cpufreq: schedutil: Simplify sugov_fast_switch()
[linux-2.6-microblaze.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlb.h>
37
38 #include <linux/io.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45
46 int hugetlb_max_hstate __read_mostly;
47 unsigned int default_hstate_idx;
48 struct hstate hstates[HUGE_MAX_HSTATE];
49
50 #ifdef CONFIG_CMA
51 static struct cma *hugetlb_cma[MAX_NUMNODES];
52 #endif
53 static unsigned long hugetlb_cma_size __initdata;
54
55 /*
56  * Minimum page order among possible hugepage sizes, set to a proper value
57  * at boot time.
58  */
59 static unsigned int minimum_order __read_mostly = UINT_MAX;
60
61 __initdata LIST_HEAD(huge_boot_pages);
62
63 /* for command line parsing */
64 static struct hstate * __initdata parsed_hstate;
65 static unsigned long __initdata default_hstate_max_huge_pages;
66 static bool __initdata parsed_valid_hugepagesz = true;
67 static bool __initdata parsed_default_hugepagesz;
68
69 /*
70  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71  * free_huge_pages, and surplus_huge_pages.
72  */
73 DEFINE_SPINLOCK(hugetlb_lock);
74
75 /*
76  * Serializes faults on the same logical page.  This is used to
77  * prevent spurious OOMs when the hugepage pool is fully utilized.
78  */
79 static int num_fault_mutexes;
80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81
82 /* Forward declaration */
83 static int hugetlb_acct_memory(struct hstate *h, long delta);
84
85 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
86 {
87         bool free = (spool->count == 0) && (spool->used_hpages == 0);
88
89         spin_unlock(&spool->lock);
90
91         /* If no pages are used, and no other handles to the subpool
92          * remain, give up any reservations based on minimum size and
93          * free the subpool */
94         if (free) {
95                 if (spool->min_hpages != -1)
96                         hugetlb_acct_memory(spool->hstate,
97                                                 -spool->min_hpages);
98                 kfree(spool);
99         }
100 }
101
102 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
103                                                 long min_hpages)
104 {
105         struct hugepage_subpool *spool;
106
107         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
108         if (!spool)
109                 return NULL;
110
111         spin_lock_init(&spool->lock);
112         spool->count = 1;
113         spool->max_hpages = max_hpages;
114         spool->hstate = h;
115         spool->min_hpages = min_hpages;
116
117         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
118                 kfree(spool);
119                 return NULL;
120         }
121         spool->rsv_hpages = min_hpages;
122
123         return spool;
124 }
125
126 void hugepage_put_subpool(struct hugepage_subpool *spool)
127 {
128         spin_lock(&spool->lock);
129         BUG_ON(!spool->count);
130         spool->count--;
131         unlock_or_release_subpool(spool);
132 }
133
134 /*
135  * Subpool accounting for allocating and reserving pages.
136  * Return -ENOMEM if there are not enough resources to satisfy the
137  * request.  Otherwise, return the number of pages by which the
138  * global pools must be adjusted (upward).  The returned value may
139  * only be different than the passed value (delta) in the case where
140  * a subpool minimum size must be maintained.
141  */
142 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
143                                       long delta)
144 {
145         long ret = delta;
146
147         if (!spool)
148                 return ret;
149
150         spin_lock(&spool->lock);
151
152         if (spool->max_hpages != -1) {          /* maximum size accounting */
153                 if ((spool->used_hpages + delta) <= spool->max_hpages)
154                         spool->used_hpages += delta;
155                 else {
156                         ret = -ENOMEM;
157                         goto unlock_ret;
158                 }
159         }
160
161         /* minimum size accounting */
162         if (spool->min_hpages != -1 && spool->rsv_hpages) {
163                 if (delta > spool->rsv_hpages) {
164                         /*
165                          * Asking for more reserves than those already taken on
166                          * behalf of subpool.  Return difference.
167                          */
168                         ret = delta - spool->rsv_hpages;
169                         spool->rsv_hpages = 0;
170                 } else {
171                         ret = 0;        /* reserves already accounted for */
172                         spool->rsv_hpages -= delta;
173                 }
174         }
175
176 unlock_ret:
177         spin_unlock(&spool->lock);
178         return ret;
179 }
180
181 /*
182  * Subpool accounting for freeing and unreserving pages.
183  * Return the number of global page reservations that must be dropped.
184  * The return value may only be different than the passed value (delta)
185  * in the case where a subpool minimum size must be maintained.
186  */
187 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
188                                        long delta)
189 {
190         long ret = delta;
191
192         if (!spool)
193                 return delta;
194
195         spin_lock(&spool->lock);
196
197         if (spool->max_hpages != -1)            /* maximum size accounting */
198                 spool->used_hpages -= delta;
199
200          /* minimum size accounting */
201         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
202                 if (spool->rsv_hpages + delta <= spool->min_hpages)
203                         ret = 0;
204                 else
205                         ret = spool->rsv_hpages + delta - spool->min_hpages;
206
207                 spool->rsv_hpages += delta;
208                 if (spool->rsv_hpages > spool->min_hpages)
209                         spool->rsv_hpages = spool->min_hpages;
210         }
211
212         /*
213          * If hugetlbfs_put_super couldn't free spool due to an outstanding
214          * quota reference, free it now.
215          */
216         unlock_or_release_subpool(spool);
217
218         return ret;
219 }
220
221 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
222 {
223         return HUGETLBFS_SB(inode->i_sb)->spool;
224 }
225
226 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
227 {
228         return subpool_inode(file_inode(vma->vm_file));
229 }
230
231 /* Helper that removes a struct file_region from the resv_map cache and returns
232  * it for use.
233  */
234 static struct file_region *
235 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
236 {
237         struct file_region *nrg = NULL;
238
239         VM_BUG_ON(resv->region_cache_count <= 0);
240
241         resv->region_cache_count--;
242         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
243         VM_BUG_ON(!nrg);
244         list_del(&nrg->link);
245
246         nrg->from = from;
247         nrg->to = to;
248
249         return nrg;
250 }
251
252 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
253                                               struct file_region *rg)
254 {
255 #ifdef CONFIG_CGROUP_HUGETLB
256         nrg->reservation_counter = rg->reservation_counter;
257         nrg->css = rg->css;
258         if (rg->css)
259                 css_get(rg->css);
260 #endif
261 }
262
263 /* Helper that records hugetlb_cgroup uncharge info. */
264 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
265                                                 struct hstate *h,
266                                                 struct resv_map *resv,
267                                                 struct file_region *nrg)
268 {
269 #ifdef CONFIG_CGROUP_HUGETLB
270         if (h_cg) {
271                 nrg->reservation_counter =
272                         &h_cg->rsvd_hugepage[hstate_index(h)];
273                 nrg->css = &h_cg->css;
274                 if (!resv->pages_per_hpage)
275                         resv->pages_per_hpage = pages_per_huge_page(h);
276                 /* pages_per_hpage should be the same for all entries in
277                  * a resv_map.
278                  */
279                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
280         } else {
281                 nrg->reservation_counter = NULL;
282                 nrg->css = NULL;
283         }
284 #endif
285 }
286
287 static bool has_same_uncharge_info(struct file_region *rg,
288                                    struct file_region *org)
289 {
290 #ifdef CONFIG_CGROUP_HUGETLB
291         return rg && org &&
292                rg->reservation_counter == org->reservation_counter &&
293                rg->css == org->css;
294
295 #else
296         return true;
297 #endif
298 }
299
300 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
301 {
302         struct file_region *nrg = NULL, *prg = NULL;
303
304         prg = list_prev_entry(rg, link);
305         if (&prg->link != &resv->regions && prg->to == rg->from &&
306             has_same_uncharge_info(prg, rg)) {
307                 prg->to = rg->to;
308
309                 list_del(&rg->link);
310                 kfree(rg);
311
312                 coalesce_file_region(resv, prg);
313                 return;
314         }
315
316         nrg = list_next_entry(rg, link);
317         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
318             has_same_uncharge_info(nrg, rg)) {
319                 nrg->from = rg->from;
320
321                 list_del(&rg->link);
322                 kfree(rg);
323
324                 coalesce_file_region(resv, nrg);
325                 return;
326         }
327 }
328
329 /* Must be called with resv->lock held. Calling this with count_only == true
330  * will count the number of pages to be added but will not modify the linked
331  * list. If regions_needed != NULL and count_only == true, then regions_needed
332  * will indicate the number of file_regions needed in the cache to carry out to
333  * add the regions for this range.
334  */
335 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
336                                      struct hugetlb_cgroup *h_cg,
337                                      struct hstate *h, long *regions_needed,
338                                      bool count_only)
339 {
340         long add = 0;
341         struct list_head *head = &resv->regions;
342         long last_accounted_offset = f;
343         struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
344
345         if (regions_needed)
346                 *regions_needed = 0;
347
348         /* In this loop, we essentially handle an entry for the range
349          * [last_accounted_offset, rg->from), at every iteration, with some
350          * bounds checking.
351          */
352         list_for_each_entry_safe(rg, trg, head, link) {
353                 /* Skip irrelevant regions that start before our range. */
354                 if (rg->from < f) {
355                         /* If this region ends after the last accounted offset,
356                          * then we need to update last_accounted_offset.
357                          */
358                         if (rg->to > last_accounted_offset)
359                                 last_accounted_offset = rg->to;
360                         continue;
361                 }
362
363                 /* When we find a region that starts beyond our range, we've
364                  * finished.
365                  */
366                 if (rg->from > t)
367                         break;
368
369                 /* Add an entry for last_accounted_offset -> rg->from, and
370                  * update last_accounted_offset.
371                  */
372                 if (rg->from > last_accounted_offset) {
373                         add += rg->from - last_accounted_offset;
374                         if (!count_only) {
375                                 nrg = get_file_region_entry_from_cache(
376                                         resv, last_accounted_offset, rg->from);
377                                 record_hugetlb_cgroup_uncharge_info(h_cg, h,
378                                                                     resv, nrg);
379                                 list_add(&nrg->link, rg->link.prev);
380                                 coalesce_file_region(resv, nrg);
381                         } else if (regions_needed)
382                                 *regions_needed += 1;
383                 }
384
385                 last_accounted_offset = rg->to;
386         }
387
388         /* Handle the case where our range extends beyond
389          * last_accounted_offset.
390          */
391         if (last_accounted_offset < t) {
392                 add += t - last_accounted_offset;
393                 if (!count_only) {
394                         nrg = get_file_region_entry_from_cache(
395                                 resv, last_accounted_offset, t);
396                         record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
397                         list_add(&nrg->link, rg->link.prev);
398                         coalesce_file_region(resv, nrg);
399                 } else if (regions_needed)
400                         *regions_needed += 1;
401         }
402
403         VM_BUG_ON(add < 0);
404         return add;
405 }
406
407 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
408  */
409 static int allocate_file_region_entries(struct resv_map *resv,
410                                         int regions_needed)
411         __must_hold(&resv->lock)
412 {
413         struct list_head allocated_regions;
414         int to_allocate = 0, i = 0;
415         struct file_region *trg = NULL, *rg = NULL;
416
417         VM_BUG_ON(regions_needed < 0);
418
419         INIT_LIST_HEAD(&allocated_regions);
420
421         /*
422          * Check for sufficient descriptors in the cache to accommodate
423          * the number of in progress add operations plus regions_needed.
424          *
425          * This is a while loop because when we drop the lock, some other call
426          * to region_add or region_del may have consumed some region_entries,
427          * so we keep looping here until we finally have enough entries for
428          * (adds_in_progress + regions_needed).
429          */
430         while (resv->region_cache_count <
431                (resv->adds_in_progress + regions_needed)) {
432                 to_allocate = resv->adds_in_progress + regions_needed -
433                               resv->region_cache_count;
434
435                 /* At this point, we should have enough entries in the cache
436                  * for all the existings adds_in_progress. We should only be
437                  * needing to allocate for regions_needed.
438                  */
439                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
440
441                 spin_unlock(&resv->lock);
442                 for (i = 0; i < to_allocate; i++) {
443                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
444                         if (!trg)
445                                 goto out_of_memory;
446                         list_add(&trg->link, &allocated_regions);
447                 }
448
449                 spin_lock(&resv->lock);
450
451                 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
452                         list_del(&rg->link);
453                         list_add(&rg->link, &resv->region_cache);
454                         resv->region_cache_count++;
455                 }
456         }
457
458         return 0;
459
460 out_of_memory:
461         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
462                 list_del(&rg->link);
463                 kfree(rg);
464         }
465         return -ENOMEM;
466 }
467
468 /*
469  * Add the huge page range represented by [f, t) to the reserve
470  * map.  Regions will be taken from the cache to fill in this range.
471  * Sufficient regions should exist in the cache due to the previous
472  * call to region_chg with the same range, but in some cases the cache will not
473  * have sufficient entries due to races with other code doing region_add or
474  * region_del.  The extra needed entries will be allocated.
475  *
476  * regions_needed is the out value provided by a previous call to region_chg.
477  *
478  * Return the number of new huge pages added to the map.  This number is greater
479  * than or equal to zero.  If file_region entries needed to be allocated for
480  * this operation and we were not able to allocate, it returns -ENOMEM.
481  * region_add of regions of length 1 never allocate file_regions and cannot
482  * fail; region_chg will always allocate at least 1 entry and a region_add for
483  * 1 page will only require at most 1 entry.
484  */
485 static long region_add(struct resv_map *resv, long f, long t,
486                        long in_regions_needed, struct hstate *h,
487                        struct hugetlb_cgroup *h_cg)
488 {
489         long add = 0, actual_regions_needed = 0;
490
491         spin_lock(&resv->lock);
492 retry:
493
494         /* Count how many regions are actually needed to execute this add. */
495         add_reservation_in_range(resv, f, t, NULL, NULL, &actual_regions_needed,
496                                  true);
497
498         /*
499          * Check for sufficient descriptors in the cache to accommodate
500          * this add operation. Note that actual_regions_needed may be greater
501          * than in_regions_needed, as the resv_map may have been modified since
502          * the region_chg call. In this case, we need to make sure that we
503          * allocate extra entries, such that we have enough for all the
504          * existing adds_in_progress, plus the excess needed for this
505          * operation.
506          */
507         if (actual_regions_needed > in_regions_needed &&
508             resv->region_cache_count <
509                     resv->adds_in_progress +
510                             (actual_regions_needed - in_regions_needed)) {
511                 /* region_add operation of range 1 should never need to
512                  * allocate file_region entries.
513                  */
514                 VM_BUG_ON(t - f <= 1);
515
516                 if (allocate_file_region_entries(
517                             resv, actual_regions_needed - in_regions_needed)) {
518                         return -ENOMEM;
519                 }
520
521                 goto retry;
522         }
523
524         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL, false);
525
526         resv->adds_in_progress -= in_regions_needed;
527
528         spin_unlock(&resv->lock);
529         VM_BUG_ON(add < 0);
530         return add;
531 }
532
533 /*
534  * Examine the existing reserve map and determine how many
535  * huge pages in the specified range [f, t) are NOT currently
536  * represented.  This routine is called before a subsequent
537  * call to region_add that will actually modify the reserve
538  * map to add the specified range [f, t).  region_chg does
539  * not change the number of huge pages represented by the
540  * map.  A number of new file_region structures is added to the cache as a
541  * placeholder, for the subsequent region_add call to use. At least 1
542  * file_region structure is added.
543  *
544  * out_regions_needed is the number of regions added to the
545  * resv->adds_in_progress.  This value needs to be provided to a follow up call
546  * to region_add or region_abort for proper accounting.
547  *
548  * Returns the number of huge pages that need to be added to the existing
549  * reservation map for the range [f, t).  This number is greater or equal to
550  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
551  * is needed and can not be allocated.
552  */
553 static long region_chg(struct resv_map *resv, long f, long t,
554                        long *out_regions_needed)
555 {
556         long chg = 0;
557
558         spin_lock(&resv->lock);
559
560         /* Count how many hugepages in this range are NOT respresented. */
561         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
562                                        out_regions_needed, true);
563
564         if (*out_regions_needed == 0)
565                 *out_regions_needed = 1;
566
567         if (allocate_file_region_entries(resv, *out_regions_needed))
568                 return -ENOMEM;
569
570         resv->adds_in_progress += *out_regions_needed;
571
572         spin_unlock(&resv->lock);
573         return chg;
574 }
575
576 /*
577  * Abort the in progress add operation.  The adds_in_progress field
578  * of the resv_map keeps track of the operations in progress between
579  * calls to region_chg and region_add.  Operations are sometimes
580  * aborted after the call to region_chg.  In such cases, region_abort
581  * is called to decrement the adds_in_progress counter. regions_needed
582  * is the value returned by the region_chg call, it is used to decrement
583  * the adds_in_progress counter.
584  *
585  * NOTE: The range arguments [f, t) are not needed or used in this
586  * routine.  They are kept to make reading the calling code easier as
587  * arguments will match the associated region_chg call.
588  */
589 static void region_abort(struct resv_map *resv, long f, long t,
590                          long regions_needed)
591 {
592         spin_lock(&resv->lock);
593         VM_BUG_ON(!resv->region_cache_count);
594         resv->adds_in_progress -= regions_needed;
595         spin_unlock(&resv->lock);
596 }
597
598 /*
599  * Delete the specified range [f, t) from the reserve map.  If the
600  * t parameter is LONG_MAX, this indicates that ALL regions after f
601  * should be deleted.  Locate the regions which intersect [f, t)
602  * and either trim, delete or split the existing regions.
603  *
604  * Returns the number of huge pages deleted from the reserve map.
605  * In the normal case, the return value is zero or more.  In the
606  * case where a region must be split, a new region descriptor must
607  * be allocated.  If the allocation fails, -ENOMEM will be returned.
608  * NOTE: If the parameter t == LONG_MAX, then we will never split
609  * a region and possibly return -ENOMEM.  Callers specifying
610  * t == LONG_MAX do not need to check for -ENOMEM error.
611  */
612 static long region_del(struct resv_map *resv, long f, long t)
613 {
614         struct list_head *head = &resv->regions;
615         struct file_region *rg, *trg;
616         struct file_region *nrg = NULL;
617         long del = 0;
618
619 retry:
620         spin_lock(&resv->lock);
621         list_for_each_entry_safe(rg, trg, head, link) {
622                 /*
623                  * Skip regions before the range to be deleted.  file_region
624                  * ranges are normally of the form [from, to).  However, there
625                  * may be a "placeholder" entry in the map which is of the form
626                  * (from, to) with from == to.  Check for placeholder entries
627                  * at the beginning of the range to be deleted.
628                  */
629                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
630                         continue;
631
632                 if (rg->from >= t)
633                         break;
634
635                 if (f > rg->from && t < rg->to) { /* Must split region */
636                         /*
637                          * Check for an entry in the cache before dropping
638                          * lock and attempting allocation.
639                          */
640                         if (!nrg &&
641                             resv->region_cache_count > resv->adds_in_progress) {
642                                 nrg = list_first_entry(&resv->region_cache,
643                                                         struct file_region,
644                                                         link);
645                                 list_del(&nrg->link);
646                                 resv->region_cache_count--;
647                         }
648
649                         if (!nrg) {
650                                 spin_unlock(&resv->lock);
651                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
652                                 if (!nrg)
653                                         return -ENOMEM;
654                                 goto retry;
655                         }
656
657                         del += t - f;
658
659                         /* New entry for end of split region */
660                         nrg->from = t;
661                         nrg->to = rg->to;
662
663                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
664
665                         INIT_LIST_HEAD(&nrg->link);
666
667                         /* Original entry is trimmed */
668                         rg->to = f;
669
670                         hugetlb_cgroup_uncharge_file_region(
671                                 resv, rg, nrg->to - nrg->from);
672
673                         list_add(&nrg->link, &rg->link);
674                         nrg = NULL;
675                         break;
676                 }
677
678                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
679                         del += rg->to - rg->from;
680                         hugetlb_cgroup_uncharge_file_region(resv, rg,
681                                                             rg->to - rg->from);
682                         list_del(&rg->link);
683                         kfree(rg);
684                         continue;
685                 }
686
687                 if (f <= rg->from) {    /* Trim beginning of region */
688                         del += t - rg->from;
689                         rg->from = t;
690
691                         hugetlb_cgroup_uncharge_file_region(resv, rg,
692                                                             t - rg->from);
693                 } else {                /* Trim end of region */
694                         del += rg->to - f;
695                         rg->to = f;
696
697                         hugetlb_cgroup_uncharge_file_region(resv, rg,
698                                                             rg->to - f);
699                 }
700         }
701
702         spin_unlock(&resv->lock);
703         kfree(nrg);
704         return del;
705 }
706
707 /*
708  * A rare out of memory error was encountered which prevented removal of
709  * the reserve map region for a page.  The huge page itself was free'ed
710  * and removed from the page cache.  This routine will adjust the subpool
711  * usage count, and the global reserve count if needed.  By incrementing
712  * these counts, the reserve map entry which could not be deleted will
713  * appear as a "reserved" entry instead of simply dangling with incorrect
714  * counts.
715  */
716 void hugetlb_fix_reserve_counts(struct inode *inode)
717 {
718         struct hugepage_subpool *spool = subpool_inode(inode);
719         long rsv_adjust;
720
721         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
722         if (rsv_adjust) {
723                 struct hstate *h = hstate_inode(inode);
724
725                 hugetlb_acct_memory(h, 1);
726         }
727 }
728
729 /*
730  * Count and return the number of huge pages in the reserve map
731  * that intersect with the range [f, t).
732  */
733 static long region_count(struct resv_map *resv, long f, long t)
734 {
735         struct list_head *head = &resv->regions;
736         struct file_region *rg;
737         long chg = 0;
738
739         spin_lock(&resv->lock);
740         /* Locate each segment we overlap with, and count that overlap. */
741         list_for_each_entry(rg, head, link) {
742                 long seg_from;
743                 long seg_to;
744
745                 if (rg->to <= f)
746                         continue;
747                 if (rg->from >= t)
748                         break;
749
750                 seg_from = max(rg->from, f);
751                 seg_to = min(rg->to, t);
752
753                 chg += seg_to - seg_from;
754         }
755         spin_unlock(&resv->lock);
756
757         return chg;
758 }
759
760 /*
761  * Convert the address within this vma to the page offset within
762  * the mapping, in pagecache page units; huge pages here.
