mm/gup: Mark lock taken only after a successful retake
[linux-2.6-microblaze.git] / mm / khugepaged.c
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/swapops.h>
20 #include <linux/shmem_fs.h>
21
22 #include <asm/tlb.h>
23 #include <asm/pgalloc.h>
24 #include "internal.h"
25
26 enum scan_result {
27         SCAN_FAIL,
28         SCAN_SUCCEED,
29         SCAN_PMD_NULL,
30         SCAN_EXCEED_NONE_PTE,
31         SCAN_PTE_NON_PRESENT,
32         SCAN_PTE_UFFD_WP,
33         SCAN_PAGE_RO,
34         SCAN_LACK_REFERENCED_PAGE,
35         SCAN_PAGE_NULL,
36         SCAN_SCAN_ABORT,
37         SCAN_PAGE_COUNT,
38         SCAN_PAGE_LRU,
39         SCAN_PAGE_LOCK,
40         SCAN_PAGE_ANON,
41         SCAN_PAGE_COMPOUND,
42         SCAN_ANY_PROCESS,
43         SCAN_VMA_NULL,
44         SCAN_VMA_CHECK,
45         SCAN_ADDRESS_RANGE,
46         SCAN_SWAP_CACHE_PAGE,
47         SCAN_DEL_PAGE_LRU,
48         SCAN_ALLOC_HUGE_PAGE_FAIL,
49         SCAN_CGROUP_CHARGE_FAIL,
50         SCAN_EXCEED_SWAP_PTE,
51         SCAN_TRUNCATED,
52         SCAN_PAGE_HAS_PRIVATE,
53 };
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/huge_memory.h>
57
58 /* default scan 8*512 pte (or vmas) every 30 second */
59 static unsigned int khugepaged_pages_to_scan __read_mostly;
60 static unsigned int khugepaged_pages_collapsed;
61 static unsigned int khugepaged_full_scans;
62 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
63 /* during fragmentation poll the hugepage allocator once every minute */
64 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
65 static unsigned long khugepaged_sleep_expire;
66 static DEFINE_SPINLOCK(khugepaged_mm_lock);
67 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
68 /*
69  * default collapse hugepages if there is at least one pte mapped like
70  * it would have happened if the vma was large enough during page
71  * fault.
72  */
73 static unsigned int khugepaged_max_ptes_none __read_mostly;
74 static unsigned int khugepaged_max_ptes_swap __read_mostly;
75
76 #define MM_SLOTS_HASH_BITS 10
77 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
78
79 static struct kmem_cache *mm_slot_cache __read_mostly;
80
81 #define MAX_PTE_MAPPED_THP 8
82
83 /**
84  * struct mm_slot - hash lookup from mm to mm_slot
85  * @hash: hash collision list
86  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
87  * @mm: the mm that this information is valid for
88  */
89 struct mm_slot {
90         struct hlist_node hash;
91         struct list_head mm_node;
92         struct mm_struct *mm;
93
94         /* pte-mapped THP in this mm */
95         int nr_pte_mapped_thp;
96         unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP];
97 };
98
99 /**
100  * struct khugepaged_scan - cursor for scanning
101  * @mm_head: the head of the mm list to scan
102  * @mm_slot: the current mm_slot we are scanning
103  * @address: the next address inside that to be scanned
104  *
105  * There is only the one khugepaged_scan instance of this cursor structure.
106  */
107 struct khugepaged_scan {
108         struct list_head mm_head;
109         struct mm_slot *mm_slot;
110         unsigned long address;
111 };
112
113 static struct khugepaged_scan khugepaged_scan = {
114         .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
115 };
116
117 #ifdef CONFIG_SYSFS
118 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
119                                          struct kobj_attribute *attr,
120                                          char *buf)
121 {
122         return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
123 }
124
125 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
126                                           struct kobj_attribute *attr,
127                                           const char *buf, size_t count)
128 {
129         unsigned long msecs;
130         int err;
131
132         err = kstrtoul(buf, 10, &msecs);
133         if (err || msecs > UINT_MAX)
134                 return -EINVAL;
135
136         khugepaged_scan_sleep_millisecs = msecs;
137         khugepaged_sleep_expire = 0;
138         wake_up_interruptible(&khugepaged_wait);
139
140         return count;
141 }
142 static struct kobj_attribute scan_sleep_millisecs_attr =
143         __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
144                scan_sleep_millisecs_store);
145
146 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
147                                           struct kobj_attribute *attr,
148                                           char *buf)
149 {
150         return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
151 }
152
153 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
154                                            struct kobj_attribute *attr,
155                                            const char *buf, size_t count)
156 {
157         unsigned long msecs;
158         int err;
159
160         err = kstrtoul(buf, 10, &msecs);
161         if (err || msecs > UINT_MAX)
162                 return -EINVAL;
163
164         khugepaged_alloc_sleep_millisecs = msecs;
165         khugepaged_sleep_expire = 0;
166         wake_up_interruptible(&khugepaged_wait);
167
168         return count;
169 }
170 static struct kobj_attribute alloc_sleep_millisecs_attr =
171         __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
172                alloc_sleep_millisecs_store);
173
174 static ssize_t pages_to_scan_show(struct kobject *kobj,
175                                   struct kobj_attribute *attr,
176                                   char *buf)
177 {
178         return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
179 }
180 static ssize_t pages_to_scan_store(struct kobject *kobj,
181                                    struct kobj_attribute *attr,
182                                    const char *buf, size_t count)
183 {
184         int err;
185         unsigned long pages;
186
187         err = kstrtoul(buf, 10, &pages);
188         if (err || !pages || pages > UINT_MAX)
189                 return -EINVAL;
190
191         khugepaged_pages_to_scan = pages;
192
193         return count;
194 }
195 static struct kobj_attribute pages_to_scan_attr =
196         __ATTR(pages_to_scan, 0644, pages_to_scan_show,
197                pages_to_scan_store);
198
199 static ssize_t pages_collapsed_show(struct kobject *kobj,
200                                     struct kobj_attribute *attr,
201                                     char *buf)
202 {
203         return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
204 }
205 static struct kobj_attribute pages_collapsed_attr =
206         __ATTR_RO(pages_collapsed);
207
208 static ssize_t full_scans_show(struct kobject *kobj,
209                                struct kobj_attribute *attr,
210                                char *buf)
211 {
212         return sprintf(buf, "%u\n", khugepaged_full_scans);
213 }
214 static struct kobj_attribute full_scans_attr =
215         __ATTR_RO(full_scans);
216
217 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
218                                       struct kobj_attribute *attr, char *buf)
219 {
220         return single_hugepage_flag_show(kobj, attr, buf,
221                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
222 }
223 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
224                                        struct kobj_attribute *attr,
225                                        const char *buf, size_t count)
226 {
227         return single_hugepage_flag_store(kobj, attr, buf, count,
228                                  TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
229 }
230 static struct kobj_attribute khugepaged_defrag_attr =
231         __ATTR(defrag, 0644, khugepaged_defrag_show,
232                khugepaged_defrag_store);
233
234 /*
235  * max_ptes_none controls if khugepaged should collapse hugepages over
236  * any unmapped ptes in turn potentially increasing the memory
237  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
238  * reduce the available free memory in the system as it
239  * runs. Increasing max_ptes_none will instead potentially reduce the
240  * free memory in the system during the khugepaged scan.
241  */
242 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
243                                              struct kobj_attribute *attr,
244                                              char *buf)
245 {
246         return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
247 }
248 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
249                                               struct kobj_attribute *attr,
250                                               const char *buf, size_t count)
251 {
252         int err;
253         unsigned long max_ptes_none;
254
255         err = kstrtoul(buf, 10, &max_ptes_none);
256         if (err || max_ptes_none > HPAGE_PMD_NR-1)
257                 return -EINVAL;
258
259         khugepaged_max_ptes_none = max_ptes_none;
260
261         return count;
262 }
263 static struct kobj_attribute khugepaged_max_ptes_none_attr =
264         __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
265                khugepaged_max_ptes_none_store);
266
267 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
268                                              struct kobj_attribute *attr,
269                                              char *buf)
270 {
271         return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
272 }
273
274 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
275                                               struct kobj_attribute *attr,
276                                               const char *buf, size_t count)
277 {
278         int err;
279         unsigned long max_ptes_swap;
280
281         err  = kstrtoul(buf, 10, &max_ptes_swap);
282         if (err || max_ptes_swap > HPAGE_PMD_NR-1)
283                 return -EINVAL;
284
285         khugepaged_max_ptes_swap = max_ptes_swap;
286
287         return count;
288 }
289
290 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
291         __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
292                khugepaged_max_ptes_swap_store);
293
294 static struct attribute *khugepaged_attr[] = {
295         &khugepaged_defrag_attr.attr,
296         &khugepaged_max_ptes_none_attr.attr,
297         &pages_to_scan_attr.attr,
298         &pages_collapsed_attr.attr,
299         &full_scans_attr.attr,
300         &scan_sleep_millisecs_attr.attr,
301         &alloc_sleep_millisecs_attr.attr,
302         &khugepaged_max_ptes_swap_attr.attr,
303         NULL,
304 };
305
306 struct attribute_group khugepaged_attr_group = {
307         .attrs = khugepaged_attr,
308         .name = "khugepaged",
309 };
310 #endif /* CONFIG_SYSFS */
311
312 int hugepage_madvise(struct vm_area_struct *vma,
313                      unsigned long *vm_flags, int advice)
314 {
315         switch (advice) {
316         case MADV_HUGEPAGE:
317 #ifdef CONFIG_S390
318                 /*
319                  * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
320                  * can't handle this properly after s390_enable_sie, so we simply
321                  * ignore the madvise to prevent qemu from causing a SIGSEGV.
