33d863f55db19f8814ad5f1de126cac8dc34eded
[linux-2.6-microblaze.git] / mm / kasan / common.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains common generic and tag-based KASAN code.
4  *
5  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
6  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
7  *
8  * Some code borrowed from https://github.com/xairy/kasan-prototype by
9  *        Andrey Konovalov <andreyknvl@gmail.com>
10  */
11
12 #include <linux/export.h>
13 #include <linux/init.h>
14 #include <linux/kasan.h>
15 #include <linux/kernel.h>
16 #include <linux/kmemleak.h>
17 #include <linux/linkage.h>
18 #include <linux/memblock.h>
19 #include <linux/memory.h>
20 #include <linux/mm.h>
21 #include <linux/module.h>
22 #include <linux/printk.h>
23 #include <linux/sched.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/slab.h>
26 #include <linux/stacktrace.h>
27 #include <linux/string.h>
28 #include <linux/types.h>
29 #include <linux/vmalloc.h>
30 #include <linux/bug.h>
31
32 #include <asm/cacheflush.h>
33 #include <asm/tlbflush.h>
34
35 #include "kasan.h"
36 #include "../slab.h"
37
38 depot_stack_handle_t kasan_save_stack(gfp_t flags)
39 {
40         unsigned long entries[KASAN_STACK_DEPTH];
41         unsigned int nr_entries;
42
43         nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0);
44         nr_entries = filter_irq_stacks(entries, nr_entries);
45         return stack_depot_save(entries, nr_entries, flags);
46 }
47
48 void kasan_set_track(struct kasan_track *track, gfp_t flags)
49 {
50         track->pid = current->pid;
51         track->stack = kasan_save_stack(flags);
52 }
53
54 void kasan_enable_current(void)
55 {
56         current->kasan_depth++;
57 }
58
59 void kasan_disable_current(void)
60 {
61         current->kasan_depth--;
62 }
63
64 bool __kasan_check_read(const volatile void *p, unsigned int size)
65 {
66         return check_memory_region((unsigned long)p, size, false, _RET_IP_);
67 }
68 EXPORT_SYMBOL(__kasan_check_read);
69
70 bool __kasan_check_write(const volatile void *p, unsigned int size)
71 {
72         return check_memory_region((unsigned long)p, size, true, _RET_IP_);
73 }
74 EXPORT_SYMBOL(__kasan_check_write);
75
76 #undef memset
77 void *memset(void *addr, int c, size_t len)
78 {
79         if (!check_memory_region((unsigned long)addr, len, true, _RET_IP_))
80                 return NULL;
81
82         return __memset(addr, c, len);
83 }
84
85 #ifdef __HAVE_ARCH_MEMMOVE
86 #undef memmove
87 void *memmove(void *dest, const void *src, size_t len)
88 {
89         if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) ||
90             !check_memory_region((unsigned long)dest, len, true, _RET_IP_))
91                 return NULL;
92
93         return __memmove(dest, src, len);
94 }
95 #endif
96
97 #undef memcpy
98 void *memcpy(void *dest, const void *src, size_t len)
99 {
100         if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) ||
101             !check_memory_region((unsigned long)dest, len, true, _RET_IP_))
102                 return NULL;
103
104         return __memcpy(dest, src, len);
105 }
106
107 /*
108  * Poisons the shadow memory for 'size' bytes starting from 'addr'.
109  * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE.
110  */
111 void kasan_poison_shadow(const void *address, size_t size, u8 value)
112 {
113         void *shadow_start, *shadow_end;
114
115         /*
116          * Perform shadow offset calculation based on untagged address, as
117          * some of the callers (e.g. kasan_poison_object_data) pass tagged
118          * addresses to this function.
119          */
120         address = reset_tag(address);
121
122         shadow_start = kasan_mem_to_shadow(address);
123         shadow_end = kasan_mem_to_shadow(address + size);
124
125         __memset(shadow_start, value, shadow_end - shadow_start);
126 }
127
128 void kasan_unpoison_shadow(const void *address, size_t size)
129 {
130         u8 tag = get_tag(address);
131
132         /*
133          * Perform shadow offset calculation based on untagged address, as
134          * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
135          * addresses to this function.