763  */
764 static pgoff_t vma_hugecache_offset(struct hstate *h,
765                         struct vm_area_struct *vma, unsigned long address)
766 {
767         return ((address - vma->vm_start) >> huge_page_shift(h)) +
768                         (vma->vm_pgoff >> huge_page_order(h));
769 }
770
771 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
772                                      unsigned long address)
773 {
774         return vma_hugecache_offset(hstate_vma(vma), vma, address);
775 }
776 EXPORT_SYMBOL_GPL(linear_hugepage_index);
777
778 /*
779  * Return the size of the pages allocated when backing a VMA. In the majority
780  * cases this will be same size as used by the page table entries.
781  */
782 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
783 {
784         if (vma->vm_ops && vma->vm_ops->pagesize)
785                 return vma->vm_ops->pagesize(vma);
786         return PAGE_SIZE;
787 }
788 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
789
790 /*
791  * Return the page size being used by the MMU to back a VMA. In the majority
792  * of cases, the page size used by the kernel matches the MMU size. On
793  * architectures where it differs, an architecture-specific 'strong'
794  * version of this symbol is required.
795  */
796 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
797 {
798         return vma_kernel_pagesize(vma);
799 }
800
801 /*
802  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
803  * bits of the reservation map pointer, which are always clear due to
804  * alignment.
805  */
806 #define HPAGE_RESV_OWNER    (1UL << 0)
807 #define HPAGE_RESV_UNMAPPED (1UL << 1)
808 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
809
810 /*
811  * These helpers are used to track how many pages are reserved for
812  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
813  * is guaranteed to have their future faults succeed.
814  *
815  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
816  * the reserve counters are updated with the hugetlb_lock held. It is safe
817  * to reset the VMA at fork() time as it is not in use yet and there is no
818  * chance of the global counters getting corrupted as a result of the values.
819  *
820  * The private mapping reservation is represented in a subtly different
821  * manner to a shared mapping.  A shared mapping has a region map associated
822  * with the underlying file, this region map represents the backing file
823  * pages which have ever had a reservation assigned which this persists even
824  * after the page is instantiated.  A private mapping has a region map
825  * associated with the original mmap which is attached to all VMAs which
826  * reference it, this region map represents those offsets which have consumed
827  * reservation ie. where pages have been instantiated.
828  */
829 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
830 {
831         return (unsigned long)vma->vm_private_data;
832 }
833
834 static void set_vma_private_data(struct vm_area_struct *vma,
835                                                         unsigned long value)
836 {
837         vma->vm_private_data = (void *)value;
838 }
839
840 static void
841 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
842                                           struct hugetlb_cgroup *h_cg,
843                                           struct hstate *h)
844 {
845 #ifdef CONFIG_CGROUP_HUGETLB
846         if (!h_cg || !h) {
847                 resv_map->reservation_counter = NULL;
848                 resv_map->pages_per_hpage = 0;
849                 resv_map->css = NULL;
850         } else {
851                 resv_map->reservation_counter =
852                         &h_cg->rsvd_hugepage[hstate_index(h)];
853                 resv_map->pages_per_hpage = pages_per_huge_page(h);
854                 resv_map->css = &h_cg->css;
855         }
856 #endif
857 }
858
859 struct resv_map *resv_map_alloc(void)
860 {
861         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
862         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
863
864         if (!resv_map || !rg) {
865                 kfree(resv_map);
866                 kfree(rg);
867                 return NULL;
868         }
869
870         kref_init(&resv_map->refs);
871         spin_lock_init(&resv_map->lock);
872         INIT_LIST_HEAD(&resv_map->regions);
873
874         resv_map->adds_in_progress = 0;
875         /*
876          * Initialize these to 0. On shared mappings, 0's here indicate these
877          * fields don't do cgroup accounting. On private mappings, these will be
878          * re-initialized to the proper values, to indicate that hugetlb cgroup
879          * reservations are to be un-charged from here.
880          */
881         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
882
883         INIT_LIST_HEAD(&resv_map->region_cache);
884         list_add(&rg->link, &resv_map->region_cache);
885         resv_map->region_cache_count = 1;
886
887         return resv_map;
888 }
889
890 void resv_map_release(struct kref *ref)
891 {
892         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
893         struct list_head *head = &resv_map->region_cache;
894         struct file_region *rg, *trg;
895
896         /* Clear out any active regions before we release the map. */
897         region_del(resv_map, 0, LONG_MAX);
898
899         /* ... and any entries left in the cache */
900         list_for_each_entry_safe(rg, trg, head, link) {
901                 list_del(&rg->link);
902                 kfree(rg);
903         }
904
905         VM_BUG_ON(resv_map->adds_in_progress);
906
907         kfree(resv_map);
908 }
909
910 static inline struct resv_map *inode_resv_map(struct inode *inode)
911 {
912         /*
913          * At inode evict time, i_mapping may not point to the original
914          * address space within the inode.  This original address space
915          * contains the pointer to the resv_map.  So, always use the
916          * address space embedded within the inode.
917          * The VERY common case is inode->mapping == &inode->i_data but,
918          * this may not be true for device special inodes.
919          */
920         return (struct resv_map *)(&inode->i_data)->private_data;
921 }
922
923 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
924 {
925         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
926         if (vma->vm_flags & VM_MAYSHARE) {
927                 struct address_space *mapping = vma->vm_file->f_mapping;
928                 struct inode *inode = mapping->host;
929
930                 return inode_resv_map(inode);
931
932         } else {
933                 return (struct resv_map *)(get_vma_private_data(vma) &
934                                                         ~HPAGE_RESV_MASK);
935         }
936 }
937
938 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
939 {
940         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
941         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
942
943         set_vma_private_data(vma, (get_vma_private_data(vma) &
944                                 HPAGE_RESV_MASK) | (unsigned long)map);
945 }
946
947 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
948 {
949         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
950         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
951
952         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
953 }
954
955 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
956 {
957         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
958
959         return (get_vma_private_data(vma) & flag) != 0;
960 }
961
962 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
963 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
964 {
965         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
966         if (!(vma->vm_flags & VM_MAYSHARE))
967                 vma->vm_private_data = (void *)0;
968 }
969
970 /* Returns true if the VMA has associated reserve pages */
971 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
972 {
973         if (vma->vm_flags & VM_NORESERVE) {
974                 /*
975                  * This address is already reserved by other process(chg == 0),
976                  * so, we should decrement reserved count. Without decrementing,
977                  * reserve count remains after releasing inode, because this
978                  * allocated page will go into page cache and is regarded as
979                  * coming from reserved pool in releasing step.  Currently, we
980                  * don't have any other solution to deal with this situation
981                  * properly, so add work-around here.
982                  */
983                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
984                         return true;
985                 else
986                         return false;
987         }
988
989         /* Shared mappings always use reserves */
990         if (vma->vm_flags & VM_MAYSHARE) {
991                 /*
992                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
993                  * be a region map for all pages.  The only situation where
994                  * there is no region map is if a hole was punched via
995                  * fallocate.  In this case, there really are no reserves to
996                  * use.  This situation is indicated if chg != 0.
997                  */
998                 if (chg)
999                         return false;
1000                 else
1001                         return true;
1002         }
1003
1004         /*
1005          * Only the process that called mmap() has reserves for
1006          * private mappings.
1007          */
1008         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1009                 /*
1010                  * Like the shared case above, a hole punch or truncate
1011                  * could have been performed on the private mapping.
1012                  * Examine the value of chg to determine if reserves
1013                  * actually exist or were previously consumed.
1014                  * Very Subtle - The value of chg comes from a previous
1015                  * call to vma_needs_reserves().  The reserve map for
1016                  * private mappings has different (opposite) semantics
1017                  * than that of shared mappings.  vma_needs_reserves()
1018                  * has already taken this difference in semantics into
1019                  * account.  Therefore, the meaning of chg is the same
1020                  * as in the shared case above.  Code could easily be
1021                  * combined, but keeping it separate draws attention to
1022                  * subtle differences.
1023                  */
1024                 if (chg)
1025                         return false;
1026                 else
1027                         return true;
1028         }
1029
1030         return false;
1031 }
1032
1033 static void enqueue_huge_page(struct hstate *h, struct page *page)
1034 {
1035         int nid = page_to_nid(page);
1036         list_move(&page->lru, &h->hugepage_freelists[nid]);
1037         h->free_huge_pages++;
1038         h->free_huge_pages_node[nid]++;
1039 }
1040
1041 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1042 {
1043         struct page *page;
1044         bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1045
1046         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1047                 if (nocma && is_migrate_cma_page(page))
1048                         continue;
1049
1050                 if (!PageHWPoison(page))
1051                         break;
1052         }
1053
1054         /*
1055          * if 'non-isolated free hugepage' not found on the list,
1056          * the allocation fails.
1057          */
1058         if (&h->hugepage_freelists[nid] == &page->lru)
1059                 return NULL;
1060         list_move(&page->lru, &h->hugepage_activelist);
1061         set_page_refcounted(page);
1062         h->free_huge_pages--;
1063         h->free_huge_pages_node[nid]--;
1064         return page;
1065 }
1066
1067 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1068                 nodemask_t *nmask)
1069 {
1070         unsigned int cpuset_mems_cookie;
1071         struct zonelist *zonelist;
1072         struct zone *zone;
1073         struct zoneref *z;
1074         int node = NUMA_NO_NODE;
1075
1076         zonelist = node_zonelist(nid, gfp_mask);
1077
1078 retry_cpuset:
1079         cpuset_mems_cookie = read_mems_allowed_begin();
1080         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1081                 struct page *page;
1082
1083                 if (!cpuset_zone_allowed(zone, gfp_mask))
1084                         continue;
1085                 /*
1086                  * no need to ask again on the same node. Pool is node rather than
1087                  * zone aware
1088                  */
1089                 if (zone_to_nid(zone) == node)
1090                         continue;
1091                 node = zone_to_nid(zone);
1092
1093                 page = dequeue_huge_page_node_exact(h, node);
1094                 if (page)
1095                         return page;
1096         }
1097         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1098                 goto retry_cpuset;
1099
1100         return NULL;
1101 }
1102
1103 static struct page *dequeue_huge_page_vma(struct hstate *h,
1104                                 struct vm_area_struct *vma,
1105                                 unsigned long address, int avoid_reserve,
1106                                 long chg)
1107 {
1108         struct page *page;
1109         struct mempolicy *mpol;
1110         gfp_t gfp_mask;
1111         nodemask_t *nodemask;
1112         int nid;
1113
1114         /*
1115          * A child process with MAP_PRIVATE mappings created by their parent
1116          * have no page reserves. This check ensures that reservations are
1117          * not "stolen". The child may still get SIGKILLed
1118          */
1119         if (!vma_has_reserves(vma, chg) &&
1120                         h->free_huge_pages - h->resv_huge_pages == 0)
1121                 goto err;
1122
1123         /* If reserves cannot be used, ensure enough pages are in the pool */
1124         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1125                 goto err;
1126
1127         gfp_mask = htlb_alloc_mask(h);
1128         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1129         page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1130         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1131                 SetPagePrivate(page);
1132                 h->resv_huge_pages--;
1133         }
1134
1135         mpol_cond_put(mpol);
1136         return page;
1137
1138 err:
1139         return NULL;
1140 }
1141
1142 /*
1143  * common helper functions for hstate_next_node_to_{alloc|free}.
1144  * We may have allocated or freed a huge page based on a different
1145  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1146  * be outside of *nodes_allowed.  Ensure that we use an allowed
1147  * node for alloc or free.
1148  */
1149 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1150 {
1151         nid = next_node_in(nid, *nodes_allowed);
1152         VM_BUG_ON(nid >= MAX_NUMNODES);
1153
1154         return nid;
1155 }
1156
1157 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1158 {
1159         if (!node_isset(nid, *nodes_allowed))
1160                 nid = next_node_allowed(nid, nodes_allowed);
1161         return nid;
1162 }
1163
1164 /*
1165  * returns the previously saved node ["this node"] from which to
1166  * allocate a persistent huge page for the pool and advance the
1167  * next node from which to allocate, handling wrap at end of node
1168  * mask.
1169  */
1170 static int hstate_next_node_to_alloc(struct hstate *h,
1171                                         nodemask_t *nodes_allowed)
1172 {
1173         int nid;
1174
1175         VM_BUG_ON(!nodes_allowed);
1176
1177         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1178         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1179
1180         return nid;
1181 }
1182
1183 /*
1184  * helper for free_pool_huge_page() - return the previously saved
1185  * node ["this node"] from which to free a huge page.  Advance the
1186  * next node id whether or not we find a free huge page to free so
1187  * that the next attempt to free addresses the next node.
1188  */
1189 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1190 {
1191         int nid;
1192
1193         VM_BUG_ON(!nodes_allowed);
1194
1195         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1196         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1197
1198         return nid;
1199 }
1200
1201 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1202         for (nr_nodes = nodes_weight(*mask);                            \
1203                 nr_nodes > 0 &&                                         \
1204                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1205                 nr_nodes--)
1206
1207 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1208         for (nr_nodes = nodes_weight(*mask);                            \
1209                 nr_nodes > 0 &&                                         \
1210                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1211                 nr_nodes--)
1212
1213 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1214 static void destroy_compound_gigantic_page(struct page *page,
1215                                         unsigned int order)
1216 {
1217         int i;
1218         int nr_pages = 1 << order;
1219         struct page *p = page + 1;
1220
1221         atomic_set(compound_mapcount_ptr(page), 0);
1222         if (hpage_pincount_available(page))
1223                 atomic_set(compound_pincount_ptr(page), 0);
1224
1225         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1226                 clear_compound_head(p);
1227                 set_page_refcounted(p);
1228         }
1229
1230         set_compound_order(page, 0);
1231         __ClearPageHead(page);
1232 }
1233
1234 static void free_gigantic_page(struct page *page, unsigned int order)
1235 {
1236         /*
1237          * If the page isn't allocated using the cma allocator,
1238          * cma_release() returns false.
1239          */
1240 #ifdef CONFIG_CMA
1241         if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1242                 return;
1243 #endif
1244
1245         free_contig_range(page_to_pfn(page), 1 << order);
1246 }
1247
1248 #ifdef CONFIG_CONTIG_ALLOC
1249 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1250                 int nid, nodemask_t *nodemask)
1251 {
1252         unsigned long nr_pages = 1UL << huge_page_order(h);
1253         if (nid == NUMA_NO_NODE)
1254                 nid = numa_mem_id();
1255
1256 #ifdef CONFIG_CMA
1257         {
1258                 struct page *page;
1259                 int node;
1260
1261                 if (hugetlb_cma[nid]) {
1262                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1263                                         huge_page_order(h), true);
1264                         if (page)
1265                                 return page;
1266                 }
1267
1268                 if (!(gfp_mask & __GFP_THISNODE)) {
1269                         for_each_node_mask(node, *nodemask) {
1270                                 if (node == nid || !hugetlb_cma[node])
1271                                         continue;
1272
1273                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1274                                                 huge_page_order(h), true);
1275                                 if (page)
1276                                         return page;
1277                         }
1278                 }
1279         }
1280 #endif
1281
1282         return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1283 }
1284
1285 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1286 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1287 #else /* !CONFIG_CONTIG_ALLOC */
1288 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1289                                         int nid, nodemask_t *nodemask)
1290 {
1291         return NULL;
1292 }
1293 #endif /* CONFIG_CONTIG_ALLOC */
1294
1295 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1296 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1297                                         int nid, nodemask_t *nodemask)
1298 {
1299         return NULL;
1300 }
1301 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1302 static inline void destroy_compound_gigantic_page(struct page *page,
1303                                                 unsigned int order) { }
1304 #endif
1305
1306 static void update_and_free_page(struct hstate *h, struct page *page)
1307 {
1308         int i;
1309
1310         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1311                 return;
1312
1313         h->nr_huge_pages--;
1314         h->nr_huge_pages_node[page_to_nid(page)]--;
1315         for (i = 0; i < pages_per_huge_page(h); i++) {
1316                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1317                                 1 << PG_referenced | 1 << PG_dirty |
1318                                 1 << PG_active | 1 << PG_private |
1319                                 1 << PG_writeback);
1320         }
1321         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1322         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1323         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1324         set_page_refcounted(page);
1325         if (hstate_is_gigantic(h)) {
1326                 /*
1327                  * Temporarily drop the hugetlb_lock, because
1328                  * we might block in free_gigantic_page().
1329                  */
1330                 spin_unlock(&hugetlb_lock);
1331                 destroy_compound_gigantic_page(page, huge_page_order(h));
1332                 free_gigantic_page(page, huge_page_order(h));
1333                 spin_lock(&hugetlb_lock);
1334         } else {
1335                 __free_pages(page, huge_page_order(h));
1336         }
1337 }
1338
1339 struct hstate *size_to_hstate(unsigned long size)
1340 {
1341         struct hstate *h;
1342
1343         for_each_hstate(h) {
1344                 if (huge_page_size(h) == size)
1345                         return h;
1346         }
1347         return NULL;
1348 }
1349
1350 /*
1351  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1352  * to hstate->hugepage_activelist.)
1353  *
1354  * This function can be called for tail pages, but never returns true for them.
1355  */
1356 bool page_huge_active(struct page *page)
1357 {
1358         VM_BUG_ON_PAGE(!PageHuge(page), page);
1359         return PageHead(page) && PagePrivate(&page[1]);
1360 }
1361
1362 /* never called for tail page */
1363 static void set_page_huge_active(struct page *page)
1364 {
1365         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1366         SetPagePrivate(&page[1]);
1367 }
1368
1369 static void clear_page_huge_active(struct page *page)
1370 {
1371         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1372         ClearPagePrivate(&page[1]);
1373 }
1374
1375 /*
1376  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1377  * code
1378  */
1379 static inline bool PageHugeTemporary(struct page *page)
1380 {
1381         if (!PageHuge(page))
1382                 return false;
1383
1384         return (unsigned long)page[2].mapping == -1U;
1385 }
1386
1387 static inline void SetPageHugeTemporary(struct page *page)
1388 {
1389         page[2].mapping = (void *)-1U;
1390 }
1391
1392 static inline void ClearPageHugeTemporary(struct page *page)
1393 {
1394         page[2].mapping = NULL;
1395 }
1396
1397 static void __free_huge_page(struct page *page)
1398 {
1399         /*
1400          * Can't pass hstate in here because it is called from the
1401          * compound page destructor.
1402          */
1403         struct hstate *h = page_hstate(page);
1404         int nid = page_to_nid(page);
1405         struct hugepage_subpool *spool =
1406                 (struct hugepage_subpool *)page_private(page);
1407         bool restore_reserve;
1408
1409         VM_BUG_ON_PAGE(page_count(page), page);
1410         VM_BUG_ON_PAGE(page_mapcount(page), page);
1411
1412         set_page_private(page, 0);
1413         page->mapping = NULL;
1414         restore_reserve = PagePrivate(page);
1415         ClearPagePrivate(page);
1416
1417         /*
1418          * If PagePrivate() was set on page, page allocation consumed a
1419          * reservation.  If the page was associated with a subpool, there
1420          * would have been a page reserved in the subpool before allocation
1421          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1422          * reservtion, do not call hugepage_subpool_put_pages() as this will
1423          * remove the reserved page from the subpool.
1424          */
1425         if (!restore_reserve) {
1426                 /*
1427                  * A return code of zero implies that the subpool will be
1428                  * under its minimum size if the reservation is not restored
1429                  * after page is free.  Therefore, force restore_reserve
1430                  * operation.
1431                  */
1432                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1433                         restore_reserve = true;
1434         }
1435
1436         spin_lock(&hugetlb_lock);
1437         clear_page_huge_active(page);
1438         hugetlb_cgroup_uncharge_page(hstate_index(h),
1439                                      pages_per_huge_page(h), page);
1440         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1441                                           pages_per_huge_page(h), page);
1442         if (restore_reserve)
1443                 h->resv_huge_pages++;
1444
1445         if (PageHugeTemporary(page)) {
1446                 list_del(&page->lru);
1447                 ClearPageHugeTemporary(page);
1448                 update_and_free_page(h, page);
1449         } else if (h->surplus_huge_pages_node[nid]) {
1450                 /* remove the page from active list */
1451                 list_del(&page->lru);
1452                 update_and_free_page(h, page);
1453                 h->surplus_huge_pages--;
1454                 h->surplus_huge_pages_node[nid]--;
1455         } else {
1456                 arch_clear_hugepage_flags(page);
1457                 enqueue_huge_page(h, page);
1458         }
1459         spin_unlock(&hugetlb_lock);
1460 }
1461
1462 /*
1463  * As free_huge_page() can be called from a non-task context, we have
1464  * to defer the actual freeing in a workqueue to prevent potential
1465  * hugetlb_lock deadlock.
1466  *
1467  * free_hpage_workfn() locklessly retrieves the linked list of pages to
1468  * be freed and frees them one-by-one. As the page->mapping pointer is
1469  * going to be cleared in __free_huge_page() anyway, it is reused as the
1470  * llist_node structure of a lockless linked list of huge pages to be freed.
1471  */
1472 static LLIST_HEAD(hpage_freelist);
1473
1474 static void free_hpage_workfn(struct work_struct *work)
1475 {
1476         struct llist_node *node;
1477         struct page *page;
1478
1479         node = llist_del_all(&hpage_freelist);
1480
1481         while (node) {
1482                 page = container_of((struct address_space **)node,
1483                                      struct page, mapping);
1484                 node = node->next;
1485                 __free_huge_page(page);
1486         }
1487 }
1488 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1489
1490 void free_huge_page(struct page *page)
1491 {
1492         /*
1493          * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1494          */
1495         if (!in_task()) {
1496                 /*
1497                  * Only call schedule_work() if hpage_freelist is previously
1498                  * empty. Otherwise, schedule_work() had been called but the
1499                  * workfn hasn't retrieved the list yet.