322                  */
323                 if (mm_has_pgste(vma->vm_mm))
324                         return 0;
325 #endif
326                 *vm_flags &= ~VM_NOHUGEPAGE;
327                 *vm_flags |= VM_HUGEPAGE;
328                 /*
329                  * If the vma become good for khugepaged to scan,
330                  * register it here without waiting a page fault that
331                  * may not happen any time soon.
332                  */
333                 if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
334                                 khugepaged_enter_vma_merge(vma, *vm_flags))
335                         return -ENOMEM;
336                 break;
337         case MADV_NOHUGEPAGE:
338                 *vm_flags &= ~VM_HUGEPAGE;
339                 *vm_flags |= VM_NOHUGEPAGE;
340                 /*
341                  * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
342                  * this vma even if we leave the mm registered in khugepaged if
343                  * it got registered before VM_NOHUGEPAGE was set.
344                  */
345                 break;
346         }
347
348         return 0;
349 }
350
351 int __init khugepaged_init(void)
352 {
353         mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
354                                           sizeof(struct mm_slot),
355                                           __alignof__(struct mm_slot), 0, NULL);
356         if (!mm_slot_cache)
357                 return -ENOMEM;
358
359         khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
360         khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
361         khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
362
363         return 0;
364 }
365
366 void __init khugepaged_destroy(void)
367 {
368         kmem_cache_destroy(mm_slot_cache);
369 }
370
371 static inline struct mm_slot *alloc_mm_slot(void)
372 {
373         if (!mm_slot_cache)     /* initialization failed */
374                 return NULL;
375         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
376 }
377
378 static inline void free_mm_slot(struct mm_slot *mm_slot)
379 {
380         kmem_cache_free(mm_slot_cache, mm_slot);
381 }
382
383 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
384 {
385         struct mm_slot *mm_slot;
386
387         hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
388                 if (mm == mm_slot->mm)
389                         return mm_slot;
390
391         return NULL;
392 }
393
394 static void insert_to_mm_slots_hash(struct mm_struct *mm,
395                                     struct mm_slot *mm_slot)
396 {
397         mm_slot->mm = mm;
398         hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
399 }
400
401 static inline int khugepaged_test_exit(struct mm_struct *mm)
402 {
403         return atomic_read(&mm->mm_users) == 0;
404 }
405
406 static bool hugepage_vma_check(struct vm_area_struct *vma,
407                                unsigned long vm_flags)
408 {
409         if ((!(vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
410             (vm_flags & VM_NOHUGEPAGE) ||
411             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
412                 return false;
413
414         if (shmem_file(vma->vm_file) ||
415             (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
416              vma->vm_file &&
417              (vm_flags & VM_DENYWRITE))) {
418                 return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
419                                 HPAGE_PMD_NR);
420         }
421         if (!vma->anon_vma || vma->vm_ops)
422                 return false;
423         if (vma_is_temporary_stack(vma))
424                 return false;
425         return !(vm_flags & VM_NO_KHUGEPAGED);
426 }
427
428 int __khugepaged_enter(struct mm_struct *mm)
429 {
430         struct mm_slot *mm_slot;
431         int wakeup;
432
433         mm_slot = alloc_mm_slot();
434         if (!mm_slot)
435                 return -ENOMEM;
436
437         /* __khugepaged_exit() must not run from under us */
438         VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
439         if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
440                 free_mm_slot(mm_slot);
441                 return 0;
442         }
443
444         spin_lock(&khugepaged_mm_lock);
445         insert_to_mm_slots_hash(mm, mm_slot);
446         /*
447          * Insert just behind the scanning cursor, to let the area settle
448          * down a little.
449          */
450         wakeup = list_empty(&khugepaged_scan.mm_head);
451         list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
452         spin_unlock(&khugepaged_mm_lock);
453
454         mmgrab(mm);
455         if (wakeup)
456                 wake_up_interruptible(&khugepaged_wait);
457
458         return 0;
459 }
460
461 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
462                                unsigned long vm_flags)
463 {
464         unsigned long hstart, hend;
465
466         /*
467          * khugepaged only supports read-only files for non-shmem files.
468          * khugepaged does not yet work on special mappings. And
469          * file-private shmem THP is not supported.
470          */
471         if (!hugepage_vma_check(vma, vm_flags))
472                 return 0;
473
474         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
475         hend = vma->vm_end & HPAGE_PMD_MASK;
476         if (hstart < hend)
477                 return khugepaged_enter(vma, vm_flags);
478         return 0;
479 }
480
481 void __khugepaged_exit(struct mm_struct *mm)
482 {
483         struct mm_slot *mm_slot;
484         int free = 0;
485
486         spin_lock(&khugepaged_mm_lock);
487         mm_slot = get_mm_slot(mm);
488         if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
489                 hash_del(&mm_slot->hash);
490                 list_del(&mm_slot->mm_node);
491                 free = 1;
492         }
493         spin_unlock(&khugepaged_mm_lock);
494
495         if (free) {
496                 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
497                 free_mm_slot(mm_slot);
498                 mmdrop(mm);
499         } else if (mm_slot) {
500                 /*
501                  * This is required to serialize against
502                  * khugepaged_test_exit() (which is guaranteed to run
503                  * under mmap sem read mode). Stop here (after we
504                  * return all pagetables will be destroyed) until
505                  * khugepaged has finished working on the pagetables
506                  * under the mmap_sem.
507                  */
508                 down_write(&mm->mmap_sem);
509                 up_write(&mm->mmap_sem);
510         }
511 }
512
513 static void release_pte_page(struct page *page)
514 {
515         dec_node_page_state(page, NR_ISOLATED_ANON + page_is_file_lru(page));
516         unlock_page(page);
517         putback_lru_page(page);
518 }
519
520 static void release_pte_pages(pte_t *pte, pte_t *_pte)
521 {
522         while (--_pte >= pte) {
523                 pte_t pteval = *_pte;
524                 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
525                         release_pte_page(pte_page(pteval));
526         }
527 }
528
529 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
530                                         unsigned long address,
531                                         pte_t *pte)
532 {
533         struct page *page = NULL;
534         pte_t *_pte;
535         int none_or_zero = 0, result = 0, referenced = 0;
536         bool writable = false;
537
538         for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
539              _pte++, address += PAGE_SIZE) {
540                 pte_t pteval = *_pte;
541                 if (pte_none(pteval) || (pte_present(pteval) &&
542                                 is_zero_pfn(pte_pfn(pteval)))) {
543                         if (!userfaultfd_armed(vma) &&
544                             ++none_or_zero <= khugepaged_max_ptes_none) {
545                                 continue;
546                         } else {
547                                 result = SCAN_EXCEED_NONE_PTE;
548                                 goto out;
549                         }
550                 }
551                 if (!pte_present(pteval)) {
552                         result = SCAN_PTE_NON_PRESENT;
553                         goto out;
554                 }
555                 page = vm_normal_page(vma, address, pteval);
556                 if (unlikely(!page)) {
557                         result = SCAN_PAGE_NULL;
558                         goto out;
559                 }
560
561                 /* TODO: teach khugepaged to collapse THP mapped with pte */
562                 if (PageCompound(page)) {
563                         result = SCAN_PAGE_COMPOUND;
564                         goto out;
565                 }
566
567                 VM_BUG_ON_PAGE(!PageAnon(page), page);
568
569                 /*
570                  * We can do it before isolate_lru_page because the
571                  * page can't be freed from under us. NOTE: PG_lock
572                  * is needed to serialize against split_huge_page
573                  * when invoked from the VM.
574                  */
575                 if (!trylock_page(page)) {
576                         result = SCAN_PAGE_LOCK;
577                         goto out;
578                 }
579
580                 /*
581                  * cannot use mapcount: can't collapse if there's a gup pin.
582                  * The page must only be referenced by the scanned process
583                  * and page swap cache.
584                  */
585                 if (page_count(page) != 1 + PageSwapCache(page)) {
586                         unlock_page(page);
587                         result = SCAN_PAGE_COUNT;
588                         goto out;
589                 }
590                 if (pte_write(pteval)) {
591                         writable = true;
592                 } else {
593                         if (PageSwapCache(page) &&
594                             !reuse_swap_page(page, NULL)) {
595                                 unlock_page(page);
596                                 result = SCAN_SWAP_CACHE_PAGE;
597                                 goto out;
598                         }
599                         /*
600                          * Page is not in the swap cache. It can be collapsed
601                          * into a THP.
602                          */
603                 }
604
605                 /*
606                  * Isolate the page to avoid collapsing an hugepage
607                  * currently in use by the VM.
