Merge tag 'thermal-v5.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/therma...
[linux-2.6-microblaze.git] / mm / kasan / shadow.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains KASAN runtime code that manages shadow memory for
4  * generic and software tag-based KASAN modes.
5  *
6  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
7  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
8  *
9  * Some code borrowed from https://github.com/xairy/kasan-prototype by
10  *        Andrey Konovalov <andreyknvl@gmail.com>
11  */
12
13 #include <linux/init.h>
14 #include <linux/kasan.h>
15 #include <linux/kernel.h>
16 #include <linux/kmemleak.h>
17 #include <linux/memory.h>
18 #include <linux/mm.h>
19 #include <linux/string.h>
20 #include <linux/types.h>
21 #include <linux/vmalloc.h>
22
23 #include <asm/cacheflush.h>
24 #include <asm/tlbflush.h>
25
26 #include "kasan.h"
27
28 bool __kasan_check_read(const volatile void *p, unsigned int size)
29 {
30         return check_memory_region((unsigned long)p, size, false, _RET_IP_);
31 }
32 EXPORT_SYMBOL(__kasan_check_read);
33
34 bool __kasan_check_write(const volatile void *p, unsigned int size)
35 {
36         return check_memory_region((unsigned long)p, size, true, _RET_IP_);
37 }
38 EXPORT_SYMBOL(__kasan_check_write);
39
40 #undef memset
41 void *memset(void *addr, int c, size_t len)
42 {
43         if (!check_memory_region((unsigned long)addr, len, true, _RET_IP_))
44                 return NULL;
45
46         return __memset(addr, c, len);
47 }
48
49 #ifdef __HAVE_ARCH_MEMMOVE
50 #undef memmove
51 void *memmove(void *dest, const void *src, size_t len)
52 {
53         if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) ||
54             !check_memory_region((unsigned long)dest, len, true, _RET_IP_))
55                 return NULL;
56
57         return __memmove(dest, src, len);
58 }
59 #endif
60
61 #undef memcpy
62 void *memcpy(void *dest, const void *src, size_t len)
63 {
64         if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) ||
65             !check_memory_region((unsigned long)dest, len, true, _RET_IP_))
66                 return NULL;
67
68         return __memcpy(dest, src, len);
69 }
70
71 /*
72  * Poisons the shadow memory for 'size' bytes starting from 'addr'.
73  * Memory addresses should be aligned to KASAN_GRANULE_SIZE.
74  */
75 void poison_range(const void *address, size_t size, u8 value)
76 {
77         void *shadow_start, *shadow_end;
78
79         /*
80          * Perform shadow offset calculation based on untagged address, as
81          * some of the callers (e.g. kasan_poison_object_data) pass tagged
82          * addresses to this function.
83          */
84         address = kasan_reset_tag(address);
85         size = round_up(size, KASAN_GRANULE_SIZE);
86
87         shadow_start = kasan_mem_to_shadow(address);
88         shadow_end = kasan_mem_to_shadow(address + size);
89
90         __memset(shadow_start, value, shadow_end - shadow_start);
91 }
92
93 void unpoison_range(const void *address, size_t size)
94 {
95         u8 tag = get_tag(address);
96
97         /*
98          * Perform shadow offset calculation based on untagged address, as
99          * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
100          * addresses to this function.
101          */
102         address = kasan_reset_tag(address);
103
104         poison_range(address, size, tag);
105
106         if (size & KASAN_GRANULE_MASK) {
107                 u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
108
109                 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
110                         *shadow = tag;
111                 else /* CONFIG_KASAN_GENERIC */
112                         *shadow = size & KASAN_GRANULE_MASK;
113         }
114 }
115
116 #ifdef CONFIG_MEMORY_HOTPLUG
117 static bool shadow_mapped(unsigned long addr)
118 {
119         pgd_t *pgd = pgd_offset_k(addr);
120         p4d_t *p4d;
121         pud_t *pud;
122         pmd_t *pmd;
123         pte_t *pte;
124
125         if (pgd_none(*pgd))
126                 return false;
127         p4d = p4d_offset(pgd, addr);
128         if (p4d_none(*p4d))
129                 return false;
130         pud = pud_offset(p4d, addr);
131         if (pud_none(*pud))
132                 return false;
133
134         /*
135          * We can't use pud_large() or pud_huge(), the first one is
136          * arch-specific, the last one depends on HUGETLB_PAGE.  So let's abuse
137          * pud_bad(), if pud is bad then it's bad because it's huge.