1500                  */
1501                 if (llist_add((struct llist_node *)&page->mapping,
1502                               &hpage_freelist))
1503                         schedule_work(&free_hpage_work);
1504                 return;
1505         }
1506
1507         __free_huge_page(page);
1508 }
1509
1510 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1511 {
1512         INIT_LIST_HEAD(&page->lru);
1513         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1514         spin_lock(&hugetlb_lock);
1515         set_hugetlb_cgroup(page, NULL);
1516         set_hugetlb_cgroup_rsvd(page, NULL);
1517         h->nr_huge_pages++;
1518         h->nr_huge_pages_node[nid]++;
1519         spin_unlock(&hugetlb_lock);
1520 }
1521
1522 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1523 {
1524         int i;
1525         int nr_pages = 1 << order;
1526         struct page *p = page + 1;
1527
1528         /* we rely on prep_new_huge_page to set the destructor */
1529         set_compound_order(page, order);
1530         __ClearPageReserved(page);
1531         __SetPageHead(page);
1532         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1533                 /*
1534                  * For gigantic hugepages allocated through bootmem at
1535                  * boot, it's safer to be consistent with the not-gigantic
1536                  * hugepages and clear the PG_reserved bit from all tail pages
1537                  * too.  Otherwise drivers using get_user_pages() to access tail
1538                  * pages may get the reference counting wrong if they see
1539                  * PG_reserved set on a tail page (despite the head page not
1540                  * having PG_reserved set).  Enforcing this consistency between
1541                  * head and tail pages allows drivers to optimize away a check
1542                  * on the head page when they need know if put_page() is needed
1543                  * after get_user_pages().
1544                  */
1545                 __ClearPageReserved(p);
1546                 set_page_count(p, 0);
1547                 set_compound_head(p, page);
1548         }
1549         atomic_set(compound_mapcount_ptr(page), -1);
1550
1551         if (hpage_pincount_available(page))
1552                 atomic_set(compound_pincount_ptr(page), 0);
1553 }
1554
1555 /*
1556  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1557  * transparent huge pages.  See the PageTransHuge() documentation for more
1558  * details.
1559  */
1560 int PageHuge(struct page *page)
1561 {
1562         if (!PageCompound(page))
1563                 return 0;
1564
1565         page = compound_head(page);
1566         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1567 }
1568 EXPORT_SYMBOL_GPL(PageHuge);
1569
1570 /*
1571  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1572  * normal or transparent huge pages.
1573  */
1574 int PageHeadHuge(struct page *page_head)
1575 {
1576         if (!PageHead(page_head))
1577                 return 0;
1578
1579         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1580 }
1581
1582 /*
1583  * Find address_space associated with hugetlbfs page.
1584  * Upon entry page is locked and page 'was' mapped although mapped state
1585  * could change.  If necessary, use anon_vma to find vma and associated
1586  * address space.  The returned mapping may be stale, but it can not be
1587  * invalid as page lock (which is held) is required to destroy mapping.
1588  */
1589 static struct address_space *_get_hugetlb_page_mapping(struct page *hpage)
1590 {
1591         struct anon_vma *anon_vma;
1592         pgoff_t pgoff_start, pgoff_end;
1593         struct anon_vma_chain *avc;
1594         struct address_space *mapping = page_mapping(hpage);
1595
1596         /* Simple file based mapping */
1597         if (mapping)
1598                 return mapping;
1599
1600         /*
1601          * Even anonymous hugetlbfs mappings are associated with an
1602          * underlying hugetlbfs file (see hugetlb_file_setup in mmap
1603          * code).  Find a vma associated with the anonymous vma, and
1604          * use the file pointer to get address_space.
1605          */
1606         anon_vma = page_lock_anon_vma_read(hpage);
1607         if (!anon_vma)
1608                 return mapping;  /* NULL */
1609
1610         /* Use first found vma */
1611         pgoff_start = page_to_pgoff(hpage);
1612         pgoff_end = pgoff_start + pages_per_huge_page(page_hstate(hpage)) - 1;
1613         anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1614                                         pgoff_start, pgoff_end) {
1615                 struct vm_area_struct *vma = avc->vma;
1616
1617                 mapping = vma->vm_file->f_mapping;
1618                 break;
1619         }
1620
1621         anon_vma_unlock_read(anon_vma);
1622         return mapping;
1623 }
1624
1625 /*
1626  * Find and lock address space (mapping) in write mode.
1627  *
1628  * Upon entry, the page is locked which allows us to find the mapping
1629  * even in the case of an anon page.  However, locking order dictates
1630  * the i_mmap_rwsem be acquired BEFORE the page lock.  This is hugetlbfs
1631  * specific.  So, we first try to lock the sema while still holding the
1632  * page lock.  If this works, great!  If not, then we need to drop the
1633  * page lock and then acquire i_mmap_rwsem and reacquire page lock.  Of
1634  * course, need to revalidate state along the way.
1635  */
1636 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1637 {
1638         struct address_space *mapping, *mapping2;
1639
1640         mapping = _get_hugetlb_page_mapping(hpage);
1641 retry:
1642         if (!mapping)
1643                 return mapping;
1644
1645         /*
1646          * If no contention, take lock and return
1647          */
1648         if (i_mmap_trylock_write(mapping))
1649                 return mapping;
1650
1651         /*
1652          * Must drop page lock and wait on mapping sema.
1653          * Note:  Once page lock is dropped, mapping could become invalid.
1654          * As a hack, increase map count until we lock page again.
1655          */
1656         atomic_inc(&hpage->_mapcount);
1657         unlock_page(hpage);
1658         i_mmap_lock_write(mapping);
1659         lock_page(hpage);
1660         atomic_add_negative(-1, &hpage->_mapcount);
1661
1662         /* verify page is still mapped */
1663         if (!page_mapped(hpage)) {
1664                 i_mmap_unlock_write(mapping);
1665                 return NULL;
1666         }
1667
1668         /*
1669          * Get address space again and verify it is the same one
1670          * we locked.  If not, drop lock and retry.
1671          */
1672         mapping2 = _get_hugetlb_page_mapping(hpage);
1673         if (mapping2 != mapping) {
1674                 i_mmap_unlock_write(mapping);
1675                 mapping = mapping2;
1676                 goto retry;
1677         }
1678
1679         return mapping;
1680 }
1681
1682 pgoff_t __basepage_index(struct page *page)
1683 {
1684         struct page *page_head = compound_head(page);
1685         pgoff_t index = page_index(page_head);
1686         unsigned long compound_idx;
1687
1688         if (!PageHuge(page_head))
1689                 return page_index(page);
1690
1691         if (compound_order(page_head) >= MAX_ORDER)
1692                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1693         else
1694                 compound_idx = page - page_head;
1695
1696         return (index << compound_order(page_head)) + compound_idx;
1697 }
1698
1699 static struct page *alloc_buddy_huge_page(struct hstate *h,
1700                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1701                 nodemask_t *node_alloc_noretry)
1702 {
1703         int order = huge_page_order(h);
1704         struct page *page;
1705         bool alloc_try_hard = true;
1706
1707         /*
1708          * By default we always try hard to allocate the page with
1709          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1710          * a loop (to adjust global huge page counts) and previous allocation
1711          * failed, do not continue to try hard on the same node.  Use the
1712          * node_alloc_noretry bitmap to manage this state information.
1713          */
1714         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1715                 alloc_try_hard = false;
1716         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1717         if (alloc_try_hard)
1718                 gfp_mask |= __GFP_RETRY_MAYFAIL;
1719         if (nid == NUMA_NO_NODE)
1720                 nid = numa_mem_id();
1721         page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1722         if (page)
1723                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1724         else
1725                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1726
1727         /*
1728          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1729          * indicates an overall state change.  Clear bit so that we resume
1730          * normal 'try hard' allocations.
1731          */
1732         if (node_alloc_noretry && page && !alloc_try_hard)
1733                 node_clear(nid, *node_alloc_noretry);
1734
1735         /*
1736          * If we tried hard to get a page but failed, set bit so that
1737          * subsequent attempts will not try as hard until there is an
1738          * overall state change.
1739          */
1740         if (node_alloc_noretry && !page && alloc_try_hard)
1741                 node_set(nid, *node_alloc_noretry);
1742
1743         return page;
1744 }
1745
1746 /*
1747  * Common helper to allocate a fresh hugetlb page. All specific allocators
1748  * should use this function to get new hugetlb pages
1749  */
1750 static struct page *alloc_fresh_huge_page(struct hstate *h,
1751                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1752                 nodemask_t *node_alloc_noretry)
1753 {
1754         struct page *page;
1755
1756         if (hstate_is_gigantic(h))
1757                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1758         else
1759                 page = alloc_buddy_huge_page(h, gfp_mask,
1760                                 nid, nmask, node_alloc_noretry);
1761         if (!page)
1762                 return NULL;
1763
1764         if (hstate_is_gigantic(h))
1765                 prep_compound_gigantic_page(page, huge_page_order(h));
1766         prep_new_huge_page(h, page, page_to_nid(page));
1767
1768         return page;
1769 }
1770
1771 /*
1772  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1773  * manner.
1774  */
1775 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1776                                 nodemask_t *node_alloc_noretry)
1777 {
1778         struct page *page;
1779         int nr_nodes, node;
1780         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1781
1782         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1783                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1784                                                 node_alloc_noretry);
1785                 if (page)
1786                         break;
1787         }
1788
1789         if (!page)
1790                 return 0;
1791
1792         put_page(page); /* free it into the hugepage allocator */
1793
1794         return 1;
1795 }
1796
1797 /*
1798  * Free huge page from pool from next node to free.
1799  * Attempt to keep persistent huge pages more or less
1800  * balanced over allowed nodes.
1801  * Called with hugetlb_lock locked.
1802  */
1803 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1804                                                          bool acct_surplus)
1805 {
1806         int nr_nodes, node;
1807         int ret = 0;
1808
1809         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1810                 /*
1811                  * If we're returning unused surplus pages, only examine
1812                  * nodes with surplus pages.
1813                  */
1814                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1815                     !list_empty(&h->hugepage_freelists[node])) {
1816                         struct page *page =
1817                                 list_entry(h->hugepage_freelists[node].next,
1818                                           struct page, lru);
1819                         list_del(&page->lru);
1820                         h->free_huge_pages--;
1821                         h->free_huge_pages_node[node]--;
1822                         if (acct_surplus) {
1823                                 h->surplus_huge_pages--;
1824                                 h->surplus_huge_pages_node[node]--;
1825                         }
1826                         update_and_free_page(h, page);
1827                         ret = 1;
1828                         break;
1829                 }
1830         }
1831
1832         return ret;
1833 }
1834
1835 /*
1836  * Dissolve a given free hugepage into free buddy pages. This function does
1837  * nothing for in-use hugepages and non-hugepages.
1838  * This function returns values like below:
1839  *
1840  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1841  *          (allocated or reserved.)
1842  *       0: successfully dissolved free hugepages or the page is not a
1843  *          hugepage (considered as already dissolved)
1844  */
1845 int dissolve_free_huge_page(struct page *page)
1846 {
1847         int rc = -EBUSY;
1848
1849         /* Not to disrupt normal path by vainly holding hugetlb_lock */
1850         if (!PageHuge(page))
1851                 return 0;
1852
1853         spin_lock(&hugetlb_lock);
1854         if (!PageHuge(page)) {
1855                 rc = 0;
1856                 goto out;
1857         }
1858
1859         if (!page_count(page)) {
1860                 struct page *head = compound_head(page);
1861                 struct hstate *h = page_hstate(head);
1862                 int nid = page_to_nid(head);
1863                 if (h->free_huge_pages - h->resv_huge_pages == 0)
1864                         goto out;
1865                 /*
1866                  * Move PageHWPoison flag from head page to the raw error page,
1867                  * which makes any subpages rather than the error page reusable.
1868                  */
1869                 if (PageHWPoison(head) && page != head) {
1870                         SetPageHWPoison(page);
1871                         ClearPageHWPoison(head);
1872                 }
1873                 list_del(&head->lru);
1874                 h->free_huge_pages--;
1875                 h->free_huge_pages_node[nid]--;
1876                 h->max_huge_pages--;
1877                 update_and_free_page(h, head);
1878                 rc = 0;
1879         }
1880 out:
1881         spin_unlock(&hugetlb_lock);
1882         return rc;
1883 }
1884
1885 /*
1886  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1887  * make specified memory blocks removable from the system.
1888  * Note that this will dissolve a free gigantic hugepage completely, if any
1889  * part of it lies within the given range.
1890  * Also note that if dissolve_free_huge_page() returns with an error, all
1891  * free hugepages that were dissolved before that error are lost.
1892  */
1893 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1894 {
1895         unsigned long pfn;
1896         struct page *page;
1897         int rc = 0;
1898
1899         if (!hugepages_supported())
1900                 return rc;
1901
1902         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1903                 page = pfn_to_page(pfn);
1904                 rc = dissolve_free_huge_page(page);
1905                 if (rc)
1906                         break;
1907         }
1908
1909         return rc;
1910 }
1911
1912 /*
1913  * Allocates a fresh surplus page from the page allocator.
1914  */
1915 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1916                 int nid, nodemask_t *nmask)
1917 {
1918         struct page *page = NULL;
1919
1920         if (hstate_is_gigantic(h))
1921                 return NULL;
1922
1923         spin_lock(&hugetlb_lock);
1924         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1925                 goto out_unlock;
1926         spin_unlock(&hugetlb_lock);
1927
1928         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1929         if (!page)
1930                 return NULL;
1931
1932         spin_lock(&hugetlb_lock);
1933         /*
1934          * We could have raced with the pool size change.
1935          * Double check that and simply deallocate the new page
1936          * if we would end up overcommiting the surpluses. Abuse
1937          * temporary page to workaround the nasty free_huge_page
1938          * codeflow
1939          */
1940         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1941                 SetPageHugeTemporary(page);
1942                 spin_unlock(&hugetlb_lock);
1943                 put_page(page);
1944                 return NULL;
1945         } else {
1946                 h->surplus_huge_pages++;
1947                 h->surplus_huge_pages_node[page_to_nid(page)]++;
1948         }
1949
1950 out_unlock:
1951         spin_unlock(&hugetlb_lock);
1952
1953         return page;
1954 }
1955
1956 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1957                                      int nid, nodemask_t *nmask)
1958 {
1959         struct page *page;
1960
1961         if (hstate_is_gigantic(h))
1962                 return NULL;
1963
1964         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1965         if (!page)
1966                 return NULL;
1967
1968         /*
1969          * We do not account these pages as surplus because they are only
1970          * temporary and will be released properly on the last reference
1971          */
1972         SetPageHugeTemporary(page);
1973
1974         return page;
1975 }
1976
1977 /*
1978  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1979  */
1980 static
1981 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1982                 struct vm_area_struct *vma, unsigned long addr)
1983 {
1984         struct page *page;
1985         struct mempolicy *mpol;
1986         gfp_t gfp_mask = htlb_alloc_mask(h);
1987         int nid;
1988         nodemask_t *nodemask;
1989
1990         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1991         page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1992         mpol_cond_put(mpol);
1993
1994         return page;
1995 }
1996
1997 /* page migration callback function */
1998 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1999                 nodemask_t *nmask, gfp_t gfp_mask)
2000 {
2001         spin_lock(&hugetlb_lock);
2002         if (h->free_huge_pages - h->resv_huge_pages > 0) {
2003                 struct page *page;
2004
2005                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2006                 if (page) {
2007                         spin_unlock(&hugetlb_lock);
2008                         return page;
2009                 }
2010         }
2011         spin_unlock(&hugetlb_lock);
2012
2013         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2014 }
2015
2016 /* mempolicy aware migration callback */
2017 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2018                 unsigned long address)
2019 {
2020         struct mempolicy *mpol;
2021         nodemask_t *nodemask;
2022         struct page *page;
2023         gfp_t gfp_mask;
2024         int node;
2025
2026         gfp_mask = htlb_alloc_mask(h);
2027         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2028         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2029         mpol_cond_put(mpol);
2030
2031         return page;
2032 }
2033
2034 /*
2035  * Increase the hugetlb pool such that it can accommodate a reservation
2036  * of size 'delta'.
2037  */
2038 static int gather_surplus_pages(struct hstate *h, int delta)
2039         __must_hold(&hugetlb_lock)
2040 {
2041         struct list_head surplus_list;
2042         struct page *page, *tmp;
2043         int ret, i;
2044         int needed, allocated;
2045         bool alloc_ok = true;
2046
2047         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2048         if (needed <= 0) {
2049                 h->resv_huge_pages += delta;
2050                 return 0;
2051         }
2052
2053         allocated = 0;
2054         INIT_LIST_HEAD(&surplus_list);
2055
2056         ret = -ENOMEM;
2057 retry:
2058         spin_unlock(&hugetlb_lock);
2059         for (i = 0; i < needed; i++) {
2060                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2061                                 NUMA_NO_NODE, NULL);
2062                 if (!page) {
2063                         alloc_ok = false;
2064                         break;
2065                 }
2066                 list_add(&page->lru, &surplus_list);
2067                 cond_resched();
2068         }
2069         allocated += i;
2070
2071         /*
2072          * After retaking hugetlb_lock, we need to recalculate 'needed'
2073          * because either resv_huge_pages or free_huge_pages may have changed.
2074          */
2075         spin_lock(&hugetlb_lock);
2076         needed = (h->resv_huge_pages + delta) -
2077                         (h->free_huge_pages + allocated);
2078         if (needed > 0) {
2079                 if (alloc_ok)
2080                         goto retry;
2081                 /*
2082                  * We were not able to allocate enough pages to
2083                  * satisfy the entire reservation so we free what
2084                  * we've allocated so far.
2085                  */
2086                 goto free;
2087         }
2088         /*
2089          * The surplus_list now contains _at_least_ the number of extra pages
2090          * needed to accommodate the reservation.  Add the appropriate number
2091          * of pages to the hugetlb pool and free the extras back to the buddy
2092          * allocator.  Commit the entire reservation here to prevent another
2093          * process from stealing the pages as they are added to the pool but
2094          * before they are reserved.
2095          */
2096         needed += allocated;
2097         h->resv_huge_pages += delta;
2098         ret = 0;
2099
2100         /* Free the needed pages to the hugetlb pool */
2101         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2102                 if ((--needed) < 0)
2103                         break;
2104                 /*
2105                  * This page is now managed by the hugetlb allocator and has
2106                  * no users -- drop the buddy allocator's reference.
2107                  */
2108                 put_page_testzero(page);
2109                 VM_BUG_ON_PAGE(page_count(page), page);
2110                 enqueue_huge_page(h, page);
2111         }
2112 free:
2113         spin_unlock(&hugetlb_lock);
2114
2115         /* Free unnecessary surplus pages to the buddy allocator */
2116         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2117                 put_page(page);
2118         spin_lock(&hugetlb_lock);
2119
2120         return ret;
2121 }
2122
2123 /*
2124  * This routine has two main purposes:
2125  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2126  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2127  *    to the associated reservation map.
2128  * 2) Free any unused surplus pages that may have been allocated to satisfy
2129  *    the reservation.  As many as unused_resv_pages may be freed.
2130  *
2131  * Called with hugetlb_lock held.  However, the lock could be dropped (and
2132  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
2133  * we must make sure nobody else can claim pages we are in the process of
2134  * freeing.  Do this by ensuring resv_huge_page always is greater than the
2135  * number of huge pages we plan to free when dropping the lock.
2136  */
2137 static void return_unused_surplus_pages(struct hstate *h,
2138                                         unsigned long unused_resv_pages)
2139 {
2140         unsigned long nr_pages;
2141
2142         /* Cannot return gigantic pages currently */
2143         if (hstate_is_gigantic(h))
2144                 goto out;
2145
2146         /*
2147          * Part (or even all) of the reservation could have been backed
2148          * by pre-allocated pages. Only free surplus pages.
2149          */
2150         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2151
2152         /*
2153          * We want to release as many surplus pages as possible, spread
2154          * evenly across all nodes with memory. Iterate across these nodes
2155          * until we can no longer free unreserved surplus pages. This occurs
2156          * when the nodes with surplus pages have no free pages.
2157          * free_pool_huge_page() will balance the freed pages across the
2158          * on-line nodes with memory and will handle the hstate accounting.
2159          *
2160          * Note that we decrement resv_huge_pages as we free the pages.  If
2161          * we drop the lock, resv_huge_pages will still be sufficiently large
2162          * to cover subsequent pages we may free.
2163          */
2164         while (nr_pages--) {
2165                 h->resv_huge_pages--;
2166                 unused_resv_pages--;
2167                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2168                         goto out;
2169                 cond_resched_lock(&hugetlb_lock);
2170         }
2171
2172 out:
2173         /* Fully uncommit the reservation */
2174         h->resv_huge_pages -= unused_resv_pages;
2175 }
2176
2177
2178 /*
2179  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2180  * are used by the huge page allocation routines to manage reservations.
2181  *
2182  * vma_needs_reservation is called to determine if the huge page at addr
2183  * within the vma has an associated reservation.  If a reservation is
2184  * needed, the value 1 is returned.  The caller is then responsible for
2185  * managing the global reservation and subpool usage counts.  After
2186  * the huge page has been allocated, vma_commit_reservation is called
2187  * to add the page to the reservation map.  If the page allocation fails,
2188  * the reservation must be ended instead of committed.  vma_end_reservation
2189  * is called in such cases.
2190  *
2191  * In the normal case, vma_commit_reservation returns the same value
2192  * as the preceding vma_needs_reservation call.  The only time this
2193  * is not the case is if a reserve map was changed between calls.  It
2194  * is the responsibility of the caller to notice the difference and
2195  * take appropriate action.
2196  *
2197  * vma_add_reservation is used in error paths where a reservation must
2198  * be restored when a newly allocated huge page must be freed.  It is
2199  * to be called after calling vma_needs_reservation to determine if a
2200  * reservation exists.
2201  */
2202 enum vma_resv_mode {
2203         VMA_NEEDS_RESV,
2204         VMA_COMMIT_RESV,
2205         VMA_END_RESV,
2206         VMA_ADD_RESV,
2207 };
2208 static long __vma_reservation_common(struct hstate *h,
2209                                 struct vm_area_struct *vma, unsigned long addr,
2210                                 enum vma_resv_mode mode)
2211 {
2212         struct resv_map *resv;
2213         pgoff_t idx;
2214         long ret;
2215         long dummy_out_regions_needed;
2216
2217         resv = vma_resv_map(vma);
2218         if (!resv)
2219                 return 1;
2220
2221         idx = vma_hugecache_offset(h, vma, addr);
2222         switch (mode) {
2223         case VMA_NEEDS_RESV:
2224                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2225                 /* We assume that vma_reservation_* routines always operate on
2226                  * 1 page, and that adding to resv map a 1 page entry can only
2227                  * ever require 1 region.
