arm64: cpufeature: Export matrix and other features to userspace
[linux-2.6-microblaze.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/mmdebug.h>
23 #include <linux/sched/signal.h>
24 #include <linux/rmap.h>
25 #include <linux/string_helpers.h>
26 #include <linux/swap.h>
27 #include <linux/swapops.h>
28 #include <linux/jhash.h>
29 #include <linux/numa.h>
30
31 #include <asm/page.h>
32 #include <asm/pgtable.h>
33 #include <asm/tlb.h>
34
35 #include <linux/io.h>
36 #include <linux/hugetlb.h>
37 #include <linux/hugetlb_cgroup.h>
38 #include <linux/node.h>
39 #include <linux/userfaultfd_k.h>
40 #include <linux/page_owner.h>
41 #include "internal.h"
42
43 int hugetlb_max_hstate __read_mostly;
44 unsigned int default_hstate_idx;
45 struct hstate hstates[HUGE_MAX_HSTATE];
46 /*
47  * Minimum page order among possible hugepage sizes, set to a proper value
48  * at boot time.
49  */
50 static unsigned int minimum_order __read_mostly = UINT_MAX;
51
52 __initdata LIST_HEAD(huge_boot_pages);
53
54 /* for command line parsing */
55 static struct hstate * __initdata parsed_hstate;
56 static unsigned long __initdata default_hstate_max_huge_pages;
57 static unsigned long __initdata default_hstate_size;
58 static bool __initdata parsed_valid_hugepagesz = true;
59
60 /*
61  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
62  * free_huge_pages, and surplus_huge_pages.
63  */
64 DEFINE_SPINLOCK(hugetlb_lock);
65
66 /*
67  * Serializes faults on the same logical page.  This is used to
68  * prevent spurious OOMs when the hugepage pool is fully utilized.
69  */
70 static int num_fault_mutexes;
71 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
72
73 /* Forward declaration */
74 static int hugetlb_acct_memory(struct hstate *h, long delta);
75
76 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
77 {
78         bool free = (spool->count == 0) && (spool->used_hpages == 0);
79
80         spin_unlock(&spool->lock);
81
82         /* If no pages are used, and no other handles to the subpool
83          * remain, give up any reservations mased on minimum size and
84          * free the subpool */
85         if (free) {
86                 if (spool->min_hpages != -1)
87                         hugetlb_acct_memory(spool->hstate,
88                                                 -spool->min_hpages);
89                 kfree(spool);
90         }
91 }
92
93 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
94                                                 long min_hpages)
95 {
96         struct hugepage_subpool *spool;
97
98         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
99         if (!spool)
100                 return NULL;
101
102         spin_lock_init(&spool->lock);
103         spool->count = 1;
104         spool->max_hpages = max_hpages;
105         spool->hstate = h;
106         spool->min_hpages = min_hpages;
107
108         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
109                 kfree(spool);
110                 return NULL;
111         }
112         spool->rsv_hpages = min_hpages;
113
114         return spool;
115 }
116
117 void hugepage_put_subpool(struct hugepage_subpool *spool)
118 {
119         spin_lock(&spool->lock);
120         BUG_ON(!spool->count);
121         spool->count--;
122         unlock_or_release_subpool(spool);
123 }
124
125 /*
126  * Subpool accounting for allocating and reserving pages.
127  * Return -ENOMEM if there are not enough resources to satisfy the
128  * the request.  Otherwise, return the number of pages by which the
129  * global pools must be adjusted (upward).  The returned value may
130  * only be different than the passed value (delta) in the case where
131  * a subpool minimum size must be manitained.
132  */
133 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
134                                       long delta)
135 {
136         long ret = delta;
137
138         if (!spool)
139                 return ret;
140
141         spin_lock(&spool->lock);
142
143         if (spool->max_hpages != -1) {          /* maximum size accounting */
144                 if ((spool->used_hpages + delta) <= spool->max_hpages)
145                         spool->used_hpages += delta;
146                 else {
147                         ret = -ENOMEM;
148                         goto unlock_ret;
149                 }
150         }
151
152         /* minimum size accounting */
153         if (spool->min_hpages != -1 && spool->rsv_hpages) {
154                 if (delta > spool->rsv_hpages) {
155                         /*
156                          * Asking for more reserves than those already taken on
157                          * behalf of subpool.  Return difference.
158                          */
159                         ret = delta - spool->rsv_hpages;
160                         spool->rsv_hpages = 0;
161                 } else {
162                         ret = 0;        /* reserves already accounted for */
163                         spool->rsv_hpages -= delta;
164                 }
165         }
166
167 unlock_ret:
168         spin_unlock(&spool->lock);
169         return ret;
170 }
171
172 /*
173  * Subpool accounting for freeing and unreserving pages.
174  * Return the number of global page reservations that must be dropped.
175  * The return value may only be different than the passed value (delta)
176  * in the case where a subpool minimum size must be maintained.
177  */
178 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
179                                        long delta)
180 {
181         long ret = delta;
182
183         if (!spool)
184                 return delta;
185
186         spin_lock(&spool->lock);
187
188         if (spool->max_hpages != -1)            /* maximum size accounting */
189                 spool->used_hpages -= delta;
190
191          /* minimum size accounting */
192         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
193                 if (spool->rsv_hpages + delta <= spool->min_hpages)
194                         ret = 0;
195                 else
196                         ret = spool->rsv_hpages + delta - spool->min_hpages;
197
198                 spool->rsv_hpages += delta;
199                 if (spool->rsv_hpages > spool->min_hpages)
200                         spool->rsv_hpages = spool->min_hpages;
201         }
202
203         /*
204          * If hugetlbfs_put_super couldn't free spool due to an outstanding
205          * quota reference, free it now.
206          */
207         unlock_or_release_subpool(spool);
208
209         return ret;
210 }
211
212 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
213 {
214         return HUGETLBFS_SB(inode->i_sb)->spool;
215 }
216
217 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
218 {
219         return subpool_inode(file_inode(vma->vm_file));
220 }
221
222 /*
223  * Region tracking -- allows tracking of reservations and instantiated pages
224  *                    across the pages in a mapping.
225  *
226  * The region data structures are embedded into a resv_map and protected
227  * by a resv_map's lock.  The set of regions within the resv_map represent
228  * reservations for huge pages, or huge pages that have already been
229  * instantiated within the map.  The from and to elements are huge page
230  * indicies into the associated mapping.  from indicates the starting index
231  * of the region.  to represents the first index past the end of  the region.
232  *
233  * For example, a file region structure with from == 0 and to == 4 represents
234  * four huge pages in a mapping.  It is important to note that the to element
235  * represents the first element past the end of the region. This is used in
236  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
237  *
238  * Interval notation of the form [from, to) will be used to indicate that
239  * the endpoint from is inclusive and to is exclusive.
240  */
241 struct file_region {
242         struct list_head link;
243         long from;
244         long to;
245 };
246
247 /* Must be called with resv->lock held. Calling this with count_only == true
248  * will count the number of pages to be added but will not modify the linked
249  * list.
250  */
251 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
252                                      bool count_only)
253 {
254         long chg = 0;
255         struct list_head *head = &resv->regions;
256         struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
257
258         /* Locate the region we are before or in. */
259         list_for_each_entry(rg, head, link)
260                 if (f <= rg->to)
261                         break;
262
263         /* Round our left edge to the current segment if it encloses us. */
264         if (f > rg->from)
265                 f = rg->from;
266
267         chg = t - f;
268
269         /* Check for and consume any regions we now overlap with. */
270         nrg = rg;
271         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
272                 if (&rg->link == head)
273                         break;
274                 if (rg->from > t)
275                         break;
276
277                 /* We overlap with this area, if it extends further than
278                  * us then we must extend ourselves.  Account for its
279                  * existing reservation.
280                  */
281                 if (rg->to > t) {
282                         chg += rg->to - t;
283                         t = rg->to;
284                 }
285                 chg -= rg->to - rg->from;
286
287                 if (!count_only && rg != nrg) {
288                         list_del(&rg->link);
289                         kfree(rg);
290                 }
291         }
292
293         if (!count_only) {
294                 nrg->from = f;
295                 nrg->to = t;
296         }
297
298         return chg;
299 }
300
301 /*
302  * Add the huge page range represented by [f, t) to the reserve
303  * map.  Existing regions will be expanded to accommodate the specified
304  * range, or a region will be taken from the cache.  Sufficient regions
305  * must exist in the cache due to the previous call to region_chg with
306  * the same range.
307  *
308  * Return the number of new huge pages added to the map.  This
309  * number is greater than or equal to zero.
310  */
311 static long region_add(struct resv_map *resv, long f, long t)
312 {
313         struct list_head *head = &resv->regions;
314         struct file_region *rg, *nrg;
315         long add = 0;
316
317         spin_lock(&resv->lock);
318         /* Locate the region we are either in or before. */
319         list_for_each_entry(rg, head, link)
320                 if (f <= rg->to)
321                         break;
322
323         /*
324          * If no region exists which can be expanded to include the
325          * specified range, pull a region descriptor from the cache
326          * and use it for this range.
327          */
328         if (&rg->link == head || t < rg->from) {
329                 VM_BUG_ON(resv->region_cache_count <= 0);
330
331                 resv->region_cache_count--;
332                 nrg = list_first_entry(&resv->region_cache, struct file_region,
333                                         link);
334                 list_del(&nrg->link);
335
336                 nrg->from = f;
337                 nrg->to = t;
338                 list_add(&nrg->link, rg->link.prev);
339
340                 add += t - f;
341                 goto out_locked;
342         }
343
344         add = add_reservation_in_range(resv, f, t, false);
345
346 out_locked:
347         resv->adds_in_progress--;
348         spin_unlock(&resv->lock);
349         VM_BUG_ON(add < 0);
350         return add;
351 }
352
353 /*
354  * Examine the existing reserve map and determine how many
355  * huge pages in the specified range [f, t) are NOT currently
356  * represented.  This routine is called before a subsequent
357  * call to region_add that will actually modify the reserve
358  * map to add the specified range [f, t).  region_chg does
359  * not change the number of huge pages represented by the
360  * map.  A new file_region structure is added to the cache
361  * as a placeholder, so that the subsequent region_add
362  * call will have all the regions it needs and will not fail.
363  *
364  * Returns the number of huge pages that need to be added to the existing
365  * reservation map for the range [f, t).  This number is greater or equal to
366  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
367  * is needed and can not be allocated.
368  */
369 static long region_chg(struct resv_map *resv, long f, long t)
370 {
371         long chg = 0;
372
373         spin_lock(&resv->lock);
374 retry_locked:
375         resv->adds_in_progress++;
376
377         /*
378          * Check for sufficient descriptors in the cache to accommodate
379          * the number of in progress add operations.
380          */
381         if (resv->adds_in_progress > resv->region_cache_count) {
382                 struct file_region *trg;
383
384                 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
385                 /* Must drop lock to allocate a new descriptor. */
386                 resv->adds_in_progress--;
387                 spin_unlock(&resv->lock);
388
389                 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
390                 if (!trg)
391                         return -ENOMEM;
392
393                 spin_lock(&resv->lock);
394                 list_add(&trg->link, &resv->region_cache);
395                 resv->region_cache_count++;
396                 goto retry_locked;
397         }
398
399         chg = add_reservation_in_range(resv, f, t, true);
400
401         spin_unlock(&resv->lock);
402         return chg;
403 }
404
405 /*
406  * Abort the in progress add operation.  The adds_in_progress field
407  * of the resv_map keeps track of the operations in progress between
408  * calls to region_chg and region_add.  Operations are sometimes
409  * aborted after the call to region_chg.  In such cases, region_abort
410  * is called to decrement the adds_in_progress counter.
411  *
412  * NOTE: The range arguments [f, t) are not needed or used in this
413  * routine.  They are kept to make reading the calling code easier as
414  * arguments will match the associated region_chg call.
415  */
416 static void region_abort(struct resv_map *resv, long f, long t)
417 {
418         spin_lock(&resv->lock);
419         VM_BUG_ON(!resv->region_cache_count);
420         resv->adds_in_progress--;
421         spin_unlock(&resv->lock);
422 }
423
424 /*
425  * Delete the specified range [f, t) from the reserve map.  If the
426  * t parameter is LONG_MAX, this indicates that ALL regions after f
427  * should be deleted.  Locate the regions which intersect [f, t)
428  * and either trim, delete or split the existing regions.
429  *
430  * Returns the number of huge pages deleted from the reserve map.
431  * In the normal case, the return value is zero or more.  In the
432  * case where a region must be split, a new region descriptor must
433  * be allocated.  If the allocation fails, -ENOMEM will be returned.
434  * NOTE: If the parameter t == LONG_MAX, then we will never split
435  * a region and possibly return -ENOMEM.  Callers specifying
436  * t == LONG_MAX do not need to check for -ENOMEM error.
437  */
438 static long region_del(struct resv_map *resv, long f, long t)
439 {
440         struct list_head *head = &resv->regions;
441         struct file_region *rg, *trg;
442         struct file_region *nrg = NULL;
443         long del = 0;
444
445 retry:
446         spin_lock(&resv->lock);
447         list_for_each_entry_safe(rg, trg, head, link) {
448                 /*
449                  * Skip regions before the range to be deleted.  file_region
450                  * ranges are normally of the form [from, to).  However, there
451                  * may be a "placeholder" entry in the map which is of the form
452                  * (from, to) with from == to.  Check for placeholder entries
453                  * at the beginning of the range to be deleted.
454                  */
455                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
456                         continue;
457
458                 if (rg->from >= t)
459                         break;
460
461                 if (f > rg->from && t < rg->to) { /* Must split region */
462                         /*
463                          * Check for an entry in the cache before dropping
464                          * lock and attempting allocation.
465                          */
466                         if (!nrg &&
467                             resv->region_cache_count > resv->adds_in_progress) {
468                                 nrg = list_first_entry(&resv->region_cache,
469                                                         struct file_region,
470                                                         link);
471                                 list_del(&nrg->link);
472                                 resv->region_cache_count--;
473                         }
474
475                         if (!nrg) {
476                                 spin_unlock(&resv->lock);
477                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
478                                 if (!nrg)
479                                         return -ENOMEM;
480                                 goto retry;
481                         }
482
483                         del += t - f;
484
485                         /* New entry for end of split region */
486                         nrg->from = t;
487                         nrg->to = rg->to;
488                         INIT_LIST_HEAD(&nrg->link);
489
490                         /* Original entry is trimmed */
491                         rg->to = f;
492
493                         list_add(&nrg->link, &rg->link);
494                         nrg = NULL;
495                         break;
496                 }
497
498                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
499                         del += rg->to - rg->from;
500                         list_del(&rg->link);
501                         kfree(rg);
502                         continue;
503                 }
504
505                 if (f <= rg->from) {    /* Trim beginning of region */
506                         del += t - rg->from;
507                         rg->from = t;
508                 } else {                /* Trim end of region */
509                         del += rg->to - f;
510                         rg->to = f;
511                 }
512         }
513
514         spin_unlock(&resv->lock);
515         kfree(nrg);
516         return del;
517 }
518
519 /*
520  * A rare out of memory error was encountered which prevented removal of
521  * the reserve map region for a page.  The huge page itself was free'ed
522  * and removed from the page cache.  This routine will adjust the subpool
523  * usage count, and the global reserve count if needed.  By incrementing
524  * these counts, the reserve map entry which could not be deleted will
525  * appear as a "reserved" entry instead of simply dangling with incorrect
526  * counts.
527  */
528 void hugetlb_fix_reserve_counts(struct inode *inode)
529 {
530         struct hugepage_subpool *spool = subpool_inode(inode);
531         long rsv_adjust;
532
533         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
534         if (rsv_adjust) {
535                 struct hstate *h = hstate_inode(inode);
536
537                 hugetlb_acct_memory(h, 1);
538         }
539 }
540
541 /*
542  * Count and return the number of huge pages in the reserve map
543  * that intersect with the range [f, t).
544  */
545 static long region_count(struct resv_map *resv, long f, long t)
546 {
547         struct list_head *head = &resv->regions;
548         struct file_region *rg;
549         long chg = 0;
550
551         spin_lock(&resv->lock);
552         /* Locate each segment we overlap with, and count that overlap. */
553         list_for_each_entry(rg, head, link) {
554                 long seg_from;
555                 long seg_to;
556
557                 if (rg->to <= f)
558                         continue;
559                 if (rg->from >= t)
560                         break;
561
562                 seg_from = max(rg->from, f);
563                 seg_to = min(rg->to, t);
564
565                 chg += seg_to - seg_from;
566         }
567         spin_unlock(&resv->lock);
568
569         return chg;
570 }
571
572 /*
573  * Convert the address within this vma to the page offset within
574  * the mapping, in pagecache page units; huge pages here.
575  */
576 static pgoff_t vma_hugecache_offset(struct hstate *h,
577                         struct vm_area_struct *vma, unsigned long address)
578 {
579         return ((address - vma->vm_start) >> huge_page_shift(h)) +
580                         (vma->vm_pgoff >> huge_page_order(h));
581 }
582
583 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
584                                      unsigned long address)
585 {
586         return vma_hugecache_offset(hstate_vma(vma), vma, address);
587 }
588 EXPORT_SYMBOL_GPL(linear_hugepage_index);
589
590 /*
591  * Return the size of the pages allocated when backing a VMA. In the majority
592  * cases this will be same size as used by the page table entries.
593  */
594 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
595 {
596         if (vma->vm_ops && vma->vm_ops->pagesize)
597                 return vma->vm_ops->pagesize(vma);
598         return PAGE_SIZE;
599 }
600 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
601
602 /*
603  * Return the page size being used by the MMU to back a VMA. In the majority
604  * of cases, the page size used by the kernel matches the MMU size. On
605  * architectures where it differs, an architecture-specific 'strong'
606  * version of this symbol is required.
607  */
608 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
609 {
610         return vma_kernel_pagesize(vma);
611 }
612
613 /*
614  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
615  * bits of the reservation map pointer, which are always clear due to
616  * alignment.
617  */
618 #define HPAGE_RESV_OWNER    (1UL << 0)
619 #define HPAGE_RESV_UNMAPPED (1UL << 1)
620 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
621
622 /*
623  * These helpers are used to track how many pages are reserved for
624  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
625  * is guaranteed to have their future faults succeed.
626  *
627  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
628  * the reserve counters are updated with the hugetlb_lock held. It is safe
629  * to reset the VMA at fork() time as it is not in use yet and there is no
630  * chance of the global counters getting corrupted as a result of the values.
631  *
632  * The private mapping reservation is represented in a subtly different
633  * manner to a shared mapping.  A shared mapping has a region map associated
634  * with the underlying file, this region map represents the backing file
635  * pages which have ever had a reservation assigned which this persists even
636  * after the page is instantiated.  A private mapping has a region map
637  * associated with the original mmap which is attached to all VMAs which
638  * reference it, this region map represents those offsets which have consumed
639  * reservation ie. where pages have been instantiated.