138          */
139         if (pud_bad(*pud))
140                 return true;
141         pmd = pmd_offset(pud, addr);
142         if (pmd_none(*pmd))
143                 return false;
144
145         if (pmd_bad(*pmd))
146                 return true;
147         pte = pte_offset_kernel(pmd, addr);
148         return !pte_none(*pte);
149 }
150
151 static int __meminit kasan_mem_notifier(struct notifier_block *nb,
152                         unsigned long action, void *data)
153 {
154         struct memory_notify *mem_data = data;
155         unsigned long nr_shadow_pages, start_kaddr, shadow_start;
156         unsigned long shadow_end, shadow_size;
157
158         nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
159         start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
160         shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
161         shadow_size = nr_shadow_pages << PAGE_SHIFT;
162         shadow_end = shadow_start + shadow_size;
163
164         if (WARN_ON(mem_data->nr_pages % KASAN_GRANULE_SIZE) ||
165                 WARN_ON(start_kaddr % KASAN_MEMORY_PER_SHADOW_PAGE))
166                 return NOTIFY_BAD;
167
168         switch (action) {
169         case MEM_GOING_ONLINE: {
170                 void *ret;
171
172                 /*
173                  * If shadow is mapped already than it must have been mapped
174                  * during the boot. This could happen if we onlining previously
175                  * offlined memory.
176                  */
177                 if (shadow_mapped(shadow_start))
178                         return NOTIFY_OK;
179
180                 ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
181                                         shadow_end, GFP_KERNEL,
182                                         PAGE_KERNEL, VM_NO_GUARD,
183                                         pfn_to_nid(mem_data->start_pfn),
184                                         __builtin_return_address(0));
185                 if (!ret)
186                         return NOTIFY_BAD;
187
188                 kmemleak_ignore(ret);
189                 return NOTIFY_OK;
190         }
191         case MEM_CANCEL_ONLINE:
192         case MEM_OFFLINE: {
193                 struct vm_struct *vm;
194
195                 /*
196                  * shadow_start was either mapped during boot by kasan_init()
197                  * or during memory online by __vmalloc_node_range().
198                  * In the latter case we can use vfree() to free shadow.
199                  * Non-NULL result of the find_vm_area() will tell us if
200                  * that was the second case.
201                  *
202                  * Currently it's not possible to free shadow mapped
203                  * during boot by kasan_init(). It's because the code
204                  * to do that hasn't been written yet. So we'll just
205                  * leak the memory.
206                  */
207                 vm = find_vm_area((void *)shadow_start);
208                 if (vm)
209                         vfree((void *)shadow_start);
210         }
211         }
212
213         return NOTIFY_OK;
214 }
215
216 static int __init kasan_memhotplug_init(void)
217 {
218         hotplug_memory_notifier(kasan_mem_notifier, 0);
219
220         return 0;
221 }
222
223 core_initcall(kasan_memhotplug_init);
224 #endif
225
226 #ifdef CONFIG_KASAN_VMALLOC
227
228 static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
229                                       void *unused)
230 {
231         unsigned long page;
232         pte_t pte;
233
234         if (likely(!pte_none(*ptep)))
235                 return 0;
236
237         page = __get_free_page(GFP_KERNEL);
238         if (!page)
239                 return -ENOMEM;
240
241         memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
242         pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
243
244         spin_lock(&init_mm.page_table_lock);
245         if (likely(pte_none(*ptep))) {
246                 set_pte_at(&init_mm, addr, ptep, pte);
247                 page = 0;
248         }
249         spin_unlock(&init_mm.page_table_lock);
250         if (page)
251                 free_page(page);
252         return 0;
253 }
254
255 int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
256 {
257         unsigned long shadow_start, shadow_end;
258         int ret;
259
260         if (!is_vmalloc_or_module_addr((void *)addr))
261                 return 0;
262
263         shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
264         shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE);
265         shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
266         shadow_end = ALIGN(shadow_end, PAGE_SIZE);
267
268         ret = apply_to_page_range(&init_mm, shadow_start,
269                                   shadow_end - shadow_start,
270                                   kasan_populate_vmalloc_pte, NULL);
271         if (ret)
272                 return ret;
273
274         flush_cache_vmap(shadow_start, shadow_end);
275
276         /*
277          * We need to be careful about inter-cpu effects here. Consider:
278          *
279          *   CPU#0                                CPU#1
280          * WRITE_ONCE(p, vmalloc(100));         while (x = READ_ONCE(p)) ;
281          *                                      p[99] = 1;
282          *
283          * With compiler instrumentation, that ends up looking like this:
284          *
285          *   CPU#0                                CPU#1
286          * // vmalloc() allocates memory
287          * // let a = area->addr
288          * // we reach kasan_populate_vmalloc
289          * // and call unpoison_range:
290          * STORE shadow(a), unpoison_val
291          * ...
