Merge tag 'pci-v5.15-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaa...
[linux-2.6-microblaze.git] / mm / kasan / shadow.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains KASAN runtime code that manages shadow memory for
4  * generic and software tag-based KASAN modes.
5  *
6  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
7  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
8  *
9  * Some code borrowed from https://github.com/xairy/kasan-prototype by
10  *        Andrey Konovalov <andreyknvl@gmail.com>
11  */
12
13 #include <linux/init.h>
14 #include <linux/kasan.h>
15 #include <linux/kernel.h>
16 #include <linux/kfence.h>
17 #include <linux/kmemleak.h>
18 #include <linux/memory.h>
19 #include <linux/mm.h>
20 #include <linux/string.h>
21 #include <linux/types.h>
22 #include <linux/vmalloc.h>
23
24 #include <asm/cacheflush.h>
25 #include <asm/tlbflush.h>
26
27 #include "kasan.h"
28
29 bool __kasan_check_read(const volatile void *p, unsigned int size)
30 {
31         return kasan_check_range((unsigned long)p, size, false, _RET_IP_);
32 }
33 EXPORT_SYMBOL(__kasan_check_read);
34
35 bool __kasan_check_write(const volatile void *p, unsigned int size)
36 {
37         return kasan_check_range((unsigned long)p, size, true, _RET_IP_);
38 }
39 EXPORT_SYMBOL(__kasan_check_write);
40
41 #undef memset
42 void *memset(void *addr, int c, size_t len)
43 {
44         if (!kasan_check_range((unsigned long)addr, len, true, _RET_IP_))
45                 return NULL;
46
47         return __memset(addr, c, len);
48 }
49
50 #ifdef __HAVE_ARCH_MEMMOVE
51 #undef memmove
52 void *memmove(void *dest, const void *src, size_t len)
53 {
54         if (!kasan_check_range((unsigned long)src, len, false, _RET_IP_) ||
55             !kasan_check_range((unsigned long)dest, len, true, _RET_IP_))
56                 return NULL;
57
58         return __memmove(dest, src, len);
59 }
60 #endif
61
62 #undef memcpy
63 void *memcpy(void *dest, const void *src, size_t len)
64 {
65         if (!kasan_check_range((unsigned long)src, len, false, _RET_IP_) ||
66             !kasan_check_range((unsigned long)dest, len, true, _RET_IP_))
67                 return NULL;
68
69         return __memcpy(dest, src, len);
70 }
71
72 void kasan_poison(const void *addr, size_t size, u8 value, bool init)
73 {
74         void *shadow_start, *shadow_end;
75
76         if (!kasan_arch_is_ready())
77                 return;
78
79         /*
80          * Perform shadow offset calculation based on untagged address, as
81          * some of the callers (e.g. kasan_poison_object_data) pass tagged
82          * addresses to this function.
83          */
84         addr = kasan_reset_tag(addr);
85
86         /* Skip KFENCE memory if called explicitly outside of sl*b. */
87         if (is_kfence_address(addr))
88                 return;
89
90         if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
91                 return;
92         if (WARN_ON(size & KASAN_GRANULE_MASK))
93                 return;
94
95         shadow_start = kasan_mem_to_shadow(addr);
96         shadow_end = kasan_mem_to_shadow(addr + size);
97
98         __memset(shadow_start, value, shadow_end - shadow_start);
99 }
100 EXPORT_SYMBOL(kasan_poison);
101
102 #ifdef CONFIG_KASAN_GENERIC
103 void kasan_poison_last_granule(const void *addr, size_t size)
104 {
105         if (!kasan_arch_is_ready())
106                 return;
107
108         if (size & KASAN_GRANULE_MASK) {
109                 u8 *shadow = (u8 *)kasan_mem_to_shadow(addr + size);
110                 *shadow = size & KASAN_GRANULE_MASK;
111         }
112 }
113 #endif
114
115 void kasan_unpoison(const void *addr, size_t size, bool init)
116 {
117         u8 tag = get_tag(addr);
118
119         /*
120          * Perform shadow offset calculation based on untagged address, as
121          * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
122          * addresses to this function.
123          */
124         addr = kasan_reset_tag(addr);
125
126         /*
127          * Skip KFENCE memory if called explicitly outside of sl*b. Also note
128          * that calls to ksize(), where size is not a multiple of machine-word
129          * size, would otherwise poison the invalid portion of the word.