640  */
641 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
642 {
643         return (unsigned long)vma->vm_private_data;
644 }
645
646 static void set_vma_private_data(struct vm_area_struct *vma,
647                                                         unsigned long value)
648 {
649         vma->vm_private_data = (void *)value;
650 }
651
652 struct resv_map *resv_map_alloc(void)
653 {
654         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
655         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
656
657         if (!resv_map || !rg) {
658                 kfree(resv_map);
659                 kfree(rg);
660                 return NULL;
661         }
662
663         kref_init(&resv_map->refs);
664         spin_lock_init(&resv_map->lock);
665         INIT_LIST_HEAD(&resv_map->regions);
666
667         resv_map->adds_in_progress = 0;
668
669         INIT_LIST_HEAD(&resv_map->region_cache);
670         list_add(&rg->link, &resv_map->region_cache);
671         resv_map->region_cache_count = 1;
672
673         return resv_map;
674 }
675
676 void resv_map_release(struct kref *ref)
677 {
678         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
679         struct list_head *head = &resv_map->region_cache;
680         struct file_region *rg, *trg;
681
682         /* Clear out any active regions before we release the map. */
683         region_del(resv_map, 0, LONG_MAX);
684
685         /* ... and any entries left in the cache */
686         list_for_each_entry_safe(rg, trg, head, link) {
687                 list_del(&rg->link);
688                 kfree(rg);
689         }
690
691         VM_BUG_ON(resv_map->adds_in_progress);
692
693         kfree(resv_map);
694 }
695
696 static inline struct resv_map *inode_resv_map(struct inode *inode)
697 {
698         /*
699          * At inode evict time, i_mapping may not point to the original
700          * address space within the inode.  This original address space
701          * contains the pointer to the resv_map.  So, always use the
702          * address space embedded within the inode.
703          * The VERY common case is inode->mapping == &inode->i_data but,
704          * this may not be true for device special inodes.
705          */
706         return (struct resv_map *)(&inode->i_data)->private_data;
707 }
708
709 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
710 {
711         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
712         if (vma->vm_flags & VM_MAYSHARE) {
713                 struct address_space *mapping = vma->vm_file->f_mapping;
714                 struct inode *inode = mapping->host;
715
716                 return inode_resv_map(inode);
717
718         } else {
719                 return (struct resv_map *)(get_vma_private_data(vma) &
720                                                         ~HPAGE_RESV_MASK);
721         }
722 }
723
724 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
725 {
726         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
727         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
728
729         set_vma_private_data(vma, (get_vma_private_data(vma) &
730                                 HPAGE_RESV_MASK) | (unsigned long)map);
731 }
732
733 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
734 {
735         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
736         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
737
738         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
739 }
740
741 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
742 {
743         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
744
745         return (get_vma_private_data(vma) & flag) != 0;
746 }
747
748 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
749 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
750 {
751         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
752         if (!(vma->vm_flags & VM_MAYSHARE))
753                 vma->vm_private_data = (void *)0;
754 }
755
756 /* Returns true if the VMA has associated reserve pages */
757 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
758 {
759         if (vma->vm_flags & VM_NORESERVE) {
760                 /*
761                  * This address is already reserved by other process(chg == 0),
762                  * so, we should decrement reserved count. Without decrementing,
763                  * reserve count remains after releasing inode, because this
764                  * allocated page will go into page cache and is regarded as
765                  * coming from reserved pool in releasing step.  Currently, we
766                  * don't have any other solution to deal with this situation
767                  * properly, so add work-around here.
768                  */
769                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
770                         return true;
771                 else
772                         return false;
773         }
774
775         /* Shared mappings always use reserves */
776         if (vma->vm_flags & VM_MAYSHARE) {
777                 /*
778                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
779                  * be a region map for all pages.  The only situation where
780                  * there is no region map is if a hole was punched via
781                  * fallocate.  In this case, there really are no reverves to
782                  * use.  This situation is indicated if chg != 0.
783                  */
784                 if (chg)
785                         return false;
786                 else
787                         return true;
788         }
789
790         /*
791          * Only the process that called mmap() has reserves for
792          * private mappings.
793          */
794         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
795                 /*
796                  * Like the shared case above, a hole punch or truncate
797                  * could have been performed on the private mapping.
798                  * Examine the value of chg to determine if reserves
799                  * actually exist or were previously consumed.
800                  * Very Subtle - The value of chg comes from a previous
801                  * call to vma_needs_reserves().  The reserve map for
802                  * private mappings has different (opposite) semantics
803                  * than that of shared mappings.  vma_needs_reserves()
804                  * has already taken this difference in semantics into
805                  * account.  Therefore, the meaning of chg is the same
806                  * as in the shared case above.  Code could easily be
807                  * combined, but keeping it separate draws attention to
808                  * subtle differences.
809                  */
810                 if (chg)
811                         return false;
812                 else
813                         return true;
814         }
815
816         return false;
817 }
818
819 static void enqueue_huge_page(struct hstate *h, struct page *page)
820 {
821         int nid = page_to_nid(page);
822         list_move(&page->lru, &h->hugepage_freelists[nid]);
823         h->free_huge_pages++;
824         h->free_huge_pages_node[nid]++;
825 }
826
827 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
828 {
829         struct page *page;
830
831         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
832                 if (!PageHWPoison(page))
833                         break;
834         /*
835          * if 'non-isolated free hugepage' not found on the list,
836          * the allocation fails.
837          */
838         if (&h->hugepage_freelists[nid] == &page->lru)
839                 return NULL;
840         list_move(&page->lru, &h->hugepage_activelist);
841         set_page_refcounted(page);
842         h->free_huge_pages--;
843         h->free_huge_pages_node[nid]--;
844         return page;
845 }
846
847 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
848                 nodemask_t *nmask)
849 {
850         unsigned int cpuset_mems_cookie;
851         struct zonelist *zonelist;
852         struct zone *zone;
853         struct zoneref *z;
854         int node = NUMA_NO_NODE;
855
856         zonelist = node_zonelist(nid, gfp_mask);
857
858 retry_cpuset:
859         cpuset_mems_cookie = read_mems_allowed_begin();
860         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
861                 struct page *page;
862
863                 if (!cpuset_zone_allowed(zone, gfp_mask))
864                         continue;
865                 /*
866                  * no need to ask again on the same node. Pool is node rather than
867                  * zone aware
868                  */
869                 if (zone_to_nid(zone) == node)
870                         continue;
871                 node = zone_to_nid(zone);
872
873                 page = dequeue_huge_page_node_exact(h, node);
874                 if (page)
875                         return page;
876         }
877         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
878                 goto retry_cpuset;
879
880         return NULL;
881 }
882
883 /* Movability of hugepages depends on migration support. */
884 static inline gfp_t htlb_alloc_mask(struct hstate *h)
885 {
886         if (hugepage_movable_supported(h))
887                 return GFP_HIGHUSER_MOVABLE;
888         else
889                 return GFP_HIGHUSER;
890 }
891
892 static struct page *dequeue_huge_page_vma(struct hstate *h,
893                                 struct vm_area_struct *vma,
894                                 unsigned long address, int avoid_reserve,
895                                 long chg)
896 {
897         struct page *page;
898         struct mempolicy *mpol;
899         gfp_t gfp_mask;
900         nodemask_t *nodemask;
901         int nid;
902
903         /*
904          * A child process with MAP_PRIVATE mappings created by their parent
905          * have no page reserves. This check ensures that reservations are
906          * not "stolen". The child may still get SIGKILLed
907          */
908         if (!vma_has_reserves(vma, chg) &&
909                         h->free_huge_pages - h->resv_huge_pages == 0)
910                 goto err;
911
912         /* If reserves cannot be used, ensure enough pages are in the pool */
913         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
914                 goto err;
915
916         gfp_mask = htlb_alloc_mask(h);
917         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
918         page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
919         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
920                 SetPagePrivate(page);
921                 h->resv_huge_pages--;
922         }
923
924         mpol_cond_put(mpol);
925         return page;
926
927 err:
928         return NULL;
929 }
930
931 /*
932  * common helper functions for hstate_next_node_to_{alloc|free}.
933  * We may have allocated or freed a huge page based on a different
934  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
935  * be outside of *nodes_allowed.  Ensure that we use an allowed
936  * node for alloc or free.
937  */
938 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
939 {
940         nid = next_node_in(nid, *nodes_allowed);
941         VM_BUG_ON(nid >= MAX_NUMNODES);
942
943         return nid;
944 }
945
946 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
947 {
948         if (!node_isset(nid, *nodes_allowed))
949                 nid = next_node_allowed(nid, nodes_allowed);
950         return nid;
951 }
952
953 /*
954  * returns the previously saved node ["this node"] from which to
955  * allocate a persistent huge page for the pool and advance the
956  * next node from which to allocate, handling wrap at end of node
957  * mask.
958  */
959 static int hstate_next_node_to_alloc(struct hstate *h,
960                                         nodemask_t *nodes_allowed)
961 {
962         int nid;
963
964         VM_BUG_ON(!nodes_allowed);
965
966         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
967         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
968
969         return nid;
970 }
971
972 /*
973  * helper for free_pool_huge_page() - return the previously saved
974  * node ["this node"] from which to free a huge page.  Advance the
975  * next node id whether or not we find a free huge page to free so
976  * that the next attempt to free addresses the next node.
977  */
978 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
979 {
980         int nid;
981
982         VM_BUG_ON(!nodes_allowed);
983
984         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
985         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
986
987         return nid;
988 }
989
990 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
991         for (nr_nodes = nodes_weight(*mask);                            \
992                 nr_nodes > 0 &&                                         \
993                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
994                 nr_nodes--)
995
996 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
997         for (nr_nodes = nodes_weight(*mask);                            \
998                 nr_nodes > 0 &&                                         \
999                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1000                 nr_nodes--)
1001
1002 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1003 static void destroy_compound_gigantic_page(struct page *page,
1004                                         unsigned int order)
1005 {
1006         int i;
1007         int nr_pages = 1 << order;
1008         struct page *p = page + 1;
1009
1010         atomic_set(compound_mapcount_ptr(page), 0);
1011         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1012                 clear_compound_head(p);
1013                 set_page_refcounted(p);
1014         }
1015
1016         set_compound_order(page, 0);
1017         __ClearPageHead(page);
1018 }
1019
1020 static void free_gigantic_page(struct page *page, unsigned int order)
1021 {
1022         free_contig_range(page_to_pfn(page), 1 << order);
1023 }
1024
1025 #ifdef CONFIG_CONTIG_ALLOC
1026 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1027                 int nid, nodemask_t *nodemask)
1028 {
1029         unsigned long nr_pages = 1UL << huge_page_order(h);
1030
1031         return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1032 }
1033
1034 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1035 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1036 #else /* !CONFIG_CONTIG_ALLOC */
1037 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1038                                         int nid, nodemask_t *nodemask)
1039 {
1040         return NULL;
1041 }
1042 #endif /* CONFIG_CONTIG_ALLOC */
1043
1044 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1045 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1046                                         int nid, nodemask_t *nodemask)
1047 {
1048         return NULL;
1049 }
1050 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1051 static inline void destroy_compound_gigantic_page(struct page *page,
1052                                                 unsigned int order) { }
1053 #endif
1054
1055 static void update_and_free_page(struct hstate *h, struct page *page)
1056 {
1057         int i;
1058
1059         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1060                 return;
1061
1062         h->nr_huge_pages--;
1063         h->nr_huge_pages_node[page_to_nid(page)]--;
1064         for (i = 0; i < pages_per_huge_page(h); i++) {
1065                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1066                                 1 << PG_referenced | 1 << PG_dirty |
1067                                 1 << PG_active | 1 << PG_private |
1068                                 1 << PG_writeback);
1069         }
1070         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1071         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1072         set_page_refcounted(page);
1073         if (hstate_is_gigantic(h)) {
1074                 destroy_compound_gigantic_page(page, huge_page_order(h));
1075                 free_gigantic_page(page, huge_page_order(h));
1076         } else {
1077                 __free_pages(page, huge_page_order(h));
1078         }
1079 }
1080
1081 struct hstate *size_to_hstate(unsigned long size)
1082 {
1083         struct hstate *h;
1084
1085         for_each_hstate(h) {
1086                 if (huge_page_size(h) == size)
1087                         return h;
1088         }
1089         return NULL;
1090 }
1091
1092 /*
1093  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1094  * to hstate->hugepage_activelist.)
1095  *
1096  * This function can be called for tail pages, but never returns true for them.
1097  */
1098 bool page_huge_active(struct page *page)
1099 {
1100         VM_BUG_ON_PAGE(!PageHuge(page), page);
1101         return PageHead(page) && PagePrivate(&page[1]);
1102 }
1103
1104 /* never called for tail page */
1105 static void set_page_huge_active(struct page *page)
1106 {
1107         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1108         SetPagePrivate(&page[1]);
1109 }
1110
1111 static void clear_page_huge_active(struct page *page)
1112 {
1113         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1114         ClearPagePrivate(&page[1]);
1115 }
1116
1117 /*
1118  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1119  * code
1120  */
1121 static inline bool PageHugeTemporary(struct page *page)
1122 {
1123         if (!PageHuge(page))
1124                 return false;
1125
1126         return (unsigned long)page[2].mapping == -1U;
1127 }
1128
1129 static inline void SetPageHugeTemporary(struct page *page)
1130 {
1131         page[2].mapping = (void *)-1U;
1132 }
1133
1134 static inline void ClearPageHugeTemporary(struct page *page)
1135 {
1136         page[2].mapping = NULL;
1137 }
1138
1139 void free_huge_page(struct page *page)
1140 {
1141         /*
1142          * Can't pass hstate in here because it is called from the
1143          * compound page destructor.
1144          */
1145         struct hstate *h = page_hstate(page);
1146         int nid = page_to_nid(page);
1147         struct hugepage_subpool *spool =
1148                 (struct hugepage_subpool *)page_private(page);
1149         bool restore_reserve;
1150
1151         VM_BUG_ON_PAGE(page_count(page), page);
1152         VM_BUG_ON_PAGE(page_mapcount(page), page);
1153
1154         set_page_private(page, 0);
1155         page->mapping = NULL;
1156         restore_reserve = PagePrivate(page);
1157         ClearPagePrivate(page);
1158
1159         /*
1160          * If PagePrivate() was set on page, page allocation consumed a
1161          * reservation.  If the page was associated with a subpool, there
1162          * would have been a page reserved in the subpool before allocation
1163          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1164          * reservtion, do not call hugepage_subpool_put_pages() as this will
1165          * remove the reserved page from the subpool.
1166          */
1167         if (!restore_reserve) {
1168                 /*
1169                  * A return code of zero implies that the subpool will be
1170                  * under its minimum size if the reservation is not restored
1171                  * after page is free.  Therefore, force restore_reserve
1172                  * operation.
1173                  */
1174                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1175                         restore_reserve = true;
1176         }
1177
1178         spin_lock(&hugetlb_lock);
1179         clear_page_huge_active(page);
1180         hugetlb_cgroup_uncharge_page(hstate_index(h),
1181                                      pages_per_huge_page(h), page);
1182         if (restore_reserve)
1183                 h->resv_huge_pages++;
1184
1185         if (PageHugeTemporary(page)) {
1186                 list_del(&page->lru);
1187                 ClearPageHugeTemporary(page);
1188                 update_and_free_page(h, page);
1189         } else if (h->surplus_huge_pages_node[nid]) {
1190                 /* remove the page from active list */
1191                 list_del(&page->lru);
1192                 update_and_free_page(h, page);
1193                 h->surplus_huge_pages--;
1194                 h->surplus_huge_pages_node[nid]--;
1195         } else {
1196                 arch_clear_hugepage_flags(page);
1197                 enqueue_huge_page(h, page);
1198         }
1199         spin_unlock(&hugetlb_lock);
1200 }
1201
1202 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1203 {
1204         INIT_LIST_HEAD(&page->lru);
1205         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1206         spin_lock(&hugetlb_lock);
1207         set_hugetlb_cgroup(page, NULL);
1208         h->nr_huge_pages++;
1209         h->nr_huge_pages_node[nid]++;
1210         spin_unlock(&hugetlb_lock);
1211 }
1212
1213 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1214 {
1215         int i;
1216         int nr_pages = 1 << order;
1217         struct page *p = page + 1;
1218
1219         /* we rely on prep_new_huge_page to set the destructor */
1220         set_compound_order(page, order);
1221         __ClearPageReserved(page);
1222         __SetPageHead(page);
1223         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1224                 /*
1225                  * For gigantic hugepages allocated through bootmem at
1226                  * boot, it's safer to be consistent with the not-gigantic
1227                  * hugepages and clear the PG_reserved bit from all tail pages
1228                  * too.  Otherwse drivers using get_user_pages() to access tail
1229                  * pages may get the reference counting wrong if they see
1230                  * PG_reserved set on a tail page (despite the head page not
1231                  * having PG_reserved set).  Enforcing this consistency between
1232                  * head and tail pages allows drivers to optimize away a check
1233                  * on the head page when they need know if put_page() is needed
1234                  * after get_user_pages().
1235                  */
1236                 __ClearPageReserved(p);
1237                 set_page_count(p, 0);
1238                 set_compound_head(p, page);
1239         }
1240         atomic_set(compound_mapcount_ptr(page), -1);
1241 }
1242
1243 /*
1244  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1245  * transparent huge pages.  See the PageTransHuge() documentation for more
1246  * details.
1247  */
1248 int PageHuge(struct page *page)
1249 {
1250         if (!PageCompound(page))
1251                 return 0;
1252
1253         page = compound_head(page);
1254         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1255 }
1256 EXPORT_SYMBOL_GPL(PageHuge);
1257
1258 /*
1259  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1260  * normal or transparent huge pages.
1261  */
1262 int PageHeadHuge(struct page *page_head)
1263 {
1264         if (!PageHead(page_head))
1265                 return 0;
1266
1267         return get_compound_page_dtor(page_head) == free_huge_page;
1268 }
1269
1270 pgoff_t __basepage_index(struct page *page)
1271 {
1272         struct page *page_head = compound_head(page);
1273         pgoff_t index = page_index(page_head);
1274         unsigned long compound_idx;
1275
1276         if (!PageHuge(page_head))
1277                 return page_index(page);
1278
1279         if (compound_order(page_head) >= MAX_ORDER)
1280                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1281         else
1282                 compound_idx = page - page_head;
1283
1284         return (index << compound_order(page_head)) + compound_idx;
1285 }
1286
1287 static struct page *alloc_buddy_huge_page(struct hstate *h,
1288                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1289                 nodemask_t *node_alloc_noretry)
1290 {
1291         int order = huge_page_order(h);
1292         struct page *page;
1293         bool alloc_try_hard = true;
1294
1295         /*
1296          * By default we always try hard to allocate the page with
1297          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1298          * a loop (to adjust global huge page counts) and previous allocation
1299          * failed, do not continue to try hard on the same node.  Use the
1300          * node_alloc_noretry bitmap to manage this state information.
1301          */
1302         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1303                 alloc_try_hard = false;
1304         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1305         if (alloc_try_hard)
1306                 gfp_mask |= __GFP_RETRY_MAYFAIL;
1307         if (nid == NUMA_NO_NODE)
1308                 nid = numa_mem_id();
1309         page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1310         if (page)
1311                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1312         else
1313                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1314
1315         /*
1316          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1317          * indicates an overall state change.  Clear bit so that we resume
1318          * normal 'try hard' allocations.
1319          */
1320         if (node_alloc_noretry && page && !alloc_try_hard)
1321                 node_clear(nid, *node_alloc_noretry);
1322
1323         /*
1324          * If we tried hard to get a page but failed, set bit so that
1325          * subsequent attempts will not try as hard until there is an
1326          * overall state change.
