Merge tag 'ext4_for_linus_cleanups' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlb.h>
37
38 #include <linux/io.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45
46 int hugetlb_max_hstate __read_mostly;
47 unsigned int default_hstate_idx;
48 struct hstate hstates[HUGE_MAX_HSTATE];
49
50 #ifdef CONFIG_CMA
51 static struct cma *hugetlb_cma[MAX_NUMNODES];
52 #endif
53 static unsigned long hugetlb_cma_size __initdata;
54
55 /*
56  * Minimum page order among possible hugepage sizes, set to a proper value
57  * at boot time.
58  */
59 static unsigned int minimum_order __read_mostly = UINT_MAX;
60
61 __initdata LIST_HEAD(huge_boot_pages);
62
63 /* for command line parsing */
64 static struct hstate * __initdata parsed_hstate;
65 static unsigned long __initdata default_hstate_max_huge_pages;
66 static bool __initdata parsed_valid_hugepagesz = true;
67 static bool __initdata parsed_default_hugepagesz;
68
69 /*
70  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71  * free_huge_pages, and surplus_huge_pages.
72  */
73 DEFINE_SPINLOCK(hugetlb_lock);
74
75 /*
76  * Serializes faults on the same logical page.  This is used to
77  * prevent spurious OOMs when the hugepage pool is fully utilized.
78  */
79 static int num_fault_mutexes;
80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81
82 /* Forward declaration */
83 static int hugetlb_acct_memory(struct hstate *h, long delta);
84
85 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
86 {
87         bool free = (spool->count == 0) && (spool->used_hpages == 0);
88
89         spin_unlock(&spool->lock);
90
91         /* If no pages are used, and no other handles to the subpool
92          * remain, give up any reservations based on minimum size and
93          * free the subpool */
94         if (free) {
95                 if (spool->min_hpages != -1)
96                         hugetlb_acct_memory(spool->hstate,
97                                                 -spool->min_hpages);
98                 kfree(spool);
99         }
100 }
101
102 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
103                                                 long min_hpages)
104 {
105         struct hugepage_subpool *spool;
106
107         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
108         if (!spool)
109                 return NULL;
110
111         spin_lock_init(&spool->lock);
112         spool->count = 1;
113         spool->max_hpages = max_hpages;
114         spool->hstate = h;
115         spool->min_hpages = min_hpages;
116
117         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
118                 kfree(spool);
119                 return NULL;
120         }
121         spool->rsv_hpages = min_hpages;
122
123         return spool;
124 }
125
126 void hugepage_put_subpool(struct hugepage_subpool *spool)
127 {
128         spin_lock(&spool->lock);
129         BUG_ON(!spool->count);
130         spool->count--;
131         unlock_or_release_subpool(spool);
132 }
133
134 /*
135  * Subpool accounting for allocating and reserving pages.
136  * Return -ENOMEM if there are not enough resources to satisfy the
137  * request.  Otherwise, return the number of pages by which the
138  * global pools must be adjusted (upward).  The returned value may
139  * only be different than the passed value (delta) in the case where
140  * a subpool minimum size must be maintained.
141  */
142 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
143                                       long delta)
144 {
145         long ret = delta;
146
147         if (!spool)
148                 return ret;
149
150         spin_lock(&spool->lock);
151
152         if (spool->max_hpages != -1) {          /* maximum size accounting */
153                 if ((spool->used_hpages + delta) <= spool->max_hpages)
154                         spool->used_hpages += delta;
155                 else {
156                         ret = -ENOMEM;
157                         goto unlock_ret;
158                 }
159         }
160
161         /* minimum size accounting */
162         if (spool->min_hpages != -1 && spool->rsv_hpages) {
163                 if (delta > spool->rsv_hpages) {
164                         /*
165                          * Asking for more reserves than those already taken on
166                          * behalf of subpool.  Return difference.
167                          */
168                         ret = delta - spool->rsv_hpages;
169                         spool->rsv_hpages = 0;
170                 } else {
171                         ret = 0;        /* reserves already accounted for */
172                         spool->rsv_hpages -= delta;
173                 }
174         }
175
176 unlock_ret:
177         spin_unlock(&spool->lock);
178         return ret;
179 }
180
181 /*
182  * Subpool accounting for freeing and unreserving pages.
183  * Return the number of global page reservations that must be dropped.
184  * The return value may only be different than the passed value (delta)
185  * in the case where a subpool minimum size must be maintained.
186  */
187 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
188                                        long delta)
189 {
190         long ret = delta;
191
192         if (!spool)
193                 return delta;
194
195         spin_lock(&spool->lock);
196
197         if (spool->max_hpages != -1)            /* maximum size accounting */
198                 spool->used_hpages -= delta;
199
200          /* minimum size accounting */
201         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
202                 if (spool->rsv_hpages + delta <= spool->min_hpages)
203                         ret = 0;
204                 else
205                         ret = spool->rsv_hpages + delta - spool->min_hpages;
206
207                 spool->rsv_hpages += delta;
208                 if (spool->rsv_hpages > spool->min_hpages)
209                         spool->rsv_hpages = spool->min_hpages;
210         }
211
212         /*
213          * If hugetlbfs_put_super couldn't free spool due to an outstanding
214          * quota reference, free it now.
215          */
216         unlock_or_release_subpool(spool);
217
218         return ret;
219 }
220
221 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
222 {
223         return HUGETLBFS_SB(inode->i_sb)->spool;
224 }
225
226 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
227 {
228         return subpool_inode(file_inode(vma->vm_file));
229 }
230
231 /* Helper that removes a struct file_region from the resv_map cache and returns
232  * it for use.
233  */
234 static struct file_region *
235 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
236 {
237         struct file_region *nrg = NULL;
238
239         VM_BUG_ON(resv->region_cache_count <= 0);
240
241         resv->region_cache_count--;
242         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
243         list_del(&nrg->link);
244
245         nrg->from = from;
246         nrg->to = to;
247
248         return nrg;
249 }
250
251 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
252                                               struct file_region *rg)
253 {
254 #ifdef CONFIG_CGROUP_HUGETLB
255         nrg->reservation_counter = rg->reservation_counter;
256         nrg->css = rg->css;
257         if (rg->css)
258                 css_get(rg->css);
259 #endif
260 }
261
262 /* Helper that records hugetlb_cgroup uncharge info. */
263 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
264                                                 struct hstate *h,
265                                                 struct resv_map *resv,
266                                                 struct file_region *nrg)
267 {
268 #ifdef CONFIG_CGROUP_HUGETLB
269         if (h_cg) {
270                 nrg->reservation_counter =
271                         &h_cg->rsvd_hugepage[hstate_index(h)];
272                 nrg->css = &h_cg->css;
273                 if (!resv->pages_per_hpage)
274                         resv->pages_per_hpage = pages_per_huge_page(h);
275                 /* pages_per_hpage should be the same for all entries in
276                  * a resv_map.
277                  */
278                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
279         } else {
280                 nrg->reservation_counter = NULL;
281                 nrg->css = NULL;
282         }
283 #endif
284 }
285
286 static bool has_same_uncharge_info(struct file_region *rg,
287                                    struct file_region *org)
288 {
289 #ifdef CONFIG_CGROUP_HUGETLB
290         return rg && org &&
291                rg->reservation_counter == org->reservation_counter &&
292                rg->css == org->css;
293
294 #else
295         return true;
296 #endif
297 }
298
299 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
300 {
301         struct file_region *nrg = NULL, *prg = NULL;
302
303         prg = list_prev_entry(rg, link);
304         if (&prg->link != &resv->regions && prg->to == rg->from &&
305             has_same_uncharge_info(prg, rg)) {
306                 prg->to = rg->to;
307
308                 list_del(&rg->link);
309                 kfree(rg);
310
311                 rg = prg;
312         }
313
314         nrg = list_next_entry(rg, link);
315         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
316             has_same_uncharge_info(nrg, rg)) {
317                 nrg->from = rg->from;
318
319                 list_del(&rg->link);
320                 kfree(rg);
321         }
322 }
323
324 /*
325  * Must be called with resv->lock held.
326  *
327  * Calling this with regions_needed != NULL will count the number of pages
328  * to be added but will not modify the linked list. And regions_needed will
329  * indicate the number of file_regions needed in the cache to carry out to add
330  * the regions for this range.
331  */
332 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
333                                      struct hugetlb_cgroup *h_cg,
334                                      struct hstate *h, long *regions_needed)
335 {
336         long add = 0;
337         struct list_head *head = &resv->regions;
338         long last_accounted_offset = f;
339         struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
340
341         if (regions_needed)
342                 *regions_needed = 0;
343
344         /* In this loop, we essentially handle an entry for the range
345          * [last_accounted_offset, rg->from), at every iteration, with some
346          * bounds checking.
347          */
348         list_for_each_entry_safe(rg, trg, head, link) {
349                 /* Skip irrelevant regions that start before our range. */
350                 if (rg->from < f) {
351                         /* If this region ends after the last accounted offset,
352                          * then we need to update last_accounted_offset.
353                          */
354                         if (rg->to > last_accounted_offset)
355                                 last_accounted_offset = rg->to;
356                         continue;
357                 }
358
359                 /* When we find a region that starts beyond our range, we've
360                  * finished.
361                  */
362                 if (rg->from > t)
363                         break;
364
365                 /* Add an entry for last_accounted_offset -> rg->from, and
366                  * update last_accounted_offset.
367                  */
368                 if (rg->from > last_accounted_offset) {
369                         add += rg->from - last_accounted_offset;
370                         if (!regions_needed) {
371                                 nrg = get_file_region_entry_from_cache(
372                                         resv, last_accounted_offset, rg->from);
373                                 record_hugetlb_cgroup_uncharge_info(h_cg, h,
374                                                                     resv, nrg);
375                                 list_add(&nrg->link, rg->link.prev);
376                                 coalesce_file_region(resv, nrg);
377                         } else
378                                 *regions_needed += 1;
379                 }
380
381                 last_accounted_offset = rg->to;
382         }
383
384         /* Handle the case where our range extends beyond
385          * last_accounted_offset.
386          */
387         if (last_accounted_offset < t) {
388                 add += t - last_accounted_offset;
389                 if (!regions_needed) {
390                         nrg = get_file_region_entry_from_cache(
391                                 resv, last_accounted_offset, t);
392                         record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
393                         list_add(&nrg->link, rg->link.prev);
394                         coalesce_file_region(resv, nrg);
395                 } else
396                         *regions_needed += 1;
397         }
398
399         VM_BUG_ON(add < 0);
400         return add;
401 }
402
403 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
404  */
405 static int allocate_file_region_entries(struct resv_map *resv,
406                                         int regions_needed)
407         __must_hold(&resv->lock)
408 {
409         struct list_head allocated_regions;
410         int to_allocate = 0, i = 0;
411         struct file_region *trg = NULL, *rg = NULL;
412
413         VM_BUG_ON(regions_needed < 0);
414
415         INIT_LIST_HEAD(&allocated_regions);
416
417         /*
418          * Check for sufficient descriptors in the cache to accommodate
419          * the number of in progress add operations plus regions_needed.
420          *
421          * This is a while loop because when we drop the lock, some other call
422          * to region_add or region_del may have consumed some region_entries,
423          * so we keep looping here until we finally have enough entries for
424          * (adds_in_progress + regions_needed).
425          */
426         while (resv->region_cache_count <
427                (resv->adds_in_progress + regions_needed)) {
428                 to_allocate = resv->adds_in_progress + regions_needed -
429                               resv->region_cache_count;
430
431                 /* At this point, we should have enough entries in the cache
432                  * for all the existings adds_in_progress. We should only be
433                  * needing to allocate for regions_needed.
434                  */
435                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
436
437                 spin_unlock(&resv->lock);
438                 for (i = 0; i < to_allocate; i++) {
439                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
440                         if (!trg)
441                                 goto out_of_memory;
442                         list_add(&trg->link, &allocated_regions);
443                 }
444
445                 spin_lock(&resv->lock);
446
447                 list_splice(&allocated_regions, &resv->region_cache);
448                 resv->region_cache_count += to_allocate;
449         }
450
451         return 0;
452
453 out_of_memory:
454         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
455                 list_del(&rg->link);
456                 kfree(rg);
457         }
458         return -ENOMEM;
459 }
460
461 /*
462  * Add the huge page range represented by [f, t) to the reserve
463  * map.  Regions will be taken from the cache to fill in this range.
464  * Sufficient regions should exist in the cache due to the previous
465  * call to region_chg with the same range, but in some cases the cache will not
466  * have sufficient entries due to races with other code doing region_add or
467  * region_del.  The extra needed entries will be allocated.
468  *
469  * regions_needed is the out value provided by a previous call to region_chg.
470  *
471  * Return the number of new huge pages added to the map.  This number is greater
472  * than or equal to zero.  If file_region entries needed to be allocated for
473  * this operation and we were not able to allocate, it returns -ENOMEM.
474  * region_add of regions of length 1 never allocate file_regions and cannot
475  * fail; region_chg will always allocate at least 1 entry and a region_add for
476  * 1 page will only require at most 1 entry.
477  */
478 static long region_add(struct resv_map *resv, long f, long t,
479                        long in_regions_needed, struct hstate *h,
480                        struct hugetlb_cgroup *h_cg)
481 {
482         long add = 0, actual_regions_needed = 0;
483
484         spin_lock(&resv->lock);
485 retry:
486
487         /* Count how many regions are actually needed to execute this add. */
488         add_reservation_in_range(resv, f, t, NULL, NULL,
489                                  &actual_regions_needed);
490
491         /*
492          * Check for sufficient descriptors in the cache to accommodate
493          * this add operation. Note that actual_regions_needed may be greater
494          * than in_regions_needed, as the resv_map may have been modified since
495          * the region_chg call. In this case, we need to make sure that we
496          * allocate extra entries, such that we have enough for all the
497          * existing adds_in_progress, plus the excess needed for this
498          * operation.
499          */
500         if (actual_regions_needed > in_regions_needed &&
501             resv->region_cache_count <
502                     resv->adds_in_progress +
503                             (actual_regions_needed - in_regions_needed)) {
504                 /* region_add operation of range 1 should never need to
505                  * allocate file_region entries.
506                  */
507                 VM_BUG_ON(t - f <= 1);
508
509                 if (allocate_file_region_entries(
510                             resv, actual_regions_needed - in_regions_needed)) {
511                         return -ENOMEM;
512                 }
513
514                 goto retry;
515         }
516
517         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
518
519         resv->adds_in_progress -= in_regions_needed;
520
521         spin_unlock(&resv->lock);
522         VM_BUG_ON(add < 0);
523         return add;
524 }
525
526 /*
527  * Examine the existing reserve map and determine how many
528  * huge pages in the specified range [f, t) are NOT currently
529  * represented.  This routine is called before a subsequent
530  * call to region_add that will actually modify the reserve
531  * map to add the specified range [f, t).  region_chg does
532  * not change the number of huge pages represented by the
533  * map.  A number of new file_region structures is added to the cache as a
534  * placeholder, for the subsequent region_add call to use. At least 1
535  * file_region structure is added.
536  *
537  * out_regions_needed is the number of regions added to the
538  * resv->adds_in_progress.  This value needs to be provided to a follow up call
539  * to region_add or region_abort for proper accounting.
540  *
541  * Returns the number of huge pages that need to be added to the existing
542  * reservation map for the range [f, t).  This number is greater or equal to
543  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
544  * is needed and can not be allocated.
545  */
546 static long region_chg(struct resv_map *resv, long f, long t,
547                        long *out_regions_needed)
548 {
549         long chg = 0;
550
551         spin_lock(&resv->lock);
552
553         /* Count how many hugepages in this range are NOT represented. */
554         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
555                                        out_regions_needed);
556
557         if (*out_regions_needed == 0)
558                 *out_regions_needed = 1;
559
560         if (allocate_file_region_entries(resv, *out_regions_needed))
561                 return -ENOMEM;
562
563         resv->adds_in_progress += *out_regions_needed;
564
565         spin_unlock(&resv->lock);
566         return chg;
567 }
568
569 /*
570  * Abort the in progress add operation.  The adds_in_progress field
571  * of the resv_map keeps track of the operations in progress between
572  * calls to region_chg and region_add.  Operations are sometimes
573  * aborted after the call to region_chg.  In such cases, region_abort
574  * is called to decrement the adds_in_progress counter. regions_needed
575  * is the value returned by the region_chg call, it is used to decrement
576  * the adds_in_progress counter.
577  *
578  * NOTE: The range arguments [f, t) are not needed or used in this
579  * routine.  They are kept to make reading the calling code easier as
580  * arguments will match the associated region_chg call.
581  */
582 static void region_abort(struct resv_map *resv, long f, long t,
583                          long regions_needed)
584 {
585         spin_lock(&resv->lock);
586         VM_BUG_ON(!resv->region_cache_count);
587         resv->adds_in_progress -= regions_needed;
588         spin_unlock(&resv->lock);
589 }
590
591 /*
592  * Delete the specified range [f, t) from the reserve map.  If the
593  * t parameter is LONG_MAX, this indicates that ALL regions after f
594  * should be deleted.  Locate the regions which intersect [f, t)
595  * and either trim, delete or split the existing regions.
596  *
597  * Returns the number of huge pages deleted from the reserve map.
598  * In the normal case, the return value is zero or more.  In the
599  * case where a region must be split, a new region descriptor must
600  * be allocated.  If the allocation fails, -ENOMEM will be returned.
601  * NOTE: If the parameter t == LONG_MAX, then we will never split
602  * a region and possibly return -ENOMEM.  Callers specifying
603  * t == LONG_MAX do not need to check for -ENOMEM error.
604  */
605 static long region_del(struct resv_map *resv, long f, long t)
606 {
607         struct list_head *head = &resv->regions;
608         struct file_region *rg, *trg;
609         struct file_region *nrg = NULL;
610         long del = 0;
611
612 retry:
613         spin_lock(&resv->lock);
614         list_for_each_entry_safe(rg, trg, head, link) {
615                 /*
616                  * Skip regions before the range to be deleted.  file_region
617                  * ranges are normally of the form [from, to).  However, there
618                  * may be a "placeholder" entry in the map which is of the form
619                  * (from, to) with from == to.  Check for placeholder entries
620                  * at the beginning of the range to be deleted.
621                  */
622                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
623                         continue;
624
625                 if (rg->from >= t)
626                         break;
627
628                 if (f > rg->from && t < rg->to) { /* Must split region */
629                         /*
630                          * Check for an entry in the cache before dropping
631                          * lock and attempting allocation.
632                          */
633                         if (!nrg &&
634                             resv->region_cache_count > resv->adds_in_progress) {
635                                 nrg = list_first_entry(&resv->region_cache,
636                                                         struct file_region,
637                                                         link);
638                                 list_del(&nrg->link);
639                                 resv->region_cache_count--;
640                         }
641
642                         if (!nrg) {
643                                 spin_unlock(&resv->lock);
644                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
645                                 if (!nrg)
646                                         return -ENOMEM;
647                                 goto retry;
648                         }
649
650                         del += t - f;
651                         hugetlb_cgroup_uncharge_file_region(
652                                 resv, rg, t - f);
653
654                         /* New entry for end of split region */
655                         nrg->from = t;
656                         nrg->to = rg->to;
657
658                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
659
660                         INIT_LIST_HEAD(&nrg->link);
661
662                         /* Original entry is trimmed */
663                         rg->to = f;
664
665                         list_add(&nrg->link, &rg->link);
666                         nrg = NULL;
667                         break;
668                 }
669
670                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
671                         del += rg->to - rg->from;
672                         hugetlb_cgroup_uncharge_file_region(resv, rg,
673                                                             rg->to - rg->from);
674                         list_del(&rg->link);
675                         kfree(rg);
676                         continue;
677                 }
678
679                 if (f <= rg->from) {    /* Trim beginning of region */
680                         hugetlb_cgroup_uncharge_file_region(resv, rg,
681                                                             t - rg->from);
682
683                         del += t - rg->from;
684                         rg->from = t;
685                 } else {                /* Trim end of region */
686                         hugetlb_cgroup_uncharge_file_region(resv, rg,
687                                                             rg->to - f);
688
689                         del += rg->to - f;
690                         rg->to = f;
691                 }
692         }
693
694         spin_unlock(&resv->lock);
695         kfree(nrg);
696         return del;
697 }
698
699 /*
700  * A rare out of memory error was encountered which prevented removal of
701  * the reserve map region for a page.  The huge page itself was free'ed
702  * and removed from the page cache.  This routine will adjust the subpool
703  * usage count, and the global reserve count if needed.  By incrementing
704  * these counts, the reserve map entry which could not be deleted will
705  * appear as a "reserved" entry instead of simply dangling with incorrect
706  * counts.