136          */
137         address = reset_tag(address);
138
139         kasan_poison_shadow(address, size, tag);
140
141         if (size & KASAN_SHADOW_MASK) {
142                 u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
143
144                 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
145                         *shadow = tag;
146                 else
147                         *shadow = size & KASAN_SHADOW_MASK;
148         }
149 }
150
151 static void __kasan_unpoison_stack(struct task_struct *task, const void *sp)
152 {
153         void *base = task_stack_page(task);
154         size_t size = sp - base;
155
156         kasan_unpoison_shadow(base, size);
157 }
158
159 /* Unpoison the entire stack for a task. */
160 void kasan_unpoison_task_stack(struct task_struct *task)
161 {
162         __kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE);
163 }
164
165 /* Unpoison the stack for the current task beyond a watermark sp value. */
166 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
167 {
168         /*
169          * Calculate the task stack base address.  Avoid using 'current'
170          * because this function is called by early resume code which hasn't
171          * yet set up the percpu register (%gs).
172          */
173         void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
174
175         kasan_unpoison_shadow(base, watermark - base);
176 }
177
178 void kasan_alloc_pages(struct page *page, unsigned int order)
179 {
180         u8 tag;
181         unsigned long i;
182
183         if (unlikely(PageHighMem(page)))
184                 return;
185
186         tag = random_tag();
187         for (i = 0; i < (1 << order); i++)
188                 page_kasan_tag_set(page + i, tag);
189         kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order);
190 }
191
192 void kasan_free_pages(struct page *page, unsigned int order)
193 {
194         if (likely(!PageHighMem(page)))
195                 kasan_poison_shadow(page_address(page),
196                                 PAGE_SIZE << order,
197                                 KASAN_FREE_PAGE);
198 }
199
200 /*
201  * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
202  * For larger allocations larger redzones are used.
203  */
204 static inline unsigned int optimal_redzone(unsigned int object_size)
205 {
206         if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
207                 return 0;
208
209         return
210                 object_size <= 64        - 16   ? 16 :
211                 object_size <= 128       - 32   ? 32 :
212                 object_size <= 512       - 64   ? 64 :
213                 object_size <= 4096      - 128  ? 128 :
214                 object_size <= (1 << 14) - 256  ? 256 :
215                 object_size <= (1 << 15) - 512  ? 512 :
216                 object_size <= (1 << 16) - 1024 ? 1024 : 2048;
217 }
218
219 void kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
220                         slab_flags_t *flags)
221 {
222         unsigned int orig_size = *size;
223         unsigned int redzone_size;
224         int redzone_adjust;
225
226         /* Add alloc meta. */
227         cache->kasan_info.alloc_meta_offset = *size;
228         *size += sizeof(struct kasan_alloc_meta);
229
230         /* Add free meta. */
231         if (IS_ENABLED(CONFIG_KASAN_GENERIC) &&
232             (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor ||
233              cache->object_size < sizeof(struct kasan_free_meta))) {
234                 cache->kasan_info.free_meta_offset = *size;
235                 *size += sizeof(struct kasan_free_meta);
236         }
237
238         redzone_size = optimal_redzone(cache->object_size);
239         redzone_adjust = redzone_size - (*size - cache->object_size);
240         if (redzone_adjust > 0)
241                 *size += redzone_adjust;
242
243         *size = min_t(unsigned int, KMALLOC_MAX_SIZE,
244                         max(*size, cache->object_size + redzone_size));
245
246         /*
247          * If the metadata doesn't fit, don't enable KASAN at all.
248          */
249         if (*size <= cache->kasan_info.alloc_meta_offset ||
250                         *size <= cache->kasan_info.free_meta_offset) {
251                 cache->kasan_info.alloc_meta_offset = 0;
252                 cache->kasan_info.free_meta_offset = 0;
253                 *size = orig_size;
254                 return;
255         }
256
257         *flags |= SLAB_KASAN;
258 }
259
260 size_t kasan_metadata_size(struct kmem_cache *cache)
261 {
262         return (cache->kasan_info.alloc_meta_offset ?
263                 sizeof(struct kasan_alloc_meta) : 0) +
264                 (cache->kasan_info.free_meta_offset ?