1327          */
1328         if (node_alloc_noretry && !page && alloc_try_hard)
1329                 node_set(nid, *node_alloc_noretry);
1330
1331         return page;
1332 }
1333
1334 /*
1335  * Common helper to allocate a fresh hugetlb page. All specific allocators
1336  * should use this function to get new hugetlb pages
1337  */
1338 static struct page *alloc_fresh_huge_page(struct hstate *h,
1339                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1340                 nodemask_t *node_alloc_noretry)
1341 {
1342         struct page *page;
1343
1344         if (hstate_is_gigantic(h))
1345                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1346         else
1347                 page = alloc_buddy_huge_page(h, gfp_mask,
1348                                 nid, nmask, node_alloc_noretry);
1349         if (!page)
1350                 return NULL;
1351
1352         if (hstate_is_gigantic(h))
1353                 prep_compound_gigantic_page(page, huge_page_order(h));
1354         prep_new_huge_page(h, page, page_to_nid(page));
1355
1356         return page;
1357 }
1358
1359 /*
1360  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1361  * manner.
1362  */
1363 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1364                                 nodemask_t *node_alloc_noretry)
1365 {
1366         struct page *page;
1367         int nr_nodes, node;
1368         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1369
1370         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1371                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1372                                                 node_alloc_noretry);
1373                 if (page)
1374                         break;
1375         }
1376
1377         if (!page)
1378                 return 0;
1379
1380         put_page(page); /* free it into the hugepage allocator */
1381
1382         return 1;
1383 }
1384
1385 /*
1386  * Free huge page from pool from next node to free.
1387  * Attempt to keep persistent huge pages more or less
1388  * balanced over allowed nodes.
1389  * Called with hugetlb_lock locked.
1390  */
1391 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1392                                                          bool acct_surplus)
1393 {
1394         int nr_nodes, node;
1395         int ret = 0;
1396
1397         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1398                 /*
1399                  * If we're returning unused surplus pages, only examine
1400                  * nodes with surplus pages.
1401                  */
1402                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1403                     !list_empty(&h->hugepage_freelists[node])) {
1404                         struct page *page =
1405                                 list_entry(h->hugepage_freelists[node].next,
1406                                           struct page, lru);
1407                         list_del(&page->lru);
1408                         h->free_huge_pages--;
1409                         h->free_huge_pages_node[node]--;
1410                         if (acct_surplus) {
1411                                 h->surplus_huge_pages--;
1412                                 h->surplus_huge_pages_node[node]--;
1413                         }
1414                         update_and_free_page(h, page);
1415                         ret = 1;
1416                         break;
1417                 }
1418         }
1419
1420         return ret;
1421 }
1422
1423 /*
1424  * Dissolve a given free hugepage into free buddy pages. This function does
1425  * nothing for in-use hugepages and non-hugepages.
1426  * This function returns values like below:
1427  *
1428  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1429  *          (allocated or reserved.)
1430  *       0: successfully dissolved free hugepages or the page is not a
1431  *          hugepage (considered as already dissolved)
1432  */
1433 int dissolve_free_huge_page(struct page *page)
1434 {
1435         int rc = -EBUSY;
1436
1437         /* Not to disrupt normal path by vainly holding hugetlb_lock */
1438         if (!PageHuge(page))
1439                 return 0;
1440
1441         spin_lock(&hugetlb_lock);
1442         if (!PageHuge(page)) {
1443                 rc = 0;
1444                 goto out;
1445         }
1446
1447         if (!page_count(page)) {
1448                 struct page *head = compound_head(page);
1449                 struct hstate *h = page_hstate(head);
1450                 int nid = page_to_nid(head);
1451                 if (h->free_huge_pages - h->resv_huge_pages == 0)
1452                         goto out;
1453                 /*
1454                  * Move PageHWPoison flag from head page to the raw error page,
1455                  * which makes any subpages rather than the error page reusable.
1456                  */
1457                 if (PageHWPoison(head) && page != head) {
1458                         SetPageHWPoison(page);
1459                         ClearPageHWPoison(head);
1460                 }
1461                 list_del(&head->lru);
1462                 h->free_huge_pages--;
1463                 h->free_huge_pages_node[nid]--;
1464                 h->max_huge_pages--;
1465                 update_and_free_page(h, head);
1466                 rc = 0;
1467         }
1468 out:
1469         spin_unlock(&hugetlb_lock);
1470         return rc;
1471 }
1472
1473 /*
1474  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1475  * make specified memory blocks removable from the system.
1476  * Note that this will dissolve a free gigantic hugepage completely, if any
1477  * part of it lies within the given range.
1478  * Also note that if dissolve_free_huge_page() returns with an error, all
1479  * free hugepages that were dissolved before that error are lost.
1480  */
1481 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1482 {
1483         unsigned long pfn;
1484         struct page *page;
1485         int rc = 0;
1486
1487         if (!hugepages_supported())
1488                 return rc;
1489
1490         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1491                 page = pfn_to_page(pfn);
1492                 rc = dissolve_free_huge_page(page);
1493                 if (rc)
1494                         break;
1495         }
1496
1497         return rc;
1498 }
1499
1500 /*
1501  * Allocates a fresh surplus page from the page allocator.
1502  */
1503 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1504                 int nid, nodemask_t *nmask)
1505 {
1506         struct page *page = NULL;
1507
1508         if (hstate_is_gigantic(h))
1509                 return NULL;
1510
1511         spin_lock(&hugetlb_lock);
1512         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1513                 goto out_unlock;
1514         spin_unlock(&hugetlb_lock);
1515
1516         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1517         if (!page)
1518                 return NULL;
1519
1520         spin_lock(&hugetlb_lock);
1521         /*
1522          * We could have raced with the pool size change.
1523          * Double check that and simply deallocate the new page
1524          * if we would end up overcommiting the surpluses. Abuse
1525          * temporary page to workaround the nasty free_huge_page
1526          * codeflow
1527          */
1528         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1529                 SetPageHugeTemporary(page);
1530                 spin_unlock(&hugetlb_lock);
1531                 put_page(page);
1532                 return NULL;
1533         } else {
1534                 h->surplus_huge_pages++;
1535                 h->surplus_huge_pages_node[page_to_nid(page)]++;
1536         }
1537
1538 out_unlock:
1539         spin_unlock(&hugetlb_lock);
1540
1541         return page;
1542 }
1543
1544 struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1545                                      int nid, nodemask_t *nmask)
1546 {
1547         struct page *page;
1548
1549         if (hstate_is_gigantic(h))
1550                 return NULL;
1551
1552         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1553         if (!page)
1554                 return NULL;
1555
1556         /*
1557          * We do not account these pages as surplus because they are only
1558          * temporary and will be released properly on the last reference
1559          */
1560         SetPageHugeTemporary(page);
1561
1562         return page;
1563 }
1564
1565 /*
1566  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1567  */
1568 static
1569 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1570                 struct vm_area_struct *vma, unsigned long addr)
1571 {
1572         struct page *page;
1573         struct mempolicy *mpol;
1574         gfp_t gfp_mask = htlb_alloc_mask(h);
1575         int nid;
1576         nodemask_t *nodemask;
1577
1578         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1579         page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1580         mpol_cond_put(mpol);
1581
1582         return page;
1583 }
1584
1585 /* page migration callback function */
1586 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1587 {
1588         gfp_t gfp_mask = htlb_alloc_mask(h);
1589         struct page *page = NULL;
1590
1591         if (nid != NUMA_NO_NODE)
1592                 gfp_mask |= __GFP_THISNODE;
1593
1594         spin_lock(&hugetlb_lock);
1595         if (h->free_huge_pages - h->resv_huge_pages > 0)
1596                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1597         spin_unlock(&hugetlb_lock);
1598
1599         if (!page)
1600                 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1601
1602         return page;
1603 }
1604
1605 /* page migration callback function */
1606 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1607                 nodemask_t *nmask)
1608 {
1609         gfp_t gfp_mask = htlb_alloc_mask(h);
1610
1611         spin_lock(&hugetlb_lock);
1612         if (h->free_huge_pages - h->resv_huge_pages > 0) {
1613                 struct page *page;
1614
1615                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1616                 if (page) {
1617                         spin_unlock(&hugetlb_lock);
1618                         return page;
1619                 }
1620         }
1621         spin_unlock(&hugetlb_lock);
1622
1623         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1624 }
1625
1626 /* mempolicy aware migration callback */
1627 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1628                 unsigned long address)
1629 {
1630         struct mempolicy *mpol;
1631         nodemask_t *nodemask;
1632         struct page *page;
1633         gfp_t gfp_mask;
1634         int node;
1635
1636         gfp_mask = htlb_alloc_mask(h);
1637         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1638         page = alloc_huge_page_nodemask(h, node, nodemask);
1639         mpol_cond_put(mpol);
1640
1641         return page;
1642 }
1643
1644 /*
1645  * Increase the hugetlb pool such that it can accommodate a reservation
1646  * of size 'delta'.
1647  */
1648 static int gather_surplus_pages(struct hstate *h, int delta)
1649 {
1650         struct list_head surplus_list;
1651         struct page *page, *tmp;
1652         int ret, i;
1653         int needed, allocated;
1654         bool alloc_ok = true;
1655
1656         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1657         if (needed <= 0) {
1658                 h->resv_huge_pages += delta;
1659                 return 0;
1660         }
1661
1662         allocated = 0;
1663         INIT_LIST_HEAD(&surplus_list);
1664
1665         ret = -ENOMEM;
1666 retry:
1667         spin_unlock(&hugetlb_lock);
1668         for (i = 0; i < needed; i++) {
1669                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1670                                 NUMA_NO_NODE, NULL);
1671                 if (!page) {
1672                         alloc_ok = false;
1673                         break;
1674                 }
1675                 list_add(&page->lru, &surplus_list);
1676                 cond_resched();
1677         }
1678         allocated += i;
1679
1680         /*
1681          * After retaking hugetlb_lock, we need to recalculate 'needed'
1682          * because either resv_huge_pages or free_huge_pages may have changed.
1683          */
1684         spin_lock(&hugetlb_lock);
1685         needed = (h->resv_huge_pages + delta) -
1686                         (h->free_huge_pages + allocated);
1687         if (needed > 0) {
1688                 if (alloc_ok)
1689                         goto retry;
1690                 /*
1691                  * We were not able to allocate enough pages to
1692                  * satisfy the entire reservation so we free what
1693                  * we've allocated so far.
1694                  */
1695                 goto free;
1696         }
1697         /*
1698          * The surplus_list now contains _at_least_ the number of extra pages
1699          * needed to accommodate the reservation.  Add the appropriate number
1700          * of pages to the hugetlb pool and free the extras back to the buddy
1701          * allocator.  Commit the entire reservation here to prevent another
1702          * process from stealing the pages as they are added to the pool but
1703          * before they are reserved.
1704          */
1705         needed += allocated;
1706         h->resv_huge_pages += delta;
1707         ret = 0;
1708
1709         /* Free the needed pages to the hugetlb pool */
1710         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1711                 if ((--needed) < 0)
1712                         break;
1713                 /*
1714                  * This page is now managed by the hugetlb allocator and has
1715                  * no users -- drop the buddy allocator's reference.
1716                  */
1717                 put_page_testzero(page);
1718                 VM_BUG_ON_PAGE(page_count(page), page);
1719                 enqueue_huge_page(h, page);
1720         }
1721 free:
1722         spin_unlock(&hugetlb_lock);
1723
1724         /* Free unnecessary surplus pages to the buddy allocator */
1725         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1726                 put_page(page);
1727         spin_lock(&hugetlb_lock);
1728
1729         return ret;
1730 }
1731
1732 /*
1733  * This routine has two main purposes:
1734  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1735  *    in unused_resv_pages.  This corresponds to the prior adjustments made
1736  *    to the associated reservation map.
1737  * 2) Free any unused surplus pages that may have been allocated to satisfy
1738  *    the reservation.  As many as unused_resv_pages may be freed.
1739  *
1740  * Called with hugetlb_lock held.  However, the lock could be dropped (and
1741  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1742  * we must make sure nobody else can claim pages we are in the process of
1743  * freeing.  Do this by ensuring resv_huge_page always is greater than the
1744  * number of huge pages we plan to free when dropping the lock.
1745  */
1746 static void return_unused_surplus_pages(struct hstate *h,
1747                                         unsigned long unused_resv_pages)
1748 {
1749         unsigned long nr_pages;
1750
1751         /* Cannot return gigantic pages currently */
1752         if (hstate_is_gigantic(h))
1753                 goto out;
1754
1755         /*
1756          * Part (or even all) of the reservation could have been backed
1757          * by pre-allocated pages. Only free surplus pages.
1758          */
1759         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1760
1761         /*
1762          * We want to release as many surplus pages as possible, spread
1763          * evenly across all nodes with memory. Iterate across these nodes
1764          * until we can no longer free unreserved surplus pages. This occurs
1765          * when the nodes with surplus pages have no free pages.
1766          * free_pool_huge_page() will balance the the freed pages across the
1767          * on-line nodes with memory and will handle the hstate accounting.
1768          *
1769          * Note that we decrement resv_huge_pages as we free the pages.  If
1770          * we drop the lock, resv_huge_pages will still be sufficiently large
1771          * to cover subsequent pages we may free.
1772          */
1773         while (nr_pages--) {
1774                 h->resv_huge_pages--;
1775                 unused_resv_pages--;
1776                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1777                         goto out;
1778                 cond_resched_lock(&hugetlb_lock);
1779         }
1780
1781 out:
1782         /* Fully uncommit the reservation */
1783         h->resv_huge_pages -= unused_resv_pages;
1784 }
1785
1786
1787 /*
1788  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1789  * are used by the huge page allocation routines to manage reservations.
1790  *
1791  * vma_needs_reservation is called to determine if the huge page at addr
1792  * within the vma has an associated reservation.  If a reservation is
1793  * needed, the value 1 is returned.  The caller is then responsible for
1794  * managing the global reservation and subpool usage counts.  After
1795  * the huge page has been allocated, vma_commit_reservation is called
1796  * to add the page to the reservation map.  If the page allocation fails,
1797  * the reservation must be ended instead of committed.  vma_end_reservation
1798  * is called in such cases.
1799  *
1800  * In the normal case, vma_commit_reservation returns the same value
1801  * as the preceding vma_needs_reservation call.  The only time this
1802  * is not the case is if a reserve map was changed between calls.  It
1803  * is the responsibility of the caller to notice the difference and
1804  * take appropriate action.
1805  *
1806  * vma_add_reservation is used in error paths where a reservation must
1807  * be restored when a newly allocated huge page must be freed.  It is
1808  * to be called after calling vma_needs_reservation to determine if a
1809  * reservation exists.
1810  */
1811 enum vma_resv_mode {
1812         VMA_NEEDS_RESV,
1813         VMA_COMMIT_RESV,
1814         VMA_END_RESV,
1815         VMA_ADD_RESV,
1816 };
1817 static long __vma_reservation_common(struct hstate *h,
1818                                 struct vm_area_struct *vma, unsigned long addr,
1819                                 enum vma_resv_mode mode)
1820 {
1821         struct resv_map *resv;
1822         pgoff_t idx;
1823         long ret;
1824
1825         resv = vma_resv_map(vma);
1826         if (!resv)
1827                 return 1;
1828
1829         idx = vma_hugecache_offset(h, vma, addr);
1830         switch (mode) {
1831         case VMA_NEEDS_RESV:
1832                 ret = region_chg(resv, idx, idx + 1);
1833                 break;
1834         case VMA_COMMIT_RESV:
1835                 ret = region_add(resv, idx, idx + 1);
1836                 break;
1837         case VMA_END_RESV:
1838                 region_abort(resv, idx, idx + 1);
1839                 ret = 0;
1840                 break;
1841         case VMA_ADD_RESV:
1842                 if (vma->vm_flags & VM_MAYSHARE)
1843                         ret = region_add(resv, idx, idx + 1);
1844                 else {
1845                         region_abort(resv, idx, idx + 1);
1846                         ret = region_del(resv, idx, idx + 1);
1847                 }
1848                 break;
1849         default:
1850                 BUG();
1851         }
1852
1853         if (vma->vm_flags & VM_MAYSHARE)
1854                 return ret;
1855         else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1856                 /*
1857                  * In most cases, reserves always exist for private mappings.
1858                  * However, a file associated with mapping could have been
1859                  * hole punched or truncated after reserves were consumed.
1860                  * As subsequent fault on such a range will not use reserves.
1861                  * Subtle - The reserve map for private mappings has the
1862                  * opposite meaning than that of shared mappings.  If NO
1863                  * entry is in the reserve map, it means a reservation exists.
1864                  * If an entry exists in the reserve map, it means the
1865                  * reservation has already been consumed.  As a result, the
1866                  * return value of this routine is the opposite of the
1867                  * value returned from reserve map manipulation routines above.
1868                  */
1869                 if (ret)
1870                         return 0;
1871                 else
1872                         return 1;
1873         }
1874         else
1875                 return ret < 0 ? ret : 0;
1876 }
1877
1878 static long vma_needs_reservation(struct hstate *h,
1879                         struct vm_area_struct *vma, unsigned long addr)
1880 {
1881         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1882 }
1883
1884 static long vma_commit_reservation(struct hstate *h,
1885                         struct vm_area_struct *vma, unsigned long addr)
1886 {
1887         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1888 }
1889
1890 static void vma_end_reservation(struct hstate *h,
1891                         struct vm_area_struct *vma, unsigned long addr)
1892 {
1893         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1894 }
1895
1896 static long vma_add_reservation(struct hstate *h,
1897                         struct vm_area_struct *vma, unsigned long addr)
1898 {
1899         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1900 }
1901
1902 /*
1903  * This routine is called to restore a reservation on error paths.  In the
1904  * specific error paths, a huge page was allocated (via alloc_huge_page)
1905  * and is about to be freed.  If a reservation for the page existed,
1906  * alloc_huge_page would have consumed the reservation and set PagePrivate
1907  * in the newly allocated page.  When the page is freed via free_huge_page,
1908  * the global reservation count will be incremented if PagePrivate is set.
1909  * However, free_huge_page can not adjust the reserve map.  Adjust the
1910  * reserve map here to be consistent with global reserve count adjustments
1911  * to be made by free_huge_page.
1912  */
1913 static void restore_reserve_on_error(struct hstate *h,
1914                         struct vm_area_struct *vma, unsigned long address,
1915                         struct page *page)
1916 {
1917         if (unlikely(PagePrivate(page))) {
1918                 long rc = vma_needs_reservation(h, vma, address);
1919
1920                 if (unlikely(rc < 0)) {
1921                         /*
1922                          * Rare out of memory condition in reserve map
1923                          * manipulation.  Clear PagePrivate so that
1924                          * global reserve count will not be incremented
1925                          * by free_huge_page.  This will make it appear
1926                          * as though the reservation for this page was
1927                          * consumed.  This may prevent the task from
1928                          * faulting in the page at a later time.  This
1929                          * is better than inconsistent global huge page
1930                          * accounting of reserve counts.
1931                          */
1932                         ClearPagePrivate(page);
1933                 } else if (rc) {
1934                         rc = vma_add_reservation(h, vma, address);
1935                         if (unlikely(rc < 0))
1936                                 /*
1937                                  * See above comment about rare out of
1938                                  * memory condition.
1939                                  */
1940                                 ClearPagePrivate(page);
1941                 } else
1942                         vma_end_reservation(h, vma, address);
1943         }
1944 }
1945
1946 struct page *alloc_huge_page(struct vm_area_struct *vma,
1947                                     unsigned long addr, int avoid_reserve)
1948 {
1949         struct hugepage_subpool *spool = subpool_vma(vma);
1950         struct hstate *h = hstate_vma(vma);
1951         struct page *page;
1952         long map_chg, map_commit;
1953         long gbl_chg;
1954         int ret, idx;
1955         struct hugetlb_cgroup *h_cg;
1956
1957         idx = hstate_index(h);
1958         /*
1959          * Examine the region/reserve map to determine if the process
1960          * has a reservation for the page to be allocated.  A return
1961          * code of zero indicates a reservation exists (no change).