707  */
708 void hugetlb_fix_reserve_counts(struct inode *inode)
709 {
710         struct hugepage_subpool *spool = subpool_inode(inode);
711         long rsv_adjust;
712
713         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
714         if (rsv_adjust) {
715                 struct hstate *h = hstate_inode(inode);
716
717                 hugetlb_acct_memory(h, 1);
718         }
719 }
720
721 /*
722  * Count and return the number of huge pages in the reserve map
723  * that intersect with the range [f, t).
724  */
725 static long region_count(struct resv_map *resv, long f, long t)
726 {
727         struct list_head *head = &resv->regions;
728         struct file_region *rg;
729         long chg = 0;
730
731         spin_lock(&resv->lock);
732         /* Locate each segment we overlap with, and count that overlap. */
733         list_for_each_entry(rg, head, link) {
734                 long seg_from;
735                 long seg_to;
736
737                 if (rg->to <= f)
738                         continue;
739                 if (rg->from >= t)
740                         break;
741
742                 seg_from = max(rg->from, f);
743                 seg_to = min(rg->to, t);
744
745                 chg += seg_to - seg_from;
746         }
747         spin_unlock(&resv->lock);
748
749         return chg;
750 }
751
752 /*
753  * Convert the address within this vma to the page offset within
754  * the mapping, in pagecache page units; huge pages here.
755  */
756 static pgoff_t vma_hugecache_offset(struct hstate *h,
757                         struct vm_area_struct *vma, unsigned long address)
758 {
759         return ((address - vma->vm_start) >> huge_page_shift(h)) +
760                         (vma->vm_pgoff >> huge_page_order(h));
761 }
762
763 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
764                                      unsigned long address)
765 {
766         return vma_hugecache_offset(hstate_vma(vma), vma, address);
767 }
768 EXPORT_SYMBOL_GPL(linear_hugepage_index);
769
770 /*
771  * Return the size of the pages allocated when backing a VMA. In the majority
772  * cases this will be same size as used by the page table entries.
773  */
774 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
775 {
776         if (vma->vm_ops && vma->vm_ops->pagesize)
777                 return vma->vm_ops->pagesize(vma);
778         return PAGE_SIZE;
779 }
780 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
781
782 /*
783  * Return the page size being used by the MMU to back a VMA. In the majority
784  * of cases, the page size used by the kernel matches the MMU size. On
785  * architectures where it differs, an architecture-specific 'strong'
786  * version of this symbol is required.
787  */
788 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
789 {
790         return vma_kernel_pagesize(vma);
791 }
792
793 /*
794  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
795  * bits of the reservation map pointer, which are always clear due to
796  * alignment.
797  */
798 #define HPAGE_RESV_OWNER    (1UL << 0)
799 #define HPAGE_RESV_UNMAPPED (1UL << 1)
800 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
801
802 /*
803  * These helpers are used to track how many pages are reserved for
804  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
805  * is guaranteed to have their future faults succeed.
806  *
807  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
808  * the reserve counters are updated with the hugetlb_lock held. It is safe
809  * to reset the VMA at fork() time as it is not in use yet and there is no
810  * chance of the global counters getting corrupted as a result of the values.
811  *
812  * The private mapping reservation is represented in a subtly different
813  * manner to a shared mapping.  A shared mapping has a region map associated
814  * with the underlying file, this region map represents the backing file
815  * pages which have ever had a reservation assigned which this persists even
816  * after the page is instantiated.  A private mapping has a region map
817  * associated with the original mmap which is attached to all VMAs which
818  * reference it, this region map represents those offsets which have consumed
819  * reservation ie. where pages have been instantiated.
820  */
821 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
822 {
823         return (unsigned long)vma->vm_private_data;
824 }
825
826 static void set_vma_private_data(struct vm_area_struct *vma,
827                                                         unsigned long value)
828 {
829         vma->vm_private_data = (void *)value;
830 }
831
832 static void
833 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
834                                           struct hugetlb_cgroup *h_cg,
835                                           struct hstate *h)
836 {
837 #ifdef CONFIG_CGROUP_HUGETLB
838         if (!h_cg || !h) {
839                 resv_map->reservation_counter = NULL;
840                 resv_map->pages_per_hpage = 0;
841                 resv_map->css = NULL;
842         } else {
843                 resv_map->reservation_counter =
844                         &h_cg->rsvd_hugepage[hstate_index(h)];
845                 resv_map->pages_per_hpage = pages_per_huge_page(h);
846                 resv_map->css = &h_cg->css;
847         }
848 #endif
849 }
850
851 struct resv_map *resv_map_alloc(void)
852 {
853         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
854         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
855
856         if (!resv_map || !rg) {
857                 kfree(resv_map);
858                 kfree(rg);
859                 return NULL;
860         }
861
862         kref_init(&resv_map->refs);
863         spin_lock_init(&resv_map->lock);
864         INIT_LIST_HEAD(&resv_map->regions);
865
866         resv_map->adds_in_progress = 0;
867         /*
868          * Initialize these to 0. On shared mappings, 0's here indicate these
869          * fields don't do cgroup accounting. On private mappings, these will be
870          * re-initialized to the proper values, to indicate that hugetlb cgroup
871          * reservations are to be un-charged from here.
872          */
873         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
874
875         INIT_LIST_HEAD(&resv_map->region_cache);
876         list_add(&rg->link, &resv_map->region_cache);
877         resv_map->region_cache_count = 1;
878
879         return resv_map;
880 }
881
882 void resv_map_release(struct kref *ref)
883 {
884         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
885         struct list_head *head = &resv_map->region_cache;
886         struct file_region *rg, *trg;
887
888         /* Clear out any active regions before we release the map. */
889         region_del(resv_map, 0, LONG_MAX);
890
891         /* ... and any entries left in the cache */
892         list_for_each_entry_safe(rg, trg, head, link) {
893                 list_del(&rg->link);
894                 kfree(rg);
895         }
896
897         VM_BUG_ON(resv_map->adds_in_progress);
898
899         kfree(resv_map);
900 }
901
902 static inline struct resv_map *inode_resv_map(struct inode *inode)
903 {
904         /*
905          * At inode evict time, i_mapping may not point to the original
906          * address space within the inode.  This original address space
907          * contains the pointer to the resv_map.  So, always use the
908          * address space embedded within the inode.
909          * The VERY common case is inode->mapping == &inode->i_data but,
910          * this may not be true for device special inodes.
911          */
912         return (struct resv_map *)(&inode->i_data)->private_data;
913 }
914
915 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
916 {
917         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
918         if (vma->vm_flags & VM_MAYSHARE) {
919                 struct address_space *mapping = vma->vm_file->f_mapping;
920                 struct inode *inode = mapping->host;
921
922                 return inode_resv_map(inode);
923
924         } else {
925                 return (struct resv_map *)(get_vma_private_data(vma) &
926                                                         ~HPAGE_RESV_MASK);
927         }
928 }
929
930 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
931 {
932         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
933         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
934
935         set_vma_private_data(vma, (get_vma_private_data(vma) &
936                                 HPAGE_RESV_MASK) | (unsigned long)map);
937 }
938
939 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
940 {
941         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
942         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
943
944         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
945 }
946
947 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
948 {
949         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
950
951         return (get_vma_private_data(vma) & flag) != 0;
952 }
953
954 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
955 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
956 {
957         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
958         if (!(vma->vm_flags & VM_MAYSHARE))
959                 vma->vm_private_data = (void *)0;
960 }
961
962 /* Returns true if the VMA has associated reserve pages */
963 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
964 {
965         if (vma->vm_flags & VM_NORESERVE) {
966                 /*
967                  * This address is already reserved by other process(chg == 0),
968                  * so, we should decrement reserved count. Without decrementing,
969                  * reserve count remains after releasing inode, because this
970                  * allocated page will go into page cache and is regarded as
971                  * coming from reserved pool in releasing step.  Currently, we
972                  * don't have any other solution to deal with this situation
973                  * properly, so add work-around here.
974                  */
975                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
976                         return true;
977                 else
978                         return false;
979         }
980
981         /* Shared mappings always use reserves */
982         if (vma->vm_flags & VM_MAYSHARE) {
983                 /*
984                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
985                  * be a region map for all pages.  The only situation where
986                  * there is no region map is if a hole was punched via
987                  * fallocate.  In this case, there really are no reserves to
988                  * use.  This situation is indicated if chg != 0.
989                  */
990                 if (chg)
991                         return false;
992                 else
993                         return true;
994         }
995
996         /*
997          * Only the process that called mmap() has reserves for
998          * private mappings.
999          */
1000         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1001                 /*
1002                  * Like the shared case above, a hole punch or truncate
1003                  * could have been performed on the private mapping.
1004                  * Examine the value of chg to determine if reserves
1005                  * actually exist or were previously consumed.
1006                  * Very Subtle - The value of chg comes from a previous
1007                  * call to vma_needs_reserves().  The reserve map for
1008                  * private mappings has different (opposite) semantics
1009                  * than that of shared mappings.  vma_needs_reserves()
1010                  * has already taken this difference in semantics into
1011                  * account.  Therefore, the meaning of chg is the same
1012                  * as in the shared case above.  Code could easily be
1013                  * combined, but keeping it separate draws attention to
1014                  * subtle differences.
1015                  */
1016                 if (chg)
1017                         return false;
1018                 else
1019                         return true;
1020         }
1021
1022         return false;
1023 }
1024
1025 static void enqueue_huge_page(struct hstate *h, struct page *page)
1026 {
1027         int nid = page_to_nid(page);
1028         list_move(&page->lru, &h->hugepage_freelists[nid]);
1029         h->free_huge_pages++;
1030         h->free_huge_pages_node[nid]++;
1031 }
1032
1033 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1034 {
1035         struct page *page;
1036         bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1037
1038         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1039                 if (nocma && is_migrate_cma_page(page))
1040                         continue;
1041
1042                 if (PageHWPoison(page))
1043                         continue;
1044
1045                 list_move(&page->lru, &h->hugepage_activelist);
1046                 set_page_refcounted(page);
1047                 h->free_huge_pages--;
1048                 h->free_huge_pages_node[nid]--;
1049                 return page;
1050         }
1051
1052         return NULL;
1053 }
1054
1055 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1056                 nodemask_t *nmask)
1057 {
1058         unsigned int cpuset_mems_cookie;
1059         struct zonelist *zonelist;
1060         struct zone *zone;
1061         struct zoneref *z;
1062         int node = NUMA_NO_NODE;
1063
1064         zonelist = node_zonelist(nid, gfp_mask);
1065
1066 retry_cpuset:
1067         cpuset_mems_cookie = read_mems_allowed_begin();
1068         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1069                 struct page *page;
1070
1071                 if (!cpuset_zone_allowed(zone, gfp_mask))
1072                         continue;
1073                 /*
1074                  * no need to ask again on the same node. Pool is node rather than
1075                  * zone aware
1076                  */
1077                 if (zone_to_nid(zone) == node)
1078                         continue;
1079                 node = zone_to_nid(zone);
1080
1081                 page = dequeue_huge_page_node_exact(h, node);
1082                 if (page)
1083                         return page;
1084         }
1085         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1086                 goto retry_cpuset;
1087
1088         return NULL;
1089 }
1090
1091 static struct page *dequeue_huge_page_vma(struct hstate *h,
1092                                 struct vm_area_struct *vma,
1093                                 unsigned long address, int avoid_reserve,
1094                                 long chg)
1095 {
1096         struct page *page;
1097         struct mempolicy *mpol;
1098         gfp_t gfp_mask;
1099         nodemask_t *nodemask;
1100         int nid;
1101
1102         /*
1103          * A child process with MAP_PRIVATE mappings created by their parent
1104          * have no page reserves. This check ensures that reservations are
1105          * not "stolen". The child may still get SIGKILLed
1106          */
1107         if (!vma_has_reserves(vma, chg) &&
1108                         h->free_huge_pages - h->resv_huge_pages == 0)
1109                 goto err;
1110
1111         /* If reserves cannot be used, ensure enough pages are in the pool */
1112         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1113                 goto err;
1114
1115         gfp_mask = htlb_alloc_mask(h);
1116         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1117         page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1118         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1119                 SetPagePrivate(page);
1120                 h->resv_huge_pages--;
1121         }
1122
1123         mpol_cond_put(mpol);
1124         return page;
1125
1126 err:
1127         return NULL;
1128 }
1129
1130 /*
1131  * common helper functions for hstate_next_node_to_{alloc|free}.
1132  * We may have allocated or freed a huge page based on a different
1133  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1134  * be outside of *nodes_allowed.  Ensure that we use an allowed
1135  * node for alloc or free.
1136  */
1137 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1138 {
1139         nid = next_node_in(nid, *nodes_allowed);
1140         VM_BUG_ON(nid >= MAX_NUMNODES);
1141
1142         return nid;
1143 }
1144
1145 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1146 {
1147         if (!node_isset(nid, *nodes_allowed))
1148                 nid = next_node_allowed(nid, nodes_allowed);
1149         return nid;
1150 }
1151
1152 /*
1153  * returns the previously saved node ["this node"] from which to
1154  * allocate a persistent huge page for the pool and advance the
1155  * next node from which to allocate, handling wrap at end of node
1156  * mask.
1157  */
1158 static int hstate_next_node_to_alloc(struct hstate *h,
1159                                         nodemask_t *nodes_allowed)
1160 {
1161         int nid;
1162
1163         VM_BUG_ON(!nodes_allowed);
1164
1165         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1166         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1167
1168         return nid;
1169 }
1170
1171 /*
1172  * helper for free_pool_huge_page() - return the previously saved
1173  * node ["this node"] from which to free a huge page.  Advance the
1174  * next node id whether or not we find a free huge page to free so
1175  * that the next attempt to free addresses the next node.
1176  */
1177 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1178 {
1179         int nid;
1180
1181         VM_BUG_ON(!nodes_allowed);
1182
1183         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1184         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1185
1186         return nid;
1187 }
1188
1189 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1190         for (nr_nodes = nodes_weight(*mask);                            \
1191                 nr_nodes > 0 &&                                         \
1192                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1193                 nr_nodes--)
1194
1195 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1196         for (nr_nodes = nodes_weight(*mask);                            \
1197                 nr_nodes > 0 &&                                         \
1198                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1199                 nr_nodes--)
1200
1201 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1202 static void destroy_compound_gigantic_page(struct page *page,
1203                                         unsigned int order)
1204 {
1205         int i;
1206         int nr_pages = 1 << order;
1207         struct page *p = page + 1;
1208
1209         atomic_set(compound_mapcount_ptr(page), 0);
1210         if (hpage_pincount_available(page))
1211                 atomic_set(compound_pincount_ptr(page), 0);
1212
1213         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1214                 clear_compound_head(p);
1215                 set_page_refcounted(p);
1216         }
1217
1218         set_compound_order(page, 0);
1219         __ClearPageHead(page);
1220 }
1221
1222 static void free_gigantic_page(struct page *page, unsigned int order)
1223 {
1224         /*
1225          * If the page isn't allocated using the cma allocator,
1226          * cma_release() returns false.
1227          */
1228 #ifdef CONFIG_CMA
1229         if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1230                 return;
1231 #endif
1232
1233         free_contig_range(page_to_pfn(page), 1 << order);
1234 }
1235
1236 #ifdef CONFIG_CONTIG_ALLOC
1237 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1238                 int nid, nodemask_t *nodemask)
1239 {
1240         unsigned long nr_pages = 1UL << huge_page_order(h);
1241         if (nid == NUMA_NO_NODE)
1242                 nid = numa_mem_id();
1243
1244 #ifdef CONFIG_CMA
1245         {
1246                 struct page *page;
1247                 int node;
1248
1249                 if (hugetlb_cma[nid]) {
1250                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1251                                         huge_page_order(h), true);
1252                         if (page)
1253                                 return page;
1254                 }
1255
1256                 if (!(gfp_mask & __GFP_THISNODE)) {
1257                         for_each_node_mask(node, *nodemask) {
1258                                 if (node == nid || !hugetlb_cma[node])
1259                                         continue;
1260
1261                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1262                                                 huge_page_order(h), true);
1263                                 if (page)
1264                                         return page;
1265                         }
1266                 }
1267         }
1268 #endif
1269
1270         return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1271 }
1272
1273 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1274 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1275 #else /* !CONFIG_CONTIG_ALLOC */
1276 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1277                                         int nid, nodemask_t *nodemask)
1278 {
1279         return NULL;
1280 }
1281 #endif /* CONFIG_CONTIG_ALLOC */
1282
1283 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1284 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1285                                         int nid, nodemask_t *nodemask)
1286 {
1287         return NULL;
1288 }
1289 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1290 static inline void destroy_compound_gigantic_page(struct page *page,
1291                                                 unsigned int order) { }
1292 #endif
1293
1294 static void update_and_free_page(struct hstate *h, struct page *page)
1295 {
1296         int i;
1297
1298         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1299                 return;
1300
1301         h->nr_huge_pages--;
1302         h->nr_huge_pages_node[page_to_nid(page)]--;
1303         for (i = 0; i < pages_per_huge_page(h); i++) {
1304                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1305                                 1 << PG_referenced | 1 << PG_dirty |
1306                                 1 << PG_active | 1 << PG_private |
1307                                 1 << PG_writeback);
1308         }
1309         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1310         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1311         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1312         set_page_refcounted(page);
1313         if (hstate_is_gigantic(h)) {
1314                 /*
1315                  * Temporarily drop the hugetlb_lock, because
1316                  * we might block in free_gigantic_page().
1317                  */
1318                 spin_unlock(&hugetlb_lock);
1319                 destroy_compound_gigantic_page(page, huge_page_order(h));
1320                 free_gigantic_page(page, huge_page_order(h));
1321                 spin_lock(&hugetlb_lock);
1322         } else {
1323                 __free_pages(page, huge_page_order(h));
1324         }
1325 }
1326
1327 struct hstate *size_to_hstate(unsigned long size)
1328 {
1329         struct hstate *h;
1330
1331         for_each_hstate(h) {
1332                 if (huge_page_size(h) == size)
1333                         return h;
1334         }
1335         return NULL;
1336 }
1337
1338 /*
1339  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1340  * to hstate->hugepage_activelist.)
1341  *
1342  * This function can be called for tail pages, but never returns true for them.
1343  */
1344 bool page_huge_active(struct page *page)
1345 {
1346         VM_BUG_ON_PAGE(!PageHuge(page), page);
1347         return PageHead(page) && PagePrivate(&page[1]);
1348 }
1349
1350 /* never called for tail page */
1351 static void set_page_huge_active(struct page *page)
1352 {
1353         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1354         SetPagePrivate(&page[1]);
1355 }
1356
1357 static void clear_page_huge_active(struct page *page)
1358 {
1359         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1360         ClearPagePrivate(&page[1]);
1361 }
1362
1363 /*
1364  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1365  * code
1366  */
1367 static inline bool PageHugeTemporary(struct page *page)
1368 {
1369         if (!PageHuge(page))
1370                 return false;
1371
1372         return (unsigned long)page[2].mapping == -1U;
1373 }
1374
1375 static inline void SetPageHugeTemporary(struct page *page)
1376 {
1377         page[2].mapping = (void *)-1U;
1378 }
1379
1380 static inline void ClearPageHugeTemporary(struct page *page)
1381 {
1382         page[2].mapping = NULL;
1383 }
1384
1385 static void __free_huge_page(struct page *page)
1386 {
1387         /*
1388          * Can't pass hstate in here because it is called from the
1389          * compound page destructor.