2228                  */
2229                 VM_BUG_ON(dummy_out_regions_needed != 1);
2230                 break;
2231         case VMA_COMMIT_RESV:
2232                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2233                 /* region_add calls of range 1 should never fail. */
2234                 VM_BUG_ON(ret < 0);
2235                 break;
2236         case VMA_END_RESV:
2237                 region_abort(resv, idx, idx + 1, 1);
2238                 ret = 0;
2239                 break;
2240         case VMA_ADD_RESV:
2241                 if (vma->vm_flags & VM_MAYSHARE) {
2242                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2243                         /* region_add calls of range 1 should never fail. */
2244                         VM_BUG_ON(ret < 0);
2245                 } else {
2246                         region_abort(resv, idx, idx + 1, 1);
2247                         ret = region_del(resv, idx, idx + 1);
2248                 }
2249                 break;
2250         default:
2251                 BUG();
2252         }
2253
2254         if (vma->vm_flags & VM_MAYSHARE)
2255                 return ret;
2256         else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2257                 /*
2258                  * In most cases, reserves always exist for private mappings.
2259                  * However, a file associated with mapping could have been
2260                  * hole punched or truncated after reserves were consumed.
2261                  * As subsequent fault on such a range will not use reserves.
2262                  * Subtle - The reserve map for private mappings has the
2263                  * opposite meaning than that of shared mappings.  If NO
2264                  * entry is in the reserve map, it means a reservation exists.
2265                  * If an entry exists in the reserve map, it means the
2266                  * reservation has already been consumed.  As a result, the
2267                  * return value of this routine is the opposite of the
2268                  * value returned from reserve map manipulation routines above.
2269                  */
2270                 if (ret)
2271                         return 0;
2272                 else
2273                         return 1;
2274         }
2275         else
2276                 return ret < 0 ? ret : 0;
2277 }
2278
2279 static long vma_needs_reservation(struct hstate *h,
2280                         struct vm_area_struct *vma, unsigned long addr)
2281 {
2282         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2283 }
2284
2285 static long vma_commit_reservation(struct hstate *h,
2286                         struct vm_area_struct *vma, unsigned long addr)
2287 {
2288         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2289 }
2290
2291 static void vma_end_reservation(struct hstate *h,
2292                         struct vm_area_struct *vma, unsigned long addr)
2293 {
2294         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2295 }
2296
2297 static long vma_add_reservation(struct hstate *h,
2298                         struct vm_area_struct *vma, unsigned long addr)
2299 {
2300         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2301 }
2302
2303 /*
2304  * This routine is called to restore a reservation on error paths.  In the
2305  * specific error paths, a huge page was allocated (via alloc_huge_page)
2306  * and is about to be freed.  If a reservation for the page existed,
2307  * alloc_huge_page would have consumed the reservation and set PagePrivate
2308  * in the newly allocated page.  When the page is freed via free_huge_page,
2309  * the global reservation count will be incremented if PagePrivate is set.
2310  * However, free_huge_page can not adjust the reserve map.  Adjust the
2311  * reserve map here to be consistent with global reserve count adjustments
2312  * to be made by free_huge_page.
2313  */
2314 static void restore_reserve_on_error(struct hstate *h,
2315                         struct vm_area_struct *vma, unsigned long address,
2316                         struct page *page)
2317 {
2318         if (unlikely(PagePrivate(page))) {
2319                 long rc = vma_needs_reservation(h, vma, address);
2320
2321                 if (unlikely(rc < 0)) {
2322                         /*
2323                          * Rare out of memory condition in reserve map
2324                          * manipulation.  Clear PagePrivate so that
2325                          * global reserve count will not be incremented
2326                          * by free_huge_page.  This will make it appear
2327                          * as though the reservation for this page was
2328                          * consumed.  This may prevent the task from
2329                          * faulting in the page at a later time.  This
2330                          * is better than inconsistent global huge page
2331                          * accounting of reserve counts.
2332                          */
2333                         ClearPagePrivate(page);
2334                 } else if (rc) {
2335                         rc = vma_add_reservation(h, vma, address);
2336                         if (unlikely(rc < 0))
2337                                 /*
2338                                  * See above comment about rare out of
2339                                  * memory condition.
2340                                  */
2341                                 ClearPagePrivate(page);
2342                 } else
2343                         vma_end_reservation(h, vma, address);
2344         }
2345 }
2346
2347 struct page *alloc_huge_page(struct vm_area_struct *vma,
2348                                     unsigned long addr, int avoid_reserve)
2349 {
2350         struct hugepage_subpool *spool = subpool_vma(vma);
2351         struct hstate *h = hstate_vma(vma);
2352         struct page *page;
2353         long map_chg, map_commit;
2354         long gbl_chg;
2355         int ret, idx;
2356         struct hugetlb_cgroup *h_cg;
2357         bool deferred_reserve;
2358
2359         idx = hstate_index(h);
2360         /*
2361          * Examine the region/reserve map to determine if the process
2362          * has a reservation for the page to be allocated.  A return
2363          * code of zero indicates a reservation exists (no change).
2364          */
2365         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2366         if (map_chg < 0)
2367                 return ERR_PTR(-ENOMEM);
2368
2369         /*
2370          * Processes that did not create the mapping will have no
2371          * reserves as indicated by the region/reserve map. Check
2372          * that the allocation will not exceed the subpool limit.
2373          * Allocations for MAP_NORESERVE mappings also need to be
2374          * checked against any subpool limit.
2375          */
2376         if (map_chg || avoid_reserve) {
2377                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2378                 if (gbl_chg < 0) {
2379                         vma_end_reservation(h, vma, addr);
2380                         return ERR_PTR(-ENOSPC);
2381                 }
2382
2383                 /*
2384                  * Even though there was no reservation in the region/reserve
2385                  * map, there could be reservations associated with the
2386                  * subpool that can be used.  This would be indicated if the
2387                  * return value of hugepage_subpool_get_pages() is zero.
2388                  * However, if avoid_reserve is specified we still avoid even
2389                  * the subpool reservations.
2390                  */
2391                 if (avoid_reserve)
2392                         gbl_chg = 1;
2393         }
2394
2395         /* If this allocation is not consuming a reservation, charge it now.
2396          */
2397         deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2398         if (deferred_reserve) {
2399                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2400                         idx, pages_per_huge_page(h), &h_cg);
2401                 if (ret)
2402                         goto out_subpool_put;
2403         }
2404
2405         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2406         if (ret)
2407                 goto out_uncharge_cgroup_reservation;
2408
2409         spin_lock(&hugetlb_lock);
2410         /*
2411          * glb_chg is passed to indicate whether or not a page must be taken
2412          * from the global free pool (global change).  gbl_chg == 0 indicates
2413          * a reservation exists for the allocation.
2414          */
2415         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2416         if (!page) {
2417                 spin_unlock(&hugetlb_lock);
2418                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2419                 if (!page)
2420                         goto out_uncharge_cgroup;
2421                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2422                         SetPagePrivate(page);
2423                         h->resv_huge_pages--;
2424                 }
2425                 spin_lock(&hugetlb_lock);
2426                 list_move(&page->lru, &h->hugepage_activelist);
2427                 /* Fall through */
2428         }
2429         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2430         /* If allocation is not consuming a reservation, also store the
2431          * hugetlb_cgroup pointer on the page.
2432          */
2433         if (deferred_reserve) {
2434                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2435                                                   h_cg, page);
2436         }
2437
2438         spin_unlock(&hugetlb_lock);
2439
2440         set_page_private(page, (unsigned long)spool);
2441
2442         map_commit = vma_commit_reservation(h, vma, addr);
2443         if (unlikely(map_chg > map_commit)) {
2444                 /*
2445                  * The page was added to the reservation map between
2446                  * vma_needs_reservation and vma_commit_reservation.
2447                  * This indicates a race with hugetlb_reserve_pages.
2448                  * Adjust for the subpool count incremented above AND
2449                  * in hugetlb_reserve_pages for the same page.  Also,
2450                  * the reservation count added in hugetlb_reserve_pages
2451                  * no longer applies.
2452                  */
2453                 long rsv_adjust;
2454
2455                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2456                 hugetlb_acct_memory(h, -rsv_adjust);
2457         }
2458         return page;
2459
2460 out_uncharge_cgroup:
2461         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2462 out_uncharge_cgroup_reservation:
2463         if (deferred_reserve)
2464                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2465                                                     h_cg);
2466 out_subpool_put:
2467         if (map_chg || avoid_reserve)
2468                 hugepage_subpool_put_pages(spool, 1);
2469         vma_end_reservation(h, vma, addr);
2470         return ERR_PTR(-ENOSPC);
2471 }
2472
2473 int alloc_bootmem_huge_page(struct hstate *h)
2474         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2475 int __alloc_bootmem_huge_page(struct hstate *h)
2476 {
2477         struct huge_bootmem_page *m;
2478         int nr_nodes, node;
2479
2480         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2481                 void *addr;
2482
2483                 addr = memblock_alloc_try_nid_raw(
2484                                 huge_page_size(h), huge_page_size(h),
2485                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2486                 if (addr) {
2487                         /*
2488                          * Use the beginning of the huge page to store the
2489                          * huge_bootmem_page struct (until gather_bootmem
2490                          * puts them into the mem_map).
2491                          */
2492                         m = addr;
2493                         goto found;
2494                 }
2495         }
2496         return 0;
2497
2498 found:
2499         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2500         /* Put them into a private list first because mem_map is not up yet */
2501         INIT_LIST_HEAD(&m->list);
2502         list_add(&m->list, &huge_boot_pages);
2503         m->hstate = h;
2504         return 1;
2505 }
2506
2507 static void __init prep_compound_huge_page(struct page *page,
2508                 unsigned int order)
2509 {
2510         if (unlikely(order > (MAX_ORDER - 1)))
2511                 prep_compound_gigantic_page(page, order);
2512         else
2513                 prep_compound_page(page, order);
2514 }
2515
2516 /* Put bootmem huge pages into the standard lists after mem_map is up */
2517 static void __init gather_bootmem_prealloc(void)
2518 {
2519         struct huge_bootmem_page *m;
2520
2521         list_for_each_entry(m, &huge_boot_pages, list) {
2522                 struct page *page = virt_to_page(m);
2523                 struct hstate *h = m->hstate;
2524
2525                 WARN_ON(page_count(page) != 1);
2526                 prep_compound_huge_page(page, h->order);
2527                 WARN_ON(PageReserved(page));
2528                 prep_new_huge_page(h, page, page_to_nid(page));
2529                 put_page(page); /* free it into the hugepage allocator */
2530
2531                 /*
2532                  * If we had gigantic hugepages allocated at boot time, we need
2533                  * to restore the 'stolen' pages to totalram_pages in order to
2534                  * fix confusing memory reports from free(1) and another
2535                  * side-effects, like CommitLimit going negative.
2536                  */
2537                 if (hstate_is_gigantic(h))
2538                         adjust_managed_page_count(page, 1 << h->order);
2539                 cond_resched();
2540         }
2541 }
2542
2543 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2544 {
2545         unsigned long i;
2546         nodemask_t *node_alloc_noretry;
2547
2548         if (!hstate_is_gigantic(h)) {
2549                 /*
2550                  * Bit mask controlling how hard we retry per-node allocations.
2551                  * Ignore errors as lower level routines can deal with
2552                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2553                  * time, we are likely in bigger trouble.
2554                  */
2555                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2556                                                 GFP_KERNEL);
2557         } else {
2558                 /* allocations done at boot time */
2559                 node_alloc_noretry = NULL;
2560         }
2561
2562         /* bit mask controlling how hard we retry per-node allocations */
2563         if (node_alloc_noretry)
2564                 nodes_clear(*node_alloc_noretry);
2565
2566         for (i = 0; i < h->max_huge_pages; ++i) {
2567                 if (hstate_is_gigantic(h)) {
2568                         if (hugetlb_cma_size) {
2569                                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2570                                 break;
2571                         }
2572                         if (!alloc_bootmem_huge_page(h))
2573                                 break;
2574                 } else if (!alloc_pool_huge_page(h,
2575                                          &node_states[N_MEMORY],
2576                                          node_alloc_noretry))
2577                         break;
2578                 cond_resched();
2579         }
2580         if (i < h->max_huge_pages) {
2581                 char buf[32];
2582
2583                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2584                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2585                         h->max_huge_pages, buf, i);
2586                 h->max_huge_pages = i;
2587         }
2588
2589         kfree(node_alloc_noretry);
2590 }
2591
2592 static void __init hugetlb_init_hstates(void)
2593 {
2594         struct hstate *h;
2595
2596         for_each_hstate(h) {
2597                 if (minimum_order > huge_page_order(h))
2598                         minimum_order = huge_page_order(h);
2599
2600                 /* oversize hugepages were init'ed in early boot */
2601                 if (!hstate_is_gigantic(h))
2602                         hugetlb_hstate_alloc_pages(h);
2603         }
2604         VM_BUG_ON(minimum_order == UINT_MAX);
2605 }
2606
2607 static void __init report_hugepages(void)
2608 {
2609         struct hstate *h;
2610
2611         for_each_hstate(h) {
2612                 char buf[32];
2613
2614                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2615                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2616                         buf, h->free_huge_pages);
2617         }
2618 }
2619
2620 #ifdef CONFIG_HIGHMEM
2621 static void try_to_free_low(struct hstate *h, unsigned long count,
2622                                                 nodemask_t *nodes_allowed)
2623 {
2624         int i;
2625
2626         if (hstate_is_gigantic(h))
2627                 return;
2628
2629         for_each_node_mask(i, *nodes_allowed) {
2630                 struct page *page, *next;
2631                 struct list_head *freel = &h->hugepage_freelists[i];
2632                 list_for_each_entry_safe(page, next, freel, lru) {
2633                         if (count >= h->nr_huge_pages)
2634                                 return;
2635                         if (PageHighMem(page))
2636                                 continue;
2637                         list_del(&page->lru);
2638                         update_and_free_page(h, page);
2639                         h->free_huge_pages--;
2640                         h->free_huge_pages_node[page_to_nid(page)]--;
2641                 }
2642         }
2643 }
2644 #else
2645 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2646                                                 nodemask_t *nodes_allowed)
2647 {
2648 }
2649 #endif
2650
2651 /*
2652  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2653  * balanced by operating on them in a round-robin fashion.
2654  * Returns 1 if an adjustment was made.
2655  */
2656 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2657                                 int delta)
2658 {
2659         int nr_nodes, node;
2660
2661         VM_BUG_ON(delta != -1 && delta != 1);
2662
2663         if (delta < 0) {
2664                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2665                         if (h->surplus_huge_pages_node[node])
2666                                 goto found;
2667                 }
2668         } else {
2669                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2670                         if (h->surplus_huge_pages_node[node] <
2671                                         h->nr_huge_pages_node[node])
2672                                 goto found;
2673                 }
2674         }
2675         return 0;
2676
2677 found:
2678         h->surplus_huge_pages += delta;
2679         h->surplus_huge_pages_node[node] += delta;
2680         return 1;
2681 }
2682
2683 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2684 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2685                               nodemask_t *nodes_allowed)
2686 {
2687         unsigned long min_count, ret;
2688         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2689
2690         /*
2691          * Bit mask controlling how hard we retry per-node allocations.
2692          * If we can not allocate the bit mask, do not attempt to allocate
2693          * the requested huge pages.
2694          */
2695         if (node_alloc_noretry)
2696                 nodes_clear(*node_alloc_noretry);
2697         else
2698                 return -ENOMEM;
2699
2700         spin_lock(&hugetlb_lock);
2701
2702         /*
2703          * Check for a node specific request.
2704          * Changing node specific huge page count may require a corresponding
2705          * change to the global count.  In any case, the passed node mask
2706          * (nodes_allowed) will restrict alloc/free to the specified node.
2707          */
2708         if (nid != NUMA_NO_NODE) {
2709                 unsigned long old_count = count;
2710
2711                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2712                 /*
2713                  * User may have specified a large count value which caused the
2714                  * above calculation to overflow.  In this case, they wanted
2715                  * to allocate as many huge pages as possible.  Set count to
2716                  * largest possible value to align with their intention.
2717                  */
2718                 if (count < old_count)
2719                         count = ULONG_MAX;
2720         }
2721
2722         /*
2723          * Gigantic pages runtime allocation depend on the capability for large
2724          * page range allocation.
2725          * If the system does not provide this feature, return an error when
2726          * the user tries to allocate gigantic pages but let the user free the
2727          * boottime allocated gigantic pages.
2728          */
2729         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2730                 if (count > persistent_huge_pages(h)) {
2731                         spin_unlock(&hugetlb_lock);
2732                         NODEMASK_FREE(node_alloc_noretry);
2733                         return -EINVAL;
2734                 }
2735                 /* Fall through to decrease pool */
2736         }
2737
2738         /*
2739          * Increase the pool size
2740          * First take pages out of surplus state.  Then make up the
2741          * remaining difference by allocating fresh huge pages.
2742          *
2743          * We might race with alloc_surplus_huge_page() here and be unable
2744          * to convert a surplus huge page to a normal huge page. That is
2745          * not critical, though, it just means the overall size of the
2746          * pool might be one hugepage larger than it needs to be, but
2747          * within all the constraints specified by the sysctls.
2748          */
2749         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2750                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2751                         break;
2752         }
2753
2754         while (count > persistent_huge_pages(h)) {
2755                 /*
2756                  * If this allocation races such that we no longer need the
2757                  * page, free_huge_page will handle it by freeing the page
2758                  * and reducing the surplus.
2759                  */
2760                 spin_unlock(&hugetlb_lock);
2761
2762                 /* yield cpu to avoid soft lockup */
2763                 cond_resched();
2764
2765                 ret = alloc_pool_huge_page(h, nodes_allowed,
2766                                                 node_alloc_noretry);
2767                 spin_lock(&hugetlb_lock);
2768                 if (!ret)
2769                         goto out;
2770
2771                 /* Bail for signals. Probably ctrl-c from user */
2772                 if (signal_pending(current))
2773                         goto out;
2774         }
2775
2776         /*
2777          * Decrease the pool size
2778          * First return free pages to the buddy allocator (being careful
2779          * to keep enough around to satisfy reservations).  Then place
2780          * pages into surplus state as needed so the pool will shrink
2781          * to the desired size as pages become free.
2782          *
2783          * By placing pages into the surplus state independent of the
2784          * overcommit value, we are allowing the surplus pool size to
2785          * exceed overcommit. There are few sane options here. Since
2786          * alloc_surplus_huge_page() is checking the global counter,
2787          * though, we'll note that we're not allowed to exceed surplus
2788          * and won't grow the pool anywhere else. Not until one of the
2789          * sysctls are changed, or the surplus pages go out of use.
2790          */
2791         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2792         min_count = max(count, min_count);
2793         try_to_free_low(h, min_count, nodes_allowed);
2794         while (min_count < persistent_huge_pages(h)) {
2795                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2796                         break;
2797                 cond_resched_lock(&hugetlb_lock);
2798         }
2799         while (count < persistent_huge_pages(h)) {
2800                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2801                         break;
2802         }
2803 out:
2804         h->max_huge_pages = persistent_huge_pages(h);
2805         spin_unlock(&hugetlb_lock);
2806
2807         NODEMASK_FREE(node_alloc_noretry);
2808
2809         return 0;
2810 }
2811
2812 #define HSTATE_ATTR_RO(_name) \
2813         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2814
2815 #define HSTATE_ATTR(_name) \
2816         static struct kobj_attribute _name##_attr = \
2817                 __ATTR(_name, 0644, _name##_show, _name##_store)
2818
2819 static struct kobject *hugepages_kobj;
2820 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2821
2822 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2823
2824 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2825 {
2826         int i;
2827
2828         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2829                 if (hstate_kobjs[i] == kobj) {
2830                         if (nidp)
2831                                 *nidp = NUMA_NO_NODE;
2832                         return &hstates[i];
2833                 }
2834
2835         return kobj_to_node_hstate(kobj, nidp);
2836 }
2837
2838 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2839                                         struct kobj_attribute *attr, char *buf)
2840 {
2841         struct hstate *h;
2842         unsigned long nr_huge_pages;
2843         int nid;
2844
2845         h = kobj_to_hstate(kobj, &nid);
2846         if (nid == NUMA_NO_NODE)
2847                 nr_huge_pages = h->nr_huge_pages;
2848         else
2849                 nr_huge_pages = h->nr_huge_pages_node[nid];
2850
2851         return sprintf(buf, "%lu\n", nr_huge_pages);
2852 }
2853
2854 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2855                                            struct hstate *h, int nid,
2856                                            unsigned long count, size_t len)
2857 {
2858         int err;
2859         nodemask_t nodes_allowed, *n_mask;
2860
2861         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2862                 return -EINVAL;
2863
2864         if (nid == NUMA_NO_NODE) {
2865                 /*
2866                  * global hstate attribute
2867                  */
2868                 if (!(obey_mempolicy &&
2869                                 init_nodemask_of_mempolicy(&nodes_allowed)))
2870                         n_mask = &node_states[N_MEMORY];
2871                 else
2872                         n_mask = &nodes_allowed;
2873         } else {
2874                 /*
2875                  * Node specific request.  count adjustment happens in
2876                  * set_max_huge_pages() after acquiring hugetlb_lock.
2877                  */
2878                 init_nodemask_of_node(&nodes_allowed, nid);
2879                 n_mask = &nodes_allowed;
2880         }
2881
2882         err = set_max_huge_pages(h, count, nid, n_mask);
2883
2884         return err ? err : len;
2885 }
2886
2887 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2888                                          struct kobject *kobj, const char *buf,
2889                                          size_t len)
2890 {
2891         struct hstate *h;
2892         unsigned long count;
2893         int nid;
2894         int err;
2895
2896         err = kstrtoul(buf, 10, &count);
2897         if (err)
2898                 return err;
2899
2900         h = kobj_to_hstate(kobj, &nid);
2901         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2902 }
2903
2904 static ssize_t nr_hugepages_show(struct kobject *kobj,
2905                                        struct kobj_attribute *attr, char *buf)
2906 {
2907         return nr_hugepages_show_common(kobj, attr, buf);
2908 }
2909
2910 static ssize_t nr_hugepages_store(struct kobject *kobj,
2911                struct kobj_attribute *attr, const char *buf, size_t len)
2912 {
2913         return nr_hugepages_store_common(false, kobj, buf, len);
2914 }
2915 HSTATE_ATTR(nr_hugepages);
2916
2917 #ifdef CONFIG_NUMA
2918
2919 /*
2920  * hstate attribute for optionally mempolicy-based constraint on persistent
2921  * huge page alloc/free.