1962          */
1963         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1964         if (map_chg < 0)
1965                 return ERR_PTR(-ENOMEM);
1966
1967         /*
1968          * Processes that did not create the mapping will have no
1969          * reserves as indicated by the region/reserve map. Check
1970          * that the allocation will not exceed the subpool limit.
1971          * Allocations for MAP_NORESERVE mappings also need to be
1972          * checked against any subpool limit.
1973          */
1974         if (map_chg || avoid_reserve) {
1975                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
1976                 if (gbl_chg < 0) {
1977                         vma_end_reservation(h, vma, addr);
1978                         return ERR_PTR(-ENOSPC);
1979                 }
1980
1981                 /*
1982                  * Even though there was no reservation in the region/reserve
1983                  * map, there could be reservations associated with the
1984                  * subpool that can be used.  This would be indicated if the
1985                  * return value of hugepage_subpool_get_pages() is zero.
1986                  * However, if avoid_reserve is specified we still avoid even
1987                  * the subpool reservations.
1988                  */
1989                 if (avoid_reserve)
1990                         gbl_chg = 1;
1991         }
1992
1993         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1994         if (ret)
1995                 goto out_subpool_put;
1996
1997         spin_lock(&hugetlb_lock);
1998         /*
1999          * glb_chg is passed to indicate whether or not a page must be taken
2000          * from the global free pool (global change).  gbl_chg == 0 indicates
2001          * a reservation exists for the allocation.
2002          */
2003         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2004         if (!page) {
2005                 spin_unlock(&hugetlb_lock);
2006                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2007                 if (!page)
2008                         goto out_uncharge_cgroup;
2009                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2010                         SetPagePrivate(page);
2011                         h->resv_huge_pages--;
2012                 }
2013                 spin_lock(&hugetlb_lock);
2014                 list_move(&page->lru, &h->hugepage_activelist);
2015                 /* Fall through */
2016         }
2017         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2018         spin_unlock(&hugetlb_lock);
2019
2020         set_page_private(page, (unsigned long)spool);
2021
2022         map_commit = vma_commit_reservation(h, vma, addr);
2023         if (unlikely(map_chg > map_commit)) {
2024                 /*
2025                  * The page was added to the reservation map between
2026                  * vma_needs_reservation and vma_commit_reservation.
2027                  * This indicates a race with hugetlb_reserve_pages.
2028                  * Adjust for the subpool count incremented above AND
2029                  * in hugetlb_reserve_pages for the same page.  Also,
2030                  * the reservation count added in hugetlb_reserve_pages
2031                  * no longer applies.
2032                  */
2033                 long rsv_adjust;
2034
2035                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2036                 hugetlb_acct_memory(h, -rsv_adjust);
2037         }
2038         return page;
2039
2040 out_uncharge_cgroup:
2041         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2042 out_subpool_put:
2043         if (map_chg || avoid_reserve)
2044                 hugepage_subpool_put_pages(spool, 1);
2045         vma_end_reservation(h, vma, addr);
2046         return ERR_PTR(-ENOSPC);
2047 }
2048
2049 int alloc_bootmem_huge_page(struct hstate *h)
2050         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2051 int __alloc_bootmem_huge_page(struct hstate *h)
2052 {
2053         struct huge_bootmem_page *m;
2054         int nr_nodes, node;
2055
2056         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2057                 void *addr;
2058
2059                 addr = memblock_alloc_try_nid_raw(
2060                                 huge_page_size(h), huge_page_size(h),
2061                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2062                 if (addr) {
2063                         /*
2064                          * Use the beginning of the huge page to store the
2065                          * huge_bootmem_page struct (until gather_bootmem
2066                          * puts them into the mem_map).
2067                          */
2068                         m = addr;
2069                         goto found;
2070                 }
2071         }
2072         return 0;
2073
2074 found:
2075         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2076         /* Put them into a private list first because mem_map is not up yet */
2077         INIT_LIST_HEAD(&m->list);
2078         list_add(&m->list, &huge_boot_pages);
2079         m->hstate = h;
2080         return 1;
2081 }
2082
2083 static void __init prep_compound_huge_page(struct page *page,
2084                 unsigned int order)
2085 {
2086         if (unlikely(order > (MAX_ORDER - 1)))
2087                 prep_compound_gigantic_page(page, order);
2088         else
2089                 prep_compound_page(page, order);
2090 }
2091
2092 /* Put bootmem huge pages into the standard lists after mem_map is up */
2093 static void __init gather_bootmem_prealloc(void)
2094 {
2095         struct huge_bootmem_page *m;
2096
2097         list_for_each_entry(m, &huge_boot_pages, list) {
2098                 struct page *page = virt_to_page(m);
2099                 struct hstate *h = m->hstate;
2100
2101                 WARN_ON(page_count(page) != 1);
2102                 prep_compound_huge_page(page, h->order);
2103                 WARN_ON(PageReserved(page));
2104                 prep_new_huge_page(h, page, page_to_nid(page));
2105                 put_page(page); /* free it into the hugepage allocator */
2106
2107                 /*
2108                  * If we had gigantic hugepages allocated at boot time, we need
2109                  * to restore the 'stolen' pages to totalram_pages in order to
2110                  * fix confusing memory reports from free(1) and another
2111                  * side-effects, like CommitLimit going negative.
2112                  */
2113                 if (hstate_is_gigantic(h))
2114                         adjust_managed_page_count(page, 1 << h->order);
2115                 cond_resched();
2116         }
2117 }
2118
2119 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2120 {
2121         unsigned long i;
2122         nodemask_t *node_alloc_noretry;
2123
2124         if (!hstate_is_gigantic(h)) {
2125                 /*
2126                  * Bit mask controlling how hard we retry per-node allocations.
2127                  * Ignore errors as lower level routines can deal with
2128                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2129                  * time, we are likely in bigger trouble.
2130                  */
2131                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2132                                                 GFP_KERNEL);
2133         } else {
2134                 /* allocations done at boot time */
2135                 node_alloc_noretry = NULL;
2136         }
2137
2138         /* bit mask controlling how hard we retry per-node allocations */
2139         if (node_alloc_noretry)
2140                 nodes_clear(*node_alloc_noretry);
2141
2142         for (i = 0; i < h->max_huge_pages; ++i) {
2143                 if (hstate_is_gigantic(h)) {
2144                         if (!alloc_bootmem_huge_page(h))
2145                                 break;
2146                 } else if (!alloc_pool_huge_page(h,
2147                                          &node_states[N_MEMORY],
2148                                          node_alloc_noretry))
2149                         break;
2150                 cond_resched();
2151         }
2152         if (i < h->max_huge_pages) {
2153                 char buf[32];
2154
2155                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2156                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2157                         h->max_huge_pages, buf, i);
2158                 h->max_huge_pages = i;
2159         }
2160
2161         kfree(node_alloc_noretry);
2162 }
2163
2164 static void __init hugetlb_init_hstates(void)
2165 {
2166         struct hstate *h;
2167
2168         for_each_hstate(h) {
2169                 if (minimum_order > huge_page_order(h))
2170                         minimum_order = huge_page_order(h);
2171
2172                 /* oversize hugepages were init'ed in early boot */
2173                 if (!hstate_is_gigantic(h))
2174                         hugetlb_hstate_alloc_pages(h);
2175         }
2176         VM_BUG_ON(minimum_order == UINT_MAX);
2177 }
2178
2179 static void __init report_hugepages(void)
2180 {
2181         struct hstate *h;
2182
2183         for_each_hstate(h) {
2184                 char buf[32];
2185
2186                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2187                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2188                         buf, h->free_huge_pages);
2189         }
2190 }
2191
2192 #ifdef CONFIG_HIGHMEM
2193 static void try_to_free_low(struct hstate *h, unsigned long count,
2194                                                 nodemask_t *nodes_allowed)
2195 {
2196         int i;
2197
2198         if (hstate_is_gigantic(h))
2199                 return;
2200
2201         for_each_node_mask(i, *nodes_allowed) {
2202                 struct page *page, *next;
2203                 struct list_head *freel = &h->hugepage_freelists[i];
2204                 list_for_each_entry_safe(page, next, freel, lru) {
2205                         if (count >= h->nr_huge_pages)
2206                                 return;
2207                         if (PageHighMem(page))
2208                                 continue;
2209                         list_del(&page->lru);
2210                         update_and_free_page(h, page);
2211                         h->free_huge_pages--;
2212                         h->free_huge_pages_node[page_to_nid(page)]--;
2213                 }
2214         }
2215 }
2216 #else
2217 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2218                                                 nodemask_t *nodes_allowed)
2219 {
2220 }
2221 #endif
2222
2223 /*
2224  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2225  * balanced by operating on them in a round-robin fashion.
2226  * Returns 1 if an adjustment was made.
2227  */
2228 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2229                                 int delta)
2230 {
2231         int nr_nodes, node;
2232
2233         VM_BUG_ON(delta != -1 && delta != 1);
2234
2235         if (delta < 0) {
2236                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2237                         if (h->surplus_huge_pages_node[node])
2238                                 goto found;
2239                 }
2240         } else {
2241                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2242                         if (h->surplus_huge_pages_node[node] <
2243                                         h->nr_huge_pages_node[node])
2244                                 goto found;
2245                 }
2246         }
2247         return 0;
2248
2249 found:
2250         h->surplus_huge_pages += delta;
2251         h->surplus_huge_pages_node[node] += delta;
2252         return 1;
2253 }
2254
2255 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2256 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2257                               nodemask_t *nodes_allowed)
2258 {
2259         unsigned long min_count, ret;
2260         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2261
2262         /*
2263          * Bit mask controlling how hard we retry per-node allocations.
2264          * If we can not allocate the bit mask, do not attempt to allocate
2265          * the requested huge pages.
2266          */
2267         if (node_alloc_noretry)
2268                 nodes_clear(*node_alloc_noretry);
2269         else
2270                 return -ENOMEM;
2271
2272         spin_lock(&hugetlb_lock);
2273
2274         /*
2275          * Check for a node specific request.
2276          * Changing node specific huge page count may require a corresponding
2277          * change to the global count.  In any case, the passed node mask
2278          * (nodes_allowed) will restrict alloc/free to the specified node.
2279          */
2280         if (nid != NUMA_NO_NODE) {
2281                 unsigned long old_count = count;
2282
2283                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2284                 /*
2285                  * User may have specified a large count value which caused the
2286                  * above calculation to overflow.  In this case, they wanted
2287                  * to allocate as many huge pages as possible.  Set count to
2288                  * largest possible value to align with their intention.
2289                  */
2290                 if (count < old_count)
2291                         count = ULONG_MAX;
2292         }
2293
2294         /*
2295          * Gigantic pages runtime allocation depend on the capability for large
2296          * page range allocation.
2297          * If the system does not provide this feature, return an error when
2298          * the user tries to allocate gigantic pages but let the user free the
2299          * boottime allocated gigantic pages.
2300          */
2301         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2302                 if (count > persistent_huge_pages(h)) {
2303                         spin_unlock(&hugetlb_lock);
2304                         NODEMASK_FREE(node_alloc_noretry);
2305                         return -EINVAL;
2306                 }
2307                 /* Fall through to decrease pool */
2308         }
2309
2310         /*
2311          * Increase the pool size
2312          * First take pages out of surplus state.  Then make up the
2313          * remaining difference by allocating fresh huge pages.
2314          *
2315          * We might race with alloc_surplus_huge_page() here and be unable
2316          * to convert a surplus huge page to a normal huge page. That is
2317          * not critical, though, it just means the overall size of the
2318          * pool might be one hugepage larger than it needs to be, but
2319          * within all the constraints specified by the sysctls.
2320          */
2321         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2322                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2323                         break;
2324         }
2325
2326         while (count > persistent_huge_pages(h)) {
2327                 /*
2328                  * If this allocation races such that we no longer need the
2329                  * page, free_huge_page will handle it by freeing the page
2330                  * and reducing the surplus.
2331                  */
2332                 spin_unlock(&hugetlb_lock);
2333
2334                 /* yield cpu to avoid soft lockup */
2335                 cond_resched();
2336
2337                 ret = alloc_pool_huge_page(h, nodes_allowed,
2338                                                 node_alloc_noretry);
2339                 spin_lock(&hugetlb_lock);
2340                 if (!ret)
2341                         goto out;
2342
2343                 /* Bail for signals. Probably ctrl-c from user */
2344                 if (signal_pending(current))
2345                         goto out;
2346         }
2347
2348         /*
2349          * Decrease the pool size
2350          * First return free pages to the buddy allocator (being careful
2351          * to keep enough around to satisfy reservations).  Then place
2352          * pages into surplus state as needed so the pool will shrink
2353          * to the desired size as pages become free.
2354          *
2355          * By placing pages into the surplus state independent of the
2356          * overcommit value, we are allowing the surplus pool size to
2357          * exceed overcommit. There are few sane options here. Since
2358          * alloc_surplus_huge_page() is checking the global counter,
2359          * though, we'll note that we're not allowed to exceed surplus
2360          * and won't grow the pool anywhere else. Not until one of the
2361          * sysctls are changed, or the surplus pages go out of use.
2362          */
2363         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2364         min_count = max(count, min_count);
2365         try_to_free_low(h, min_count, nodes_allowed);
2366         while (min_count < persistent_huge_pages(h)) {
2367                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2368                         break;
2369                 cond_resched_lock(&hugetlb_lock);
2370         }
2371         while (count < persistent_huge_pages(h)) {
2372                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2373                         break;
2374         }
2375 out:
2376         h->max_huge_pages = persistent_huge_pages(h);
2377         spin_unlock(&hugetlb_lock);
2378
2379         NODEMASK_FREE(node_alloc_noretry);
2380
2381         return 0;
2382 }
2383
2384 #define HSTATE_ATTR_RO(_name) \
2385         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2386
2387 #define HSTATE_ATTR(_name) \
2388         static struct kobj_attribute _name##_attr = \
2389                 __ATTR(_name, 0644, _name##_show, _name##_store)
2390
2391 static struct kobject *hugepages_kobj;
2392 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2393
2394 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2395
2396 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2397 {
2398         int i;
2399
2400         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2401                 if (hstate_kobjs[i] == kobj) {
2402                         if (nidp)
2403                                 *nidp = NUMA_NO_NODE;
2404                         return &hstates[i];
2405                 }
2406
2407         return kobj_to_node_hstate(kobj, nidp);
2408 }
2409
2410 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2411                                         struct kobj_attribute *attr, char *buf)
2412 {
2413         struct hstate *h;
2414         unsigned long nr_huge_pages;
2415         int nid;
2416
2417         h = kobj_to_hstate(kobj, &nid);
2418         if (nid == NUMA_NO_NODE)
2419                 nr_huge_pages = h->nr_huge_pages;
2420         else
2421                 nr_huge_pages = h->nr_huge_pages_node[nid];
2422
2423         return sprintf(buf, "%lu\n", nr_huge_pages);
2424 }
2425
2426 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2427                                            struct hstate *h, int nid,
2428                                            unsigned long count, size_t len)
2429 {
2430         int err;
2431         nodemask_t nodes_allowed, *n_mask;
2432
2433         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2434                 return -EINVAL;
2435
2436         if (nid == NUMA_NO_NODE) {
2437                 /*
2438                  * global hstate attribute
2439                  */
2440                 if (!(obey_mempolicy &&
2441                                 init_nodemask_of_mempolicy(&nodes_allowed)))
2442                         n_mask = &node_states[N_MEMORY];
2443                 else
2444                         n_mask = &nodes_allowed;
2445         } else {
2446                 /*
2447                  * Node specific request.  count adjustment happens in
2448                  * set_max_huge_pages() after acquiring hugetlb_lock.
2449                  */
2450                 init_nodemask_of_node(&nodes_allowed, nid);
2451                 n_mask = &nodes_allowed;
2452         }
2453
2454         err = set_max_huge_pages(h, count, nid, n_mask);
2455
2456         return err ? err : len;
2457 }
2458
2459 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2460                                          struct kobject *kobj, const char *buf,
2461                                          size_t len)
2462 {
2463         struct hstate *h;
2464         unsigned long count;
2465         int nid;
2466         int err;
2467
2468         err = kstrtoul(buf, 10, &count);
2469         if (err)
2470                 return err;
2471
2472         h = kobj_to_hstate(kobj, &nid);
2473         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2474 }
2475
2476 static ssize_t nr_hugepages_show(struct kobject *kobj,
2477                                        struct kobj_attribute *attr, char *buf)
2478 {
2479         return nr_hugepages_show_common(kobj, attr, buf);
2480 }
2481
2482 static ssize_t nr_hugepages_store(struct kobject *kobj,
2483                struct kobj_attribute *attr, const char *buf, size_t len)
2484 {
2485         return nr_hugepages_store_common(false, kobj, buf, len);
2486 }
2487 HSTATE_ATTR(nr_hugepages);
2488
2489 #ifdef CONFIG_NUMA
2490
2491 /*
2492  * hstate attribute for optionally mempolicy-based constraint on persistent
2493  * huge page alloc/free.
2494  */
2495 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2496                                        struct kobj_attribute *attr, char *buf)
2497 {
2498         return nr_hugepages_show_common(kobj, attr, buf);
2499 }
2500
2501 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2502                struct kobj_attribute *attr, const char *buf, size_t len)
2503 {
2504         return nr_hugepages_store_common(true, kobj, buf, len);
2505 }
2506 HSTATE_ATTR(nr_hugepages_mempolicy);
2507 #endif
2508
2509
2510 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2511                                         struct kobj_attribute *attr, char *buf)
2512 {
2513         struct hstate *h = kobj_to_hstate(kobj, NULL);
2514         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2515 }
2516
2517 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2518                 struct kobj_attribute *attr, const char *buf, size_t count)
2519 {
2520         int err;
2521         unsigned long input;
2522         struct hstate *h = kobj_to_hstate(kobj, NULL);
2523
2524         if (hstate_is_gigantic(h))
2525                 return -EINVAL;
2526
2527         err = kstrtoul(buf, 10, &input);
2528         if (err)
2529                 return err;
2530
2531         spin_lock(&hugetlb_lock);
2532         h->nr_overcommit_huge_pages = input;
2533         spin_unlock(&hugetlb_lock);
2534
2535         return count;
2536 }
2537 HSTATE_ATTR(nr_overcommit_hugepages);
2538
2539 static ssize_t free_hugepages_show(struct kobject *kobj,
2540                                         struct kobj_attribute *attr, char *buf)
2541 {
2542         struct hstate *h;
2543         unsigned long free_huge_pages;
2544         int nid;
2545
2546         h = kobj_to_hstate(kobj, &nid);
2547         if (nid == NUMA_NO_NODE)
2548                 free_huge_pages = h->free_huge_pages;
2549         else
2550                 free_huge_pages = h->free_huge_pages_node[nid];
2551
2552         return sprintf(buf, "%lu\n", free_huge_pages);
2553 }
2554 HSTATE_ATTR_RO(free_hugepages);
2555
2556 static ssize_t resv_hugepages_show(struct kobject *kobj,
2557                                         struct kobj_attribute *attr, char *buf)
2558 {
2559         struct hstate *h = kobj_to_hstate(kobj, NULL);
2560         return sprintf(buf, "%lu\n", h->resv_huge_pages);
2561 }
2562 HSTATE_ATTR_RO(resv_hugepages);
2563
2564 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2565                                         struct kobj_attribute *attr, char *buf)
2566 {
2567         struct hstate *h;
2568         unsigned long surplus_huge_pages;
2569         int nid;
2570
2571         h = kobj_to_hstate(kobj, &nid);
2572         if (nid == NUMA_NO_NODE)
2573                 surplus_huge_pages = h->surplus_huge_pages;
2574         else
2575                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2576
2577         return sprintf(buf, "%lu\n", surplus_huge_pages);
2578 }
2579 HSTATE_ATTR_RO(surplus_hugepages);
2580
2581 static struct attribute *hstate_attrs[] = {
2582         &nr_hugepages_attr.attr,
2583         &nr_overcommit_hugepages_attr.attr,
2584         &free_hugepages_attr.attr,
2585         &resv_hugepages_attr.attr,
2586         &surplus_hugepages_attr.attr,
2587 #ifdef CONFIG_NUMA
2588         &nr_hugepages_mempolicy_attr.attr,
2589 #endif
2590         NULL,
2591 };
2592
2593 static const struct attribute_group hstate_attr_group = {
2594         .attrs = hstate_attrs,
2595 };
2596
2597 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2598                                     struct kobject **hstate_kobjs,
2599                                     const struct attribute_group *hstate_attr_group)
2600 {
2601         int retval;
2602         int hi = hstate_index(h);
2603
2604         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2605         if (!hstate_kobjs[hi])
2606                 return -ENOMEM;
2607
2608         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2609         if (retval)
2610                 kobject_put(hstate_kobjs[hi]);
2611
2612         return retval;
2613 }
2614
2615 static void __init hugetlb_sysfs_init(void)
2616 {
2617         struct hstate *h;
2618         int err;
2619
2620         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2621         if (!hugepages_kobj)
2622                 return;
2623
2624         for_each_hstate(h) {
2625                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2626                                          hstate_kobjs, &hstate_attr_group);
2627                 if (err)
2628                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
2629         }
2630 }
2631
2632 #ifdef CONFIG_NUMA
2633
2634 /*
2635  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2636  * with node devices in node_devices[] using a parallel array.  The array
2637  * index of a node device or _hstate == node id.