292          * STORE shadow(a+99), unpoison_val     x = LOAD p
293          * // rest of vmalloc process           <data dependency>
294          * STORE p, a                           LOAD shadow(x+99)
295          *
296          * If there is no barrier between the end of unpoisioning the shadow
297          * and the store of the result to p, the stores could be committed
298          * in a different order by CPU#0, and CPU#1 could erroneously observe
299          * poison in the shadow.
300          *
301          * We need some sort of barrier between the stores.
302          *
303          * In the vmalloc() case, this is provided by a smp_wmb() in
304          * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
305          * get_vm_area() and friends, the caller gets shadow allocated but
306          * doesn't have any pages mapped into the virtual address space that
307          * has been reserved. Mapping those pages in will involve taking and
308          * releasing a page-table lock, which will provide the barrier.
309          */
310
311         return 0;
312 }
313
314 /*
315  * Poison the shadow for a vmalloc region. Called as part of the
316  * freeing process at the time the region is freed.
317  */
318 void kasan_poison_vmalloc(const void *start, unsigned long size)
319 {
320         if (!is_vmalloc_or_module_addr(start))
321                 return;
322
323         size = round_up(size, KASAN_GRANULE_SIZE);
324         poison_range(start, size, KASAN_VMALLOC_INVALID);
325 }
326
327 void kasan_unpoison_vmalloc(const void *start, unsigned long size)
328 {
329         if (!is_vmalloc_or_module_addr(start))
330                 return;
331
332         unpoison_range(start, size);
333 }
334
335 static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
336                                         void *unused)
337 {
338         unsigned long page;
339
340         page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT);
341
342         spin_lock(&init_mm.page_table_lock);
343
344         if (likely(!pte_none(*ptep))) {
345                 pte_clear(&init_mm, addr, ptep);
346                 free_page(page);
347         }
348         spin_unlock(&init_mm.page_table_lock);
349
350         return 0;
351 }
352
353 /*
354  * Release the backing for the vmalloc region [start, end), which
355  * lies within the free region [free_region_start, free_region_end).
356  *
357  * This can be run lazily, long after the region was freed. It runs
358  * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
359  * infrastructure.
360  *
361  * How does this work?
362  * -------------------
363  *
364  * We have a region that is page aligned, labelled as A.
365  * That might not map onto the shadow in a way that is page-aligned:
366  *
367  *                    start                     end
368  *                    v                         v
369  * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
370  *  -------- -------- --------          -------- --------
371  *      |        |       |                 |        |
372  *      |        |       |         /-------/        |
373  *      \-------\|/------/         |/---------------/
374  *              |||                ||
375  *             |??AAAAAA|AAAAAAAA|AA??????|                < shadow
376  *                 (1)      (2)      (3)
377  *
378  * First we align the start upwards and the end downwards, so that the
379  * shadow of the region aligns with shadow page boundaries. In the
380  * example, this gives us the shadow page (2). This is the shadow entirely
381  * covered by this allocation.