265                 sizeof(struct kasan_free_meta) : 0);
266 }
267
268 struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
269                                         const void *object)
270 {
271         return (void *)object + cache->kasan_info.alloc_meta_offset;
272 }
273
274 struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
275                                       const void *object)
276 {
277         BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
278         return (void *)object + cache->kasan_info.free_meta_offset;
279 }
280
281 void kasan_poison_slab(struct page *page)
282 {
283         unsigned long i;
284
285         for (i = 0; i < compound_nr(page); i++)
286                 page_kasan_tag_reset(page + i);
287         kasan_poison_shadow(page_address(page), page_size(page),
288                         KASAN_KMALLOC_REDZONE);
289 }
290
291 void kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
292 {
293         kasan_unpoison_shadow(object, cache->object_size);
294 }
295
296 void kasan_poison_object_data(struct kmem_cache *cache, void *object)
297 {
298         kasan_poison_shadow(object,
299                         round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE),
300                         KASAN_KMALLOC_REDZONE);
301 }
302
303 /*
304  * This function assigns a tag to an object considering the following:
305  * 1. A cache might have a constructor, which might save a pointer to a slab
306  *    object somewhere (e.g. in the object itself). We preassign a tag for
307  *    each object in caches with constructors during slab creation and reuse
308  *    the same tag each time a particular object is allocated.
309  * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be
310  *    accessed after being freed. We preassign tags for objects in these
311  *    caches as well.
312  * 3. For SLAB allocator we can't preassign tags randomly since the freelist
313  *    is stored as an array of indexes instead of a linked list. Assign tags
314  *    based on objects indexes, so that objects that are next to each other
315  *    get different tags.
316  */
317 static u8 assign_tag(struct kmem_cache *cache, const void *object,
318                         bool init, bool keep_tag)
319 {
320         /*
321          * 1. When an object is kmalloc()'ed, two hooks are called:
322          *    kasan_slab_alloc() and kasan_kmalloc(). We assign the
323          *    tag only in the first one.
324          * 2. We reuse the same tag for krealloc'ed objects.
325          */
326         if (keep_tag)
327                 return get_tag(object);
328
329         /*
330          * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU
331          * set, assign a tag when the object is being allocated (init == false).
332          */
333         if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
334                 return init ? KASAN_TAG_KERNEL : random_tag();
335
336         /* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */
337 #ifdef CONFIG_SLAB
338         /* For SLAB assign tags based on the object index in the freelist. */
339         return (u8)obj_to_index(cache, virt_to_page(object), (void *)object);
340 #else
341         /*
342          * For SLUB assign a random tag during slab creation, otherwise reuse
343          * the already assigned tag.
344          */
345         return init ? random_tag() : get_tag(object);
346 #endif
347 }
348
349 void * __must_check kasan_init_slab_obj(struct kmem_cache *cache,
350                                                 const void *object)
351 {
352         struct kasan_alloc_meta *alloc_info;
353
354         if (!(cache->flags & SLAB_KASAN))
355                 return (void *)object;
356
357         alloc_info = get_alloc_info(cache, object);
358         __memset(alloc_info, 0, sizeof(*alloc_info));
359
360         if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
361                 object = set_tag(object,
362                                 assign_tag(cache, object, true, false));
363
364         return (void *)object;
365 }
366
367 static inline bool shadow_invalid(u8 tag, s8 shadow_byte)
368 {
369         if (IS_ENABLED(CONFIG_KASAN_GENERIC))
370                 return shadow_byte < 0 ||
371                         shadow_byte >= KASAN_SHADOW_SCALE_SIZE;
372
373         /* else CONFIG_KASAN_SW_TAGS: */
374         if ((u8)shadow_byte == KASAN_TAG_INVALID)
375                 return true;
376         if ((tag != KASAN_TAG_KERNEL) && (tag != (u8)shadow_byte))
377                 return true;
378
379         return false;
380 }
381
382 static bool __kasan_slab_free(struct kmem_cache *cache, void *object,
383                               unsigned long ip, bool quarantine)
384 {
385         s8 shadow_byte;
386         u8 tag;
387         void *tagged_object;
388         unsigned long rounded_up_size;
389
390         tag = get_tag(object);
391         tagged_object = object;
392         object = reset_tag(object);
393
394         if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) !=