2638  * This is here to avoid any static dependency of the node device driver, in
2639  * the base kernel, on the hugetlb module.
2640  */
2641 struct node_hstate {
2642         struct kobject          *hugepages_kobj;
2643         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2644 };
2645 static struct node_hstate node_hstates[MAX_NUMNODES];
2646
2647 /*
2648  * A subset of global hstate attributes for node devices
2649  */
2650 static struct attribute *per_node_hstate_attrs[] = {
2651         &nr_hugepages_attr.attr,
2652         &free_hugepages_attr.attr,
2653         &surplus_hugepages_attr.attr,
2654         NULL,
2655 };
2656
2657 static const struct attribute_group per_node_hstate_attr_group = {
2658         .attrs = per_node_hstate_attrs,
2659 };
2660
2661 /*
2662  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2663  * Returns node id via non-NULL nidp.
2664  */
2665 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2666 {
2667         int nid;
2668
2669         for (nid = 0; nid < nr_node_ids; nid++) {
2670                 struct node_hstate *nhs = &node_hstates[nid];
2671                 int i;
2672                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2673                         if (nhs->hstate_kobjs[i] == kobj) {
2674                                 if (nidp)
2675                                         *nidp = nid;
2676                                 return &hstates[i];
2677                         }
2678         }
2679
2680         BUG();
2681         return NULL;
2682 }
2683
2684 /*
2685  * Unregister hstate attributes from a single node device.
2686  * No-op if no hstate attributes attached.
2687  */
2688 static void hugetlb_unregister_node(struct node *node)
2689 {
2690         struct hstate *h;
2691         struct node_hstate *nhs = &node_hstates[node->dev.id];
2692
2693         if (!nhs->hugepages_kobj)
2694                 return;         /* no hstate attributes */
2695
2696         for_each_hstate(h) {
2697                 int idx = hstate_index(h);
2698                 if (nhs->hstate_kobjs[idx]) {
2699                         kobject_put(nhs->hstate_kobjs[idx]);
2700                         nhs->hstate_kobjs[idx] = NULL;
2701                 }
2702         }
2703
2704         kobject_put(nhs->hugepages_kobj);
2705         nhs->hugepages_kobj = NULL;
2706 }
2707
2708
2709 /*
2710  * Register hstate attributes for a single node device.
2711  * No-op if attributes already registered.
2712  */
2713 static void hugetlb_register_node(struct node *node)
2714 {
2715         struct hstate *h;
2716         struct node_hstate *nhs = &node_hstates[node->dev.id];
2717         int err;
2718
2719         if (nhs->hugepages_kobj)
2720                 return;         /* already allocated */
2721
2722         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2723                                                         &node->dev.kobj);
2724         if (!nhs->hugepages_kobj)
2725                 return;
2726
2727         for_each_hstate(h) {
2728                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2729                                                 nhs->hstate_kobjs,
2730                                                 &per_node_hstate_attr_group);
2731                 if (err) {
2732                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2733                                 h->name, node->dev.id);
2734                         hugetlb_unregister_node(node);
2735                         break;
2736                 }
2737         }
2738 }
2739
2740 /*
2741  * hugetlb init time:  register hstate attributes for all registered node
2742  * devices of nodes that have memory.  All on-line nodes should have
2743  * registered their associated device by this time.
2744  */
2745 static void __init hugetlb_register_all_nodes(void)
2746 {
2747         int nid;
2748
2749         for_each_node_state(nid, N_MEMORY) {
2750                 struct node *node = node_devices[nid];
2751                 if (node->dev.id == nid)
2752                         hugetlb_register_node(node);
2753         }
2754
2755         /*
2756          * Let the node device driver know we're here so it can
2757          * [un]register hstate attributes on node hotplug.
2758          */
2759         register_hugetlbfs_with_node(hugetlb_register_node,
2760                                      hugetlb_unregister_node);
2761 }
2762 #else   /* !CONFIG_NUMA */
2763
2764 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2765 {
2766         BUG();
2767         if (nidp)
2768                 *nidp = -1;
2769         return NULL;
2770 }
2771
2772 static void hugetlb_register_all_nodes(void) { }
2773
2774 #endif
2775
2776 static int __init hugetlb_init(void)
2777 {
2778         int i;
2779
2780         if (!hugepages_supported())
2781                 return 0;
2782
2783         if (!size_to_hstate(default_hstate_size)) {
2784                 if (default_hstate_size != 0) {
2785                         pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2786                                default_hstate_size, HPAGE_SIZE);
2787                 }
2788
2789                 default_hstate_size = HPAGE_SIZE;
2790                 if (!size_to_hstate(default_hstate_size))
2791                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2792         }
2793         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2794         if (default_hstate_max_huge_pages) {
2795                 if (!default_hstate.max_huge_pages)
2796                         default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2797         }
2798
2799         hugetlb_init_hstates();
2800         gather_bootmem_prealloc();
2801         report_hugepages();
2802
2803         hugetlb_sysfs_init();
2804         hugetlb_register_all_nodes();
2805         hugetlb_cgroup_file_init();
2806
2807 #ifdef CONFIG_SMP
2808         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2809 #else
2810         num_fault_mutexes = 1;
2811 #endif
2812         hugetlb_fault_mutex_table =
2813                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2814                               GFP_KERNEL);
2815         BUG_ON(!hugetlb_fault_mutex_table);
2816
2817         for (i = 0; i < num_fault_mutexes; i++)
2818                 mutex_init(&hugetlb_fault_mutex_table[i]);
2819         return 0;
2820 }
2821 subsys_initcall(hugetlb_init);
2822
2823 /* Should be called on processing a hugepagesz=... option */
2824 void __init hugetlb_bad_size(void)
2825 {
2826         parsed_valid_hugepagesz = false;
2827 }
2828
2829 void __init hugetlb_add_hstate(unsigned int order)
2830 {
2831         struct hstate *h;
2832         unsigned long i;
2833
2834         if (size_to_hstate(PAGE_SIZE << order)) {
2835                 pr_warn("hugepagesz= specified twice, ignoring\n");
2836                 return;
2837         }
2838         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2839         BUG_ON(order == 0);
2840         h = &hstates[hugetlb_max_hstate++];
2841         h->order = order;
2842         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2843         h->nr_huge_pages = 0;
2844         h->free_huge_pages = 0;
2845         for (i = 0; i < MAX_NUMNODES; ++i)
2846                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2847         INIT_LIST_HEAD(&h->hugepage_activelist);
2848         h->next_nid_to_alloc = first_memory_node;
2849         h->next_nid_to_free = first_memory_node;
2850         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2851                                         huge_page_size(h)/1024);
2852
2853         parsed_hstate = h;
2854 }
2855
2856 static int __init hugetlb_nrpages_setup(char *s)
2857 {
2858         unsigned long *mhp;
2859         static unsigned long *last_mhp;
2860
2861         if (!parsed_valid_hugepagesz) {
2862                 pr_warn("hugepages = %s preceded by "
2863                         "an unsupported hugepagesz, ignoring\n", s);
2864                 parsed_valid_hugepagesz = true;
2865                 return 1;
2866         }
2867         /*
2868          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2869          * so this hugepages= parameter goes to the "default hstate".
2870          */
2871         else if (!hugetlb_max_hstate)
2872                 mhp = &default_hstate_max_huge_pages;
2873         else
2874                 mhp = &parsed_hstate->max_huge_pages;
2875
2876         if (mhp == last_mhp) {
2877                 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2878                 return 1;
2879         }
2880
2881         if (sscanf(s, "%lu", mhp) <= 0)
2882                 *mhp = 0;
2883
2884         /*
2885          * Global state is always initialized later in hugetlb_init.
2886          * But we need to allocate >= MAX_ORDER hstates here early to still
2887          * use the bootmem allocator.
2888          */
2889         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2890                 hugetlb_hstate_alloc_pages(parsed_hstate);
2891
2892         last_mhp = mhp;
2893
2894         return 1;
2895 }
2896 __setup("hugepages=", hugetlb_nrpages_setup);
2897
2898 static int __init hugetlb_default_setup(char *s)
2899 {
2900         default_hstate_size = memparse(s, &s);
2901         return 1;
2902 }
2903 __setup("default_hugepagesz=", hugetlb_default_setup);
2904
2905 static unsigned int cpuset_mems_nr(unsigned int *array)
2906 {
2907         int node;
2908         unsigned int nr = 0;
2909
2910         for_each_node_mask(node, cpuset_current_mems_allowed)
2911                 nr += array[node];
2912
2913         return nr;
2914 }
2915
2916 #ifdef CONFIG_SYSCTL
2917 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2918                          struct ctl_table *table, int write,
2919                          void __user *buffer, size_t *length, loff_t *ppos)
2920 {
2921         struct hstate *h = &default_hstate;
2922         unsigned long tmp = h->max_huge_pages;
2923         int ret;
2924
2925         if (!hugepages_supported())
2926                 return -EOPNOTSUPP;
2927
2928         table->data = &tmp;
2929         table->maxlen = sizeof(unsigned long);
2930         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2931         if (ret)
2932                 goto out;
2933
2934         if (write)
2935                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2936                                                   NUMA_NO_NODE, tmp, *length);
2937 out:
2938         return ret;
2939 }
2940
2941 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2942                           void __user *buffer, size_t *length, loff_t *ppos)
2943 {
2944
2945         return hugetlb_sysctl_handler_common(false, table, write,
2946                                                         buffer, length, ppos);
2947 }
2948
2949 #ifdef CONFIG_NUMA
2950 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2951                           void __user *buffer, size_t *length, loff_t *ppos)
2952 {
2953         return hugetlb_sysctl_handler_common(true, table, write,
2954                                                         buffer, length, ppos);
2955 }
2956 #endif /* CONFIG_NUMA */
2957
2958 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2959                         void __user *buffer,
2960                         size_t *length, loff_t *ppos)
2961 {
2962         struct hstate *h = &default_hstate;
2963         unsigned long tmp;
2964         int ret;
2965
2966         if (!hugepages_supported())
2967                 return -EOPNOTSUPP;
2968
2969         tmp = h->nr_overcommit_huge_pages;
2970
2971         if (write && hstate_is_gigantic(h))
2972                 return -EINVAL;
2973
2974         table->data = &tmp;
2975         table->maxlen = sizeof(unsigned long);
2976         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2977         if (ret)
2978                 goto out;
2979
2980         if (write) {
2981                 spin_lock(&hugetlb_lock);
2982                 h->nr_overcommit_huge_pages = tmp;
2983                 spin_unlock(&hugetlb_lock);
2984         }
2985 out:
2986         return ret;
2987 }
2988
2989 #endif /* CONFIG_SYSCTL */
2990
2991 void hugetlb_report_meminfo(struct seq_file *m)
2992 {
2993         struct hstate *h;
2994         unsigned long total = 0;
2995
2996         if (!hugepages_supported())
2997                 return;
2998
2999         for_each_hstate(h) {
3000                 unsigned long count = h->nr_huge_pages;
3001
3002                 total += (PAGE_SIZE << huge_page_order(h)) * count;
3003
3004                 if (h == &default_hstate)
3005                         seq_printf(m,
3006                                    "HugePages_Total:   %5lu\n"
3007                                    "HugePages_Free:    %5lu\n"
3008                                    "HugePages_Rsvd:    %5lu\n"
3009                                    "HugePages_Surp:    %5lu\n"
3010                                    "Hugepagesize:   %8lu kB\n",
3011                                    count,
3012                                    h->free_huge_pages,
3013                                    h->resv_huge_pages,
3014                                    h->surplus_huge_pages,
3015                                    (PAGE_SIZE << huge_page_order(h)) / 1024);
3016         }
3017
3018         seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3019 }
3020
3021 int hugetlb_report_node_meminfo(int nid, char *buf)
3022 {
3023         struct hstate *h = &default_hstate;
3024         if (!hugepages_supported())
3025                 return 0;
3026         return sprintf(buf,
3027                 "Node %d HugePages_Total: %5u\n"
3028                 "Node %d HugePages_Free:  %5u\n"
3029                 "Node %d HugePages_Surp:  %5u\n",
3030                 nid, h->nr_huge_pages_node[nid],
3031                 nid, h->free_huge_pages_node[nid],
3032                 nid, h->surplus_huge_pages_node[nid]);
3033 }
3034
3035 void hugetlb_show_meminfo(void)
3036 {
3037         struct hstate *h;
3038         int nid;
3039
3040         if (!hugepages_supported())
3041                 return;
3042
3043         for_each_node_state(nid, N_MEMORY)
3044                 for_each_hstate(h)
3045                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3046                                 nid,
3047                                 h->nr_huge_pages_node[nid],
3048                                 h->free_huge_pages_node[nid],
3049                                 h->surplus_huge_pages_node[nid],
3050                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3051 }
3052
3053 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3054 {
3055         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3056                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3057 }
3058
3059 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3060 unsigned long hugetlb_total_pages(void)
3061 {
3062         struct hstate *h;
3063         unsigned long nr_total_pages = 0;
3064
3065         for_each_hstate(h)
3066                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3067         return nr_total_pages;
3068 }
3069
3070 static int hugetlb_acct_memory(struct hstate *h, long delta)
3071 {
3072         int ret = -ENOMEM;
3073
3074         spin_lock(&hugetlb_lock);
3075         /*
3076          * When cpuset is configured, it breaks the strict hugetlb page
3077          * reservation as the accounting is done on a global variable. Such
3078          * reservation is completely rubbish in the presence of cpuset because
3079          * the reservation is not checked against page availability for the
3080          * current cpuset. Application can still potentially OOM'ed by kernel
3081          * with lack of free htlb page in cpuset that the task is in.
3082          * Attempt to enforce strict accounting with cpuset is almost
3083          * impossible (or too ugly) because cpuset is too fluid that
3084          * task or memory node can be dynamically moved between cpusets.
3085          *
3086          * The change of semantics for shared hugetlb mapping with cpuset is
3087          * undesirable. However, in order to preserve some of the semantics,
3088          * we fall back to check against current free page availability as
3089          * a best attempt and hopefully to minimize the impact of changing
3090          * semantics that cpuset has.
3091          */
3092         if (delta > 0) {
3093                 if (gather_surplus_pages(h, delta) < 0)
3094                         goto out;
3095
3096                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3097                         return_unused_surplus_pages(h, delta);
3098                         goto out;
3099                 }
3100         }
3101
3102         ret = 0;
3103         if (delta < 0)
3104                 return_unused_surplus_pages(h, (unsigned long) -delta);
3105
3106 out:
3107         spin_unlock(&hugetlb_lock);
3108         return ret;
3109 }
3110
3111 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3112 {
3113         struct resv_map *resv = vma_resv_map(vma);
3114
3115         /*
3116          * This new VMA should share its siblings reservation map if present.
3117          * The VMA will only ever have a valid reservation map pointer where
3118          * it is being copied for another still existing VMA.  As that VMA
3119          * has a reference to the reservation map it cannot disappear until
3120          * after this open call completes.  It is therefore safe to take a
3121          * new reference here without additional locking.
3122          */
3123         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3124                 kref_get(&resv->refs);
3125 }
3126
3127 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3128 {
3129         struct hstate *h = hstate_vma(vma);
3130         struct resv_map *resv = vma_resv_map(vma);
3131         struct hugepage_subpool *spool = subpool_vma(vma);
3132         unsigned long reserve, start, end;
3133         long gbl_reserve;
3134
3135         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3136                 return;
3137
3138         start = vma_hugecache_offset(h, vma, vma->vm_start);
3139         end = vma_hugecache_offset(h, vma, vma->vm_end);
3140
3141         reserve = (end - start) - region_count(resv, start, end);
3142
3143         kref_put(&resv->refs, resv_map_release);
3144
3145         if (reserve) {
3146                 /*
3147                  * Decrement reserve counts.  The global reserve count may be
3148                  * adjusted if the subpool has a minimum size.
3149                  */
3150                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3151                 hugetlb_acct_memory(h, -gbl_reserve);
3152         }
3153 }
3154
3155 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3156 {
3157         if (addr & ~(huge_page_mask(hstate_vma(vma))))
3158                 return -EINVAL;
3159         return 0;
3160 }
3161
3162 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3163 {
3164         struct hstate *hstate = hstate_vma(vma);
3165
3166         return 1UL << huge_page_shift(hstate);
3167 }
3168
3169 /*
3170  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3171  * handle_mm_fault() to try to instantiate regular-sized pages in the
3172  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3173  * this far.
3174  */
3175 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3176 {
3177         BUG();
3178         return 0;
3179 }
3180
3181 /*
3182  * When a new function is introduced to vm_operations_struct and added
3183  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3184  * This is because under System V memory model, mappings created via
3185  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3186  * their original vm_ops are overwritten with shm_vm_ops.