2922  */
2923 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2924                                        struct kobj_attribute *attr, char *buf)
2925 {
2926         return nr_hugepages_show_common(kobj, attr, buf);
2927 }
2928
2929 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2930                struct kobj_attribute *attr, const char *buf, size_t len)
2931 {
2932         return nr_hugepages_store_common(true, kobj, buf, len);
2933 }
2934 HSTATE_ATTR(nr_hugepages_mempolicy);
2935 #endif
2936
2937
2938 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2939                                         struct kobj_attribute *attr, char *buf)
2940 {
2941         struct hstate *h = kobj_to_hstate(kobj, NULL);
2942         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2943 }
2944
2945 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2946                 struct kobj_attribute *attr, const char *buf, size_t count)
2947 {
2948         int err;
2949         unsigned long input;
2950         struct hstate *h = kobj_to_hstate(kobj, NULL);
2951
2952         if (hstate_is_gigantic(h))
2953                 return -EINVAL;
2954
2955         err = kstrtoul(buf, 10, &input);
2956         if (err)
2957                 return err;
2958
2959         spin_lock(&hugetlb_lock);
2960         h->nr_overcommit_huge_pages = input;
2961         spin_unlock(&hugetlb_lock);
2962
2963         return count;
2964 }
2965 HSTATE_ATTR(nr_overcommit_hugepages);
2966
2967 static ssize_t free_hugepages_show(struct kobject *kobj,
2968                                         struct kobj_attribute *attr, char *buf)
2969 {
2970         struct hstate *h;
2971         unsigned long free_huge_pages;
2972         int nid;
2973
2974         h = kobj_to_hstate(kobj, &nid);
2975         if (nid == NUMA_NO_NODE)
2976                 free_huge_pages = h->free_huge_pages;
2977         else
2978                 free_huge_pages = h->free_huge_pages_node[nid];
2979
2980         return sprintf(buf, "%lu\n", free_huge_pages);
2981 }
2982 HSTATE_ATTR_RO(free_hugepages);
2983
2984 static ssize_t resv_hugepages_show(struct kobject *kobj,
2985                                         struct kobj_attribute *attr, char *buf)
2986 {
2987         struct hstate *h = kobj_to_hstate(kobj, NULL);
2988         return sprintf(buf, "%lu\n", h->resv_huge_pages);
2989 }
2990 HSTATE_ATTR_RO(resv_hugepages);
2991
2992 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2993                                         struct kobj_attribute *attr, char *buf)
2994 {
2995         struct hstate *h;
2996         unsigned long surplus_huge_pages;
2997         int nid;
2998
2999         h = kobj_to_hstate(kobj, &nid);
3000         if (nid == NUMA_NO_NODE)
3001                 surplus_huge_pages = h->surplus_huge_pages;
3002         else
3003                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3004
3005         return sprintf(buf, "%lu\n", surplus_huge_pages);
3006 }
3007 HSTATE_ATTR_RO(surplus_hugepages);
3008
3009 static struct attribute *hstate_attrs[] = {
3010         &nr_hugepages_attr.attr,
3011         &nr_overcommit_hugepages_attr.attr,
3012         &free_hugepages_attr.attr,
3013         &resv_hugepages_attr.attr,
3014         &surplus_hugepages_attr.attr,
3015 #ifdef CONFIG_NUMA
3016         &nr_hugepages_mempolicy_attr.attr,
3017 #endif
3018         NULL,
3019 };
3020
3021 static const struct attribute_group hstate_attr_group = {
3022         .attrs = hstate_attrs,
3023 };
3024
3025 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3026                                     struct kobject **hstate_kobjs,
3027                                     const struct attribute_group *hstate_attr_group)
3028 {
3029         int retval;
3030         int hi = hstate_index(h);
3031
3032         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3033         if (!hstate_kobjs[hi])
3034                 return -ENOMEM;
3035
3036         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3037         if (retval)
3038                 kobject_put(hstate_kobjs[hi]);
3039
3040         return retval;
3041 }
3042
3043 static void __init hugetlb_sysfs_init(void)
3044 {
3045         struct hstate *h;
3046         int err;
3047
3048         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3049         if (!hugepages_kobj)
3050                 return;
3051
3052         for_each_hstate(h) {
3053                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3054                                          hstate_kobjs, &hstate_attr_group);
3055                 if (err)
3056                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
3057         }
3058 }
3059
3060 #ifdef CONFIG_NUMA
3061
3062 /*
3063  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3064  * with node devices in node_devices[] using a parallel array.  The array
3065  * index of a node device or _hstate == node id.
3066  * This is here to avoid any static dependency of the node device driver, in
3067  * the base kernel, on the hugetlb module.
3068  */
3069 struct node_hstate {
3070         struct kobject          *hugepages_kobj;
3071         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
3072 };
3073 static struct node_hstate node_hstates[MAX_NUMNODES];
3074
3075 /*
3076  * A subset of global hstate attributes for node devices
3077  */
3078 static struct attribute *per_node_hstate_attrs[] = {
3079         &nr_hugepages_attr.attr,
3080         &free_hugepages_attr.attr,
3081         &surplus_hugepages_attr.attr,
3082         NULL,
3083 };
3084
3085 static const struct attribute_group per_node_hstate_attr_group = {
3086         .attrs = per_node_hstate_attrs,
3087 };
3088
3089 /*
3090  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3091  * Returns node id via non-NULL nidp.
3092  */
3093 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3094 {
3095         int nid;
3096
3097         for (nid = 0; nid < nr_node_ids; nid++) {
3098                 struct node_hstate *nhs = &node_hstates[nid];
3099                 int i;
3100                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3101                         if (nhs->hstate_kobjs[i] == kobj) {
3102                                 if (nidp)
3103                                         *nidp = nid;
3104                                 return &hstates[i];
3105                         }
3106         }
3107
3108         BUG();
3109         return NULL;
3110 }
3111
3112 /*
3113  * Unregister hstate attributes from a single node device.
3114  * No-op if no hstate attributes attached.
3115  */
3116 static void hugetlb_unregister_node(struct node *node)
3117 {
3118         struct hstate *h;
3119         struct node_hstate *nhs = &node_hstates[node->dev.id];
3120
3121         if (!nhs->hugepages_kobj)
3122                 return;         /* no hstate attributes */
3123
3124         for_each_hstate(h) {
3125                 int idx = hstate_index(h);
3126                 if (nhs->hstate_kobjs[idx]) {
3127                         kobject_put(nhs->hstate_kobjs[idx]);
3128                         nhs->hstate_kobjs[idx] = NULL;
3129                 }
3130         }
3131
3132         kobject_put(nhs->hugepages_kobj);
3133         nhs->hugepages_kobj = NULL;
3134 }
3135
3136
3137 /*
3138  * Register hstate attributes for a single node device.
3139  * No-op if attributes already registered.
3140  */
3141 static void hugetlb_register_node(struct node *node)
3142 {
3143         struct hstate *h;
3144         struct node_hstate *nhs = &node_hstates[node->dev.id];
3145         int err;
3146
3147         if (nhs->hugepages_kobj)
3148                 return;         /* already allocated */
3149
3150         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3151                                                         &node->dev.kobj);
3152         if (!nhs->hugepages_kobj)
3153                 return;
3154
3155         for_each_hstate(h) {
3156                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3157                                                 nhs->hstate_kobjs,
3158                                                 &per_node_hstate_attr_group);
3159                 if (err) {
3160                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3161                                 h->name, node->dev.id);
3162                         hugetlb_unregister_node(node);
3163                         break;
3164                 }
3165         }
3166 }
3167
3168 /*
3169  * hugetlb init time:  register hstate attributes for all registered node
3170  * devices of nodes that have memory.  All on-line nodes should have
3171  * registered their associated device by this time.
3172  */
3173 static void __init hugetlb_register_all_nodes(void)
3174 {
3175         int nid;
3176
3177         for_each_node_state(nid, N_MEMORY) {
3178                 struct node *node = node_devices[nid];
3179                 if (node->dev.id == nid)
3180                         hugetlb_register_node(node);
3181         }
3182
3183         /*
3184          * Let the node device driver know we're here so it can
3185          * [un]register hstate attributes on node hotplug.
3186          */
3187         register_hugetlbfs_with_node(hugetlb_register_node,
3188                                      hugetlb_unregister_node);
3189 }
3190 #else   /* !CONFIG_NUMA */
3191
3192 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3193 {
3194         BUG();
3195         if (nidp)
3196                 *nidp = -1;
3197         return NULL;
3198 }
3199
3200 static void hugetlb_register_all_nodes(void) { }
3201
3202 #endif
3203
3204 static int __init hugetlb_init(void)
3205 {
3206         int i;
3207
3208         if (!hugepages_supported()) {
3209                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3210                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3211                 return 0;
3212         }
3213
3214         /*
3215          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3216          * architectures depend on setup being done here.
3217          */
3218         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3219         if (!parsed_default_hugepagesz) {
3220                 /*
3221                  * If we did not parse a default huge page size, set
3222                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3223                  * number of huge pages for this default size was implicitly
3224                  * specified, set that here as well.
3225                  * Note that the implicit setting will overwrite an explicit
3226                  * setting.  A warning will be printed in this case.
3227                  */
3228                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3229                 if (default_hstate_max_huge_pages) {
3230                         if (default_hstate.max_huge_pages) {
3231                                 char buf[32];
3232
3233                                 string_get_size(huge_page_size(&default_hstate),
3234                                         1, STRING_UNITS_2, buf, 32);
3235                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3236                                         default_hstate.max_huge_pages, buf);
3237                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3238                                         default_hstate_max_huge_pages);
3239                         }
3240                         default_hstate.max_huge_pages =
3241                                 default_hstate_max_huge_pages;
3242                 }
3243         }
3244
3245         hugetlb_cma_check();
3246         hugetlb_init_hstates();
3247         gather_bootmem_prealloc();
3248         report_hugepages();
3249
3250         hugetlb_sysfs_init();
3251         hugetlb_register_all_nodes();
3252         hugetlb_cgroup_file_init();
3253
3254 #ifdef CONFIG_SMP
3255         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3256 #else
3257         num_fault_mutexes = 1;
3258 #endif
3259         hugetlb_fault_mutex_table =
3260                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3261                               GFP_KERNEL);
3262         BUG_ON(!hugetlb_fault_mutex_table);
3263
3264         for (i = 0; i < num_fault_mutexes; i++)
3265                 mutex_init(&hugetlb_fault_mutex_table[i]);
3266         return 0;
3267 }
3268 subsys_initcall(hugetlb_init);
3269
3270 /* Overwritten by architectures with more huge page sizes */
3271 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3272 {
3273         return size == HPAGE_SIZE;
3274 }
3275
3276 void __init hugetlb_add_hstate(unsigned int order)
3277 {
3278         struct hstate *h;
3279         unsigned long i;
3280
3281         if (size_to_hstate(PAGE_SIZE << order)) {
3282                 return;
3283         }
3284         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3285         BUG_ON(order == 0);
3286         h = &hstates[hugetlb_max_hstate++];
3287         h->order = order;
3288         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3289         h->nr_huge_pages = 0;
3290         h->free_huge_pages = 0;
3291         for (i = 0; i < MAX_NUMNODES; ++i)
3292                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3293         INIT_LIST_HEAD(&h->hugepage_activelist);
3294         h->next_nid_to_alloc = first_memory_node;
3295         h->next_nid_to_free = first_memory_node;
3296         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3297                                         huge_page_size(h)/1024);
3298
3299         parsed_hstate = h;
3300 }
3301
3302 /*
3303  * hugepages command line processing
3304  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3305  * specification.  If not, ignore the hugepages value.  hugepages can also
3306  * be the first huge page command line  option in which case it implicitly
3307  * specifies the number of huge pages for the default size.
3308  */
3309 static int __init hugepages_setup(char *s)
3310 {
3311         unsigned long *mhp;
3312         static unsigned long *last_mhp;
3313
3314         if (!parsed_valid_hugepagesz) {
3315                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3316                 parsed_valid_hugepagesz = true;
3317                 return 0;
3318         }
3319
3320         /*
3321          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3322          * yet, so this hugepages= parameter goes to the "default hstate".
3323          * Otherwise, it goes with the previously parsed hugepagesz or
3324          * default_hugepagesz.
3325          */
3326         else if (!hugetlb_max_hstate)
3327                 mhp = &default_hstate_max_huge_pages;
3328         else
3329                 mhp = &parsed_hstate->max_huge_pages;
3330
3331         if (mhp == last_mhp) {
3332                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3333                 return 0;
3334         }
3335
3336         if (sscanf(s, "%lu", mhp) <= 0)
3337                 *mhp = 0;
3338
3339         /*
3340          * Global state is always initialized later in hugetlb_init.
3341          * But we need to allocate >= MAX_ORDER hstates here early to still
3342          * use the bootmem allocator.
3343          */
3344         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3345                 hugetlb_hstate_alloc_pages(parsed_hstate);
3346
3347         last_mhp = mhp;
3348
3349         return 1;
3350 }
3351 __setup("hugepages=", hugepages_setup);
3352
3353 /*
3354  * hugepagesz command line processing
3355  * A specific huge page size can only be specified once with hugepagesz.
3356  * hugepagesz is followed by hugepages on the command line.  The global
3357  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3358  * hugepagesz argument was valid.
3359  */
3360 static int __init hugepagesz_setup(char *s)
3361 {
3362         unsigned long size;
3363         struct hstate *h;
3364
3365         parsed_valid_hugepagesz = false;
3366         size = (unsigned long)memparse(s, NULL);
3367
3368         if (!arch_hugetlb_valid_size(size)) {
3369                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3370                 return 0;
3371         }
3372
3373         h = size_to_hstate(size);
3374         if (h) {
3375                 /*
3376                  * hstate for this size already exists.  This is normally
3377                  * an error, but is allowed if the existing hstate is the
3378                  * default hstate.  More specifically, it is only allowed if
3379                  * the number of huge pages for the default hstate was not
3380                  * previously specified.
3381                  */
3382                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3383                     default_hstate.max_huge_pages) {
3384                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3385                         return 0;
3386                 }
3387
3388                 /*
3389                  * No need to call hugetlb_add_hstate() as hstate already
3390                  * exists.  But, do set parsed_hstate so that a following
3391                  * hugepages= parameter will be applied to this hstate.
3392                  */
3393                 parsed_hstate = h;
3394                 parsed_valid_hugepagesz = true;
3395                 return 1;
3396         }
3397
3398         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3399         parsed_valid_hugepagesz = true;
3400         return 1;
3401 }
3402 __setup("hugepagesz=", hugepagesz_setup);
3403
3404 /*
3405  * default_hugepagesz command line input
3406  * Only one instance of default_hugepagesz allowed on command line.
3407  */
3408 static int __init default_hugepagesz_setup(char *s)
3409 {
3410         unsigned long size;
3411
3412         parsed_valid_hugepagesz = false;
3413         if (parsed_default_hugepagesz) {
3414                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3415                 return 0;
3416         }
3417
3418         size = (unsigned long)memparse(s, NULL);
3419
3420         if (!arch_hugetlb_valid_size(size)) {
3421                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3422                 return 0;
3423         }
3424
3425         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3426         parsed_valid_hugepagesz = true;
3427         parsed_default_hugepagesz = true;
3428         default_hstate_idx = hstate_index(size_to_hstate(size));
3429
3430         /*
3431          * The number of default huge pages (for this size) could have been
3432          * specified as the first hugetlb parameter: hugepages=X.  If so,
3433          * then default_hstate_max_huge_pages is set.  If the default huge
3434          * page size is gigantic (>= MAX_ORDER), then the pages must be
3435          * allocated here from bootmem allocator.
3436          */
3437         if (default_hstate_max_huge_pages) {
3438                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3439                 if (hstate_is_gigantic(&default_hstate))
3440                         hugetlb_hstate_alloc_pages(&default_hstate);
3441                 default_hstate_max_huge_pages = 0;
3442         }
3443
3444         return 1;
3445 }
3446 __setup("default_hugepagesz=", default_hugepagesz_setup);
3447
3448 static unsigned int allowed_mems_nr(struct hstate *h)
3449 {
3450         int node;
3451         unsigned int nr = 0;
3452         nodemask_t *mpol_allowed;
3453         unsigned int *array = h->free_huge_pages_node;
3454         gfp_t gfp_mask = htlb_alloc_mask(h);
3455
3456         mpol_allowed = policy_nodemask_current(gfp_mask);
3457
3458         for_each_node_mask(node, cpuset_current_mems_allowed) {
3459                 if (!mpol_allowed ||
3460                     (mpol_allowed && node_isset(node, *mpol_allowed)))
3461                         nr += array[node];
3462         }
3463
3464         return nr;
3465 }
3466
3467 #ifdef CONFIG_SYSCTL
3468 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3469                                           void *buffer, size_t *length,
3470                                           loff_t *ppos, unsigned long *out)
3471 {
3472         struct ctl_table dup_table;
3473
3474         /*
3475          * In order to avoid races with __do_proc_doulongvec_minmax(), we
3476          * can duplicate the @table and alter the duplicate of it.
3477          */
3478         dup_table = *table;
3479         dup_table.data = out;
3480
3481         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3482 }
3483
3484 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3485                          struct ctl_table *table, int write,
3486                          void *buffer, size_t *length, loff_t *ppos)
3487 {
3488         struct hstate *h = &default_hstate;
3489         unsigned long tmp = h->max_huge_pages;
3490         int ret;
3491
3492         if (!hugepages_supported())
3493                 return -EOPNOTSUPP;
3494
3495         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3496                                              &tmp);
3497         if (ret)
3498                 goto out;
3499
3500         if (write)
3501                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3502                                                   NUMA_NO_NODE, tmp, *length);
3503 out:
3504         return ret;
3505 }
3506
3507 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3508                           void *buffer, size_t *length, loff_t *ppos)
3509 {
3510
3511         return hugetlb_sysctl_handler_common(false, table, write,
3512                                                         buffer, length, ppos);
3513 }
3514
3515 #ifdef CONFIG_NUMA
3516 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3517                           void *buffer, size_t *length, loff_t *ppos)
3518 {
3519         return hugetlb_sysctl_handler_common(true, table, write,
3520                                                         buffer, length, ppos);
3521 }
3522 #endif /* CONFIG_NUMA */
3523
3524 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3525                 void *buffer, size_t *length, loff_t *ppos)
3526 {
3527         struct hstate *h = &default_hstate;
3528         unsigned long tmp;
3529         int ret;
3530
3531         if (!hugepages_supported())
3532                 return -EOPNOTSUPP;
3533
3534         tmp = h->nr_overcommit_huge_pages;
3535
3536         if (write && hstate_is_gigantic(h))
3537                 return -EINVAL;
3538
3539         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3540                                              &tmp);
3541         if (ret)
3542                 goto out;
3543
3544         if (write) {
3545                 spin_lock(&hugetlb_lock);
3546                 h->nr_overcommit_huge_pages = tmp;
3547                 spin_unlock(&hugetlb_lock);
3548         }
3549 out:
3550         return ret;
3551 }
3552
3553 #endif /* CONFIG_SYSCTL */
3554
3555 void hugetlb_report_meminfo(struct seq_file *m)
3556 {
3557         struct hstate *h;
3558         unsigned long total = 0;
3559
3560         if (!hugepages_supported())
3561                 return;
3562
3563         for_each_hstate(h) {
3564                 unsigned long count = h->nr_huge_pages;
3565
3566                 total += (PAGE_SIZE << huge_page_order(h)) * count;
3567
3568                 if (h == &default_hstate)
3569                         seq_printf(m,
3570                                    "HugePages_Total:   %5lu\n"
3571                                    "HugePages_Free:    %5lu\n"
3572                                    "HugePages_Rsvd:    %5lu\n"
3573                                    "HugePages_Surp:    %5lu\n"
3574                                    "Hugepagesize:   %8lu kB\n",
3575                                    count,
3576                                    h->free_huge_pages,
3577                                    h->resv_huge_pages,
3578                                    h->surplus_huge_pages,
3579                                    (PAGE_SIZE << huge_page_order(h)) / 1024);
3580         }
3581
3582         seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3583 }
3584
3585 int hugetlb_report_node_meminfo(int nid, char *buf)
3586 {
3587         struct hstate *h = &default_hstate;
3588         if (!hugepages_supported())
3589                 return 0;
3590         return sprintf(buf,
3591                 "Node %d HugePages_Total: %5u\n"
3592                 "Node %d HugePages_Free:  %5u\n"
3593                 "Node %d HugePages_Surp:  %5u\n",
3594                 nid, h->nr_huge_pages_node[nid],
3595                 nid, h->free_huge_pages_node[nid],
3596                 nid, h->surplus_huge_pages_node[nid]);
3597 }
3598
3599 void hugetlb_show_meminfo(void)
3600 {
3601         struct hstate *h;
3602         int nid;
3603
3604         if (!hugepages_supported())
3605                 return;
3606
3607         for_each_node_state(nid, N_MEMORY)
3608                 for_each_hstate(h)
3609                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3610                                 nid,
3611                                 h->nr_huge_pages_node[nid],
3612                                 h->free_huge_pages_node[nid],
3613                                 h->surplus_huge_pages_node[nid],
3614                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3615 }
3616
3617 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3618 {
3619         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3620                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3621 }
3622
3623 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3624 unsigned long hugetlb_total_pages(void)
3625 {
3626         struct hstate *h;
3627         unsigned long nr_total_pages = 0;
3628
3629         for_each_hstate(h)
3630                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3631         return nr_total_pages;
3632 }
3633
3634 static int hugetlb_acct_memory(struct hstate *h, long delta)
3635 {
3636         int ret = -ENOMEM;
3637
3638         spin_lock(&hugetlb_lock);
3639         /*
3640          * When cpuset is configured, it breaks the strict hugetlb page
3641          * reservation as the accounting is done on a global variable. Such
3642          * reservation is completely rubbish in the presence of cpuset because
3643          * the reservation is not checked against page availability for the
3644          * current cpuset. Application can still potentially OOM'ed by kernel
3645          * with lack of free htlb page in cpuset that the task is in.
3646          * Attempt to enforce strict accounting with cpuset is almost
3647          * impossible (or too ugly) because cpuset is too fluid that
3648          * task or memory node can be dynamically moved between cpusets.