608                  */
609                 if (isolate_lru_page(page)) {
610                         unlock_page(page);
611                         result = SCAN_DEL_PAGE_LRU;
612                         goto out;
613                 }
614                 inc_node_page_state(page,
615                                 NR_ISOLATED_ANON + page_is_file_lru(page));
616                 VM_BUG_ON_PAGE(!PageLocked(page), page);
617                 VM_BUG_ON_PAGE(PageLRU(page), page);
618
619                 /* There should be enough young pte to collapse the page */
620                 if (pte_young(pteval) ||
621                     page_is_young(page) || PageReferenced(page) ||
622                     mmu_notifier_test_young(vma->vm_mm, address))
623                         referenced++;
624         }
625         if (likely(writable)) {
626                 if (likely(referenced)) {
627                         result = SCAN_SUCCEED;
628                         trace_mm_collapse_huge_page_isolate(page, none_or_zero,
629                                                             referenced, writable, result);
630                         return 1;
631                 }
632         } else {
633                 result = SCAN_PAGE_RO;
634         }
635
636 out:
637         release_pte_pages(pte, _pte);
638         trace_mm_collapse_huge_page_isolate(page, none_or_zero,
639                                             referenced, writable, result);
640         return 0;
641 }
642
643 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
644                                       struct vm_area_struct *vma,
645                                       unsigned long address,
646                                       spinlock_t *ptl)
647 {
648         pte_t *_pte;
649         for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
650                                 _pte++, page++, address += PAGE_SIZE) {
651                 pte_t pteval = *_pte;
652                 struct page *src_page;
653
654                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
655                         clear_user_highpage(page, address);
656                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
657                         if (is_zero_pfn(pte_pfn(pteval))) {
658                                 /*
659                                  * ptl mostly unnecessary.
660                                  */
661                                 spin_lock(ptl);
662                                 /*
663                                  * paravirt calls inside pte_clear here are
664                                  * superfluous.
665                                  */
666                                 pte_clear(vma->vm_mm, address, _pte);
667                                 spin_unlock(ptl);
668                         }
669                 } else {
670                         src_page = pte_page(pteval);
671                         copy_user_highpage(page, src_page, address, vma);
672                         VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
673                         release_pte_page(src_page);
674                         /*
675                          * ptl mostly unnecessary, but preempt has to
676                          * be disabled to update the per-cpu stats
677                          * inside page_remove_rmap().
678                          */
679                         spin_lock(ptl);
680                         /*
681                          * paravirt calls inside pte_clear here are
682                          * superfluous.
683                          */
684                         pte_clear(vma->vm_mm, address, _pte);
685                         page_remove_rmap(src_page, false);
686                         spin_unlock(ptl);
687                         free_page_and_swap_cache(src_page);
688                 }
689         }
690 }
691
692 static void khugepaged_alloc_sleep(void)
693 {
694         DEFINE_WAIT(wait);
695
696         add_wait_queue(&khugepaged_wait, &wait);
697         freezable_schedule_timeout_interruptible(
698                 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
699         remove_wait_queue(&khugepaged_wait, &wait);
700 }
701
702 static int khugepaged_node_load[MAX_NUMNODES];
703
704 static bool khugepaged_scan_abort(int nid)
705 {
706         int i;
707
708         /*
709          * If node_reclaim_mode is disabled, then no extra effort is made to
710          * allocate memory locally.
711          */
712         if (!node_reclaim_mode)
713                 return false;
714
715         /* If there is a count for this node already, it must be acceptable */
716         if (khugepaged_node_load[nid])
717                 return false;
718
719         for (i = 0; i < MAX_NUMNODES; i++) {
720                 if (!khugepaged_node_load[i])
721                         continue;
722                 if (node_distance(nid, i) > node_reclaim_distance)
723                         return true;
724         }
725         return false;
726 }
727
728 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
729 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
730 {
731         return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
732 }
733
734 #ifdef CONFIG_NUMA
735 static int khugepaged_find_target_node(void)
736 {
737         static int last_khugepaged_target_node = NUMA_NO_NODE;
738         int nid, target_node = 0, max_value = 0;
739
740         /* find first node with max normal pages hit */
741         for (nid = 0; nid < MAX_NUMNODES; nid++)
742                 if (khugepaged_node_load[nid] > max_value) {
743                         max_value = khugepaged_node_load[nid];
744                         target_node = nid;
745                 }
746
747         /* do some balance if several nodes have the same hit record */
748         if (target_node <= last_khugepaged_target_node)
749                 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
750                                 nid++)
751                         if (max_value == khugepaged_node_load[nid]) {
752                                 target_node = nid;
753                                 break;
754                         }
755
756         last_khugepaged_target_node = target_node;
757         return target_node;
758 }
759
760 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
761 {
762         if (IS_ERR(*hpage)) {
763                 if (!*wait)
764                         return false;
765
766                 *wait = false;
767                 *hpage = NULL;
768                 khugepaged_alloc_sleep();
769         } else if (*hpage) {
770                 put_page(*hpage);
771                 *hpage = NULL;
772         }
773
774         return true;
775 }
776
777 static struct page *
778 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
779 {
780         VM_BUG_ON_PAGE(*hpage, *hpage);
781
782         *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
783         if (unlikely(!*hpage)) {
784                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
785                 *hpage = ERR_PTR(-ENOMEM);
786                 return NULL;
787         }
788
789         prep_transhuge_page(*hpage);
790         count_vm_event(THP_COLLAPSE_ALLOC);
791         return *hpage;
792 }
793 #else
794 static int khugepaged_find_target_node(void)
795 {
796         return 0;
797 }
798
799 static inline struct page *alloc_khugepaged_hugepage(void)
800 {
801         struct page *page;
802
803         page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
804                            HPAGE_PMD_ORDER);
805         if (page)
806                 prep_transhuge_page(page);
807         return page;
808 }
809
810 static struct page *khugepaged_alloc_hugepage(bool *wait)
811 {
812         struct page *hpage;
813
814         do {
815                 hpage = alloc_khugepaged_hugepage();
816                 if (!hpage) {
817                         count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
818                         if (!*wait)
819                                 return NULL;
820
821                         *wait = false;
822                         khugepaged_alloc_sleep();
823                 } else
824                         count_vm_event(THP_COLLAPSE_ALLOC);
825         } while (unlikely(!hpage) && likely(khugepaged_enabled()));
826
827         return hpage;
828 }
829
830 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
831 {
832         if (!*hpage)
833                 *hpage = khugepaged_alloc_hugepage(wait);
834
835         if (unlikely(!*hpage))
836                 return false;
837
838         return true;
839 }
840
841 static struct page *
842 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
843 {
844         VM_BUG_ON(!*hpage);
845
846         return  *hpage;
847 }
848 #endif
849
850 /*
851  * If mmap_sem temporarily dropped, revalidate vma
852  * before taking mmap_sem.
853  * Return 0 if succeeds, otherwise return none-zero
854  * value (scan code).
855  */
856
857 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
858                 struct vm_area_struct **vmap)
859 {
860         struct vm_area_struct *vma;
861         unsigned long hstart, hend;
862
863         if (unlikely(khugepaged_test_exit(mm)))
864                 return SCAN_ANY_PROCESS;
865
866         *vmap = vma = find_vma(mm, address);
867         if (!vma)
868                 return SCAN_VMA_NULL;
869
870         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
871         hend = vma->vm_end & HPAGE_PMD_MASK;
872         if (address < hstart || address + HPAGE_PMD_SIZE > hend)
873                 return SCAN_ADDRESS_RANGE;
874         if (!hugepage_vma_check(vma, vma->vm_flags))
875                 return SCAN_VMA_CHECK;
876         return 0;
877 }
878
879 /*
880  * Bring missing pages in from swap, to complete THP collapse.
881  * Only done if khugepaged_scan_pmd believes it is worthwhile.
882  *
883  * Called and returns without pte mapped or spinlocks held,
884  * but with mmap_sem held to protect against vma changes.