3187  */
3188 const struct vm_operations_struct hugetlb_vm_ops = {
3189         .fault = hugetlb_vm_op_fault,
3190         .open = hugetlb_vm_op_open,
3191         .close = hugetlb_vm_op_close,
3192         .split = hugetlb_vm_op_split,
3193         .pagesize = hugetlb_vm_op_pagesize,
3194 };
3195
3196 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3197                                 int writable)
3198 {
3199         pte_t entry;
3200
3201         if (writable) {
3202                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3203                                          vma->vm_page_prot)));
3204         } else {
3205                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3206                                            vma->vm_page_prot));
3207         }
3208         entry = pte_mkyoung(entry);
3209         entry = pte_mkhuge(entry);
3210         entry = arch_make_huge_pte(entry, vma, page, writable);
3211
3212         return entry;
3213 }
3214
3215 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3216                                    unsigned long address, pte_t *ptep)
3217 {
3218         pte_t entry;
3219
3220         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3221         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3222                 update_mmu_cache(vma, address, ptep);
3223 }
3224
3225 bool is_hugetlb_entry_migration(pte_t pte)
3226 {
3227         swp_entry_t swp;
3228
3229         if (huge_pte_none(pte) || pte_present(pte))
3230                 return false;
3231         swp = pte_to_swp_entry(pte);
3232         if (non_swap_entry(swp) && is_migration_entry(swp))
3233                 return true;
3234         else
3235                 return false;
3236 }
3237
3238 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3239 {
3240         swp_entry_t swp;
3241
3242         if (huge_pte_none(pte) || pte_present(pte))
3243                 return 0;
3244         swp = pte_to_swp_entry(pte);
3245         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3246                 return 1;
3247         else
3248                 return 0;
3249 }
3250
3251 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3252                             struct vm_area_struct *vma)
3253 {
3254         pte_t *src_pte, *dst_pte, entry, dst_entry;
3255         struct page *ptepage;
3256         unsigned long addr;
3257         int cow;
3258         struct hstate *h = hstate_vma(vma);
3259         unsigned long sz = huge_page_size(h);
3260         struct mmu_notifier_range range;
3261         int ret = 0;
3262
3263         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3264
3265         if (cow) {
3266                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3267                                         vma->vm_start,
3268                                         vma->vm_end);
3269                 mmu_notifier_invalidate_range_start(&range);
3270         }
3271
3272         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3273                 spinlock_t *src_ptl, *dst_ptl;
3274                 src_pte = huge_pte_offset(src, addr, sz);
3275                 if (!src_pte)
3276                         continue;
3277                 dst_pte = huge_pte_alloc(dst, addr, sz);
3278                 if (!dst_pte) {
3279                         ret = -ENOMEM;
3280                         break;
3281                 }
3282
3283                 /*
3284                  * If the pagetables are shared don't copy or take references.
3285                  * dst_pte == src_pte is the common case of src/dest sharing.
3286                  *
3287                  * However, src could have 'unshared' and dst shares with
3288                  * another vma.  If dst_pte !none, this implies sharing.
3289                  * Check here before taking page table lock, and once again
3290                  * after taking the lock below.
3291                  */
3292                 dst_entry = huge_ptep_get(dst_pte);
3293                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3294                         continue;
3295
3296                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3297                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3298                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3299                 entry = huge_ptep_get(src_pte);
3300                 dst_entry = huge_ptep_get(dst_pte);
3301                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3302                         /*
3303                          * Skip if src entry none.  Also, skip in the
3304                          * unlikely case dst entry !none as this implies
3305                          * sharing with another vma.
3306                          */
3307                         ;
3308                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3309                                     is_hugetlb_entry_hwpoisoned(entry))) {
3310                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3311
3312                         if (is_write_migration_entry(swp_entry) && cow) {
3313                                 /*
3314                                  * COW mappings require pages in both
3315                                  * parent and child to be set to read.
3316                                  */
3317                                 make_migration_entry_read(&swp_entry);
3318                                 entry = swp_entry_to_pte(swp_entry);
3319                                 set_huge_swap_pte_at(src, addr, src_pte,
3320                                                      entry, sz);
3321                         }
3322                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3323                 } else {
3324                         if (cow) {
3325                                 /*
3326                                  * No need to notify as we are downgrading page
3327                                  * table protection not changing it to point
3328                                  * to a new page.
3329                                  *
3330                                  * See Documentation/vm/mmu_notifier.rst
3331                                  */
3332                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3333                         }
3334                         entry = huge_ptep_get(src_pte);
3335                         ptepage = pte_page(entry);
3336                         get_page(ptepage);
3337                         page_dup_rmap(ptepage, true);
3338                         set_huge_pte_at(dst, addr, dst_pte, entry);
3339                         hugetlb_count_add(pages_per_huge_page(h), dst);
3340                 }
3341                 spin_unlock(src_ptl);
3342                 spin_unlock(dst_ptl);
3343         }
3344
3345         if (cow)
3346                 mmu_notifier_invalidate_range_end(&range);
3347
3348         return ret;
3349 }
3350
3351 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3352                             unsigned long start, unsigned long end,
3353                             struct page *ref_page)
3354 {
3355         struct mm_struct *mm = vma->vm_mm;
3356         unsigned long address;
3357         pte_t *ptep;
3358         pte_t pte;
3359         spinlock_t *ptl;
3360         struct page *page;
3361         struct hstate *h = hstate_vma(vma);
3362         unsigned long sz = huge_page_size(h);
3363         struct mmu_notifier_range range;
3364
3365         WARN_ON(!is_vm_hugetlb_page(vma));
3366         BUG_ON(start & ~huge_page_mask(h));
3367         BUG_ON(end & ~huge_page_mask(h));
3368
3369         /*
3370          * This is a hugetlb vma, all the pte entries should point
3371          * to huge page.
3372          */
3373         tlb_change_page_size(tlb, sz);
3374         tlb_start_vma(tlb, vma);
3375
3376         /*
3377          * If sharing possible, alert mmu notifiers of worst case.
3378          */
3379         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3380                                 end);
3381         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3382         mmu_notifier_invalidate_range_start(&range);
3383         address = start;
3384         for (; address < end; address += sz) {
3385                 ptep = huge_pte_offset(mm, address, sz);
3386                 if (!ptep)
3387                         continue;
3388
3389                 ptl = huge_pte_lock(h, mm, ptep);
3390                 if (huge_pmd_unshare(mm, &address, ptep)) {
3391                         spin_unlock(ptl);
3392                         /*
3393                          * We just unmapped a page of PMDs by clearing a PUD.
3394                          * The caller's TLB flush range should cover this area.
3395                          */
3396                         continue;
3397                 }
3398
3399                 pte = huge_ptep_get(ptep);
3400                 if (huge_pte_none(pte)) {
3401                         spin_unlock(ptl);
3402                         continue;
3403                 }
3404
3405                 /*
3406                  * Migrating hugepage or HWPoisoned hugepage is already
3407                  * unmapped and its refcount is dropped, so just clear pte here.
3408                  */
3409                 if (unlikely(!pte_present(pte))) {
3410                         huge_pte_clear(mm, address, ptep, sz);
3411                         spin_unlock(ptl);
3412                         continue;
3413                 }
3414
3415                 page = pte_page(pte);
3416                 /*
3417                  * If a reference page is supplied, it is because a specific
3418                  * page is being unmapped, not a range. Ensure the page we
3419                  * are about to unmap is the actual page of interest.
3420                  */
3421                 if (ref_page) {
3422                         if (page != ref_page) {
3423                                 spin_unlock(ptl);
3424                                 continue;
3425                         }
3426                         /*
3427                          * Mark the VMA as having unmapped its page so that
3428                          * future faults in this VMA will fail rather than
3429                          * looking like data was lost
3430                          */
3431                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3432                 }
3433
3434                 pte = huge_ptep_get_and_clear(mm, address, ptep);
3435                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3436                 if (huge_pte_dirty(pte))
3437                         set_page_dirty(page);
3438
3439                 hugetlb_count_sub(pages_per_huge_page(h), mm);
3440                 page_remove_rmap(page, true);
3441
3442                 spin_unlock(ptl);
3443                 tlb_remove_page_size(tlb, page, huge_page_size(h));
3444                 /*
3445                  * Bail out after unmapping reference page if supplied
3446                  */
3447                 if (ref_page)
3448                         break;
3449         }
3450         mmu_notifier_invalidate_range_end(&range);
3451         tlb_end_vma(tlb, vma);
3452 }
3453
3454 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3455                           struct vm_area_struct *vma, unsigned long start,
3456                           unsigned long end, struct page *ref_page)
3457 {
3458         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3459
3460         /*
3461          * Clear this flag so that x86's huge_pmd_share page_table_shareable
3462          * test will fail on a vma being torn down, and not grab a page table
3463          * on its way out.  We're lucky that the flag has such an appropriate
3464          * name, and can in fact be safely cleared here. We could clear it
3465          * before the __unmap_hugepage_range above, but all that's necessary
3466          * is to clear it before releasing the i_mmap_rwsem. This works
3467          * because in the context this is called, the VMA is about to be
3468          * destroyed and the i_mmap_rwsem is held.
3469          */
3470         vma->vm_flags &= ~VM_MAYSHARE;
3471 }
3472
3473 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3474                           unsigned long end, struct page *ref_page)
3475 {
3476         struct mm_struct *mm;
3477         struct mmu_gather tlb;
3478         unsigned long tlb_start = start;
3479         unsigned long tlb_end = end;
3480
3481         /*
3482          * If shared PMDs were possibly used within this vma range, adjust
3483          * start/end for worst case tlb flushing.
3484          * Note that we can not be sure if PMDs are shared until we try to
3485          * unmap pages.  However, we want to make sure TLB flushing covers
3486          * the largest possible range.
3487          */
3488         adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3489
3490         mm = vma->vm_mm;
3491
3492         tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3493         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3494         tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3495 }
3496
3497 /*
3498  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3499  * mappping it owns the reserve page for. The intention is to unmap the page
3500  * from other VMAs and let the children be SIGKILLed if they are faulting the
3501  * same region.
3502  */
3503 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3504                               struct page *page, unsigned long address)
3505 {
3506         struct hstate *h = hstate_vma(vma);
3507         struct vm_area_struct *iter_vma;
3508         struct address_space *mapping;
3509         pgoff_t pgoff;
3510
3511         /*
3512          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3513          * from page cache lookup which is in HPAGE_SIZE units.
3514          */
3515         address = address & huge_page_mask(h);
3516         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3517                         vma->vm_pgoff;
3518         mapping = vma->vm_file->f_mapping;
3519
3520         /*
3521          * Take the mapping lock for the duration of the table walk. As
3522          * this mapping should be shared between all the VMAs,
3523          * __unmap_hugepage_range() is called as the lock is already held
3524          */
3525         i_mmap_lock_write(mapping);
3526         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3527                 /* Do not unmap the current VMA */
3528                 if (iter_vma == vma)
3529                         continue;
3530
3531                 /*
3532                  * Shared VMAs have their own reserves and do not affect
3533                  * MAP_PRIVATE accounting but it is possible that a shared
3534                  * VMA is using the same page so check and skip such VMAs.
3535                  */
3536                 if (iter_vma->vm_flags & VM_MAYSHARE)
3537                         continue;
3538
3539                 /*
3540                  * Unmap the page from other VMAs without their own reserves.
3541                  * They get marked to be SIGKILLed if they fault in these
3542                  * areas. This is because a future no-page fault on this VMA
3543                  * could insert a zeroed page instead of the data existing
3544                  * from the time of fork. This would look like data corruption
3545                  */
3546                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3547                         unmap_hugepage_range(iter_vma, address,
3548                                              address + huge_page_size(h), page);
3549         }
3550         i_mmap_unlock_write(mapping);
3551 }
3552
3553 /*
3554  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3555  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3556  * cannot race with other handlers or page migration.
3557  * Keep the pte_same checks anyway to make transition from the mutex easier.
3558  */
3559 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3560                        unsigned long address, pte_t *ptep,
3561                        struct page *pagecache_page, spinlock_t *ptl)
3562 {
3563         pte_t pte;
3564         struct hstate *h = hstate_vma(vma);
3565         struct page *old_page, *new_page;
3566         int outside_reserve = 0;
3567         vm_fault_t ret = 0;
3568         unsigned long haddr = address & huge_page_mask(h);
3569         struct mmu_notifier_range range;
3570
3571         pte = huge_ptep_get(ptep);
3572         old_page = pte_page(pte);
3573
3574 retry_avoidcopy:
3575         /* If no-one else is actually using this page, avoid the copy
3576          * and just make the page writable */
3577         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3578                 page_move_anon_rmap(old_page, vma);
3579                 set_huge_ptep_writable(vma, haddr, ptep);
3580                 return 0;
3581         }
3582
3583         /*
3584          * If the process that created a MAP_PRIVATE mapping is about to
3585          * perform a COW due to a shared page count, attempt to satisfy
3586          * the allocation without using the existing reserves. The pagecache
3587          * page is used to determine if the reserve at this address was
3588          * consumed or not. If reserves were used, a partial faulted mapping
3589          * at the time of fork() could consume its reserves on COW instead
3590          * of the full address range.
3591          */
3592         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3593                         old_page != pagecache_page)
3594                 outside_reserve = 1;
3595
3596         get_page(old_page);
3597
3598         /*
3599          * Drop page table lock as buddy allocator may be called. It will
3600          * be acquired again before returning to the caller, as expected.
3601          */
3602         spin_unlock(ptl);
3603         new_page = alloc_huge_page(vma, haddr, outside_reserve);
3604
3605         if (IS_ERR(new_page)) {
3606                 /*
3607                  * If a process owning a MAP_PRIVATE mapping fails to COW,
3608                  * it is due to references held by a child and an insufficient
3609                  * huge page pool. To guarantee the original mappers
3610                  * reliability, unmap the page from child processes. The child
3611                  * may get SIGKILLed if it later faults.
3612                  */
3613                 if (outside_reserve) {
3614                         put_page(old_page);
3615                         BUG_ON(huge_pte_none(pte));
3616                         unmap_ref_private(mm, vma, old_page, haddr);
3617                         BUG_ON(huge_pte_none(pte));
3618                         spin_lock(ptl);
3619                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3620                         if (likely(ptep &&
3621                                    pte_same(huge_ptep_get(ptep), pte)))
3622                                 goto retry_avoidcopy;
3623                         /*
3624                          * race occurs while re-acquiring page table
3625                          * lock, and our job is done.
3626                          */
3627                         return 0;
3628                 }
3629
3630                 ret = vmf_error(PTR_ERR(new_page));
3631                 goto out_release_old;
3632         }
3633
3634         /*
3635          * When the original hugepage is shared one, it does not have
3636          * anon_vma prepared.
3637          */
3638         if (unlikely(anon_vma_prepare(vma))) {
3639                 ret = VM_FAULT_OOM;
3640                 goto out_release_all;
3641         }
3642
3643         copy_user_huge_page(new_page, old_page, address, vma,
3644                             pages_per_huge_page(h));
3645         __SetPageUptodate(new_page);
3646
3647         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
3648                                 haddr + huge_page_size(h));
3649         mmu_notifier_invalidate_range_start(&range);
3650
3651         /*
3652          * Retake the page table lock to check for racing updates
3653          * before the page tables are altered
3654          */
3655         spin_lock(ptl);
3656         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3657         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3658                 ClearPagePrivate(new_page);
3659
3660                 /* Break COW */
3661                 huge_ptep_clear_flush(vma, haddr, ptep);
3662                 mmu_notifier_invalidate_range(mm, range.start, range.end);
3663                 set_huge_pte_at(mm, haddr, ptep,
3664                                 make_huge_pte(vma, new_page, 1));
3665                 page_remove_rmap(old_page, true);
3666                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
3667                 set_page_huge_active(new_page);
3668                 /* Make the old page be freed below */
3669                 new_page = old_page;
3670         }
3671         spin_unlock(ptl);
3672         mmu_notifier_invalidate_range_end(&range);
3673 out_release_all:
3674         restore_reserve_on_error(h, vma, haddr, new_page);
3675         put_page(new_page);
3676 out_release_old:
3677         put_page(old_page);
3678
3679         spin_lock(ptl); /* Caller expects lock to be held */
3680         return ret;
3681 }
3682
3683 /* Return the pagecache page at a given address within a VMA */
3684 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3685                         struct vm_area_struct *vma, unsigned long address)
3686 {
3687         struct address_space *mapping;
3688         pgoff_t idx;
3689
3690         mapping = vma->vm_file->f_mapping;
3691         idx = vma_hugecache_offset(h, vma, address);
3692
3693         return find_lock_page(mapping, idx);
3694 }
3695
3696 /*
3697  * Return whether there is a pagecache page to back given address within VMA.
3698  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3699  */
3700 static bool hugetlbfs_pagecache_present(struct hstate *h,
3701                         struct vm_area_struct *vma, unsigned long address)
3702 {
3703         struct address_space *mapping;
3704         pgoff_t idx;
3705         struct page *page;
3706
3707         mapping = vma->vm_file->f_mapping;
3708         idx = vma_hugecache_offset(h, vma, address);
3709
3710         page = find_get_page(mapping, idx);
3711         if (page)
3712                 put_page(page);
3713         return page != NULL;
3714 }
3715
3716 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3717                            pgoff_t idx)
3718 {
3719         struct inode *inode = mapping->host;
3720         struct hstate *h = hstate_inode(inode);
3721         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3722
3723         if (err)
3724                 return err;
3725         ClearPagePrivate(page);
3726
3727         /*
3728          * set page dirty so that it will not be removed from cache/file
3729          * by non-hugetlbfs specific code paths.
3730          */
3731         set_page_dirty(page);
3732
3733         spin_lock(&inode->i_lock);
3734         inode->i_blocks += blocks_per_huge_page(h);
3735         spin_unlock(&inode->i_lock);
3736         return 0;
3737 }
3738
3739 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3740                         struct vm_area_struct *vma,
3741                         struct address_space *mapping, pgoff_t idx,
3742                         unsigned long address, pte_t *ptep, unsigned int flags)
3743 {
3744         struct hstate *h = hstate_vma(vma);
3745         vm_fault_t ret = VM_FAULT_SIGBUS;
3746         int anon_rmap = 0;
3747         unsigned long size;
3748         struct page *page;
3749         pte_t new_pte;
3750         spinlock_t *ptl;
3751         unsigned long haddr = address & huge_page_mask(h);
3752         bool new_page = false;
3753
3754         /*
3755          * Currently, we are forced to kill the process in the event the
3756          * original mapper has unmapped pages from the child due to a failed
3757          * COW. Warn that such a situation has occurred as it may not be obvious
3758          */
3759         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3760                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3761                            current->pid);
3762                 return ret;
3763         }
3764
3765         /*
3766          * Use page lock to guard against racing truncation
3767          * before we get page_table_lock.
3768          */
3769 retry:
3770         page = find_lock_page(mapping, idx);
3771         if (!page) {
3772                 size = i_size_read(mapping->host) >> huge_page_shift(h);
3773                 if (idx >= size)
3774                         goto out;
3775
3776                 /*
3777                  * Check for page in userfault range
3778                  */
3779                 if (userfaultfd_missing(vma)) {
3780                         u32 hash;
3781                         struct vm_fault vmf = {
3782                                 .vma = vma,
3783                                 .address = haddr,
3784                                 .flags = flags,
3785                                 /*
3786                                  * Hard to debug if it ends up being
3787                                  * used by a callee that assumes
3788                                  * something about the other
3789                                  * uninitialized fields... same as in
3790                                  * memory.c
3791                                  */
3792                         };
3793
3794                         /*
3795                          * hugetlb_fault_mutex must be dropped before
3796                          * handling userfault.  Reacquire after handling
3797                          * fault to make calling code simpler.
3798                          */
3799                         hash = hugetlb_fault_mutex_hash(mapping, idx);
3800                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3801                         ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3802                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3803                         goto out;
3804                 }
3805
3806                 page = alloc_huge_page(vma, haddr, 0);
3807                 if (IS_ERR(page)) {
3808                         /*
3809                          * Returning error will result in faulting task being
3810                          * sent SIGBUS.  The hugetlb fault mutex prevents two
3811                          * tasks from racing to fault in the same page which
3812                          * could result in false unable to allocate errors.