382  *
383  * Then we have the tricky bits. We want to know if we can free the
384  * partially covered shadow pages - (1) and (3) in the example. For this,
385  * we are given the start and end of the free region that contains this
386  * allocation. Extending our previous example, we could have:
387  *
388  *  free_region_start                                    free_region_end
389  *  |                 start                     end      |
390  *  v                 v                         v        v
391  * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
392  *  -------- -------- --------          -------- --------
393  *      |        |       |                 |        |
394  *      |        |       |         /-------/        |
395  *      \-------\|/------/         |/---------------/
396  *              |||                ||
397  *             |FFAAAAAA|AAAAAAAA|AAF?????|                < shadow
398  *                 (1)      (2)      (3)
399  *
400  * Once again, we align the start of the free region up, and the end of
401  * the free region down so that the shadow is page aligned. So we can free
402  * page (1) - we know no allocation currently uses anything in that page,
403  * because all of it is in the vmalloc free region. But we cannot free
404  * page (3), because we can't be sure that the rest of it is unused.
405  *
406  * We only consider pages that contain part of the original region for
407  * freeing: we don't try to free other pages from the free region or we'd
408  * end up trying to free huge chunks of virtual address space.
409  *
410  * Concurrency
411  * -----------
412  *
413  * How do we know that we're not freeing a page that is simultaneously
414  * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
415  *
416  * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
417  * at the same time. While we run under free_vmap_area_lock, the population
418  * code does not.
419  *
420  * free_vmap_area_lock instead operates to ensure that the larger range
421  * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
422  * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
423  * no space identified as free will become used while we are running. This
424  * means that so long as we are careful with alignment and only free shadow
425  * pages entirely covered by the free region, we will not run in to any
426  * trouble - any simultaneous allocations will be for disjoint regions.
427  */
428 void kasan_release_vmalloc(unsigned long start, unsigned long end,
429                            unsigned long free_region_start,
430                            unsigned long free_region_end)
431 {
432         void *shadow_start, *shadow_end;
433         unsigned long region_start, region_end;
434         unsigned long size;
435
436         region_start = ALIGN(start, KASAN_MEMORY_PER_SHADOW_PAGE);
437         region_end = ALIGN_DOWN(end, KASAN_MEMORY_PER_SHADOW_PAGE);
438
439         free_region_start = ALIGN(free_region_start, KASAN_MEMORY_PER_SHADOW_PAGE);
440
441         if (start != region_start &&
442             free_region_start < region_start)
443                 region_start -= KASAN_MEMORY_PER_SHADOW_PAGE;
444
445         free_region_end = ALIGN_DOWN(free_region_end, KASAN_MEMORY_PER_SHADOW_PAGE);
446
447         if (end != region_end &&
448             free_region_end > region_end)
449                 region_end += KASAN_MEMORY_PER_SHADOW_PAGE;
450
451         shadow_start = kasan_mem_to_shadow((void *)region_start);
452         shadow_end = kasan_mem_to_shadow((void *)region_end);
453
454         if (shadow_end > shadow_start) {
455                 size = shadow_end - shadow_start;
456                 apply_to_existing_page_range(&init_mm,
457                                              (unsigned long)shadow_start,
458                                              size, kasan_depopulate_vmalloc_pte,
459                                              NULL);
460                 flush_tlb_kernel_range((unsigned long)shadow_start,
461                                        (unsigned long)shadow_end);
462         }
463 }
464
465 #else /* CONFIG_KASAN_VMALLOC */
466
467 int kasan_module_alloc(void *addr, size_t size)
468 {
469         void *ret;
470         size_t scaled_size;
471         size_t shadow_size;
472         unsigned long shadow_start;
473
474         shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
475         scaled_size = (size + KASAN_GRANULE_SIZE - 1) >>
476                                 KASAN_SHADOW_SCALE_SHIFT;
477         shadow_size = round_up(scaled_size, PAGE_SIZE);
478
479         if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
480                 return -EINVAL;
481
482         ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
483                         shadow_start + shadow_size,
484                         GFP_KERNEL,
485                         PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
486                         __builtin_return_address(0));
487
488         if (ret) {
489                 __memset(ret, KASAN_SHADOW_INIT, shadow_size);
490                 find_vm_area(addr)->flags |= VM_KASAN;
491                 kmemleak_ignore(ret);
492                 return 0;
493         }
494
495         return -ENOMEM;
496 }
497
498 void kasan_free_shadow(const struct vm_struct *vm)
499 {
500         if (vm->flags & VM_KASAN)
501                 vfree(kasan_mem_to_shadow(vm->addr));
502 }
503
504 #endif