1390          */
1391         struct hstate *h = page_hstate(page);
1392         int nid = page_to_nid(page);
1393         struct hugepage_subpool *spool =
1394                 (struct hugepage_subpool *)page_private(page);
1395         bool restore_reserve;
1396
1397         VM_BUG_ON_PAGE(page_count(page), page);
1398         VM_BUG_ON_PAGE(page_mapcount(page), page);
1399
1400         set_page_private(page, 0);
1401         page->mapping = NULL;
1402         restore_reserve = PagePrivate(page);
1403         ClearPagePrivate(page);
1404
1405         /*
1406          * If PagePrivate() was set on page, page allocation consumed a
1407          * reservation.  If the page was associated with a subpool, there
1408          * would have been a page reserved in the subpool before allocation
1409          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1410          * reservtion, do not call hugepage_subpool_put_pages() as this will
1411          * remove the reserved page from the subpool.
1412          */
1413         if (!restore_reserve) {
1414                 /*
1415                  * A return code of zero implies that the subpool will be
1416                  * under its minimum size if the reservation is not restored
1417                  * after page is free.  Therefore, force restore_reserve
1418                  * operation.
1419                  */
1420                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1421                         restore_reserve = true;
1422         }
1423
1424         spin_lock(&hugetlb_lock);
1425         clear_page_huge_active(page);
1426         hugetlb_cgroup_uncharge_page(hstate_index(h),
1427                                      pages_per_huge_page(h), page);
1428         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1429                                           pages_per_huge_page(h), page);
1430         if (restore_reserve)
1431                 h->resv_huge_pages++;
1432
1433         if (PageHugeTemporary(page)) {
1434                 list_del(&page->lru);
1435                 ClearPageHugeTemporary(page);
1436                 update_and_free_page(h, page);
1437         } else if (h->surplus_huge_pages_node[nid]) {
1438                 /* remove the page from active list */
1439                 list_del(&page->lru);
1440                 update_and_free_page(h, page);
1441                 h->surplus_huge_pages--;
1442                 h->surplus_huge_pages_node[nid]--;
1443         } else {
1444                 arch_clear_hugepage_flags(page);
1445                 enqueue_huge_page(h, page);
1446         }
1447         spin_unlock(&hugetlb_lock);
1448 }
1449
1450 /*
1451  * As free_huge_page() can be called from a non-task context, we have
1452  * to defer the actual freeing in a workqueue to prevent potential
1453  * hugetlb_lock deadlock.
1454  *
1455  * free_hpage_workfn() locklessly retrieves the linked list of pages to
1456  * be freed and frees them one-by-one. As the page->mapping pointer is
1457  * going to be cleared in __free_huge_page() anyway, it is reused as the
1458  * llist_node structure of a lockless linked list of huge pages to be freed.
1459  */
1460 static LLIST_HEAD(hpage_freelist);
1461
1462 static void free_hpage_workfn(struct work_struct *work)
1463 {
1464         struct llist_node *node;
1465         struct page *page;
1466
1467         node = llist_del_all(&hpage_freelist);
1468
1469         while (node) {
1470                 page = container_of((struct address_space **)node,
1471                                      struct page, mapping);
1472                 node = node->next;
1473                 __free_huge_page(page);
1474         }
1475 }
1476 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1477
1478 void free_huge_page(struct page *page)
1479 {
1480         /*
1481          * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1482          */
1483         if (!in_task()) {
1484                 /*
1485                  * Only call schedule_work() if hpage_freelist is previously
1486                  * empty. Otherwise, schedule_work() had been called but the
1487                  * workfn hasn't retrieved the list yet.
1488                  */
1489                 if (llist_add((struct llist_node *)&page->mapping,
1490                               &hpage_freelist))
1491                         schedule_work(&free_hpage_work);
1492                 return;
1493         }
1494
1495         __free_huge_page(page);
1496 }
1497
1498 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1499 {
1500         INIT_LIST_HEAD(&page->lru);
1501         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1502         set_hugetlb_cgroup(page, NULL);
1503         set_hugetlb_cgroup_rsvd(page, NULL);
1504         spin_lock(&hugetlb_lock);
1505         h->nr_huge_pages++;
1506         h->nr_huge_pages_node[nid]++;
1507         spin_unlock(&hugetlb_lock);
1508 }
1509
1510 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1511 {
1512         int i;
1513         int nr_pages = 1 << order;
1514         struct page *p = page + 1;
1515
1516         /* we rely on prep_new_huge_page to set the destructor */
1517         set_compound_order(page, order);
1518         __ClearPageReserved(page);
1519         __SetPageHead(page);
1520         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1521                 /*
1522                  * For gigantic hugepages allocated through bootmem at
1523                  * boot, it's safer to be consistent with the not-gigantic
1524                  * hugepages and clear the PG_reserved bit from all tail pages
1525                  * too.  Otherwise drivers using get_user_pages() to access tail
1526                  * pages may get the reference counting wrong if they see
1527                  * PG_reserved set on a tail page (despite the head page not
1528                  * having PG_reserved set).  Enforcing this consistency between
1529                  * head and tail pages allows drivers to optimize away a check
1530                  * on the head page when they need know if put_page() is needed
1531                  * after get_user_pages().
1532                  */
1533                 __ClearPageReserved(p);
1534                 set_page_count(p, 0);
1535                 set_compound_head(p, page);
1536         }
1537         atomic_set(compound_mapcount_ptr(page), -1);
1538
1539         if (hpage_pincount_available(page))
1540                 atomic_set(compound_pincount_ptr(page), 0);
1541 }
1542
1543 /*
1544  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1545  * transparent huge pages.  See the PageTransHuge() documentation for more
1546  * details.
1547  */
1548 int PageHuge(struct page *page)
1549 {
1550         if (!PageCompound(page))
1551                 return 0;
1552
1553         page = compound_head(page);
1554         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1555 }
1556 EXPORT_SYMBOL_GPL(PageHuge);
1557
1558 /*
1559  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1560  * normal or transparent huge pages.
1561  */
1562 int PageHeadHuge(struct page *page_head)
1563 {
1564         if (!PageHead(page_head))
1565                 return 0;
1566
1567         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1568 }
1569
1570 /*
1571  * Find address_space associated with hugetlbfs page.
1572  * Upon entry page is locked and page 'was' mapped although mapped state
1573  * could change.  If necessary, use anon_vma to find vma and associated
1574  * address space.  The returned mapping may be stale, but it can not be
1575  * invalid as page lock (which is held) is required to destroy mapping.
1576  */
1577 static struct address_space *_get_hugetlb_page_mapping(struct page *hpage)
1578 {
1579         struct anon_vma *anon_vma;
1580         pgoff_t pgoff_start, pgoff_end;
1581         struct anon_vma_chain *avc;
1582         struct address_space *mapping = page_mapping(hpage);
1583
1584         /* Simple file based mapping */
1585         if (mapping)
1586                 return mapping;
1587
1588         /*
1589          * Even anonymous hugetlbfs mappings are associated with an
1590          * underlying hugetlbfs file (see hugetlb_file_setup in mmap
1591          * code).  Find a vma associated with the anonymous vma, and
1592          * use the file pointer to get address_space.
1593          */
1594         anon_vma = page_lock_anon_vma_read(hpage);
1595         if (!anon_vma)
1596                 return mapping;  /* NULL */
1597
1598         /* Use first found vma */
1599         pgoff_start = page_to_pgoff(hpage);
1600         pgoff_end = pgoff_start + pages_per_huge_page(page_hstate(hpage)) - 1;
1601         anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1602                                         pgoff_start, pgoff_end) {
1603                 struct vm_area_struct *vma = avc->vma;
1604
1605                 mapping = vma->vm_file->f_mapping;
1606                 break;
1607         }
1608
1609         anon_vma_unlock_read(anon_vma);
1610         return mapping;
1611 }
1612
1613 /*
1614  * Find and lock address space (mapping) in write mode.
1615  *
1616  * Upon entry, the page is locked which allows us to find the mapping
1617  * even in the case of an anon page.  However, locking order dictates
1618  * the i_mmap_rwsem be acquired BEFORE the page lock.  This is hugetlbfs
1619  * specific.  So, we first try to lock the sema while still holding the
1620  * page lock.  If this works, great!  If not, then we need to drop the
1621  * page lock and then acquire i_mmap_rwsem and reacquire page lock.  Of
1622  * course, need to revalidate state along the way.
1623  */
1624 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1625 {
1626         struct address_space *mapping, *mapping2;
1627
1628         mapping = _get_hugetlb_page_mapping(hpage);
1629 retry:
1630         if (!mapping)
1631                 return mapping;
1632
1633         /*
1634          * If no contention, take lock and return
1635          */
1636         if (i_mmap_trylock_write(mapping))
1637                 return mapping;
1638
1639         /*
1640          * Must drop page lock and wait on mapping sema.
1641          * Note:  Once page lock is dropped, mapping could become invalid.
1642          * As a hack, increase map count until we lock page again.
1643          */
1644         atomic_inc(&hpage->_mapcount);
1645         unlock_page(hpage);
1646         i_mmap_lock_write(mapping);
1647         lock_page(hpage);
1648         atomic_add_negative(-1, &hpage->_mapcount);
1649
1650         /* verify page is still mapped */
1651         if (!page_mapped(hpage)) {
1652                 i_mmap_unlock_write(mapping);
1653                 return NULL;
1654         }
1655
1656         /*
1657          * Get address space again and verify it is the same one
1658          * we locked.  If not, drop lock and retry.
1659          */
1660         mapping2 = _get_hugetlb_page_mapping(hpage);
1661         if (mapping2 != mapping) {
1662                 i_mmap_unlock_write(mapping);
1663                 mapping = mapping2;
1664                 goto retry;
1665         }
1666
1667         return mapping;
1668 }
1669
1670 pgoff_t __basepage_index(struct page *page)
1671 {
1672         struct page *page_head = compound_head(page);
1673         pgoff_t index = page_index(page_head);
1674         unsigned long compound_idx;
1675
1676         if (!PageHuge(page_head))
1677                 return page_index(page);
1678
1679         if (compound_order(page_head) >= MAX_ORDER)
1680                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1681         else
1682                 compound_idx = page - page_head;
1683
1684         return (index << compound_order(page_head)) + compound_idx;
1685 }
1686
1687 static struct page *alloc_buddy_huge_page(struct hstate *h,
1688                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1689                 nodemask_t *node_alloc_noretry)
1690 {
1691         int order = huge_page_order(h);
1692         struct page *page;
1693         bool alloc_try_hard = true;
1694
1695         /*
1696          * By default we always try hard to allocate the page with
1697          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1698          * a loop (to adjust global huge page counts) and previous allocation
1699          * failed, do not continue to try hard on the same node.  Use the
1700          * node_alloc_noretry bitmap to manage this state information.
1701          */
1702         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1703                 alloc_try_hard = false;
1704         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1705         if (alloc_try_hard)
1706                 gfp_mask |= __GFP_RETRY_MAYFAIL;
1707         if (nid == NUMA_NO_NODE)
1708                 nid = numa_mem_id();
1709         page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1710         if (page)
1711                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1712         else
1713                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1714
1715         /*
1716          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1717          * indicates an overall state change.  Clear bit so that we resume
1718          * normal 'try hard' allocations.
1719          */
1720         if (node_alloc_noretry && page && !alloc_try_hard)
1721                 node_clear(nid, *node_alloc_noretry);
1722
1723         /*
1724          * If we tried hard to get a page but failed, set bit so that
1725          * subsequent attempts will not try as hard until there is an
1726          * overall state change.
1727          */
1728         if (node_alloc_noretry && !page && alloc_try_hard)
1729                 node_set(nid, *node_alloc_noretry);
1730
1731         return page;
1732 }
1733
1734 /*
1735  * Common helper to allocate a fresh hugetlb page. All specific allocators
1736  * should use this function to get new hugetlb pages
1737  */
1738 static struct page *alloc_fresh_huge_page(struct hstate *h,
1739                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1740                 nodemask_t *node_alloc_noretry)
1741 {
1742         struct page *page;
1743
1744         if (hstate_is_gigantic(h))
1745                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1746         else
1747                 page = alloc_buddy_huge_page(h, gfp_mask,
1748                                 nid, nmask, node_alloc_noretry);
1749         if (!page)
1750                 return NULL;
1751
1752         if (hstate_is_gigantic(h))
1753                 prep_compound_gigantic_page(page, huge_page_order(h));
1754         prep_new_huge_page(h, page, page_to_nid(page));
1755
1756         return page;
1757 }
1758
1759 /*
1760  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1761  * manner.
1762  */
1763 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1764                                 nodemask_t *node_alloc_noretry)
1765 {
1766         struct page *page;
1767         int nr_nodes, node;
1768         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1769
1770         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1771                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1772                                                 node_alloc_noretry);
1773                 if (page)
1774                         break;
1775         }
1776
1777         if (!page)
1778                 return 0;
1779
1780         put_page(page); /* free it into the hugepage allocator */
1781
1782         return 1;
1783 }
1784
1785 /*
1786  * Free huge page from pool from next node to free.
1787  * Attempt to keep persistent huge pages more or less
1788  * balanced over allowed nodes.
1789  * Called with hugetlb_lock locked.
1790  */
1791 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1792                                                          bool acct_surplus)
1793 {
1794         int nr_nodes, node;
1795         int ret = 0;
1796
1797         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1798                 /*
1799                  * If we're returning unused surplus pages, only examine
1800                  * nodes with surplus pages.
1801                  */
1802                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1803                     !list_empty(&h->hugepage_freelists[node])) {
1804                         struct page *page =
1805                                 list_entry(h->hugepage_freelists[node].next,
1806                                           struct page, lru);
1807                         list_del(&page->lru);
1808                         h->free_huge_pages--;
1809                         h->free_huge_pages_node[node]--;
1810                         if (acct_surplus) {
1811                                 h->surplus_huge_pages--;
1812                                 h->surplus_huge_pages_node[node]--;
1813                         }
1814                         update_and_free_page(h, page);
1815                         ret = 1;
1816                         break;
1817                 }
1818         }
1819
1820         return ret;
1821 }
1822
1823 /*
1824  * Dissolve a given free hugepage into free buddy pages. This function does
1825  * nothing for in-use hugepages and non-hugepages.
1826  * This function returns values like below:
1827  *
1828  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1829  *          (allocated or reserved.)
1830  *       0: successfully dissolved free hugepages or the page is not a
1831  *          hugepage (considered as already dissolved)
1832  */
1833 int dissolve_free_huge_page(struct page *page)
1834 {
1835         int rc = -EBUSY;
1836
1837         /* Not to disrupt normal path by vainly holding hugetlb_lock */
1838         if (!PageHuge(page))
1839                 return 0;
1840
1841         spin_lock(&hugetlb_lock);
1842         if (!PageHuge(page)) {
1843                 rc = 0;
1844                 goto out;
1845         }
1846
1847         if (!page_count(page)) {
1848                 struct page *head = compound_head(page);
1849                 struct hstate *h = page_hstate(head);
1850                 int nid = page_to_nid(head);
1851                 if (h->free_huge_pages - h->resv_huge_pages == 0)
1852                         goto out;
1853                 /*
1854                  * Move PageHWPoison flag from head page to the raw error page,
1855                  * which makes any subpages rather than the error page reusable.
1856                  */
1857                 if (PageHWPoison(head) && page != head) {
1858                         SetPageHWPoison(page);
1859                         ClearPageHWPoison(head);
1860                 }
1861                 list_del(&head->lru);
1862                 h->free_huge_pages--;
1863                 h->free_huge_pages_node[nid]--;
1864                 h->max_huge_pages--;
1865                 update_and_free_page(h, head);
1866                 rc = 0;
1867         }
1868 out:
1869         spin_unlock(&hugetlb_lock);
1870         return rc;
1871 }
1872
1873 /*
1874  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1875  * make specified memory blocks removable from the system.
1876  * Note that this will dissolve a free gigantic hugepage completely, if any
1877  * part of it lies within the given range.
1878  * Also note that if dissolve_free_huge_page() returns with an error, all
1879  * free hugepages that were dissolved before that error are lost.
1880  */
1881 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1882 {
1883         unsigned long pfn;
1884         struct page *page;
1885         int rc = 0;
1886
1887         if (!hugepages_supported())
1888                 return rc;
1889
1890         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1891                 page = pfn_to_page(pfn);
1892                 rc = dissolve_free_huge_page(page);
1893                 if (rc)
1894                         break;
1895         }
1896
1897         return rc;
1898 }
1899
1900 /*
1901  * Allocates a fresh surplus page from the page allocator.
1902  */
1903 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1904                 int nid, nodemask_t *nmask)
1905 {
1906         struct page *page = NULL;
1907
1908         if (hstate_is_gigantic(h))
1909                 return NULL;
1910
1911         spin_lock(&hugetlb_lock);
1912         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1913                 goto out_unlock;
1914         spin_unlock(&hugetlb_lock);
1915
1916         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1917         if (!page)
1918                 return NULL;
1919
1920         spin_lock(&hugetlb_lock);
1921         /*
1922          * We could have raced with the pool size change.
1923          * Double check that and simply deallocate the new page
1924          * if we would end up overcommiting the surpluses. Abuse
1925          * temporary page to workaround the nasty free_huge_page
1926          * codeflow
1927          */
1928         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1929                 SetPageHugeTemporary(page);
1930                 spin_unlock(&hugetlb_lock);
1931                 put_page(page);
1932                 return NULL;
1933         } else {
1934                 h->surplus_huge_pages++;
1935                 h->surplus_huge_pages_node[page_to_nid(page)]++;
1936         }
1937
1938 out_unlock:
1939         spin_unlock(&hugetlb_lock);
1940
1941         return page;
1942 }
1943
1944 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1945                                      int nid, nodemask_t *nmask)
1946 {
1947         struct page *page;
1948
1949         if (hstate_is_gigantic(h))
1950                 return NULL;
1951
1952         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1953         if (!page)
1954                 return NULL;
1955
1956         /*
1957          * We do not account these pages as surplus because they are only
1958          * temporary and will be released properly on the last reference
1959          */
1960         SetPageHugeTemporary(page);
1961
1962         return page;
1963 }
1964
1965 /*
1966  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1967  */
1968 static
1969 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1970                 struct vm_area_struct *vma, unsigned long addr)
1971 {
1972         struct page *page;
1973         struct mempolicy *mpol;
1974         gfp_t gfp_mask = htlb_alloc_mask(h);
1975         int nid;
1976         nodemask_t *nodemask;
1977
1978         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1979         page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1980         mpol_cond_put(mpol);
1981
1982         return page;
1983 }
1984
1985 /* page migration callback function */
1986 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1987                 nodemask_t *nmask, gfp_t gfp_mask)
1988 {
1989         spin_lock(&hugetlb_lock);
1990         if (h->free_huge_pages - h->resv_huge_pages > 0) {
1991                 struct page *page;
1992
1993                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1994                 if (page) {
1995                         spin_unlock(&hugetlb_lock);
1996                         return page;
1997                 }
1998         }
1999         spin_unlock(&hugetlb_lock);
2000
2001         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2002 }
2003
2004 /* mempolicy aware migration callback */
2005 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2006                 unsigned long address)
2007 {
2008         struct mempolicy *mpol;
2009         nodemask_t *nodemask;
2010         struct page *page;
2011         gfp_t gfp_mask;
2012         int node;
2013
2014         gfp_mask = htlb_alloc_mask(h);
2015         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2016         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2017         mpol_cond_put(mpol);
2018
2019         return page;
2020 }
2021
2022 /*
2023  * Increase the hugetlb pool such that it can accommodate a reservation
2024  * of size 'delta'.
2025  */
2026 static int gather_surplus_pages(struct hstate *h, int delta)
2027         __must_hold(&hugetlb_lock)
2028 {
2029         struct list_head surplus_list;
2030         struct page *page, *tmp;
2031         int ret, i;
2032         int needed, allocated;
2033         bool alloc_ok = true;
2034
2035         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2036         if (needed <= 0) {
2037                 h->resv_huge_pages += delta;
2038                 return 0;
2039         }
2040
2041         allocated = 0;
2042         INIT_LIST_HEAD(&surplus_list);
2043
2044         ret = -ENOMEM;
2045 retry:
2046         spin_unlock(&hugetlb_lock);
2047         for (i = 0; i < needed; i++) {
2048                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2049                                 NUMA_NO_NODE, NULL);
2050                 if (!page) {
2051                         alloc_ok = false;
2052                         break;
2053                 }
2054                 list_add(&page->lru, &surplus_list);
2055                 cond_resched();
2056         }
2057         allocated += i;
2058
2059         /*
2060          * After retaking hugetlb_lock, we need to recalculate 'needed'
2061          * because either resv_huge_pages or free_huge_pages may have changed.
