mm: make alloc_contig_range handle in-use hugetlb pages
[linux-2.6-microblaze.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlb.h>
37
38 #include <linux/io.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45
46 int hugetlb_max_hstate __read_mostly;
47 unsigned int default_hstate_idx;
48 struct hstate hstates[HUGE_MAX_HSTATE];
49
50 #ifdef CONFIG_CMA
51 static struct cma *hugetlb_cma[MAX_NUMNODES];
52 #endif
53 static unsigned long hugetlb_cma_size __initdata;
54
55 /*
56  * Minimum page order among possible hugepage sizes, set to a proper value
57  * at boot time.
58  */
59 static unsigned int minimum_order __read_mostly = UINT_MAX;
60
61 __initdata LIST_HEAD(huge_boot_pages);
62
63 /* for command line parsing */
64 static struct hstate * __initdata parsed_hstate;
65 static unsigned long __initdata default_hstate_max_huge_pages;
66 static bool __initdata parsed_valid_hugepagesz = true;
67 static bool __initdata parsed_default_hugepagesz;
68
69 /*
70  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71  * free_huge_pages, and surplus_huge_pages.
72  */
73 DEFINE_SPINLOCK(hugetlb_lock);
74
75 /*
76  * Serializes faults on the same logical page.  This is used to
77  * prevent spurious OOMs when the hugepage pool is fully utilized.
78  */
79 static int num_fault_mutexes;
80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81
82 /* Forward declaration */
83 static int hugetlb_acct_memory(struct hstate *h, long delta);
84
85 static inline bool subpool_is_free(struct hugepage_subpool *spool)
86 {
87         if (spool->count)
88                 return false;
89         if (spool->max_hpages != -1)
90                 return spool->used_hpages == 0;
91         if (spool->min_hpages != -1)
92                 return spool->rsv_hpages == spool->min_hpages;
93
94         return true;
95 }
96
97 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
98                                                 unsigned long irq_flags)
99 {
100         spin_unlock_irqrestore(&spool->lock, irq_flags);
101
102         /* If no pages are used, and no other handles to the subpool
103          * remain, give up any reservations based on minimum size and
104          * free the subpool */
105         if (subpool_is_free(spool)) {
106                 if (spool->min_hpages != -1)
107                         hugetlb_acct_memory(spool->hstate,
108                                                 -spool->min_hpages);
109                 kfree(spool);
110         }
111 }
112
113 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
114                                                 long min_hpages)
115 {
116         struct hugepage_subpool *spool;
117
118         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
119         if (!spool)
120                 return NULL;
121
122         spin_lock_init(&spool->lock);
123         spool->count = 1;
124         spool->max_hpages = max_hpages;
125         spool->hstate = h;
126         spool->min_hpages = min_hpages;
127
128         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
129                 kfree(spool);
130                 return NULL;
131         }
132         spool->rsv_hpages = min_hpages;
133
134         return spool;
135 }
136
137 void hugepage_put_subpool(struct hugepage_subpool *spool)
138 {
139         unsigned long flags;
140
141         spin_lock_irqsave(&spool->lock, flags);
142         BUG_ON(!spool->count);
143         spool->count--;
144         unlock_or_release_subpool(spool, flags);
145 }
146
147 /*
148  * Subpool accounting for allocating and reserving pages.
149  * Return -ENOMEM if there are not enough resources to satisfy the
150  * request.  Otherwise, return the number of pages by which the
151  * global pools must be adjusted (upward).  The returned value may
152  * only be different than the passed value (delta) in the case where
153  * a subpool minimum size must be maintained.
154  */
155 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
156                                       long delta)
157 {
158         long ret = delta;
159
160         if (!spool)
161                 return ret;
162
163         spin_lock_irq(&spool->lock);
164
165         if (spool->max_hpages != -1) {          /* maximum size accounting */
166                 if ((spool->used_hpages + delta) <= spool->max_hpages)
167                         spool->used_hpages += delta;
168                 else {
169                         ret = -ENOMEM;
170                         goto unlock_ret;
171                 }
172         }
173
174         /* minimum size accounting */
175         if (spool->min_hpages != -1 && spool->rsv_hpages) {
176                 if (delta > spool->rsv_hpages) {
177                         /*
178                          * Asking for more reserves than those already taken on
179                          * behalf of subpool.  Return difference.
180                          */
181                         ret = delta - spool->rsv_hpages;
182                         spool->rsv_hpages = 0;
183                 } else {
184                         ret = 0;        /* reserves already accounted for */
185                         spool->rsv_hpages -= delta;
186                 }
187         }
188
189 unlock_ret:
190         spin_unlock_irq(&spool->lock);
191         return ret;
192 }
193
194 /*
195  * Subpool accounting for freeing and unreserving pages.
196  * Return the number of global page reservations that must be dropped.
197  * The return value may only be different than the passed value (delta)
198  * in the case where a subpool minimum size must be maintained.
199  */
200 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
201                                        long delta)
202 {
203         long ret = delta;
204         unsigned long flags;
205
206         if (!spool)
207                 return delta;
208
209         spin_lock_irqsave(&spool->lock, flags);
210
211         if (spool->max_hpages != -1)            /* maximum size accounting */
212                 spool->used_hpages -= delta;
213
214          /* minimum size accounting */
215         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
216                 if (spool->rsv_hpages + delta <= spool->min_hpages)
217                         ret = 0;
218                 else
219                         ret = spool->rsv_hpages + delta - spool->min_hpages;
220
221                 spool->rsv_hpages += delta;
222                 if (spool->rsv_hpages > spool->min_hpages)
223                         spool->rsv_hpages = spool->min_hpages;
224         }
225
226         /*
227          * If hugetlbfs_put_super couldn't free spool due to an outstanding
228          * quota reference, free it now.
229          */
230         unlock_or_release_subpool(spool, flags);
231
232         return ret;
233 }
234
235 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
236 {
237         return HUGETLBFS_SB(inode->i_sb)->spool;
238 }
239
240 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
241 {
242         return subpool_inode(file_inode(vma->vm_file));
243 }
244
245 /* Helper that removes a struct file_region from the resv_map cache and returns
246  * it for use.
247  */
248 static struct file_region *
249 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
250 {
251         struct file_region *nrg = NULL;
252
253         VM_BUG_ON(resv->region_cache_count <= 0);
254
255         resv->region_cache_count--;
256         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
257         list_del(&nrg->link);
258
259         nrg->from = from;
260         nrg->to = to;
261
262         return nrg;
263 }
264
265 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
266                                               struct file_region *rg)
267 {
268 #ifdef CONFIG_CGROUP_HUGETLB
269         nrg->reservation_counter = rg->reservation_counter;
270         nrg->css = rg->css;
271         if (rg->css)
272                 css_get(rg->css);
273 #endif
274 }
275
276 /* Helper that records hugetlb_cgroup uncharge info. */
277 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
278                                                 struct hstate *h,
279                                                 struct resv_map *resv,
280                                                 struct file_region *nrg)
281 {
282 #ifdef CONFIG_CGROUP_HUGETLB
283         if (h_cg) {
284                 nrg->reservation_counter =
285                         &h_cg->rsvd_hugepage[hstate_index(h)];
286                 nrg->css = &h_cg->css;
287                 /*
288                  * The caller will hold exactly one h_cg->css reference for the
289                  * whole contiguous reservation region. But this area might be
290                  * scattered when there are already some file_regions reside in
291                  * it. As a result, many file_regions may share only one css
292                  * reference. In order to ensure that one file_region must hold
293                  * exactly one h_cg->css reference, we should do css_get for
294                  * each file_region and leave the reference held by caller
295                  * untouched.
296                  */
297                 css_get(&h_cg->css);
298                 if (!resv->pages_per_hpage)
299                         resv->pages_per_hpage = pages_per_huge_page(h);
300                 /* pages_per_hpage should be the same for all entries in
301                  * a resv_map.
302                  */
303                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
304         } else {
305                 nrg->reservation_counter = NULL;
306                 nrg->css = NULL;
307         }
308 #endif
309 }
310
311 static void put_uncharge_info(struct file_region *rg)
312 {
313 #ifdef CONFIG_CGROUP_HUGETLB
314         if (rg->css)
315                 css_put(rg->css);
316 #endif
317 }
318
319 static bool has_same_uncharge_info(struct file_region *rg,
320                                    struct file_region *org)
321 {
322 #ifdef CONFIG_CGROUP_HUGETLB
323         return rg && org &&
324                rg->reservation_counter == org->reservation_counter &&
325                rg->css == org->css;
326
327 #else
328         return true;
329 #endif
330 }
331
332 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
333 {
334         struct file_region *nrg = NULL, *prg = NULL;
335
336         prg = list_prev_entry(rg, link);
337         if (&prg->link != &resv->regions && prg->to == rg->from &&
338             has_same_uncharge_info(prg, rg)) {
339                 prg->to = rg->to;
340
341                 list_del(&rg->link);
342                 put_uncharge_info(rg);
343                 kfree(rg);
344
345                 rg = prg;
346         }
347
348         nrg = list_next_entry(rg, link);
349         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
350             has_same_uncharge_info(nrg, rg)) {
351                 nrg->from = rg->from;
352
353                 list_del(&rg->link);
354                 put_uncharge_info(rg);
355                 kfree(rg);
356         }
357 }
358
359 static inline long
360 hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
361                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
362                      long *regions_needed)
363 {
364         struct file_region *nrg;
365
366         if (!regions_needed) {
367                 nrg = get_file_region_entry_from_cache(map, from, to);
368                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
369                 list_add(&nrg->link, rg->link.prev);
370                 coalesce_file_region(map, nrg);
371         } else
372                 *regions_needed += 1;
373
374         return to - from;
375 }
376
377 /*
378  * Must be called with resv->lock held.
379  *
380  * Calling this with regions_needed != NULL will count the number of pages
381  * to be added but will not modify the linked list. And regions_needed will
382  * indicate the number of file_regions needed in the cache to carry out to add
383  * the regions for this range.
384  */
385 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
386                                      struct hugetlb_cgroup *h_cg,
387                                      struct hstate *h, long *regions_needed)
388 {
389         long add = 0;
390         struct list_head *head = &resv->regions;
391         long last_accounted_offset = f;
392         struct file_region *rg = NULL, *trg = NULL;
393
394         if (regions_needed)
395                 *regions_needed = 0;
396
397         /* In this loop, we essentially handle an entry for the range
398          * [last_accounted_offset, rg->from), at every iteration, with some
399          * bounds checking.
400          */
401         list_for_each_entry_safe(rg, trg, head, link) {
402                 /* Skip irrelevant regions that start before our range. */
403                 if (rg->from < f) {
404                         /* If this region ends after the last accounted offset,
405                          * then we need to update last_accounted_offset.
406                          */
407                         if (rg->to > last_accounted_offset)
408                                 last_accounted_offset = rg->to;
409                         continue;
410                 }
411
412                 /* When we find a region that starts beyond our range, we've
413                  * finished.
414                  */
415                 if (rg->from >= t)
416                         break;
417
418                 /* Add an entry for last_accounted_offset -> rg->from, and
419                  * update last_accounted_offset.
420                  */
421                 if (rg->from > last_accounted_offset)
422                         add += hugetlb_resv_map_add(resv, rg,
423                                                     last_accounted_offset,
424                                                     rg->from, h, h_cg,
425                                                     regions_needed);
426
427                 last_accounted_offset = rg->to;
428         }
429
430         /* Handle the case where our range extends beyond
431          * last_accounted_offset.
432          */
433         if (last_accounted_offset < t)
434                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
435                                             t, h, h_cg, regions_needed);
436
437         VM_BUG_ON(add < 0);
438         return add;
439 }
440
441 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
442  */
443 static int allocate_file_region_entries(struct resv_map *resv,
444                                         int regions_needed)
445         __must_hold(&resv->lock)
446 {
447         struct list_head allocated_regions;
448         int to_allocate = 0, i = 0;
449         struct file_region *trg = NULL, *rg = NULL;
450
451         VM_BUG_ON(regions_needed < 0);
452
453         INIT_LIST_HEAD(&allocated_regions);
454
455         /*
456          * Check for sufficient descriptors in the cache to accommodate
457          * the number of in progress add operations plus regions_needed.
458          *
459          * This is a while loop because when we drop the lock, some other call
460          * to region_add or region_del may have consumed some region_entries,
461          * so we keep looping here until we finally have enough entries for
462          * (adds_in_progress + regions_needed).
463          */
464         while (resv->region_cache_count <
465                (resv->adds_in_progress + regions_needed)) {
466                 to_allocate = resv->adds_in_progress + regions_needed -
467                               resv->region_cache_count;
468
469                 /* At this point, we should have enough entries in the cache
470                  * for all the existings adds_in_progress. We should only be
471                  * needing to allocate for regions_needed.
472                  */
473                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
474
475                 spin_unlock(&resv->lock);
476                 for (i = 0; i < to_allocate; i++) {
477                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
478                         if (!trg)
479                                 goto out_of_memory;
480                         list_add(&trg->link, &allocated_regions);
481                 }
482
483                 spin_lock(&resv->lock);
484
485                 list_splice(&allocated_regions, &resv->region_cache);
486                 resv->region_cache_count += to_allocate;
487         }
488
489         return 0;
490
491 out_of_memory:
492         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
493                 list_del(&rg->link);
494                 kfree(rg);
495         }
496         return -ENOMEM;
497 }
498
499 /*
500  * Add the huge page range represented by [f, t) to the reserve
501  * map.  Regions will be taken from the cache to fill in this range.
502  * Sufficient regions should exist in the cache due to the previous
503  * call to region_chg with the same range, but in some cases the cache will not
504  * have sufficient entries due to races with other code doing region_add or
505  * region_del.  The extra needed entries will be allocated.
506  *
507  * regions_needed is the out value provided by a previous call to region_chg.
508  *
509  * Return the number of new huge pages added to the map.  This number is greater
510  * than or equal to zero.  If file_region entries needed to be allocated for
511  * this operation and we were not able to allocate, it returns -ENOMEM.
512  * region_add of regions of length 1 never allocate file_regions and cannot
513  * fail; region_chg will always allocate at least 1 entry and a region_add for
514  * 1 page will only require at most 1 entry.
515  */
516 static long region_add(struct resv_map *resv, long f, long t,
517                        long in_regions_needed, struct hstate *h,
518                        struct hugetlb_cgroup *h_cg)
519 {
520         long add = 0, actual_regions_needed = 0;
521
522         spin_lock(&resv->lock);
523 retry:
524
525         /* Count how many regions are actually needed to execute this add. */
526         add_reservation_in_range(resv, f, t, NULL, NULL,
527                                  &actual_regions_needed);
528
529         /*
530          * Check for sufficient descriptors in the cache to accommodate
531          * this add operation. Note that actual_regions_needed may be greater
532          * than in_regions_needed, as the resv_map may have been modified since
533          * the region_chg call. In this case, we need to make sure that we
534          * allocate extra entries, such that we have enough for all the
535          * existing adds_in_progress, plus the excess needed for this
536          * operation.
537          */
538         if (actual_regions_needed > in_regions_needed &&
539             resv->region_cache_count <
540                     resv->adds_in_progress +
541                             (actual_regions_needed - in_regions_needed)) {
542                 /* region_add operation of range 1 should never need to
543                  * allocate file_region entries.
544                  */
545                 VM_BUG_ON(t - f <= 1);
546
547                 if (allocate_file_region_entries(
548                             resv, actual_regions_needed - in_regions_needed)) {
549                         return -ENOMEM;
550                 }
551
552                 goto retry;
553         }
554
555         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
556
557         resv->adds_in_progress -= in_regions_needed;
558
559         spin_unlock(&resv->lock);
560         return add;
561 }
562
563 /*
564  * Examine the existing reserve map and determine how many
565  * huge pages in the specified range [f, t) are NOT currently
566  * represented.  This routine is called before a subsequent
567  * call to region_add that will actually modify the reserve
568  * map to add the specified range [f, t).  region_chg does
569  * not change the number of huge pages represented by the
570  * map.  A number of new file_region structures is added to the cache as a
571  * placeholder, for the subsequent region_add call to use. At least 1
572  * file_region structure is added.
573  *
574  * out_regions_needed is the number of regions added to the
575  * resv->adds_in_progress.  This value needs to be provided to a follow up call
576  * to region_add or region_abort for proper accounting.
577  *
578  * Returns the number of huge pages that need to be added to the existing
579  * reservation map for the range [f, t).  This number is greater or equal to
580  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
581  * is needed and can not be allocated.
582  */
583 static long region_chg(struct resv_map *resv, long f, long t,
584                        long *out_regions_needed)
585 {
586         long chg = 0;
587
588         spin_lock(&resv->lock);
589
590         /* Count how many hugepages in this range are NOT represented. */
591         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
592                                        out_regions_needed);
593
594         if (*out_regions_needed == 0)
595                 *out_regions_needed = 1;
596
597         if (allocate_file_region_entries(resv, *out_regions_needed))
598                 return -ENOMEM;
599
600         resv->adds_in_progress += *out_regions_needed;
601
602         spin_unlock(&resv->lock);
603         return chg;
604 }
605
606 /*
607  * Abort the in progress add operation.  The adds_in_progress field
608  * of the resv_map keeps track of the operations in progress between
609  * calls to region_chg and region_add.  Operations are sometimes
610  * aborted after the call to region_chg.  In such cases, region_abort
611  * is called to decrement the adds_in_progress counter. regions_needed
612  * is the value returned by the region_chg call, it is used to decrement
613  * the adds_in_progress counter.
614  *
615  * NOTE: The range arguments [f, t) are not needed or used in this
616  * routine.  They are kept to make reading the calling code easier as
617  * arguments will match the associated region_chg call.
618  */
619 static void region_abort(struct resv_map *resv, long f, long t,
620                          long regions_needed)
621 {
622         spin_lock(&resv->lock);
623         VM_BUG_ON(!resv->region_cache_count);
624         resv->adds_in_progress -= regions_needed;
625         spin_unlock(&resv->lock);
626 }
627
628 /*
629  * Delete the specified range [f, t) from the reserve map.  If the
630  * t parameter is LONG_MAX, this indicates that ALL regions after f
631  * should be deleted.  Locate the regions which intersect [f, t)
632  * and either trim, delete or split the existing regions.
633  *
634  * Returns the number of huge pages deleted from the reserve map.
635  * In the normal case, the return value is zero or more.  In the
636  * case where a region must be split, a new region descriptor must
637  * be allocated.  If the allocation fails, -ENOMEM will be returned.
638  * NOTE: If the parameter t == LONG_MAX, then we will never split
639  * a region and possibly return -ENOMEM.  Callers specifying
640  * t == LONG_MAX do not need to check for -ENOMEM error.
641  */
642 static long region_del(struct resv_map *resv, long f, long t)
643 {
644         struct list_head *head = &resv->regions;
645         struct file_region *rg, *trg;
646         struct file_region *nrg = NULL;
647         long del = 0;
648
649 retry:
650         spin_lock(&resv->lock);
651         list_for_each_entry_safe(rg, trg, head, link) {
652                 /*
653                  * Skip regions before the range to be deleted.  file_region
654                  * ranges are normally of the form [from, to).  However, there
655                  * may be a "placeholder" entry in the map which is of the form
656                  * (from, to) with from == to.  Check for placeholder entries
657                  * at the beginning of the range to be deleted.
658                  */
659                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
660                         continue;
661
662                 if (rg->from >= t)
663                         break;
664
665                 if (f > rg->from && t < rg->to) { /* Must split region */
666                         /*
667                          * Check for an entry in the cache before dropping
668                          * lock and attempting allocation.
669                          */
670                         if (!nrg &&
671                             resv->region_cache_count > resv->adds_in_progress) {
672                                 nrg = list_first_entry(&resv->region_cache,
673                                                         struct file_region,
674                                                         link);
675                                 list_del(&nrg->link);
676                                 resv->region_cache_count--;
677                         }
678
679                         if (!nrg) {
680                                 spin_unlock(&resv->lock);
681                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
682                                 if (!nrg)
683                                         return -ENOMEM;
684                                 goto retry;
685                         }
686
687                         del += t - f;
688                         hugetlb_cgroup_uncharge_file_region(
689                                 resv, rg, t - f, false);
690
691                         /* New entry for end of split region */
692                         nrg->from = t;
693                         nrg->to = rg->to;
694
695                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
696
697                         INIT_LIST_HEAD(&nrg->link);
698
699                         /* Original entry is trimmed */
700                         rg->to = f;
701
702                         list_add(&nrg->link, &rg->link);
703                         nrg = NULL;
704                         break;
705                 }
706
707                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
708                         del += rg->to - rg->from;
709                         hugetlb_cgroup_uncharge_file_region(resv, rg,
710                                                             rg->to - rg->from, true);
711                         list_del(&rg->link);
712                         kfree(rg);
713                         continue;
714                 }
715
716                 if (f <= rg->from) {    /* Trim beginning of region */
717                         hugetlb_cgroup_uncharge_file_region(resv, rg,
718                                                             t - rg->from, false);
719
720                         del += t - rg->from;
721                         rg->from = t;
722                 } else {                /* Trim end of region */
723                         hugetlb_cgroup_uncharge_file_region(resv, rg,
724                                                             rg->to - f, false);
725
726                         del += rg->to - f;
727                         rg->to = f;
728                 }
729         }
730
731         spin_unlock(&resv->lock);
732         kfree(nrg);
733         return del;
734 }
735
736 /*
737  * A rare out of memory error was encountered which prevented removal of
738  * the reserve map region for a page.  The huge page itself was free'ed
739  * and removed from the page cache.  This routine will adjust the subpool
740  * usage count, and the global reserve count if needed.  By incrementing
741  * these counts, the reserve map entry which could not be deleted will
742  * appear as a "reserved" entry instead of simply dangling with incorrect
743  * counts.
744  */
745 void hugetlb_fix_reserve_counts(struct inode *inode)
746 {
747         struct hugepage_subpool *spool = subpool_inode(inode);
748         long rsv_adjust;
749         bool reserved = false;
750
751         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
752         if (rsv_adjust > 0) {
753                 struct hstate *h = hstate_inode(inode);
754
755                 if (!hugetlb_acct_memory(h, 1))
756                         reserved = true;
757         } else if (!rsv_adjust) {
758                 reserved = true;
759         }
760
761         if (!reserved)
762                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
763 }
764
765 /*
766  * Count and return the number of huge pages in the reserve map
767  * that intersect with the range [f, t).
768  */
769 static long region_count(struct resv_map *resv, long f, long t)
770 {
771         struct list_head *head = &resv->regions;
772         struct file_region *rg;
773         long chg = 0;
774
775         spin_lock(&resv->lock);
776         /* Locate each segment we overlap with, and count that overlap. */
777         list_for_each_entry(rg, head, link) {
778                 long seg_from;
779                 long seg_to;
780
781                 if (rg->to <= f)
782                         continue;
783                 if (rg->from >= t)
784                         break;
785
786                 seg_from = max(rg->from, f);
787                 seg_to = min(rg->to, t);
788
789                 chg += seg_to - seg_from;
790         }
791         spin_unlock(&resv->lock);
792
793         return chg;
794 }
795
796 /*
797  * Convert the address within this vma to the page offset within
798  * the mapping, in pagecache page units; huge pages here.