130          */
131         if (is_kfence_address(addr))
132                 return;
133
134         if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
135                 return;
136
137         /* Unpoison all granules that cover the object. */
138         kasan_poison(addr, round_up(size, KASAN_GRANULE_SIZE), tag, false);
139
140         /* Partially poison the last granule for the generic mode. */
141         if (IS_ENABLED(CONFIG_KASAN_GENERIC))
142                 kasan_poison_last_granule(addr, size);
143 }
144
145 #ifdef CONFIG_MEMORY_HOTPLUG
146 static bool shadow_mapped(unsigned long addr)
147 {
148         pgd_t *pgd = pgd_offset_k(addr);
149         p4d_t *p4d;
150         pud_t *pud;
151         pmd_t *pmd;
152         pte_t *pte;
153
154         if (pgd_none(*pgd))
155                 return false;
156         p4d = p4d_offset(pgd, addr);
157         if (p4d_none(*p4d))
158                 return false;
159         pud = pud_offset(p4d, addr);
160         if (pud_none(*pud))
161                 return false;
162
163         /*
164          * We can't use pud_large() or pud_huge(), the first one is
165          * arch-specific, the last one depends on HUGETLB_PAGE.  So let's abuse
166          * pud_bad(), if pud is bad then it's bad because it's huge.
167          */
168         if (pud_bad(*pud))
169                 return true;
170         pmd = pmd_offset(pud, addr);
171         if (pmd_none(*pmd))
172                 return false;
173
174         if (pmd_bad(*pmd))
175                 return true;
176         pte = pte_offset_kernel(pmd, addr);
177         return !pte_none(*pte);
178 }
179
180 static int __meminit kasan_mem_notifier(struct notifier_block *nb,
181                         unsigned long action, void *data)
182 {
183         struct memory_notify *mem_data = data;
184         unsigned long nr_shadow_pages, start_kaddr, shadow_start;
185         unsigned long shadow_end, shadow_size;
186
187         nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
188         start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
189         shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
190         shadow_size = nr_shadow_pages << PAGE_SHIFT;
191         shadow_end = shadow_start + shadow_size;
192
193         if (WARN_ON(mem_data->nr_pages % KASAN_GRANULE_SIZE) ||
194                 WARN_ON(start_kaddr % KASAN_MEMORY_PER_SHADOW_PAGE))
195                 return NOTIFY_BAD;
196
197         switch (action) {
198         case MEM_GOING_ONLINE: {
199                 void *ret;
200
201                 /*
202                  * If shadow is mapped already than it must have been mapped
203                  * during the boot. This could happen if we onlining previously
204                  * offlined memory.
205                  */
206                 if (shadow_mapped(shadow_start))
207                         return NOTIFY_OK;
208
209                 ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
210                                         shadow_end, GFP_KERNEL,
211                                         PAGE_KERNEL, VM_NO_GUARD,
212                                         pfn_to_nid(mem_data->start_pfn),
213                                         __builtin_return_address(0));
214                 if (!ret)
215                         return NOTIFY_BAD;
216
217                 kmemleak_ignore(ret);
218                 return NOTIFY_OK;
219         }
220         case MEM_CANCEL_ONLINE:
221         case MEM_OFFLINE: {
222                 struct vm_struct *vm;
223
224                 /*
225                  * shadow_start was either mapped during boot by kasan_init()
226                  * or during memory online by __vmalloc_node_range().
227                  * In the latter case we can use vfree() to free shadow.
228                  * Non-NULL result of the find_vm_area() will tell us if
229                  * that was the second case.
230                  *
231                  * Currently it's not possible to free shadow mapped
232                  * during boot by kasan_init(). It's because the code
233                  * to do that hasn't been written yet. So we'll just
234                  * leak the memory.