3649          *
3650          * The change of semantics for shared hugetlb mapping with cpuset is
3651          * undesirable. However, in order to preserve some of the semantics,
3652          * we fall back to check against current free page availability as
3653          * a best attempt and hopefully to minimize the impact of changing
3654          * semantics that cpuset has.
3655          *
3656          * Apart from cpuset, we also have memory policy mechanism that
3657          * also determines from which node the kernel will allocate memory
3658          * in a NUMA system. So similar to cpuset, we also should consider
3659          * the memory policy of the current task. Similar to the description
3660          * above.
3661          */
3662         if (delta > 0) {
3663                 if (gather_surplus_pages(h, delta) < 0)
3664                         goto out;
3665
3666                 if (delta > allowed_mems_nr(h)) {
3667                         return_unused_surplus_pages(h, delta);
3668                         goto out;
3669                 }
3670         }
3671
3672         ret = 0;
3673         if (delta < 0)
3674                 return_unused_surplus_pages(h, (unsigned long) -delta);
3675
3676 out:
3677         spin_unlock(&hugetlb_lock);
3678         return ret;
3679 }
3680
3681 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3682 {
3683         struct resv_map *resv = vma_resv_map(vma);
3684
3685         /*
3686          * This new VMA should share its siblings reservation map if present.
3687          * The VMA will only ever have a valid reservation map pointer where
3688          * it is being copied for another still existing VMA.  As that VMA
3689          * has a reference to the reservation map it cannot disappear until
3690          * after this open call completes.  It is therefore safe to take a
3691          * new reference here without additional locking.
3692          */
3693         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3694                 kref_get(&resv->refs);
3695 }
3696
3697 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3698 {
3699         struct hstate *h = hstate_vma(vma);
3700         struct resv_map *resv = vma_resv_map(vma);
3701         struct hugepage_subpool *spool = subpool_vma(vma);
3702         unsigned long reserve, start, end;
3703         long gbl_reserve;
3704
3705         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3706                 return;
3707
3708         start = vma_hugecache_offset(h, vma, vma->vm_start);
3709         end = vma_hugecache_offset(h, vma, vma->vm_end);
3710
3711         reserve = (end - start) - region_count(resv, start, end);
3712         hugetlb_cgroup_uncharge_counter(resv, start, end);
3713         if (reserve) {
3714                 /*
3715                  * Decrement reserve counts.  The global reserve count may be
3716                  * adjusted if the subpool has a minimum size.
3717                  */
3718                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3719                 hugetlb_acct_memory(h, -gbl_reserve);
3720         }
3721
3722         kref_put(&resv->refs, resv_map_release);
3723 }
3724
3725 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3726 {
3727         if (addr & ~(huge_page_mask(hstate_vma(vma))))
3728                 return -EINVAL;
3729         return 0;
3730 }
3731
3732 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3733 {
3734         struct hstate *hstate = hstate_vma(vma);
3735
3736         return 1UL << huge_page_shift(hstate);
3737 }
3738
3739 /*
3740  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3741  * handle_mm_fault() to try to instantiate regular-sized pages in the
3742  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3743  * this far.
3744  */
3745 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3746 {
3747         BUG();
3748         return 0;
3749 }
3750
3751 /*
3752  * When a new function is introduced to vm_operations_struct and added
3753  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3754  * This is because under System V memory model, mappings created via
3755  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3756  * their original vm_ops are overwritten with shm_vm_ops.
3757  */
3758 const struct vm_operations_struct hugetlb_vm_ops = {
3759         .fault = hugetlb_vm_op_fault,
3760         .open = hugetlb_vm_op_open,
3761         .close = hugetlb_vm_op_close,
3762         .split = hugetlb_vm_op_split,
3763         .pagesize = hugetlb_vm_op_pagesize,
3764 };
3765
3766 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3767                                 int writable)
3768 {
3769         pte_t entry;
3770
3771         if (writable) {
3772                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3773                                          vma->vm_page_prot)));
3774         } else {
3775                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3776                                            vma->vm_page_prot));
3777         }
3778         entry = pte_mkyoung(entry);
3779         entry = pte_mkhuge(entry);
3780         entry = arch_make_huge_pte(entry, vma, page, writable);
3781
3782         return entry;
3783 }
3784
3785 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3786                                    unsigned long address, pte_t *ptep)
3787 {
3788         pte_t entry;
3789
3790         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3791         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3792                 update_mmu_cache(vma, address, ptep);
3793 }
3794
3795 bool is_hugetlb_entry_migration(pte_t pte)
3796 {
3797         swp_entry_t swp;
3798
3799         if (huge_pte_none(pte) || pte_present(pte))
3800                 return false;
3801         swp = pte_to_swp_entry(pte);
3802         if (non_swap_entry(swp) && is_migration_entry(swp))
3803                 return true;
3804         else
3805                 return false;
3806 }
3807
3808 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3809 {
3810         swp_entry_t swp;
3811
3812         if (huge_pte_none(pte) || pte_present(pte))
3813                 return 0;
3814         swp = pte_to_swp_entry(pte);
3815         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3816                 return 1;
3817         else
3818                 return 0;
3819 }
3820
3821 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3822                             struct vm_area_struct *vma)
3823 {
3824         pte_t *src_pte, *dst_pte, entry, dst_entry;
3825         struct page *ptepage;
3826         unsigned long addr;
3827         int cow;
3828         struct hstate *h = hstate_vma(vma);
3829         unsigned long sz = huge_page_size(h);
3830         struct address_space *mapping = vma->vm_file->f_mapping;
3831         struct mmu_notifier_range range;
3832         int ret = 0;
3833
3834         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3835
3836         if (cow) {
3837                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3838                                         vma->vm_start,
3839                                         vma->vm_end);
3840                 mmu_notifier_invalidate_range_start(&range);
3841         } else {
3842                 /*
3843                  * For shared mappings i_mmap_rwsem must be held to call
3844                  * huge_pte_alloc, otherwise the returned ptep could go
3845                  * away if part of a shared pmd and another thread calls
3846                  * huge_pmd_unshare.
3847                  */
3848                 i_mmap_lock_read(mapping);
3849         }
3850
3851         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3852                 spinlock_t *src_ptl, *dst_ptl;
3853                 src_pte = huge_pte_offset(src, addr, sz);
3854                 if (!src_pte)
3855                         continue;
3856                 dst_pte = huge_pte_alloc(dst, addr, sz);
3857                 if (!dst_pte) {
3858                         ret = -ENOMEM;
3859                         break;
3860                 }
3861
3862                 /*
3863                  * If the pagetables are shared don't copy or take references.
3864                  * dst_pte == src_pte is the common case of src/dest sharing.
3865                  *
3866                  * However, src could have 'unshared' and dst shares with
3867                  * another vma.  If dst_pte !none, this implies sharing.
3868                  * Check here before taking page table lock, and once again
3869                  * after taking the lock below.
3870                  */
3871                 dst_entry = huge_ptep_get(dst_pte);
3872                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3873                         continue;
3874
3875                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3876                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3877                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3878                 entry = huge_ptep_get(src_pte);
3879                 dst_entry = huge_ptep_get(dst_pte);
3880                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3881                         /*
3882                          * Skip if src entry none.  Also, skip in the
3883                          * unlikely case dst entry !none as this implies
3884                          * sharing with another vma.
3885                          */
3886                         ;
3887                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3888                                     is_hugetlb_entry_hwpoisoned(entry))) {
3889                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3890
3891                         if (is_write_migration_entry(swp_entry) && cow) {
3892                                 /*
3893                                  * COW mappings require pages in both
3894                                  * parent and child to be set to read.
3895                                  */
3896                                 make_migration_entry_read(&swp_entry);
3897                                 entry = swp_entry_to_pte(swp_entry);
3898                                 set_huge_swap_pte_at(src, addr, src_pte,
3899                                                      entry, sz);
3900                         }
3901                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3902                 } else {
3903                         if (cow) {
3904                                 /*
3905                                  * No need to notify as we are downgrading page
3906                                  * table protection not changing it to point
3907                                  * to a new page.
3908                                  *
3909                                  * See Documentation/vm/mmu_notifier.rst
3910                                  */
3911                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3912                         }
3913                         entry = huge_ptep_get(src_pte);
3914                         ptepage = pte_page(entry);
3915                         get_page(ptepage);
3916                         page_dup_rmap(ptepage, true);
3917                         set_huge_pte_at(dst, addr, dst_pte, entry);
3918                         hugetlb_count_add(pages_per_huge_page(h), dst);
3919                 }
3920                 spin_unlock(src_ptl);
3921                 spin_unlock(dst_ptl);
3922         }
3923
3924         if (cow)
3925                 mmu_notifier_invalidate_range_end(&range);
3926         else
3927                 i_mmap_unlock_read(mapping);
3928
3929         return ret;
3930 }
3931
3932 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3933                             unsigned long start, unsigned long end,
3934                             struct page *ref_page)
3935 {
3936         struct mm_struct *mm = vma->vm_mm;
3937         unsigned long address;
3938         pte_t *ptep;
3939         pte_t pte;
3940         spinlock_t *ptl;
3941         struct page *page;
3942         struct hstate *h = hstate_vma(vma);
3943         unsigned long sz = huge_page_size(h);
3944         struct mmu_notifier_range range;
3945
3946         WARN_ON(!is_vm_hugetlb_page(vma));
3947         BUG_ON(start & ~huge_page_mask(h));
3948         BUG_ON(end & ~huge_page_mask(h));
3949
3950         /*
3951          * This is a hugetlb vma, all the pte entries should point
3952          * to huge page.
3953          */
3954         tlb_change_page_size(tlb, sz);
3955         tlb_start_vma(tlb, vma);
3956
3957         /*
3958          * If sharing possible, alert mmu notifiers of worst case.
3959          */
3960         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3961                                 end);
3962         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3963         mmu_notifier_invalidate_range_start(&range);
3964         address = start;
3965         for (; address < end; address += sz) {
3966                 ptep = huge_pte_offset(mm, address, sz);
3967                 if (!ptep)
3968                         continue;
3969
3970                 ptl = huge_pte_lock(h, mm, ptep);
3971                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3972                         spin_unlock(ptl);
3973                         /*
3974                          * We just unmapped a page of PMDs by clearing a PUD.
3975                          * The caller's TLB flush range should cover this area.
3976                          */
3977                         continue;
3978                 }
3979
3980                 pte = huge_ptep_get(ptep);
3981                 if (huge_pte_none(pte)) {
3982                         spin_unlock(ptl);
3983                         continue;
3984                 }
3985
3986                 /*
3987                  * Migrating hugepage or HWPoisoned hugepage is already
3988                  * unmapped and its refcount is dropped, so just clear pte here.
3989                  */
3990                 if (unlikely(!pte_present(pte))) {
3991                         huge_pte_clear(mm, address, ptep, sz);
3992                         spin_unlock(ptl);
3993                         continue;
3994                 }
3995
3996                 page = pte_page(pte);
3997                 /*
3998                  * If a reference page is supplied, it is because a specific
3999                  * page is being unmapped, not a range. Ensure the page we
4000                  * are about to unmap is the actual page of interest.
4001                  */
4002                 if (ref_page) {
4003                         if (page != ref_page) {
4004                                 spin_unlock(ptl);
4005                                 continue;
4006                         }
4007                         /*
4008                          * Mark the VMA as having unmapped its page so that
4009                          * future faults in this VMA will fail rather than
4010                          * looking like data was lost
4011                          */
4012                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4013                 }
4014
4015                 pte = huge_ptep_get_and_clear(mm, address, ptep);
4016                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4017                 if (huge_pte_dirty(pte))
4018                         set_page_dirty(page);
4019
4020                 hugetlb_count_sub(pages_per_huge_page(h), mm);
4021                 page_remove_rmap(page, true);
4022
4023                 spin_unlock(ptl);
4024                 tlb_remove_page_size(tlb, page, huge_page_size(h));
4025                 /*
4026                  * Bail out after unmapping reference page if supplied
4027                  */
4028                 if (ref_page)
4029                         break;
4030         }
4031         mmu_notifier_invalidate_range_end(&range);
4032         tlb_end_vma(tlb, vma);
4033 }
4034
4035 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4036                           struct vm_area_struct *vma, unsigned long start,
4037                           unsigned long end, struct page *ref_page)
4038 {
4039         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4040
4041         /*
4042          * Clear this flag so that x86's huge_pmd_share page_table_shareable
4043          * test will fail on a vma being torn down, and not grab a page table
4044          * on its way out.  We're lucky that the flag has such an appropriate
4045          * name, and can in fact be safely cleared here. We could clear it
4046          * before the __unmap_hugepage_range above, but all that's necessary
4047          * is to clear it before releasing the i_mmap_rwsem. This works
4048          * because in the context this is called, the VMA is about to be
4049          * destroyed and the i_mmap_rwsem is held.
4050          */
4051         vma->vm_flags &= ~VM_MAYSHARE;
4052 }
4053
4054 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4055                           unsigned long end, struct page *ref_page)
4056 {
4057         struct mm_struct *mm;
4058         struct mmu_gather tlb;
4059         unsigned long tlb_start = start;
4060         unsigned long tlb_end = end;
4061
4062         /*
4063          * If shared PMDs were possibly used within this vma range, adjust
4064          * start/end for worst case tlb flushing.
4065          * Note that we can not be sure if PMDs are shared until we try to
4066          * unmap pages.  However, we want to make sure TLB flushing covers
4067          * the largest possible range.
4068          */
4069         adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
4070
4071         mm = vma->vm_mm;
4072
4073         tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
4074         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4075         tlb_finish_mmu(&tlb, tlb_start, tlb_end);
4076 }
4077
4078 /*
4079  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4080  * mappping it owns the reserve page for. The intention is to unmap the page
4081  * from other VMAs and let the children be SIGKILLed if they are faulting the
4082  * same region.
4083  */
4084 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4085                               struct page *page, unsigned long address)
4086 {
4087         struct hstate *h = hstate_vma(vma);
4088         struct vm_area_struct *iter_vma;
4089         struct address_space *mapping;
4090         pgoff_t pgoff;
4091
4092         /*
4093          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4094          * from page cache lookup which is in HPAGE_SIZE units.
4095          */
4096         address = address & huge_page_mask(h);
4097         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4098                         vma->vm_pgoff;
4099         mapping = vma->vm_file->f_mapping;
4100
4101         /*
4102          * Take the mapping lock for the duration of the table walk. As
4103          * this mapping should be shared between all the VMAs,
4104          * __unmap_hugepage_range() is called as the lock is already held
4105          */
4106         i_mmap_lock_write(mapping);
4107         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4108                 /* Do not unmap the current VMA */
4109                 if (iter_vma == vma)
4110                         continue;
4111
4112                 /*
4113                  * Shared VMAs have their own reserves and do not affect
4114                  * MAP_PRIVATE accounting but it is possible that a shared
4115                  * VMA is using the same page so check and skip such VMAs.
4116                  */
4117                 if (iter_vma->vm_flags & VM_MAYSHARE)
4118                         continue;
4119
4120                 /*
4121                  * Unmap the page from other VMAs without their own reserves.
4122                  * They get marked to be SIGKILLed if they fault in these
4123                  * areas. This is because a future no-page fault on this VMA
4124                  * could insert a zeroed page instead of the data existing
4125                  * from the time of fork. This would look like data corruption
4126                  */
4127                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4128                         unmap_hugepage_range(iter_vma, address,
4129                                              address + huge_page_size(h), page);
4130         }
4131         i_mmap_unlock_write(mapping);
4132 }
4133
4134 /*
4135  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4136  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4137  * cannot race with other handlers or page migration.
4138  * Keep the pte_same checks anyway to make transition from the mutex easier.
4139  */
4140 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4141                        unsigned long address, pte_t *ptep,
4142                        struct page *pagecache_page, spinlock_t *ptl)
4143 {
4144         pte_t pte;
4145         struct hstate *h = hstate_vma(vma);
4146         struct page *old_page, *new_page;
4147         int outside_reserve = 0;
4148         vm_fault_t ret = 0;
4149         unsigned long haddr = address & huge_page_mask(h);
4150         struct mmu_notifier_range range;
4151
4152         pte = huge_ptep_get(ptep);
4153         old_page = pte_page(pte);
4154
4155 retry_avoidcopy:
4156         /* If no-one else is actually using this page, avoid the copy
4157          * and just make the page writable */
4158         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4159                 page_move_anon_rmap(old_page, vma);
4160                 set_huge_ptep_writable(vma, haddr, ptep);
4161                 return 0;
4162         }
4163
4164         /*
4165          * If the process that created a MAP_PRIVATE mapping is about to
4166          * perform a COW due to a shared page count, attempt to satisfy
4167          * the allocation without using the existing reserves. The pagecache
4168          * page is used to determine if the reserve at this address was
4169          * consumed or not. If reserves were used, a partial faulted mapping
4170          * at the time of fork() could consume its reserves on COW instead
4171          * of the full address range.
4172          */
4173         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4174                         old_page != pagecache_page)
4175                 outside_reserve = 1;
4176
4177         get_page(old_page);
4178
4179         /*
4180          * Drop page table lock as buddy allocator may be called. It will
4181          * be acquired again before returning to the caller, as expected.
4182          */
4183         spin_unlock(ptl);
4184         new_page = alloc_huge_page(vma, haddr, outside_reserve);
4185
4186         if (IS_ERR(new_page)) {
4187                 /*
4188                  * If a process owning a MAP_PRIVATE mapping fails to COW,
4189                  * it is due to references held by a child and an insufficient
4190                  * huge page pool. To guarantee the original mappers
4191                  * reliability, unmap the page from child processes. The child
4192                  * may get SIGKILLed if it later faults.
4193                  */
4194                 if (outside_reserve) {
4195                         put_page(old_page);
4196                         BUG_ON(huge_pte_none(pte));
4197                         unmap_ref_private(mm, vma, old_page, haddr);
4198                         BUG_ON(huge_pte_none(pte));
4199                         spin_lock(ptl);
4200                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4201                         if (likely(ptep &&
4202                                    pte_same(huge_ptep_get(ptep), pte)))
4203                                 goto retry_avoidcopy;
4204                         /*
4205                          * race occurs while re-acquiring page table
4206                          * lock, and our job is done.
4207                          */
4208                         return 0;
4209                 }
4210
4211                 ret = vmf_error(PTR_ERR(new_page));
4212                 goto out_release_old;
4213         }
4214
4215         /*
4216          * When the original hugepage is shared one, it does not have
4217          * anon_vma prepared.
4218          */
4219         if (unlikely(anon_vma_prepare(vma))) {
4220                 ret = VM_FAULT_OOM;
4221                 goto out_release_all;
4222         }
4223
4224         copy_user_huge_page(new_page, old_page, address, vma,
4225                             pages_per_huge_page(h));
4226         __SetPageUptodate(new_page);
4227
4228         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4229                                 haddr + huge_page_size(h));
4230         mmu_notifier_invalidate_range_start(&range);
4231
4232         /*
4233          * Retake the page table lock to check for racing updates
4234          * before the page tables are altered
4235          */
4236         spin_lock(ptl);
4237         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4238         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4239                 ClearPagePrivate(new_page);
4240
4241                 /* Break COW */
4242                 huge_ptep_clear_flush(vma, haddr, ptep);
4243                 mmu_notifier_invalidate_range(mm, range.start, range.end);
4244                 set_huge_pte_at(mm, haddr, ptep,
4245                                 make_huge_pte(vma, new_page, 1));
4246                 page_remove_rmap(old_page, true);
4247                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4248                 set_page_huge_active(new_page);
4249                 /* Make the old page be freed below */
4250                 new_page = old_page;
4251         }
4252         spin_unlock(ptl);
4253         mmu_notifier_invalidate_range_end(&range);
4254 out_release_all:
4255         restore_reserve_on_error(h, vma, haddr, new_page);
4256         put_page(new_page);
4257 out_release_old:
4258         put_page(old_page);
4259
4260         spin_lock(ptl); /* Caller expects lock to be held */
4261         return ret;
4262 }
4263
4264 /* Return the pagecache page at a given address within a VMA */
4265 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4266                         struct vm_area_struct *vma, unsigned long address)
4267 {
4268         struct address_space *mapping;
4269         pgoff_t idx;
4270
4271         mapping = vma->vm_file->f_mapping;
4272         idx = vma_hugecache_offset(h, vma, address);
4273
4274         return find_lock_page(mapping, idx);
4275 }
4276
4277 /*
4278  * Return whether there is a pagecache page to back given address within VMA.
4279  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4280  */
4281 static bool hugetlbfs_pagecache_present(struct hstate *h,
4282                         struct vm_area_struct *vma, unsigned long address)
4283 {
4284         struct address_space *mapping;
4285         pgoff_t idx;
4286         struct page *page;
4287
4288         mapping = vma->vm_file->f_mapping;
4289         idx = vma_hugecache_offset(h, vma, address);
4290
4291         page = find_get_page(mapping, idx);
4292         if (page)
4293                 put_page(page);
4294         return page != NULL;
4295 }
4296
4297 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4298                            pgoff_t idx)
4299 {
4300         struct inode *inode = mapping->host;
4301         struct hstate *h = hstate_inode(inode);
4302         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4303
4304         if (err)
4305                 return err;
4306         ClearPagePrivate(page);
4307
4308         /*
4309          * set page dirty so that it will not be removed from cache/file
4310          * by non-hugetlbfs specific code paths.
4311          */
4312         set_page_dirty(page);
4313
4314         spin_lock(&inode->i_lock);
4315         inode->i_blocks += blocks_per_huge_page(h);
4316         spin_unlock(&inode->i_lock);
4317         return 0;
4318 }
4319
4320 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4321                         struct vm_area_struct *vma,
4322                         struct address_space *mapping, pgoff_t idx,
4323                         unsigned long address, pte_t *ptep, unsigned int flags)
4324 {
4325         struct hstate *h = hstate_vma(vma);
4326         vm_fault_t ret = VM_FAULT_SIGBUS;
4327         int anon_rmap = 0;
4328         unsigned long size;
4329         struct page *page;
4330         pte_t new_pte;
4331         spinlock_t *ptl;
4332         unsigned long haddr = address & huge_page_mask(h);
4333         bool new_page = false;
4334
4335         /*
4336          * Currently, we are forced to kill the process in the event the
4337          * original mapper has unmapped pages from the child due to a failed
4338          * COW. Warn that such a situation has occurred as it may not be obvious
4339          */
4340         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4341                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4342                            current->pid);
4343                 return ret;
4344         }
4345
4346         /*
4347          * We can not race with truncation due to holding i_mmap_rwsem.