885  */
886
887 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
888                                         struct vm_area_struct *vma,
889                                         unsigned long address, pmd_t *pmd,
890                                         int referenced)
891 {
892         int swapped_in = 0;
893         vm_fault_t ret = 0;
894         struct vm_fault vmf = {
895                 .vma = vma,
896                 .address = address,
897                 .flags = FAULT_FLAG_ALLOW_RETRY,
898                 .pmd = pmd,
899                 .pgoff = linear_page_index(vma, address),
900         };
901
902         /* we only decide to swapin, if there is enough young ptes */
903         if (referenced < HPAGE_PMD_NR/2) {
904                 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
905                 return false;
906         }
907         vmf.pte = pte_offset_map(pmd, address);
908         for (; vmf.address < address + HPAGE_PMD_NR*PAGE_SIZE;
909                         vmf.pte++, vmf.address += PAGE_SIZE) {
910                 vmf.orig_pte = *vmf.pte;
911                 if (!is_swap_pte(vmf.orig_pte))
912                         continue;
913                 swapped_in++;
914                 ret = do_swap_page(&vmf);
915
916                 /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
917                 if (ret & VM_FAULT_RETRY) {
918                         down_read(&mm->mmap_sem);
919                         if (hugepage_vma_revalidate(mm, address, &vmf.vma)) {
920                                 /* vma is no longer available, don't continue to swapin */
921                                 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
922                                 return false;
923                         }
924                         /* check if the pmd is still valid */
925                         if (mm_find_pmd(mm, address) != pmd) {
926                                 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
927                                 return false;
928                         }
929                 }
930                 if (ret & VM_FAULT_ERROR) {
931                         trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
932                         return false;
933                 }
934                 /* pte is unmapped now, we need to map it */
935                 vmf.pte = pte_offset_map(pmd, vmf.address);
936         }
937         vmf.pte--;
938         pte_unmap(vmf.pte);
939         trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
940         return true;
941 }
942
943 static void collapse_huge_page(struct mm_struct *mm,
944                                    unsigned long address,
945                                    struct page **hpage,
946                                    int node, int referenced)
947 {
948         pmd_t *pmd, _pmd;
949         pte_t *pte;
950         pgtable_t pgtable;
951         struct page *new_page;
952         spinlock_t *pmd_ptl, *pte_ptl;
953         int isolated = 0, result = 0;
954         struct mem_cgroup *memcg;
955         struct vm_area_struct *vma;
956         struct mmu_notifier_range range;
957         gfp_t gfp;
958
959         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
960
961         /* Only allocate from the target node */
962         gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
963
964         /*
965          * Before allocating the hugepage, release the mmap_sem read lock.
966          * The allocation can take potentially a long time if it involves
967          * sync compaction, and we do not need to hold the mmap_sem during
968          * that. We will recheck the vma after taking it again in write mode.
969          */
970         up_read(&mm->mmap_sem);
971         new_page = khugepaged_alloc_page(hpage, gfp, node);
972         if (!new_page) {
973                 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
974                 goto out_nolock;
975         }
976
977         if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
978                 result = SCAN_CGROUP_CHARGE_FAIL;
979                 goto out_nolock;
980         }
981
982         down_read(&mm->mmap_sem);
983         result = hugepage_vma_revalidate(mm, address, &vma);
984         if (result) {
985                 mem_cgroup_cancel_charge(new_page, memcg, true);
986                 up_read(&mm->mmap_sem);
987                 goto out_nolock;
988         }
989
990         pmd = mm_find_pmd(mm, address);
991         if (!pmd) {
992                 result = SCAN_PMD_NULL;
993                 mem_cgroup_cancel_charge(new_page, memcg, true);
994                 up_read(&mm->mmap_sem);
995                 goto out_nolock;
996         }
997
998         /*
999          * __collapse_huge_page_swapin always returns with mmap_sem locked.
1000          * If it fails, we release mmap_sem and jump out_nolock.
1001          * Continuing to collapse causes inconsistency.
1002          */
1003         if (!__collapse_huge_page_swapin(mm, vma, address, pmd, referenced)) {
1004                 mem_cgroup_cancel_charge(new_page, memcg, true);
1005                 up_read(&mm->mmap_sem);
1006                 goto out_nolock;
1007         }
1008
1009         up_read(&mm->mmap_sem);
1010         /*
1011          * Prevent all access to pagetables with the exception of
1012          * gup_fast later handled by the ptep_clear_flush and the VM
1013          * handled by the anon_vma lock + PG_lock.
1014          */
1015         down_write(&mm->mmap_sem);
1016         result = SCAN_ANY_PROCESS;
1017         if (!mmget_still_valid(mm))
1018                 goto out;
1019         result = hugepage_vma_revalidate(mm, address, &vma);
1020         if (result)
1021                 goto out;
1022         /* check if the pmd is still valid */
1023         if (mm_find_pmd(mm, address) != pmd)
1024                 goto out;
1025
1026         anon_vma_lock_write(vma->anon_vma);
1027
1028         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
1029                                 address, address + HPAGE_PMD_SIZE);
1030         mmu_notifier_invalidate_range_start(&range);
1031
1032         pte = pte_offset_map(pmd, address);
1033         pte_ptl = pte_lockptr(mm, pmd);
1034
1035         pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1036         /*
1037          * After this gup_fast can't run anymore. This also removes
1038          * any huge TLB entry from the CPU so we won't allow
1039          * huge and small TLB entries for the same virtual address
1040          * to avoid the risk of CPU bugs in that area.
1041          */
1042         _pmd = pmdp_collapse_flush(vma, address, pmd);
1043         spin_unlock(pmd_ptl);
1044         mmu_notifier_invalidate_range_end(&range);
1045
1046         spin_lock(pte_ptl);
1047         isolated = __collapse_huge_page_isolate(vma, address, pte);
1048         spin_unlock(pte_ptl);
1049
1050         if (unlikely(!isolated)) {
1051                 pte_unmap(pte);
1052                 spin_lock(pmd_ptl);
1053                 BUG_ON(!pmd_none(*pmd));
1054                 /*
1055                  * We can only use set_pmd_at when establishing
1056                  * hugepmds and never for establishing regular pmds that
1057                  * points to regular pagetables. Use pmd_populate for that
1058                  */
1059                 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1060                 spin_unlock(pmd_ptl);
1061                 anon_vma_unlock_write(vma->anon_vma);
1062                 result = SCAN_FAIL;
1063                 goto out;
1064         }
1065
1066         /*
1067          * All pages are isolated and locked so anon_vma rmap
1068          * can't run anymore.
1069          */
1070         anon_vma_unlock_write(vma->anon_vma);
1071
1072         __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
1073         pte_unmap(pte);
1074         __SetPageUptodate(new_page);
1075         pgtable = pmd_pgtable(_pmd);
1076
1077         _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1078         _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1079
1080         /*
1081          * spin_lock() below is not the equivalent of smp_wmb(), so
1082          * this is needed to avoid the copy_huge_page writes to become
1083          * visible after the set_pmd_at() write.
1084          */
1085         smp_wmb();
1086
1087         spin_lock(pmd_ptl);
1088         BUG_ON(!pmd_none(*pmd));
1089         page_add_new_anon_rmap(new_page, vma, address, true);
1090         mem_cgroup_commit_charge(new_page, memcg, false, true);
1091         count_memcg_events(memcg, THP_COLLAPSE_ALLOC, 1);
1092         lru_cache_add_active_or_unevictable(new_page, vma);
1093         pgtable_trans_huge_deposit(mm, pmd, pgtable);
1094         set_pmd_at(mm, address, pmd, _pmd);
1095         update_mmu_cache_pmd(vma, address, pmd);
1096         spin_unlock(pmd_ptl);
1097
1098         *hpage = NULL;
1099
1100         khugepaged_pages_collapsed++;
1101         result = SCAN_SUCCEED;
1102 out_up_write:
1103         up_write(&mm->mmap_sem);
1104 out_nolock:
1105         trace_mm_collapse_huge_page(mm, isolated, result);
1106         return;
1107 out:
1108         mem_cgroup_cancel_charge(new_page, memcg, true);
1109         goto out_up_write;
1110 }
1111
1112 static int khugepaged_scan_pmd(struct mm_struct *mm,
1113                                struct vm_area_struct *vma,
1114                                unsigned long address,
1115                                struct page **hpage)
1116 {
1117         pmd_t *pmd;
1118         pte_t *pte, *_pte;
1119         int ret = 0, none_or_zero = 0, result = 0, referenced = 0;
1120         struct page *page = NULL;
1121         unsigned long _address;
1122         spinlock_t *ptl;
1123         int node = NUMA_NO_NODE, unmapped = 0;
1124         bool writable = false;
1125
1126         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1127
1128         pmd = mm_find_pmd(mm, address);
1129         if (!pmd) {
1130                 result = SCAN_PMD_NULL;
1131                 goto out;
1132         }
1133
1134         memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1135         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1136         for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1137              _pte++, _address += PAGE_SIZE) {
1138                 pte_t pteval = *_pte;
1139                 if (is_swap_pte(pteval)) {
1140                         if (++unmapped <= khugepaged_max_ptes_swap) {
1141                                 /*
1142                                  * Always be strict with uffd-wp
1143                                  * enabled swap entries.  Please see
1144                                  * comment below for pte_uffd_wp().
1145                                  */
1146                                 if (pte_swp_uffd_wp(pteval)) {
1147                                         result = SCAN_PTE_UFFD_WP;
1148                                         goto out_unmap;
1149                                 }
1150                                 continue;
1151                         } else {
1152                                 result = SCAN_EXCEED_SWAP_PTE;
1153                                 goto out_unmap;
1154                         }
1155                 }
1156                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1157                         if (!userfaultfd_armed(vma) &&
1158                             ++none_or_zero <= khugepaged_max_ptes_none) {
1159                                 continue;
1160                         } else {
1161                                 result = SCAN_EXCEED_NONE_PTE;
1162                                 goto out_unmap;
1163                         }
1164                 }
1165                 if (!pte_present(pteval)) {
1166                         result = SCAN_PTE_NON_PRESENT;
1167                         goto out_unmap;
1168                 }
1169                 if (pte_uffd_wp(pteval)) {
1170                         /*
1171                          * Don't collapse the page if any of the small
1172                          * PTEs are armed with uffd write protection.