799  */
800 static pgoff_t vma_hugecache_offset(struct hstate *h,
801                         struct vm_area_struct *vma, unsigned long address)
802 {
803         return ((address - vma->vm_start) >> huge_page_shift(h)) +
804                         (vma->vm_pgoff >> huge_page_order(h));
805 }
806
807 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
808                                      unsigned long address)
809 {
810         return vma_hugecache_offset(hstate_vma(vma), vma, address);
811 }
812 EXPORT_SYMBOL_GPL(linear_hugepage_index);
813
814 /*
815  * Return the size of the pages allocated when backing a VMA. In the majority
816  * cases this will be same size as used by the page table entries.
817  */
818 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
819 {
820         if (vma->vm_ops && vma->vm_ops->pagesize)
821                 return vma->vm_ops->pagesize(vma);
822         return PAGE_SIZE;
823 }
824 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
825
826 /*
827  * Return the page size being used by the MMU to back a VMA. In the majority
828  * of cases, the page size used by the kernel matches the MMU size. On
829  * architectures where it differs, an architecture-specific 'strong'
830  * version of this symbol is required.
831  */
832 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
833 {
834         return vma_kernel_pagesize(vma);
835 }
836
837 /*
838  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
839  * bits of the reservation map pointer, which are always clear due to
840  * alignment.
841  */
842 #define HPAGE_RESV_OWNER    (1UL << 0)
843 #define HPAGE_RESV_UNMAPPED (1UL << 1)
844 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
845
846 /*
847  * These helpers are used to track how many pages are reserved for
848  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
849  * is guaranteed to have their future faults succeed.
850  *
851  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
852  * the reserve counters are updated with the hugetlb_lock held. It is safe
853  * to reset the VMA at fork() time as it is not in use yet and there is no
854  * chance of the global counters getting corrupted as a result of the values.
855  *
856  * The private mapping reservation is represented in a subtly different
857  * manner to a shared mapping.  A shared mapping has a region map associated
858  * with the underlying file, this region map represents the backing file
859  * pages which have ever had a reservation assigned which this persists even
860  * after the page is instantiated.  A private mapping has a region map
861  * associated with the original mmap which is attached to all VMAs which
862  * reference it, this region map represents those offsets which have consumed
863  * reservation ie. where pages have been instantiated.
864  */
865 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
866 {
867         return (unsigned long)vma->vm_private_data;
868 }
869
870 static void set_vma_private_data(struct vm_area_struct *vma,
871                                                         unsigned long value)
872 {
873         vma->vm_private_data = (void *)value;
874 }
875
876 static void
877 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
878                                           struct hugetlb_cgroup *h_cg,
879                                           struct hstate *h)
880 {
881 #ifdef CONFIG_CGROUP_HUGETLB
882         if (!h_cg || !h) {
883                 resv_map->reservation_counter = NULL;
884                 resv_map->pages_per_hpage = 0;
885                 resv_map->css = NULL;
886         } else {
887                 resv_map->reservation_counter =
888                         &h_cg->rsvd_hugepage[hstate_index(h)];
889                 resv_map->pages_per_hpage = pages_per_huge_page(h);
890                 resv_map->css = &h_cg->css;
891         }
892 #endif
893 }
894
895 struct resv_map *resv_map_alloc(void)
896 {
897         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
898         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
899
900         if (!resv_map || !rg) {
901                 kfree(resv_map);
902                 kfree(rg);
903                 return NULL;
904         }
905
906         kref_init(&resv_map->refs);
907         spin_lock_init(&resv_map->lock);
908         INIT_LIST_HEAD(&resv_map->regions);
909
910         resv_map->adds_in_progress = 0;
911         /*
912          * Initialize these to 0. On shared mappings, 0's here indicate these
913          * fields don't do cgroup accounting. On private mappings, these will be
914          * re-initialized to the proper values, to indicate that hugetlb cgroup
915          * reservations are to be un-charged from here.
916          */
917         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
918
919         INIT_LIST_HEAD(&resv_map->region_cache);
920         list_add(&rg->link, &resv_map->region_cache);
921         resv_map->region_cache_count = 1;
922
923         return resv_map;
924 }
925
926 void resv_map_release(struct kref *ref)
927 {
928         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
929         struct list_head *head = &resv_map->region_cache;
930         struct file_region *rg, *trg;
931
932         /* Clear out any active regions before we release the map. */
933         region_del(resv_map, 0, LONG_MAX);
934
935         /* ... and any entries left in the cache */
936         list_for_each_entry_safe(rg, trg, head, link) {
937                 list_del(&rg->link);
938                 kfree(rg);
939         }
940
941         VM_BUG_ON(resv_map->adds_in_progress);
942
943         kfree(resv_map);
944 }
945
946 static inline struct resv_map *inode_resv_map(struct inode *inode)
947 {
948         /*
949          * At inode evict time, i_mapping may not point to the original
950          * address space within the inode.  This original address space
951          * contains the pointer to the resv_map.  So, always use the
952          * address space embedded within the inode.
953          * The VERY common case is inode->mapping == &inode->i_data but,
954          * this may not be true for device special inodes.
955          */
956         return (struct resv_map *)(&inode->i_data)->private_data;
957 }
958
959 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
960 {
961         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
962         if (vma->vm_flags & VM_MAYSHARE) {
963                 struct address_space *mapping = vma->vm_file->f_mapping;
964                 struct inode *inode = mapping->host;
965
966                 return inode_resv_map(inode);
967
968         } else {
969                 return (struct resv_map *)(get_vma_private_data(vma) &
970                                                         ~HPAGE_RESV_MASK);
971         }
972 }
973
974 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
975 {
976         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
977         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
978
979         set_vma_private_data(vma, (get_vma_private_data(vma) &
980                                 HPAGE_RESV_MASK) | (unsigned long)map);
981 }
982
983 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
984 {
985         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
986         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
987
988         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
989 }
990
991 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
992 {
993         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
994
995         return (get_vma_private_data(vma) & flag) != 0;
996 }
997
998 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
999 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1000 {
1001         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1002         if (!(vma->vm_flags & VM_MAYSHARE))
1003                 vma->vm_private_data = (void *)0;
1004 }
1005
1006 /* Returns true if the VMA has associated reserve pages */
1007 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1008 {
1009         if (vma->vm_flags & VM_NORESERVE) {
1010                 /*
1011                  * This address is already reserved by other process(chg == 0),
1012                  * so, we should decrement reserved count. Without decrementing,
1013                  * reserve count remains after releasing inode, because this
1014                  * allocated page will go into page cache and is regarded as
1015                  * coming from reserved pool in releasing step.  Currently, we
1016                  * don't have any other solution to deal with this situation
1017                  * properly, so add work-around here.
1018                  */
1019                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1020                         return true;
1021                 else
1022                         return false;
1023         }
1024
1025         /* Shared mappings always use reserves */
1026         if (vma->vm_flags & VM_MAYSHARE) {
1027                 /*
1028                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1029                  * be a region map for all pages.  The only situation where
1030                  * there is no region map is if a hole was punched via
1031                  * fallocate.  In this case, there really are no reserves to
1032                  * use.  This situation is indicated if chg != 0.
1033                  */
1034                 if (chg)
1035                         return false;
1036                 else
1037                         return true;
1038         }
1039
1040         /*
1041          * Only the process that called mmap() has reserves for
1042          * private mappings.
1043          */
1044         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1045                 /*
1046                  * Like the shared case above, a hole punch or truncate
1047                  * could have been performed on the private mapping.
1048                  * Examine the value of chg to determine if reserves
1049                  * actually exist or were previously consumed.
1050                  * Very Subtle - The value of chg comes from a previous
1051                  * call to vma_needs_reserves().  The reserve map for
1052                  * private mappings has different (opposite) semantics
1053                  * than that of shared mappings.  vma_needs_reserves()
1054                  * has already taken this difference in semantics into
1055                  * account.  Therefore, the meaning of chg is the same
1056                  * as in the shared case above.  Code could easily be
1057                  * combined, but keeping it separate draws attention to
1058                  * subtle differences.
1059                  */
1060                 if (chg)
1061                         return false;
1062                 else
1063                         return true;
1064         }
1065
1066         return false;
1067 }
1068
1069 static void enqueue_huge_page(struct hstate *h, struct page *page)
1070 {
1071         int nid = page_to_nid(page);
1072
1073         lockdep_assert_held(&hugetlb_lock);
1074         list_move(&page->lru, &h->hugepage_freelists[nid]);
1075         h->free_huge_pages++;
1076         h->free_huge_pages_node[nid]++;
1077         SetHPageFreed(page);
1078 }
1079
1080 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1081 {
1082         struct page *page;
1083         bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1084
1085         lockdep_assert_held(&hugetlb_lock);
1086         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1087                 if (nocma && is_migrate_cma_page(page))
1088                         continue;
1089
1090                 if (PageHWPoison(page))
1091                         continue;
1092
1093                 list_move(&page->lru, &h->hugepage_activelist);
1094                 set_page_refcounted(page);
1095                 ClearHPageFreed(page);
1096                 h->free_huge_pages--;
1097                 h->free_huge_pages_node[nid]--;
1098                 return page;
1099         }
1100
1101         return NULL;
1102 }
1103
1104 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1105                 nodemask_t *nmask)
1106 {
1107         unsigned int cpuset_mems_cookie;
1108         struct zonelist *zonelist;
1109         struct zone *zone;
1110         struct zoneref *z;
1111         int node = NUMA_NO_NODE;
1112
1113         zonelist = node_zonelist(nid, gfp_mask);
1114
1115 retry_cpuset:
1116         cpuset_mems_cookie = read_mems_allowed_begin();
1117         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1118                 struct page *page;
1119
1120                 if (!cpuset_zone_allowed(zone, gfp_mask))
1121                         continue;
1122                 /*
1123                  * no need to ask again on the same node. Pool is node rather than
1124                  * zone aware
1125                  */
1126                 if (zone_to_nid(zone) == node)
1127                         continue;
1128                 node = zone_to_nid(zone);
1129
1130                 page = dequeue_huge_page_node_exact(h, node);
1131                 if (page)
1132                         return page;
1133         }
1134         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1135                 goto retry_cpuset;
1136
1137         return NULL;
1138 }
1139
1140 static struct page *dequeue_huge_page_vma(struct hstate *h,
1141                                 struct vm_area_struct *vma,
1142                                 unsigned long address, int avoid_reserve,
1143                                 long chg)
1144 {
1145         struct page *page;
1146         struct mempolicy *mpol;
1147         gfp_t gfp_mask;
1148         nodemask_t *nodemask;
1149         int nid;
1150
1151         /*
1152          * A child process with MAP_PRIVATE mappings created by their parent
1153          * have no page reserves. This check ensures that reservations are
1154          * not "stolen". The child may still get SIGKILLed
1155          */
1156         if (!vma_has_reserves(vma, chg) &&
1157                         h->free_huge_pages - h->resv_huge_pages == 0)
1158                 goto err;
1159
1160         /* If reserves cannot be used, ensure enough pages are in the pool */
1161         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1162                 goto err;
1163
1164         gfp_mask = htlb_alloc_mask(h);
1165         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1166         page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1167         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1168                 SetHPageRestoreReserve(page);
1169                 h->resv_huge_pages--;
1170         }
1171
1172         mpol_cond_put(mpol);
1173         return page;
1174
1175 err:
1176         return NULL;
1177 }
1178
1179 /*
1180  * common helper functions for hstate_next_node_to_{alloc|free}.
1181  * We may have allocated or freed a huge page based on a different
1182  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1183  * be outside of *nodes_allowed.  Ensure that we use an allowed
1184  * node for alloc or free.
1185  */
1186 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1187 {
1188         nid = next_node_in(nid, *nodes_allowed);
1189         VM_BUG_ON(nid >= MAX_NUMNODES);
1190
1191         return nid;
1192 }
1193
1194 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1195 {
1196         if (!node_isset(nid, *nodes_allowed))
1197                 nid = next_node_allowed(nid, nodes_allowed);
1198         return nid;
1199 }
1200
1201 /*
1202  * returns the previously saved node ["this node"] from which to
1203  * allocate a persistent huge page for the pool and advance the
1204  * next node from which to allocate, handling wrap at end of node
1205  * mask.
1206  */
1207 static int hstate_next_node_to_alloc(struct hstate *h,
1208                                         nodemask_t *nodes_allowed)
1209 {
1210         int nid;
1211
1212         VM_BUG_ON(!nodes_allowed);
1213
1214         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1215         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1216
1217         return nid;
1218 }
1219
1220 /*
1221  * helper for remove_pool_huge_page() - return the previously saved
1222  * node ["this node"] from which to free a huge page.  Advance the
1223  * next node id whether or not we find a free huge page to free so
1224  * that the next attempt to free addresses the next node.
1225  */
1226 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1227 {
1228         int nid;
1229
1230         VM_BUG_ON(!nodes_allowed);
1231
1232         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1233         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1234
1235         return nid;
1236 }
1237
1238 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1239         for (nr_nodes = nodes_weight(*mask);                            \
1240                 nr_nodes > 0 &&                                         \
1241                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1242                 nr_nodes--)
1243
1244 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1245         for (nr_nodes = nodes_weight(*mask);                            \
1246                 nr_nodes > 0 &&                                         \
1247                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1248                 nr_nodes--)
1249
1250 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1251 static void destroy_compound_gigantic_page(struct page *page,
1252                                         unsigned int order)
1253 {
1254         int i;
1255         int nr_pages = 1 << order;
1256         struct page *p = page + 1;
1257
1258         atomic_set(compound_mapcount_ptr(page), 0);
1259         atomic_set(compound_pincount_ptr(page), 0);
1260
1261         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1262                 clear_compound_head(p);
1263                 set_page_refcounted(p);
1264         }
1265
1266         set_compound_order(page, 0);
1267         page[1].compound_nr = 0;
1268         __ClearPageHead(page);
1269 }
1270
1271 static void free_gigantic_page(struct page *page, unsigned int order)
1272 {
1273         /*
1274          * If the page isn't allocated using the cma allocator,
1275          * cma_release() returns false.
1276          */
1277 #ifdef CONFIG_CMA
1278         if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1279                 return;
1280 #endif
1281
1282         free_contig_range(page_to_pfn(page), 1 << order);
1283 }
1284
1285 #ifdef CONFIG_CONTIG_ALLOC
1286 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1287                 int nid, nodemask_t *nodemask)
1288 {
1289         unsigned long nr_pages = pages_per_huge_page(h);
1290         if (nid == NUMA_NO_NODE)
1291                 nid = numa_mem_id();
1292
1293 #ifdef CONFIG_CMA
1294         {
1295                 struct page *page;
1296                 int node;
1297
1298                 if (hugetlb_cma[nid]) {
1299                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1300                                         huge_page_order(h), true);
1301                         if (page)
1302                                 return page;
1303                 }
1304
1305                 if (!(gfp_mask & __GFP_THISNODE)) {
1306                         for_each_node_mask(node, *nodemask) {
1307                                 if (node == nid || !hugetlb_cma[node])
1308                                         continue;
1309
1310                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1311                                                 huge_page_order(h), true);
1312                                 if (page)
1313                                         return page;
1314                         }
1315                 }
1316         }
1317 #endif
1318
1319         return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1320 }
1321
1322 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1323 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1324 #else /* !CONFIG_CONTIG_ALLOC */
1325 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1326                                         int nid, nodemask_t *nodemask)
1327 {
1328         return NULL;
1329 }
1330 #endif /* CONFIG_CONTIG_ALLOC */
1331
1332 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1333 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1334                                         int nid, nodemask_t *nodemask)
1335 {
1336         return NULL;
1337 }
1338 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1339 static inline void destroy_compound_gigantic_page(struct page *page,
1340                                                 unsigned int order) { }
1341 #endif
1342
1343 /*
1344  * Remove hugetlb page from lists, and update dtor so that page appears
1345  * as just a compound page.  A reference is held on the page.
1346  *
1347  * Must be called with hugetlb lock held.
1348  */
1349 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1350                                                         bool adjust_surplus)
1351 {
1352         int nid = page_to_nid(page);
1353
1354         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1355         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1356
1357         lockdep_assert_held(&hugetlb_lock);
1358         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1359                 return;
1360
1361         list_del(&page->lru);
1362
1363         if (HPageFreed(page)) {
1364                 h->free_huge_pages--;
1365                 h->free_huge_pages_node[nid]--;
1366         }
1367         if (adjust_surplus) {
1368                 h->surplus_huge_pages--;
1369                 h->surplus_huge_pages_node[nid]--;
1370         }
1371
1372         set_page_refcounted(page);
1373         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1374
1375         h->nr_huge_pages--;
1376         h->nr_huge_pages_node[nid]--;
1377 }
1378
1379 static void update_and_free_page(struct hstate *h, struct page *page)
1380 {
1381         int i;
1382         struct page *subpage = page;
1383
1384         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1385                 return;
1386
1387         for (i = 0; i < pages_per_huge_page(h);
1388              i++, subpage = mem_map_next(subpage, page, i)) {
1389                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1390                                 1 << PG_referenced | 1 << PG_dirty |
1391                                 1 << PG_active | 1 << PG_private |
1392                                 1 << PG_writeback);
1393         }
1394         if (hstate_is_gigantic(h)) {
1395                 destroy_compound_gigantic_page(page, huge_page_order(h));
1396                 free_gigantic_page(page, huge_page_order(h));
1397         } else {
1398                 __free_pages(page, huge_page_order(h));
1399         }
1400 }
1401
1402 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1403 {
1404         struct page *page, *t_page;
1405
1406         list_for_each_entry_safe(page, t_page, list, lru) {
1407                 update_and_free_page(h, page);
1408                 cond_resched();
1409         }
1410 }
1411
1412 struct hstate *size_to_hstate(unsigned long size)
1413 {
1414         struct hstate *h;
1415
1416         for_each_hstate(h) {
1417                 if (huge_page_size(h) == size)
1418                         return h;
1419         }
1420         return NULL;
1421 }
1422
1423 void free_huge_page(struct page *page)
1424 {
1425         /*
1426          * Can't pass hstate in here because it is called from the
1427          * compound page destructor.
1428          */
1429         struct hstate *h = page_hstate(page);
1430         int nid = page_to_nid(page);
1431         struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1432         bool restore_reserve;
1433         unsigned long flags;
1434
1435         VM_BUG_ON_PAGE(page_count(page), page);
1436         VM_BUG_ON_PAGE(page_mapcount(page), page);
1437
1438         hugetlb_set_page_subpool(page, NULL);
1439         page->mapping = NULL;
1440         restore_reserve = HPageRestoreReserve(page);
1441         ClearHPageRestoreReserve(page);
1442
1443         /*
1444          * If HPageRestoreReserve was set on page, page allocation consumed a
1445          * reservation.  If the page was associated with a subpool, there
1446          * would have been a page reserved in the subpool before allocation
1447          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1448          * reservation, do not call hugepage_subpool_put_pages() as this will
1449          * remove the reserved page from the subpool.
1450          */
1451         if (!restore_reserve) {
1452                 /*
1453                  * A return code of zero implies that the subpool will be
1454                  * under its minimum size if the reservation is not restored
1455                  * after page is free.  Therefore, force restore_reserve
1456                  * operation.
1457                  */
1458                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1459                         restore_reserve = true;
1460         }
1461
1462         spin_lock_irqsave(&hugetlb_lock, flags);
1463         ClearHPageMigratable(page);
1464         hugetlb_cgroup_uncharge_page(hstate_index(h),
1465                                      pages_per_huge_page(h), page);
1466         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1467                                           pages_per_huge_page(h), page);
1468         if (restore_reserve)
1469                 h->resv_huge_pages++;
1470
1471         if (HPageTemporary(page)) {
1472                 remove_hugetlb_page(h, page, false);
1473                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1474                 update_and_free_page(h, page);
1475         } else if (h->surplus_huge_pages_node[nid]) {
1476                 /* remove the page from active list */
1477                 remove_hugetlb_page(h, page, true);
1478                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1479                 update_and_free_page(h, page);
1480         } else {
1481                 arch_clear_hugepage_flags(page);
1482                 enqueue_huge_page(h, page);
1483                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1484         }
1485 }
1486
1487 /*
1488  * Must be called with the hugetlb lock held
1489  */
1490 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1491 {
1492         lockdep_assert_held(&hugetlb_lock);
1493         h->nr_huge_pages++;
1494         h->nr_huge_pages_node[nid]++;
1495 }
1496
1497 static void __prep_new_huge_page(struct page *page)
1498 {
1499         INIT_LIST_HEAD(&page->lru);
1500         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1501         hugetlb_set_page_subpool(page, NULL);
1502         set_hugetlb_cgroup(page, NULL);
1503         set_hugetlb_cgroup_rsvd(page, NULL);
1504 }
1505
1506 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1507 {
1508         __prep_new_huge_page(page);
1509         spin_lock_irq(&hugetlb_lock);
1510         __prep_account_new_huge_page(h, nid);
1511         spin_unlock_irq(&hugetlb_lock);
1512 }
1513
1514 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1515 {
1516         int i;
1517         int nr_pages = 1 << order;
1518         struct page *p = page + 1;
1519
1520         /* we rely on prep_new_huge_page to set the destructor */
1521         set_compound_order(page, order);
1522         __ClearPageReserved(page);
1523         __SetPageHead(page);
1524         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1525                 /*
1526                  * For gigantic hugepages allocated through bootmem at
1527                  * boot, it's safer to be consistent with the not-gigantic
1528                  * hugepages and clear the PG_reserved bit from all tail pages
1529                  * too.  Otherwise drivers using get_user_pages() to access tail
1530                  * pages may get the reference counting wrong if they see
1531                  * PG_reserved set on a tail page (despite the head page not
1532                  * having PG_reserved set).  Enforcing this consistency between
1533                  * head and tail pages allows drivers to optimize away a check
1534                  * on the head page when they need know if put_page() is needed
1535                  * after get_user_pages().
1536                  */
1537                 __ClearPageReserved(p);
1538                 set_page_count(p, 0);
1539                 set_compound_head(p, page);
1540         }
1541         atomic_set(compound_mapcount_ptr(page), -1);
1542         atomic_set(compound_pincount_ptr(page), 0);
1543 }
1544
1545 /*
1546  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1547  * transparent huge pages.  See the PageTransHuge() documentation for more
1548  * details.
1549  */
1550 int PageHuge(struct page *page)
1551 {
1552         if (!PageCompound(page))
1553                 return 0;
1554
1555         page = compound_head(page);
1556         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1557 }
1558 EXPORT_SYMBOL_GPL(PageHuge);
1559
1560 /*
1561  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1562  * normal or transparent huge pages.
1563  */
1564 int PageHeadHuge(struct page *page_head)
1565 {
1566         if (!PageHead(page_head))
1567                 return 0;
1568
1569         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1570 }
1571
1572 /*
1573  * Find and lock address space (mapping) in write mode.
1574  *
1575  * Upon entry, the page is locked which means that page_mapping() is
1576  * stable.  Due to locking order, we can only trylock_write.  If we can
1577  * not get the lock, simply return NULL to caller.