395             object)) {
396                 kasan_report_invalid_free(tagged_object, ip);
397                 return true;
398         }
399
400         /* RCU slabs could be legally used after free within the RCU period */
401         if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
402                 return false;
403
404         shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object));
405         if (shadow_invalid(tag, shadow_byte)) {
406                 kasan_report_invalid_free(tagged_object, ip);
407                 return true;
408         }
409
410         rounded_up_size = round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE);
411         kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE);
412
413         if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine) ||
414                         unlikely(!(cache->flags & SLAB_KASAN)))
415                 return false;
416
417         kasan_set_free_info(cache, object, tag);
418
419         quarantine_put(get_free_info(cache, object), cache);
420
421         return IS_ENABLED(CONFIG_KASAN_GENERIC);
422 }
423
424 bool kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip)
425 {
426         return __kasan_slab_free(cache, object, ip, true);
427 }
428
429 static void *__kasan_kmalloc(struct kmem_cache *cache, const void *object,
430                                 size_t size, gfp_t flags, bool keep_tag)
431 {
432         unsigned long redzone_start;
433         unsigned long redzone_end;
434         u8 tag = 0xff;
435
436         if (gfpflags_allow_blocking(flags))
437                 quarantine_reduce();
438
439         if (unlikely(object == NULL))
440                 return NULL;
441
442         redzone_start = round_up((unsigned long)(object + size),
443                                 KASAN_SHADOW_SCALE_SIZE);
444         redzone_end = round_up((unsigned long)object + cache->object_size,
445                                 KASAN_SHADOW_SCALE_SIZE);
446
447         if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
448                 tag = assign_tag(cache, object, false, keep_tag);
449
450         /* Tag is ignored in set_tag without CONFIG_KASAN_SW_TAGS */
451         kasan_unpoison_shadow(set_tag(object, tag), size);
452         kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
453                 KASAN_KMALLOC_REDZONE);
454
455         if (cache->flags & SLAB_KASAN)
456                 kasan_set_track(&get_alloc_info(cache, object)->alloc_track, flags);
457
458         return set_tag(object, tag);
459 }
460
461 void * __must_check kasan_slab_alloc(struct kmem_cache *cache, void *object,
462                                         gfp_t flags)
463 {
464         return __kasan_kmalloc(cache, object, cache->object_size, flags, false);
465 }
466
467 void * __must_check kasan_kmalloc(struct kmem_cache *cache, const void *object,
468                                 size_t size, gfp_t flags)
469 {
470         return __kasan_kmalloc(cache, object, size, flags, true);
471 }
472 EXPORT_SYMBOL(kasan_kmalloc);
473
474 void * __must_check kasan_kmalloc_large(const void *ptr, size_t size,
475                                                 gfp_t flags)
476 {
477         struct page *page;
478         unsigned long redzone_start;
479         unsigned long redzone_end;
480
481         if (gfpflags_allow_blocking(flags))
482                 quarantine_reduce();
483
484         if (unlikely(ptr == NULL))
485                 return NULL;
486
487         page = virt_to_page(ptr);
488         redzone_start = round_up((unsigned long)(ptr + size),
489                                 KASAN_SHADOW_SCALE_SIZE);
490         redzone_end = (unsigned long)ptr + page_size(page);
491
492         kasan_unpoison_shadow(ptr, size);
493         kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
494                 KASAN_PAGE_REDZONE);
495
496         return (void *)ptr;
497 }
498
499 void * __must_check kasan_krealloc(const void *object, size_t size, gfp_t flags)
500 {
501         struct page *page;
502
503         if (unlikely(object == ZERO_SIZE_PTR))
504                 return (void *)object;
505
506         page = virt_to_head_page(object);
507
508         if (unlikely(!PageSlab(page)))
509                 return kasan_kmalloc_large(object, size, flags);
510         else
511                 return __kasan_kmalloc(page->slab_cache, object, size,
512                                                 flags, true);
513 }
514
515 void kasan_poison_kfree(void *ptr, unsigned long ip)
516 {
517         struct page *page;
518
519         page = virt_to_head_page(ptr);
520
521         if (unlikely(!PageSlab(page))) {
522                 if (ptr != page_address(page)) {
523                         kasan_report_invalid_free(ptr, ip);
524                         return;
525                 }
526                 kasan_poison_shadow(ptr, page_size(page), KASAN_FREE_PAGE);
527         } else {
528                 __kasan_slab_free(page->slab_cache, ptr, ip, false);