4348          * i_size is modified when holding i_mmap_rwsem, so check here
4349          * once for faults beyond end of file.
4350          */
4351         size = i_size_read(mapping->host) >> huge_page_shift(h);
4352         if (idx >= size)
4353                 goto out;
4354
4355 retry:
4356         page = find_lock_page(mapping, idx);
4357         if (!page) {
4358                 /*
4359                  * Check for page in userfault range
4360                  */
4361                 if (userfaultfd_missing(vma)) {
4362                         u32 hash;
4363                         struct vm_fault vmf = {
4364                                 .vma = vma,
4365                                 .address = haddr,
4366                                 .flags = flags,
4367                                 /*
4368                                  * Hard to debug if it ends up being
4369                                  * used by a callee that assumes
4370                                  * something about the other
4371                                  * uninitialized fields... same as in
4372                                  * memory.c
4373                                  */
4374                         };
4375
4376                         /*
4377                          * hugetlb_fault_mutex and i_mmap_rwsem must be
4378                          * dropped before handling userfault.  Reacquire
4379                          * after handling fault to make calling code simpler.
4380                          */
4381                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4382                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4383                         i_mmap_unlock_read(mapping);
4384                         ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4385                         i_mmap_lock_read(mapping);
4386                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4387                         goto out;
4388                 }
4389
4390                 page = alloc_huge_page(vma, haddr, 0);
4391                 if (IS_ERR(page)) {
4392                         /*
4393                          * Returning error will result in faulting task being
4394                          * sent SIGBUS.  The hugetlb fault mutex prevents two
4395                          * tasks from racing to fault in the same page which
4396                          * could result in false unable to allocate errors.
4397                          * Page migration does not take the fault mutex, but
4398                          * does a clear then write of pte's under page table
4399                          * lock.  Page fault code could race with migration,
4400                          * notice the clear pte and try to allocate a page
4401                          * here.  Before returning error, get ptl and make
4402                          * sure there really is no pte entry.
4403                          */
4404                         ptl = huge_pte_lock(h, mm, ptep);
4405                         if (!huge_pte_none(huge_ptep_get(ptep))) {
4406                                 ret = 0;
4407                                 spin_unlock(ptl);
4408                                 goto out;
4409                         }
4410                         spin_unlock(ptl);
4411                         ret = vmf_error(PTR_ERR(page));
4412                         goto out;
4413                 }
4414                 clear_huge_page(page, address, pages_per_huge_page(h));
4415                 __SetPageUptodate(page);
4416                 new_page = true;
4417
4418                 if (vma->vm_flags & VM_MAYSHARE) {
4419                         int err = huge_add_to_page_cache(page, mapping, idx);
4420                         if (err) {
4421                                 put_page(page);
4422                                 if (err == -EEXIST)
4423                                         goto retry;
4424                                 goto out;
4425                         }
4426                 } else {
4427                         lock_page(page);
4428                         if (unlikely(anon_vma_prepare(vma))) {
4429                                 ret = VM_FAULT_OOM;
4430                                 goto backout_unlocked;
4431                         }
4432                         anon_rmap = 1;
4433                 }
4434         } else {
4435                 /*
4436                  * If memory error occurs between mmap() and fault, some process
4437                  * don't have hwpoisoned swap entry for errored virtual address.
4438                  * So we need to block hugepage fault by PG_hwpoison bit check.
4439                  */
4440                 if (unlikely(PageHWPoison(page))) {
4441                         ret = VM_FAULT_HWPOISON |
4442                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4443                         goto backout_unlocked;
4444                 }
4445         }
4446
4447         /*
4448          * If we are going to COW a private mapping later, we examine the
4449          * pending reservations for this page now. This will ensure that
4450          * any allocations necessary to record that reservation occur outside
4451          * the spinlock.
4452          */
4453         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4454                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4455                         ret = VM_FAULT_OOM;
4456                         goto backout_unlocked;
4457                 }
4458                 /* Just decrements count, does not deallocate */
4459                 vma_end_reservation(h, vma, haddr);
4460         }
4461
4462         ptl = huge_pte_lock(h, mm, ptep);
4463         ret = 0;
4464         if (!huge_pte_none(huge_ptep_get(ptep)))
4465                 goto backout;
4466
4467         if (anon_rmap) {
4468                 ClearPagePrivate(page);
4469                 hugepage_add_new_anon_rmap(page, vma, haddr);
4470         } else
4471                 page_dup_rmap(page, true);
4472         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4473                                 && (vma->vm_flags & VM_SHARED)));
4474         set_huge_pte_at(mm, haddr, ptep, new_pte);
4475
4476         hugetlb_count_add(pages_per_huge_page(h), mm);
4477         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4478                 /* Optimization, do the COW without a second fault */
4479                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4480         }
4481
4482         spin_unlock(ptl);
4483
4484         /*
4485          * Only make newly allocated pages active.  Existing pages found
4486          * in the pagecache could be !page_huge_active() if they have been
4487          * isolated for migration.
4488          */
4489         if (new_page)
4490                 set_page_huge_active(page);
4491
4492         unlock_page(page);
4493 out:
4494         return ret;
4495
4496 backout:
4497         spin_unlock(ptl);
4498 backout_unlocked:
4499         unlock_page(page);
4500         restore_reserve_on_error(h, vma, haddr, page);
4501         put_page(page);
4502         goto out;
4503 }
4504
4505 #ifdef CONFIG_SMP
4506 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4507 {
4508         unsigned long key[2];
4509         u32 hash;
4510
4511         key[0] = (unsigned long) mapping;
4512         key[1] = idx;
4513
4514         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4515
4516         return hash & (num_fault_mutexes - 1);
4517 }
4518 #else
4519 /*
4520  * For uniprocesor systems we always use a single mutex, so just
4521  * return 0 and avoid the hashing overhead.
4522  */
4523 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4524 {
4525         return 0;
4526 }
4527 #endif
4528
4529 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4530                         unsigned long address, unsigned int flags)
4531 {
4532         pte_t *ptep, entry;
4533         spinlock_t *ptl;
4534         vm_fault_t ret;
4535         u32 hash;
4536         pgoff_t idx;
4537         struct page *page = NULL;
4538         struct page *pagecache_page = NULL;
4539         struct hstate *h = hstate_vma(vma);
4540         struct address_space *mapping;
4541         int need_wait_lock = 0;
4542         unsigned long haddr = address & huge_page_mask(h);
4543
4544         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4545         if (ptep) {
4546                 /*
4547                  * Since we hold no locks, ptep could be stale.  That is
4548                  * OK as we are only making decisions based on content and
4549                  * not actually modifying content here.
4550                  */
4551                 entry = huge_ptep_get(ptep);
4552                 if (unlikely(is_hugetlb_entry_migration(entry))) {
4553                         migration_entry_wait_huge(vma, mm, ptep);
4554                         return 0;
4555                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4556                         return VM_FAULT_HWPOISON_LARGE |
4557                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4558         }
4559
4560         /*
4561          * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4562          * until finished with ptep.  This serves two purposes:
4563          * 1) It prevents huge_pmd_unshare from being called elsewhere
4564          *    and making the ptep no longer valid.
4565          * 2) It synchronizes us with i_size modifications during truncation.
4566          *
4567          * ptep could have already be assigned via huge_pte_offset.  That
4568          * is OK, as huge_pte_alloc will return the same value unless
4569          * something has changed.
4570          */
4571         mapping = vma->vm_file->f_mapping;
4572         i_mmap_lock_read(mapping);
4573         ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4574         if (!ptep) {
4575                 i_mmap_unlock_read(mapping);
4576                 return VM_FAULT_OOM;
4577         }
4578
4579         /*
4580          * Serialize hugepage allocation and instantiation, so that we don't
4581          * get spurious allocation failures if two CPUs race to instantiate
4582          * the same page in the page cache.
4583          */
4584         idx = vma_hugecache_offset(h, vma, haddr);
4585         hash = hugetlb_fault_mutex_hash(mapping, idx);
4586         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4587
4588         entry = huge_ptep_get(ptep);
4589         if (huge_pte_none(entry)) {
4590                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4591                 goto out_mutex;
4592         }
4593
4594         ret = 0;
4595
4596         /*
4597          * entry could be a migration/hwpoison entry at this point, so this
4598          * check prevents the kernel from going below assuming that we have
4599          * an active hugepage in pagecache. This goto expects the 2nd page
4600          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4601          * properly handle it.
4602          */
4603         if (!pte_present(entry))
4604                 goto out_mutex;
4605
4606         /*
4607          * If we are going to COW the mapping later, we examine the pending
4608          * reservations for this page now. This will ensure that any
4609          * allocations necessary to record that reservation occur outside the
4610          * spinlock. For private mappings, we also lookup the pagecache
4611          * page now as it is used to determine if a reservation has been
4612          * consumed.
4613          */
4614         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4615                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4616                         ret = VM_FAULT_OOM;
4617                         goto out_mutex;
4618                 }
4619                 /* Just decrements count, does not deallocate */
4620                 vma_end_reservation(h, vma, haddr);
4621
4622                 if (!(vma->vm_flags & VM_MAYSHARE))
4623                         pagecache_page = hugetlbfs_pagecache_page(h,
4624                                                                 vma, haddr);
4625         }
4626
4627         ptl = huge_pte_lock(h, mm, ptep);
4628
4629         /* Check for a racing update before calling hugetlb_cow */
4630         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4631                 goto out_ptl;
4632
4633         /*
4634          * hugetlb_cow() requires page locks of pte_page(entry) and
4635          * pagecache_page, so here we need take the former one
4636          * when page != pagecache_page or !pagecache_page.
4637          */
4638         page = pte_page(entry);
4639         if (page != pagecache_page)
4640                 if (!trylock_page(page)) {
4641                         need_wait_lock = 1;
4642                         goto out_ptl;
4643                 }
4644
4645         get_page(page);
4646
4647         if (flags & FAULT_FLAG_WRITE) {
4648                 if (!huge_pte_write(entry)) {
4649                         ret = hugetlb_cow(mm, vma, address, ptep,
4650                                           pagecache_page, ptl);
4651                         goto out_put_page;
4652                 }
4653                 entry = huge_pte_mkdirty(entry);
4654         }
4655         entry = pte_mkyoung(entry);
4656         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4657                                                 flags & FAULT_FLAG_WRITE))
4658                 update_mmu_cache(vma, haddr, ptep);
4659 out_put_page:
4660         if (page != pagecache_page)
4661                 unlock_page(page);
4662         put_page(page);
4663 out_ptl:
4664         spin_unlock(ptl);
4665
4666         if (pagecache_page) {
4667                 unlock_page(pagecache_page);
4668                 put_page(pagecache_page);
4669         }
4670 out_mutex:
4671         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4672         i_mmap_unlock_read(mapping);
4673         /*
4674          * Generally it's safe to hold refcount during waiting page lock. But
4675          * here we just wait to defer the next page fault to avoid busy loop and
4676          * the page is not used after unlocked before returning from the current
4677          * page fault. So we are safe from accessing freed page, even if we wait
4678          * here without taking refcount.
4679          */
4680         if (need_wait_lock)
4681                 wait_on_page_locked(page);
4682         return ret;
4683 }
4684
4685 /*
4686  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4687  * modifications for huge pages.
4688  */
4689 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4690                             pte_t *dst_pte,
4691                             struct vm_area_struct *dst_vma,
4692                             unsigned long dst_addr,
4693                             unsigned long src_addr,
4694                             struct page **pagep)
4695 {
4696         struct address_space *mapping;
4697         pgoff_t idx;
4698         unsigned long size;
4699         int vm_shared = dst_vma->vm_flags & VM_SHARED;
4700         struct hstate *h = hstate_vma(dst_vma);
4701         pte_t _dst_pte;
4702         spinlock_t *ptl;
4703         int ret;
4704         struct page *page;
4705
4706         if (!*pagep) {
4707                 ret = -ENOMEM;
4708                 page = alloc_huge_page(dst_vma, dst_addr, 0);
4709                 if (IS_ERR(page))
4710                         goto out;
4711
4712                 ret = copy_huge_page_from_user(page,
4713                                                 (const void __user *) src_addr,
4714                                                 pages_per_huge_page(h), false);
4715
4716                 /* fallback to copy_from_user outside mmap_lock */
4717                 if (unlikely(ret)) {
4718                         ret = -ENOENT;
4719                         *pagep = page;
4720                         /* don't free the page */
4721                         goto out;
4722                 }
4723         } else {
4724                 page = *pagep;
4725                 *pagep = NULL;
4726         }
4727
4728         /*
4729          * The memory barrier inside __SetPageUptodate makes sure that
4730          * preceding stores to the page contents become visible before
4731          * the set_pte_at() write.
4732          */
4733         __SetPageUptodate(page);
4734
4735         mapping = dst_vma->vm_file->f_mapping;
4736         idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4737
4738         /*
4739          * If shared, add to page cache
4740          */
4741         if (vm_shared) {
4742                 size = i_size_read(mapping->host) >> huge_page_shift(h);
4743                 ret = -EFAULT;
4744                 if (idx >= size)
4745                         goto out_release_nounlock;
4746
4747                 /*
4748                  * Serialization between remove_inode_hugepages() and
4749                  * huge_add_to_page_cache() below happens through the
4750                  * hugetlb_fault_mutex_table that here must be hold by
4751                  * the caller.
4752                  */
4753                 ret = huge_add_to_page_cache(page, mapping, idx);
4754                 if (ret)
4755                         goto out_release_nounlock;
4756         }
4757
4758         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4759         spin_lock(ptl);
4760
4761         /*
4762          * Recheck the i_size after holding PT lock to make sure not
4763          * to leave any page mapped (as page_mapped()) beyond the end
4764          * of the i_size (remove_inode_hugepages() is strict about
4765          * enforcing that). If we bail out here, we'll also leave a
4766          * page in the radix tree in the vm_shared case beyond the end
4767          * of the i_size, but remove_inode_hugepages() will take care
4768          * of it as soon as we drop the hugetlb_fault_mutex_table.
4769          */
4770         size = i_size_read(mapping->host) >> huge_page_shift(h);
4771         ret = -EFAULT;
4772         if (idx >= size)
4773                 goto out_release_unlock;
4774
4775         ret = -EEXIST;
4776         if (!huge_pte_none(huge_ptep_get(dst_pte)))
4777                 goto out_release_unlock;
4778
4779         if (vm_shared) {
4780                 page_dup_rmap(page, true);
4781         } else {
4782                 ClearPagePrivate(page);
4783                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4784         }
4785
4786         _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4787         if (dst_vma->vm_flags & VM_WRITE)
4788                 _dst_pte = huge_pte_mkdirty(_dst_pte);
4789         _dst_pte = pte_mkyoung(_dst_pte);
4790
4791         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4792
4793         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4794                                         dst_vma->vm_flags & VM_WRITE);
4795         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4796
4797         /* No need to invalidate - it was non-present before */
4798         update_mmu_cache(dst_vma, dst_addr, dst_pte);
4799
4800         spin_unlock(ptl);
4801         set_page_huge_active(page);
4802         if (vm_shared)
4803                 unlock_page(page);
4804         ret = 0;
4805 out:
4806         return ret;
4807 out_release_unlock:
4808         spin_unlock(ptl);
4809         if (vm_shared)
4810                 unlock_page(page);
4811 out_release_nounlock:
4812         put_page(page);
4813         goto out;
4814 }
4815
4816 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4817                          struct page **pages, struct vm_area_struct **vmas,
4818                          unsigned long *position, unsigned long *nr_pages,
4819                          long i, unsigned int flags, int *locked)
4820 {
4821         unsigned long pfn_offset;
4822         unsigned long vaddr = *position;
4823         unsigned long remainder = *nr_pages;
4824         struct hstate *h = hstate_vma(vma);
4825         int err = -EFAULT;
4826
4827         while (vaddr < vma->vm_end && remainder) {
4828                 pte_t *pte;
4829                 spinlock_t *ptl = NULL;
4830                 int absent;
4831                 struct page *page;
4832
4833                 /*
4834                  * If we have a pending SIGKILL, don't keep faulting pages and
4835                  * potentially allocating memory.
4836                  */
4837                 if (fatal_signal_pending(current)) {
4838                         remainder = 0;
4839                         break;
4840                 }
4841
4842                 /*
4843                  * Some archs (sparc64, sh*) have multiple pte_ts to
4844                  * each hugepage.  We have to make sure we get the
4845                  * first, for the page indexing below to work.
4846                  *
4847                  * Note that page table lock is not held when pte is null.
4848                  */
4849                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4850                                       huge_page_size(h));
4851                 if (pte)
4852                         ptl = huge_pte_lock(h, mm, pte);
4853                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4854
4855                 /*
4856                  * When coredumping, it suits get_dump_page if we just return
4857                  * an error where there's an empty slot with no huge pagecache
4858                  * to back it.  This way, we avoid allocating a hugepage, and
4859                  * the sparse dumpfile avoids allocating disk blocks, but its
4860                  * huge holes still show up with zeroes where they need to be.
4861                  */
4862                 if (absent && (flags & FOLL_DUMP) &&
4863                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4864                         if (pte)
4865                                 spin_unlock(ptl);
4866                         remainder = 0;
4867                         break;
4868                 }
4869
4870                 /*
4871                  * We need call hugetlb_fault for both hugepages under migration
4872                  * (in which case hugetlb_fault waits for the migration,) and
4873                  * hwpoisoned hugepages (in which case we need to prevent the
4874                  * caller from accessing to them.) In order to do this, we use
4875                  * here is_swap_pte instead of is_hugetlb_entry_migration and
4876                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4877                  * both cases, and because we can't follow correct pages
4878                  * directly from any kind of swap entries.
4879                  */
4880                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4881                     ((flags & FOLL_WRITE) &&
4882                       !huge_pte_write(huge_ptep_get(pte)))) {
4883                         vm_fault_t ret;
4884                         unsigned int fault_flags = 0;
4885
4886                         if (pte)
4887                                 spin_unlock(ptl);
4888                         if (flags & FOLL_WRITE)
4889                                 fault_flags |= FAULT_FLAG_WRITE;
4890                         if (locked)
4891                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4892                                         FAULT_FLAG_KILLABLE;
4893                         if (flags & FOLL_NOWAIT)
4894                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4895                                         FAULT_FLAG_RETRY_NOWAIT;
4896                         if (flags & FOLL_TRIED) {
4897                                 /*
4898                                  * Note: FAULT_FLAG_ALLOW_RETRY and
4899                                  * FAULT_FLAG_TRIED can co-exist
4900                                  */
4901                                 fault_flags |= FAULT_FLAG_TRIED;
4902                         }
4903                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4904                         if (ret & VM_FAULT_ERROR) {
4905                                 err = vm_fault_to_errno(ret, flags);
4906                                 remainder = 0;
4907                                 break;
4908                         }
4909                         if (ret & VM_FAULT_RETRY) {
4910                                 if (locked &&
4911                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4912                                         *locked = 0;
4913                                 *nr_pages = 0;
4914                                 /*
4915                                  * VM_FAULT_RETRY must not return an
4916                                  * error, it will return zero
4917                                  * instead.
4918                                  *
4919                                  * No need to update "position" as the
4920                                  * caller will not check it after
4921                                  * *nr_pages is set to 0.
4922                                  */
4923                                 return i;
4924                         }
4925                         continue;
4926                 }
4927
4928                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4929                 page = pte_page(huge_ptep_get(pte));
4930
4931                 /*
4932                  * If subpage information not requested, update counters
4933                  * and skip the same_page loop below.
4934                  */
4935                 if (!pages && !vmas && !pfn_offset &&
4936                     (vaddr + huge_page_size(h) < vma->vm_end) &&
4937                     (remainder >= pages_per_huge_page(h))) {
4938                         vaddr += huge_page_size(h);
4939                         remainder -= pages_per_huge_page(h);
4940                         i += pages_per_huge_page(h);
4941                         spin_unlock(ptl);
4942                         continue;
4943                 }
4944
4945 same_page:
4946                 if (pages) {
4947                         pages[i] = mem_map_offset(page, pfn_offset);
4948                         /*
4949                          * try_grab_page() should always succeed here, because:
4950                          * a) we hold the ptl lock, and b) we've just checked
4951                          * that the huge page is present in the page tables. If
4952                          * the huge page is present, then the tail pages must
4953                          * also be present. The ptl prevents the head page and
4954                          * tail pages from being rearranged in any way. So this
4955                          * page must be available at this point, unless the page
4956                          * refcount overflowed:
4957                          */
4958                         if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
4959                                 spin_unlock(ptl);
4960                                 remainder = 0;
4961                                 err = -ENOMEM;
4962                                 break;
4963                         }
4964                 }
4965
4966                 if (vmas)
4967                         vmas[i] = vma;
4968
4969                 vaddr += PAGE_SIZE;
4970                 ++pfn_offset;
4971                 --remainder;
4972                 ++i;
4973                 if (vaddr < vma->vm_end && remainder &&
4974                                 pfn_offset < pages_per_huge_page(h)) {
4975                         /*
4976                          * We use pfn_offset to avoid touching the pageframes
4977                          * of this compound page.
4978                          */
4979                         goto same_page;
4980                 }
4981                 spin_unlock(ptl);
4982         }
4983         *nr_pages = remainder;
4984         /*
4985          * setting position is actually required only if remainder is
4986          * not zero but it's faster not to add a "if (remainder)"
4987          * branch.
4988          */
4989         *position = vaddr;
4990
4991         return i ? i : err;
4992 }
4993
4994 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4995 /*
4996  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4997  * implement this.
4998  */
4999 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
5000 #endif
5001
5002 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5003                 unsigned long address, unsigned long end, pgprot_t newprot)
5004 {
5005         struct mm_struct *mm = vma->vm_mm;
5006         unsigned long start = address;
5007         pte_t *ptep;
5008         pte_t pte;
5009         struct hstate *h = hstate_vma(vma);
5010         unsigned long pages = 0;
5011         bool shared_pmd = false;
5012         struct mmu_notifier_range range;
5013
5014         /*
5015          * In the case of shared PMDs, the area to flush could be beyond
5016          * start/end.  Set range.start/range.end to cover the maximum possible
5017          * range if PMD sharing is possible.