1578  */
1579 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1580 {
1581         struct address_space *mapping = page_mapping(hpage);
1582
1583         if (!mapping)
1584                 return mapping;
1585
1586         if (i_mmap_trylock_write(mapping))
1587                 return mapping;
1588
1589         return NULL;
1590 }
1591
1592 pgoff_t __basepage_index(struct page *page)
1593 {
1594         struct page *page_head = compound_head(page);
1595         pgoff_t index = page_index(page_head);
1596         unsigned long compound_idx;
1597
1598         if (!PageHuge(page_head))
1599                 return page_index(page);
1600
1601         if (compound_order(page_head) >= MAX_ORDER)
1602                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1603         else
1604                 compound_idx = page - page_head;
1605
1606         return (index << compound_order(page_head)) + compound_idx;
1607 }
1608
1609 static struct page *alloc_buddy_huge_page(struct hstate *h,
1610                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1611                 nodemask_t *node_alloc_noretry)
1612 {
1613         int order = huge_page_order(h);
1614         struct page *page;
1615         bool alloc_try_hard = true;
1616
1617         /*
1618          * By default we always try hard to allocate the page with
1619          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1620          * a loop (to adjust global huge page counts) and previous allocation
1621          * failed, do not continue to try hard on the same node.  Use the
1622          * node_alloc_noretry bitmap to manage this state information.
1623          */
1624         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1625                 alloc_try_hard = false;
1626         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1627         if (alloc_try_hard)
1628                 gfp_mask |= __GFP_RETRY_MAYFAIL;
1629         if (nid == NUMA_NO_NODE)
1630                 nid = numa_mem_id();
1631         page = __alloc_pages(gfp_mask, order, nid, nmask);
1632         if (page)
1633                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1634         else
1635                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1636
1637         /*
1638          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1639          * indicates an overall state change.  Clear bit so that we resume
1640          * normal 'try hard' allocations.
1641          */
1642         if (node_alloc_noretry && page && !alloc_try_hard)
1643                 node_clear(nid, *node_alloc_noretry);
1644
1645         /*
1646          * If we tried hard to get a page but failed, set bit so that
1647          * subsequent attempts will not try as hard until there is an
1648          * overall state change.
1649          */
1650         if (node_alloc_noretry && !page && alloc_try_hard)
1651                 node_set(nid, *node_alloc_noretry);
1652
1653         return page;
1654 }
1655
1656 /*
1657  * Common helper to allocate a fresh hugetlb page. All specific allocators
1658  * should use this function to get new hugetlb pages
1659  */
1660 static struct page *alloc_fresh_huge_page(struct hstate *h,
1661                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1662                 nodemask_t *node_alloc_noretry)
1663 {
1664         struct page *page;
1665
1666         if (hstate_is_gigantic(h))
1667                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1668         else
1669                 page = alloc_buddy_huge_page(h, gfp_mask,
1670                                 nid, nmask, node_alloc_noretry);
1671         if (!page)
1672                 return NULL;
1673
1674         if (hstate_is_gigantic(h))
1675                 prep_compound_gigantic_page(page, huge_page_order(h));
1676         prep_new_huge_page(h, page, page_to_nid(page));
1677
1678         return page;
1679 }
1680
1681 /*
1682  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1683  * manner.
1684  */
1685 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1686                                 nodemask_t *node_alloc_noretry)
1687 {
1688         struct page *page;
1689         int nr_nodes, node;
1690         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1691
1692         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1693                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1694                                                 node_alloc_noretry);
1695                 if (page)
1696                         break;
1697         }
1698
1699         if (!page)
1700                 return 0;
1701
1702         put_page(page); /* free it into the hugepage allocator */
1703
1704         return 1;
1705 }
1706
1707 /*
1708  * Remove huge page from pool from next node to free.  Attempt to keep
1709  * persistent huge pages more or less balanced over allowed nodes.
1710  * This routine only 'removes' the hugetlb page.  The caller must make
1711  * an additional call to free the page to low level allocators.
1712  * Called with hugetlb_lock locked.
1713  */
1714 static struct page *remove_pool_huge_page(struct hstate *h,
1715                                                 nodemask_t *nodes_allowed,
1716                                                  bool acct_surplus)
1717 {
1718         int nr_nodes, node;
1719         struct page *page = NULL;
1720
1721         lockdep_assert_held(&hugetlb_lock);
1722         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1723                 /*
1724                  * If we're returning unused surplus pages, only examine
1725                  * nodes with surplus pages.
1726                  */
1727                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1728                     !list_empty(&h->hugepage_freelists[node])) {
1729                         page = list_entry(h->hugepage_freelists[node].next,
1730                                           struct page, lru);
1731                         remove_hugetlb_page(h, page, acct_surplus);
1732                         break;
1733                 }
1734         }
1735
1736         return page;
1737 }
1738
1739 /*
1740  * Dissolve a given free hugepage into free buddy pages. This function does
1741  * nothing for in-use hugepages and non-hugepages.
1742  * This function returns values like below:
1743  *
1744  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1745  *          (allocated or reserved.)
1746  *       0: successfully dissolved free hugepages or the page is not a
1747  *          hugepage (considered as already dissolved)
1748  */
1749 int dissolve_free_huge_page(struct page *page)
1750 {
1751         int rc = -EBUSY;
1752
1753 retry:
1754         /* Not to disrupt normal path by vainly holding hugetlb_lock */
1755         if (!PageHuge(page))
1756                 return 0;
1757
1758         spin_lock_irq(&hugetlb_lock);
1759         if (!PageHuge(page)) {
1760                 rc = 0;
1761                 goto out;
1762         }
1763
1764         if (!page_count(page)) {
1765                 struct page *head = compound_head(page);
1766                 struct hstate *h = page_hstate(head);
1767                 if (h->free_huge_pages - h->resv_huge_pages == 0)
1768                         goto out;
1769
1770                 /*
1771                  * We should make sure that the page is already on the free list
1772                  * when it is dissolved.
1773                  */
1774                 if (unlikely(!HPageFreed(head))) {
1775                         spin_unlock_irq(&hugetlb_lock);
1776                         cond_resched();
1777
1778                         /*
1779                          * Theoretically, we should return -EBUSY when we
1780                          * encounter this race. In fact, we have a chance
1781                          * to successfully dissolve the page if we do a
1782                          * retry. Because the race window is quite small.
1783                          * If we seize this opportunity, it is an optimization
1784                          * for increasing the success rate of dissolving page.
1785                          */
1786                         goto retry;
1787                 }
1788
1789                 /*
1790                  * Move PageHWPoison flag from head page to the raw error page,
1791                  * which makes any subpages rather than the error page reusable.
1792                  */
1793                 if (PageHWPoison(head) && page != head) {
1794                         SetPageHWPoison(page);
1795                         ClearPageHWPoison(head);
1796                 }
1797                 remove_hugetlb_page(h, page, false);
1798                 h->max_huge_pages--;
1799                 spin_unlock_irq(&hugetlb_lock);
1800                 update_and_free_page(h, head);
1801                 return 0;
1802         }
1803 out:
1804         spin_unlock_irq(&hugetlb_lock);
1805         return rc;
1806 }
1807
1808 /*
1809  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1810  * make specified memory blocks removable from the system.
1811  * Note that this will dissolve a free gigantic hugepage completely, if any
1812  * part of it lies within the given range.
1813  * Also note that if dissolve_free_huge_page() returns with an error, all
1814  * free hugepages that were dissolved before that error are lost.
1815  */
1816 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1817 {
1818         unsigned long pfn;
1819         struct page *page;
1820         int rc = 0;
1821
1822         if (!hugepages_supported())
1823                 return rc;
1824
1825         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1826                 page = pfn_to_page(pfn);
1827                 rc = dissolve_free_huge_page(page);
1828                 if (rc)
1829                         break;
1830         }
1831
1832         return rc;
1833 }
1834
1835 /*
1836  * Allocates a fresh surplus page from the page allocator.
1837  */
1838 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1839                 int nid, nodemask_t *nmask)
1840 {
1841         struct page *page = NULL;
1842
1843         if (hstate_is_gigantic(h))
1844                 return NULL;
1845
1846         spin_lock_irq(&hugetlb_lock);
1847         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1848                 goto out_unlock;
1849         spin_unlock_irq(&hugetlb_lock);
1850
1851         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1852         if (!page)
1853                 return NULL;
1854
1855         spin_lock_irq(&hugetlb_lock);
1856         /*
1857          * We could have raced with the pool size change.
1858          * Double check that and simply deallocate the new page
1859          * if we would end up overcommiting the surpluses. Abuse
1860          * temporary page to workaround the nasty free_huge_page
1861          * codeflow
1862          */
1863         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1864                 SetHPageTemporary(page);
1865                 spin_unlock_irq(&hugetlb_lock);
1866                 put_page(page);
1867                 return NULL;
1868         } else {
1869                 h->surplus_huge_pages++;
1870                 h->surplus_huge_pages_node[page_to_nid(page)]++;
1871         }
1872
1873 out_unlock:
1874         spin_unlock_irq(&hugetlb_lock);
1875
1876         return page;
1877 }
1878
1879 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1880                                      int nid, nodemask_t *nmask)
1881 {
1882         struct page *page;
1883
1884         if (hstate_is_gigantic(h))
1885                 return NULL;
1886
1887         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1888         if (!page)
1889                 return NULL;
1890
1891         /*
1892          * We do not account these pages as surplus because they are only
1893          * temporary and will be released properly on the last reference
1894          */
1895         SetHPageTemporary(page);
1896
1897         return page;
1898 }
1899
1900 /*
1901  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1902  */
1903 static
1904 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1905                 struct vm_area_struct *vma, unsigned long addr)
1906 {
1907         struct page *page;
1908         struct mempolicy *mpol;
1909         gfp_t gfp_mask = htlb_alloc_mask(h);
1910         int nid;
1911         nodemask_t *nodemask;
1912
1913         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1914         page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1915         mpol_cond_put(mpol);
1916
1917         return page;
1918 }
1919
1920 /* page migration callback function */
1921 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1922                 nodemask_t *nmask, gfp_t gfp_mask)
1923 {
1924         spin_lock_irq(&hugetlb_lock);
1925         if (h->free_huge_pages - h->resv_huge_pages > 0) {
1926                 struct page *page;
1927
1928                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1929                 if (page) {
1930                         spin_unlock_irq(&hugetlb_lock);
1931                         return page;
1932                 }
1933         }
1934         spin_unlock_irq(&hugetlb_lock);
1935
1936         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1937 }
1938
1939 /* mempolicy aware migration callback */
1940 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1941                 unsigned long address)
1942 {
1943         struct mempolicy *mpol;
1944         nodemask_t *nodemask;
1945         struct page *page;
1946         gfp_t gfp_mask;
1947         int node;
1948
1949         gfp_mask = htlb_alloc_mask(h);
1950         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1951         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
1952         mpol_cond_put(mpol);
1953
1954         return page;
1955 }
1956
1957 /*
1958  * Increase the hugetlb pool such that it can accommodate a reservation
1959  * of size 'delta'.
1960  */
1961 static int gather_surplus_pages(struct hstate *h, long delta)
1962         __must_hold(&hugetlb_lock)
1963 {
1964         struct list_head surplus_list;
1965         struct page *page, *tmp;
1966         int ret;
1967         long i;
1968         long needed, allocated;
1969         bool alloc_ok = true;
1970
1971         lockdep_assert_held(&hugetlb_lock);
1972         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1973         if (needed <= 0) {
1974                 h->resv_huge_pages += delta;
1975                 return 0;
1976         }
1977
1978         allocated = 0;
1979         INIT_LIST_HEAD(&surplus_list);
1980
1981         ret = -ENOMEM;
1982 retry:
1983         spin_unlock_irq(&hugetlb_lock);
1984         for (i = 0; i < needed; i++) {
1985                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1986                                 NUMA_NO_NODE, NULL);
1987                 if (!page) {
1988                         alloc_ok = false;
1989                         break;
1990                 }
1991                 list_add(&page->lru, &surplus_list);
1992                 cond_resched();
1993         }
1994         allocated += i;
1995
1996         /*
1997          * After retaking hugetlb_lock, we need to recalculate 'needed'
1998          * because either resv_huge_pages or free_huge_pages may have changed.
1999          */
2000         spin_lock_irq(&hugetlb_lock);
2001         needed = (h->resv_huge_pages + delta) -
2002                         (h->free_huge_pages + allocated);
2003         if (needed > 0) {
2004                 if (alloc_ok)
2005                         goto retry;
2006                 /*
2007                  * We were not able to allocate enough pages to
2008                  * satisfy the entire reservation so we free what
2009                  * we've allocated so far.
2010                  */
2011                 goto free;
2012         }
2013         /*
2014          * The surplus_list now contains _at_least_ the number of extra pages
2015          * needed to accommodate the reservation.  Add the appropriate number
2016          * of pages to the hugetlb pool and free the extras back to the buddy
2017          * allocator.  Commit the entire reservation here to prevent another
2018          * process from stealing the pages as they are added to the pool but
2019          * before they are reserved.
2020          */
2021         needed += allocated;
2022         h->resv_huge_pages += delta;
2023         ret = 0;
2024
2025         /* Free the needed pages to the hugetlb pool */
2026         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2027                 int zeroed;
2028
2029                 if ((--needed) < 0)
2030                         break;
2031                 /*
2032                  * This page is now managed by the hugetlb allocator and has
2033                  * no users -- drop the buddy allocator's reference.
2034                  */
2035                 zeroed = put_page_testzero(page);
2036                 VM_BUG_ON_PAGE(!zeroed, page);
2037                 enqueue_huge_page(h, page);
2038         }
2039 free:
2040         spin_unlock_irq(&hugetlb_lock);
2041
2042         /* Free unnecessary surplus pages to the buddy allocator */
2043         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2044                 put_page(page);
2045         spin_lock_irq(&hugetlb_lock);
2046
2047         return ret;
2048 }
2049
2050 /*
2051  * This routine has two main purposes:
2052  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2053  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2054  *    to the associated reservation map.
2055  * 2) Free any unused surplus pages that may have been allocated to satisfy
2056  *    the reservation.  As many as unused_resv_pages may be freed.
2057  */
2058 static void return_unused_surplus_pages(struct hstate *h,
2059                                         unsigned long unused_resv_pages)
2060 {
2061         unsigned long nr_pages;
2062         struct page *page;
2063         LIST_HEAD(page_list);
2064
2065         lockdep_assert_held(&hugetlb_lock);
2066         /* Uncommit the reservation */
2067         h->resv_huge_pages -= unused_resv_pages;
2068
2069         /* Cannot return gigantic pages currently */
2070         if (hstate_is_gigantic(h))
2071                 goto out;
2072
2073         /*
2074          * Part (or even all) of the reservation could have been backed
2075          * by pre-allocated pages. Only free surplus pages.
2076          */
2077         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2078
2079         /*
2080          * We want to release as many surplus pages as possible, spread
2081          * evenly across all nodes with memory. Iterate across these nodes
2082          * until we can no longer free unreserved surplus pages. This occurs
2083          * when the nodes with surplus pages have no free pages.
2084          * remove_pool_huge_page() will balance the freed pages across the
2085          * on-line nodes with memory and will handle the hstate accounting.
2086          */
2087         while (nr_pages--) {
2088                 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2089                 if (!page)
2090                         goto out;
2091
2092                 list_add(&page->lru, &page_list);
2093         }
2094
2095 out:
2096         spin_unlock_irq(&hugetlb_lock);
2097         update_and_free_pages_bulk(h, &page_list);
2098         spin_lock_irq(&hugetlb_lock);
2099 }
2100
2101
2102 /*
2103  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2104  * are used by the huge page allocation routines to manage reservations.
2105  *
2106  * vma_needs_reservation is called to determine if the huge page at addr
2107  * within the vma has an associated reservation.  If a reservation is
2108  * needed, the value 1 is returned.  The caller is then responsible for
2109  * managing the global reservation and subpool usage counts.  After
2110  * the huge page has been allocated, vma_commit_reservation is called
2111  * to add the page to the reservation map.  If the page allocation fails,
2112  * the reservation must be ended instead of committed.  vma_end_reservation
2113  * is called in such cases.
2114  *
2115  * In the normal case, vma_commit_reservation returns the same value
2116  * as the preceding vma_needs_reservation call.  The only time this
2117  * is not the case is if a reserve map was changed between calls.  It
2118  * is the responsibility of the caller to notice the difference and
2119  * take appropriate action.
2120  *
2121  * vma_add_reservation is used in error paths where a reservation must
2122  * be restored when a newly allocated huge page must be freed.  It is
2123  * to be called after calling vma_needs_reservation to determine if a
2124  * reservation exists.
2125  */
2126 enum vma_resv_mode {
2127         VMA_NEEDS_RESV,
2128         VMA_COMMIT_RESV,
2129         VMA_END_RESV,
2130         VMA_ADD_RESV,
2131 };
2132 static long __vma_reservation_common(struct hstate *h,
2133                                 struct vm_area_struct *vma, unsigned long addr,
2134                                 enum vma_resv_mode mode)
2135 {
2136         struct resv_map *resv;
2137         pgoff_t idx;
2138         long ret;
2139         long dummy_out_regions_needed;
2140
2141         resv = vma_resv_map(vma);
2142         if (!resv)
2143                 return 1;
2144
2145         idx = vma_hugecache_offset(h, vma, addr);
2146         switch (mode) {
2147         case VMA_NEEDS_RESV:
2148                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2149                 /* We assume that vma_reservation_* routines always operate on
2150                  * 1 page, and that adding to resv map a 1 page entry can only
2151                  * ever require 1 region.
2152                  */
2153                 VM_BUG_ON(dummy_out_regions_needed != 1);
2154                 break;
2155         case VMA_COMMIT_RESV:
2156                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2157                 /* region_add calls of range 1 should never fail. */
2158                 VM_BUG_ON(ret < 0);
2159                 break;
2160         case VMA_END_RESV:
2161                 region_abort(resv, idx, idx + 1, 1);
2162                 ret = 0;
2163                 break;
2164         case VMA_ADD_RESV:
2165                 if (vma->vm_flags & VM_MAYSHARE) {
2166                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2167                         /* region_add calls of range 1 should never fail. */
2168                         VM_BUG_ON(ret < 0);
2169                 } else {
2170                         region_abort(resv, idx, idx + 1, 1);
2171                         ret = region_del(resv, idx, idx + 1);
2172                 }
2173                 break;
2174         default:
2175                 BUG();
2176         }
2177
2178         if (vma->vm_flags & VM_MAYSHARE)
2179                 return ret;
2180         /*
2181          * We know private mapping must have HPAGE_RESV_OWNER set.
2182          *
2183          * In most cases, reserves always exist for private mappings.
2184          * However, a file associated with mapping could have been
2185          * hole punched or truncated after reserves were consumed.
2186          * As subsequent fault on such a range will not use reserves.
2187          * Subtle - The reserve map for private mappings has the
2188          * opposite meaning than that of shared mappings.  If NO
2189          * entry is in the reserve map, it means a reservation exists.
2190          * If an entry exists in the reserve map, it means the
2191          * reservation has already been consumed.  As a result, the
2192          * return value of this routine is the opposite of the
2193          * value returned from reserve map manipulation routines above.
2194          */
2195         if (ret > 0)
2196                 return 0;
2197         if (ret == 0)
2198                 return 1;
2199         return ret;
2200 }
2201
2202 static long vma_needs_reservation(struct hstate *h,
2203                         struct vm_area_struct *vma, unsigned long addr)
2204 {
2205         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2206 }
2207
2208 static long vma_commit_reservation(struct hstate *h,
2209                         struct vm_area_struct *vma, unsigned long addr)
2210 {
2211         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2212 }
2213
2214 static void vma_end_reservation(struct hstate *h,
2215                         struct vm_area_struct *vma, unsigned long addr)
2216 {
2217         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2218 }
2219
2220 static long vma_add_reservation(struct hstate *h,
2221                         struct vm_area_struct *vma, unsigned long addr)
2222 {
2223         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2224 }
2225
2226 /*
2227  * This routine is called to restore a reservation on error paths.  In the
2228  * specific error paths, a huge page was allocated (via alloc_huge_page)
2229  * and is about to be freed.  If a reservation for the page existed,
2230  * alloc_huge_page would have consumed the reservation and set
2231  * HPageRestoreReserve in the newly allocated page.  When the page is freed
2232  * via free_huge_page, the global reservation count will be incremented if
2233  * HPageRestoreReserve is set.  However, free_huge_page can not adjust the
2234  * reserve map.  Adjust the reserve map here to be consistent with global
2235  * reserve count adjustments to be made by free_huge_page.
2236  */
2237 static void restore_reserve_on_error(struct hstate *h,
2238                         struct vm_area_struct *vma, unsigned long address,
2239                         struct page *page)
2240 {
2241         if (unlikely(HPageRestoreReserve(page))) {
2242                 long rc = vma_needs_reservation(h, vma, address);
2243
2244                 if (unlikely(rc < 0)) {
2245                         /*
2246                          * Rare out of memory condition in reserve map
2247                          * manipulation.  Clear HPageRestoreReserve so that
2248                          * global reserve count will not be incremented
2249                          * by free_huge_page.  This will make it appear
2250                          * as though the reservation for this page was
2251                          * consumed.  This may prevent the task from
2252                          * faulting in the page at a later time.  This
2253                          * is better than inconsistent global huge page
2254                          * accounting of reserve counts.
2255                          */
2256                         ClearHPageRestoreReserve(page);
2257                 } else if (rc) {
2258                         rc = vma_add_reservation(h, vma, address);
2259                         if (unlikely(rc < 0))
2260                                 /*
2261                                  * See above comment about rare out of
2262                                  * memory condition.
2263                                  */
2264                                 ClearHPageRestoreReserve(page);
2265                 } else
2266                         vma_end_reservation(h, vma, address);
2267         }
2268 }
2269
2270 /*
2271  * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2272  * @h: struct hstate old page belongs to
2273  * @old_page: Old page to dissolve
2274  * @list: List to isolate the page in case we need to
2275  * Returns 0 on success, otherwise negated error.
2276  */
2277 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2278                                         struct list_head *list)
2279 {
2280         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2281         int nid = page_to_nid(old_page);
2282         struct page *new_page;
2283         int ret = 0;
2284
2285         /*
2286          * Before dissolving the page, we need to allocate a new one for the
2287          * pool to remain stable. Using alloc_buddy_huge_page() allows us to
2288          * not having to deal with prep_new_huge_page() and avoids dealing of any
2289          * counters. This simplifies and let us do the whole thing under the
2290          * lock.
2291          */
2292         new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2293         if (!new_page)
2294                 return -ENOMEM;
2295
2296 retry:
2297         spin_lock_irq(&hugetlb_lock);
2298         if (!PageHuge(old_page)) {
2299                 /*
2300                  * Freed from under us. Drop new_page too.
2301                  */
2302                 goto free_new;
2303         } else if (page_count(old_page)) {
2304                 /*
2305                  * Someone has grabbed the page, try to isolate it here.
2306                  * Fail with -EBUSY if not possible.
2307                  */
2308                 spin_unlock_irq(&hugetlb_lock);
2309                 if (!isolate_huge_page(old_page, list))
2310                         ret = -EBUSY;
2311                 spin_lock_irq(&hugetlb_lock);
2312                 goto free_new;
2313         } else if (!HPageFreed(old_page)) {
2314                 /*
2315                  * Page's refcount is 0 but it has not been enqueued in the
2316                  * freelist yet. Race window is small, so we can succeed here if
2317                  * we retry.