529         }
530 }
531
532 void kasan_kfree_large(void *ptr, unsigned long ip)
533 {
534         if (ptr != page_address(virt_to_head_page(ptr)))
535                 kasan_report_invalid_free(ptr, ip);
536         /* The object will be poisoned by page_alloc. */
537 }
538
539 #ifndef CONFIG_KASAN_VMALLOC
540 int kasan_module_alloc(void *addr, size_t size)
541 {
542         void *ret;
543         size_t scaled_size;
544         size_t shadow_size;
545         unsigned long shadow_start;
546
547         shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
548         scaled_size = (size + KASAN_SHADOW_MASK) >> KASAN_SHADOW_SCALE_SHIFT;
549         shadow_size = round_up(scaled_size, PAGE_SIZE);
550
551         if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
552                 return -EINVAL;
553
554         ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
555                         shadow_start + shadow_size,
556                         GFP_KERNEL,
557                         PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
558                         __builtin_return_address(0));
559
560         if (ret) {
561                 __memset(ret, KASAN_SHADOW_INIT, shadow_size);
562                 find_vm_area(addr)->flags |= VM_KASAN;
563                 kmemleak_ignore(ret);
564                 return 0;
565         }
566
567         return -ENOMEM;
568 }
569
570 void kasan_free_shadow(const struct vm_struct *vm)
571 {
572         if (vm->flags & VM_KASAN)
573                 vfree(kasan_mem_to_shadow(vm->addr));
574 }
575 #endif
576
577 #ifdef CONFIG_MEMORY_HOTPLUG
578 static bool shadow_mapped(unsigned long addr)
579 {
580         pgd_t *pgd = pgd_offset_k(addr);
581         p4d_t *p4d;
582         pud_t *pud;
583         pmd_t *pmd;
584         pte_t *pte;
585
586         if (pgd_none(*pgd))
587                 return false;
588         p4d = p4d_offset(pgd, addr);
589         if (p4d_none(*p4d))
590                 return false;
591         pud = pud_offset(p4d, addr);
592         if (pud_none(*pud))
593                 return false;
594
595         /*
596          * We can't use pud_large() or pud_huge(), the first one is
597          * arch-specific, the last one depends on HUGETLB_PAGE.  So let's abuse
598          * pud_bad(), if pud is bad then it's bad because it's huge.
599          */
600         if (pud_bad(*pud))
601                 return true;
602         pmd = pmd_offset(pud, addr);
603         if (pmd_none(*pmd))
604                 return false;
605
606         if (pmd_bad(*pmd))
607                 return true;
608         pte = pte_offset_kernel(pmd, addr);
609         return !pte_none(*pte);
610 }
611
612 static int __meminit kasan_mem_notifier(struct notifier_block *nb,
613                         unsigned long action, void *data)
614 {
615         struct memory_notify *mem_data = data;
616         unsigned long nr_shadow_pages, start_kaddr, shadow_start;
617         unsigned long shadow_end, shadow_size;
618
619         nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
620         start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
621         shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
622         shadow_size = nr_shadow_pages << PAGE_SHIFT;
623         shadow_end = shadow_start + shadow_size;
624
625         if (WARN_ON(mem_data->nr_pages % KASAN_SHADOW_SCALE_SIZE) ||
626                 WARN_ON(start_kaddr % (KASAN_SHADOW_SCALE_SIZE << PAGE_SHIFT)))
627                 return NOTIFY_BAD;
628
629         switch (action) {
630         case MEM_GOING_ONLINE: {
631                 void *ret;
632
633                 /*
634                  * If shadow is mapped already than it must have been mapped
635                  * during the boot. This could happen if we onlining previously
636                  * offlined memory.
637                  */
638                 if (shadow_mapped(shadow_start))
639                         return NOTIFY_OK;
640
641                 ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
642                                         shadow_end, GFP_KERNEL,
643                                         PAGE_KERNEL, VM_NO_GUARD,
644                                         pfn_to_nid(mem_data->start_pfn),
645                                         __builtin_return_address(0));
646                 if (!ret)
647                         return NOTIFY_BAD;
648
649                 kmemleak_ignore(ret);
650                 return NOTIFY_OK;
651         }
652         case MEM_CANCEL_ONLINE:
653         case MEM_OFFLINE: {
654                 struct vm_struct *vm;
655
656                 /*
657                  * shadow_start was either mapped during boot by kasan_init()
658                  * or during memory online by __vmalloc_node_range().
659                  * In the latter case we can use vfree() to free shadow.
660                  * Non-NULL result of the find_vm_area() will tell us if
661                  * that was the second case.