3813                          * Page migration does not take the fault mutex, but
3814                          * does a clear then write of pte's under page table
3815                          * lock.  Page fault code could race with migration,
3816                          * notice the clear pte and try to allocate a page
3817                          * here.  Before returning error, get ptl and make
3818                          * sure there really is no pte entry.
3819                          */
3820                         ptl = huge_pte_lock(h, mm, ptep);
3821                         if (!huge_pte_none(huge_ptep_get(ptep))) {
3822                                 ret = 0;
3823                                 spin_unlock(ptl);
3824                                 goto out;
3825                         }
3826                         spin_unlock(ptl);
3827                         ret = vmf_error(PTR_ERR(page));
3828                         goto out;
3829                 }
3830                 clear_huge_page(page, address, pages_per_huge_page(h));
3831                 __SetPageUptodate(page);
3832                 new_page = true;
3833
3834                 if (vma->vm_flags & VM_MAYSHARE) {
3835                         int err = huge_add_to_page_cache(page, mapping, idx);
3836                         if (err) {
3837                                 put_page(page);
3838                                 if (err == -EEXIST)
3839                                         goto retry;
3840                                 goto out;
3841                         }
3842                 } else {
3843                         lock_page(page);
3844                         if (unlikely(anon_vma_prepare(vma))) {
3845                                 ret = VM_FAULT_OOM;
3846                                 goto backout_unlocked;
3847                         }
3848                         anon_rmap = 1;
3849                 }
3850         } else {
3851                 /*
3852                  * If memory error occurs between mmap() and fault, some process
3853                  * don't have hwpoisoned swap entry for errored virtual address.
3854                  * So we need to block hugepage fault by PG_hwpoison bit check.
3855                  */
3856                 if (unlikely(PageHWPoison(page))) {
3857                         ret = VM_FAULT_HWPOISON |
3858                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3859                         goto backout_unlocked;
3860                 }
3861         }
3862
3863         /*
3864          * If we are going to COW a private mapping later, we examine the
3865          * pending reservations for this page now. This will ensure that
3866          * any allocations necessary to record that reservation occur outside
3867          * the spinlock.
3868          */
3869         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3870                 if (vma_needs_reservation(h, vma, haddr) < 0) {
3871                         ret = VM_FAULT_OOM;
3872                         goto backout_unlocked;
3873                 }
3874                 /* Just decrements count, does not deallocate */
3875                 vma_end_reservation(h, vma, haddr);
3876         }
3877
3878         ptl = huge_pte_lock(h, mm, ptep);
3879         size = i_size_read(mapping->host) >> huge_page_shift(h);
3880         if (idx >= size)
3881                 goto backout;
3882
3883         ret = 0;
3884         if (!huge_pte_none(huge_ptep_get(ptep)))
3885                 goto backout;
3886
3887         if (anon_rmap) {
3888                 ClearPagePrivate(page);
3889                 hugepage_add_new_anon_rmap(page, vma, haddr);
3890         } else
3891                 page_dup_rmap(page, true);
3892         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3893                                 && (vma->vm_flags & VM_SHARED)));
3894         set_huge_pte_at(mm, haddr, ptep, new_pte);
3895
3896         hugetlb_count_add(pages_per_huge_page(h), mm);
3897         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3898                 /* Optimization, do the COW without a second fault */
3899                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3900         }
3901
3902         spin_unlock(ptl);
3903
3904         /*
3905          * Only make newly allocated pages active.  Existing pages found
3906          * in the pagecache could be !page_huge_active() if they have been
3907          * isolated for migration.
3908          */
3909         if (new_page)
3910                 set_page_huge_active(page);
3911
3912         unlock_page(page);
3913 out:
3914         return ret;
3915
3916 backout:
3917         spin_unlock(ptl);
3918 backout_unlocked:
3919         unlock_page(page);
3920         restore_reserve_on_error(h, vma, haddr, page);
3921         put_page(page);
3922         goto out;
3923 }
3924
3925 #ifdef CONFIG_SMP
3926 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
3927 {
3928         unsigned long key[2];
3929         u32 hash;
3930
3931         key[0] = (unsigned long) mapping;
3932         key[1] = idx;
3933
3934         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
3935
3936         return hash & (num_fault_mutexes - 1);
3937 }
3938 #else
3939 /*
3940  * For uniprocesor systems we always use a single mutex, so just
3941  * return 0 and avoid the hashing overhead.
3942  */
3943 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
3944 {
3945         return 0;
3946 }
3947 #endif
3948
3949 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3950                         unsigned long address, unsigned int flags)
3951 {
3952         pte_t *ptep, entry;
3953         spinlock_t *ptl;
3954         vm_fault_t ret;
3955         u32 hash;
3956         pgoff_t idx;
3957         struct page *page = NULL;
3958         struct page *pagecache_page = NULL;
3959         struct hstate *h = hstate_vma(vma);
3960         struct address_space *mapping;
3961         int need_wait_lock = 0;
3962         unsigned long haddr = address & huge_page_mask(h);
3963
3964         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3965         if (ptep) {
3966                 entry = huge_ptep_get(ptep);
3967                 if (unlikely(is_hugetlb_entry_migration(entry))) {
3968                         migration_entry_wait_huge(vma, mm, ptep);
3969                         return 0;
3970                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3971                         return VM_FAULT_HWPOISON_LARGE |
3972                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3973         } else {
3974                 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
3975                 if (!ptep)
3976                         return VM_FAULT_OOM;
3977         }
3978
3979         mapping = vma->vm_file->f_mapping;
3980         idx = vma_hugecache_offset(h, vma, haddr);
3981
3982         /*
3983          * Serialize hugepage allocation and instantiation, so that we don't
3984          * get spurious allocation failures if two CPUs race to instantiate
3985          * the same page in the page cache.
3986          */
3987         hash = hugetlb_fault_mutex_hash(mapping, idx);
3988         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3989
3990         entry = huge_ptep_get(ptep);
3991         if (huge_pte_none(entry)) {
3992                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3993                 goto out_mutex;
3994         }
3995
3996         ret = 0;
3997
3998         /*
3999          * entry could be a migration/hwpoison entry at this point, so this
4000          * check prevents the kernel from going below assuming that we have
4001          * a active hugepage in pagecache. This goto expects the 2nd page fault,
4002          * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4003          * handle it.
4004          */
4005         if (!pte_present(entry))
4006                 goto out_mutex;
4007
4008         /*
4009          * If we are going to COW the mapping later, we examine the pending
4010          * reservations for this page now. This will ensure that any
4011          * allocations necessary to record that reservation occur outside the
4012          * spinlock. For private mappings, we also lookup the pagecache
4013          * page now as it is used to determine if a reservation has been
4014          * consumed.
4015          */
4016         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4017                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4018                         ret = VM_FAULT_OOM;
4019                         goto out_mutex;
4020                 }
4021                 /* Just decrements count, does not deallocate */
4022                 vma_end_reservation(h, vma, haddr);
4023
4024                 if (!(vma->vm_flags & VM_MAYSHARE))
4025                         pagecache_page = hugetlbfs_pagecache_page(h,
4026                                                                 vma, haddr);
4027         }
4028
4029         ptl = huge_pte_lock(h, mm, ptep);
4030
4031         /* Check for a racing update before calling hugetlb_cow */
4032         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4033                 goto out_ptl;
4034
4035         /*
4036          * hugetlb_cow() requires page locks of pte_page(entry) and
4037          * pagecache_page, so here we need take the former one
4038          * when page != pagecache_page or !pagecache_page.
4039          */
4040         page = pte_page(entry);
4041         if (page != pagecache_page)
4042                 if (!trylock_page(page)) {
4043                         need_wait_lock = 1;
4044                         goto out_ptl;
4045                 }
4046
4047         get_page(page);
4048
4049         if (flags & FAULT_FLAG_WRITE) {
4050                 if (!huge_pte_write(entry)) {
4051                         ret = hugetlb_cow(mm, vma, address, ptep,
4052                                           pagecache_page, ptl);
4053                         goto out_put_page;
4054                 }
4055                 entry = huge_pte_mkdirty(entry);
4056         }
4057         entry = pte_mkyoung(entry);
4058         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4059                                                 flags & FAULT_FLAG_WRITE))
4060                 update_mmu_cache(vma, haddr, ptep);
4061 out_put_page:
4062         if (page != pagecache_page)
4063                 unlock_page(page);
4064         put_page(page);
4065 out_ptl:
4066         spin_unlock(ptl);
4067
4068         if (pagecache_page) {
4069                 unlock_page(pagecache_page);
4070                 put_page(pagecache_page);
4071         }
4072 out_mutex:
4073         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4074         /*
4075          * Generally it's safe to hold refcount during waiting page lock. But
4076          * here we just wait to defer the next page fault to avoid busy loop and
4077          * the page is not used after unlocked before returning from the current
4078          * page fault. So we are safe from accessing freed page, even if we wait
4079          * here without taking refcount.
4080          */
4081         if (need_wait_lock)
4082                 wait_on_page_locked(page);
4083         return ret;
4084 }
4085
4086 /*
4087  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4088  * modifications for huge pages.
4089  */
4090 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4091                             pte_t *dst_pte,
4092                             struct vm_area_struct *dst_vma,
4093                             unsigned long dst_addr,
4094                             unsigned long src_addr,
4095                             struct page **pagep)
4096 {
4097         struct address_space *mapping;
4098         pgoff_t idx;
4099         unsigned long size;
4100         int vm_shared = dst_vma->vm_flags & VM_SHARED;
4101         struct hstate *h = hstate_vma(dst_vma);
4102         pte_t _dst_pte;
4103         spinlock_t *ptl;
4104         int ret;
4105         struct page *page;
4106
4107         if (!*pagep) {
4108                 ret = -ENOMEM;
4109                 page = alloc_huge_page(dst_vma, dst_addr, 0);
4110                 if (IS_ERR(page))
4111                         goto out;
4112
4113                 ret = copy_huge_page_from_user(page,
4114                                                 (const void __user *) src_addr,
4115                                                 pages_per_huge_page(h), false);
4116
4117                 /* fallback to copy_from_user outside mmap_sem */
4118                 if (unlikely(ret)) {
4119                         ret = -ENOENT;
4120                         *pagep = page;
4121                         /* don't free the page */
4122                         goto out;
4123                 }
4124         } else {
4125                 page = *pagep;
4126                 *pagep = NULL;
4127         }
4128
4129         /*
4130          * The memory barrier inside __SetPageUptodate makes sure that
4131          * preceding stores to the page contents become visible before
4132          * the set_pte_at() write.
4133          */
4134         __SetPageUptodate(page);
4135
4136         mapping = dst_vma->vm_file->f_mapping;
4137         idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4138
4139         /*
4140          * If shared, add to page cache
4141          */
4142         if (vm_shared) {
4143                 size = i_size_read(mapping->host) >> huge_page_shift(h);
4144                 ret = -EFAULT;
4145                 if (idx >= size)
4146                         goto out_release_nounlock;
4147
4148                 /*
4149                  * Serialization between remove_inode_hugepages() and
4150                  * huge_add_to_page_cache() below happens through the
4151                  * hugetlb_fault_mutex_table that here must be hold by
4152                  * the caller.
4153                  */
4154                 ret = huge_add_to_page_cache(page, mapping, idx);
4155                 if (ret)
4156                         goto out_release_nounlock;
4157         }
4158
4159         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4160         spin_lock(ptl);
4161
4162         /*
4163          * Recheck the i_size after holding PT lock to make sure not
4164          * to leave any page mapped (as page_mapped()) beyond the end
4165          * of the i_size (remove_inode_hugepages() is strict about
4166          * enforcing that). If we bail out here, we'll also leave a
4167          * page in the radix tree in the vm_shared case beyond the end
4168          * of the i_size, but remove_inode_hugepages() will take care
4169          * of it as soon as we drop the hugetlb_fault_mutex_table.
4170          */
4171         size = i_size_read(mapping->host) >> huge_page_shift(h);
4172         ret = -EFAULT;
4173         if (idx >= size)
4174                 goto out_release_unlock;
4175
4176         ret = -EEXIST;
4177         if (!huge_pte_none(huge_ptep_get(dst_pte)))
4178                 goto out_release_unlock;
4179
4180         if (vm_shared) {
4181                 page_dup_rmap(page, true);
4182         } else {
4183                 ClearPagePrivate(page);
4184                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4185         }
4186
4187         _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4188         if (dst_vma->vm_flags & VM_WRITE)
4189                 _dst_pte = huge_pte_mkdirty(_dst_pte);
4190         _dst_pte = pte_mkyoung(_dst_pte);
4191
4192         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4193
4194         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4195                                         dst_vma->vm_flags & VM_WRITE);
4196         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4197
4198         /* No need to invalidate - it was non-present before */
4199         update_mmu_cache(dst_vma, dst_addr, dst_pte);
4200
4201         spin_unlock(ptl);
4202         set_page_huge_active(page);
4203         if (vm_shared)
4204                 unlock_page(page);
4205         ret = 0;
4206 out:
4207         return ret;
4208 out_release_unlock:
4209         spin_unlock(ptl);
4210         if (vm_shared)
4211                 unlock_page(page);
4212 out_release_nounlock:
4213         put_page(page);
4214         goto out;
4215 }
4216
4217 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4218                          struct page **pages, struct vm_area_struct **vmas,
4219                          unsigned long *position, unsigned long *nr_pages,
4220                          long i, unsigned int flags, int *nonblocking)
4221 {
4222         unsigned long pfn_offset;
4223         unsigned long vaddr = *position;
4224         unsigned long remainder = *nr_pages;
4225         struct hstate *h = hstate_vma(vma);
4226         int err = -EFAULT;
4227
4228         while (vaddr < vma->vm_end && remainder) {
4229                 pte_t *pte;
4230                 spinlock_t *ptl = NULL;
4231                 int absent;
4232                 struct page *page;
4233
4234                 /*
4235                  * If we have a pending SIGKILL, don't keep faulting pages and
4236                  * potentially allocating memory.
4237                  */
4238                 if (fatal_signal_pending(current)) {
4239                         remainder = 0;
4240                         break;
4241                 }
4242
4243                 /*
4244                  * Some archs (sparc64, sh*) have multiple pte_ts to
4245                  * each hugepage.  We have to make sure we get the
4246                  * first, for the page indexing below to work.
4247                  *
4248                  * Note that page table lock is not held when pte is null.
4249                  */
4250                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4251                                       huge_page_size(h));
4252                 if (pte)
4253                         ptl = huge_pte_lock(h, mm, pte);
4254                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4255
4256                 /*
4257                  * When coredumping, it suits get_dump_page if we just return
4258                  * an error where there's an empty slot with no huge pagecache
4259                  * to back it.  This way, we avoid allocating a hugepage, and
4260                  * the sparse dumpfile avoids allocating disk blocks, but its
4261                  * huge holes still show up with zeroes where they need to be.
4262                  */
4263                 if (absent && (flags & FOLL_DUMP) &&
4264                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4265                         if (pte)
4266                                 spin_unlock(ptl);
4267                         remainder = 0;
4268                         break;
4269                 }
4270
4271                 /*
4272                  * We need call hugetlb_fault for both hugepages under migration
4273                  * (in which case hugetlb_fault waits for the migration,) and
4274                  * hwpoisoned hugepages (in which case we need to prevent the
4275                  * caller from accessing to them.) In order to do this, we use
4276                  * here is_swap_pte instead of is_hugetlb_entry_migration and
4277                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4278                  * both cases, and because we can't follow correct pages
4279                  * directly from any kind of swap entries.
4280                  */
4281                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4282                     ((flags & FOLL_WRITE) &&
4283                       !huge_pte_write(huge_ptep_get(pte)))) {
4284                         vm_fault_t ret;
4285                         unsigned int fault_flags = 0;
4286
4287                         if (pte)
4288                                 spin_unlock(ptl);
4289                         if (flags & FOLL_WRITE)
4290                                 fault_flags |= FAULT_FLAG_WRITE;
4291                         if (nonblocking)
4292                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4293                         if (flags & FOLL_NOWAIT)
4294                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4295                                         FAULT_FLAG_RETRY_NOWAIT;
4296                         if (flags & FOLL_TRIED) {
4297                                 VM_WARN_ON_ONCE(fault_flags &
4298                                                 FAULT_FLAG_ALLOW_RETRY);
4299                                 fault_flags |= FAULT_FLAG_TRIED;
4300                         }
4301                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4302                         if (ret & VM_FAULT_ERROR) {
4303                                 err = vm_fault_to_errno(ret, flags);
4304                                 remainder = 0;
4305                                 break;
4306                         }
4307                         if (ret & VM_FAULT_RETRY) {
4308                                 if (nonblocking &&
4309                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4310                                         *nonblocking = 0;
4311                                 *nr_pages = 0;
4312                                 /*
4313                                  * VM_FAULT_RETRY must not return an
4314                                  * error, it will return zero
4315                                  * instead.
4316                                  *
4317                                  * No need to update "position" as the
4318                                  * caller will not check it after
4319                                  * *nr_pages is set to 0.
4320                                  */
4321                                 return i;
4322                         }
4323                         continue;
4324                 }
4325
4326                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4327                 page = pte_page(huge_ptep_get(pte));
4328
4329                 /*
4330                  * Instead of doing 'try_get_page()' below in the same_page
4331                  * loop, just check the count once here.
4332                  */
4333                 if (unlikely(page_count(page) <= 0)) {
4334                         if (pages) {
4335                                 spin_unlock(ptl);
4336                                 remainder = 0;
4337                                 err = -ENOMEM;
4338                                 break;
4339                         }
4340                 }
4341
4342                 /*
4343                  * If subpage information not requested, update counters
4344                  * and skip the same_page loop below.
4345                  */
4346                 if (!pages && !vmas && !pfn_offset &&
4347                     (vaddr + huge_page_size(h) < vma->vm_end) &&
4348                     (remainder >= pages_per_huge_page(h))) {
4349                         vaddr += huge_page_size(h);
4350                         remainder -= pages_per_huge_page(h);
4351                         i += pages_per_huge_page(h);
4352                         spin_unlock(ptl);
4353                         continue;
4354                 }
4355
4356 same_page:
4357                 if (pages) {
4358                         pages[i] = mem_map_offset(page, pfn_offset);
4359                         get_page(pages[i]);
4360                 }
4361
4362                 if (vmas)
4363                         vmas[i] = vma;
4364
4365                 vaddr += PAGE_SIZE;
4366                 ++pfn_offset;
4367                 --remainder;
4368                 ++i;
4369                 if (vaddr < vma->vm_end && remainder &&
4370                                 pfn_offset < pages_per_huge_page(h)) {
4371                         /*
4372                          * We use pfn_offset to avoid touching the pageframes
4373                          * of this compound page.
4374                          */
4375                         goto same_page;
4376                 }
4377                 spin_unlock(ptl);
4378         }
4379         *nr_pages = remainder;
4380         /*
4381          * setting position is actually required only if remainder is
4382          * not zero but it's faster not to add a "if (remainder)"
4383          * branch.
4384          */
4385         *position = vaddr;
4386
4387         return i ? i : err;
4388 }
4389
4390 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4391 /*
4392  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4393  * implement this.
4394  */
4395 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4396 #endif
4397
4398 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4399                 unsigned long address, unsigned long end, pgprot_t newprot)
4400 {
4401         struct mm_struct *mm = vma->vm_mm;
4402         unsigned long start = address;
4403         pte_t *ptep;
4404         pte_t pte;
4405         struct hstate *h = hstate_vma(vma);
4406         unsigned long pages = 0;
4407         bool shared_pmd = false;
4408         struct mmu_notifier_range range;
4409
4410         /*
4411          * In the case of shared PMDs, the area to flush could be beyond
4412          * start/end.  Set range.start/range.end to cover the maximum possible
4413          * range if PMD sharing is possible.