2318                  */
2319                 spin_unlock_irq(&hugetlb_lock);
2320                 cond_resched();
2321                 goto retry;
2322         } else {
2323                 /*
2324                  * Ok, old_page is still a genuine free hugepage. Remove it from
2325                  * the freelist and decrease the counters. These will be
2326                  * incremented again when calling __prep_account_new_huge_page()
2327                  * and enqueue_huge_page() for new_page. The counters will remain
2328                  * stable since this happens under the lock.
2329                  */
2330                 remove_hugetlb_page(h, old_page, false);
2331
2332                 /*
2333                  * new_page needs to be initialized with the standard hugetlb
2334                  * state. This is normally done by prep_new_huge_page() but
2335                  * that takes hugetlb_lock which is already held so we need to
2336                  * open code it here.
2337                  * Reference count trick is needed because allocator gives us
2338                  * referenced page but the pool requires pages with 0 refcount.
2339                  */
2340                 __prep_new_huge_page(new_page);
2341                 __prep_account_new_huge_page(h, nid);
2342                 page_ref_dec(new_page);
2343                 enqueue_huge_page(h, new_page);
2344
2345                 /*
2346                  * Pages have been replaced, we can safely free the old one.
2347                  */
2348                 spin_unlock_irq(&hugetlb_lock);
2349                 update_and_free_page(h, old_page);
2350         }
2351
2352         return ret;
2353
2354 free_new:
2355         spin_unlock_irq(&hugetlb_lock);
2356         __free_pages(new_page, huge_page_order(h));
2357
2358         return ret;
2359 }
2360
2361 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2362 {
2363         struct hstate *h;
2364         struct page *head;
2365         int ret = -EBUSY;
2366
2367         /*
2368          * The page might have been dissolved from under our feet, so make sure
2369          * to carefully check the state under the lock.
2370          * Return success when racing as if we dissolved the page ourselves.
2371          */
2372         spin_lock_irq(&hugetlb_lock);
2373         if (PageHuge(page)) {
2374                 head = compound_head(page);
2375                 h = page_hstate(head);
2376         } else {
2377                 spin_unlock_irq(&hugetlb_lock);
2378                 return 0;
2379         }
2380         spin_unlock_irq(&hugetlb_lock);
2381
2382         /*
2383          * Fence off gigantic pages as there is a cyclic dependency between
2384          * alloc_contig_range and them. Return -ENOMEM as this has the effect
2385          * of bailing out right away without further retrying.
2386          */
2387         if (hstate_is_gigantic(h))
2388                 return -ENOMEM;
2389
2390         if (page_count(head) && isolate_huge_page(head, list))
2391                 ret = 0;
2392         else if (!page_count(head))
2393                 ret = alloc_and_dissolve_huge_page(h, head, list);
2394
2395         return ret;
2396 }
2397
2398 struct page *alloc_huge_page(struct vm_area_struct *vma,
2399                                     unsigned long addr, int avoid_reserve)
2400 {
2401         struct hugepage_subpool *spool = subpool_vma(vma);
2402         struct hstate *h = hstate_vma(vma);
2403         struct page *page;
2404         long map_chg, map_commit;
2405         long gbl_chg;
2406         int ret, idx;
2407         struct hugetlb_cgroup *h_cg;
2408         bool deferred_reserve;
2409
2410         idx = hstate_index(h);
2411         /*
2412          * Examine the region/reserve map to determine if the process
2413          * has a reservation for the page to be allocated.  A return
2414          * code of zero indicates a reservation exists (no change).
2415          */
2416         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2417         if (map_chg < 0)
2418                 return ERR_PTR(-ENOMEM);
2419
2420         /*
2421          * Processes that did not create the mapping will have no
2422          * reserves as indicated by the region/reserve map. Check
2423          * that the allocation will not exceed the subpool limit.
2424          * Allocations for MAP_NORESERVE mappings also need to be
2425          * checked against any subpool limit.
2426          */
2427         if (map_chg || avoid_reserve) {
2428                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2429                 if (gbl_chg < 0) {
2430                         vma_end_reservation(h, vma, addr);
2431                         return ERR_PTR(-ENOSPC);
2432                 }
2433
2434                 /*
2435                  * Even though there was no reservation in the region/reserve
2436                  * map, there could be reservations associated with the
2437                  * subpool that can be used.  This would be indicated if the
2438                  * return value of hugepage_subpool_get_pages() is zero.
2439                  * However, if avoid_reserve is specified we still avoid even
2440                  * the subpool reservations.
2441                  */
2442                 if (avoid_reserve)
2443                         gbl_chg = 1;
2444         }
2445
2446         /* If this allocation is not consuming a reservation, charge it now.
2447          */
2448         deferred_reserve = map_chg || avoid_reserve;
2449         if (deferred_reserve) {
2450                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2451                         idx, pages_per_huge_page(h), &h_cg);
2452                 if (ret)
2453                         goto out_subpool_put;
2454         }
2455
2456         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2457         if (ret)
2458                 goto out_uncharge_cgroup_reservation;
2459
2460         spin_lock_irq(&hugetlb_lock);
2461         /*
2462          * glb_chg is passed to indicate whether or not a page must be taken
2463          * from the global free pool (global change).  gbl_chg == 0 indicates
2464          * a reservation exists for the allocation.
2465          */
2466         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2467         if (!page) {
2468                 spin_unlock_irq(&hugetlb_lock);
2469                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2470                 if (!page)
2471                         goto out_uncharge_cgroup;
2472                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2473                         SetHPageRestoreReserve(page);
2474                         h->resv_huge_pages--;
2475                 }
2476                 spin_lock_irq(&hugetlb_lock);
2477                 list_add(&page->lru, &h->hugepage_activelist);
2478                 /* Fall through */
2479         }
2480         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2481         /* If allocation is not consuming a reservation, also store the
2482          * hugetlb_cgroup pointer on the page.
2483          */
2484         if (deferred_reserve) {
2485                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2486                                                   h_cg, page);
2487         }
2488
2489         spin_unlock_irq(&hugetlb_lock);
2490
2491         hugetlb_set_page_subpool(page, spool);
2492
2493         map_commit = vma_commit_reservation(h, vma, addr);
2494         if (unlikely(map_chg > map_commit)) {
2495                 /*
2496                  * The page was added to the reservation map between
2497                  * vma_needs_reservation and vma_commit_reservation.
2498                  * This indicates a race with hugetlb_reserve_pages.
2499                  * Adjust for the subpool count incremented above AND
2500                  * in hugetlb_reserve_pages for the same page.  Also,
2501                  * the reservation count added in hugetlb_reserve_pages
2502                  * no longer applies.
2503                  */
2504                 long rsv_adjust;
2505
2506                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2507                 hugetlb_acct_memory(h, -rsv_adjust);
2508                 if (deferred_reserve)
2509                         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2510                                         pages_per_huge_page(h), page);
2511         }
2512         return page;
2513
2514 out_uncharge_cgroup:
2515         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2516 out_uncharge_cgroup_reservation:
2517         if (deferred_reserve)
2518                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2519                                                     h_cg);
2520 out_subpool_put:
2521         if (map_chg || avoid_reserve)
2522                 hugepage_subpool_put_pages(spool, 1);
2523         vma_end_reservation(h, vma, addr);
2524         return ERR_PTR(-ENOSPC);
2525 }
2526
2527 int alloc_bootmem_huge_page(struct hstate *h)
2528         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2529 int __alloc_bootmem_huge_page(struct hstate *h)
2530 {
2531         struct huge_bootmem_page *m;
2532         int nr_nodes, node;
2533
2534         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2535                 void *addr;
2536
2537                 addr = memblock_alloc_try_nid_raw(
2538                                 huge_page_size(h), huge_page_size(h),
2539                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2540                 if (addr) {
2541                         /*
2542                          * Use the beginning of the huge page to store the
2543                          * huge_bootmem_page struct (until gather_bootmem
2544                          * puts them into the mem_map).
2545                          */
2546                         m = addr;
2547                         goto found;
2548                 }
2549         }
2550         return 0;
2551
2552 found:
2553         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2554         /* Put them into a private list first because mem_map is not up yet */
2555         INIT_LIST_HEAD(&m->list);
2556         list_add(&m->list, &huge_boot_pages);
2557         m->hstate = h;
2558         return 1;
2559 }
2560
2561 static void __init prep_compound_huge_page(struct page *page,
2562                 unsigned int order)
2563 {
2564         if (unlikely(order > (MAX_ORDER - 1)))
2565                 prep_compound_gigantic_page(page, order);
2566         else
2567                 prep_compound_page(page, order);
2568 }
2569
2570 /* Put bootmem huge pages into the standard lists after mem_map is up */
2571 static void __init gather_bootmem_prealloc(void)
2572 {
2573         struct huge_bootmem_page *m;
2574
2575         list_for_each_entry(m, &huge_boot_pages, list) {
2576                 struct page *page = virt_to_page(m);
2577                 struct hstate *h = m->hstate;
2578
2579                 WARN_ON(page_count(page) != 1);
2580                 prep_compound_huge_page(page, huge_page_order(h));
2581                 WARN_ON(PageReserved(page));
2582                 prep_new_huge_page(h, page, page_to_nid(page));
2583                 put_page(page); /* free it into the hugepage allocator */
2584
2585                 /*
2586                  * If we had gigantic hugepages allocated at boot time, we need
2587                  * to restore the 'stolen' pages to totalram_pages in order to
2588                  * fix confusing memory reports from free(1) and another
2589                  * side-effects, like CommitLimit going negative.
2590                  */
2591                 if (hstate_is_gigantic(h))
2592                         adjust_managed_page_count(page, pages_per_huge_page(h));
2593                 cond_resched();
2594         }
2595 }
2596
2597 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2598 {
2599         unsigned long i;
2600         nodemask_t *node_alloc_noretry;
2601
2602         if (!hstate_is_gigantic(h)) {
2603                 /*
2604                  * Bit mask controlling how hard we retry per-node allocations.
2605                  * Ignore errors as lower level routines can deal with
2606                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2607                  * time, we are likely in bigger trouble.
2608                  */
2609                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2610                                                 GFP_KERNEL);
2611         } else {
2612                 /* allocations done at boot time */
2613                 node_alloc_noretry = NULL;
2614         }
2615
2616         /* bit mask controlling how hard we retry per-node allocations */
2617         if (node_alloc_noretry)
2618                 nodes_clear(*node_alloc_noretry);
2619
2620         for (i = 0; i < h->max_huge_pages; ++i) {
2621                 if (hstate_is_gigantic(h)) {
2622                         if (hugetlb_cma_size) {
2623                                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2624                                 goto free;
2625                         }
2626                         if (!alloc_bootmem_huge_page(h))
2627                                 break;
2628                 } else if (!alloc_pool_huge_page(h,
2629                                          &node_states[N_MEMORY],
2630                                          node_alloc_noretry))
2631                         break;
2632                 cond_resched();
2633         }
2634         if (i < h->max_huge_pages) {
2635                 char buf[32];
2636
2637                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2638                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2639                         h->max_huge_pages, buf, i);
2640                 h->max_huge_pages = i;
2641         }
2642 free:
2643         kfree(node_alloc_noretry);
2644 }
2645
2646 static void __init hugetlb_init_hstates(void)
2647 {
2648         struct hstate *h;
2649
2650         for_each_hstate(h) {
2651                 if (minimum_order > huge_page_order(h))
2652                         minimum_order = huge_page_order(h);
2653
2654                 /* oversize hugepages were init'ed in early boot */
2655                 if (!hstate_is_gigantic(h))
2656                         hugetlb_hstate_alloc_pages(h);
2657         }
2658         VM_BUG_ON(minimum_order == UINT_MAX);
2659 }
2660
2661 static void __init report_hugepages(void)
2662 {
2663         struct hstate *h;
2664
2665         for_each_hstate(h) {
2666                 char buf[32];
2667
2668                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2669                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2670                         buf, h->free_huge_pages);
2671         }
2672 }
2673
2674 #ifdef CONFIG_HIGHMEM
2675 static void try_to_free_low(struct hstate *h, unsigned long count,
2676                                                 nodemask_t *nodes_allowed)
2677 {
2678         int i;
2679         LIST_HEAD(page_list);
2680
2681         lockdep_assert_held(&hugetlb_lock);
2682         if (hstate_is_gigantic(h))
2683                 return;
2684
2685         /*
2686          * Collect pages to be freed on a list, and free after dropping lock
2687          */
2688         for_each_node_mask(i, *nodes_allowed) {
2689                 struct page *page, *next;
2690                 struct list_head *freel = &h->hugepage_freelists[i];
2691                 list_for_each_entry_safe(page, next, freel, lru) {
2692                         if (count >= h->nr_huge_pages)
2693                                 goto out;
2694                         if (PageHighMem(page))
2695                                 continue;
2696                         remove_hugetlb_page(h, page, false);
2697                         list_add(&page->lru, &page_list);
2698                 }
2699         }
2700
2701 out:
2702         spin_unlock_irq(&hugetlb_lock);
2703         update_and_free_pages_bulk(h, &page_list);
2704         spin_lock_irq(&hugetlb_lock);
2705 }
2706 #else
2707 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2708                                                 nodemask_t *nodes_allowed)
2709 {
2710 }
2711 #endif
2712
2713 /*
2714  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2715  * balanced by operating on them in a round-robin fashion.
2716  * Returns 1 if an adjustment was made.
2717  */
2718 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2719                                 int delta)
2720 {
2721         int nr_nodes, node;
2722
2723         lockdep_assert_held(&hugetlb_lock);
2724         VM_BUG_ON(delta != -1 && delta != 1);
2725
2726         if (delta < 0) {
2727                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2728                         if (h->surplus_huge_pages_node[node])
2729                                 goto found;
2730                 }
2731         } else {
2732                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2733                         if (h->surplus_huge_pages_node[node] <
2734                                         h->nr_huge_pages_node[node])
2735                                 goto found;
2736                 }
2737         }
2738         return 0;
2739
2740 found:
2741         h->surplus_huge_pages += delta;
2742         h->surplus_huge_pages_node[node] += delta;
2743         return 1;
2744 }
2745
2746 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2747 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2748                               nodemask_t *nodes_allowed)
2749 {
2750         unsigned long min_count, ret;
2751         struct page *page;
2752         LIST_HEAD(page_list);
2753         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2754
2755         /*
2756          * Bit mask controlling how hard we retry per-node allocations.
2757          * If we can not allocate the bit mask, do not attempt to allocate
2758          * the requested huge pages.
2759          */
2760         if (node_alloc_noretry)
2761                 nodes_clear(*node_alloc_noretry);
2762         else
2763                 return -ENOMEM;
2764
2765         /*
2766          * resize_lock mutex prevents concurrent adjustments to number of
2767          * pages in hstate via the proc/sysfs interfaces.
2768          */
2769         mutex_lock(&h->resize_lock);
2770         spin_lock_irq(&hugetlb_lock);
2771
2772         /*
2773          * Check for a node specific request.
2774          * Changing node specific huge page count may require a corresponding
2775          * change to the global count.  In any case, the passed node mask
2776          * (nodes_allowed) will restrict alloc/free to the specified node.
2777          */
2778         if (nid != NUMA_NO_NODE) {
2779                 unsigned long old_count = count;
2780
2781                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2782                 /*
2783                  * User may have specified a large count value which caused the
2784                  * above calculation to overflow.  In this case, they wanted
2785                  * to allocate as many huge pages as possible.  Set count to
2786                  * largest possible value to align with their intention.
2787                  */
2788                 if (count < old_count)
2789                         count = ULONG_MAX;
2790         }
2791
2792         /*
2793          * Gigantic pages runtime allocation depend on the capability for large
2794          * page range allocation.
2795          * If the system does not provide this feature, return an error when
2796          * the user tries to allocate gigantic pages but let the user free the
2797          * boottime allocated gigantic pages.
2798          */
2799         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2800                 if (count > persistent_huge_pages(h)) {
2801                         spin_unlock_irq(&hugetlb_lock);
2802                         mutex_unlock(&h->resize_lock);
2803                         NODEMASK_FREE(node_alloc_noretry);
2804                         return -EINVAL;
2805                 }
2806                 /* Fall through to decrease pool */
2807         }
2808
2809         /*
2810          * Increase the pool size
2811          * First take pages out of surplus state.  Then make up the
2812          * remaining difference by allocating fresh huge pages.
2813          *
2814          * We might race with alloc_surplus_huge_page() here and be unable
2815          * to convert a surplus huge page to a normal huge page. That is
2816          * not critical, though, it just means the overall size of the
2817          * pool might be one hugepage larger than it needs to be, but
2818          * within all the constraints specified by the sysctls.
2819          */
2820         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2821                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2822                         break;
2823         }
2824
2825         while (count > persistent_huge_pages(h)) {
2826                 /*
2827                  * If this allocation races such that we no longer need the
2828                  * page, free_huge_page will handle it by freeing the page
2829                  * and reducing the surplus.
2830                  */
2831                 spin_unlock_irq(&hugetlb_lock);
2832
2833                 /* yield cpu to avoid soft lockup */
2834                 cond_resched();
2835
2836                 ret = alloc_pool_huge_page(h, nodes_allowed,
2837                                                 node_alloc_noretry);
2838                 spin_lock_irq(&hugetlb_lock);
2839                 if (!ret)
2840                         goto out;
2841
2842                 /* Bail for signals. Probably ctrl-c from user */
2843                 if (signal_pending(current))
2844                         goto out;
2845         }
2846
2847         /*
2848          * Decrease the pool size
2849          * First return free pages to the buddy allocator (being careful
2850          * to keep enough around to satisfy reservations).  Then place
2851          * pages into surplus state as needed so the pool will shrink
2852          * to the desired size as pages become free.
2853          *
2854          * By placing pages into the surplus state independent of the
2855          * overcommit value, we are allowing the surplus pool size to
2856          * exceed overcommit. There are few sane options here. Since
2857          * alloc_surplus_huge_page() is checking the global counter,
2858          * though, we'll note that we're not allowed to exceed surplus
2859          * and won't grow the pool anywhere else. Not until one of the
2860          * sysctls are changed, or the surplus pages go out of use.
2861          */
2862         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2863         min_count = max(count, min_count);
2864         try_to_free_low(h, min_count, nodes_allowed);
2865
2866         /*
2867          * Collect pages to be removed on list without dropping lock
2868          */
2869         while (min_count < persistent_huge_pages(h)) {
2870                 page = remove_pool_huge_page(h, nodes_allowed, 0);
2871                 if (!page)
2872                         break;
2873
2874                 list_add(&page->lru, &page_list);
2875         }
2876         /* free the pages after dropping lock */
2877         spin_unlock_irq(&hugetlb_lock);
2878         update_and_free_pages_bulk(h, &page_list);
2879         spin_lock_irq(&hugetlb_lock);
2880
2881         while (count < persistent_huge_pages(h)) {
2882                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2883                         break;
2884         }
2885 out:
2886         h->max_huge_pages = persistent_huge_pages(h);
2887         spin_unlock_irq(&hugetlb_lock);
2888         mutex_unlock(&h->resize_lock);
2889
2890         NODEMASK_FREE(node_alloc_noretry);
2891
2892         return 0;
2893 }
2894
2895 #define HSTATE_ATTR_RO(_name) \
2896         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2897
2898 #define HSTATE_ATTR(_name) \
2899         static struct kobj_attribute _name##_attr = \
2900                 __ATTR(_name, 0644, _name##_show, _name##_store)
2901
2902 static struct kobject *hugepages_kobj;
2903 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2904
2905 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2906
2907 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2908 {
2909         int i;
2910
2911         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2912                 if (hstate_kobjs[i] == kobj) {
2913                         if (nidp)
2914                                 *nidp = NUMA_NO_NODE;
2915                         return &hstates[i];
2916                 }
2917
2918         return kobj_to_node_hstate(kobj, nidp);
2919 }
2920
2921 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2922                                         struct kobj_attribute *attr, char *buf)
2923 {
2924         struct hstate *h;
2925         unsigned long nr_huge_pages;
2926         int nid;
2927
2928         h = kobj_to_hstate(kobj, &nid);
2929         if (nid == NUMA_NO_NODE)
2930                 nr_huge_pages = h->nr_huge_pages;
2931         else
2932                 nr_huge_pages = h->nr_huge_pages_node[nid];
2933
2934         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
2935 }
2936
2937 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2938                                            struct hstate *h, int nid,
2939                                            unsigned long count, size_t len)
2940 {
2941         int err;
2942         nodemask_t nodes_allowed, *n_mask;
2943
2944         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2945                 return -EINVAL;
2946
2947         if (nid == NUMA_NO_NODE) {
2948                 /*
2949                  * global hstate attribute
2950                  */
2951                 if (!(obey_mempolicy &&
2952                                 init_nodemask_of_mempolicy(&nodes_allowed)))
2953                         n_mask = &node_states[N_MEMORY];
2954                 else
2955                         n_mask = &nodes_allowed;
2956         } else {
2957                 /*
2958                  * Node specific request.  count adjustment happens in
2959                  * set_max_huge_pages() after acquiring hugetlb_lock.
2960                  */
2961                 init_nodemask_of_node(&nodes_allowed, nid);
2962                 n_mask = &nodes_allowed;
2963         }
2964
2965         err = set_max_huge_pages(h, count, nid, n_mask);
2966
2967         return err ? err : len;
2968 }
2969
2970 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2971                                          struct kobject *kobj, const char *buf,
2972                                          size_t len)
2973 {
2974         struct hstate *h;
2975         unsigned long count;
2976         int nid;
2977         int err;
2978
2979         err = kstrtoul(buf, 10, &count);
2980         if (err)
2981                 return err;
2982
2983         h = kobj_to_hstate(kobj, &nid);
2984         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2985 }
2986
2987 static ssize_t nr_hugepages_show(struct kobject *kobj,
2988                                        struct kobj_attribute *attr, char *buf)
2989 {
2990         return nr_hugepages_show_common(kobj, attr, buf);
2991 }
2992
2993 static ssize_t nr_hugepages_store(struct kobject *kobj,
2994                struct kobj_attribute *attr, const char *buf, size_t len)
2995 {
2996         return nr_hugepages_store_common(false, kobj, buf, len);
2997 }
2998 HSTATE_ATTR(nr_hugepages);
2999
3000 #ifdef CONFIG_NUMA
3001
3002 /*
3003  * hstate attribute for optionally mempolicy-based constraint on persistent
3004  * huge page alloc/free.