1173                          * Here we can also mark the new huge pmd as
1174                          * write protected if any of the small ones is
1175                          * marked but that could bring uknown
1176                          * userfault messages that falls outside of
1177                          * the registered range.  So, just be simple.
1178                          */
1179                         result = SCAN_PTE_UFFD_WP;
1180                         goto out_unmap;
1181                 }
1182                 if (pte_write(pteval))
1183                         writable = true;
1184
1185                 page = vm_normal_page(vma, _address, pteval);
1186                 if (unlikely(!page)) {
1187                         result = SCAN_PAGE_NULL;
1188                         goto out_unmap;
1189                 }
1190
1191                 /* TODO: teach khugepaged to collapse THP mapped with pte */
1192                 if (PageCompound(page)) {
1193                         result = SCAN_PAGE_COMPOUND;
1194                         goto out_unmap;
1195                 }
1196
1197                 /*
1198                  * Record which node the original page is from and save this
1199                  * information to khugepaged_node_load[].
1200                  * Khupaged will allocate hugepage from the node has the max
1201                  * hit record.
1202                  */
1203                 node = page_to_nid(page);
1204                 if (khugepaged_scan_abort(node)) {
1205                         result = SCAN_SCAN_ABORT;
1206                         goto out_unmap;
1207                 }
1208                 khugepaged_node_load[node]++;
1209                 if (!PageLRU(page)) {
1210                         result = SCAN_PAGE_LRU;
1211                         goto out_unmap;
1212                 }
1213                 if (PageLocked(page)) {
1214                         result = SCAN_PAGE_LOCK;
1215                         goto out_unmap;
1216                 }
1217                 if (!PageAnon(page)) {
1218                         result = SCAN_PAGE_ANON;
1219                         goto out_unmap;
1220                 }
1221
1222                 /*
1223                  * cannot use mapcount: can't collapse if there's a gup pin.
1224                  * The page must only be referenced by the scanned process
1225                  * and page swap cache.
1226                  */
1227                 if (page_count(page) != 1 + PageSwapCache(page)) {
1228                         result = SCAN_PAGE_COUNT;
1229                         goto out_unmap;
1230                 }
1231                 if (pte_young(pteval) ||
1232                     page_is_young(page) || PageReferenced(page) ||
1233                     mmu_notifier_test_young(vma->vm_mm, address))
1234                         referenced++;
1235         }
1236         if (writable) {
1237                 if (referenced) {
1238                         result = SCAN_SUCCEED;
1239                         ret = 1;
1240                 } else {
1241                         result = SCAN_LACK_REFERENCED_PAGE;
1242                 }
1243         } else {
1244                 result = SCAN_PAGE_RO;
1245         }
1246 out_unmap:
1247         pte_unmap_unlock(pte, ptl);
1248         if (ret) {
1249                 node = khugepaged_find_target_node();
1250                 /* collapse_huge_page will return with the mmap_sem released */
1251                 collapse_huge_page(mm, address, hpage, node, referenced);
1252         }
1253 out:
1254         trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1255                                      none_or_zero, result, unmapped);
1256         return ret;
1257 }
1258
1259 static void collect_mm_slot(struct mm_slot *mm_slot)
1260 {
1261         struct mm_struct *mm = mm_slot->mm;
1262
1263         lockdep_assert_held(&khugepaged_mm_lock);
1264
1265         if (khugepaged_test_exit(mm)) {
1266                 /* free mm_slot */
1267                 hash_del(&mm_slot->hash);
1268                 list_del(&mm_slot->mm_node);
1269
1270                 /*
1271                  * Not strictly needed because the mm exited already.
1272                  *
1273                  * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1274                  */
1275
1276                 /* khugepaged_mm_lock actually not necessary for the below */
1277                 free_mm_slot(mm_slot);
1278                 mmdrop(mm);
1279         }
1280 }
1281
1282 #ifdef CONFIG_SHMEM
1283 /*
1284  * Notify khugepaged that given addr of the mm is pte-mapped THP. Then
1285  * khugepaged should try to collapse the page table.
1286  */
1287 static int khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
1288                                          unsigned long addr)
1289 {
1290         struct mm_slot *mm_slot;
1291
1292         VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
1293
1294         spin_lock(&khugepaged_mm_lock);
1295         mm_slot = get_mm_slot(mm);
1296         if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP))
1297                 mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr;
1298         spin_unlock(&khugepaged_mm_lock);
1299         return 0;
1300 }
1301
1302 /**
1303  * Try to collapse a pte-mapped THP for mm at address haddr.
1304  *
1305  * This function checks whether all the PTEs in the PMD are pointing to the
1306  * right THP. If so, retract the page table so the THP can refault in with
1307  * as pmd-mapped.
1308  */
1309 void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr)
1310 {
1311         unsigned long haddr = addr & HPAGE_PMD_MASK;
1312         struct vm_area_struct *vma = find_vma(mm, haddr);
1313         struct page *hpage = NULL;
1314         pte_t *start_pte, *pte;
1315         pmd_t *pmd, _pmd;
1316         spinlock_t *ptl;
1317         int count = 0;
1318         int i;
1319
1320         if (!vma || !vma->vm_file ||
1321             vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE)
1322                 return;
1323
1324         /*
1325          * This vm_flags may not have VM_HUGEPAGE if the page was not
1326          * collapsed by this mm. But we can still collapse if the page is
1327          * the valid THP. Add extra VM_HUGEPAGE so hugepage_vma_check()
1328          * will not fail the vma for missing VM_HUGEPAGE
1329          */
1330         if (!hugepage_vma_check(vma, vma->vm_flags | VM_HUGEPAGE))
1331                 return;
1332
1333         pmd = mm_find_pmd(mm, haddr);
1334         if (!pmd)
1335                 return;
1336
1337         start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1338
1339         /* step 1: check all mapped PTEs are to the right huge page */
1340         for (i = 0, addr = haddr, pte = start_pte;
1341              i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1342                 struct page *page;
1343
1344                 /* empty pte, skip */
1345                 if (pte_none(*pte))
1346                         continue;
1347
1348                 /* page swapped out, abort */
1349                 if (!pte_present(*pte))
1350                         goto abort;
1351
1352                 page = vm_normal_page(vma, addr, *pte);
1353
1354                 if (!page || !PageCompound(page))
1355                         goto abort;
1356
1357                 if (!hpage) {
1358                         hpage = compound_head(page);
1359                         /*
1360                          * The mapping of the THP should not change.
1361                          *
1362                          * Note that uprobe, debugger, or MAP_PRIVATE may
1363                          * change the page table, but the new page will
1364                          * not pass PageCompound() check.
1365                          */
1366                         if (WARN_ON(hpage->mapping != vma->vm_file->f_mapping))
1367                                 goto abort;
1368                 }
1369
1370                 /*
1371                  * Confirm the page maps to the correct subpage.
1372                  *
1373                  * Note that uprobe, debugger, or MAP_PRIVATE may change
1374                  * the page table, but the new page will not pass
1375                  * PageCompound() check.
1376                  */
1377                 if (WARN_ON(hpage + i != page))
1378                         goto abort;
1379                 count++;
1380         }
1381
1382         /* step 2: adjust rmap */
1383         for (i = 0, addr = haddr, pte = start_pte;
1384              i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1385                 struct page *page;
1386
1387                 if (pte_none(*pte))
1388                         continue;
1389                 page = vm_normal_page(vma, addr, *pte);
1390                 page_remove_rmap(page, false);
1391         }
1392
1393         pte_unmap_unlock(start_pte, ptl);
1394
1395         /* step 3: set proper refcount and mm_counters. */
1396         if (hpage) {
1397                 page_ref_sub(hpage, count);
1398                 add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count);
1399         }
1400
1401         /* step 4: collapse pmd */
1402         ptl = pmd_lock(vma->vm_mm, pmd);
1403         _pmd = pmdp_collapse_flush(vma, addr, pmd);
1404         spin_unlock(ptl);
1405         mm_dec_nr_ptes(mm);
1406         pte_free(mm, pmd_pgtable(_pmd));
1407         return;
1408
1409 abort:
1410         pte_unmap_unlock(start_pte, ptl);
1411 }
1412
1413 static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
1414 {
1415         struct mm_struct *mm = mm_slot->mm;
1416         int i;
1417
1418         if (likely(mm_slot->nr_pte_mapped_thp == 0))
1419                 return 0;
1420
1421         if (!down_write_trylock(&mm->mmap_sem))
1422                 return -EBUSY;
1423
1424         if (unlikely(khugepaged_test_exit(mm)))
1425                 goto out;
1426
1427         for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++)
1428                 collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i]);
1429
1430 out:
1431         mm_slot->nr_pte_mapped_thp = 0;
1432         up_write(&mm->mmap_sem);
1433         return 0;
1434 }
1435
1436 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1437 {
1438         struct vm_area_struct *vma;
1439         unsigned long addr;
1440         pmd_t *pmd, _pmd;
1441
1442         i_mmap_lock_write(mapping);
1443         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1444                 /*
1445                  * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1446                  * got written to. These VMAs are likely not worth investing
1447                  * down_write(mmap_sem) as PMD-mapping is likely to be split
1448                  * later.