2062          */
2063         spin_lock(&hugetlb_lock);
2064         needed = (h->resv_huge_pages + delta) -
2065                         (h->free_huge_pages + allocated);
2066         if (needed > 0) {
2067                 if (alloc_ok)
2068                         goto retry;
2069                 /*
2070                  * We were not able to allocate enough pages to
2071                  * satisfy the entire reservation so we free what
2072                  * we've allocated so far.
2073                  */
2074                 goto free;
2075         }
2076         /*
2077          * The surplus_list now contains _at_least_ the number of extra pages
2078          * needed to accommodate the reservation.  Add the appropriate number
2079          * of pages to the hugetlb pool and free the extras back to the buddy
2080          * allocator.  Commit the entire reservation here to prevent another
2081          * process from stealing the pages as they are added to the pool but
2082          * before they are reserved.
2083          */
2084         needed += allocated;
2085         h->resv_huge_pages += delta;
2086         ret = 0;
2087
2088         /* Free the needed pages to the hugetlb pool */
2089         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2090                 if ((--needed) < 0)
2091                         break;
2092                 /*
2093                  * This page is now managed by the hugetlb allocator and has
2094                  * no users -- drop the buddy allocator's reference.
2095                  */
2096                 put_page_testzero(page);
2097                 VM_BUG_ON_PAGE(page_count(page), page);
2098                 enqueue_huge_page(h, page);
2099         }
2100 free:
2101         spin_unlock(&hugetlb_lock);
2102
2103         /* Free unnecessary surplus pages to the buddy allocator */
2104         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2105                 put_page(page);
2106         spin_lock(&hugetlb_lock);
2107
2108         return ret;
2109 }
2110
2111 /*
2112  * This routine has two main purposes:
2113  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2114  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2115  *    to the associated reservation map.
2116  * 2) Free any unused surplus pages that may have been allocated to satisfy
2117  *    the reservation.  As many as unused_resv_pages may be freed.
2118  *
2119  * Called with hugetlb_lock held.  However, the lock could be dropped (and
2120  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
2121  * we must make sure nobody else can claim pages we are in the process of
2122  * freeing.  Do this by ensuring resv_huge_page always is greater than the
2123  * number of huge pages we plan to free when dropping the lock.
2124  */
2125 static void return_unused_surplus_pages(struct hstate *h,
2126                                         unsigned long unused_resv_pages)
2127 {
2128         unsigned long nr_pages;
2129
2130         /* Cannot return gigantic pages currently */
2131         if (hstate_is_gigantic(h))
2132                 goto out;
2133
2134         /*
2135          * Part (or even all) of the reservation could have been backed
2136          * by pre-allocated pages. Only free surplus pages.
2137          */
2138         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2139
2140         /*
2141          * We want to release as many surplus pages as possible, spread
2142          * evenly across all nodes with memory. Iterate across these nodes
2143          * until we can no longer free unreserved surplus pages. This occurs
2144          * when the nodes with surplus pages have no free pages.
2145          * free_pool_huge_page() will balance the freed pages across the
2146          * on-line nodes with memory and will handle the hstate accounting.
2147          *
2148          * Note that we decrement resv_huge_pages as we free the pages.  If
2149          * we drop the lock, resv_huge_pages will still be sufficiently large
2150          * to cover subsequent pages we may free.
2151          */
2152         while (nr_pages--) {
2153                 h->resv_huge_pages--;
2154                 unused_resv_pages--;
2155                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2156                         goto out;
2157                 cond_resched_lock(&hugetlb_lock);
2158         }
2159
2160 out:
2161         /* Fully uncommit the reservation */
2162         h->resv_huge_pages -= unused_resv_pages;
2163 }
2164
2165
2166 /*
2167  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2168  * are used by the huge page allocation routines to manage reservations.
2169  *
2170  * vma_needs_reservation is called to determine if the huge page at addr
2171  * within the vma has an associated reservation.  If a reservation is
2172  * needed, the value 1 is returned.  The caller is then responsible for
2173  * managing the global reservation and subpool usage counts.  After
2174  * the huge page has been allocated, vma_commit_reservation is called
2175  * to add the page to the reservation map.  If the page allocation fails,
2176  * the reservation must be ended instead of committed.  vma_end_reservation
2177  * is called in such cases.
2178  *
2179  * In the normal case, vma_commit_reservation returns the same value
2180  * as the preceding vma_needs_reservation call.  The only time this
2181  * is not the case is if a reserve map was changed between calls.  It
2182  * is the responsibility of the caller to notice the difference and
2183  * take appropriate action.
2184  *
2185  * vma_add_reservation is used in error paths where a reservation must
2186  * be restored when a newly allocated huge page must be freed.  It is
2187  * to be called after calling vma_needs_reservation to determine if a
2188  * reservation exists.
2189  */
2190 enum vma_resv_mode {
2191         VMA_NEEDS_RESV,
2192         VMA_COMMIT_RESV,
2193         VMA_END_RESV,
2194         VMA_ADD_RESV,
2195 };
2196 static long __vma_reservation_common(struct hstate *h,
2197                                 struct vm_area_struct *vma, unsigned long addr,
2198                                 enum vma_resv_mode mode)
2199 {
2200         struct resv_map *resv;
2201         pgoff_t idx;
2202         long ret;
2203         long dummy_out_regions_needed;
2204
2205         resv = vma_resv_map(vma);
2206         if (!resv)
2207                 return 1;
2208
2209         idx = vma_hugecache_offset(h, vma, addr);
2210         switch (mode) {
2211         case VMA_NEEDS_RESV:
2212                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2213                 /* We assume that vma_reservation_* routines always operate on
2214                  * 1 page, and that adding to resv map a 1 page entry can only
2215                  * ever require 1 region.
2216                  */
2217                 VM_BUG_ON(dummy_out_regions_needed != 1);
2218                 break;
2219         case VMA_COMMIT_RESV:
2220                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2221                 /* region_add calls of range 1 should never fail. */
2222                 VM_BUG_ON(ret < 0);
2223                 break;
2224         case VMA_END_RESV:
2225                 region_abort(resv, idx, idx + 1, 1);
2226                 ret = 0;
2227                 break;
2228         case VMA_ADD_RESV:
2229                 if (vma->vm_flags & VM_MAYSHARE) {
2230                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2231                         /* region_add calls of range 1 should never fail. */
2232                         VM_BUG_ON(ret < 0);
2233                 } else {
2234                         region_abort(resv, idx, idx + 1, 1);
2235                         ret = region_del(resv, idx, idx + 1);
2236                 }
2237                 break;
2238         default:
2239                 BUG();
2240         }
2241
2242         if (vma->vm_flags & VM_MAYSHARE)
2243                 return ret;
2244         else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2245                 /*
2246                  * In most cases, reserves always exist for private mappings.
2247                  * However, a file associated with mapping could have been
2248                  * hole punched or truncated after reserves were consumed.
2249                  * As subsequent fault on such a range will not use reserves.
2250                  * Subtle - The reserve map for private mappings has the
2251                  * opposite meaning than that of shared mappings.  If NO
2252                  * entry is in the reserve map, it means a reservation exists.
2253                  * If an entry exists in the reserve map, it means the
2254                  * reservation has already been consumed.  As a result, the
2255                  * return value of this routine is the opposite of the
2256                  * value returned from reserve map manipulation routines above.
2257                  */
2258                 if (ret)
2259                         return 0;
2260                 else
2261                         return 1;
2262         }
2263         else
2264                 return ret < 0 ? ret : 0;
2265 }
2266
2267 static long vma_needs_reservation(struct hstate *h,
2268                         struct vm_area_struct *vma, unsigned long addr)
2269 {
2270         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2271 }
2272
2273 static long vma_commit_reservation(struct hstate *h,
2274                         struct vm_area_struct *vma, unsigned long addr)
2275 {
2276         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2277 }
2278
2279 static void vma_end_reservation(struct hstate *h,
2280                         struct vm_area_struct *vma, unsigned long addr)
2281 {
2282         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2283 }
2284
2285 static long vma_add_reservation(struct hstate *h,
2286                         struct vm_area_struct *vma, unsigned long addr)
2287 {
2288         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2289 }
2290
2291 /*
2292  * This routine is called to restore a reservation on error paths.  In the
2293  * specific error paths, a huge page was allocated (via alloc_huge_page)
2294  * and is about to be freed.  If a reservation for the page existed,
2295  * alloc_huge_page would have consumed the reservation and set PagePrivate
2296  * in the newly allocated page.  When the page is freed via free_huge_page,
2297  * the global reservation count will be incremented if PagePrivate is set.
2298  * However, free_huge_page can not adjust the reserve map.  Adjust the
2299  * reserve map here to be consistent with global reserve count adjustments
2300  * to be made by free_huge_page.
2301  */
2302 static void restore_reserve_on_error(struct hstate *h,
2303                         struct vm_area_struct *vma, unsigned long address,
2304                         struct page *page)
2305 {
2306         if (unlikely(PagePrivate(page))) {
2307                 long rc = vma_needs_reservation(h, vma, address);
2308
2309                 if (unlikely(rc < 0)) {
2310                         /*
2311                          * Rare out of memory condition in reserve map
2312                          * manipulation.  Clear PagePrivate so that
2313                          * global reserve count will not be incremented
2314                          * by free_huge_page.  This will make it appear
2315                          * as though the reservation for this page was
2316                          * consumed.  This may prevent the task from
2317                          * faulting in the page at a later time.  This
2318                          * is better than inconsistent global huge page
2319                          * accounting of reserve counts.
2320                          */
2321                         ClearPagePrivate(page);
2322                 } else if (rc) {
2323                         rc = vma_add_reservation(h, vma, address);
2324                         if (unlikely(rc < 0))
2325                                 /*
2326                                  * See above comment about rare out of
2327                                  * memory condition.
2328                                  */
2329                                 ClearPagePrivate(page);
2330                 } else
2331                         vma_end_reservation(h, vma, address);
2332         }
2333 }
2334
2335 struct page *alloc_huge_page(struct vm_area_struct *vma,
2336                                     unsigned long addr, int avoid_reserve)
2337 {
2338         struct hugepage_subpool *spool = subpool_vma(vma);
2339         struct hstate *h = hstate_vma(vma);
2340         struct page *page;
2341         long map_chg, map_commit;
2342         long gbl_chg;
2343         int ret, idx;
2344         struct hugetlb_cgroup *h_cg;
2345         bool deferred_reserve;
2346
2347         idx = hstate_index(h);
2348         /*
2349          * Examine the region/reserve map to determine if the process
2350          * has a reservation for the page to be allocated.  A return
2351          * code of zero indicates a reservation exists (no change).
2352          */
2353         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2354         if (map_chg < 0)
2355                 return ERR_PTR(-ENOMEM);
2356
2357         /*
2358          * Processes that did not create the mapping will have no
2359          * reserves as indicated by the region/reserve map. Check
2360          * that the allocation will not exceed the subpool limit.
2361          * Allocations for MAP_NORESERVE mappings also need to be
2362          * checked against any subpool limit.
2363          */
2364         if (map_chg || avoid_reserve) {
2365                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2366                 if (gbl_chg < 0) {
2367                         vma_end_reservation(h, vma, addr);
2368                         return ERR_PTR(-ENOSPC);
2369                 }
2370
2371                 /*
2372                  * Even though there was no reservation in the region/reserve
2373                  * map, there could be reservations associated with the
2374                  * subpool that can be used.  This would be indicated if the
2375                  * return value of hugepage_subpool_get_pages() is zero.
2376                  * However, if avoid_reserve is specified we still avoid even
2377                  * the subpool reservations.
2378                  */
2379                 if (avoid_reserve)
2380                         gbl_chg = 1;
2381         }
2382
2383         /* If this allocation is not consuming a reservation, charge it now.
2384          */
2385         deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2386         if (deferred_reserve) {
2387                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2388                         idx, pages_per_huge_page(h), &h_cg);
2389                 if (ret)
2390                         goto out_subpool_put;
2391         }
2392
2393         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2394         if (ret)
2395                 goto out_uncharge_cgroup_reservation;
2396
2397         spin_lock(&hugetlb_lock);
2398         /*
2399          * glb_chg is passed to indicate whether or not a page must be taken
2400          * from the global free pool (global change).  gbl_chg == 0 indicates
2401          * a reservation exists for the allocation.
2402          */
2403         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2404         if (!page) {
2405                 spin_unlock(&hugetlb_lock);
2406                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2407                 if (!page)
2408                         goto out_uncharge_cgroup;
2409                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2410                         SetPagePrivate(page);
2411                         h->resv_huge_pages--;
2412                 }
2413                 spin_lock(&hugetlb_lock);
2414                 list_add(&page->lru, &h->hugepage_activelist);
2415                 /* Fall through */
2416         }
2417         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2418         /* If allocation is not consuming a reservation, also store the
2419          * hugetlb_cgroup pointer on the page.
2420          */
2421         if (deferred_reserve) {
2422                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2423                                                   h_cg, page);
2424         }
2425
2426         spin_unlock(&hugetlb_lock);
2427
2428         set_page_private(page, (unsigned long)spool);
2429
2430         map_commit = vma_commit_reservation(h, vma, addr);
2431         if (unlikely(map_chg > map_commit)) {
2432                 /*
2433                  * The page was added to the reservation map between
2434                  * vma_needs_reservation and vma_commit_reservation.
2435                  * This indicates a race with hugetlb_reserve_pages.
2436                  * Adjust for the subpool count incremented above AND
2437                  * in hugetlb_reserve_pages for the same page.  Also,
2438                  * the reservation count added in hugetlb_reserve_pages
2439                  * no longer applies.
2440                  */
2441                 long rsv_adjust;
2442
2443                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2444                 hugetlb_acct_memory(h, -rsv_adjust);
2445                 if (deferred_reserve)
2446                         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2447                                         pages_per_huge_page(h), page);
2448         }
2449         return page;
2450
2451 out_uncharge_cgroup:
2452         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2453 out_uncharge_cgroup_reservation:
2454         if (deferred_reserve)
2455                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2456                                                     h_cg);
2457 out_subpool_put:
2458         if (map_chg || avoid_reserve)
2459                 hugepage_subpool_put_pages(spool, 1);
2460         vma_end_reservation(h, vma, addr);
2461         return ERR_PTR(-ENOSPC);
2462 }
2463
2464 int alloc_bootmem_huge_page(struct hstate *h)
2465         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2466 int __alloc_bootmem_huge_page(struct hstate *h)
2467 {
2468         struct huge_bootmem_page *m;
2469         int nr_nodes, node;
2470
2471         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2472                 void *addr;
2473
2474                 addr = memblock_alloc_try_nid_raw(
2475                                 huge_page_size(h), huge_page_size(h),
2476                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2477                 if (addr) {
2478                         /*
2479                          * Use the beginning of the huge page to store the
2480                          * huge_bootmem_page struct (until gather_bootmem
2481                          * puts them into the mem_map).
2482                          */
2483                         m = addr;
2484                         goto found;
2485                 }
2486         }
2487         return 0;
2488
2489 found:
2490         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2491         /* Put them into a private list first because mem_map is not up yet */
2492         INIT_LIST_HEAD(&m->list);
2493         list_add(&m->list, &huge_boot_pages);
2494         m->hstate = h;
2495         return 1;
2496 }
2497
2498 static void __init prep_compound_huge_page(struct page *page,
2499                 unsigned int order)
2500 {
2501         if (unlikely(order > (MAX_ORDER - 1)))
2502                 prep_compound_gigantic_page(page, order);
2503         else
2504                 prep_compound_page(page, order);
2505 }
2506
2507 /* Put bootmem huge pages into the standard lists after mem_map is up */
2508 static void __init gather_bootmem_prealloc(void)
2509 {
2510         struct huge_bootmem_page *m;
2511
2512         list_for_each_entry(m, &huge_boot_pages, list) {
2513                 struct page *page = virt_to_page(m);
2514                 struct hstate *h = m->hstate;
2515
2516                 WARN_ON(page_count(page) != 1);
2517                 prep_compound_huge_page(page, h->order);
2518                 WARN_ON(PageReserved(page));
2519                 prep_new_huge_page(h, page, page_to_nid(page));
2520                 put_page(page); /* free it into the hugepage allocator */
2521
2522                 /*
2523                  * If we had gigantic hugepages allocated at boot time, we need
2524                  * to restore the 'stolen' pages to totalram_pages in order to
2525                  * fix confusing memory reports from free(1) and another
2526                  * side-effects, like CommitLimit going negative.
2527                  */
2528                 if (hstate_is_gigantic(h))
2529                         adjust_managed_page_count(page, 1 << h->order);
2530                 cond_resched();
2531         }
2532 }
2533
2534 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2535 {
2536         unsigned long i;
2537         nodemask_t *node_alloc_noretry;
2538
2539         if (!hstate_is_gigantic(h)) {
2540                 /*
2541                  * Bit mask controlling how hard we retry per-node allocations.
2542                  * Ignore errors as lower level routines can deal with
2543                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2544                  * time, we are likely in bigger trouble.
2545                  */
2546                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2547                                                 GFP_KERNEL);
2548         } else {
2549                 /* allocations done at boot time */
2550                 node_alloc_noretry = NULL;
2551         }
2552
2553         /* bit mask controlling how hard we retry per-node allocations */
2554         if (node_alloc_noretry)
2555                 nodes_clear(*node_alloc_noretry);
2556
2557         for (i = 0; i < h->max_huge_pages; ++i) {
2558                 if (hstate_is_gigantic(h)) {
2559                         if (hugetlb_cma_size) {
2560                                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2561                                 break;
2562                         }
2563                         if (!alloc_bootmem_huge_page(h))
2564                                 break;
2565                 } else if (!alloc_pool_huge_page(h,
2566                                          &node_states[N_MEMORY],
2567                                          node_alloc_noretry))
2568                         break;
2569                 cond_resched();
2570         }
2571         if (i < h->max_huge_pages) {
2572                 char buf[32];
2573
2574                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2575                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2576                         h->max_huge_pages, buf, i);
2577                 h->max_huge_pages = i;
2578         }
2579
2580         kfree(node_alloc_noretry);
2581 }
2582
2583 static void __init hugetlb_init_hstates(void)
2584 {
2585         struct hstate *h;
2586
2587         for_each_hstate(h) {
2588                 if (minimum_order > huge_page_order(h))
2589                         minimum_order = huge_page_order(h);
2590
2591                 /* oversize hugepages were init'ed in early boot */
2592                 if (!hstate_is_gigantic(h))
2593                         hugetlb_hstate_alloc_pages(h);
2594         }
2595         VM_BUG_ON(minimum_order == UINT_MAX);
2596 }
2597
2598 static void __init report_hugepages(void)
2599 {
2600         struct hstate *h;
2601
2602         for_each_hstate(h) {
2603                 char buf[32];
2604
2605                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2606                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2607                         buf, h->free_huge_pages);
2608         }
2609 }
2610
2611 #ifdef CONFIG_HIGHMEM
2612 static void try_to_free_low(struct hstate *h, unsigned long count,
2613                                                 nodemask_t *nodes_allowed)
2614 {
2615         int i;
2616
2617         if (hstate_is_gigantic(h))
2618                 return;
2619
2620         for_each_node_mask(i, *nodes_allowed) {
2621                 struct page *page, *next;
2622                 struct list_head *freel = &h->hugepage_freelists[i];
2623                 list_for_each_entry_safe(page, next, freel, lru) {
2624                         if (count >= h->nr_huge_pages)
2625                                 return;
2626                         if (PageHighMem(page))
2627                                 continue;
2628                         list_del(&page->lru);
2629                         update_and_free_page(h, page);
2630                         h->free_huge_pages--;
2631                         h->free_huge_pages_node[page_to_nid(page)]--;
2632                 }
2633         }
2634 }
2635 #else
2636 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2637                                                 nodemask_t *nodes_allowed)
2638 {
2639 }
2640 #endif
2641
2642 /*
2643  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2644  * balanced by operating on them in a round-robin fashion.
2645  * Returns 1 if an adjustment was made.