3005  */
3006 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3007                                            struct kobj_attribute *attr,
3008                                            char *buf)
3009 {
3010         return nr_hugepages_show_common(kobj, attr, buf);
3011 }
3012
3013 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3014                struct kobj_attribute *attr, const char *buf, size_t len)
3015 {
3016         return nr_hugepages_store_common(true, kobj, buf, len);
3017 }
3018 HSTATE_ATTR(nr_hugepages_mempolicy);
3019 #endif
3020
3021
3022 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3023                                         struct kobj_attribute *attr, char *buf)
3024 {
3025         struct hstate *h = kobj_to_hstate(kobj, NULL);
3026         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3027 }
3028
3029 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3030                 struct kobj_attribute *attr, const char *buf, size_t count)
3031 {
3032         int err;
3033         unsigned long input;
3034         struct hstate *h = kobj_to_hstate(kobj, NULL);
3035
3036         if (hstate_is_gigantic(h))
3037                 return -EINVAL;
3038
3039         err = kstrtoul(buf, 10, &input);
3040         if (err)
3041                 return err;
3042
3043         spin_lock_irq(&hugetlb_lock);
3044         h->nr_overcommit_huge_pages = input;
3045         spin_unlock_irq(&hugetlb_lock);
3046
3047         return count;
3048 }
3049 HSTATE_ATTR(nr_overcommit_hugepages);
3050
3051 static ssize_t free_hugepages_show(struct kobject *kobj,
3052                                         struct kobj_attribute *attr, char *buf)
3053 {
3054         struct hstate *h;
3055         unsigned long free_huge_pages;
3056         int nid;
3057
3058         h = kobj_to_hstate(kobj, &nid);
3059         if (nid == NUMA_NO_NODE)
3060                 free_huge_pages = h->free_huge_pages;
3061         else
3062                 free_huge_pages = h->free_huge_pages_node[nid];
3063
3064         return sysfs_emit(buf, "%lu\n", free_huge_pages);
3065 }
3066 HSTATE_ATTR_RO(free_hugepages);
3067
3068 static ssize_t resv_hugepages_show(struct kobject *kobj,
3069                                         struct kobj_attribute *attr, char *buf)
3070 {
3071         struct hstate *h = kobj_to_hstate(kobj, NULL);
3072         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3073 }
3074 HSTATE_ATTR_RO(resv_hugepages);
3075
3076 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3077                                         struct kobj_attribute *attr, char *buf)
3078 {
3079         struct hstate *h;
3080         unsigned long surplus_huge_pages;
3081         int nid;
3082
3083         h = kobj_to_hstate(kobj, &nid);
3084         if (nid == NUMA_NO_NODE)
3085                 surplus_huge_pages = h->surplus_huge_pages;
3086         else
3087                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3088
3089         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3090 }
3091 HSTATE_ATTR_RO(surplus_hugepages);
3092
3093 static struct attribute *hstate_attrs[] = {
3094         &nr_hugepages_attr.attr,
3095         &nr_overcommit_hugepages_attr.attr,
3096         &free_hugepages_attr.attr,
3097         &resv_hugepages_attr.attr,
3098         &surplus_hugepages_attr.attr,
3099 #ifdef CONFIG_NUMA
3100         &nr_hugepages_mempolicy_attr.attr,
3101 #endif
3102         NULL,
3103 };
3104
3105 static const struct attribute_group hstate_attr_group = {
3106         .attrs = hstate_attrs,
3107 };
3108
3109 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3110                                     struct kobject **hstate_kobjs,
3111                                     const struct attribute_group *hstate_attr_group)
3112 {
3113         int retval;
3114         int hi = hstate_index(h);
3115
3116         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3117         if (!hstate_kobjs[hi])
3118                 return -ENOMEM;
3119
3120         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3121         if (retval) {
3122                 kobject_put(hstate_kobjs[hi]);
3123                 hstate_kobjs[hi] = NULL;
3124         }
3125
3126         return retval;
3127 }
3128
3129 static void __init hugetlb_sysfs_init(void)
3130 {
3131         struct hstate *h;
3132         int err;
3133
3134         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3135         if (!hugepages_kobj)
3136                 return;
3137
3138         for_each_hstate(h) {
3139                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3140                                          hstate_kobjs, &hstate_attr_group);
3141                 if (err)
3142                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
3143         }
3144 }
3145
3146 #ifdef CONFIG_NUMA
3147
3148 /*
3149  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3150  * with node devices in node_devices[] using a parallel array.  The array
3151  * index of a node device or _hstate == node id.
3152  * This is here to avoid any static dependency of the node device driver, in
3153  * the base kernel, on the hugetlb module.
3154  */
3155 struct node_hstate {
3156         struct kobject          *hugepages_kobj;
3157         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
3158 };
3159 static struct node_hstate node_hstates[MAX_NUMNODES];
3160
3161 /*
3162  * A subset of global hstate attributes for node devices
3163  */
3164 static struct attribute *per_node_hstate_attrs[] = {
3165         &nr_hugepages_attr.attr,
3166         &free_hugepages_attr.attr,
3167         &surplus_hugepages_attr.attr,
3168         NULL,
3169 };
3170
3171 static const struct attribute_group per_node_hstate_attr_group = {
3172         .attrs = per_node_hstate_attrs,
3173 };
3174
3175 /*
3176  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3177  * Returns node id via non-NULL nidp.
3178  */
3179 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3180 {
3181         int nid;
3182
3183         for (nid = 0; nid < nr_node_ids; nid++) {
3184                 struct node_hstate *nhs = &node_hstates[nid];
3185                 int i;
3186                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3187                         if (nhs->hstate_kobjs[i] == kobj) {
3188                                 if (nidp)
3189                                         *nidp = nid;
3190                                 return &hstates[i];
3191                         }
3192         }
3193
3194         BUG();
3195         return NULL;
3196 }
3197
3198 /*
3199  * Unregister hstate attributes from a single node device.
3200  * No-op if no hstate attributes attached.
3201  */
3202 static void hugetlb_unregister_node(struct node *node)
3203 {
3204         struct hstate *h;
3205         struct node_hstate *nhs = &node_hstates[node->dev.id];
3206
3207         if (!nhs->hugepages_kobj)
3208                 return;         /* no hstate attributes */
3209
3210         for_each_hstate(h) {
3211                 int idx = hstate_index(h);
3212                 if (nhs->hstate_kobjs[idx]) {
3213                         kobject_put(nhs->hstate_kobjs[idx]);
3214                         nhs->hstate_kobjs[idx] = NULL;
3215                 }
3216         }
3217
3218         kobject_put(nhs->hugepages_kobj);
3219         nhs->hugepages_kobj = NULL;
3220 }
3221
3222
3223 /*
3224  * Register hstate attributes for a single node device.
3225  * No-op if attributes already registered.
3226  */
3227 static void hugetlb_register_node(struct node *node)
3228 {
3229         struct hstate *h;
3230         struct node_hstate *nhs = &node_hstates[node->dev.id];
3231         int err;
3232
3233         if (nhs->hugepages_kobj)
3234                 return;         /* already allocated */
3235
3236         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3237                                                         &node->dev.kobj);
3238         if (!nhs->hugepages_kobj)
3239                 return;
3240
3241         for_each_hstate(h) {
3242                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3243                                                 nhs->hstate_kobjs,
3244                                                 &per_node_hstate_attr_group);
3245                 if (err) {
3246                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3247                                 h->name, node->dev.id);
3248                         hugetlb_unregister_node(node);
3249                         break;
3250                 }
3251         }
3252 }
3253
3254 /*
3255  * hugetlb init time:  register hstate attributes for all registered node
3256  * devices of nodes that have memory.  All on-line nodes should have
3257  * registered their associated device by this time.
3258  */
3259 static void __init hugetlb_register_all_nodes(void)
3260 {
3261         int nid;
3262
3263         for_each_node_state(nid, N_MEMORY) {
3264                 struct node *node = node_devices[nid];
3265                 if (node->dev.id == nid)
3266                         hugetlb_register_node(node);
3267         }
3268
3269         /*
3270          * Let the node device driver know we're here so it can
3271          * [un]register hstate attributes on node hotplug.
3272          */
3273         register_hugetlbfs_with_node(hugetlb_register_node,
3274                                      hugetlb_unregister_node);
3275 }
3276 #else   /* !CONFIG_NUMA */
3277
3278 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3279 {
3280         BUG();
3281         if (nidp)
3282                 *nidp = -1;
3283         return NULL;
3284 }
3285
3286 static void hugetlb_register_all_nodes(void) { }
3287
3288 #endif
3289
3290 static int __init hugetlb_init(void)
3291 {
3292         int i;
3293
3294         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3295                         __NR_HPAGEFLAGS);
3296
3297         if (!hugepages_supported()) {
3298                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3299                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3300                 return 0;
3301         }
3302
3303         /*
3304          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3305          * architectures depend on setup being done here.
3306          */
3307         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3308         if (!parsed_default_hugepagesz) {
3309                 /*
3310                  * If we did not parse a default huge page size, set
3311                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3312                  * number of huge pages for this default size was implicitly
3313                  * specified, set that here as well.
3314                  * Note that the implicit setting will overwrite an explicit
3315                  * setting.  A warning will be printed in this case.
3316                  */
3317                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3318                 if (default_hstate_max_huge_pages) {
3319                         if (default_hstate.max_huge_pages) {
3320                                 char buf[32];
3321
3322                                 string_get_size(huge_page_size(&default_hstate),
3323                                         1, STRING_UNITS_2, buf, 32);
3324                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3325                                         default_hstate.max_huge_pages, buf);
3326                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3327                                         default_hstate_max_huge_pages);
3328                         }
3329                         default_hstate.max_huge_pages =
3330                                 default_hstate_max_huge_pages;
3331                 }
3332         }
3333
3334         hugetlb_cma_check();
3335         hugetlb_init_hstates();
3336         gather_bootmem_prealloc();
3337         report_hugepages();
3338
3339         hugetlb_sysfs_init();
3340         hugetlb_register_all_nodes();
3341         hugetlb_cgroup_file_init();
3342
3343 #ifdef CONFIG_SMP
3344         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3345 #else
3346         num_fault_mutexes = 1;
3347 #endif
3348         hugetlb_fault_mutex_table =
3349                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3350                               GFP_KERNEL);
3351         BUG_ON(!hugetlb_fault_mutex_table);
3352
3353         for (i = 0; i < num_fault_mutexes; i++)
3354                 mutex_init(&hugetlb_fault_mutex_table[i]);
3355         return 0;
3356 }
3357 subsys_initcall(hugetlb_init);
3358
3359 /* Overwritten by architectures with more huge page sizes */
3360 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3361 {
3362         return size == HPAGE_SIZE;
3363 }
3364
3365 void __init hugetlb_add_hstate(unsigned int order)
3366 {
3367         struct hstate *h;
3368         unsigned long i;
3369
3370         if (size_to_hstate(PAGE_SIZE << order)) {
3371                 return;
3372         }
3373         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3374         BUG_ON(order == 0);
3375         h = &hstates[hugetlb_max_hstate++];
3376         mutex_init(&h->resize_lock);
3377         h->order = order;
3378         h->mask = ~(huge_page_size(h) - 1);
3379         for (i = 0; i < MAX_NUMNODES; ++i)
3380                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3381         INIT_LIST_HEAD(&h->hugepage_activelist);
3382         h->next_nid_to_alloc = first_memory_node;
3383         h->next_nid_to_free = first_memory_node;
3384         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3385                                         huge_page_size(h)/1024);
3386
3387         parsed_hstate = h;
3388 }
3389
3390 /*
3391  * hugepages command line processing
3392  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3393  * specification.  If not, ignore the hugepages value.  hugepages can also
3394  * be the first huge page command line  option in which case it implicitly
3395  * specifies the number of huge pages for the default size.
3396  */
3397 static int __init hugepages_setup(char *s)
3398 {
3399         unsigned long *mhp;
3400         static unsigned long *last_mhp;
3401
3402         if (!parsed_valid_hugepagesz) {
3403                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3404                 parsed_valid_hugepagesz = true;
3405                 return 0;
3406         }
3407
3408         /*
3409          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3410          * yet, so this hugepages= parameter goes to the "default hstate".
3411          * Otherwise, it goes with the previously parsed hugepagesz or
3412          * default_hugepagesz.
3413          */
3414         else if (!hugetlb_max_hstate)
3415                 mhp = &default_hstate_max_huge_pages;
3416         else
3417                 mhp = &parsed_hstate->max_huge_pages;
3418
3419         if (mhp == last_mhp) {
3420                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3421                 return 0;
3422         }
3423
3424         if (sscanf(s, "%lu", mhp) <= 0)
3425                 *mhp = 0;
3426
3427         /*
3428          * Global state is always initialized later in hugetlb_init.
3429          * But we need to allocate gigantic hstates here early to still
3430          * use the bootmem allocator.
3431          */
3432         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
3433                 hugetlb_hstate_alloc_pages(parsed_hstate);
3434
3435         last_mhp = mhp;
3436
3437         return 1;
3438 }
3439 __setup("hugepages=", hugepages_setup);
3440
3441 /*
3442  * hugepagesz command line processing
3443  * A specific huge page size can only be specified once with hugepagesz.
3444  * hugepagesz is followed by hugepages on the command line.  The global
3445  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3446  * hugepagesz argument was valid.
3447  */
3448 static int __init hugepagesz_setup(char *s)
3449 {
3450         unsigned long size;
3451         struct hstate *h;
3452
3453         parsed_valid_hugepagesz = false;
3454         size = (unsigned long)memparse(s, NULL);
3455
3456         if (!arch_hugetlb_valid_size(size)) {
3457                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3458                 return 0;
3459         }
3460
3461         h = size_to_hstate(size);
3462         if (h) {
3463                 /*
3464                  * hstate for this size already exists.  This is normally
3465                  * an error, but is allowed if the existing hstate is the
3466                  * default hstate.  More specifically, it is only allowed if
3467                  * the number of huge pages for the default hstate was not
3468                  * previously specified.
3469                  */
3470                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3471                     default_hstate.max_huge_pages) {
3472                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3473                         return 0;
3474                 }
3475
3476                 /*
3477                  * No need to call hugetlb_add_hstate() as hstate already
3478                  * exists.  But, do set parsed_hstate so that a following
3479                  * hugepages= parameter will be applied to this hstate.
3480                  */
3481                 parsed_hstate = h;
3482                 parsed_valid_hugepagesz = true;
3483                 return 1;
3484         }
3485
3486         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3487         parsed_valid_hugepagesz = true;
3488         return 1;
3489 }
3490 __setup("hugepagesz=", hugepagesz_setup);
3491
3492 /*
3493  * default_hugepagesz command line input
3494  * Only one instance of default_hugepagesz allowed on command line.
3495  */
3496 static int __init default_hugepagesz_setup(char *s)
3497 {
3498         unsigned long size;
3499
3500         parsed_valid_hugepagesz = false;
3501         if (parsed_default_hugepagesz) {
3502                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3503                 return 0;
3504         }
3505
3506         size = (unsigned long)memparse(s, NULL);
3507
3508         if (!arch_hugetlb_valid_size(size)) {
3509                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3510                 return 0;
3511         }
3512
3513         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3514         parsed_valid_hugepagesz = true;
3515         parsed_default_hugepagesz = true;
3516         default_hstate_idx = hstate_index(size_to_hstate(size));
3517
3518         /*
3519          * The number of default huge pages (for this size) could have been
3520          * specified as the first hugetlb parameter: hugepages=X.  If so,
3521          * then default_hstate_max_huge_pages is set.  If the default huge
3522          * page size is gigantic (>= MAX_ORDER), then the pages must be
3523          * allocated here from bootmem allocator.
3524          */
3525         if (default_hstate_max_huge_pages) {
3526                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3527                 if (hstate_is_gigantic(&default_hstate))
3528                         hugetlb_hstate_alloc_pages(&default_hstate);
3529                 default_hstate_max_huge_pages = 0;
3530         }
3531
3532         return 1;
3533 }
3534 __setup("default_hugepagesz=", default_hugepagesz_setup);
3535
3536 static unsigned int allowed_mems_nr(struct hstate *h)
3537 {
3538         int node;
3539         unsigned int nr = 0;
3540         nodemask_t *mpol_allowed;
3541         unsigned int *array = h->free_huge_pages_node;
3542         gfp_t gfp_mask = htlb_alloc_mask(h);
3543
3544         mpol_allowed = policy_nodemask_current(gfp_mask);
3545
3546         for_each_node_mask(node, cpuset_current_mems_allowed) {
3547                 if (!mpol_allowed || node_isset(node, *mpol_allowed))
3548                         nr += array[node];
3549         }
3550
3551         return nr;
3552 }
3553
3554 #ifdef CONFIG_SYSCTL
3555 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3556                                           void *buffer, size_t *length,
3557                                           loff_t *ppos, unsigned long *out)
3558 {
3559         struct ctl_table dup_table;
3560
3561         /*
3562          * In order to avoid races with __do_proc_doulongvec_minmax(), we
3563          * can duplicate the @table and alter the duplicate of it.
3564          */
3565         dup_table = *table;
3566         dup_table.data = out;
3567
3568         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3569 }
3570
3571 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3572                          struct ctl_table *table, int write,
3573                          void *buffer, size_t *length, loff_t *ppos)
3574 {
3575         struct hstate *h = &default_hstate;
3576         unsigned long tmp = h->max_huge_pages;
3577         int ret;
3578
3579         if (!hugepages_supported())
3580                 return -EOPNOTSUPP;
3581
3582         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3583                                              &tmp);
3584         if (ret)
3585                 goto out;
3586
3587         if (write)
3588                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3589                                                   NUMA_NO_NODE, tmp, *length);
3590 out:
3591         return ret;
3592 }
3593
3594 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3595                           void *buffer, size_t *length, loff_t *ppos)
3596 {
3597
3598         return hugetlb_sysctl_handler_common(false, table, write,
3599                                                         buffer, length, ppos);
3600 }
3601
3602 #ifdef CONFIG_NUMA
3603 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3604                           void *buffer, size_t *length, loff_t *ppos)
3605 {
3606         return hugetlb_sysctl_handler_common(true, table, write,
3607                                                         buffer, length, ppos);
3608 }
3609 #endif /* CONFIG_NUMA */
3610
3611 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3612                 void *buffer, size_t *length, loff_t *ppos)
3613 {
3614         struct hstate *h = &default_hstate;
3615         unsigned long tmp;
3616         int ret;
3617
3618         if (!hugepages_supported())
3619                 return -EOPNOTSUPP;
3620
3621         tmp = h->nr_overcommit_huge_pages;
3622
3623         if (write && hstate_is_gigantic(h))
3624                 return -EINVAL;
3625
3626         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3627                                              &tmp);
3628         if (ret)
3629                 goto out;
3630
3631         if (write) {
3632                 spin_lock_irq(&hugetlb_lock);
3633                 h->nr_overcommit_huge_pages = tmp;
3634                 spin_unlock_irq(&hugetlb_lock);
3635         }
3636 out:
3637         return ret;
3638 }
3639
3640 #endif /* CONFIG_SYSCTL */
3641
3642 void hugetlb_report_meminfo(struct seq_file *m)
3643 {
3644         struct hstate *h;
3645         unsigned long total = 0;
3646
3647         if (!hugepages_supported())
3648                 return;
3649
3650         for_each_hstate(h) {
3651                 unsigned long count = h->nr_huge_pages;
3652
3653                 total += huge_page_size(h) * count;
3654
3655                 if (h == &default_hstate)
3656                         seq_printf(m,
3657                                    "HugePages_Total:   %5lu\n"
3658                                    "HugePages_Free:    %5lu\n"
3659                                    "HugePages_Rsvd:    %5lu\n"
3660                                    "HugePages_Surp:    %5lu\n"
3661                                    "Hugepagesize:   %8lu kB\n",
3662                                    count,
3663                                    h->free_huge_pages,
3664                                    h->resv_huge_pages,
3665                                    h->surplus_huge_pages,
3666                                    huge_page_size(h) / SZ_1K);
3667         }
3668
3669         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
3670 }
3671
3672 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3673 {
3674         struct hstate *h = &default_hstate;
3675
3676         if (!hugepages_supported())
3677                 return 0;
3678
3679         return sysfs_emit_at(buf, len,
3680                              "Node %d HugePages_Total: %5u\n"
3681                              "Node %d HugePages_Free:  %5u\n"
3682                              "Node %d HugePages_Surp:  %5u\n",
3683                              nid, h->nr_huge_pages_node[nid],
3684                              nid, h->free_huge_pages_node[nid],
3685                              nid, h->surplus_huge_pages_node[nid]);
3686 }
3687
3688 void hugetlb_show_meminfo(void)
3689 {
3690         struct hstate *h;
3691         int nid;
3692
3693         if (!hugepages_supported())
3694                 return;
3695
3696         for_each_node_state(nid, N_MEMORY)
3697                 for_each_hstate(h)
3698                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3699                                 nid,
3700                                 h->nr_huge_pages_node[nid],
3701                                 h->free_huge_pages_node[nid],
3702                                 h->surplus_huge_pages_node[nid],
3703                                 huge_page_size(h) / SZ_1K);
3704 }
3705
3706 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3707 {
3708         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3709                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3710 }
3711
3712 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3713 unsigned long hugetlb_total_pages(void)
3714 {
3715         struct hstate *h;
3716         unsigned long nr_total_pages = 0;
3717
3718         for_each_hstate(h)
3719                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3720         return nr_total_pages;
3721 }
3722
3723 static int hugetlb_acct_memory(struct hstate *h, long delta)
3724 {
3725         int ret = -ENOMEM;
3726
3727         if (!delta)
3728                 return 0;
3729
3730         spin_lock_irq(&hugetlb_lock);
3731         /*
3732          * When cpuset is configured, it breaks the strict hugetlb page
3733          * reservation as the accounting is done on a global variable. Such
3734          * reservation is completely rubbish in the presence of cpuset because
3735          * the reservation is not checked against page availability for the
3736          * current cpuset. Application can still potentially OOM'ed by kernel
3737          * with lack of free htlb page in cpuset that the task is in.
3738          * Attempt to enforce strict accounting with cpuset is almost
3739          * impossible (or too ugly) because cpuset is too fluid that
3740          * task or memory node can be dynamically moved between cpusets.
3741          *
3742          * The change of semantics for shared hugetlb mapping with cpuset is
3743          * undesirable. However, in order to preserve some of the semantics,
3744          * we fall back to check against current free page availability as
3745          * a best attempt and hopefully to minimize the impact of changing
3746          * semantics that cpuset has.
3747          *
3748          * Apart from cpuset, we also have memory policy mechanism that
3749          * also determines from which node the kernel will allocate memory
3750          * in a NUMA system. So similar to cpuset, we also should consider
3751          * the memory policy of the current task. Similar to the description
3752          * above.
3753          */
3754         if (delta > 0) {
3755                 if (gather_surplus_pages(h, delta) < 0)
3756                         goto out;
3757
3758                 if (delta > allowed_mems_nr(h)) {
3759                         return_unused_surplus_pages(h, delta);
3760                         goto out;
3761                 }
3762         }
3763
3764         ret = 0;
3765         if (delta < 0)
3766                 return_unused_surplus_pages(h, (unsigned long) -delta);
3767
3768 out:
3769         spin_unlock_irq(&hugetlb_lock);
3770         return ret;
3771 }
3772
3773 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3774 {
3775         struct resv_map *resv = vma_resv_map(vma);
3776
3777         /*
3778          * This new VMA should share its siblings reservation map if present.
3779          * The VMA will only ever have a valid reservation map pointer where
3780          * it is being copied for another still existing VMA.  As that VMA
3781          * has a reference to the reservation map it cannot disappear until
3782          * after this open call completes.  It is therefore safe to take a
3783          * new reference here without additional locking.
3784          */
3785         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3786                 kref_get(&resv->refs);
3787 }
3788
3789 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3790 {
3791         struct hstate *h = hstate_vma(vma);
3792         struct resv_map *resv = vma_resv_map(vma);
3793         struct hugepage_subpool *spool = subpool_vma(vma);
3794         unsigned long reserve, start, end;
3795         long gbl_reserve;
3796
3797         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3798                 return;
3799
3800         start = vma_hugecache_offset(h, vma, vma->vm_start);
3801         end = vma_hugecache_offset(h, vma, vma->vm_end);
3802
3803         reserve = (end - start) - region_count(resv, start, end);
3804         hugetlb_cgroup_uncharge_counter(resv, start, end);
3805         if (reserve) {
3806                 /*
3807                  * Decrement reserve counts.  The global reserve count may be
3808                  * adjusted if the subpool has a minimum size.