235                  */
236                 vm = find_vm_area((void *)shadow_start);
237                 if (vm)
238                         vfree((void *)shadow_start);
239         }
240         }
241
242         return NOTIFY_OK;
243 }
244
245 static int __init kasan_memhotplug_init(void)
246 {
247         hotplug_memory_notifier(kasan_mem_notifier, 0);
248
249         return 0;
250 }
251
252 core_initcall(kasan_memhotplug_init);
253 #endif
254
255 #ifdef CONFIG_KASAN_VMALLOC
256
257 static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
258                                       void *unused)
259 {
260         unsigned long page;
261         pte_t pte;
262
263         if (likely(!pte_none(*ptep)))
264                 return 0;
265
266         page = __get_free_page(GFP_KERNEL);
267         if (!page)
268                 return -ENOMEM;
269
270         memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
271         pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
272
273         spin_lock(&init_mm.page_table_lock);
274         if (likely(pte_none(*ptep))) {
275                 set_pte_at(&init_mm, addr, ptep, pte);
276                 page = 0;
277         }
278         spin_unlock(&init_mm.page_table_lock);
279         if (page)
280                 free_page(page);
281         return 0;
282 }
283
284 int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
285 {
286         unsigned long shadow_start, shadow_end;
287         int ret;
288
289         if (!is_vmalloc_or_module_addr((void *)addr))
290                 return 0;
291
292         shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
293         shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE);
294         shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
295         shadow_end = ALIGN(shadow_end, PAGE_SIZE);
296
297         ret = apply_to_page_range(&init_mm, shadow_start,
298                                   shadow_end - shadow_start,
299                                   kasan_populate_vmalloc_pte, NULL);
300         if (ret)
301                 return ret;
302
303         flush_cache_vmap(shadow_start, shadow_end);
304
305         /*
306          * We need to be careful about inter-cpu effects here. Consider:
307          *
308          *   CPU#0                                CPU#1
309          * WRITE_ONCE(p, vmalloc(100));         while (x = READ_ONCE(p)) ;
310          *                                      p[99] = 1;
311          *
312          * With compiler instrumentation, that ends up looking like this:
313          *
314          *   CPU#0                                CPU#1
315          * // vmalloc() allocates memory
316          * // let a = area->addr
317          * // we reach kasan_populate_vmalloc
318          * // and call kasan_unpoison:
319          * STORE shadow(a), unpoison_val
320          * ...
321          * STORE shadow(a+99), unpoison_val     x = LOAD p
322          * // rest of vmalloc process           <data dependency>
323          * STORE p, a                           LOAD shadow(x+99)
324          *
325          * If there is no barrier between the end of unpoisoning the shadow
326          * and the store of the result to p, the stores could be committed
327          * in a different order by CPU#0, and CPU#1 could erroneously observe
328          * poison in the shadow.
329          *
330          * We need some sort of barrier between the stores.
331          *
332          * In the vmalloc() case, this is provided by a smp_wmb() in
333          * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
334          * get_vm_area() and friends, the caller gets shadow allocated but
335          * doesn't have any pages mapped into the virtual address space that
336          * has been reserved. Mapping those pages in will involve taking and
337          * releasing a page-table lock, which will provide the barrier.
338          */
339
340         return 0;
341 }
342
343 /*
344  * Poison the shadow for a vmalloc region. Called as part of the
345  * freeing process at the time the region is freed.
346  */
347 void kasan_poison_vmalloc(const void *start, unsigned long size)
348 {
349         if (!is_vmalloc_or_module_addr(start))
350                 return;
351
352         size = round_up(size, KASAN_GRANULE_SIZE);
353         kasan_poison(start, size, KASAN_VMALLOC_INVALID, false);
354 }
355
356 void kasan_unpoison_vmalloc(const void *start, unsigned long size)
357 {
358         if (!is_vmalloc_or_module_addr(start))
359                 return;
360
361         kasan_unpoison(start, size, false);
362 }
363
364 static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
365                                         void *unused)
366 {
367         unsigned long page;
368
369         page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT);
370
371         spin_lock(&init_mm.page_table_lock);
372
373         if (likely(!pte_none(*ptep))) {
374                 pte_clear(&init_mm, addr, ptep);
375                 free_page(page);
376         }
377         spin_unlock(&init_mm.page_table_lock);
378
379         return 0;
380 }
381
382 /*
383  * Release the backing for the vmalloc region [start, end), which
384  * lies within the free region [free_region_start, free_region_end).
385  *
386  * This can be run lazily, long after the region was freed. It runs
387  * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
388  * infrastructure.
389  *
390  * How does this work?
391  * -------------------
392  *
393  * We have a region that is page aligned, labeled as A.
394  * That might not map onto the shadow in a way that is page-aligned:
395  *
396  *                    start                     end
397  *                    v                         v
398  * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
399  *  -------- -------- --------          -------- --------
400  *      |        |       |                 |        |
401  *      |        |       |         /-------/        |
402  *      \-------\|/------/         |/---------------/
403  *              |||                ||
404  *             |??AAAAAA|AAAAAAAA|AA??????|                < shadow
405  *                 (1)      (2)      (3)
406  *
407  * First we align the start upwards and the end downwards, so that the
408  * shadow of the region aligns with shadow page boundaries. In the
409  * example, this gives us the shadow page (2). This is the shadow entirely
410  * covered by this allocation.