2646  */
2647 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2648                                 int delta)
2649 {
2650         int nr_nodes, node;
2651
2652         VM_BUG_ON(delta != -1 && delta != 1);
2653
2654         if (delta < 0) {
2655                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2656                         if (h->surplus_huge_pages_node[node])
2657                                 goto found;
2658                 }
2659         } else {
2660                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2661                         if (h->surplus_huge_pages_node[node] <
2662                                         h->nr_huge_pages_node[node])
2663                                 goto found;
2664                 }
2665         }
2666         return 0;
2667
2668 found:
2669         h->surplus_huge_pages += delta;
2670         h->surplus_huge_pages_node[node] += delta;
2671         return 1;
2672 }
2673
2674 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2675 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2676                               nodemask_t *nodes_allowed)
2677 {
2678         unsigned long min_count, ret;
2679         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2680
2681         /*
2682          * Bit mask controlling how hard we retry per-node allocations.
2683          * If we can not allocate the bit mask, do not attempt to allocate
2684          * the requested huge pages.
2685          */
2686         if (node_alloc_noretry)
2687                 nodes_clear(*node_alloc_noretry);
2688         else
2689                 return -ENOMEM;
2690
2691         spin_lock(&hugetlb_lock);
2692
2693         /*
2694          * Check for a node specific request.
2695          * Changing node specific huge page count may require a corresponding
2696          * change to the global count.  In any case, the passed node mask
2697          * (nodes_allowed) will restrict alloc/free to the specified node.
2698          */
2699         if (nid != NUMA_NO_NODE) {
2700                 unsigned long old_count = count;
2701
2702                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2703                 /*
2704                  * User may have specified a large count value which caused the
2705                  * above calculation to overflow.  In this case, they wanted
2706                  * to allocate as many huge pages as possible.  Set count to
2707                  * largest possible value to align with their intention.
2708                  */
2709                 if (count < old_count)
2710                         count = ULONG_MAX;
2711         }
2712
2713         /*
2714          * Gigantic pages runtime allocation depend on the capability for large
2715          * page range allocation.
2716          * If the system does not provide this feature, return an error when
2717          * the user tries to allocate gigantic pages but let the user free the
2718          * boottime allocated gigantic pages.
2719          */
2720         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2721                 if (count > persistent_huge_pages(h)) {
2722                         spin_unlock(&hugetlb_lock);
2723                         NODEMASK_FREE(node_alloc_noretry);
2724                         return -EINVAL;
2725                 }
2726                 /* Fall through to decrease pool */
2727         }
2728
2729         /*
2730          * Increase the pool size
2731          * First take pages out of surplus state.  Then make up the
2732          * remaining difference by allocating fresh huge pages.
2733          *
2734          * We might race with alloc_surplus_huge_page() here and be unable
2735          * to convert a surplus huge page to a normal huge page. That is
2736          * not critical, though, it just means the overall size of the
2737          * pool might be one hugepage larger than it needs to be, but
2738          * within all the constraints specified by the sysctls.
2739          */
2740         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2741                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2742                         break;
2743         }
2744
2745         while (count > persistent_huge_pages(h)) {
2746                 /*
2747                  * If this allocation races such that we no longer need the
2748                  * page, free_huge_page will handle it by freeing the page
2749                  * and reducing the surplus.
2750                  */
2751                 spin_unlock(&hugetlb_lock);
2752
2753                 /* yield cpu to avoid soft lockup */
2754                 cond_resched();
2755
2756                 ret = alloc_pool_huge_page(h, nodes_allowed,
2757                                                 node_alloc_noretry);
2758                 spin_lock(&hugetlb_lock);
2759                 if (!ret)
2760                         goto out;
2761
2762                 /* Bail for signals. Probably ctrl-c from user */
2763                 if (signal_pending(current))
2764                         goto out;
2765         }
2766
2767         /*
2768          * Decrease the pool size
2769          * First return free pages to the buddy allocator (being careful
2770          * to keep enough around to satisfy reservations).  Then place
2771          * pages into surplus state as needed so the pool will shrink
2772          * to the desired size as pages become free.
2773          *
2774          * By placing pages into the surplus state independent of the
2775          * overcommit value, we are allowing the surplus pool size to
2776          * exceed overcommit. There are few sane options here. Since
2777          * alloc_surplus_huge_page() is checking the global counter,
2778          * though, we'll note that we're not allowed to exceed surplus
2779          * and won't grow the pool anywhere else. Not until one of the
2780          * sysctls are changed, or the surplus pages go out of use.
2781          */
2782         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2783         min_count = max(count, min_count);
2784         try_to_free_low(h, min_count, nodes_allowed);
2785         while (min_count < persistent_huge_pages(h)) {
2786                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2787                         break;
2788                 cond_resched_lock(&hugetlb_lock);
2789         }
2790         while (count < persistent_huge_pages(h)) {
2791                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2792                         break;
2793         }
2794 out:
2795         h->max_huge_pages = persistent_huge_pages(h);
2796         spin_unlock(&hugetlb_lock);
2797
2798         NODEMASK_FREE(node_alloc_noretry);
2799
2800         return 0;
2801 }
2802
2803 #define HSTATE_ATTR_RO(_name) \
2804         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2805
2806 #define HSTATE_ATTR(_name) \
2807         static struct kobj_attribute _name##_attr = \
2808                 __ATTR(_name, 0644, _name##_show, _name##_store)
2809
2810 static struct kobject *hugepages_kobj;
2811 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2812
2813 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2814
2815 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2816 {
2817         int i;
2818
2819         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2820                 if (hstate_kobjs[i] == kobj) {
2821                         if (nidp)
2822                                 *nidp = NUMA_NO_NODE;
2823                         return &hstates[i];
2824                 }
2825
2826         return kobj_to_node_hstate(kobj, nidp);
2827 }
2828
2829 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2830                                         struct kobj_attribute *attr, char *buf)
2831 {
2832         struct hstate *h;
2833         unsigned long nr_huge_pages;
2834         int nid;
2835
2836         h = kobj_to_hstate(kobj, &nid);
2837         if (nid == NUMA_NO_NODE)
2838                 nr_huge_pages = h->nr_huge_pages;
2839         else
2840                 nr_huge_pages = h->nr_huge_pages_node[nid];
2841
2842         return sprintf(buf, "%lu\n", nr_huge_pages);
2843 }
2844
2845 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2846                                            struct hstate *h, int nid,
2847                                            unsigned long count, size_t len)
2848 {
2849         int err;
2850         nodemask_t nodes_allowed, *n_mask;
2851
2852         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2853                 return -EINVAL;
2854
2855         if (nid == NUMA_NO_NODE) {
2856                 /*
2857                  * global hstate attribute
2858                  */
2859                 if (!(obey_mempolicy &&
2860                                 init_nodemask_of_mempolicy(&nodes_allowed)))
2861                         n_mask = &node_states[N_MEMORY];
2862                 else
2863                         n_mask = &nodes_allowed;
2864         } else {
2865                 /*
2866                  * Node specific request.  count adjustment happens in
2867                  * set_max_huge_pages() after acquiring hugetlb_lock.
2868                  */
2869                 init_nodemask_of_node(&nodes_allowed, nid);
2870                 n_mask = &nodes_allowed;
2871         }
2872
2873         err = set_max_huge_pages(h, count, nid, n_mask);
2874
2875         return err ? err : len;
2876 }
2877
2878 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2879                                          struct kobject *kobj, const char *buf,
2880                                          size_t len)
2881 {
2882         struct hstate *h;
2883         unsigned long count;
2884         int nid;
2885         int err;
2886
2887         err = kstrtoul(buf, 10, &count);
2888         if (err)
2889                 return err;
2890
2891         h = kobj_to_hstate(kobj, &nid);
2892         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2893 }
2894
2895 static ssize_t nr_hugepages_show(struct kobject *kobj,
2896                                        struct kobj_attribute *attr, char *buf)
2897 {
2898         return nr_hugepages_show_common(kobj, attr, buf);
2899 }
2900
2901 static ssize_t nr_hugepages_store(struct kobject *kobj,
2902                struct kobj_attribute *attr, const char *buf, size_t len)
2903 {
2904         return nr_hugepages_store_common(false, kobj, buf, len);
2905 }
2906 HSTATE_ATTR(nr_hugepages);
2907
2908 #ifdef CONFIG_NUMA
2909
2910 /*
2911  * hstate attribute for optionally mempolicy-based constraint on persistent
2912  * huge page alloc/free.
2913  */
2914 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2915                                        struct kobj_attribute *attr, char *buf)
2916 {
2917         return nr_hugepages_show_common(kobj, attr, buf);
2918 }
2919
2920 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2921                struct kobj_attribute *attr, const char *buf, size_t len)
2922 {
2923         return nr_hugepages_store_common(true, kobj, buf, len);
2924 }
2925 HSTATE_ATTR(nr_hugepages_mempolicy);
2926 #endif
2927
2928
2929 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2930                                         struct kobj_attribute *attr, char *buf)
2931 {
2932         struct hstate *h = kobj_to_hstate(kobj, NULL);
2933         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2934 }
2935
2936 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2937                 struct kobj_attribute *attr, const char *buf, size_t count)
2938 {
2939         int err;
2940         unsigned long input;
2941         struct hstate *h = kobj_to_hstate(kobj, NULL);
2942
2943         if (hstate_is_gigantic(h))
2944                 return -EINVAL;
2945
2946         err = kstrtoul(buf, 10, &input);
2947         if (err)
2948                 return err;
2949
2950         spin_lock(&hugetlb_lock);
2951         h->nr_overcommit_huge_pages = input;
2952         spin_unlock(&hugetlb_lock);
2953
2954         return count;
2955 }
2956 HSTATE_ATTR(nr_overcommit_hugepages);
2957
2958 static ssize_t free_hugepages_show(struct kobject *kobj,
2959                                         struct kobj_attribute *attr, char *buf)
2960 {
2961         struct hstate *h;
2962         unsigned long free_huge_pages;
2963         int nid;
2964
2965         h = kobj_to_hstate(kobj, &nid);
2966         if (nid == NUMA_NO_NODE)
2967                 free_huge_pages = h->free_huge_pages;
2968         else
2969                 free_huge_pages = h->free_huge_pages_node[nid];
2970
2971         return sprintf(buf, "%lu\n", free_huge_pages);
2972 }
2973 HSTATE_ATTR_RO(free_hugepages);
2974
2975 static ssize_t resv_hugepages_show(struct kobject *kobj,
2976                                         struct kobj_attribute *attr, char *buf)
2977 {
2978         struct hstate *h = kobj_to_hstate(kobj, NULL);
2979         return sprintf(buf, "%lu\n", h->resv_huge_pages);
2980 }
2981 HSTATE_ATTR_RO(resv_hugepages);
2982
2983 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2984                                         struct kobj_attribute *attr, char *buf)
2985 {
2986         struct hstate *h;
2987         unsigned long surplus_huge_pages;
2988         int nid;
2989
2990         h = kobj_to_hstate(kobj, &nid);
2991         if (nid == NUMA_NO_NODE)
2992                 surplus_huge_pages = h->surplus_huge_pages;
2993         else
2994                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2995
2996         return sprintf(buf, "%lu\n", surplus_huge_pages);
2997 }
2998 HSTATE_ATTR_RO(surplus_hugepages);
2999
3000 static struct attribute *hstate_attrs[] = {
3001         &nr_hugepages_attr.attr,
3002         &nr_overcommit_hugepages_attr.attr,
3003         &free_hugepages_attr.attr,
3004         &resv_hugepages_attr.attr,
3005         &surplus_hugepages_attr.attr,
3006 #ifdef CONFIG_NUMA
3007         &nr_hugepages_mempolicy_attr.attr,
3008 #endif
3009         NULL,
3010 };
3011
3012 static const struct attribute_group hstate_attr_group = {
3013         .attrs = hstate_attrs,
3014 };
3015
3016 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3017                                     struct kobject **hstate_kobjs,
3018                                     const struct attribute_group *hstate_attr_group)
3019 {
3020         int retval;
3021         int hi = hstate_index(h);
3022
3023         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3024         if (!hstate_kobjs[hi])
3025                 return -ENOMEM;
3026
3027         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3028         if (retval)
3029                 kobject_put(hstate_kobjs[hi]);
3030
3031         return retval;
3032 }
3033
3034 static void __init hugetlb_sysfs_init(void)
3035 {
3036         struct hstate *h;
3037         int err;
3038
3039         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3040         if (!hugepages_kobj)
3041                 return;
3042
3043         for_each_hstate(h) {
3044                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3045                                          hstate_kobjs, &hstate_attr_group);
3046                 if (err)
3047                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
3048         }
3049 }
3050
3051 #ifdef CONFIG_NUMA
3052
3053 /*
3054  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3055  * with node devices in node_devices[] using a parallel array.  The array
3056  * index of a node device or _hstate == node id.
3057  * This is here to avoid any static dependency of the node device driver, in
3058  * the base kernel, on the hugetlb module.
3059  */
3060 struct node_hstate {
3061         struct kobject          *hugepages_kobj;
3062         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
3063 };
3064 static struct node_hstate node_hstates[MAX_NUMNODES];
3065
3066 /*
3067  * A subset of global hstate attributes for node devices
3068  */
3069 static struct attribute *per_node_hstate_attrs[] = {
3070         &nr_hugepages_attr.attr,
3071         &free_hugepages_attr.attr,
3072         &surplus_hugepages_attr.attr,
3073         NULL,
3074 };
3075
3076 static const struct attribute_group per_node_hstate_attr_group = {
3077         .attrs = per_node_hstate_attrs,
3078 };
3079
3080 /*
3081  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3082  * Returns node id via non-NULL nidp.
3083  */
3084 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3085 {
3086         int nid;
3087
3088         for (nid = 0; nid < nr_node_ids; nid++) {
3089                 struct node_hstate *nhs = &node_hstates[nid];
3090                 int i;
3091                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3092                         if (nhs->hstate_kobjs[i] == kobj) {
3093                                 if (nidp)
3094                                         *nidp = nid;
3095                                 return &hstates[i];
3096                         }
3097         }
3098
3099         BUG();
3100         return NULL;
3101 }
3102
3103 /*
3104  * Unregister hstate attributes from a single node device.
3105  * No-op if no hstate attributes attached.
3106  */
3107 static void hugetlb_unregister_node(struct node *node)
3108 {
3109         struct hstate *h;
3110         struct node_hstate *nhs = &node_hstates[node->dev.id];
3111
3112         if (!nhs->hugepages_kobj)
3113                 return;         /* no hstate attributes */
3114
3115         for_each_hstate(h) {
3116                 int idx = hstate_index(h);
3117                 if (nhs->hstate_kobjs[idx]) {
3118                         kobject_put(nhs->hstate_kobjs[idx]);
3119                         nhs->hstate_kobjs[idx] = NULL;
3120                 }
3121         }
3122
3123         kobject_put(nhs->hugepages_kobj);
3124         nhs->hugepages_kobj = NULL;
3125 }
3126
3127
3128 /*
3129  * Register hstate attributes for a single node device.
3130  * No-op if attributes already registered.
3131  */
3132 static void hugetlb_register_node(struct node *node)
3133 {
3134         struct hstate *h;
3135         struct node_hstate *nhs = &node_hstates[node->dev.id];
3136         int err;
3137
3138         if (nhs->hugepages_kobj)
3139                 return;         /* already allocated */
3140
3141         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3142                                                         &node->dev.kobj);
3143         if (!nhs->hugepages_kobj)
3144                 return;
3145
3146         for_each_hstate(h) {
3147                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3148                                                 nhs->hstate_kobjs,
3149                                                 &per_node_hstate_attr_group);
3150                 if (err) {
3151                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3152                                 h->name, node->dev.id);
3153                         hugetlb_unregister_node(node);
3154                         break;
3155                 }
3156         }
3157 }
3158
3159 /*
3160  * hugetlb init time:  register hstate attributes for all registered node
3161  * devices of nodes that have memory.  All on-line nodes should have
3162  * registered their associated device by this time.
3163  */
3164 static void __init hugetlb_register_all_nodes(void)
3165 {
3166         int nid;
3167
3168         for_each_node_state(nid, N_MEMORY) {
3169                 struct node *node = node_devices[nid];
3170                 if (node->dev.id == nid)
3171                         hugetlb_register_node(node);
3172         }
3173
3174         /*
3175          * Let the node device driver know we're here so it can
3176          * [un]register hstate attributes on node hotplug.
3177          */
3178         register_hugetlbfs_with_node(hugetlb_register_node,
3179                                      hugetlb_unregister_node);
3180 }
3181 #else   /* !CONFIG_NUMA */
3182
3183 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3184 {
3185         BUG();
3186         if (nidp)
3187                 *nidp = -1;
3188         return NULL;
3189 }
3190
3191 static void hugetlb_register_all_nodes(void) { }
3192
3193 #endif
3194
3195 static int __init hugetlb_init(void)
3196 {
3197         int i;
3198
3199         if (!hugepages_supported()) {
3200                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3201                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3202                 return 0;
3203         }
3204
3205         /*
3206          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3207          * architectures depend on setup being done here.
3208          */
3209         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3210         if (!parsed_default_hugepagesz) {
3211                 /*
3212                  * If we did not parse a default huge page size, set
3213                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3214                  * number of huge pages for this default size was implicitly
3215                  * specified, set that here as well.
3216                  * Note that the implicit setting will overwrite an explicit
3217                  * setting.  A warning will be printed in this case.
3218                  */
3219                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3220                 if (default_hstate_max_huge_pages) {
3221                         if (default_hstate.max_huge_pages) {
3222                                 char buf[32];
3223
3224                                 string_get_size(huge_page_size(&default_hstate),
3225                                         1, STRING_UNITS_2, buf, 32);
3226                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3227                                         default_hstate.max_huge_pages, buf);
3228                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3229                                         default_hstate_max_huge_pages);
3230                         }
3231                         default_hstate.max_huge_pages =
3232                                 default_hstate_max_huge_pages;
3233                 }
3234         }
3235
3236         hugetlb_cma_check();
3237         hugetlb_init_hstates();
3238         gather_bootmem_prealloc();
3239         report_hugepages();
3240
3241         hugetlb_sysfs_init();
3242         hugetlb_register_all_nodes();
3243         hugetlb_cgroup_file_init();
3244
3245 #ifdef CONFIG_SMP
3246         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3247 #else
3248         num_fault_mutexes = 1;
3249 #endif
3250         hugetlb_fault_mutex_table =
3251                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3252                               GFP_KERNEL);
3253         BUG_ON(!hugetlb_fault_mutex_table);
3254
3255         for (i = 0; i < num_fault_mutexes; i++)
3256                 mutex_init(&hugetlb_fault_mutex_table[i]);
3257         return 0;
3258 }
3259 subsys_initcall(hugetlb_init);
3260
3261 /* Overwritten by architectures with more huge page sizes */
3262 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3263 {
3264         return size == HPAGE_SIZE;
3265 }
3266
3267 void __init hugetlb_add_hstate(unsigned int order)
3268 {
3269         struct hstate *h;
3270         unsigned long i;
3271
3272         if (size_to_hstate(PAGE_SIZE << order)) {
3273                 return;
3274         }
3275         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3276         BUG_ON(order == 0);
3277         h = &hstates[hugetlb_max_hstate++];
3278         h->order = order;
3279         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3280         h->nr_huge_pages = 0;
3281         h->free_huge_pages = 0;
3282         for (i = 0; i < MAX_NUMNODES; ++i)
3283                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3284         INIT_LIST_HEAD(&h->hugepage_activelist);
3285         h->next_nid_to_alloc = first_memory_node;
3286         h->next_nid_to_free = first_memory_node;
3287         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3288                                         huge_page_size(h)/1024);
3289
3290         parsed_hstate = h;
3291 }
3292
3293 /*
3294  * hugepages command line processing
3295  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3296  * specification.  If not, ignore the hugepages value.  hugepages can also
3297  * be the first huge page command line  option in which case it implicitly
3298  * specifies the number of huge pages for the default size.
3299  */
3300 static int __init hugepages_setup(char *s)
3301 {
3302         unsigned long *mhp;
3303         static unsigned long *last_mhp;
3304
3305         if (!parsed_valid_hugepagesz) {
3306                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3307                 parsed_valid_hugepagesz = true;
3308                 return 0;
3309         }
3310
3311         /*
3312          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3313          * yet, so this hugepages= parameter goes to the "default hstate".