662                  *
663                  * Currently it's not possible to free shadow mapped
664                  * during boot by kasan_init(). It's because the code
665                  * to do that hasn't been written yet. So we'll just
666                  * leak the memory.
667                  */
668                 vm = find_vm_area((void *)shadow_start);
669                 if (vm)
670                         vfree((void *)shadow_start);
671         }
672         }
673
674         return NOTIFY_OK;
675 }
676
677 static int __init kasan_memhotplug_init(void)
678 {
679         hotplug_memory_notifier(kasan_mem_notifier, 0);
680
681         return 0;
682 }
683
684 core_initcall(kasan_memhotplug_init);
685 #endif
686
687 #ifdef CONFIG_KASAN_VMALLOC
688 static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
689                                       void *unused)
690 {
691         unsigned long page;
692         pte_t pte;
693
694         if (likely(!pte_none(*ptep)))
695                 return 0;
696
697         page = __get_free_page(GFP_KERNEL);
698         if (!page)
699                 return -ENOMEM;
700
701         memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
702         pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
703
704         spin_lock(&init_mm.page_table_lock);
705         if (likely(pte_none(*ptep))) {
706                 set_pte_at(&init_mm, addr, ptep, pte);
707                 page = 0;
708         }
709         spin_unlock(&init_mm.page_table_lock);
710         if (page)
711                 free_page(page);
712         return 0;
713 }
714
715 int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
716 {
717         unsigned long shadow_start, shadow_end;
718         int ret;
719
720         if (!is_vmalloc_or_module_addr((void *)addr))
721                 return 0;
722
723         shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
724         shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE);
725         shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
726         shadow_end = ALIGN(shadow_end, PAGE_SIZE);
727
728         ret = apply_to_page_range(&init_mm, shadow_start,
729                                   shadow_end - shadow_start,
730                                   kasan_populate_vmalloc_pte, NULL);
731         if (ret)
732                 return ret;
733
734         flush_cache_vmap(shadow_start, shadow_end);
735
736         /*
737          * We need to be careful about inter-cpu effects here. Consider:
738          *
739          *   CPU#0                                CPU#1
740          * WRITE_ONCE(p, vmalloc(100));         while (x = READ_ONCE(p)) ;
741          *                                      p[99] = 1;
742          *
743          * With compiler instrumentation, that ends up looking like this:
744          *
745          *   CPU#0                                CPU#1
746          * // vmalloc() allocates memory
747          * // let a = area->addr
748          * // we reach kasan_populate_vmalloc
749          * // and call kasan_unpoison_shadow:
750          * STORE shadow(a), unpoison_val
751          * ...
752          * STORE shadow(a+99), unpoison_val     x = LOAD p
753          * // rest of vmalloc process           <data dependency>
754          * STORE p, a                           LOAD shadow(x+99)
755          *
756          * If there is no barrier between the end of unpoisioning the shadow
757          * and the store of the result to p, the stores could be committed
758          * in a different order by CPU#0, and CPU#1 could erroneously observe
759          * poison in the shadow.
760          *
761          * We need some sort of barrier between the stores.
762          *
763          * In the vmalloc() case, this is provided by a smp_wmb() in
764          * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
765          * get_vm_area() and friends, the caller gets shadow allocated but
766          * doesn't have any pages mapped into the virtual address space that
767          * has been reserved. Mapping those pages in will involve taking and
768          * releasing a page-table lock, which will provide the barrier.
769          */
770
771         return 0;
772 }
773
774 /*
775  * Poison the shadow for a vmalloc region. Called as part of the
776  * freeing process at the time the region is freed.
777  */
778 void kasan_poison_vmalloc(const void *start, unsigned long size)
779 {
780         if (!is_vmalloc_or_module_addr(start))
781                 return;
782
783         size = round_up(size, KASAN_SHADOW_SCALE_SIZE);
784         kasan_poison_shadow(start, size, KASAN_VMALLOC_INVALID);
785 }
786
787 void kasan_unpoison_vmalloc(const void *start, unsigned long size)
788 {
789         if (!is_vmalloc_or_module_addr(start))
790                 return;
791
792         kasan_unpoison_shadow(start, size);
793 }
794
795 static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
796                                         void *unused)
797 {
798         unsigned long page;
799
800         page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT);
801
802         spin_lock(&init_mm.page_table_lock);
803
804         if (likely(!pte_none(*ptep))) {
805                 pte_clear(&init_mm, addr, ptep);
806                 free_page(page);
807         }
808         spin_unlock(&init_mm.page_table_lock);
809
810         return 0;
811 }
812
813 /*
814  * Release the backing for the vmalloc region [start, end), which
815  * lies within the free region [free_region_start, free_region_end).