411  *
412  * Then we have the tricky bits. We want to know if we can free the
413  * partially covered shadow pages - (1) and (3) in the example. For this,
414  * we are given the start and end of the free region that contains this
415  * allocation. Extending our previous example, we could have:
416  *
417  *  free_region_start                                    free_region_end
418  *  |                 start                     end      |
419  *  v                 v                         v        v
420  * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
421  *  -------- -------- --------          -------- --------
422  *      |        |       |                 |        |
423  *      |        |       |         /-------/        |
424  *      \-------\|/------/         |/---------------/
425  *              |||                ||
426  *             |FFAAAAAA|AAAAAAAA|AAF?????|                < shadow
427  *                 (1)      (2)      (3)
428  *
429  * Once again, we align the start of the free region up, and the end of
430  * the free region down so that the shadow is page aligned. So we can free
431  * page (1) - we know no allocation currently uses anything in that page,
432  * because all of it is in the vmalloc free region. But we cannot free
433  * page (3), because we can't be sure that the rest of it is unused.
434  *
435  * We only consider pages that contain part of the original region for
436  * freeing: we don't try to free other pages from the free region or we'd
437  * end up trying to free huge chunks of virtual address space.
438  *
439  * Concurrency
440  * -----------
441  *
442  * How do we know that we're not freeing a page that is simultaneously
443  * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
444  *
445  * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
446  * at the same time. While we run under free_vmap_area_lock, the population
447  * code does not.
448  *
449  * free_vmap_area_lock instead operates to ensure that the larger range
450  * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
451  * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
452  * no space identified as free will become used while we are running. This
453  * means that so long as we are careful with alignment and only free shadow
454  * pages entirely covered by the free region, we will not run in to any
455  * trouble - any simultaneous allocations will be for disjoint regions.
456  */
457 void kasan_release_vmalloc(unsigned long start, unsigned long end,
458                            unsigned long free_region_start,
459                            unsigned long free_region_end)
460 {
461         void *shadow_start, *shadow_end;
462         unsigned long region_start, region_end;
463         unsigned long size;
464
465         region_start = ALIGN(start, KASAN_MEMORY_PER_SHADOW_PAGE);
466         region_end = ALIGN_DOWN(end, KASAN_MEMORY_PER_SHADOW_PAGE);
467
468         free_region_start = ALIGN(free_region_start, KASAN_MEMORY_PER_SHADOW_PAGE);
469
470         if (start != region_start &&
471             free_region_start < region_start)
472                 region_start -= KASAN_MEMORY_PER_SHADOW_PAGE;
473
474         free_region_end = ALIGN_DOWN(free_region_end, KASAN_MEMORY_PER_SHADOW_PAGE);
475
476         if (end != region_end &&
477             free_region_end > region_end)
478                 region_end += KASAN_MEMORY_PER_SHADOW_PAGE;
479
480         shadow_start = kasan_mem_to_shadow((void *)region_start);
481         shadow_end = kasan_mem_to_shadow((void *)region_end);
482
483         if (shadow_end > shadow_start) {
484                 size = shadow_end - shadow_start;
485                 apply_to_existing_page_range(&init_mm,
486                                              (unsigned long)shadow_start,
487                                              size, kasan_depopulate_vmalloc_pte,
488                                              NULL);
489                 flush_tlb_kernel_range((unsigned long)shadow_start,
490                                        (unsigned long)shadow_end);
491         }
492 }
493
494 #else /* CONFIG_KASAN_VMALLOC */
495
496 int kasan_module_alloc(void *addr, size_t size)
497 {
498         void *ret;
499         size_t scaled_size;
500         size_t shadow_size;
501         unsigned long shadow_start;
502
503         shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
504         scaled_size = (size + KASAN_GRANULE_SIZE - 1) >>
505                                 KASAN_SHADOW_SCALE_SHIFT;
506         shadow_size = round_up(scaled_size, PAGE_SIZE);
507
508         if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
509                 return -EINVAL;
510
511         ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
512                         shadow_start + shadow_size,
513                         GFP_KERNEL,
514                         PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
515                         __builtin_return_address(0));
516
517         if (ret) {
518                 __memset(ret, KASAN_SHADOW_INIT, shadow_size);
519                 find_vm_area(addr)->flags |= VM_KASAN;
520                 kmemleak_ignore(ret);
521                 return 0;
522         }
523
524         return -ENOMEM;
525 }
526
527 void kasan_free_shadow(const struct vm_struct *vm)
528 {
529         if (vm->flags & VM_KASAN)
530                 vfree(kasan_mem_to_shadow(vm->addr));
531 }
532
533 #endif