4414          */
4415         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4416                                 0, vma, mm, start, end);
4417         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4418
4419         BUG_ON(address >= end);
4420         flush_cache_range(vma, range.start, range.end);
4421
4422         mmu_notifier_invalidate_range_start(&range);
4423         i_mmap_lock_write(vma->vm_file->f_mapping);
4424         for (; address < end; address += huge_page_size(h)) {
4425                 spinlock_t *ptl;
4426                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4427                 if (!ptep)
4428                         continue;
4429                 ptl = huge_pte_lock(h, mm, ptep);
4430                 if (huge_pmd_unshare(mm, &address, ptep)) {
4431                         pages++;
4432                         spin_unlock(ptl);
4433                         shared_pmd = true;
4434                         continue;
4435                 }
4436                 pte = huge_ptep_get(ptep);
4437                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4438                         spin_unlock(ptl);
4439                         continue;
4440                 }
4441                 if (unlikely(is_hugetlb_entry_migration(pte))) {
4442                         swp_entry_t entry = pte_to_swp_entry(pte);
4443
4444                         if (is_write_migration_entry(entry)) {
4445                                 pte_t newpte;
4446
4447                                 make_migration_entry_read(&entry);
4448                                 newpte = swp_entry_to_pte(entry);
4449                                 set_huge_swap_pte_at(mm, address, ptep,
4450                                                      newpte, huge_page_size(h));
4451                                 pages++;
4452                         }
4453                         spin_unlock(ptl);
4454                         continue;
4455                 }
4456                 if (!huge_pte_none(pte)) {
4457                         pte_t old_pte;
4458
4459                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4460                         pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
4461                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
4462                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
4463                         pages++;
4464                 }
4465                 spin_unlock(ptl);
4466         }
4467         /*
4468          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4469          * may have cleared our pud entry and done put_page on the page table:
4470          * once we release i_mmap_rwsem, another task can do the final put_page
4471          * and that page table be reused and filled with junk.  If we actually
4472          * did unshare a page of pmds, flush the range corresponding to the pud.
4473          */
4474         if (shared_pmd)
4475                 flush_hugetlb_tlb_range(vma, range.start, range.end);
4476         else
4477                 flush_hugetlb_tlb_range(vma, start, end);
4478         /*
4479          * No need to call mmu_notifier_invalidate_range() we are downgrading
4480          * page table protection not changing it to point to a new page.
4481          *
4482          * See Documentation/vm/mmu_notifier.rst
4483          */
4484         i_mmap_unlock_write(vma->vm_file->f_mapping);
4485         mmu_notifier_invalidate_range_end(&range);
4486
4487         return pages << h->order;
4488 }
4489
4490 int hugetlb_reserve_pages(struct inode *inode,
4491                                         long from, long to,
4492                                         struct vm_area_struct *vma,
4493                                         vm_flags_t vm_flags)
4494 {
4495         long ret, chg;
4496         struct hstate *h = hstate_inode(inode);
4497         struct hugepage_subpool *spool = subpool_inode(inode);
4498         struct resv_map *resv_map;
4499         long gbl_reserve;
4500
4501         /* This should never happen */
4502         if (from > to) {
4503                 VM_WARN(1, "%s called with a negative range\n", __func__);
4504                 return -EINVAL;
4505         }
4506
4507         /*
4508          * Only apply hugepage reservation if asked. At fault time, an
4509          * attempt will be made for VM_NORESERVE to allocate a page
4510          * without using reserves
4511          */
4512         if (vm_flags & VM_NORESERVE)
4513                 return 0;
4514
4515         /*
4516          * Shared mappings base their reservation on the number of pages that
4517          * are already allocated on behalf of the file. Private mappings need
4518          * to reserve the full area even if read-only as mprotect() may be
4519          * called to make the mapping read-write. Assume !vma is a shm mapping
4520          */
4521         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4522                 /*
4523                  * resv_map can not be NULL as hugetlb_reserve_pages is only
4524                  * called for inodes for which resv_maps were created (see
4525                  * hugetlbfs_get_inode).
4526                  */
4527                 resv_map = inode_resv_map(inode);
4528
4529                 chg = region_chg(resv_map, from, to);
4530
4531         } else {
4532                 resv_map = resv_map_alloc();
4533                 if (!resv_map)
4534                         return -ENOMEM;
4535
4536                 chg = to - from;
4537
4538                 set_vma_resv_map(vma, resv_map);
4539                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4540         }
4541
4542         if (chg < 0) {
4543                 ret = chg;
4544                 goto out_err;
4545         }
4546
4547         /*
4548          * There must be enough pages in the subpool for the mapping. If
4549          * the subpool has a minimum size, there may be some global
4550          * reservations already in place (gbl_reserve).
4551          */
4552         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4553         if (gbl_reserve < 0) {
4554                 ret = -ENOSPC;
4555                 goto out_err;
4556         }
4557
4558         /*
4559          * Check enough hugepages are available for the reservation.
4560          * Hand the pages back to the subpool if there are not
4561          */
4562         ret = hugetlb_acct_memory(h, gbl_reserve);
4563         if (ret < 0) {
4564                 /* put back original number of pages, chg */
4565                 (void)hugepage_subpool_put_pages(spool, chg);
4566                 goto out_err;
4567         }
4568
4569         /*
4570          * Account for the reservations made. Shared mappings record regions
4571          * that have reservations as they are shared by multiple VMAs.
4572          * When the last VMA disappears, the region map says how much
4573          * the reservation was and the page cache tells how much of
4574          * the reservation was consumed. Private mappings are per-VMA and
4575          * only the consumed reservations are tracked. When the VMA
4576          * disappears, the original reservation is the VMA size and the
4577          * consumed reservations are stored in the map. Hence, nothing
4578          * else has to be done for private mappings here
4579          */
4580         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4581                 long add = region_add(resv_map, from, to);
4582
4583                 if (unlikely(chg > add)) {
4584                         /*
4585                          * pages in this range were added to the reserve
4586                          * map between region_chg and region_add.  This
4587                          * indicates a race with alloc_huge_page.  Adjust
4588                          * the subpool and reserve counts modified above
4589                          * based on the difference.
4590                          */
4591                         long rsv_adjust;
4592
4593                         rsv_adjust = hugepage_subpool_put_pages(spool,
4594                                                                 chg - add);
4595                         hugetlb_acct_memory(h, -rsv_adjust);
4596                 }
4597         }
4598         return 0;
4599 out_err:
4600         if (!vma || vma->vm_flags & VM_MAYSHARE)
4601                 /* Don't call region_abort if region_chg failed */
4602                 if (chg >= 0)
4603                         region_abort(resv_map, from, to);
4604         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4605                 kref_put(&resv_map->refs, resv_map_release);
4606         return ret;
4607 }
4608
4609 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4610                                                                 long freed)
4611 {
4612         struct hstate *h = hstate_inode(inode);
4613         struct resv_map *resv_map = inode_resv_map(inode);
4614         long chg = 0;
4615         struct hugepage_subpool *spool = subpool_inode(inode);
4616         long gbl_reserve;
4617
4618         /*
4619          * Since this routine can be called in the evict inode path for all
4620          * hugetlbfs inodes, resv_map could be NULL.
4621          */
4622         if (resv_map) {
4623                 chg = region_del(resv_map, start, end);
4624                 /*
4625                  * region_del() can fail in the rare case where a region
4626                  * must be split and another region descriptor can not be
4627                  * allocated.  If end == LONG_MAX, it will not fail.
4628                  */
4629                 if (chg < 0)
4630                         return chg;
4631         }
4632
4633         spin_lock(&inode->i_lock);
4634         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4635         spin_unlock(&inode->i_lock);
4636
4637         /*
4638          * If the subpool has a minimum size, the number of global
4639          * reservations to be released may be adjusted.
4640          */
4641         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4642         hugetlb_acct_memory(h, -gbl_reserve);
4643
4644         return 0;
4645 }
4646
4647 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4648 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4649                                 struct vm_area_struct *vma,
4650                                 unsigned long addr, pgoff_t idx)
4651 {
4652         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4653                                 svma->vm_start;
4654         unsigned long sbase = saddr & PUD_MASK;
4655         unsigned long s_end = sbase + PUD_SIZE;
4656
4657         /* Allow segments to share if only one is marked locked */
4658         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4659         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4660
4661         /*
4662          * match the virtual addresses, permission and the alignment of the
4663          * page table page.
4664          */
4665         if (pmd_index(addr) != pmd_index(saddr) ||
4666             vm_flags != svm_flags ||
4667             sbase < svma->vm_start || svma->vm_end < s_end)
4668                 return 0;
4669
4670         return saddr;
4671 }
4672
4673 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4674 {
4675         unsigned long base = addr & PUD_MASK;
4676         unsigned long end = base + PUD_SIZE;
4677
4678         /*
4679          * check on proper vm_flags and page table alignment
4680          */
4681         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4682                 return true;
4683         return false;
4684 }
4685
4686 /*
4687  * Determine if start,end range within vma could be mapped by shared pmd.
4688  * If yes, adjust start and end to cover range associated with possible
4689  * shared pmd mappings.
4690  */
4691 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4692                                 unsigned long *start, unsigned long *end)
4693 {
4694         unsigned long check_addr = *start;
4695
4696         if (!(vma->vm_flags & VM_MAYSHARE))
4697                 return;
4698
4699         for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4700                 unsigned long a_start = check_addr & PUD_MASK;
4701                 unsigned long a_end = a_start + PUD_SIZE;
4702
4703                 /*
4704                  * If sharing is possible, adjust start/end if necessary.
4705                  */
4706                 if (range_in_vma(vma, a_start, a_end)) {
4707                         if (a_start < *start)
4708                                 *start = a_start;
4709                         if (a_end > *end)
4710                                 *end = a_end;
4711                 }
4712         }
4713 }
4714
4715 /*
4716  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4717  * and returns the corresponding pte. While this is not necessary for the
4718  * !shared pmd case because we can allocate the pmd later as well, it makes the
4719  * code much cleaner. pmd allocation is essential for the shared case because
4720  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4721  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4722  * bad pmd for sharing.
4723  */
4724 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4725 {
4726         struct vm_area_struct *vma = find_vma(mm, addr);
4727         struct address_space *mapping = vma->vm_file->f_mapping;
4728         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4729                         vma->vm_pgoff;
4730         struct vm_area_struct *svma;
4731         unsigned long saddr;
4732         pte_t *spte = NULL;
4733         pte_t *pte;
4734         spinlock_t *ptl;
4735
4736         if (!vma_shareable(vma, addr))
4737                 return (pte_t *)pmd_alloc(mm, pud, addr);
4738
4739         i_mmap_lock_read(mapping);
4740         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4741                 if (svma == vma)
4742                         continue;
4743
4744                 saddr = page_table_shareable(svma, vma, addr, idx);
4745                 if (saddr) {
4746                         spte = huge_pte_offset(svma->vm_mm, saddr,
4747                                                vma_mmu_pagesize(svma));
4748                         if (spte) {
4749                                 get_page(virt_to_page(spte));
4750                                 break;
4751                         }
4752                 }
4753         }
4754
4755         if (!spte)
4756                 goto out;
4757
4758         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4759         if (pud_none(*pud)) {
4760                 pud_populate(mm, pud,
4761                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4762                 mm_inc_nr_pmds(mm);
4763         } else {
4764                 put_page(virt_to_page(spte));
4765         }
4766         spin_unlock(ptl);
4767 out:
4768         pte = (pte_t *)pmd_alloc(mm, pud, addr);
4769         i_mmap_unlock_read(mapping);
4770         return pte;
4771 }
4772
4773 /*
4774  * unmap huge page backed by shared pte.
4775  *
4776  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4777  * indicated by page_count > 1, unmap is achieved by clearing pud and
4778  * decrementing the ref count. If count == 1, the pte page is not shared.
4779  *
4780  * called with page table lock held.
4781  *
4782  * returns: 1 successfully unmapped a shared pte page
4783  *          0 the underlying pte page is not shared, or it is the last user
4784  */
4785 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4786 {
4787         pgd_t *pgd = pgd_offset(mm, *addr);
4788         p4d_t *p4d = p4d_offset(pgd, *addr);
4789         pud_t *pud = pud_offset(p4d, *addr);
4790
4791         BUG_ON(page_count(virt_to_page(ptep)) == 0);
4792         if (page_count(virt_to_page(ptep)) == 1)
4793                 return 0;
4794
4795         pud_clear(pud);
4796         put_page(virt_to_page(ptep));
4797         mm_dec_nr_pmds(mm);
4798         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4799         return 1;
4800 }
4801 #define want_pmd_share()        (1)
4802 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4803 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4804 {
4805         return NULL;
4806 }
4807
4808 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4809 {
4810         return 0;
4811 }
4812
4813 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4814                                 unsigned long *start, unsigned long *end)
4815 {
4816 }
4817 #define want_pmd_share()        (0)
4818 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4819
4820 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4821 pte_t *huge_pte_alloc(struct mm_struct *mm,
4822                         unsigned long addr, unsigned long sz)
4823 {
4824         pgd_t *pgd;
4825         p4d_t *p4d;
4826         pud_t *pud;
4827         pte_t *pte = NULL;
4828
4829         pgd = pgd_offset(mm, addr);
4830         p4d = p4d_alloc(mm, pgd, addr);
4831         if (!p4d)
4832                 return NULL;
4833         pud = pud_alloc(mm, p4d, addr);
4834         if (pud) {
4835                 if (sz == PUD_SIZE) {
4836                         pte = (pte_t *)pud;
4837                 } else {
4838                         BUG_ON(sz != PMD_SIZE);
4839                         if (want_pmd_share() && pud_none(*pud))
4840                                 pte = huge_pmd_share(mm, addr, pud);
4841                         else
4842                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4843                 }
4844         }
4845         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4846
4847         return pte;
4848 }
4849
4850 /*
4851  * huge_pte_offset() - Walk the page table to resolve the hugepage
4852  * entry at address @addr
4853  *
4854  * Return: Pointer to page table or swap entry (PUD or PMD) for
4855  * address @addr, or NULL if a p*d_none() entry is encountered and the
4856  * size @sz doesn't match the hugepage size at this level of the page
4857  * table.
4858  */
4859 pte_t *huge_pte_offset(struct mm_struct *mm,
4860                        unsigned long addr, unsigned long sz)
4861 {
4862         pgd_t *pgd;
4863         p4d_t *p4d;
4864         pud_t *pud;
4865         pmd_t *pmd;
4866
4867         pgd = pgd_offset(mm, addr);
4868         if (!pgd_present(*pgd))
4869                 return NULL;
4870         p4d = p4d_offset(pgd, addr);
4871         if (!p4d_present(*p4d))
4872                 return NULL;
4873
4874         pud = pud_offset(p4d, addr);
4875         if (sz != PUD_SIZE && pud_none(*pud))
4876                 return NULL;
4877         /* hugepage or swap? */
4878         if (pud_huge(*pud) || !pud_present(*pud))
4879                 return (pte_t *)pud;
4880
4881         pmd = pmd_offset(pud, addr);
4882         if (sz != PMD_SIZE && pmd_none(*pmd))
4883                 return NULL;
4884         /* hugepage or swap? */
4885         if (pmd_huge(*pmd) || !pmd_present(*pmd))
4886                 return (pte_t *)pmd;
4887
4888         return NULL;
4889 }
4890
4891 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4892
4893 /*
4894  * These functions are overwritable if your architecture needs its own
4895  * behavior.
4896  */
4897 struct page * __weak
4898 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4899                               int write)
4900 {
4901         return ERR_PTR(-EINVAL);
4902 }
4903
4904 struct page * __weak
4905 follow_huge_pd(struct vm_area_struct *vma,
4906                unsigned long address, hugepd_t hpd, int flags, int pdshift)
4907 {
4908         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4909         return NULL;
4910 }
4911
4912 struct page * __weak
4913 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4914                 pmd_t *pmd, int flags)
4915 {
4916         struct page *page = NULL;
4917         spinlock_t *ptl;
4918         pte_t pte;
4919 retry:
4920         ptl = pmd_lockptr(mm, pmd);
4921         spin_lock(ptl);
4922         /*
4923          * make sure that the address range covered by this pmd is not
4924          * unmapped from other threads.
4925          */
4926         if (!pmd_huge(*pmd))
4927                 goto out;
4928         pte = huge_ptep_get((pte_t *)pmd);
4929         if (pte_present(pte)) {
4930                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4931                 if (flags & FOLL_GET)
4932                         get_page(page);
4933         } else {
4934                 if (is_hugetlb_entry_migration(pte)) {
4935                         spin_unlock(ptl);
4936                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4937                         goto retry;
4938                 }
4939                 /*
4940                  * hwpoisoned entry is treated as no_page_table in
4941                  * follow_page_mask().
4942                  */
4943         }
4944 out:
4945         spin_unlock(ptl);
4946         return page;
4947 }
4948
4949 struct page * __weak
4950 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4951                 pud_t *pud, int flags)
4952 {
4953         if (flags & FOLL_GET)
4954                 return NULL;
4955
4956         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4957 }
4958
4959 struct page * __weak
4960 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4961 {
4962         if (flags & FOLL_GET)
4963                 return NULL;
4964
4965         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4966 }
4967
4968 bool isolate_huge_page(struct page *page, struct list_head *list)
4969 {
4970         bool ret = true;
4971
4972         VM_BUG_ON_PAGE(!PageHead(page), page);
4973         spin_lock(&hugetlb_lock);
4974         if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4975                 ret = false;
4976                 goto unlock;
4977         }
4978         clear_page_huge_active(page);
4979         list_move_tail(&page->lru, list);
4980 unlock:
4981         spin_unlock(&hugetlb_lock);
4982         return ret;
4983 }
4984
4985 void putback_active_hugepage(struct page *page)
4986 {
4987         VM_BUG_ON_PAGE(!PageHead(page), page);
4988         spin_lock(&hugetlb_lock);
4989         set_page_huge_active(page);
4990         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4991         spin_unlock(&hugetlb_lock);
4992         put_page(page);
4993 }
4994
4995 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
4996 {
4997         struct hstate *h = page_hstate(oldpage);
4998
4999         hugetlb_cgroup_migrate(oldpage, newpage);
5000         set_page_owner_migrate_reason(newpage, reason);
5001
5002         /*
5003          * transfer temporary state of the new huge page. This is
5004          * reverse to other transitions because the newpage is going to
5005          * be final while the old one will be freed so it takes over
5006          * the temporary status.
5007          *
5008          * Also note that we have to transfer the per-node surplus state
5009          * here as well otherwise the global surplus count will not match
5010          * the per-node's.
5011          */
5012         if (PageHugeTemporary(newpage)) {
5013                 int old_nid = page_to_nid(oldpage);
5014                 int new_nid = page_to_nid(newpage);
5015
5016                 SetPageHugeTemporary(oldpage);
5017                 ClearPageHugeTemporary(newpage);
5018
5019                 spin_lock(&hugetlb_lock);
5020                 if (h->surplus_huge_pages_node[old_nid]) {
5021                         h->surplus_huge_pages_node[old_nid]--;
5022                         h->surplus_huge_pages_node[new_nid]++;
5023                 }
5024                 spin_unlock(&hugetlb_lock);
5025         }
5026 }