3809                  */
3810                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3811                 hugetlb_acct_memory(h, -gbl_reserve);
3812         }
3813
3814         kref_put(&resv->refs, resv_map_release);
3815 }
3816
3817 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3818 {
3819         if (addr & ~(huge_page_mask(hstate_vma(vma))))
3820                 return -EINVAL;
3821         return 0;
3822 }
3823
3824 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3825 {
3826         return huge_page_size(hstate_vma(vma));
3827 }
3828
3829 /*
3830  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3831  * handle_mm_fault() to try to instantiate regular-sized pages in the
3832  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3833  * this far.
3834  */
3835 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3836 {
3837         BUG();
3838         return 0;
3839 }
3840
3841 /*
3842  * When a new function is introduced to vm_operations_struct and added
3843  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3844  * This is because under System V memory model, mappings created via
3845  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3846  * their original vm_ops are overwritten with shm_vm_ops.
3847  */
3848 const struct vm_operations_struct hugetlb_vm_ops = {
3849         .fault = hugetlb_vm_op_fault,
3850         .open = hugetlb_vm_op_open,
3851         .close = hugetlb_vm_op_close,
3852         .may_split = hugetlb_vm_op_split,
3853         .pagesize = hugetlb_vm_op_pagesize,
3854 };
3855
3856 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3857                                 int writable)
3858 {
3859         pte_t entry;
3860
3861         if (writable) {
3862                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3863                                          vma->vm_page_prot)));
3864         } else {
3865                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3866                                            vma->vm_page_prot));
3867         }
3868         entry = pte_mkyoung(entry);
3869         entry = pte_mkhuge(entry);
3870         entry = arch_make_huge_pte(entry, vma, page, writable);
3871
3872         return entry;
3873 }
3874
3875 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3876                                    unsigned long address, pte_t *ptep)
3877 {
3878         pte_t entry;
3879
3880         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3881         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3882                 update_mmu_cache(vma, address, ptep);
3883 }
3884
3885 bool is_hugetlb_entry_migration(pte_t pte)
3886 {
3887         swp_entry_t swp;
3888
3889         if (huge_pte_none(pte) || pte_present(pte))
3890                 return false;
3891         swp = pte_to_swp_entry(pte);
3892         if (is_migration_entry(swp))
3893                 return true;
3894         else
3895                 return false;
3896 }
3897
3898 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3899 {
3900         swp_entry_t swp;
3901
3902         if (huge_pte_none(pte) || pte_present(pte))
3903                 return false;
3904         swp = pte_to_swp_entry(pte);
3905         if (is_hwpoison_entry(swp))
3906                 return true;
3907         else
3908                 return false;
3909 }
3910
3911 static void
3912 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
3913                      struct page *new_page)
3914 {
3915         __SetPageUptodate(new_page);
3916         set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
3917         hugepage_add_new_anon_rmap(new_page, vma, addr);
3918         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
3919         ClearHPageRestoreReserve(new_page);
3920         SetHPageMigratable(new_page);
3921 }
3922
3923 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3924                             struct vm_area_struct *vma)
3925 {
3926         pte_t *src_pte, *dst_pte, entry, dst_entry;
3927         struct page *ptepage;
3928         unsigned long addr;
3929         bool cow = is_cow_mapping(vma->vm_flags);
3930         struct hstate *h = hstate_vma(vma);
3931         unsigned long sz = huge_page_size(h);
3932         unsigned long npages = pages_per_huge_page(h);
3933         struct address_space *mapping = vma->vm_file->f_mapping;
3934         struct mmu_notifier_range range;
3935         int ret = 0;
3936
3937         if (cow) {
3938                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3939                                         vma->vm_start,
3940                                         vma->vm_end);
3941                 mmu_notifier_invalidate_range_start(&range);
3942         } else {
3943                 /*
3944                  * For shared mappings i_mmap_rwsem must be held to call
3945                  * huge_pte_alloc, otherwise the returned ptep could go
3946                  * away if part of a shared pmd and another thread calls
3947                  * huge_pmd_unshare.
3948                  */
3949                 i_mmap_lock_read(mapping);
3950         }
3951
3952         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3953                 spinlock_t *src_ptl, *dst_ptl;
3954                 src_pte = huge_pte_offset(src, addr, sz);
3955                 if (!src_pte)
3956                         continue;
3957                 dst_pte = huge_pte_alloc(dst, vma, addr, sz);
3958                 if (!dst_pte) {
3959                         ret = -ENOMEM;
3960                         break;
3961                 }
3962
3963                 /*
3964                  * If the pagetables are shared don't copy or take references.
3965                  * dst_pte == src_pte is the common case of src/dest sharing.
3966                  *
3967                  * However, src could have 'unshared' and dst shares with
3968                  * another vma.  If dst_pte !none, this implies sharing.
3969                  * Check here before taking page table lock, and once again
3970                  * after taking the lock below.
3971                  */
3972                 dst_entry = huge_ptep_get(dst_pte);
3973                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3974                         continue;
3975
3976                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3977                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3978                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3979                 entry = huge_ptep_get(src_pte);
3980                 dst_entry = huge_ptep_get(dst_pte);
3981 again:
3982                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3983                         /*
3984                          * Skip if src entry none.  Also, skip in the
3985                          * unlikely case dst entry !none as this implies
3986                          * sharing with another vma.
3987                          */
3988                         ;
3989                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3990                                     is_hugetlb_entry_hwpoisoned(entry))) {
3991                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3992
3993                         if (is_write_migration_entry(swp_entry) && cow) {
3994                                 /*
3995                                  * COW mappings require pages in both
3996                                  * parent and child to be set to read.
3997                                  */
3998                                 make_migration_entry_read(&swp_entry);
3999                                 entry = swp_entry_to_pte(swp_entry);
4000                                 set_huge_swap_pte_at(src, addr, src_pte,
4001                                                      entry, sz);
4002                         }
4003                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4004                 } else {
4005                         entry = huge_ptep_get(src_pte);
4006                         ptepage = pte_page(entry);
4007                         get_page(ptepage);
4008
4009                         /*
4010                          * This is a rare case where we see pinned hugetlb
4011                          * pages while they're prone to COW.  We need to do the
4012                          * COW earlier during fork.
4013                          *
4014                          * When pre-allocating the page or copying data, we
4015                          * need to be without the pgtable locks since we could
4016                          * sleep during the process.
4017                          */
4018                         if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
4019                                 pte_t src_pte_old = entry;
4020                                 struct page *new;
4021
4022                                 spin_unlock(src_ptl);
4023                                 spin_unlock(dst_ptl);
4024                                 /* Do not use reserve as it's private owned */
4025                                 new = alloc_huge_page(vma, addr, 1);
4026                                 if (IS_ERR(new)) {
4027                                         put_page(ptepage);
4028                                         ret = PTR_ERR(new);
4029                                         break;
4030                                 }
4031                                 copy_user_huge_page(new, ptepage, addr, vma,
4032                                                     npages);
4033                                 put_page(ptepage);
4034
4035                                 /* Install the new huge page if src pte stable */
4036                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4037                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
4038                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4039                                 entry = huge_ptep_get(src_pte);
4040                                 if (!pte_same(src_pte_old, entry)) {
4041                                         put_page(new);
4042                                         /* dst_entry won't change as in child */
4043                                         goto again;
4044                                 }
4045                                 hugetlb_install_page(vma, dst_pte, addr, new);
4046                                 spin_unlock(src_ptl);
4047                                 spin_unlock(dst_ptl);
4048                                 continue;
4049                         }
4050
4051                         if (cow) {
4052                                 /*
4053                                  * No need to notify as we are downgrading page
4054                                  * table protection not changing it to point
4055                                  * to a new page.
4056                                  *
4057                                  * See Documentation/vm/mmu_notifier.rst
4058                                  */
4059                                 huge_ptep_set_wrprotect(src, addr, src_pte);
4060                         }
4061
4062                         page_dup_rmap(ptepage, true);
4063                         set_huge_pte_at(dst, addr, dst_pte, entry);
4064                         hugetlb_count_add(npages, dst);
4065                 }
4066                 spin_unlock(src_ptl);
4067                 spin_unlock(dst_ptl);
4068         }
4069
4070         if (cow)
4071                 mmu_notifier_invalidate_range_end(&range);
4072         else
4073                 i_mmap_unlock_read(mapping);
4074
4075         return ret;
4076 }
4077
4078 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4079                             unsigned long start, unsigned long end,
4080                             struct page *ref_page)
4081 {
4082         struct mm_struct *mm = vma->vm_mm;
4083         unsigned long address;
4084         pte_t *ptep;
4085         pte_t pte;
4086         spinlock_t *ptl;
4087         struct page *page;
4088         struct hstate *h = hstate_vma(vma);
4089         unsigned long sz = huge_page_size(h);
4090         struct mmu_notifier_range range;
4091
4092         WARN_ON(!is_vm_hugetlb_page(vma));
4093         BUG_ON(start & ~huge_page_mask(h));
4094         BUG_ON(end & ~huge_page_mask(h));
4095
4096         /*
4097          * This is a hugetlb vma, all the pte entries should point
4098          * to huge page.
4099          */
4100         tlb_change_page_size(tlb, sz);
4101         tlb_start_vma(tlb, vma);
4102
4103         /*
4104          * If sharing possible, alert mmu notifiers of worst case.
4105          */
4106         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
4107                                 end);
4108         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4109         mmu_notifier_invalidate_range_start(&range);
4110         address = start;
4111         for (; address < end; address += sz) {
4112                 ptep = huge_pte_offset(mm, address, sz);
4113                 if (!ptep)
4114                         continue;
4115
4116                 ptl = huge_pte_lock(h, mm, ptep);
4117                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
4118                         spin_unlock(ptl);
4119                         /*
4120                          * We just unmapped a page of PMDs by clearing a PUD.
4121                          * The caller's TLB flush range should cover this area.
4122                          */
4123                         continue;
4124                 }
4125
4126                 pte = huge_ptep_get(ptep);
4127                 if (huge_pte_none(pte)) {
4128                         spin_unlock(ptl);
4129                         continue;
4130                 }
4131
4132                 /*
4133                  * Migrating hugepage or HWPoisoned hugepage is already
4134                  * unmapped and its refcount is dropped, so just clear pte here.
4135                  */
4136                 if (unlikely(!pte_present(pte))) {
4137                         huge_pte_clear(mm, address, ptep, sz);
4138                         spin_unlock(ptl);
4139                         continue;
4140                 }
4141
4142                 page = pte_page(pte);
4143                 /*
4144                  * If a reference page is supplied, it is because a specific
4145                  * page is being unmapped, not a range. Ensure the page we
4146                  * are about to unmap is the actual page of interest.
4147                  */
4148                 if (ref_page) {
4149                         if (page != ref_page) {
4150                                 spin_unlock(ptl);
4151                                 continue;
4152                         }
4153                         /*
4154                          * Mark the VMA as having unmapped its page so that
4155                          * future faults in this VMA will fail rather than
4156                          * looking like data was lost
4157                          */
4158                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4159                 }
4160
4161                 pte = huge_ptep_get_and_clear(mm, address, ptep);
4162                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4163                 if (huge_pte_dirty(pte))
4164                         set_page_dirty(page);
4165
4166                 hugetlb_count_sub(pages_per_huge_page(h), mm);
4167                 page_remove_rmap(page, true);
4168
4169                 spin_unlock(ptl);
4170                 tlb_remove_page_size(tlb, page, huge_page_size(h));
4171                 /*
4172                  * Bail out after unmapping reference page if supplied
4173                  */
4174                 if (ref_page)
4175                         break;
4176         }
4177         mmu_notifier_invalidate_range_end(&range);
4178         tlb_end_vma(tlb, vma);
4179 }
4180
4181 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4182                           struct vm_area_struct *vma, unsigned long start,
4183                           unsigned long end, struct page *ref_page)
4184 {
4185         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4186
4187         /*
4188          * Clear this flag so that x86's huge_pmd_share page_table_shareable
4189          * test will fail on a vma being torn down, and not grab a page table
4190          * on its way out.  We're lucky that the flag has such an appropriate
4191          * name, and can in fact be safely cleared here. We could clear it
4192          * before the __unmap_hugepage_range above, but all that's necessary
4193          * is to clear it before releasing the i_mmap_rwsem. This works
4194          * because in the context this is called, the VMA is about to be
4195          * destroyed and the i_mmap_rwsem is held.
4196          */
4197         vma->vm_flags &= ~VM_MAYSHARE;
4198 }
4199
4200 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4201                           unsigned long end, struct page *ref_page)
4202 {
4203         struct mmu_gather tlb;
4204
4205         tlb_gather_mmu(&tlb, vma->vm_mm);
4206         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4207         tlb_finish_mmu(&tlb);
4208 }
4209
4210 /*
4211  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4212  * mapping it owns the reserve page for. The intention is to unmap the page
4213  * from other VMAs and let the children be SIGKILLed if they are faulting the
4214  * same region.
4215  */
4216 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4217                               struct page *page, unsigned long address)
4218 {
4219         struct hstate *h = hstate_vma(vma);
4220         struct vm_area_struct *iter_vma;
4221         struct address_space *mapping;
4222         pgoff_t pgoff;
4223
4224         /*
4225          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4226          * from page cache lookup which is in HPAGE_SIZE units.
4227          */
4228         address = address & huge_page_mask(h);
4229         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4230                         vma->vm_pgoff;
4231         mapping = vma->vm_file->f_mapping;
4232
4233         /*
4234          * Take the mapping lock for the duration of the table walk. As
4235          * this mapping should be shared between all the VMAs,
4236          * __unmap_hugepage_range() is called as the lock is already held
4237          */
4238         i_mmap_lock_write(mapping);
4239         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4240                 /* Do not unmap the current VMA */
4241                 if (iter_vma == vma)
4242                         continue;
4243
4244                 /*
4245                  * Shared VMAs have their own reserves and do not affect
4246                  * MAP_PRIVATE accounting but it is possible that a shared
4247                  * VMA is using the same page so check and skip such VMAs.
4248                  */
4249                 if (iter_vma->vm_flags & VM_MAYSHARE)
4250                         continue;
4251
4252                 /*
4253                  * Unmap the page from other VMAs without their own reserves.
4254                  * They get marked to be SIGKILLed if they fault in these
4255                  * areas. This is because a future no-page fault on this VMA
4256                  * could insert a zeroed page instead of the data existing
4257                  * from the time of fork. This would look like data corruption
4258                  */
4259                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4260                         unmap_hugepage_range(iter_vma, address,
4261                                              address + huge_page_size(h), page);
4262         }
4263         i_mmap_unlock_write(mapping);
4264 }
4265
4266 /*
4267  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4268  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4269  * cannot race with other handlers or page migration.
4270  * Keep the pte_same checks anyway to make transition from the mutex easier.
4271  */
4272 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4273                        unsigned long address, pte_t *ptep,
4274                        struct page *pagecache_page, spinlock_t *ptl)
4275 {
4276         pte_t pte;
4277         struct hstate *h = hstate_vma(vma);
4278         struct page *old_page, *new_page;
4279         int outside_reserve = 0;
4280         vm_fault_t ret = 0;
4281         unsigned long haddr = address & huge_page_mask(h);
4282         struct mmu_notifier_range range;
4283
4284         pte = huge_ptep_get(ptep);
4285         old_page = pte_page(pte);
4286
4287 retry_avoidcopy:
4288         /* If no-one else is actually using this page, avoid the copy
4289          * and just make the page writable */
4290         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4291                 page_move_anon_rmap(old_page, vma);
4292                 set_huge_ptep_writable(vma, haddr, ptep);
4293                 return 0;
4294         }
4295
4296         /*
4297          * If the process that created a MAP_PRIVATE mapping is about to
4298          * perform a COW due to a shared page count, attempt to satisfy
4299          * the allocation without using the existing reserves. The pagecache
4300          * page is used to determine if the reserve at this address was
4301          * consumed or not. If reserves were used, a partial faulted mapping
4302          * at the time of fork() could consume its reserves on COW instead
4303          * of the full address range.
4304          */
4305         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4306                         old_page != pagecache_page)
4307                 outside_reserve = 1;
4308
4309         get_page(old_page);
4310
4311         /*
4312          * Drop page table lock as buddy allocator may be called. It will
4313          * be acquired again before returning to the caller, as expected.
4314          */
4315         spin_unlock(ptl);
4316         new_page = alloc_huge_page(vma, haddr, outside_reserve);
4317
4318         if (IS_ERR(new_page)) {
4319                 /*
4320                  * If a process owning a MAP_PRIVATE mapping fails to COW,
4321                  * it is due to references held by a child and an insufficient
4322                  * huge page pool. To guarantee the original mappers
4323                  * reliability, unmap the page from child processes. The child
4324                  * may get SIGKILLed if it later faults.
4325                  */
4326                 if (outside_reserve) {
4327                         struct address_space *mapping = vma->vm_file->f_mapping;
4328                         pgoff_t idx;
4329                         u32 hash;
4330
4331                         put_page(old_page);
4332                         BUG_ON(huge_pte_none(pte));
4333                         /*
4334                          * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4335                          * unmapping.  unmapping needs to hold i_mmap_rwsem
4336                          * in write mode.  Dropping i_mmap_rwsem in read mode
4337                          * here is OK as COW mappings do not interact with
4338                          * PMD sharing.
4339                          *
4340                          * Reacquire both after unmap operation.
4341                          */
4342                         idx = vma_hugecache_offset(h, vma, haddr);
4343                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4344                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4345                         i_mmap_unlock_read(mapping);
4346
4347                         unmap_ref_private(mm, vma, old_page, haddr);
4348
4349                         i_mmap_lock_read(mapping);
4350                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4351                         spin_lock(ptl);
4352                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4353                         if (likely(ptep &&
4354                                    pte_same(huge_ptep_get(ptep), pte)))
4355                                 goto retry_avoidcopy;
4356                         /*
4357                          * race occurs while re-acquiring page table
4358                          * lock, and our job is done.
4359                          */
4360                         return 0;
4361                 }
4362
4363                 ret = vmf_error(PTR_ERR(new_page));
4364                 goto out_release_old;
4365         }
4366
4367         /*
4368          * When the original hugepage is shared one, it does not have
4369          * anon_vma prepared.
4370          */
4371         if (unlikely(anon_vma_prepare(vma))) {
4372                 ret = VM_FAULT_OOM;
4373                 goto out_release_all;
4374         }
4375
4376         copy_user_huge_page(new_page, old_page, address, vma,
4377                             pages_per_huge_page(h));
4378         __SetPageUptodate(new_page);
4379
4380         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4381                                 haddr + huge_page_size(h));
4382         mmu_notifier_invalidate_range_start(&range);
4383
4384         /*
4385          * Retake the page table lock to check for racing updates
4386          * before the page tables are altered
4387          */
4388         spin_lock(ptl);
4389         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4390         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4391                 ClearHPageRestoreReserve(new_page);
4392
4393                 /* Break COW */
4394                 huge_ptep_clear_flush(vma, haddr, ptep);
4395                 mmu_notifier_invalidate_range(mm, range.start, range.end);
4396                 set_huge_pte_at(mm, haddr, ptep,
4397                                 make_huge_pte(vma, new_page, 1));
4398                 page_remove_rmap(old_page, true);
4399                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4400                 SetHPageMigratable(new_page);
4401                 /* Make the old page be freed below */
4402                 new_page = old_page;
4403         }
4404         spin_unlock(ptl);
4405         mmu_notifier_invalidate_range_end(&range);
4406 out_release_all:
4407         restore_reserve_on_error(h, vma, haddr, new_page);
4408         put_page(new_page);
4409 out_release_old:
4410         put_page(old_page);
4411
4412         spin_lock(ptl); /* Caller expects lock to be held */
4413         return ret;
4414 }
4415
4416 /* Return the pagecache page at a given address within a VMA */
4417 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4418                         struct vm_area_struct *vma, unsigned long address)
4419 {
4420         struct address_space *mapping;
4421         pgoff_t idx;
4422
4423         mapping = vma->vm_file->f_mapping;
4424         idx = vma_hugecache_offset(h, vma, address);
4425
4426         return find_lock_page(mapping, idx);
4427 }
4428
4429 /*
4430  * Return whether there is a pagecache page to back given address within VMA.
4431  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4432  */
4433 static bool hugetlbfs_pagecache_present(struct hstate *h,
4434                         struct vm_area_struct *vma, unsigned long address)
4435 {
4436         struct address_space *mapping;
4437         pgoff_t idx;
4438         struct page *page;
4439
4440         mapping = vma->vm_file->f_mapping;
4441         idx = vma_hugecache_offset(h, vma, address);
4442
4443         page = find_get_page(mapping, idx);
4444         if (page)
4445                 put_page(page);
4446         return page != NULL;
4447 }
4448
4449 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4450                            pgoff_t idx)
4451 {
4452         struct inode *inode = mapping->host;
4453         struct hstate *h = hstate_inode(inode);
4454         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4455
4456         if (err)
4457                 return err;
4458         ClearHPageRestoreReserve(page);
4459
4460         /*
4461          * set page dirty so that it will not be removed from cache/file
4462          * by non-hugetlbfs specific code paths.
4463          */
4464         set_page_dirty(page);
4465
4466         spin_lock(&inode->i_lock);
4467         inode->i_blocks += blocks_per_huge_page(h);
4468         spin_unlock(&inode->i_lock);
4469         return 0;
4470 }
4471
4472 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4473                         struct vm_area_struct *vma,
4474                         struct address_space *mapping, pgoff_t idx,
4475                         unsigned long address, pte_t *ptep, unsigned int flags)
4476 {
4477         struct hstate *h = hstate_vma(vma);
4478         vm_fault_t ret = VM_FAULT_SIGBUS;
4479         int anon_rmap = 0;
4480         unsigned long size;
4481         struct page *page;
4482         pte_t new_pte;
4483         spinlock_t *ptl;
4484         unsigned long haddr = address & huge_page_mask(h);
4485         bool new_page = false;
4486
4487         /*
4488          * Currently, we are forced to kill the process in the event the
4489          * original mapper has unmapped pages from the child due to a failed
4490          * COW. Warn that such a situation has occurred as it may not be obvious
4491          */
4492         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4493                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4494                            current->pid);
4495                 return ret;
4496         }
4497
4498         /*
4499          * We can not race with truncation due to holding i_mmap_rwsem.
4500          * i_size is modified when holding i_mmap_rwsem, so check here
4501          * once for faults beyond end of file.
4502          */
4503         size = i_size_read(mapping->host) >> huge_page_shift(h);
4504         if (idx >= size)
4505                 goto out;
4506
4507 retry:
4508         page = find_lock_page(mapping, idx);
4509         if (!page) {
4510                 /*
4511                  * Check for page in userfault range
4512                  */
4513                 if (userfaultfd_missing(vma)) {
4514                         u32 hash;
4515                         struct vm_fault vmf = {
4516                                 .vma = vma,
4517                                 .address = haddr,
4518                                 .flags = flags,
4519                                 /*
4520                                  * Hard to debug if it ends up being
4521                                  * used by a callee that assumes
4522                                  * something about the other
4523                                  * uninitialized fields... same as in
4524                                  * memory.c
4525                                  */
4526                         };
4527
4528                         /*
4529                          * hugetlb_fault_mutex and i_mmap_rwsem must be
4530                          * dropped before handling userfault.  Reacquire
4531                          * after handling fault to make calling code simpler.