5018          */
5019         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5020                                 0, vma, mm, start, end);
5021         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5022
5023         BUG_ON(address >= end);
5024         flush_cache_range(vma, range.start, range.end);
5025
5026         mmu_notifier_invalidate_range_start(&range);
5027         i_mmap_lock_write(vma->vm_file->f_mapping);
5028         for (; address < end; address += huge_page_size(h)) {
5029                 spinlock_t *ptl;
5030                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5031                 if (!ptep)
5032                         continue;
5033                 ptl = huge_pte_lock(h, mm, ptep);
5034                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5035                         pages++;
5036                         spin_unlock(ptl);
5037                         shared_pmd = true;
5038                         continue;
5039                 }
5040                 pte = huge_ptep_get(ptep);
5041                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5042                         spin_unlock(ptl);
5043                         continue;
5044                 }
5045                 if (unlikely(is_hugetlb_entry_migration(pte))) {
5046                         swp_entry_t entry = pte_to_swp_entry(pte);
5047
5048                         if (is_write_migration_entry(entry)) {
5049                                 pte_t newpte;
5050
5051                                 make_migration_entry_read(&entry);
5052                                 newpte = swp_entry_to_pte(entry);
5053                                 set_huge_swap_pte_at(mm, address, ptep,
5054                                                      newpte, huge_page_size(h));
5055                                 pages++;
5056                         }
5057                         spin_unlock(ptl);
5058                         continue;
5059                 }
5060                 if (!huge_pte_none(pte)) {
5061                         pte_t old_pte;
5062
5063                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5064                         pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5065                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
5066                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5067                         pages++;
5068                 }
5069                 spin_unlock(ptl);
5070         }
5071         /*
5072          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5073          * may have cleared our pud entry and done put_page on the page table:
5074          * once we release i_mmap_rwsem, another task can do the final put_page
5075          * and that page table be reused and filled with junk.  If we actually
5076          * did unshare a page of pmds, flush the range corresponding to the pud.
5077          */
5078         if (shared_pmd)
5079                 flush_hugetlb_tlb_range(vma, range.start, range.end);
5080         else
5081                 flush_hugetlb_tlb_range(vma, start, end);
5082         /*
5083          * No need to call mmu_notifier_invalidate_range() we are downgrading
5084          * page table protection not changing it to point to a new page.
5085          *
5086          * See Documentation/vm/mmu_notifier.rst
5087          */
5088         i_mmap_unlock_write(vma->vm_file->f_mapping);
5089         mmu_notifier_invalidate_range_end(&range);
5090
5091         return pages << h->order;
5092 }
5093
5094 int hugetlb_reserve_pages(struct inode *inode,
5095                                         long from, long to,
5096                                         struct vm_area_struct *vma,
5097                                         vm_flags_t vm_flags)
5098 {
5099         long ret, chg, add = -1;
5100         struct hstate *h = hstate_inode(inode);
5101         struct hugepage_subpool *spool = subpool_inode(inode);
5102         struct resv_map *resv_map;
5103         struct hugetlb_cgroup *h_cg = NULL;
5104         long gbl_reserve, regions_needed = 0;
5105
5106         /* This should never happen */
5107         if (from > to) {
5108                 VM_WARN(1, "%s called with a negative range\n", __func__);
5109                 return -EINVAL;
5110         }
5111
5112         /*
5113          * Only apply hugepage reservation if asked. At fault time, an
5114          * attempt will be made for VM_NORESERVE to allocate a page
5115          * without using reserves
5116          */
5117         if (vm_flags & VM_NORESERVE)
5118                 return 0;
5119
5120         /*
5121          * Shared mappings base their reservation on the number of pages that
5122          * are already allocated on behalf of the file. Private mappings need
5123          * to reserve the full area even if read-only as mprotect() may be
5124          * called to make the mapping read-write. Assume !vma is a shm mapping
5125          */
5126         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5127                 /*
5128                  * resv_map can not be NULL as hugetlb_reserve_pages is only
5129                  * called for inodes for which resv_maps were created (see
5130                  * hugetlbfs_get_inode).
5131                  */
5132                 resv_map = inode_resv_map(inode);
5133
5134                 chg = region_chg(resv_map, from, to, &regions_needed);
5135
5136         } else {
5137                 /* Private mapping. */
5138                 resv_map = resv_map_alloc();
5139                 if (!resv_map)
5140                         return -ENOMEM;
5141
5142                 chg = to - from;
5143
5144                 set_vma_resv_map(vma, resv_map);
5145                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5146         }
5147
5148         if (chg < 0) {
5149                 ret = chg;
5150                 goto out_err;
5151         }
5152
5153         ret = hugetlb_cgroup_charge_cgroup_rsvd(
5154                 hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
5155
5156         if (ret < 0) {
5157                 ret = -ENOMEM;
5158                 goto out_err;
5159         }
5160
5161         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5162                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5163                  * of the resv_map.
5164                  */
5165                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5166         }
5167
5168         /*
5169          * There must be enough pages in the subpool for the mapping. If
5170          * the subpool has a minimum size, there may be some global
5171          * reservations already in place (gbl_reserve).
5172          */
5173         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5174         if (gbl_reserve < 0) {
5175                 ret = -ENOSPC;
5176                 goto out_uncharge_cgroup;
5177         }
5178
5179         /*
5180          * Check enough hugepages are available for the reservation.
5181          * Hand the pages back to the subpool if there are not
5182          */
5183         ret = hugetlb_acct_memory(h, gbl_reserve);
5184         if (ret < 0) {
5185                 goto out_put_pages;
5186         }
5187
5188         /*
5189          * Account for the reservations made. Shared mappings record regions
5190          * that have reservations as they are shared by multiple VMAs.
5191          * When the last VMA disappears, the region map says how much
5192          * the reservation was and the page cache tells how much of
5193          * the reservation was consumed. Private mappings are per-VMA and
5194          * only the consumed reservations are tracked. When the VMA
5195          * disappears, the original reservation is the VMA size and the
5196          * consumed reservations are stored in the map. Hence, nothing
5197          * else has to be done for private mappings here
5198          */
5199         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5200                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5201
5202                 if (unlikely(add < 0)) {
5203                         hugetlb_acct_memory(h, -gbl_reserve);
5204                         goto out_put_pages;
5205                 } else if (unlikely(chg > add)) {
5206                         /*
5207                          * pages in this range were added to the reserve
5208                          * map between region_chg and region_add.  This
5209                          * indicates a race with alloc_huge_page.  Adjust
5210                          * the subpool and reserve counts modified above
5211                          * based on the difference.
5212                          */
5213                         long rsv_adjust;
5214
5215                         hugetlb_cgroup_uncharge_cgroup_rsvd(
5216                                 hstate_index(h),
5217                                 (chg - add) * pages_per_huge_page(h), h_cg);
5218
5219                         rsv_adjust = hugepage_subpool_put_pages(spool,
5220                                                                 chg - add);
5221                         hugetlb_acct_memory(h, -rsv_adjust);
5222                 }
5223         }
5224         return 0;
5225 out_put_pages:
5226         /* put back original number of pages, chg */
5227         (void)hugepage_subpool_put_pages(spool, chg);
5228 out_uncharge_cgroup:
5229         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5230                                             chg * pages_per_huge_page(h), h_cg);
5231 out_err:
5232         if (!vma || vma->vm_flags & VM_MAYSHARE)
5233                 /* Only call region_abort if the region_chg succeeded but the
5234                  * region_add failed or didn't run.
5235                  */
5236                 if (chg >= 0 && add < 0)
5237                         region_abort(resv_map, from, to, regions_needed);
5238         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5239                 kref_put(&resv_map->refs, resv_map_release);
5240         return ret;
5241 }
5242
5243 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5244                                                                 long freed)
5245 {
5246         struct hstate *h = hstate_inode(inode);
5247         struct resv_map *resv_map = inode_resv_map(inode);
5248         long chg = 0;
5249         struct hugepage_subpool *spool = subpool_inode(inode);
5250         long gbl_reserve;
5251
5252         /*
5253          * Since this routine can be called in the evict inode path for all
5254          * hugetlbfs inodes, resv_map could be NULL.
5255          */
5256         if (resv_map) {
5257                 chg = region_del(resv_map, start, end);
5258                 /*
5259                  * region_del() can fail in the rare case where a region
5260                  * must be split and another region descriptor can not be
5261                  * allocated.  If end == LONG_MAX, it will not fail.
5262                  */
5263                 if (chg < 0)
5264                         return chg;
5265         }
5266
5267         spin_lock(&inode->i_lock);
5268         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5269         spin_unlock(&inode->i_lock);
5270
5271         /*
5272          * If the subpool has a minimum size, the number of global
5273          * reservations to be released may be adjusted.
5274          */
5275         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5276         hugetlb_acct_memory(h, -gbl_reserve);
5277
5278         return 0;
5279 }
5280
5281 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5282 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5283                                 struct vm_area_struct *vma,
5284                                 unsigned long addr, pgoff_t idx)
5285 {
5286         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5287                                 svma->vm_start;
5288         unsigned long sbase = saddr & PUD_MASK;
5289         unsigned long s_end = sbase + PUD_SIZE;
5290
5291         /* Allow segments to share if only one is marked locked */
5292         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5293         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5294
5295         /*
5296          * match the virtual addresses, permission and the alignment of the
5297          * page table page.
5298          */
5299         if (pmd_index(addr) != pmd_index(saddr) ||
5300             vm_flags != svm_flags ||
5301             sbase < svma->vm_start || svma->vm_end < s_end)
5302                 return 0;
5303
5304         return saddr;
5305 }
5306
5307 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5308 {
5309         unsigned long base = addr & PUD_MASK;
5310         unsigned long end = base + PUD_SIZE;
5311
5312         /*
5313          * check on proper vm_flags and page table alignment
5314          */
5315         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5316                 return true;
5317         return false;
5318 }
5319
5320 /*
5321  * Determine if start,end range within vma could be mapped by shared pmd.
5322  * If yes, adjust start and end to cover range associated with possible
5323  * shared pmd mappings.
5324  */
5325 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5326                                 unsigned long *start, unsigned long *end)
5327 {
5328         unsigned long a_start, a_end;
5329
5330         if (!(vma->vm_flags & VM_MAYSHARE))
5331                 return;
5332
5333         /* Extend the range to be PUD aligned for a worst case scenario */
5334         a_start = ALIGN_DOWN(*start, PUD_SIZE);
5335         a_end = ALIGN(*end, PUD_SIZE);
5336
5337         /*
5338          * Intersect the range with the vma range, since pmd sharing won't be
5339          * across vma after all
5340          */
5341         *start = max(vma->vm_start, a_start);
5342         *end = min(vma->vm_end, a_end);
5343 }
5344
5345 /*
5346  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5347  * and returns the corresponding pte. While this is not necessary for the
5348  * !shared pmd case because we can allocate the pmd later as well, it makes the
5349  * code much cleaner.
5350  *
5351  * This routine must be called with i_mmap_rwsem held in at least read mode.
5352  * For hugetlbfs, this prevents removal of any page table entries associated
5353  * with the address space.  This is important as we are setting up sharing
5354  * based on existing page table entries (mappings).
5355  */
5356 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5357 {
5358         struct vm_area_struct *vma = find_vma(mm, addr);
5359         struct address_space *mapping = vma->vm_file->f_mapping;
5360         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5361                         vma->vm_pgoff;
5362         struct vm_area_struct *svma;
5363         unsigned long saddr;
5364         pte_t *spte = NULL;
5365         pte_t *pte;
5366         spinlock_t *ptl;
5367
5368         if (!vma_shareable(vma, addr))
5369                 return (pte_t *)pmd_alloc(mm, pud, addr);
5370
5371         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5372                 if (svma == vma)
5373                         continue;
5374
5375                 saddr = page_table_shareable(svma, vma, addr, idx);
5376                 if (saddr) {
5377                         spte = huge_pte_offset(svma->vm_mm, saddr,
5378                                                vma_mmu_pagesize(svma));
5379                         if (spte) {
5380                                 get_page(virt_to_page(spte));
5381                                 break;
5382                         }
5383                 }
5384         }
5385
5386         if (!spte)
5387                 goto out;
5388
5389         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5390         if (pud_none(*pud)) {
5391                 pud_populate(mm, pud,
5392                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
5393                 mm_inc_nr_pmds(mm);
5394         } else {
5395                 put_page(virt_to_page(spte));
5396         }
5397         spin_unlock(ptl);
5398 out:
5399         pte = (pte_t *)pmd_alloc(mm, pud, addr);
5400         return pte;
5401 }
5402
5403 /*
5404  * unmap huge page backed by shared pte.
5405  *
5406  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5407  * indicated by page_count > 1, unmap is achieved by clearing pud and
5408  * decrementing the ref count. If count == 1, the pte page is not shared.
5409  *
5410  * Called with page table lock held and i_mmap_rwsem held in write mode.
5411  *
5412  * returns: 1 successfully unmapped a shared pte page
5413  *          0 the underlying pte page is not shared, or it is the last user
5414  */
5415 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5416                                         unsigned long *addr, pte_t *ptep)
5417 {
5418         pgd_t *pgd = pgd_offset(mm, *addr);
5419         p4d_t *p4d = p4d_offset(pgd, *addr);
5420         pud_t *pud = pud_offset(p4d, *addr);
5421
5422         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5423         BUG_ON(page_count(virt_to_page(ptep)) == 0);
5424         if (page_count(virt_to_page(ptep)) == 1)
5425                 return 0;
5426
5427         pud_clear(pud);
5428         put_page(virt_to_page(ptep));
5429         mm_dec_nr_pmds(mm);
5430         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5431         return 1;
5432 }
5433 #define want_pmd_share()        (1)
5434 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5435 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5436 {
5437         return NULL;
5438 }
5439
5440 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5441                                 unsigned long *addr, pte_t *ptep)
5442 {
5443         return 0;
5444 }
5445
5446 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5447                                 unsigned long *start, unsigned long *end)
5448 {
5449 }
5450 #define want_pmd_share()        (0)
5451 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5452
5453 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5454 pte_t *huge_pte_alloc(struct mm_struct *mm,
5455                         unsigned long addr, unsigned long sz)
5456 {
5457         pgd_t *pgd;
5458         p4d_t *p4d;
5459         pud_t *pud;
5460         pte_t *pte = NULL;
5461
5462         pgd = pgd_offset(mm, addr);
5463         p4d = p4d_alloc(mm, pgd, addr);
5464         if (!p4d)
5465                 return NULL;
5466         pud = pud_alloc(mm, p4d, addr);
5467         if (pud) {
5468                 if (sz == PUD_SIZE) {
5469                         pte = (pte_t *)pud;
5470                 } else {
5471                         BUG_ON(sz != PMD_SIZE);
5472                         if (want_pmd_share() && pud_none(*pud))
5473                                 pte = huge_pmd_share(mm, addr, pud);
5474                         else
5475                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5476                 }
5477         }
5478         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5479
5480         return pte;
5481 }
5482
5483 /*
5484  * huge_pte_offset() - Walk the page table to resolve the hugepage
5485  * entry at address @addr
5486  *
5487  * Return: Pointer to page table entry (PUD or PMD) for
5488  * address @addr, or NULL if a !p*d_present() entry is encountered and the
5489  * size @sz doesn't match the hugepage size at this level of the page
5490  * table.
5491  */
5492 pte_t *huge_pte_offset(struct mm_struct *mm,
5493                        unsigned long addr, unsigned long sz)
5494 {
5495         pgd_t *pgd;
5496         p4d_t *p4d;
5497         pud_t *pud;
5498         pmd_t *pmd;
5499
5500         pgd = pgd_offset(mm, addr);
5501         if (!pgd_present(*pgd))
5502                 return NULL;
5503         p4d = p4d_offset(pgd, addr);
5504         if (!p4d_present(*p4d))
5505                 return NULL;
5506
5507         pud = pud_offset(p4d, addr);
5508         if (sz == PUD_SIZE)
5509                 /* must be pud huge, non-present or none */
5510                 return (pte_t *)pud;
5511         if (!pud_present(*pud))
5512                 return NULL;
5513         /* must have a valid entry and size to go further */
5514
5515         pmd = pmd_offset(pud, addr);
5516         /* must be pmd huge, non-present or none */
5517         return (pte_t *)pmd;
5518 }
5519
5520 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5521
5522 /*
5523  * These functions are overwritable if your architecture needs its own
5524  * behavior.
5525  */
5526 struct page * __weak
5527 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5528                               int write)
5529 {
5530         return ERR_PTR(-EINVAL);
5531 }
5532
5533 struct page * __weak
5534 follow_huge_pd(struct vm_area_struct *vma,
5535                unsigned long address, hugepd_t hpd, int flags, int pdshift)
5536 {
5537         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5538         return NULL;
5539 }
5540
5541 struct page * __weak
5542 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5543                 pmd_t *pmd, int flags)
5544 {
5545         struct page *page = NULL;
5546         spinlock_t *ptl;
5547         pte_t pte;
5548
5549         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5550         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5551                          (FOLL_PIN | FOLL_GET)))
5552                 return NULL;
5553
5554 retry:
5555         ptl = pmd_lockptr(mm, pmd);
5556         spin_lock(ptl);
5557         /*
5558          * make sure that the address range covered by this pmd is not
5559          * unmapped from other threads.
5560          */
5561         if (!pmd_huge(*pmd))
5562                 goto out;
5563         pte = huge_ptep_get((pte_t *)pmd);
5564         if (pte_present(pte)) {
5565                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5566                 /*
5567                  * try_grab_page() should always succeed here, because: a) we
5568                  * hold the pmd (ptl) lock, and b) we've just checked that the
5569                  * huge pmd (head) page is present in the page tables. The ptl
5570                  * prevents the head page and tail pages from being rearranged
5571                  * in any way. So this page must be available at this point,
5572                  * unless the page refcount overflowed:
5573                  */
5574                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5575                         page = NULL;
5576                         goto out;
5577                 }
5578         } else {
5579                 if (is_hugetlb_entry_migration(pte)) {
5580                         spin_unlock(ptl);
5581                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5582                         goto retry;
5583                 }
5584                 /*
5585                  * hwpoisoned entry is treated as no_page_table in
5586                  * follow_page_mask().
5587                  */
5588         }
5589 out:
5590         spin_unlock(ptl);
5591         return page;
5592 }
5593
5594 struct page * __weak
5595 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5596                 pud_t *pud, int flags)
5597 {
5598         if (flags & (FOLL_GET | FOLL_PIN))
5599                 return NULL;
5600
5601         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5602 }
5603
5604 struct page * __weak
5605 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5606 {
5607         if (flags & (FOLL_GET | FOLL_PIN))
5608                 return NULL;
5609
5610         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5611 }
5612
5613 bool isolate_huge_page(struct page *page, struct list_head *list)
5614 {
5615         bool ret = true;
5616
5617         VM_BUG_ON_PAGE(!PageHead(page), page);
5618         spin_lock(&hugetlb_lock);
5619         if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5620                 ret = false;
5621                 goto unlock;
5622         }
5623         clear_page_huge_active(page);
5624         list_move_tail(&page->lru, list);
5625 unlock:
5626         spin_unlock(&hugetlb_lock);
5627         return ret;
5628 }
5629
5630 void putback_active_hugepage(struct page *page)
5631 {
5632         VM_BUG_ON_PAGE(!PageHead(page), page);
5633         spin_lock(&hugetlb_lock);
5634         set_page_huge_active(page);
5635         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5636         spin_unlock(&hugetlb_lock);
5637         put_page(page);
5638 }
5639
5640 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5641 {
5642         struct hstate *h = page_hstate(oldpage);
5643
5644         hugetlb_cgroup_migrate(oldpage, newpage);
5645         set_page_owner_migrate_reason(newpage, reason);
5646
5647         /*
5648          * transfer temporary state of the new huge page. This is
5649          * reverse to other transitions because the newpage is going to
5650          * be final while the old one will be freed so it takes over
5651          * the temporary status.
5652          *
5653          * Also note that we have to transfer the per-node surplus state
5654          * here as well otherwise the global surplus count will not match
5655          * the per-node's.
5656          */
5657         if (PageHugeTemporary(newpage)) {
5658                 int old_nid = page_to_nid(oldpage);
5659                 int new_nid = page_to_nid(newpage);
5660
5661                 SetPageHugeTemporary(oldpage);
5662                 ClearPageHugeTemporary(newpage);
5663
5664                 spin_lock(&hugetlb_lock);
5665                 if (h->surplus_huge_pages_node[old_nid]) {
5666                         h->surplus_huge_pages_node[old_nid]--;
5667                         h->surplus_huge_pages_node[new_nid]++;
5668                 }
5669                 spin_unlock(&hugetlb_lock);
5670         }
5671 }
5672
5673 #ifdef CONFIG_CMA
5674 static bool cma_reserve_called __initdata;
5675
5676 static int __init cmdline_parse_hugetlb_cma(char *p)
5677 {
5678         hugetlb_cma_size = memparse(p, &p);
5679         return 0;
5680 }
5681
5682 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5683
5684 void __init hugetlb_cma_reserve(int order)
5685 {
5686         unsigned long size, reserved, per_node;
5687         int nid;
5688
5689         cma_reserve_called = true;
5690
5691         if (!hugetlb_cma_size)
5692                 return;
5693
5694         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5695                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5696                         (PAGE_SIZE << order) / SZ_1M);
5697                 return;
5698         }
5699
5700         /*
5701          * If 3 GB area is requested on a machine with 4 numa nodes,
5702          * let's allocate 1 GB on first three nodes and ignore the last one.
5703          */
5704         per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5705         pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5706                 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5707
5708         reserved = 0;
5709         for_each_node_state(nid, N_ONLINE) {
5710                 int res;
5711                 char name[20];
5712
5713                 size = min(per_node, hugetlb_cma_size - reserved);
5714                 size = round_up(size, PAGE_SIZE << order);
5715
5716                 snprintf(name, 20, "hugetlb%d", nid);
5717                 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5718                                                  0, false, name,
5719                                                  &hugetlb_cma[nid], nid);
5720                 if (res) {
5721                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5722                                 res, nid);
5723                         continue;
5724                 }
5725
5726                 reserved += size;
5727                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5728                         size / SZ_1M, nid);
5729
5730                 if (reserved >= hugetlb_cma_size)
5731                         break;
5732         }
5733 }
5734
5735 void __init hugetlb_cma_check(void)
5736 {
5737         if (!hugetlb_cma_size || cma_reserve_called)
5738                 return;
5739
5740         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5741 }
5742
5743 #endif /* CONFIG_CMA */