1449                  *
1450                  * Not that vma->anon_vma check is racy: it can be set up after
1451                  * the check but before we took mmap_sem by the fault path.
1452                  * But page lock would prevent establishing any new ptes of the
1453                  * page, so we are safe.
1454                  *
1455                  * An alternative would be drop the check, but check that page
1456                  * table is clear before calling pmdp_collapse_flush() under
1457                  * ptl. It has higher chance to recover THP for the VMA, but
1458                  * has higher cost too.
1459                  */
1460                 if (vma->anon_vma)
1461                         continue;
1462                 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1463                 if (addr & ~HPAGE_PMD_MASK)
1464                         continue;
1465                 if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1466                         continue;
1467                 pmd = mm_find_pmd(vma->vm_mm, addr);
1468                 if (!pmd)
1469                         continue;
1470                 /*
1471                  * We need exclusive mmap_sem to retract page table.
1472                  *
1473                  * We use trylock due to lock inversion: we need to acquire
1474                  * mmap_sem while holding page lock. Fault path does it in
1475                  * reverse order. Trylock is a way to avoid deadlock.
1476                  */
1477                 if (down_write_trylock(&vma->vm_mm->mmap_sem)) {
1478                         spinlock_t *ptl = pmd_lock(vma->vm_mm, pmd);
1479                         /* assume page table is clear */
1480                         _pmd = pmdp_collapse_flush(vma, addr, pmd);
1481                         spin_unlock(ptl);
1482                         up_write(&vma->vm_mm->mmap_sem);
1483                         mm_dec_nr_ptes(vma->vm_mm);
1484                         pte_free(vma->vm_mm, pmd_pgtable(_pmd));
1485                 } else {
1486                         /* Try again later */
1487                         khugepaged_add_pte_mapped_thp(vma->vm_mm, addr);
1488                 }
1489         }
1490         i_mmap_unlock_write(mapping);
1491 }
1492
1493 /**
1494  * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1495  *
1496  * Basic scheme is simple, details are more complex:
1497  *  - allocate and lock a new huge page;
1498  *  - scan page cache replacing old pages with the new one
1499  *    + swap/gup in pages if necessary;
1500  *    + fill in gaps;
1501  *    + keep old pages around in case rollback is required;
1502  *  - if replacing succeeds:
1503  *    + copy data over;
1504  *    + free old pages;
1505  *    + unlock huge page;
1506  *  - if replacing failed;
1507  *    + put all pages back and unfreeze them;
1508  *    + restore gaps in the page cache;
1509  *    + unlock and free huge page;
1510  */
1511 static void collapse_file(struct mm_struct *mm,
1512                 struct file *file, pgoff_t start,
1513                 struct page **hpage, int node)
1514 {
1515         struct address_space *mapping = file->f_mapping;
1516         gfp_t gfp;
1517         struct page *new_page;
1518         struct mem_cgroup *memcg;
1519         pgoff_t index, end = start + HPAGE_PMD_NR;
1520         LIST_HEAD(pagelist);
1521         XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1522         int nr_none = 0, result = SCAN_SUCCEED;
1523         bool is_shmem = shmem_file(file);
1524
1525         VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1526         VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1527
1528         /* Only allocate from the target node */
1529         gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1530
1531         new_page = khugepaged_alloc_page(hpage, gfp, node);
1532         if (!new_page) {
1533                 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1534                 goto out;
1535         }
1536
1537         if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
1538                 result = SCAN_CGROUP_CHARGE_FAIL;
1539                 goto out;
1540         }
1541
1542         /* This will be less messy when we use multi-index entries */
1543         do {
1544                 xas_lock_irq(&xas);
1545                 xas_create_range(&xas);
1546                 if (!xas_error(&xas))
1547                         break;
1548                 xas_unlock_irq(&xas);
1549                 if (!xas_nomem(&xas, GFP_KERNEL)) {
1550                         mem_cgroup_cancel_charge(new_page, memcg, true);
1551                         result = SCAN_FAIL;
1552                         goto out;
1553                 }
1554         } while (1);
1555
1556         __SetPageLocked(new_page);
1557         if (is_shmem)
1558                 __SetPageSwapBacked(new_page);
1559         new_page->index = start;
1560         new_page->mapping = mapping;
1561
1562         /*
1563          * At this point the new_page is locked and not up-to-date.
1564          * It's safe to insert it into the page cache, because nobody would
1565          * be able to map it or use it in another way until we unlock it.
1566          */
1567
1568         xas_set(&xas, start);
1569         for (index = start; index < end; index++) {
1570                 struct page *page = xas_next(&xas);
1571
1572                 VM_BUG_ON(index != xas.xa_index);
1573                 if (is_shmem) {
1574                         if (!page) {
1575                                 /*
1576                                  * Stop if extent has been truncated or
1577                                  * hole-punched, and is now completely
1578                                  * empty.
1579                                  */
1580                                 if (index == start) {
1581                                         if (!xas_next_entry(&xas, end - 1)) {
1582                                                 result = SCAN_TRUNCATED;
1583                                                 goto xa_locked;
1584                                         }
1585                                         xas_set(&xas, index);
1586                                 }
1587                                 if (!shmem_charge(mapping->host, 1)) {
1588                                         result = SCAN_FAIL;
1589                                         goto xa_locked;
1590                                 }
1591                                 xas_store(&xas, new_page);
1592                                 nr_none++;
1593                                 continue;
1594                         }
1595
1596                         if (xa_is_value(page) || !PageUptodate(page)) {
1597                                 xas_unlock_irq(&xas);
1598                                 /* swap in or instantiate fallocated page */
1599                                 if (shmem_getpage(mapping->host, index, &page,
1600                                                   SGP_NOHUGE)) {
1601                                         result = SCAN_FAIL;
1602                                         goto xa_unlocked;
1603                                 }
1604                         } else if (trylock_page(page)) {
1605                                 get_page(page);
1606                                 xas_unlock_irq(&xas);
1607                         } else {
1608                                 result = SCAN_PAGE_LOCK;
1609                                 goto xa_locked;
1610                         }
1611                 } else {        /* !is_shmem */
1612                         if (!page || xa_is_value(page)) {
1613                                 xas_unlock_irq(&xas);
1614                                 page_cache_sync_readahead(mapping, &file->f_ra,
1615                                                           file, index,
1616                                                           PAGE_SIZE);
1617                                 /* drain pagevecs to help isolate_lru_page() */
1618                                 lru_add_drain();
1619                                 page = find_lock_page(mapping, index);
1620                                 if (unlikely(page == NULL)) {
1621                                         result = SCAN_FAIL;
1622                                         goto xa_unlocked;
1623                                 }
1624                         } else if (PageDirty(page)) {
1625                                 /*
1626                                  * khugepaged only works on read-only fd,
1627                                  * so this page is dirty because it hasn't
1628                                  * been flushed since first write. There
1629                                  * won't be new dirty pages.
1630                                  *
1631                                  * Trigger async flush here and hope the
1632                                  * writeback is done when khugepaged
1633                                  * revisits this page.
1634                                  *
1635                                  * This is a one-off situation. We are not
1636                                  * forcing writeback in loop.
1637                                  */
1638                                 xas_unlock_irq(&xas);
1639                                 filemap_flush(mapping);
1640                                 result = SCAN_FAIL;
1641                                 goto xa_unlocked;
1642                         } else if (trylock_page(page)) {
1643                                 get_page(page);
1644                                 xas_unlock_irq(&xas);
1645                         } else {
1646                                 result = SCAN_PAGE_LOCK;
1647                                 goto xa_locked;
1648                         }
1649                 }
1650
1651                 /*
1652                  * The page must be locked, so we can drop the i_pages lock
1653                  * without racing with truncate.
1654                  */
1655                 VM_BUG_ON_PAGE(!PageLocked(page), page);
1656
1657                 /* make sure the page is up to date */
1658                 if (unlikely(!PageUptodate(page))) {
1659                         result = SCAN_FAIL;
1660                         goto out_unlock;
1661                 }
1662
1663                 /*
1664                  * If file was truncated then extended, or hole-punched, before
1665                  * we locked the first page, then a THP might be there already.
1666                  */
1667                 if (PageTransCompound(page)) {
1668                         result = SCAN_PAGE_COMPOUND;
1669                         goto out_unlock;
1670                 }
1671
1672                 if (page_mapping(page) != mapping) {
1673                         result = SCAN_TRUNCATED;
1674                         goto out_unlock;
1675                 }
1676
1677                 if (!is_shmem && PageDirty(page)) {
1678                         /*
1679                          * khugepaged only works on read-only fd, so this
1680                          * page is dirty because it hasn't been flushed
1681                          * since first write.