4532                          */
4533                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4534                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4535                         i_mmap_unlock_read(mapping);
4536                         ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4537                         i_mmap_lock_read(mapping);
4538                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4539                         goto out;
4540                 }
4541
4542                 page = alloc_huge_page(vma, haddr, 0);
4543                 if (IS_ERR(page)) {
4544                         /*
4545                          * Returning error will result in faulting task being
4546                          * sent SIGBUS.  The hugetlb fault mutex prevents two
4547                          * tasks from racing to fault in the same page which
4548                          * could result in false unable to allocate errors.
4549                          * Page migration does not take the fault mutex, but
4550                          * does a clear then write of pte's under page table
4551                          * lock.  Page fault code could race with migration,
4552                          * notice the clear pte and try to allocate a page
4553                          * here.  Before returning error, get ptl and make
4554                          * sure there really is no pte entry.
4555                          */
4556                         ptl = huge_pte_lock(h, mm, ptep);
4557                         ret = 0;
4558                         if (huge_pte_none(huge_ptep_get(ptep)))
4559                                 ret = vmf_error(PTR_ERR(page));
4560                         spin_unlock(ptl);
4561                         goto out;
4562                 }
4563                 clear_huge_page(page, address, pages_per_huge_page(h));
4564                 __SetPageUptodate(page);
4565                 new_page = true;
4566
4567                 if (vma->vm_flags & VM_MAYSHARE) {
4568                         int err = huge_add_to_page_cache(page, mapping, idx);
4569                         if (err) {
4570                                 put_page(page);
4571                                 if (err == -EEXIST)
4572                                         goto retry;
4573                                 goto out;
4574                         }
4575                 } else {
4576                         lock_page(page);
4577                         if (unlikely(anon_vma_prepare(vma))) {
4578                                 ret = VM_FAULT_OOM;
4579                                 goto backout_unlocked;
4580                         }
4581                         anon_rmap = 1;
4582                 }
4583         } else {
4584                 /*
4585                  * If memory error occurs between mmap() and fault, some process
4586                  * don't have hwpoisoned swap entry for errored virtual address.
4587                  * So we need to block hugepage fault by PG_hwpoison bit check.
4588                  */
4589                 if (unlikely(PageHWPoison(page))) {
4590                         ret = VM_FAULT_HWPOISON_LARGE |
4591                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4592                         goto backout_unlocked;
4593                 }
4594         }
4595
4596         /*
4597          * If we are going to COW a private mapping later, we examine the
4598          * pending reservations for this page now. This will ensure that
4599          * any allocations necessary to record that reservation occur outside
4600          * the spinlock.
4601          */
4602         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4603                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4604                         ret = VM_FAULT_OOM;
4605                         goto backout_unlocked;
4606                 }
4607                 /* Just decrements count, does not deallocate */
4608                 vma_end_reservation(h, vma, haddr);
4609         }
4610
4611         ptl = huge_pte_lock(h, mm, ptep);
4612         ret = 0;
4613         if (!huge_pte_none(huge_ptep_get(ptep)))
4614                 goto backout;
4615
4616         if (anon_rmap) {
4617                 ClearHPageRestoreReserve(page);
4618                 hugepage_add_new_anon_rmap(page, vma, haddr);
4619         } else
4620                 page_dup_rmap(page, true);
4621         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4622                                 && (vma->vm_flags & VM_SHARED)));
4623         set_huge_pte_at(mm, haddr, ptep, new_pte);
4624
4625         hugetlb_count_add(pages_per_huge_page(h), mm);
4626         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4627                 /* Optimization, do the COW without a second fault */
4628                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4629         }
4630
4631         spin_unlock(ptl);
4632
4633         /*
4634          * Only set HPageMigratable in newly allocated pages.  Existing pages
4635          * found in the pagecache may not have HPageMigratableset if they have
4636          * been isolated for migration.
4637          */
4638         if (new_page)
4639                 SetHPageMigratable(page);
4640
4641         unlock_page(page);
4642 out:
4643         return ret;
4644
4645 backout:
4646         spin_unlock(ptl);
4647 backout_unlocked:
4648         unlock_page(page);
4649         restore_reserve_on_error(h, vma, haddr, page);
4650         put_page(page);
4651         goto out;
4652 }
4653
4654 #ifdef CONFIG_SMP
4655 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4656 {
4657         unsigned long key[2];
4658         u32 hash;
4659
4660         key[0] = (unsigned long) mapping;
4661         key[1] = idx;
4662
4663         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4664
4665         return hash & (num_fault_mutexes - 1);
4666 }
4667 #else
4668 /*
4669  * For uniprocessor systems we always use a single mutex, so just
4670  * return 0 and avoid the hashing overhead.
4671  */
4672 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4673 {
4674         return 0;
4675 }
4676 #endif
4677
4678 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4679                         unsigned long address, unsigned int flags)
4680 {
4681         pte_t *ptep, entry;
4682         spinlock_t *ptl;
4683         vm_fault_t ret;
4684         u32 hash;
4685         pgoff_t idx;
4686         struct page *page = NULL;
4687         struct page *pagecache_page = NULL;
4688         struct hstate *h = hstate_vma(vma);
4689         struct address_space *mapping;
4690         int need_wait_lock = 0;
4691         unsigned long haddr = address & huge_page_mask(h);
4692
4693         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4694         if (ptep) {
4695                 /*
4696                  * Since we hold no locks, ptep could be stale.  That is
4697                  * OK as we are only making decisions based on content and
4698                  * not actually modifying content here.
4699                  */
4700                 entry = huge_ptep_get(ptep);
4701                 if (unlikely(is_hugetlb_entry_migration(entry))) {
4702                         migration_entry_wait_huge(vma, mm, ptep);
4703                         return 0;
4704                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4705                         return VM_FAULT_HWPOISON_LARGE |
4706                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4707         }
4708
4709         /*
4710          * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4711          * until finished with ptep.  This serves two purposes:
4712          * 1) It prevents huge_pmd_unshare from being called elsewhere
4713          *    and making the ptep no longer valid.
4714          * 2) It synchronizes us with i_size modifications during truncation.
4715          *
4716          * ptep could have already be assigned via huge_pte_offset.  That
4717          * is OK, as huge_pte_alloc will return the same value unless
4718          * something has changed.
4719          */
4720         mapping = vma->vm_file->f_mapping;
4721         i_mmap_lock_read(mapping);
4722         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
4723         if (!ptep) {
4724                 i_mmap_unlock_read(mapping);
4725                 return VM_FAULT_OOM;
4726         }
4727
4728         /*
4729          * Serialize hugepage allocation and instantiation, so that we don't
4730          * get spurious allocation failures if two CPUs race to instantiate
4731          * the same page in the page cache.
4732          */
4733         idx = vma_hugecache_offset(h, vma, haddr);
4734         hash = hugetlb_fault_mutex_hash(mapping, idx);
4735         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4736
4737         entry = huge_ptep_get(ptep);
4738         if (huge_pte_none(entry)) {
4739                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4740                 goto out_mutex;
4741         }
4742
4743         ret = 0;
4744
4745         /*
4746          * entry could be a migration/hwpoison entry at this point, so this
4747          * check prevents the kernel from going below assuming that we have
4748          * an active hugepage in pagecache. This goto expects the 2nd page
4749          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4750          * properly handle it.
4751          */
4752         if (!pte_present(entry))
4753                 goto out_mutex;
4754
4755         /*
4756          * If we are going to COW the mapping later, we examine the pending
4757          * reservations for this page now. This will ensure that any
4758          * allocations necessary to record that reservation occur outside the
4759          * spinlock. For private mappings, we also lookup the pagecache
4760          * page now as it is used to determine if a reservation has been
4761          * consumed.
4762          */
4763         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4764                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4765                         ret = VM_FAULT_OOM;
4766                         goto out_mutex;
4767                 }
4768                 /* Just decrements count, does not deallocate */
4769                 vma_end_reservation(h, vma, haddr);
4770
4771                 if (!(vma->vm_flags & VM_MAYSHARE))
4772                         pagecache_page = hugetlbfs_pagecache_page(h,
4773                                                                 vma, haddr);
4774         }
4775
4776         ptl = huge_pte_lock(h, mm, ptep);
4777
4778         /* Check for a racing update before calling hugetlb_cow */
4779         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4780                 goto out_ptl;
4781
4782         /*
4783          * hugetlb_cow() requires page locks of pte_page(entry) and
4784          * pagecache_page, so here we need take the former one
4785          * when page != pagecache_page or !pagecache_page.
4786          */
4787         page = pte_page(entry);
4788         if (page != pagecache_page)
4789                 if (!trylock_page(page)) {
4790                         need_wait_lock = 1;
4791                         goto out_ptl;
4792                 }
4793
4794         get_page(page);
4795
4796         if (flags & FAULT_FLAG_WRITE) {
4797                 if (!huge_pte_write(entry)) {
4798                         ret = hugetlb_cow(mm, vma, address, ptep,
4799                                           pagecache_page, ptl);
4800                         goto out_put_page;
4801                 }
4802                 entry = huge_pte_mkdirty(entry);
4803         }
4804         entry = pte_mkyoung(entry);
4805         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4806                                                 flags & FAULT_FLAG_WRITE))
4807                 update_mmu_cache(vma, haddr, ptep);
4808 out_put_page:
4809         if (page != pagecache_page)
4810                 unlock_page(page);
4811         put_page(page);
4812 out_ptl:
4813         spin_unlock(ptl);
4814
4815         if (pagecache_page) {
4816                 unlock_page(pagecache_page);
4817                 put_page(pagecache_page);
4818         }
4819 out_mutex:
4820         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4821         i_mmap_unlock_read(mapping);
4822         /*
4823          * Generally it's safe to hold refcount during waiting page lock. But
4824          * here we just wait to defer the next page fault to avoid busy loop and
4825          * the page is not used after unlocked before returning from the current
4826          * page fault. So we are safe from accessing freed page, even if we wait
4827          * here without taking refcount.
4828          */
4829         if (need_wait_lock)
4830                 wait_on_page_locked(page);
4831         return ret;
4832 }
4833
4834 /*
4835  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4836  * modifications for huge pages.
4837  */
4838 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4839                             pte_t *dst_pte,
4840                             struct vm_area_struct *dst_vma,
4841                             unsigned long dst_addr,
4842                             unsigned long src_addr,
4843                             struct page **pagep)
4844 {
4845         struct address_space *mapping;
4846         pgoff_t idx;
4847         unsigned long size;
4848         int vm_shared = dst_vma->vm_flags & VM_SHARED;
4849         struct hstate *h = hstate_vma(dst_vma);
4850         pte_t _dst_pte;
4851         spinlock_t *ptl;
4852         int ret;
4853         struct page *page;
4854
4855         if (!*pagep) {
4856                 ret = -ENOMEM;
4857                 page = alloc_huge_page(dst_vma, dst_addr, 0);
4858                 if (IS_ERR(page))
4859                         goto out;
4860
4861                 ret = copy_huge_page_from_user(page,
4862                                                 (const void __user *) src_addr,
4863                                                 pages_per_huge_page(h), false);
4864
4865                 /* fallback to copy_from_user outside mmap_lock */
4866                 if (unlikely(ret)) {
4867                         ret = -ENOENT;
4868                         *pagep = page;
4869                         /* don't free the page */
4870                         goto out;
4871                 }
4872         } else {
4873                 page = *pagep;
4874                 *pagep = NULL;
4875         }
4876
4877         /*
4878          * The memory barrier inside __SetPageUptodate makes sure that
4879          * preceding stores to the page contents become visible before
4880          * the set_pte_at() write.
4881          */
4882         __SetPageUptodate(page);
4883
4884         mapping = dst_vma->vm_file->f_mapping;
4885         idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4886
4887         /*
4888          * If shared, add to page cache
4889          */
4890         if (vm_shared) {
4891                 size = i_size_read(mapping->host) >> huge_page_shift(h);
4892                 ret = -EFAULT;
4893                 if (idx >= size)
4894                         goto out_release_nounlock;
4895
4896                 /*
4897                  * Serialization between remove_inode_hugepages() and
4898                  * huge_add_to_page_cache() below happens through the
4899                  * hugetlb_fault_mutex_table that here must be hold by
4900                  * the caller.
4901                  */
4902                 ret = huge_add_to_page_cache(page, mapping, idx);
4903                 if (ret)
4904                         goto out_release_nounlock;
4905         }
4906
4907         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4908         spin_lock(ptl);
4909
4910         /*
4911          * Recheck the i_size after holding PT lock to make sure not
4912          * to leave any page mapped (as page_mapped()) beyond the end
4913          * of the i_size (remove_inode_hugepages() is strict about
4914          * enforcing that). If we bail out here, we'll also leave a
4915          * page in the radix tree in the vm_shared case beyond the end
4916          * of the i_size, but remove_inode_hugepages() will take care
4917          * of it as soon as we drop the hugetlb_fault_mutex_table.
4918          */
4919         size = i_size_read(mapping->host) >> huge_page_shift(h);
4920         ret = -EFAULT;
4921         if (idx >= size)
4922                 goto out_release_unlock;
4923
4924         ret = -EEXIST;
4925         if (!huge_pte_none(huge_ptep_get(dst_pte)))
4926                 goto out_release_unlock;
4927
4928         if (vm_shared) {
4929                 page_dup_rmap(page, true);
4930         } else {
4931                 ClearHPageRestoreReserve(page);
4932                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4933         }
4934
4935         _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4936         if (dst_vma->vm_flags & VM_WRITE)
4937                 _dst_pte = huge_pte_mkdirty(_dst_pte);
4938         _dst_pte = pte_mkyoung(_dst_pte);
4939
4940         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4941
4942         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4943                                         dst_vma->vm_flags & VM_WRITE);
4944         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4945
4946         /* No need to invalidate - it was non-present before */
4947         update_mmu_cache(dst_vma, dst_addr, dst_pte);
4948
4949         spin_unlock(ptl);
4950         SetHPageMigratable(page);
4951         if (vm_shared)
4952                 unlock_page(page);
4953         ret = 0;
4954 out:
4955         return ret;
4956 out_release_unlock:
4957         spin_unlock(ptl);
4958         if (vm_shared)
4959                 unlock_page(page);
4960 out_release_nounlock:
4961         put_page(page);
4962         goto out;
4963 }
4964
4965 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
4966                                  int refs, struct page **pages,
4967                                  struct vm_area_struct **vmas)
4968 {
4969         int nr;
4970
4971         for (nr = 0; nr < refs; nr++) {
4972                 if (likely(pages))
4973                         pages[nr] = mem_map_offset(page, nr);
4974                 if (vmas)
4975                         vmas[nr] = vma;
4976         }
4977 }
4978
4979 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4980                          struct page **pages, struct vm_area_struct **vmas,
4981                          unsigned long *position, unsigned long *nr_pages,
4982                          long i, unsigned int flags, int *locked)
4983 {
4984         unsigned long pfn_offset;
4985         unsigned long vaddr = *position;
4986         unsigned long remainder = *nr_pages;
4987         struct hstate *h = hstate_vma(vma);
4988         int err = -EFAULT, refs;
4989
4990         while (vaddr < vma->vm_end && remainder) {
4991                 pte_t *pte;
4992                 spinlock_t *ptl = NULL;
4993                 int absent;
4994                 struct page *page;
4995
4996                 /*
4997                  * If we have a pending SIGKILL, don't keep faulting pages and
4998                  * potentially allocating memory.
4999                  */
5000                 if (fatal_signal_pending(current)) {
5001                         remainder = 0;
5002                         break;
5003                 }
5004
5005                 /*
5006                  * Some archs (sparc64, sh*) have multiple pte_ts to
5007                  * each hugepage.  We have to make sure we get the
5008                  * first, for the page indexing below to work.
5009                  *
5010                  * Note that page table lock is not held when pte is null.
5011                  */
5012                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
5013                                       huge_page_size(h));
5014                 if (pte)
5015                         ptl = huge_pte_lock(h, mm, pte);
5016                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
5017
5018                 /*
5019                  * When coredumping, it suits get_dump_page if we just return
5020                  * an error where there's an empty slot with no huge pagecache
5021                  * to back it.  This way, we avoid allocating a hugepage, and
5022                  * the sparse dumpfile avoids allocating disk blocks, but its
5023                  * huge holes still show up with zeroes where they need to be.
5024                  */
5025                 if (absent && (flags & FOLL_DUMP) &&
5026                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
5027                         if (pte)
5028                                 spin_unlock(ptl);
5029                         remainder = 0;
5030                         break;
5031                 }
5032
5033                 /*
5034                  * We need call hugetlb_fault for both hugepages under migration
5035                  * (in which case hugetlb_fault waits for the migration,) and
5036                  * hwpoisoned hugepages (in which case we need to prevent the
5037                  * caller from accessing to them.) In order to do this, we use
5038                  * here is_swap_pte instead of is_hugetlb_entry_migration and
5039                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
5040                  * both cases, and because we can't follow correct pages
5041                  * directly from any kind of swap entries.
5042                  */
5043                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
5044                     ((flags & FOLL_WRITE) &&
5045                       !huge_pte_write(huge_ptep_get(pte)))) {
5046                         vm_fault_t ret;
5047                         unsigned int fault_flags = 0;
5048
5049                         if (pte)
5050                                 spin_unlock(ptl);
5051                         if (flags & FOLL_WRITE)
5052                                 fault_flags |= FAULT_FLAG_WRITE;
5053                         if (locked)
5054                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5055                                         FAULT_FLAG_KILLABLE;
5056                         if (flags & FOLL_NOWAIT)
5057                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5058                                         FAULT_FLAG_RETRY_NOWAIT;
5059                         if (flags & FOLL_TRIED) {
5060                                 /*
5061                                  * Note: FAULT_FLAG_ALLOW_RETRY and
5062                                  * FAULT_FLAG_TRIED can co-exist
5063                                  */
5064                                 fault_flags |= FAULT_FLAG_TRIED;
5065                         }
5066                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
5067                         if (ret & VM_FAULT_ERROR) {
5068                                 err = vm_fault_to_errno(ret, flags);
5069                                 remainder = 0;
5070                                 break;
5071                         }
5072                         if (ret & VM_FAULT_RETRY) {
5073                                 if (locked &&
5074                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
5075                                         *locked = 0;
5076                                 *nr_pages = 0;
5077                                 /*
5078                                  * VM_FAULT_RETRY must not return an
5079                                  * error, it will return zero
5080                                  * instead.
5081                                  *
5082                                  * No need to update "position" as the
5083                                  * caller will not check it after
5084                                  * *nr_pages is set to 0.
5085                                  */
5086                                 return i;
5087                         }
5088                         continue;
5089                 }
5090
5091                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
5092                 page = pte_page(huge_ptep_get(pte));
5093
5094                 /*
5095                  * If subpage information not requested, update counters
5096                  * and skip the same_page loop below.
5097                  */
5098                 if (!pages && !vmas && !pfn_offset &&
5099                     (vaddr + huge_page_size(h) < vma->vm_end) &&
5100                     (remainder >= pages_per_huge_page(h))) {
5101                         vaddr += huge_page_size(h);
5102                         remainder -= pages_per_huge_page(h);
5103                         i += pages_per_huge_page(h);
5104                         spin_unlock(ptl);
5105                         continue;
5106                 }
5107
5108                 refs = min3(pages_per_huge_page(h) - pfn_offset,
5109                             (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder);
5110
5111                 if (pages || vmas)
5112                         record_subpages_vmas(mem_map_offset(page, pfn_offset),
5113                                              vma, refs,
5114                                              likely(pages) ? pages + i : NULL,
5115                                              vmas ? vmas + i : NULL);
5116
5117                 if (pages) {
5118                         /*
5119                          * try_grab_compound_head() should always succeed here,
5120                          * because: a) we hold the ptl lock, and b) we've just
5121                          * checked that the huge page is present in the page
5122                          * tables. If the huge page is present, then the tail
5123                          * pages must also be present. The ptl prevents the
5124                          * head page and tail pages from being rearranged in
5125                          * any way. So this page must be available at this
5126                          * point, unless the page refcount overflowed:
5127                          */
5128                         if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
5129                                                                  refs,
5130                                                                  flags))) {
5131                                 spin_unlock(ptl);
5132                                 remainder = 0;
5133                                 err = -ENOMEM;
5134                                 break;
5135                         }
5136                 }
5137
5138                 vaddr += (refs << PAGE_SHIFT);
5139                 remainder -= refs;
5140                 i += refs;
5141
5142                 spin_unlock(ptl);
5143         }
5144         *nr_pages = remainder;
5145         /*
5146          * setting position is actually required only if remainder is
5147          * not zero but it's faster not to add a "if (remainder)"
5148          * branch.
5149          */
5150         *position = vaddr;
5151
5152         return i ? i : err;
5153 }
5154
5155 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5156                 unsigned long address, unsigned long end, pgprot_t newprot)
5157 {
5158         struct mm_struct *mm = vma->vm_mm;
5159         unsigned long start = address;
5160         pte_t *ptep;
5161         pte_t pte;
5162         struct hstate *h = hstate_vma(vma);
5163         unsigned long pages = 0;
5164         bool shared_pmd = false;
5165         struct mmu_notifier_range range;
5166
5167         /*
5168          * In the case of shared PMDs, the area to flush could be beyond
5169          * start/end.  Set range.start/range.end to cover the maximum possible
5170          * range if PMD sharing is possible.
5171          */
5172         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5173                                 0, vma, mm, start, end);
5174         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5175
5176         BUG_ON(address >= end);
5177         flush_cache_range(vma, range.start, range.end);
5178
5179         mmu_notifier_invalidate_range_start(&range);
5180         i_mmap_lock_write(vma->vm_file->f_mapping);
5181         for (; address < end; address += huge_page_size(h)) {
5182                 spinlock_t *ptl;
5183                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5184                 if (!ptep)
5185                         continue;
5186                 ptl = huge_pte_lock(h, mm, ptep);
5187                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5188                         pages++;
5189                         spin_unlock(ptl);
5190                         shared_pmd = true;
5191                         continue;
5192                 }
5193                 pte = huge_ptep_get(ptep);
5194                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5195                         spin_unlock(ptl);
5196                         continue;
5197                 }
5198                 if (unlikely(is_hugetlb_entry_migration(pte))) {
5199                         swp_entry_t entry = pte_to_swp_entry(pte);
5200
5201                         if (is_write_migration_entry(entry)) {
5202                                 pte_t newpte;
5203
5204                                 make_migration_entry_read(&entry);
5205                                 newpte = swp_entry_to_pte(entry);
5206                                 set_huge_swap_pte_at(mm, address, ptep,
5207                                                      newpte, huge_page_size(h));
5208                                 pages++;
5209                         }
5210                         spin_unlock(ptl);
5211                         continue;
5212                 }
5213                 if (!huge_pte_none(pte)) {
5214                         pte_t old_pte;
5215
5216                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5217                         pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5218                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
5219                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5220                         pages++;
5221                 }
5222                 spin_unlock(ptl);
5223         }
5224         /*
5225          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5226          * may have cleared our pud entry and done put_page on the page table:
5227          * once we release i_mmap_rwsem, another task can do the final put_page
5228          * and that page table be reused and filled with junk.  If we actually
5229          * did unshare a page of pmds, flush the range corresponding to the pud.