816  *
817  * This can be run lazily, long after the region was freed. It runs
818  * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
819  * infrastructure.
820  *
821  * How does this work?
822  * -------------------
823  *
824  * We have a region that is page aligned, labelled as A.
825  * That might not map onto the shadow in a way that is page-aligned:
826  *
827  *                    start                     end
828  *                    v                         v
829  * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
830  *  -------- -------- --------          -------- --------
831  *      |        |       |                 |        |
832  *      |        |       |         /-------/        |
833  *      \-------\|/------/         |/---------------/
834  *              |||                ||
835  *             |??AAAAAA|AAAAAAAA|AA??????|                < shadow
836  *                 (1)      (2)      (3)
837  *
838  * First we align the start upwards and the end downwards, so that the
839  * shadow of the region aligns with shadow page boundaries. In the
840  * example, this gives us the shadow page (2). This is the shadow entirely
841  * covered by this allocation.
842  *
843  * Then we have the tricky bits. We want to know if we can free the
844  * partially covered shadow pages - (1) and (3) in the example. For this,
845  * we are given the start and end of the free region that contains this
846  * allocation. Extending our previous example, we could have:
847  *
848  *  free_region_start                                    free_region_end
849  *  |                 start                     end      |
850  *  v                 v                         v        v
851  * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
852  *  -------- -------- --------          -------- --------
853  *      |        |       |                 |        |
854  *      |        |       |         /-------/        |
855  *      \-------\|/------/         |/---------------/
856  *              |||                ||
857  *             |FFAAAAAA|AAAAAAAA|AAF?????|                < shadow
858  *                 (1)      (2)      (3)
859  *
860  * Once again, we align the start of the free region up, and the end of
861  * the free region down so that the shadow is page aligned. So we can free
862  * page (1) - we know no allocation currently uses anything in that page,
863  * because all of it is in the vmalloc free region. But we cannot free
864  * page (3), because we can't be sure that the rest of it is unused.
865  *
866  * We only consider pages that contain part of the original region for
867  * freeing: we don't try to free other pages from the free region or we'd
868  * end up trying to free huge chunks of virtual address space.
869  *
870  * Concurrency
871  * -----------
872  *
873  * How do we know that we're not freeing a page that is simultaneously
874  * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
875  *
876  * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
877  * at the same time. While we run under free_vmap_area_lock, the population
878  * code does not.
879  *
880  * free_vmap_area_lock instead operates to ensure that the larger range
881  * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
882  * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
883  * no space identified as free will become used while we are running. This
884  * means that so long as we are careful with alignment and only free shadow
885  * pages entirely covered by the free region, we will not run in to any
886  * trouble - any simultaneous allocations will be for disjoint regions.
887  */
888 void kasan_release_vmalloc(unsigned long start, unsigned long end,
889                            unsigned long free_region_start,
890                            unsigned long free_region_end)
891 {
892         void *shadow_start, *shadow_end;
893         unsigned long region_start, region_end;
894         unsigned long size;
895
896         region_start = ALIGN(start, PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE);
897         region_end = ALIGN_DOWN(end, PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE);
898
899         free_region_start = ALIGN(free_region_start,
900                                   PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE);
901
902         if (start != region_start &&
903             free_region_start < region_start)
904                 region_start -= PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE;
905
906         free_region_end = ALIGN_DOWN(free_region_end,
907                                      PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE);
908
909         if (end != region_end &&
910             free_region_end > region_end)
911                 region_end += PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE;
912
913         shadow_start = kasan_mem_to_shadow((void *)region_start);
914         shadow_end = kasan_mem_to_shadow((void *)region_end);
915
916         if (shadow_end > shadow_start) {
917                 size = shadow_end - shadow_start;
918                 apply_to_existing_page_range(&init_mm,
919                                              (unsigned long)shadow_start,
920                                              size, kasan_depopulate_vmalloc_pte,
921                                              NULL);
922                 flush_tlb_kernel_range((unsigned long)shadow_start,
923                                        (unsigned long)shadow_end);
924         }
925 }
926 #endif