplug_memory_notifier(ksm_memory_callback, 100);
3192 #endif
3193         return 0;
3194
3195 out_free:
3196         ksm_slab_free();
3197 out:
3198         return err;
3199 }
3200 subsys_initcall(ksm_init);