3314          * Otherwise, it goes with the previously parsed hugepagesz or
3315          * default_hugepagesz.
3316          */
3317         else if (!hugetlb_max_hstate)
3318                 mhp = &default_hstate_max_huge_pages;
3319         else
3320                 mhp = &parsed_hstate->max_huge_pages;
3321
3322         if (mhp == last_mhp) {
3323                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3324                 return 0;
3325         }
3326
3327         if (sscanf(s, "%lu", mhp) <= 0)
3328                 *mhp = 0;
3329
3330         /*
3331          * Global state is always initialized later in hugetlb_init.
3332          * But we need to allocate >= MAX_ORDER hstates here early to still
3333          * use the bootmem allocator.
3334          */
3335         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3336                 hugetlb_hstate_alloc_pages(parsed_hstate);
3337
3338         last_mhp = mhp;
3339
3340         return 1;
3341 }
3342 __setup("hugepages=", hugepages_setup);
3343
3344 /*
3345  * hugepagesz command line processing
3346  * A specific huge page size can only be specified once with hugepagesz.
3347  * hugepagesz is followed by hugepages on the command line.  The global
3348  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3349  * hugepagesz argument was valid.
3350  */
3351 static int __init hugepagesz_setup(char *s)
3352 {
3353         unsigned long size;
3354         struct hstate *h;
3355
3356         parsed_valid_hugepagesz = false;
3357         size = (unsigned long)memparse(s, NULL);
3358
3359         if (!arch_hugetlb_valid_size(size)) {
3360                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3361                 return 0;
3362         }
3363
3364         h = size_to_hstate(size);
3365         if (h) {
3366                 /*
3367                  * hstate for this size already exists.  This is normally
3368                  * an error, but is allowed if the existing hstate is the
3369                  * default hstate.  More specifically, it is only allowed if
3370                  * the number of huge pages for the default hstate was not
3371                  * previously specified.
3372                  */
3373                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3374                     default_hstate.max_huge_pages) {
3375                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3376                         return 0;
3377                 }
3378
3379                 /*
3380                  * No need to call hugetlb_add_hstate() as hstate already
3381                  * exists.  But, do set parsed_hstate so that a following
3382                  * hugepages= parameter will be applied to this hstate.
3383                  */
3384                 parsed_hstate = h;
3385                 parsed_valid_hugepagesz = true;
3386                 return 1;
3387         }
3388
3389         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3390         parsed_valid_hugepagesz = true;
3391         return 1;
3392 }
3393 __setup("hugepagesz=", hugepagesz_setup);
3394
3395 /*
3396  * default_hugepagesz command line input
3397  * Only one instance of default_hugepagesz allowed on command line.
3398  */
3399 static int __init default_hugepagesz_setup(char *s)
3400 {
3401         unsigned long size;
3402
3403         parsed_valid_hugepagesz = false;
3404         if (parsed_default_hugepagesz) {
3405                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3406                 return 0;
3407         }
3408
3409         size = (unsigned long)memparse(s, NULL);
3410
3411         if (!arch_hugetlb_valid_size(size)) {
3412                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3413                 return 0;
3414         }
3415
3416         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3417         parsed_valid_hugepagesz = true;
3418         parsed_default_hugepagesz = true;
3419         default_hstate_idx = hstate_index(size_to_hstate(size));
3420
3421         /*
3422          * The number of default huge pages (for this size) could have been
3423          * specified as the first hugetlb parameter: hugepages=X.  If so,
3424          * then default_hstate_max_huge_pages is set.  If the default huge
3425          * page size is gigantic (>= MAX_ORDER), then the pages must be
3426          * allocated here from bootmem allocator.
3427          */
3428         if (default_hstate_max_huge_pages) {
3429                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3430                 if (hstate_is_gigantic(&default_hstate))
3431                         hugetlb_hstate_alloc_pages(&default_hstate);
3432                 default_hstate_max_huge_pages = 0;
3433         }
3434
3435         return 1;
3436 }
3437 __setup("default_hugepagesz=", default_hugepagesz_setup);
3438
3439 static unsigned int allowed_mems_nr(struct hstate *h)
3440 {
3441         int node;
3442         unsigned int nr = 0;
3443         nodemask_t *mpol_allowed;
3444         unsigned int *array = h->free_huge_pages_node;
3445         gfp_t gfp_mask = htlb_alloc_mask(h);
3446
3447         mpol_allowed = policy_nodemask_current(gfp_mask);
3448
3449         for_each_node_mask(node, cpuset_current_mems_allowed) {
3450                 if (!mpol_allowed ||
3451                     (mpol_allowed && node_isset(node, *mpol_allowed)))
3452                         nr += array[node];
3453         }
3454
3455         return nr;
3456 }
3457
3458 #ifdef CONFIG_SYSCTL
3459 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3460                                           void *buffer, size_t *length,
3461                                           loff_t *ppos, unsigned long *out)
3462 {
3463         struct ctl_table dup_table;
3464
3465         /*
3466          * In order to avoid races with __do_proc_doulongvec_minmax(), we
3467          * can duplicate the @table and alter the duplicate of it.
3468          */
3469         dup_table = *table;
3470         dup_table.data = out;
3471
3472         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3473 }
3474
3475 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3476                          struct ctl_table *table, int write,
3477                          void *buffer, size_t *length, loff_t *ppos)
3478 {
3479         struct hstate *h = &default_hstate;
3480         unsigned long tmp = h->max_huge_pages;
3481         int ret;
3482
3483         if (!hugepages_supported())
3484                 return -EOPNOTSUPP;
3485
3486         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3487                                              &tmp);
3488         if (ret)
3489                 goto out;
3490
3491         if (write)
3492                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3493                                                   NUMA_NO_NODE, tmp, *length);
3494 out:
3495         return ret;
3496 }
3497
3498 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3499                           void *buffer, size_t *length, loff_t *ppos)
3500 {
3501
3502         return hugetlb_sysctl_handler_common(false, table, write,
3503                                                         buffer, length, ppos);
3504 }
3505
3506 #ifdef CONFIG_NUMA
3507 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3508                           void *buffer, size_t *length, loff_t *ppos)
3509 {
3510         return hugetlb_sysctl_handler_common(true, table, write,
3511                                                         buffer, length, ppos);
3512 }
3513 #endif /* CONFIG_NUMA */
3514
3515 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3516                 void *buffer, size_t *length, loff_t *ppos)
3517 {
3518         struct hstate *h = &default_hstate;
3519         unsigned long tmp;
3520         int ret;
3521
3522         if (!hugepages_supported())
3523                 return -EOPNOTSUPP;
3524
3525         tmp = h->nr_overcommit_huge_pages;
3526
3527         if (write && hstate_is_gigantic(h))
3528                 return -EINVAL;
3529
3530         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3531                                              &tmp);
3532         if (ret)
3533                 goto out;
3534
3535         if (write) {
3536                 spin_lock(&hugetlb_lock);
3537                 h->nr_overcommit_huge_pages = tmp;
3538                 spin_unlock(&hugetlb_lock);
3539         }
3540 out:
3541         return ret;
3542 }
3543
3544 #endif /* CONFIG_SYSCTL */
3545
3546 void hugetlb_report_meminfo(struct seq_file *m)
3547 {
3548         struct hstate *h;
3549         unsigned long total = 0;
3550
3551         if (!hugepages_supported())
3552                 return;
3553
3554         for_each_hstate(h) {
3555                 unsigned long count = h->nr_huge_pages;
3556
3557                 total += (PAGE_SIZE << huge_page_order(h)) * count;
3558
3559                 if (h == &default_hstate)
3560                         seq_printf(m,
3561                                    "HugePages_Total:   %5lu\n"
3562                                    "HugePages_Free:    %5lu\n"
3563                                    "HugePages_Rsvd:    %5lu\n"
3564                                    "HugePages_Surp:    %5lu\n"
3565                                    "Hugepagesize:   %8lu kB\n",
3566                                    count,
3567                                    h->free_huge_pages,
3568                                    h->resv_huge_pages,
3569                                    h->surplus_huge_pages,
3570                                    (PAGE_SIZE << huge_page_order(h)) / 1024);
3571         }
3572
3573         seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3574 }
3575
3576 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3577 {
3578         struct hstate *h = &default_hstate;
3579
3580         if (!hugepages_supported())
3581                 return 0;
3582
3583         return sysfs_emit_at(buf, len,
3584                              "Node %d HugePages_Total: %5u\n"
3585                              "Node %d HugePages_Free:  %5u\n"
3586                              "Node %d HugePages_Surp:  %5u\n",
3587                              nid, h->nr_huge_pages_node[nid],
3588                              nid, h->free_huge_pages_node[nid],
3589                              nid, h->surplus_huge_pages_node[nid]);
3590 }
3591
3592 void hugetlb_show_meminfo(void)
3593 {
3594         struct hstate *h;
3595         int nid;
3596
3597         if (!hugepages_supported())
3598                 return;
3599
3600         for_each_node_state(nid, N_MEMORY)
3601                 for_each_hstate(h)
3602                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3603                                 nid,
3604                                 h->nr_huge_pages_node[nid],
3605                                 h->free_huge_pages_node[nid],
3606                                 h->surplus_huge_pages_node[nid],
3607                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3608 }
3609
3610 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3611 {
3612         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3613                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3614 }
3615
3616 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3617 unsigned long hugetlb_total_pages(void)
3618 {
3619         struct hstate *h;
3620         unsigned long nr_total_pages = 0;
3621
3622         for_each_hstate(h)
3623                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3624         return nr_total_pages;
3625 }
3626
3627 static int hugetlb_acct_memory(struct hstate *h, long delta)
3628 {
3629         int ret = -ENOMEM;
3630
3631         spin_lock(&hugetlb_lock);
3632         /*
3633          * When cpuset is configured, it breaks the strict hugetlb page
3634          * reservation as the accounting is done on a global variable. Such
3635          * reservation is completely rubbish in the presence of cpuset because
3636          * the reservation is not checked against page availability for the
3637          * current cpuset. Application can still potentially OOM'ed by kernel
3638          * with lack of free htlb page in cpuset that the task is in.
3639          * Attempt to enforce strict accounting with cpuset is almost
3640          * impossible (or too ugly) because cpuset is too fluid that
3641          * task or memory node can be dynamically moved between cpusets.
3642          *
3643          * The change of semantics for shared hugetlb mapping with cpuset is
3644          * undesirable. However, in order to preserve some of the semantics,
3645          * we fall back to check against current free page availability as
3646          * a best attempt and hopefully to minimize the impact of changing
3647          * semantics that cpuset has.
3648          *
3649          * Apart from cpuset, we also have memory policy mechanism that
3650          * also determines from which node the kernel will allocate memory
3651          * in a NUMA system. So similar to cpuset, we also should consider
3652          * the memory policy of the current task. Similar to the description
3653          * above.
3654          */
3655         if (delta > 0) {
3656                 if (gather_surplus_pages(h, delta) < 0)
3657                         goto out;
3658
3659                 if (delta > allowed_mems_nr(h)) {
3660                         return_unused_surplus_pages(h, delta);
3661                         goto out;
3662                 }
3663         }
3664
3665         ret = 0;
3666         if (delta < 0)
3667                 return_unused_surplus_pages(h, (unsigned long) -delta);
3668
3669 out:
3670         spin_unlock(&hugetlb_lock);
3671         return ret;
3672 }
3673
3674 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3675 {
3676         struct resv_map *resv = vma_resv_map(vma);
3677
3678         /*
3679          * This new VMA should share its siblings reservation map if present.
3680          * The VMA will only ever have a valid reservation map pointer where
3681          * it is being copied for another still existing VMA.  As that VMA
3682          * has a reference to the reservation map it cannot disappear until
3683          * after this open call completes.  It is therefore safe to take a
3684          * new reference here without additional locking.
3685          */
3686         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3687                 kref_get(&resv->refs);
3688 }
3689
3690 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3691 {
3692         struct hstate *h = hstate_vma(vma);
3693         struct resv_map *resv = vma_resv_map(vma);
3694         struct hugepage_subpool *spool = subpool_vma(vma);
3695         unsigned long reserve, start, end;
3696         long gbl_reserve;
3697
3698         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3699                 return;
3700
3701         start = vma_hugecache_offset(h, vma, vma->vm_start);
3702         end = vma_hugecache_offset(h, vma, vma->vm_end);
3703
3704         reserve = (end - start) - region_count(resv, start, end);
3705         hugetlb_cgroup_uncharge_counter(resv, start, end);
3706         if (reserve) {
3707                 /*
3708                  * Decrement reserve counts.  The global reserve count may be
3709                  * adjusted if the subpool has a minimum size.
3710                  */
3711                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3712                 hugetlb_acct_memory(h, -gbl_reserve);
3713         }
3714
3715         kref_put(&resv->refs, resv_map_release);
3716 }
3717
3718 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3719 {
3720         if (addr & ~(huge_page_mask(hstate_vma(vma))))
3721                 return -EINVAL;
3722         return 0;
3723 }
3724
3725 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3726 {
3727         struct hstate *hstate = hstate_vma(vma);
3728
3729         return 1UL << huge_page_shift(hstate);
3730 }
3731
3732 /*
3733  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3734  * handle_mm_fault() to try to instantiate regular-sized pages in the
3735  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3736  * this far.
3737  */
3738 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3739 {
3740         BUG();
3741         return 0;
3742 }
3743
3744 /*
3745  * When a new function is introduced to vm_operations_struct and added
3746  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3747  * This is because under System V memory model, mappings created via
3748  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3749  * their original vm_ops are overwritten with shm_vm_ops.
3750  */
3751 const struct vm_operations_struct hugetlb_vm_ops = {
3752         .fault = hugetlb_vm_op_fault,
3753         .open = hugetlb_vm_op_open,
3754         .close = hugetlb_vm_op_close,
3755         .split = hugetlb_vm_op_split,
3756         .pagesize = hugetlb_vm_op_pagesize,
3757 };
3758
3759 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3760                                 int writable)
3761 {
3762         pte_t entry;
3763
3764         if (writable) {
3765                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3766                                          vma->vm_page_prot)));
3767         } else {
3768                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3769                                            vma->vm_page_prot));
3770         }
3771         entry = pte_mkyoung(entry);
3772         entry = pte_mkhuge(entry);
3773         entry = arch_make_huge_pte(entry, vma, page, writable);
3774
3775         return entry;
3776 }
3777
3778 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3779                                    unsigned long address, pte_t *ptep)
3780 {
3781         pte_t entry;
3782
3783         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3784         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3785                 update_mmu_cache(vma, address, ptep);
3786 }
3787
3788 bool is_hugetlb_entry_migration(pte_t pte)
3789 {
3790         swp_entry_t swp;
3791
3792         if (huge_pte_none(pte) || pte_present(pte))
3793                 return false;
3794         swp = pte_to_swp_entry(pte);
3795         if (is_migration_entry(swp))
3796                 return true;
3797         else
3798                 return false;
3799 }
3800
3801 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3802 {
3803         swp_entry_t swp;
3804
3805         if (huge_pte_none(pte) || pte_present(pte))
3806                 return false;
3807         swp = pte_to_swp_entry(pte);
3808         if (is_hwpoison_entry(swp))
3809                 return true;
3810         else
3811                 return false;
3812 }
3813
3814 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3815                             struct vm_area_struct *vma)
3816 {
3817         pte_t *src_pte, *dst_pte, entry, dst_entry;
3818         struct page *ptepage;
3819         unsigned long addr;
3820         int cow;
3821         struct hstate *h = hstate_vma(vma);
3822         unsigned long sz = huge_page_size(h);
3823         struct address_space *mapping = vma->vm_file->f_mapping;
3824         struct mmu_notifier_range range;
3825         int ret = 0;
3826
3827         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3828
3829         if (cow) {
3830                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3831                                         vma->vm_start,
3832                                         vma->vm_end);
3833                 mmu_notifier_invalidate_range_start(&range);
3834         } else {
3835                 /*
3836                  * For shared mappings i_mmap_rwsem must be held to call
3837                  * huge_pte_alloc, otherwise the returned ptep could go
3838                  * away if part of a shared pmd and another thread calls
3839                  * huge_pmd_unshare.
3840                  */
3841                 i_mmap_lock_read(mapping);
3842         }
3843
3844         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3845                 spinlock_t *src_ptl, *dst_ptl;
3846                 src_pte = huge_pte_offset(src, addr, sz);
3847                 if (!src_pte)
3848                         continue;
3849                 dst_pte = huge_pte_alloc(dst, addr, sz);
3850                 if (!dst_pte) {
3851                         ret = -ENOMEM;
3852                         break;
3853                 }
3854
3855                 /*
3856                  * If the pagetables are shared don't copy or take references.
3857                  * dst_pte == src_pte is the common case of src/dest sharing.
3858                  *
3859                  * However, src could have 'unshared' and dst shares with
3860                  * another vma.  If dst_pte !none, this implies sharing.
3861                  * Check here before taking page table lock, and once again
3862                  * after taking the lock below.
3863                  */
3864                 dst_entry = huge_ptep_get(dst_pte);
3865                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3866                         continue;
3867
3868                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3869                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3870                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3871                 entry = huge_ptep_get(src_pte);
3872                 dst_entry = huge_ptep_get(dst_pte);
3873                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3874                         /*
3875                          * Skip if src entry none.  Also, skip in the
3876                          * unlikely case dst entry !none as this implies
3877                          * sharing with another vma.
3878                          */
3879                         ;
3880                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3881                                     is_hugetlb_entry_hwpoisoned(entry))) {
3882                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3883
3884                         if (is_write_migration_entry(swp_entry) && cow) {
3885                                 /*
3886                                  * COW mappings require pages in both
3887                                  * parent and child to be set to read.
3888                                  */
3889                                 make_migration_entry_read(&swp_entry);
3890                                 entry = swp_entry_to_pte(swp_entry);
3891                                 set_huge_swap_pte_at(src, addr, src_pte,
3892                                                      entry, sz);
3893                         }
3894                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3895                 } else {
3896                         if (cow) {
3897                                 /*
3898                                  * No need to notify as we are downgrading page
3899                                  * table protection not changing it to point
3900                                  * to a new page.
3901                                  *
3902                                  * See Documentation/vm/mmu_notifier.rst
3903                                  */
3904                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3905                         }
3906                         entry = huge_ptep_get(src_pte);
3907                         ptepage = pte_page(entry);
3908                         get_page(ptepage);
3909                         page_dup_rmap(ptepage, true);
3910                         set_huge_pte_at(dst, addr, dst_pte, entry);
3911                         hugetlb_count_add(pages_per_huge_page(h), dst);
3912                 }
3913                 spin_unlock(src_ptl);
3914                 spin_unlock(dst_ptl);
3915         }
3916
3917         if (cow)
3918                 mmu_notifier_invalidate_range_end(&range);
3919         else
3920                 i_mmap_unlock_read(mapping);
3921
3922         return ret;
3923 }
3924
3925 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3926                             unsigned long start, unsigned long end,
3927                             struct page *ref_page)
3928 {
3929         struct mm_struct *mm = vma->vm_mm;
3930         unsigned long address;
3931         pte_t *ptep;
3932         pte_t pte;
3933         spinlock_t *ptl;
3934         struct page *page;
3935         struct hstate *h = hstate_vma(vma);
3936         unsigned long sz = huge_page_size(h);
3937         struct mmu_notifier_range range;
3938
3939         WARN_ON(!is_vm_hugetlb_page(vma));
3940         BUG_ON(start & ~huge_page_mask(h));
3941         BUG_ON(end & ~huge_page_mask(h));
3942
3943         /*
3944          * This is a hugetlb vma, all the pte entries should point
3945          * to huge page.
3946          */
3947         tlb_change_page_size(tlb, sz);
3948         tlb_start_vma(tlb, vma);
3949
3950         /*
3951          * If sharing possible, alert mmu notifiers of worst case.
3952          */
3953         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3954                                 end);
3955         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3956         mmu_notifier_invalidate_range_start(&range);
3957         address = start;
3958         for (; address < end; address += sz) {
3959                 ptep = huge_pte_offset(mm, address, sz);
3960                 if (!ptep)
3961                         continue;
3962
3963                 ptl = huge_pte_lock(h, mm, ptep);
3964                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3965                         spin_unlock(ptl);
3966                         /*
3967                          * We just unmapped a page of PMDs by clearing a PUD.