1682                          */
1683                         result = SCAN_FAIL;
1684                         goto out_unlock;
1685                 }
1686
1687                 if (isolate_lru_page(page)) {
1688                         result = SCAN_DEL_PAGE_LRU;
1689                         goto out_unlock;
1690                 }
1691
1692                 if (page_has_private(page) &&
1693                     !try_to_release_page(page, GFP_KERNEL)) {
1694                         result = SCAN_PAGE_HAS_PRIVATE;
1695                         goto out_unlock;
1696                 }
1697
1698                 if (page_mapped(page))
1699                         unmap_mapping_pages(mapping, index, 1, false);
1700
1701                 xas_lock_irq(&xas);
1702                 xas_set(&xas, index);
1703
1704                 VM_BUG_ON_PAGE(page != xas_load(&xas), page);
1705                 VM_BUG_ON_PAGE(page_mapped(page), page);
1706
1707                 /*
1708                  * The page is expected to have page_count() == 3:
1709                  *  - we hold a pin on it;
1710                  *  - one reference from page cache;
1711                  *  - one from isolate_lru_page;
1712                  */
1713                 if (!page_ref_freeze(page, 3)) {
1714                         result = SCAN_PAGE_COUNT;
1715                         xas_unlock_irq(&xas);
1716                         putback_lru_page(page);
1717                         goto out_unlock;
1718                 }
1719
1720                 /*
1721                  * Add the page to the list to be able to undo the collapse if
1722                  * something go wrong.
1723                  */
1724                 list_add_tail(&page->lru, &pagelist);
1725
1726                 /* Finally, replace with the new page. */
1727                 xas_store(&xas, new_page);
1728                 continue;
1729 out_unlock:
1730                 unlock_page(page);
1731                 put_page(page);
1732                 goto xa_unlocked;
1733         }
1734
1735         if (is_shmem)
1736                 __inc_node_page_state(new_page, NR_SHMEM_THPS);
1737         else {
1738                 __inc_node_page_state(new_page, NR_FILE_THPS);
1739                 filemap_nr_thps_inc(mapping);
1740         }
1741
1742         if (nr_none) {
1743                 struct zone *zone = page_zone(new_page);
1744
1745                 __mod_node_page_state(zone->zone_pgdat, NR_FILE_PAGES, nr_none);
1746                 if (is_shmem)
1747                         __mod_node_page_state(zone->zone_pgdat,
1748                                               NR_SHMEM, nr_none);
1749         }
1750
1751 xa_locked:
1752         xas_unlock_irq(&xas);
1753 xa_unlocked:
1754
1755         if (result == SCAN_SUCCEED) {
1756                 struct page *page, *tmp;
1757
1758                 /*
1759                  * Replacing old pages with new one has succeeded, now we
1760                  * need to copy the content and free the old pages.
1761                  */
1762                 index = start;
1763                 list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1764                         while (index < page->index) {
1765                                 clear_highpage(new_page + (index % HPAGE_PMD_NR));
1766                                 index++;
1767                         }
1768                         copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1769                                         page);
1770                         list_del(&page->lru);
1771                         page->mapping = NULL;
1772                         page_ref_unfreeze(page, 1);
1773                         ClearPageActive(page);
1774                         ClearPageUnevictable(page);
1775                         unlock_page(page);
1776                         put_page(page);
1777                         index++;
1778                 }
1779                 while (index < end) {
1780                         clear_highpage(new_page + (index % HPAGE_PMD_NR));
1781                         index++;
1782                 }
1783
1784                 SetPageUptodate(new_page);
1785                 page_ref_add(new_page, HPAGE_PMD_NR - 1);
1786                 mem_cgroup_commit_charge(new_page, memcg, false, true);
1787
1788                 if (is_shmem) {
1789                         set_page_dirty(new_page);
1790                         lru_cache_add_anon(new_page);
1791                 } else {
1792                         lru_cache_add_file(new_page);
1793                 }
1794                 count_memcg_events(memcg, THP_COLLAPSE_ALLOC, 1);
1795
1796                 /*
1797                  * Remove pte page tables, so we can re-fault the page as huge.
1798                  */
1799                 retract_page_tables(mapping, start);
1800                 *hpage = NULL;
1801
1802                 khugepaged_pages_collapsed++;
1803         } else {
1804                 struct page *page;
1805
1806                 /* Something went wrong: roll back page cache changes */
1807                 xas_lock_irq(&xas);
1808                 mapping->nrpages -= nr_none;
1809
1810                 if (is_shmem)
1811                         shmem_uncharge(mapping->host, nr_none);
1812
1813                 xas_set(&xas, start);
1814                 xas_for_each(&xas, page, end - 1) {
1815                         page = list_first_entry_or_null(&pagelist,
1816                                         struct page, lru);
1817                         if (!page || xas.xa_index < page->index) {
1818                                 if (!nr_none)
1819                                         break;
1820                                 nr_none--;
1821                                 /* Put holes back where they were */
1822                                 xas_store(&xas, NULL);
1823                                 continue;
1824                         }
1825
1826                         VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
1827
1828                         /* Unfreeze the page. */
1829                         list_del(&page->lru);
1830                         page_ref_unfreeze(page, 2);
1831                         xas_store(&xas, page);
1832                         xas_pause(&xas);
1833                         xas_unlock_irq(&xas);
1834                         unlock_page(page);
1835                         putback_lru_page(page);
1836                         xas_lock_irq(&xas);
1837                 }
1838                 VM_BUG_ON(nr_none);
1839                 xas_unlock_irq(&xas);
1840
1841                 mem_cgroup_cancel_charge(new_page, memcg, true);
1842                 new_page->mapping = NULL;
1843         }
1844
1845         unlock_page(new_page);
1846 out:
1847         VM_BUG_ON(!list_empty(&pagelist));
1848         /* TODO: tracepoints */
1849 }
1850
1851 static void khugepaged_scan_file(struct mm_struct *mm,
1852                 struct file *file, pgoff_t start, struct page **hpage)
1853 {
1854         struct page *page = NULL;
1855         struct address_space *mapping = file->f_mapping;
1856         XA_STATE(xas, &mapping->i_pages, start);
1857         int present, swap;
1858         int node = NUMA_NO_NODE;
1859         int result = SCAN_SUCCEED;
1860
1861         present = 0;
1862         swap = 0;
1863         memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1864         rcu_read_lock();
1865         xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
1866                 if (xas_retry(&xas, page))
1867                         continue;
1868
1869                 if (xa_is_value(page)) {
1870                         if (++swap > khugepaged_max_ptes_swap) {
1871                                 result = SCAN_EXCEED_SWAP_PTE;
1872                                 break;
1873                         }
1874                         continue;
1875                 }
1876
1877                 if (PageTransCompound(page)) {
1878                         result = SCAN_PAGE_COMPOUND;
1879                         break;
1880                 }
1881
1882                 node = page_to_nid(page);
1883                 if (khugepaged_scan_abort(node)) {
1884                         result = SCAN_SCAN_ABORT;
1885                         break;
1886                 }
1887                 khugepaged_node_load[node]++;
1888
1889                 if (!PageLRU(page)) {
1890                         result = SCAN_PAGE_LRU;
1891                         break;
1892                 }
1893
1894                 if (page_count(page) !=
1895                     1 + page_mapcount(page) + page_has_private(page)) {
1896                         result = SCAN_PAGE_COUNT;
1897                         break;
1898                 }
1899
1900                 /*
1901                  * We probably should check if the page is referenced here, but
1902                  * nobody would transfer pte_young() to PageReferenced() for us.
1903                  * And rmap walk here is just too costly...
1904                  */
1905
1906                 present++;
1907
1908                 if (need_resched()) {
1909                         xas_pause(&xas);
1910                         cond_resched_rcu();
1911                 }
1912         }
1913         rcu_read_unlock();
1914
1915         if (result == SCAN_SUCCEED) {
1916                 if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
1917                         result = SCAN_EXCEED_NONE_PTE;
1918                 } else {
1919                         node = khugepaged_find_target_node();
1920                         collapse_file(mm, file, start, hpage, node);
1921                 }
1922         }
1923
1924         /* TODO: tracepoints */
1925 }
1926 #else
1927 static void khugepaged_scan_file(struct mm_struct *mm,
1928                 struct file *file, pgoff_t start, struct page **hpage)
1929 {
1930         BUILD_BUG();
1931 }
1932
1933 static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
1934 {
1935         return 0;
1936 }
1937 #endif
1938
1939 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
1940                                             struct page **hpage)
1941         __releases(&khugepaged_mm_lock)
1942         __acquires(&khugepaged_mm_lock)
1943 {
1944         struct mm_slot *mm_slot;
1945         struct mm_struct *mm;
1946         struct vm_area_struct *vma;
1947         int progress = 0;
1948
1949         VM_BUG_ON(!pages);
1950         lockdep_assert_held(&khugepaged_mm_lock);
1951
1952         if (khugepaged_scan.mm_slot)
1953                 mm_slot = khugepaged_scan.mm_slot;
1954         else {
1955                 mm_slot = list_entry(khugepaged_scan.mm_head.next,
1956                                      struct mm_slot, mm_node);
1957                 khugepaged_scan.address = 0;
1958                 khugepaged_scan.mm_slot = mm_slot;
1959         }
1960         spin_unlock(&khugepaged_mm_lock);
1961         khugepaged_collapse_pte_mapped_thps(mm_slot);
1962
1963         mm = mm_slot->mm;
1964         /*
1965          * Don't wait for semaphore (to avoid long wait times).  Just move to
1966          * the next mm on the list.