5230          */
5231         if (shared_pmd)
5232                 flush_hugetlb_tlb_range(vma, range.start, range.end);
5233         else
5234                 flush_hugetlb_tlb_range(vma, start, end);
5235         /*
5236          * No need to call mmu_notifier_invalidate_range() we are downgrading
5237          * page table protection not changing it to point to a new page.
5238          *
5239          * See Documentation/vm/mmu_notifier.rst
5240          */
5241         i_mmap_unlock_write(vma->vm_file->f_mapping);
5242         mmu_notifier_invalidate_range_end(&range);
5243
5244         return pages << h->order;
5245 }
5246
5247 /* Return true if reservation was successful, false otherwise.  */
5248 bool hugetlb_reserve_pages(struct inode *inode,
5249                                         long from, long to,
5250                                         struct vm_area_struct *vma,
5251                                         vm_flags_t vm_flags)
5252 {
5253         long chg, add = -1;
5254         struct hstate *h = hstate_inode(inode);
5255         struct hugepage_subpool *spool = subpool_inode(inode);
5256         struct resv_map *resv_map;
5257         struct hugetlb_cgroup *h_cg = NULL;
5258         long gbl_reserve, regions_needed = 0;
5259
5260         /* This should never happen */
5261         if (from > to) {
5262                 VM_WARN(1, "%s called with a negative range\n", __func__);
5263                 return false;
5264         }
5265
5266         /*
5267          * Only apply hugepage reservation if asked. At fault time, an
5268          * attempt will be made for VM_NORESERVE to allocate a page
5269          * without using reserves
5270          */
5271         if (vm_flags & VM_NORESERVE)
5272                 return true;
5273
5274         /*
5275          * Shared mappings base their reservation on the number of pages that
5276          * are already allocated on behalf of the file. Private mappings need
5277          * to reserve the full area even if read-only as mprotect() may be
5278          * called to make the mapping read-write. Assume !vma is a shm mapping
5279          */
5280         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5281                 /*
5282                  * resv_map can not be NULL as hugetlb_reserve_pages is only
5283                  * called for inodes for which resv_maps were created (see
5284                  * hugetlbfs_get_inode).
5285                  */
5286                 resv_map = inode_resv_map(inode);
5287
5288                 chg = region_chg(resv_map, from, to, &regions_needed);
5289
5290         } else {
5291                 /* Private mapping. */
5292                 resv_map = resv_map_alloc();
5293                 if (!resv_map)
5294                         return false;
5295
5296                 chg = to - from;
5297
5298                 set_vma_resv_map(vma, resv_map);
5299                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5300         }
5301
5302         if (chg < 0)
5303                 goto out_err;
5304
5305         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5306                                 chg * pages_per_huge_page(h), &h_cg) < 0)
5307                 goto out_err;
5308
5309         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5310                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5311                  * of the resv_map.
5312                  */
5313                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5314         }
5315
5316         /*
5317          * There must be enough pages in the subpool for the mapping. If
5318          * the subpool has a minimum size, there may be some global
5319          * reservations already in place (gbl_reserve).
5320          */
5321         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5322         if (gbl_reserve < 0)
5323                 goto out_uncharge_cgroup;
5324
5325         /*
5326          * Check enough hugepages are available for the reservation.
5327          * Hand the pages back to the subpool if there are not
5328          */
5329         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
5330                 goto out_put_pages;
5331
5332         /*
5333          * Account for the reservations made. Shared mappings record regions
5334          * that have reservations as they are shared by multiple VMAs.
5335          * When the last VMA disappears, the region map says how much
5336          * the reservation was and the page cache tells how much of
5337          * the reservation was consumed. Private mappings are per-VMA and
5338          * only the consumed reservations are tracked. When the VMA
5339          * disappears, the original reservation is the VMA size and the
5340          * consumed reservations are stored in the map. Hence, nothing
5341          * else has to be done for private mappings here
5342          */
5343         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5344                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5345
5346                 if (unlikely(add < 0)) {
5347                         hugetlb_acct_memory(h, -gbl_reserve);
5348                         goto out_put_pages;
5349                 } else if (unlikely(chg > add)) {
5350                         /*
5351                          * pages in this range were added to the reserve
5352                          * map between region_chg and region_add.  This
5353                          * indicates a race with alloc_huge_page.  Adjust
5354                          * the subpool and reserve counts modified above
5355                          * based on the difference.
5356                          */
5357                         long rsv_adjust;
5358
5359                         /*
5360                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5361                          * reference to h_cg->css. See comment below for detail.
5362                          */
5363                         hugetlb_cgroup_uncharge_cgroup_rsvd(
5364                                 hstate_index(h),
5365                                 (chg - add) * pages_per_huge_page(h), h_cg);
5366
5367                         rsv_adjust = hugepage_subpool_put_pages(spool,
5368                                                                 chg - add);
5369                         hugetlb_acct_memory(h, -rsv_adjust);
5370                 } else if (h_cg) {
5371                         /*
5372                          * The file_regions will hold their own reference to
5373                          * h_cg->css. So we should release the reference held
5374                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5375                          * done.
5376                          */
5377                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
5378                 }
5379         }
5380         return true;
5381
5382 out_put_pages:
5383         /* put back original number of pages, chg */
5384         (void)hugepage_subpool_put_pages(spool, chg);
5385 out_uncharge_cgroup:
5386         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5387                                             chg * pages_per_huge_page(h), h_cg);
5388 out_err:
5389         if (!vma || vma->vm_flags & VM_MAYSHARE)
5390                 /* Only call region_abort if the region_chg succeeded but the
5391                  * region_add failed or didn't run.
5392                  */
5393                 if (chg >= 0 && add < 0)
5394                         region_abort(resv_map, from, to, regions_needed);
5395         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5396                 kref_put(&resv_map->refs, resv_map_release);
5397         return false;
5398 }
5399
5400 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5401                                                                 long freed)
5402 {
5403         struct hstate *h = hstate_inode(inode);
5404         struct resv_map *resv_map = inode_resv_map(inode);
5405         long chg = 0;
5406         struct hugepage_subpool *spool = subpool_inode(inode);
5407         long gbl_reserve;
5408
5409         /*
5410          * Since this routine can be called in the evict inode path for all
5411          * hugetlbfs inodes, resv_map could be NULL.
5412          */
5413         if (resv_map) {
5414                 chg = region_del(resv_map, start, end);
5415                 /*
5416                  * region_del() can fail in the rare case where a region
5417                  * must be split and another region descriptor can not be
5418                  * allocated.  If end == LONG_MAX, it will not fail.
5419                  */
5420                 if (chg < 0)
5421                         return chg;
5422         }
5423
5424         spin_lock(&inode->i_lock);
5425         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5426         spin_unlock(&inode->i_lock);
5427
5428         /*
5429          * If the subpool has a minimum size, the number of global
5430          * reservations to be released may be adjusted.
5431          *
5432          * Note that !resv_map implies freed == 0. So (chg - freed)
5433          * won't go negative.
5434          */
5435         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5436         hugetlb_acct_memory(h, -gbl_reserve);
5437
5438         return 0;
5439 }
5440
5441 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5442 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5443                                 struct vm_area_struct *vma,
5444                                 unsigned long addr, pgoff_t idx)
5445 {
5446         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5447                                 svma->vm_start;
5448         unsigned long sbase = saddr & PUD_MASK;
5449         unsigned long s_end = sbase + PUD_SIZE;
5450
5451         /* Allow segments to share if only one is marked locked */
5452         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5453         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5454
5455         /*
5456          * match the virtual addresses, permission and the alignment of the
5457          * page table page.
5458          */
5459         if (pmd_index(addr) != pmd_index(saddr) ||
5460             vm_flags != svm_flags ||
5461             !range_in_vma(svma, sbase, s_end))
5462                 return 0;
5463
5464         return saddr;
5465 }
5466
5467 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5468 {
5469         unsigned long base = addr & PUD_MASK;
5470         unsigned long end = base + PUD_SIZE;
5471
5472         /*
5473          * check on proper vm_flags and page table alignment
5474          */
5475         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5476                 return true;
5477         return false;
5478 }
5479
5480 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5481 {
5482 #ifdef CONFIG_USERFAULTFD
5483         if (uffd_disable_huge_pmd_share(vma))
5484                 return false;
5485 #endif
5486         return vma_shareable(vma, addr);
5487 }
5488
5489 /*
5490  * Determine if start,end range within vma could be mapped by shared pmd.
5491  * If yes, adjust start and end to cover range associated with possible
5492  * shared pmd mappings.
5493  */
5494 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5495                                 unsigned long *start, unsigned long *end)
5496 {
5497         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5498                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5499
5500         /*
5501          * vma need span at least one aligned PUD size and the start,end range
5502          * must at least partialy within it.
5503          */
5504         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5505                 (*end <= v_start) || (*start >= v_end))
5506                 return;
5507
5508         /* Extend the range to be PUD aligned for a worst case scenario */
5509         if (*start > v_start)
5510                 *start = ALIGN_DOWN(*start, PUD_SIZE);
5511
5512         if (*end < v_end)
5513                 *end = ALIGN(*end, PUD_SIZE);
5514 }
5515
5516 /*
5517  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5518  * and returns the corresponding pte. While this is not necessary for the
5519  * !shared pmd case because we can allocate the pmd later as well, it makes the
5520  * code much cleaner.
5521  *
5522  * This routine must be called with i_mmap_rwsem held in at least read mode if
5523  * sharing is possible.  For hugetlbfs, this prevents removal of any page
5524  * table entries associated with the address space.  This is important as we
5525  * are setting up sharing based on existing page table entries (mappings).
5526  *
5527  * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
5528  * huge_pte_alloc know that sharing is not possible and do not take
5529  * i_mmap_rwsem as a performance optimization.  This is handled by the
5530  * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5531  * only required for subsequent processing.
5532  */
5533 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5534                       unsigned long addr, pud_t *pud)
5535 {
5536         struct address_space *mapping = vma->vm_file->f_mapping;
5537         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5538                         vma->vm_pgoff;
5539         struct vm_area_struct *svma;
5540         unsigned long saddr;
5541         pte_t *spte = NULL;
5542         pte_t *pte;
5543         spinlock_t *ptl;
5544
5545         i_mmap_assert_locked(mapping);
5546         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5547                 if (svma == vma)
5548                         continue;
5549
5550                 saddr = page_table_shareable(svma, vma, addr, idx);
5551                 if (saddr) {
5552                         spte = huge_pte_offset(svma->vm_mm, saddr,
5553                                                vma_mmu_pagesize(svma));
5554                         if (spte) {
5555                                 get_page(virt_to_page(spte));
5556                                 break;
5557                         }
5558                 }
5559         }
5560
5561         if (!spte)
5562                 goto out;
5563
5564         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5565         if (pud_none(*pud)) {
5566                 pud_populate(mm, pud,
5567                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
5568                 mm_inc_nr_pmds(mm);
5569         } else {
5570                 put_page(virt_to_page(spte));
5571         }
5572         spin_unlock(ptl);
5573 out:
5574         pte = (pte_t *)pmd_alloc(mm, pud, addr);
5575         return pte;
5576 }
5577
5578 /*
5579  * unmap huge page backed by shared pte.
5580  *
5581  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5582  * indicated by page_count > 1, unmap is achieved by clearing pud and
5583  * decrementing the ref count. If count == 1, the pte page is not shared.
5584  *
5585  * Called with page table lock held and i_mmap_rwsem held in write mode.
5586  *
5587  * returns: 1 successfully unmapped a shared pte page
5588  *          0 the underlying pte page is not shared, or it is the last user
5589  */
5590 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5591                                         unsigned long *addr, pte_t *ptep)
5592 {
5593         pgd_t *pgd = pgd_offset(mm, *addr);
5594         p4d_t *p4d = p4d_offset(pgd, *addr);
5595         pud_t *pud = pud_offset(p4d, *addr);
5596
5597         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5598         BUG_ON(page_count(virt_to_page(ptep)) == 0);
5599         if (page_count(virt_to_page(ptep)) == 1)
5600                 return 0;
5601
5602         pud_clear(pud);
5603         put_page(virt_to_page(ptep));
5604         mm_dec_nr_pmds(mm);
5605         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5606         return 1;
5607 }
5608
5609 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5610 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5611                       unsigned long addr, pud_t *pud)
5612 {
5613         return NULL;
5614 }
5615
5616 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5617                                 unsigned long *addr, pte_t *ptep)
5618 {
5619         return 0;
5620 }
5621
5622 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5623                                 unsigned long *start, unsigned long *end)
5624 {
5625 }
5626
5627 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5628 {
5629         return false;
5630 }
5631 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5632
5633 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5634 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
5635                         unsigned long addr, unsigned long sz)
5636 {
5637         pgd_t *pgd;
5638         p4d_t *p4d;
5639         pud_t *pud;
5640         pte_t *pte = NULL;
5641
5642         pgd = pgd_offset(mm, addr);
5643         p4d = p4d_alloc(mm, pgd, addr);
5644         if (!p4d)
5645                 return NULL;
5646         pud = pud_alloc(mm, p4d, addr);
5647         if (pud) {
5648                 if (sz == PUD_SIZE) {
5649                         pte = (pte_t *)pud;
5650                 } else {
5651                         BUG_ON(sz != PMD_SIZE);
5652                         if (want_pmd_share(vma, addr) && pud_none(*pud))
5653                                 pte = huge_pmd_share(mm, vma, addr, pud);
5654                         else
5655                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5656                 }
5657         }
5658         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5659
5660         return pte;
5661 }
5662
5663 /*
5664  * huge_pte_offset() - Walk the page table to resolve the hugepage
5665  * entry at address @addr
5666  *
5667  * Return: Pointer to page table entry (PUD or PMD) for
5668  * address @addr, or NULL if a !p*d_present() entry is encountered and the
5669  * size @sz doesn't match the hugepage size at this level of the page
5670  * table.
5671  */
5672 pte_t *huge_pte_offset(struct mm_struct *mm,
5673                        unsigned long addr, unsigned long sz)
5674 {
5675         pgd_t *pgd;
5676         p4d_t *p4d;
5677         pud_t *pud;
5678         pmd_t *pmd;
5679
5680         pgd = pgd_offset(mm, addr);
5681         if (!pgd_present(*pgd))
5682                 return NULL;
5683         p4d = p4d_offset(pgd, addr);
5684         if (!p4d_present(*p4d))
5685                 return NULL;
5686
5687         pud = pud_offset(p4d, addr);
5688         if (sz == PUD_SIZE)
5689                 /* must be pud huge, non-present or none */
5690                 return (pte_t *)pud;
5691         if (!pud_present(*pud))
5692                 return NULL;
5693         /* must have a valid entry and size to go further */
5694
5695         pmd = pmd_offset(pud, addr);
5696         /* must be pmd huge, non-present or none */
5697         return (pte_t *)pmd;
5698 }
5699
5700 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5701
5702 /*
5703  * These functions are overwritable if your architecture needs its own
5704  * behavior.
5705  */
5706 struct page * __weak
5707 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5708                               int write)
5709 {
5710         return ERR_PTR(-EINVAL);
5711 }
5712
5713 struct page * __weak
5714 follow_huge_pd(struct vm_area_struct *vma,
5715                unsigned long address, hugepd_t hpd, int flags, int pdshift)
5716 {
5717         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5718         return NULL;
5719 }
5720
5721 struct page * __weak
5722 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5723                 pmd_t *pmd, int flags)
5724 {
5725         struct page *page = NULL;
5726         spinlock_t *ptl;
5727         pte_t pte;
5728
5729         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5730         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5731                          (FOLL_PIN | FOLL_GET)))
5732                 return NULL;
5733
5734 retry:
5735         ptl = pmd_lockptr(mm, pmd);
5736         spin_lock(ptl);
5737         /*
5738          * make sure that the address range covered by this pmd is not
5739          * unmapped from other threads.
5740          */
5741         if (!pmd_huge(*pmd))
5742                 goto out;
5743         pte = huge_ptep_get((pte_t *)pmd);
5744         if (pte_present(pte)) {
5745                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5746                 /*
5747                  * try_grab_page() should always succeed here, because: a) we
5748                  * hold the pmd (ptl) lock, and b) we've just checked that the
5749                  * huge pmd (head) page is present in the page tables. The ptl
5750                  * prevents the head page and tail pages from being rearranged
5751                  * in any way. So this page must be available at this point,
5752                  * unless the page refcount overflowed:
5753                  */
5754                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5755                         page = NULL;
5756                         goto out;
5757                 }
5758         } else {
5759                 if (is_hugetlb_entry_migration(pte)) {
5760                         spin_unlock(ptl);
5761                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5762                         goto retry;
5763                 }
5764                 /*
5765                  * hwpoisoned entry is treated as no_page_table in
5766                  * follow_page_mask().
5767                  */
5768         }
5769 out:
5770         spin_unlock(ptl);
5771         return page;
5772 }
5773
5774 struct page * __weak
5775 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5776                 pud_t *pud, int flags)
5777 {
5778         if (flags & (FOLL_GET | FOLL_PIN))
5779                 return NULL;
5780
5781         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5782 }
5783
5784 struct page * __weak
5785 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5786 {
5787         if (flags & (FOLL_GET | FOLL_PIN))
5788                 return NULL;
5789
5790         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5791 }
5792
5793 bool isolate_huge_page(struct page *page, struct list_head *list)
5794 {
5795         bool ret = true;
5796
5797         spin_lock_irq(&hugetlb_lock);
5798         if (!PageHeadHuge(page) ||
5799             !HPageMigratable(page) ||
5800             !get_page_unless_zero(page)) {
5801                 ret = false;
5802                 goto unlock;
5803         }
5804         ClearHPageMigratable(page);
5805         list_move_tail(&page->lru, list);
5806 unlock:
5807         spin_unlock_irq(&hugetlb_lock);
5808         return ret;
5809 }
5810
5811 void putback_active_hugepage(struct page *page)
5812 {
5813         spin_lock_irq(&hugetlb_lock);
5814         SetHPageMigratable(page);
5815         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5816         spin_unlock_irq(&hugetlb_lock);
5817         put_page(page);
5818 }
5819
5820 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5821 {
5822         struct hstate *h = page_hstate(oldpage);
5823
5824         hugetlb_cgroup_migrate(oldpage, newpage);
5825         set_page_owner_migrate_reason(newpage, reason);
5826
5827         /*
5828          * transfer temporary state of the new huge page. This is
5829          * reverse to other transitions because the newpage is going to
5830          * be final while the old one will be freed so it takes over
5831          * the temporary status.
5832          *
5833          * Also note that we have to transfer the per-node surplus state
5834          * here as well otherwise the global surplus count will not match
5835          * the per-node's.
5836          */
5837         if (HPageTemporary(newpage)) {
5838                 int old_nid = page_to_nid(oldpage);
5839                 int new_nid = page_to_nid(newpage);
5840
5841                 SetHPageTemporary(oldpage);
5842                 ClearHPageTemporary(newpage);
5843
5844                 /*
5845                  * There is no need to transfer the per-node surplus state
5846                  * when we do not cross the node.
5847                  */
5848                 if (new_nid == old_nid)
5849                         return;
5850                 spin_lock_irq(&hugetlb_lock);
5851                 if (h->surplus_huge_pages_node[old_nid]) {
5852                         h->surplus_huge_pages_node[old_nid]--;
5853                         h->surplus_huge_pages_node[new_nid]++;
5854                 }
5855                 spin_unlock_irq(&hugetlb_lock);
5856         }
5857 }
5858
5859 /*
5860  * This function will unconditionally remove all the shared pmd pgtable entries
5861  * within the specific vma for a hugetlbfs memory range.
5862  */
5863 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
5864 {
5865         struct hstate *h = hstate_vma(vma);
5866         unsigned long sz = huge_page_size(h);
5867         struct mm_struct *mm = vma->vm_mm;
5868         struct mmu_notifier_range range;
5869         unsigned long address, start, end;
5870         spinlock_t *ptl;
5871         pte_t *ptep;
5872
5873         if (!(vma->vm_flags & VM_MAYSHARE))
5874                 return;
5875
5876         start = ALIGN(vma->vm_start, PUD_SIZE);
5877         end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5878
5879         if (start >= end)
5880                 return;
5881
5882         /*
5883          * No need to call adjust_range_if_pmd_sharing_possible(), because
5884          * we have already done the PUD_SIZE alignment.
5885          */
5886         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
5887                                 start, end);
5888         mmu_notifier_invalidate_range_start(&range);
5889         i_mmap_lock_write(vma->vm_file->f_mapping);
5890         for (address = start; address < end; address += PUD_SIZE) {
5891                 unsigned long tmp = address;
5892
5893                 ptep = huge_pte_offset(mm, address, sz);
5894                 if (!ptep)
5895                         continue;
5896                 ptl = huge_pte_lock(h, mm, ptep);
5897                 /* We don't want 'address' to be changed */
5898                 huge_pmd_unshare(mm, vma, &tmp, ptep);
5899                 spin_unlock(ptl);
5900         }
5901         flush_hugetlb_tlb_range(vma, start, end);
5902         i_mmap_unlock_write(vma->vm_file->f_mapping);
5903         /*
5904          * No need to call mmu_notifier_invalidate_range(), see
5905          * Documentation/vm/mmu_notifier.rst.
5906          */
5907         mmu_notifier_invalidate_range_end(&range);
5908 }
5909
5910 #ifdef CONFIG_CMA
5911 static bool cma_reserve_called __initdata;
5912
5913 static int __init cmdline_parse_hugetlb_cma(char *p)
5914 {
5915         hugetlb_cma_size = memparse(p, &p);
5916         return 0;
5917 }
5918
5919 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5920
5921 void __init hugetlb_cma_reserve(int order)
5922 {
5923         unsigned long size, reserved, per_node;
5924         int nid;
5925
5926         cma_reserve_called = true;
5927
5928         if (!hugetlb_cma_size)
5929                 return;
5930
5931         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5932                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5933                         (PAGE_SIZE << order) / SZ_1M);
5934                 return;
5935         }
5936
5937         /*
5938          * If 3 GB area is requested on a machine with 4 numa nodes,
5939          * let's allocate 1 GB on first three nodes and ignore the last one.
5940          */
5941         per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5942         pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5943                 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5944
5945         reserved = 0;
5946         for_each_node_state(nid, N_ONLINE) {
5947                 int res;
5948                 char name[CMA_MAX_NAME];
5949
5950                 size = min(per_node, hugetlb_cma_size - reserved);
5951                 size = round_up(size, PAGE_SIZE << order);
5952
5953                 snprintf(name, sizeof(name), "hugetlb%d", nid);
5954                 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5955                                                  0, false, name,
5956                                                  &hugetlb_cma[nid], nid);
5957                 if (res) {
5958                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5959                                 res, nid);
5960                         continue;
5961                 }
5962
5963                 reserved += size;
5964                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5965                         size / SZ_1M, nid);
5966
5967                 if (reserved >= hugetlb_cma_size)
5968                         break;
5969         }
5970 }
5971
5972 void __init hugetlb_cma_check(void)
5973 {
5974         if (!hugetlb_cma_size || cma_reserve_called)
5975                 return;
5976
5977         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5978 }
5979
5980 #endif /* CONFIG_CMA */