3968                          * The caller's TLB flush range should cover this area.
3969                          */
3970                         continue;
3971                 }
3972
3973                 pte = huge_ptep_get(ptep);
3974                 if (huge_pte_none(pte)) {
3975                         spin_unlock(ptl);
3976                         continue;
3977                 }
3978
3979                 /*
3980                  * Migrating hugepage or HWPoisoned hugepage is already
3981                  * unmapped and its refcount is dropped, so just clear pte here.
3982                  */
3983                 if (unlikely(!pte_present(pte))) {
3984                         huge_pte_clear(mm, address, ptep, sz);
3985                         spin_unlock(ptl);
3986                         continue;
3987                 }
3988
3989                 page = pte_page(pte);
3990                 /*
3991                  * If a reference page is supplied, it is because a specific
3992                  * page is being unmapped, not a range. Ensure the page we
3993                  * are about to unmap is the actual page of interest.
3994                  */
3995                 if (ref_page) {
3996                         if (page != ref_page) {
3997                                 spin_unlock(ptl);
3998                                 continue;
3999                         }
4000                         /*
4001                          * Mark the VMA as having unmapped its page so that
4002                          * future faults in this VMA will fail rather than
4003                          * looking like data was lost
4004                          */
4005                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4006                 }
4007
4008                 pte = huge_ptep_get_and_clear(mm, address, ptep);
4009                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4010                 if (huge_pte_dirty(pte))
4011                         set_page_dirty(page);
4012
4013                 hugetlb_count_sub(pages_per_huge_page(h), mm);
4014                 page_remove_rmap(page, true);
4015
4016                 spin_unlock(ptl);
4017                 tlb_remove_page_size(tlb, page, huge_page_size(h));
4018                 /*
4019                  * Bail out after unmapping reference page if supplied
4020                  */
4021                 if (ref_page)
4022                         break;
4023         }
4024         mmu_notifier_invalidate_range_end(&range);
4025         tlb_end_vma(tlb, vma);
4026 }
4027
4028 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4029                           struct vm_area_struct *vma, unsigned long start,
4030                           unsigned long end, struct page *ref_page)
4031 {
4032         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4033
4034         /*
4035          * Clear this flag so that x86's huge_pmd_share page_table_shareable
4036          * test will fail on a vma being torn down, and not grab a page table
4037          * on its way out.  We're lucky that the flag has such an appropriate
4038          * name, and can in fact be safely cleared here. We could clear it
4039          * before the __unmap_hugepage_range above, but all that's necessary
4040          * is to clear it before releasing the i_mmap_rwsem. This works
4041          * because in the context this is called, the VMA is about to be
4042          * destroyed and the i_mmap_rwsem is held.
4043          */
4044         vma->vm_flags &= ~VM_MAYSHARE;
4045 }
4046
4047 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4048                           unsigned long end, struct page *ref_page)
4049 {
4050         struct mm_struct *mm;
4051         struct mmu_gather tlb;
4052         unsigned long tlb_start = start;
4053         unsigned long tlb_end = end;
4054
4055         /*
4056          * If shared PMDs were possibly used within this vma range, adjust
4057          * start/end for worst case tlb flushing.
4058          * Note that we can not be sure if PMDs are shared until we try to
4059          * unmap pages.  However, we want to make sure TLB flushing covers
4060          * the largest possible range.
4061          */
4062         adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
4063
4064         mm = vma->vm_mm;
4065
4066         tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
4067         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4068         tlb_finish_mmu(&tlb, tlb_start, tlb_end);
4069 }
4070
4071 /*
4072  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4073  * mappping it owns the reserve page for. The intention is to unmap the page
4074  * from other VMAs and let the children be SIGKILLed if they are faulting the
4075  * same region.
4076  */
4077 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4078                               struct page *page, unsigned long address)
4079 {
4080         struct hstate *h = hstate_vma(vma);
4081         struct vm_area_struct *iter_vma;
4082         struct address_space *mapping;
4083         pgoff_t pgoff;
4084
4085         /*
4086          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4087          * from page cache lookup which is in HPAGE_SIZE units.
4088          */
4089         address = address & huge_page_mask(h);
4090         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4091                         vma->vm_pgoff;
4092         mapping = vma->vm_file->f_mapping;
4093
4094         /*
4095          * Take the mapping lock for the duration of the table walk. As
4096          * this mapping should be shared between all the VMAs,
4097          * __unmap_hugepage_range() is called as the lock is already held
4098          */
4099         i_mmap_lock_write(mapping);
4100         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4101                 /* Do not unmap the current VMA */
4102                 if (iter_vma == vma)
4103                         continue;
4104
4105                 /*
4106                  * Shared VMAs have their own reserves and do not affect
4107                  * MAP_PRIVATE accounting but it is possible that a shared
4108                  * VMA is using the same page so check and skip such VMAs.
4109                  */
4110                 if (iter_vma->vm_flags & VM_MAYSHARE)
4111                         continue;
4112
4113                 /*
4114                  * Unmap the page from other VMAs without their own reserves.
4115                  * They get marked to be SIGKILLed if they fault in these
4116                  * areas. This is because a future no-page fault on this VMA
4117                  * could insert a zeroed page instead of the data existing
4118                  * from the time of fork. This would look like data corruption
4119                  */
4120                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4121                         unmap_hugepage_range(iter_vma, address,
4122                                              address + huge_page_size(h), page);
4123         }
4124         i_mmap_unlock_write(mapping);
4125 }
4126
4127 /*
4128  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4129  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4130  * cannot race with other handlers or page migration.
4131  * Keep the pte_same checks anyway to make transition from the mutex easier.
4132  */
4133 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4134                        unsigned long address, pte_t *ptep,
4135                        struct page *pagecache_page, spinlock_t *ptl)
4136 {
4137         pte_t pte;
4138         struct hstate *h = hstate_vma(vma);
4139         struct page *old_page, *new_page;
4140         int outside_reserve = 0;
4141         vm_fault_t ret = 0;
4142         unsigned long haddr = address & huge_page_mask(h);
4143         struct mmu_notifier_range range;
4144
4145         pte = huge_ptep_get(ptep);
4146         old_page = pte_page(pte);
4147
4148 retry_avoidcopy:
4149         /* If no-one else is actually using this page, avoid the copy
4150          * and just make the page writable */
4151         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4152                 page_move_anon_rmap(old_page, vma);
4153                 set_huge_ptep_writable(vma, haddr, ptep);
4154                 return 0;
4155         }
4156
4157         /*
4158          * If the process that created a MAP_PRIVATE mapping is about to
4159          * perform a COW due to a shared page count, attempt to satisfy
4160          * the allocation without using the existing reserves. The pagecache
4161          * page is used to determine if the reserve at this address was
4162          * consumed or not. If reserves were used, a partial faulted mapping
4163          * at the time of fork() could consume its reserves on COW instead
4164          * of the full address range.
4165          */
4166         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4167                         old_page != pagecache_page)
4168                 outside_reserve = 1;
4169
4170         get_page(old_page);
4171
4172         /*
4173          * Drop page table lock as buddy allocator may be called. It will
4174          * be acquired again before returning to the caller, as expected.
4175          */
4176         spin_unlock(ptl);
4177         new_page = alloc_huge_page(vma, haddr, outside_reserve);
4178
4179         if (IS_ERR(new_page)) {
4180                 /*
4181                  * If a process owning a MAP_PRIVATE mapping fails to COW,
4182                  * it is due to references held by a child and an insufficient
4183                  * huge page pool. To guarantee the original mappers
4184                  * reliability, unmap the page from child processes. The child
4185                  * may get SIGKILLed if it later faults.
4186                  */
4187                 if (outside_reserve) {
4188                         put_page(old_page);
4189                         BUG_ON(huge_pte_none(pte));
4190                         unmap_ref_private(mm, vma, old_page, haddr);
4191                         BUG_ON(huge_pte_none(pte));
4192                         spin_lock(ptl);
4193                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4194                         if (likely(ptep &&
4195                                    pte_same(huge_ptep_get(ptep), pte)))
4196                                 goto retry_avoidcopy;
4197                         /*
4198                          * race occurs while re-acquiring page table
4199                          * lock, and our job is done.
4200                          */
4201                         return 0;
4202                 }
4203
4204                 ret = vmf_error(PTR_ERR(new_page));
4205                 goto out_release_old;
4206         }
4207
4208         /*
4209          * When the original hugepage is shared one, it does not have
4210          * anon_vma prepared.
4211          */
4212         if (unlikely(anon_vma_prepare(vma))) {
4213                 ret = VM_FAULT_OOM;
4214                 goto out_release_all;
4215         }
4216
4217         copy_user_huge_page(new_page, old_page, address, vma,
4218                             pages_per_huge_page(h));
4219         __SetPageUptodate(new_page);
4220
4221         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4222                                 haddr + huge_page_size(h));
4223         mmu_notifier_invalidate_range_start(&range);
4224
4225         /*
4226          * Retake the page table lock to check for racing updates
4227          * before the page tables are altered
4228          */
4229         spin_lock(ptl);
4230         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4231         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4232                 ClearPagePrivate(new_page);
4233
4234                 /* Break COW */
4235                 huge_ptep_clear_flush(vma, haddr, ptep);
4236                 mmu_notifier_invalidate_range(mm, range.start, range.end);
4237                 set_huge_pte_at(mm, haddr, ptep,
4238                                 make_huge_pte(vma, new_page, 1));
4239                 page_remove_rmap(old_page, true);
4240                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4241                 set_page_huge_active(new_page);
4242                 /* Make the old page be freed below */
4243                 new_page = old_page;
4244         }
4245         spin_unlock(ptl);
4246         mmu_notifier_invalidate_range_end(&range);
4247 out_release_all:
4248         restore_reserve_on_error(h, vma, haddr, new_page);
4249         put_page(new_page);
4250 out_release_old:
4251         put_page(old_page);
4252
4253         spin_lock(ptl); /* Caller expects lock to be held */
4254         return ret;
4255 }
4256
4257 /* Return the pagecache page at a given address within a VMA */
4258 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4259                         struct vm_area_struct *vma, unsigned long address)
4260 {
4261         struct address_space *mapping;
4262         pgoff_t idx;
4263
4264         mapping = vma->vm_file->f_mapping;
4265         idx = vma_hugecache_offset(h, vma, address);
4266
4267         return find_lock_page(mapping, idx);
4268 }
4269
4270 /*
4271  * Return whether there is a pagecache page to back given address within VMA.
4272  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4273  */
4274 static bool hugetlbfs_pagecache_present(struct hstate *h,
4275                         struct vm_area_struct *vma, unsigned long address)
4276 {
4277         struct address_space *mapping;
4278         pgoff_t idx;
4279         struct page *page;
4280
4281         mapping = vma->vm_file->f_mapping;
4282         idx = vma_hugecache_offset(h, vma, address);
4283
4284         page = find_get_page(mapping, idx);
4285         if (page)
4286                 put_page(page);
4287         return page != NULL;
4288 }
4289
4290 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4291                            pgoff_t idx)
4292 {
4293         struct inode *inode = mapping->host;
4294         struct hstate *h = hstate_inode(inode);
4295         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4296
4297         if (err)
4298                 return err;
4299         ClearPagePrivate(page);
4300
4301         /*
4302          * set page dirty so that it will not be removed from cache/file
4303          * by non-hugetlbfs specific code paths.
4304          */
4305         set_page_dirty(page);
4306
4307         spin_lock(&inode->i_lock);
4308         inode->i_blocks += blocks_per_huge_page(h);
4309         spin_unlock(&inode->i_lock);
4310         return 0;
4311 }
4312
4313 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4314                         struct vm_area_struct *vma,
4315                         struct address_space *mapping, pgoff_t idx,
4316                         unsigned long address, pte_t *ptep, unsigned int flags)
4317 {
4318         struct hstate *h = hstate_vma(vma);
4319         vm_fault_t ret = VM_FAULT_SIGBUS;
4320         int anon_rmap = 0;
4321         unsigned long size;
4322         struct page *page;
4323         pte_t new_pte;
4324         spinlock_t *ptl;
4325         unsigned long haddr = address & huge_page_mask(h);
4326         bool new_page = false;
4327
4328         /*
4329          * Currently, we are forced to kill the process in the event the
4330          * original mapper has unmapped pages from the child due to a failed
4331          * COW. Warn that such a situation has occurred as it may not be obvious
4332          */
4333         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4334                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4335                            current->pid);
4336                 return ret;
4337         }
4338
4339         /*
4340          * We can not race with truncation due to holding i_mmap_rwsem.
4341          * i_size is modified when holding i_mmap_rwsem, so check here
4342          * once for faults beyond end of file.
4343          */
4344         size = i_size_read(mapping->host) >> huge_page_shift(h);
4345         if (idx >= size)
4346                 goto out;
4347
4348 retry:
4349         page = find_lock_page(mapping, idx);
4350         if (!page) {
4351                 /*
4352                  * Check for page in userfault range
4353                  */
4354                 if (userfaultfd_missing(vma)) {
4355                         u32 hash;
4356                         struct vm_fault vmf = {
4357                                 .vma = vma,
4358                                 .address = haddr,
4359                                 .flags = flags,
4360                                 /*
4361                                  * Hard to debug if it ends up being
4362                                  * used by a callee that assumes
4363                                  * something about the other
4364                                  * uninitialized fields... same as in
4365                                  * memory.c
4366                                  */
4367                         };
4368
4369                         /*
4370                          * hugetlb_fault_mutex and i_mmap_rwsem must be
4371                          * dropped before handling userfault.  Reacquire
4372                          * after handling fault to make calling code simpler.
4373                          */
4374                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4375                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4376                         i_mmap_unlock_read(mapping);
4377                         ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4378                         i_mmap_lock_read(mapping);
4379                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4380                         goto out;
4381                 }
4382
4383                 page = alloc_huge_page(vma, haddr, 0);
4384                 if (IS_ERR(page)) {
4385                         /*
4386                          * Returning error will result in faulting task being
4387                          * sent SIGBUS.  The hugetlb fault mutex prevents two
4388                          * tasks from racing to fault in the same page which
4389                          * could result in false unable to allocate errors.
4390                          * Page migration does not take the fault mutex, but
4391                          * does a clear then write of pte's under page table
4392                          * lock.  Page fault code could race with migration,
4393                          * notice the clear pte and try to allocate a page
4394                          * here.  Before returning error, get ptl and make
4395                          * sure there really is no pte entry.
4396                          */
4397                         ptl = huge_pte_lock(h, mm, ptep);
4398                         if (!huge_pte_none(huge_ptep_get(ptep))) {
4399                                 ret = 0;
4400                                 spin_unlock(ptl);
4401                                 goto out;
4402                         }
4403                         spin_unlock(ptl);
4404                         ret = vmf_error(PTR_ERR(page));
4405                         goto out;
4406                 }
4407                 clear_huge_page(page, address, pages_per_huge_page(h));
4408                 __SetPageUptodate(page);
4409                 new_page = true;
4410
4411                 if (vma->vm_flags & VM_MAYSHARE) {
4412                         int err = huge_add_to_page_cache(page, mapping, idx);
4413                         if (err) {
4414                                 put_page(page);
4415                                 if (err == -EEXIST)
4416                                         goto retry;
4417                                 goto out;
4418                         }
4419                 } else {
4420                         lock_page(page);
4421                         if (unlikely(anon_vma_prepare(vma))) {
4422                                 ret = VM_FAULT_OOM;
4423                                 goto backout_unlocked;
4424                         }
4425                         anon_rmap = 1;
4426                 }
4427         } else {
4428                 /*
4429                  * If memory error occurs between mmap() and fault, some process
4430                  * don't have hwpoisoned swap entry for errored virtual address.
4431                  * So we need to block hugepage fault by PG_hwpoison bit check.
4432                  */
4433                 if (unlikely(PageHWPoison(page))) {
4434                         ret = VM_FAULT_HWPOISON |
4435                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4436                         goto backout_unlocked;
4437                 }
4438         }
4439
4440         /*
4441          * If we are going to COW a private mapping later, we examine the
4442          * pending reservations for this page now. This will ensure that
4443          * any allocations necessary to record that reservation occur outside
4444          * the spinlock.
4445          */
4446         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4447                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4448                         ret = VM_FAULT_OOM;
4449                         goto backout_unlocked;
4450                 }
4451                 /* Just decrements count, does not deallocate */
4452                 vma_end_reservation(h, vma, haddr);
4453         }
4454
4455         ptl = huge_pte_lock(h, mm, ptep);
4456         ret = 0;
4457         if (!huge_pte_none(huge_ptep_get(ptep)))
4458                 goto backout;
4459
4460         if (anon_rmap) {
4461                 ClearPagePrivate(page);
4462                 hugepage_add_new_anon_rmap(page, vma, haddr);
4463         } else
4464                 page_dup_rmap(page, true);
4465         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4466                                 && (vma->vm_flags & VM_SHARED)));
4467         set_huge_pte_at(mm, haddr, ptep, new_pte);
4468
4469         hugetlb_count_add(pages_per_huge_page(h), mm);
4470         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4471                 /* Optimization, do the COW without a second fault */
4472                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4473         }
4474
4475         spin_unlock(ptl);
4476
4477         /*
4478          * Only make newly allocated pages active.  Existing pages found
4479          * in the pagecache could be !page_huge_active() if they have been
4480          * isolated for migration.
4481          */
4482         if (new_page)
4483                 set_page_huge_active(page);
4484
4485         unlock_page(page);
4486 out:
4487         return ret;
4488
4489 backout:
4490         spin_unlock(ptl);
4491 backout_unlocked:
4492         unlock_page(page);
4493         restore_reserve_on_error(h, vma, haddr, page);
4494         put_page(page);
4495         goto out;
4496 }
4497
4498 #ifdef CONFIG_SMP
4499 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4500 {
4501         unsigned long key[2];
4502         u32 hash;
4503
4504         key[0] = (unsigned long) mapping;
4505         key[1] = idx;
4506
4507         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4508
4509         return hash & (num_fault_mutexes - 1);
4510 }
4511 #else
4512 /*
4513  * For uniprocesor systems we always use a single mutex, so just
4514  * return 0 and avoid the hashing overhead.
4515  */
4516 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4517 {
4518         return 0;
4519 }
4520 #endif
4521
4522 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4523                         unsigned long address, unsigned int flags)
4524 {
4525         pte_t *ptep, entry;
4526         spinlock_t *ptl;
4527         vm_fault_t ret;
4528         u32 hash;
4529         pgoff_t idx;
4530         struct page *page = NULL;
4531         struct page *pagecache_page = NULL;
4532         struct hstate *h = hstate_vma(vma);
4533         struct address_space *mapping;
4534         int need_wait_lock = 0;
4535         unsigned long haddr = address & huge_page_mask(h);
4536
4537         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4538         if (ptep) {
4539                 /*
4540                  * Since we hold no locks, ptep could be stale.  That is
4541                  * OK as we are only making decisions based on content and
4542                  * not actually modifying content here.
4543                  */
4544                 entry = huge_ptep_get(ptep);
4545                 if (unlikely(is_hugetlb_entry_migration(entry))) {
4546                         migration_entry_wait_huge(vma, mm, ptep);
4547                         return 0;
4548                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4549                         return VM_FAULT_HWPOISON_LARGE |
4550                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4551         }
4552
4553         /*
4554          * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4555          * until finished with ptep.  This serves two purposes:
4556          * 1) It prevents huge_pmd_unshare from being called elsewhere
4557          *    and making the ptep no longer valid.
4558          * 2) It synchronizes us with i_size modifications during truncation.
4559          *
4560          * ptep could have already be assigned via huge_pte_offset.  That
4561          * is OK, as huge_pte_alloc will return the same value unless
4562          * something has changed.
4563          */
4564         mapping = vma->vm_file->f_mapping;
4565         i_mmap_lock_read(mapping);
4566         ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4567         if (!ptep) {
4568                 i_mmap_unlock_read(mapping);
4569                 return VM_FAULT_OOM;
4570         }
4571
4572         /*
4573          * Serialize hugepage allocation and instantiation, so that we don't
4574          * get spurious allocation failures if two CPUs race to instantiate
4575          * the same page in the page cache.