1967          */
1968         vma = NULL;
1969         if (unlikely(!down_read_trylock(&mm->mmap_sem)))
1970                 goto breakouterloop_mmap_sem;
1971         if (likely(!khugepaged_test_exit(mm)))
1972                 vma = find_vma(mm, khugepaged_scan.address);
1973
1974         progress++;
1975         for (; vma; vma = vma->vm_next) {
1976                 unsigned long hstart, hend;
1977
1978                 cond_resched();
1979                 if (unlikely(khugepaged_test_exit(mm))) {
1980                         progress++;
1981                         break;
1982                 }
1983                 if (!hugepage_vma_check(vma, vma->vm_flags)) {
1984 skip:
1985                         progress++;
1986                         continue;
1987                 }
1988                 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1989                 hend = vma->vm_end & HPAGE_PMD_MASK;
1990                 if (hstart >= hend)
1991                         goto skip;
1992                 if (khugepaged_scan.address > hend)
1993                         goto skip;
1994                 if (khugepaged_scan.address < hstart)
1995                         khugepaged_scan.address = hstart;
1996                 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
1997                 if (shmem_file(vma->vm_file) && !shmem_huge_enabled(vma))
1998                         goto skip;
1999
2000                 while (khugepaged_scan.address < hend) {
2001                         int ret;
2002                         cond_resched();
2003                         if (unlikely(khugepaged_test_exit(mm)))
2004                                 goto breakouterloop;
2005
2006                         VM_BUG_ON(khugepaged_scan.address < hstart ||
2007                                   khugepaged_scan.address + HPAGE_PMD_SIZE >
2008                                   hend);
2009                         if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2010                                 struct file *file = get_file(vma->vm_file);
2011                                 pgoff_t pgoff = linear_page_index(vma,
2012                                                 khugepaged_scan.address);
2013
2014                                 up_read(&mm->mmap_sem);
2015                                 ret = 1;
2016                                 khugepaged_scan_file(mm, file, pgoff, hpage);
2017                                 fput(file);
2018                         } else {
2019                                 ret = khugepaged_scan_pmd(mm, vma,
2020                                                 khugepaged_scan.address,
2021                                                 hpage);
2022                         }
2023                         /* move to next address */
2024                         khugepaged_scan.address += HPAGE_PMD_SIZE;
2025                         progress += HPAGE_PMD_NR;
2026                         if (ret)
2027                                 /* we released mmap_sem so break loop */
2028                                 goto breakouterloop_mmap_sem;
2029                         if (progress >= pages)
2030                                 goto breakouterloop;
2031                 }
2032         }
2033 breakouterloop:
2034         up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2035 breakouterloop_mmap_sem:
2036
2037         spin_lock(&khugepaged_mm_lock);
2038         VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2039         /*
2040          * Release the current mm_slot if this mm is about to die, or
2041          * if we scanned all vmas of this mm.
2042          */
2043         if (khugepaged_test_exit(mm) || !vma) {
2044                 /*
2045                  * Make sure that if mm_users is reaching zero while
2046                  * khugepaged runs here, khugepaged_exit will find
2047                  * mm_slot not pointing to the exiting mm.
2048                  */
2049                 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2050                         khugepaged_scan.mm_slot = list_entry(
2051                                 mm_slot->mm_node.next,
2052                                 struct mm_slot, mm_node);
2053                         khugepaged_scan.address = 0;
2054                 } else {
2055                         khugepaged_scan.mm_slot = NULL;
2056                         khugepaged_full_scans++;
2057                 }
2058
2059                 collect_mm_slot(mm_slot);
2060         }
2061
2062         return progress;
2063 }
2064
2065 static int khugepaged_has_work(void)
2066 {
2067         return !list_empty(&khugepaged_scan.mm_head) &&
2068                 khugepaged_enabled();
2069 }
2070
2071 static int khugepaged_wait_event(void)
2072 {
2073         return !list_empty(&khugepaged_scan.mm_head) ||
2074                 kthread_should_stop();
2075 }
2076
2077 static void khugepaged_do_scan(void)
2078 {
2079         struct page *hpage = NULL;
2080         unsigned int progress = 0, pass_through_head = 0;
2081         unsigned int pages = khugepaged_pages_to_scan;
2082         bool wait = true;
2083
2084         barrier(); /* write khugepaged_pages_to_scan to local stack */
2085
2086         while (progress < pages) {
2087                 if (!khugepaged_prealloc_page(&hpage, &wait))
2088                         break;
2089
2090                 cond_resched();
2091
2092                 if (unlikely(kthread_should_stop() || try_to_freeze()))
2093                         break;
2094
2095                 spin_lock(&khugepaged_mm_lock);
2096                 if (!khugepaged_scan.mm_slot)
2097                         pass_through_head++;
2098                 if (khugepaged_has_work() &&
2099                     pass_through_head < 2)
2100                         progress += khugepaged_scan_mm_slot(pages - progress,
2101                                                             &hpage);
2102                 else
2103                         progress = pages;
2104                 spin_unlock(&khugepaged_mm_lock);
2105         }
2106
2107         if (!IS_ERR_OR_NULL(hpage))
2108                 put_page(hpage);
2109 }
2110
2111 static bool khugepaged_should_wakeup(void)
2112 {
2113         return kthread_should_stop() ||
2114                time_after_eq(jiffies, khugepaged_sleep_expire);
2115 }
2116
2117 static void khugepaged_wait_work(void)
2118 {
2119         if (khugepaged_has_work()) {
2120                 const unsigned long scan_sleep_jiffies =
2121                         msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2122
2123                 if (!scan_sleep_jiffies)
2124                         return;
2125
2126                 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2127                 wait_event_freezable_timeout(khugepaged_wait,
2128                                              khugepaged_should_wakeup(),
2129                                              scan_sleep_jiffies);
2130                 return;
2131         }
2132
2133         if (khugepaged_enabled())
2134                 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2135 }
2136
2137 static int khugepaged(void *none)
2138 {
2139         struct mm_slot *mm_slot;
2140
2141         set_freezable();
2142         set_user_nice(current, MAX_NICE);
2143
2144         while (!kthread_should_stop()) {
2145                 khugepaged_do_scan();
2146                 khugepaged_wait_work();
2147         }
2148
2149         spin_lock(&khugepaged_mm_lock);
2150         mm_slot = khugepaged_scan.mm_slot;
2151         khugepaged_scan.mm_slot = NULL;
2152         if (mm_slot)
2153                 collect_mm_slot(mm_slot);
2154         spin_unlock(&khugepaged_mm_lock);
2155         return 0;
2156 }
2157
2158 static void set_recommended_min_free_kbytes(void)
2159 {
2160         struct zone *zone;
2161         int nr_zones = 0;
2162         unsigned long recommended_min;
2163
2164         for_each_populated_zone(zone) {
2165                 /*
2166                  * We don't need to worry about fragmentation of
2167                  * ZONE_MOVABLE since it only has movable pages.
2168                  */
2169                 if (zone_idx(zone) > gfp_zone(GFP_USER))
2170                         continue;
2171
2172                 nr_zones++;
2173         }
2174
2175         /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2176         recommended_min = pageblock_nr_pages * nr_zones * 2;
2177
2178         /*
2179          * Make sure that on average at least two pageblocks are almost free
2180          * of another type, one for a migratetype to fall back to and a
2181          * second to avoid subsequent fallbacks of other types There are 3
2182          * MIGRATE_TYPES we care about.
2183          */
2184         recommended_min += pageblock_nr_pages * nr_zones *
2185                            MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2186
2187         /* don't ever allow to reserve more than 5% of the lowmem */
2188         recommended_min = min(recommended_min,
2189                               (unsigned long) nr_free_buffer_pages() / 20);
2190         recommended_min <<= (PAGE_SHIFT-10);
2191
2192         if (recommended_min > min_free_kbytes) {
2193                 if (user_min_free_kbytes >= 0)
2194                         pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2195                                 min_free_kbytes, recommended_min);
2196
2197                 min_free_kbytes = recommended_min;
2198         }
2199         setup_per_zone_wmarks();
2200 }
2201
2202 int start_stop_khugepaged(void)
2203 {
2204         static struct task_struct *khugepaged_thread __read_mostly;
2205         static DEFINE_MUTEX(khugepaged_mutex);
2206         int err = 0;
2207
2208         mutex_lock(&khugepaged_mutex);
2209         if (khugepaged_enabled()) {
2210                 if (!khugepaged_thread)
2211                         khugepaged_thread = kthread_run(khugepaged, NULL,
2212                                                         "khugepaged");
2213                 if (IS_ERR(khugepaged_thread)) {
2214                         pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2215                         err = PTR_ERR(khugepaged_thread);
2216                         khugepaged_thread = NULL;
2217                         goto fail;
2218                 }
2219
2220                 if (!list_empty(&khugepaged_scan.mm_head))
2221                         wake_up_interruptible(&khugepaged_wait);
2222
2223                 set_recommended_min_free_kbytes();
2224         } else if (khugepaged_thread) {
2225                 kthread_stop(khugepaged_thread);
2226                 khugepaged_thread = NULL;
2227         }
2228 fail:
2229         mutex_unlock(&khugepaged_mutex);
2230         return err;
2231 }