4576          */
4577         idx = vma_hugecache_offset(h, vma, haddr);
4578         hash = hugetlb_fault_mutex_hash(mapping, idx);
4579         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4580
4581         entry = huge_ptep_get(ptep);
4582         if (huge_pte_none(entry)) {
4583                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4584                 goto out_mutex;
4585         }
4586
4587         ret = 0;
4588
4589         /*
4590          * entry could be a migration/hwpoison entry at this point, so this
4591          * check prevents the kernel from going below assuming that we have
4592          * an active hugepage in pagecache. This goto expects the 2nd page
4593          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4594          * properly handle it.
4595          */
4596         if (!pte_present(entry))
4597                 goto out_mutex;
4598
4599         /*
4600          * If we are going to COW the mapping later, we examine the pending
4601          * reservations for this page now. This will ensure that any
4602          * allocations necessary to record that reservation occur outside the
4603          * spinlock. For private mappings, we also lookup the pagecache
4604          * page now as it is used to determine if a reservation has been
4605          * consumed.
4606          */
4607         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4608                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4609                         ret = VM_FAULT_OOM;
4610                         goto out_mutex;
4611                 }
4612                 /* Just decrements count, does not deallocate */
4613                 vma_end_reservation(h, vma, haddr);
4614
4615                 if (!(vma->vm_flags & VM_MAYSHARE))
4616                         pagecache_page = hugetlbfs_pagecache_page(h,
4617                                                                 vma, haddr);
4618         }
4619
4620         ptl = huge_pte_lock(h, mm, ptep);
4621
4622         /* Check for a racing update before calling hugetlb_cow */
4623         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4624                 goto out_ptl;
4625
4626         /*
4627          * hugetlb_cow() requires page locks of pte_page(entry) and
4628          * pagecache_page, so here we need take the former one
4629          * when page != pagecache_page or !pagecache_page.
4630          */
4631         page = pte_page(entry);
4632         if (page != pagecache_page)
4633                 if (!trylock_page(page)) {
4634                         need_wait_lock = 1;
4635                         goto out_ptl;
4636                 }
4637
4638         get_page(page);
4639
4640         if (flags & FAULT_FLAG_WRITE) {
4641                 if (!huge_pte_write(entry)) {
4642                         ret = hugetlb_cow(mm, vma, address, ptep,
4643                                           pagecache_page, ptl);
4644                         goto out_put_page;
4645                 }
4646                 entry = huge_pte_mkdirty(entry);
4647         }
4648         entry = pte_mkyoung(entry);
4649         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4650                                                 flags & FAULT_FLAG_WRITE))
4651                 update_mmu_cache(vma, haddr, ptep);
4652 out_put_page:
4653         if (page != pagecache_page)
4654                 unlock_page(page);
4655         put_page(page);
4656 out_ptl:
4657         spin_unlock(ptl);
4658
4659         if (pagecache_page) {
4660                 unlock_page(pagecache_page);
4661                 put_page(pagecache_page);
4662         }
4663 out_mutex:
4664         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4665         i_mmap_unlock_read(mapping);
4666         /*
4667          * Generally it's safe to hold refcount during waiting page lock. But
4668          * here we just wait to defer the next page fault to avoid busy loop and
4669          * the page is not used after unlocked before returning from the current
4670          * page fault. So we are safe from accessing freed page, even if we wait
4671          * here without taking refcount.
4672          */
4673         if (need_wait_lock)
4674                 wait_on_page_locked(page);
4675         return ret;
4676 }
4677
4678 /*
4679  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4680  * modifications for huge pages.
4681  */
4682 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4683                             pte_t *dst_pte,
4684                             struct vm_area_struct *dst_vma,
4685                             unsigned long dst_addr,
4686                             unsigned long src_addr,
4687                             struct page **pagep)
4688 {
4689         struct address_space *mapping;
4690         pgoff_t idx;
4691         unsigned long size;
4692         int vm_shared = dst_vma->vm_flags & VM_SHARED;
4693         struct hstate *h = hstate_vma(dst_vma);
4694         pte_t _dst_pte;
4695         spinlock_t *ptl;
4696         int ret;
4697         struct page *page;
4698
4699         if (!*pagep) {
4700                 ret = -ENOMEM;
4701                 page = alloc_huge_page(dst_vma, dst_addr, 0);
4702                 if (IS_ERR(page))
4703                         goto out;
4704
4705                 ret = copy_huge_page_from_user(page,
4706                                                 (const void __user *) src_addr,
4707                                                 pages_per_huge_page(h), false);
4708
4709                 /* fallback to copy_from_user outside mmap_lock */
4710                 if (unlikely(ret)) {
4711                         ret = -ENOENT;
4712                         *pagep = page;
4713                         /* don't free the page */
4714                         goto out;
4715                 }
4716         } else {
4717                 page = *pagep;
4718                 *pagep = NULL;
4719         }
4720
4721         /*
4722          * The memory barrier inside __SetPageUptodate makes sure that
4723          * preceding stores to the page contents become visible before
4724          * the set_pte_at() write.
4725          */
4726         __SetPageUptodate(page);
4727
4728         mapping = dst_vma->vm_file->f_mapping;
4729         idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4730
4731         /*
4732          * If shared, add to page cache
4733          */
4734         if (vm_shared) {
4735                 size = i_size_read(mapping->host) >> huge_page_shift(h);
4736                 ret = -EFAULT;
4737                 if (idx >= size)
4738                         goto out_release_nounlock;
4739
4740                 /*
4741                  * Serialization between remove_inode_hugepages() and
4742                  * huge_add_to_page_cache() below happens through the
4743                  * hugetlb_fault_mutex_table that here must be hold by
4744                  * the caller.
4745                  */
4746                 ret = huge_add_to_page_cache(page, mapping, idx);
4747                 if (ret)
4748                         goto out_release_nounlock;
4749         }
4750
4751         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4752         spin_lock(ptl);
4753
4754         /*
4755          * Recheck the i_size after holding PT lock to make sure not
4756          * to leave any page mapped (as page_mapped()) beyond the end
4757          * of the i_size (remove_inode_hugepages() is strict about
4758          * enforcing that). If we bail out here, we'll also leave a
4759          * page in the radix tree in the vm_shared case beyond the end
4760          * of the i_size, but remove_inode_hugepages() will take care
4761          * of it as soon as we drop the hugetlb_fault_mutex_table.
4762          */
4763         size = i_size_read(mapping->host) >> huge_page_shift(h);
4764         ret = -EFAULT;
4765         if (idx >= size)
4766                 goto out_release_unlock;
4767
4768         ret = -EEXIST;
4769         if (!huge_pte_none(huge_ptep_get(dst_pte)))
4770                 goto out_release_unlock;
4771
4772         if (vm_shared) {
4773                 page_dup_rmap(page, true);
4774         } else {
4775                 ClearPagePrivate(page);
4776                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4777         }
4778
4779         _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4780         if (dst_vma->vm_flags & VM_WRITE)
4781                 _dst_pte = huge_pte_mkdirty(_dst_pte);
4782         _dst_pte = pte_mkyoung(_dst_pte);
4783
4784         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4785
4786         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4787                                         dst_vma->vm_flags & VM_WRITE);
4788         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4789
4790         /* No need to invalidate - it was non-present before */
4791         update_mmu_cache(dst_vma, dst_addr, dst_pte);
4792
4793         spin_unlock(ptl);
4794         set_page_huge_active(page);
4795         if (vm_shared)
4796                 unlock_page(page);
4797         ret = 0;
4798 out:
4799         return ret;
4800 out_release_unlock:
4801         spin_unlock(ptl);
4802         if (vm_shared)
4803                 unlock_page(page);
4804 out_release_nounlock:
4805         put_page(page);
4806         goto out;
4807 }
4808
4809 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4810                          struct page **pages, struct vm_area_struct **vmas,
4811                          unsigned long *position, unsigned long *nr_pages,
4812                          long i, unsigned int flags, int *locked)
4813 {
4814         unsigned long pfn_offset;
4815         unsigned long vaddr = *position;
4816         unsigned long remainder = *nr_pages;
4817         struct hstate *h = hstate_vma(vma);
4818         int err = -EFAULT;
4819
4820         while (vaddr < vma->vm_end && remainder) {
4821                 pte_t *pte;
4822                 spinlock_t *ptl = NULL;
4823                 int absent;
4824                 struct page *page;
4825
4826                 /*
4827                  * If we have a pending SIGKILL, don't keep faulting pages and
4828                  * potentially allocating memory.
4829                  */
4830                 if (fatal_signal_pending(current)) {
4831                         remainder = 0;
4832                         break;
4833                 }
4834
4835                 /*
4836                  * Some archs (sparc64, sh*) have multiple pte_ts to
4837                  * each hugepage.  We have to make sure we get the
4838                  * first, for the page indexing below to work.
4839                  *
4840                  * Note that page table lock is not held when pte is null.
4841                  */
4842                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4843                                       huge_page_size(h));
4844                 if (pte)
4845                         ptl = huge_pte_lock(h, mm, pte);
4846                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4847
4848                 /*
4849                  * When coredumping, it suits get_dump_page if we just return
4850                  * an error where there's an empty slot with no huge pagecache
4851                  * to back it.  This way, we avoid allocating a hugepage, and
4852                  * the sparse dumpfile avoids allocating disk blocks, but its
4853                  * huge holes still show up with zeroes where they need to be.
4854                  */
4855                 if (absent && (flags & FOLL_DUMP) &&
4856                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4857                         if (pte)
4858                                 spin_unlock(ptl);
4859                         remainder = 0;
4860                         break;
4861                 }
4862
4863                 /*
4864                  * We need call hugetlb_fault for both hugepages under migration
4865                  * (in which case hugetlb_fault waits for the migration,) and
4866                  * hwpoisoned hugepages (in which case we need to prevent the
4867                  * caller from accessing to them.) In order to do this, we use
4868                  * here is_swap_pte instead of is_hugetlb_entry_migration and
4869                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4870                  * both cases, and because we can't follow correct pages
4871                  * directly from any kind of swap entries.
4872                  */
4873                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4874                     ((flags & FOLL_WRITE) &&
4875                       !huge_pte_write(huge_ptep_get(pte)))) {
4876                         vm_fault_t ret;
4877                         unsigned int fault_flags = 0;
4878
4879                         if (pte)
4880                                 spin_unlock(ptl);
4881                         if (flags & FOLL_WRITE)
4882                                 fault_flags |= FAULT_FLAG_WRITE;
4883                         if (locked)
4884                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4885                                         FAULT_FLAG_KILLABLE;
4886                         if (flags & FOLL_NOWAIT)
4887                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4888                                         FAULT_FLAG_RETRY_NOWAIT;
4889                         if (flags & FOLL_TRIED) {
4890                                 /*
4891                                  * Note: FAULT_FLAG_ALLOW_RETRY and
4892                                  * FAULT_FLAG_TRIED can co-exist
4893                                  */
4894                                 fault_flags |= FAULT_FLAG_TRIED;
4895                         }
4896                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4897                         if (ret & VM_FAULT_ERROR) {
4898                                 err = vm_fault_to_errno(ret, flags);
4899                                 remainder = 0;
4900                                 break;
4901                         }
4902                         if (ret & VM_FAULT_RETRY) {
4903                                 if (locked &&
4904                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4905                                         *locked = 0;
4906                                 *nr_pages = 0;
4907                                 /*
4908                                  * VM_FAULT_RETRY must not return an
4909                                  * error, it will return zero
4910                                  * instead.
4911                                  *
4912                                  * No need to update "position" as the
4913                                  * caller will not check it after
4914                                  * *nr_pages is set to 0.
4915                                  */
4916                                 return i;
4917                         }
4918                         continue;
4919                 }
4920
4921                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4922                 page = pte_page(huge_ptep_get(pte));
4923
4924                 /*
4925                  * If subpage information not requested, update counters
4926                  * and skip the same_page loop below.
4927                  */
4928                 if (!pages && !vmas && !pfn_offset &&
4929                     (vaddr + huge_page_size(h) < vma->vm_end) &&
4930                     (remainder >= pages_per_huge_page(h))) {
4931                         vaddr += huge_page_size(h);
4932                         remainder -= pages_per_huge_page(h);
4933                         i += pages_per_huge_page(h);
4934                         spin_unlock(ptl);
4935                         continue;
4936                 }
4937
4938 same_page:
4939                 if (pages) {
4940                         pages[i] = mem_map_offset(page, pfn_offset);
4941                         /*
4942                          * try_grab_page() should always succeed here, because:
4943                          * a) we hold the ptl lock, and b) we've just checked
4944                          * that the huge page is present in the page tables. If
4945                          * the huge page is present, then the tail pages must
4946                          * also be present. The ptl prevents the head page and
4947                          * tail pages from being rearranged in any way. So this
4948                          * page must be available at this point, unless the page
4949                          * refcount overflowed:
4950                          */
4951                         if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
4952                                 spin_unlock(ptl);
4953                                 remainder = 0;
4954                                 err = -ENOMEM;
4955                                 break;
4956                         }
4957                 }
4958
4959                 if (vmas)
4960                         vmas[i] = vma;
4961
4962                 vaddr += PAGE_SIZE;
4963                 ++pfn_offset;
4964                 --remainder;
4965                 ++i;
4966                 if (vaddr < vma->vm_end && remainder &&
4967                                 pfn_offset < pages_per_huge_page(h)) {
4968                         /*
4969                          * We use pfn_offset to avoid touching the pageframes
4970                          * of this compound page.
4971                          */
4972                         goto same_page;
4973                 }
4974                 spin_unlock(ptl);
4975         }
4976         *nr_pages = remainder;
4977         /*
4978          * setting position is actually required only if remainder is
4979          * not zero but it's faster not to add a "if (remainder)"
4980          * branch.
4981          */
4982         *position = vaddr;
4983
4984         return i ? i : err;
4985 }
4986
4987 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4988 /*
4989  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4990  * implement this.
4991  */
4992 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4993 #endif
4994
4995 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4996                 unsigned long address, unsigned long end, pgprot_t newprot)
4997 {
4998         struct mm_struct *mm = vma->vm_mm;
4999         unsigned long start = address;
5000         pte_t *ptep;
5001         pte_t pte;
5002         struct hstate *h = hstate_vma(vma);
5003         unsigned long pages = 0;
5004         bool shared_pmd = false;
5005         struct mmu_notifier_range range;
5006
5007         /*
5008          * In the case of shared PMDs, the area to flush could be beyond
5009          * start/end.  Set range.start/range.end to cover the maximum possible
5010          * range if PMD sharing is possible.
5011          */
5012         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5013                                 0, vma, mm, start, end);
5014         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5015
5016         BUG_ON(address >= end);
5017         flush_cache_range(vma, range.start, range.end);
5018
5019         mmu_notifier_invalidate_range_start(&range);
5020         i_mmap_lock_write(vma->vm_file->f_mapping);
5021         for (; address < end; address += huge_page_size(h)) {
5022                 spinlock_t *ptl;
5023                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5024                 if (!ptep)
5025                         continue;
5026                 ptl = huge_pte_lock(h, mm, ptep);
5027                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5028                         pages++;
5029                         spin_unlock(ptl);
5030                         shared_pmd = true;
5031                         continue;
5032                 }
5033                 pte = huge_ptep_get(ptep);
5034                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5035                         spin_unlock(ptl);
5036                         continue;
5037                 }
5038                 if (unlikely(is_hugetlb_entry_migration(pte))) {
5039                         swp_entry_t entry = pte_to_swp_entry(pte);
5040
5041                         if (is_write_migration_entry(entry)) {
5042                                 pte_t newpte;
5043
5044                                 make_migration_entry_read(&entry);
5045                                 newpte = swp_entry_to_pte(entry);
5046                                 set_huge_swap_pte_at(mm, address, ptep,
5047                                                      newpte, huge_page_size(h));
5048                                 pages++;
5049                         }
5050                         spin_unlock(ptl);
5051                         continue;
5052                 }
5053                 if (!huge_pte_none(pte)) {
5054                         pte_t old_pte;
5055
5056                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5057                         pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5058                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
5059                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5060                         pages++;
5061                 }
5062                 spin_unlock(ptl);
5063         }
5064         /*
5065          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5066          * may have cleared our pud entry and done put_page on the page table:
5067          * once we release i_mmap_rwsem, another task can do the final put_page
5068          * and that page table be reused and filled with junk.  If we actually
5069          * did unshare a page of pmds, flush the range corresponding to the pud.
5070          */
5071         if (shared_pmd)
5072                 flush_hugetlb_tlb_range(vma, range.start, range.end);
5073         else
5074                 flush_hugetlb_tlb_range(vma, start, end);
5075         /*
5076          * No need to call mmu_notifier_invalidate_range() we are downgrading
5077          * page table protection not changing it to point to a new page.
5078          *
5079          * See Documentation/vm/mmu_notifier.rst
5080          */
5081         i_mmap_unlock_write(vma->vm_file->f_mapping);
5082         mmu_notifier_invalidate_range_end(&range);
5083
5084         return pages << h->order;
5085 }
5086
5087 int hugetlb_reserve_pages(struct inode *inode,
5088                                         long from, long to,
5089                                         struct vm_area_struct *vma,
5090                                         vm_flags_t vm_flags)
5091 {
5092         long ret, chg, add = -1;
5093         struct hstate *h = hstate_inode(inode);
5094         struct hugepage_subpool *spool = subpool_inode(inode);
5095         struct resv_map *resv_map;
5096         struct hugetlb_cgroup *h_cg = NULL;
5097         long gbl_reserve, regions_needed = 0;
5098
5099         /* This should never happen */
5100         if (from > to) {
5101                 VM_WARN(1, "%s called with a negative range\n", __func__);
5102                 return -EINVAL;
5103         }
5104
5105         /*
5106          * Only apply hugepage reservation if asked. At fault time, an
5107          * attempt will be made for VM_NORESERVE to allocate a page
5108          * without using reserves
5109          */
5110         if (vm_flags & VM_NORESERVE)
5111                 return 0;
5112
5113         /*
5114          * Shared mappings base their reservation on the number of pages that
5115          * are already allocated on behalf of the file. Private mappings need
5116          * to reserve the full area even if read-only as mprotect() may be
5117          * called to make the mapping read-write. Assume !vma is a shm mapping
5118          */
5119         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5120                 /*
5121                  * resv_map can not be NULL as hugetlb_reserve_pages is only
5122                  * called for inodes for which resv_maps were created (see
5123                  * hugetlbfs_get_inode).
5124                  */
5125                 resv_map = inode_resv_map(inode);
5126
5127                 chg = region_chg(resv_map, from, to, &regions_needed);
5128
5129         } else {
5130                 /* Private mapping. */
5131                 resv_map = resv_map_alloc();
5132                 if (!resv_map)
5133                         return -ENOMEM;
5134
5135                 chg = to - from;
5136
5137                 set_vma_resv_map(vma, resv_map);
5138                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5139         }
5140
5141         if (chg < 0) {
5142                 ret = chg;
5143                 goto out_err;
5144         }
5145
5146         ret = hugetlb_cgroup_charge_cgroup_rsvd(
5147                 hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
5148
5149         if (ret < 0) {
5150                 ret = -ENOMEM;
5151                 goto out_err;
5152         }
5153
5154         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5155                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5156                  * of the resv_map.
5157                  */
5158                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5159         }
5160
5161         /*
5162          * There must be enough pages in the subpool for the mapping. If
5163          * the subpool has a minimum size, there may be some global
5164          * reservations already in place (gbl_reserve).
5165          */
5166         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5167         if (gbl_reserve < 0) {
5168                 ret = -ENOSPC;
5169                 goto out_uncharge_cgroup;
5170         }
5171
5172         /*
5173          * Check enough hugepages are available for the reservation.
5174          * Hand the pages back to the subpool if there are not
5175          */
5176         ret = hugetlb_acct_memory(h, gbl_reserve);
5177         if (ret < 0) {
5178                 goto out_put_pages;
5179         }
5180
5181         /*
5182          * Account for the reservations made. Shared mappings record regions
5183          * that have reservations as they are shared by multiple VMAs.
5184          * When the last VMA disappears, the region map says how much
5185          * the reservation was and the page cache tells how much of
5186          * the reservation was consumed. Private mappings are per-VMA and
5187          * only the consumed reservations are tracked. When the VMA
5188          * disappears, the original reservation is the VMA size and the
5189          * consumed reservations are stored in the map. Hence, nothing
5190          * else has to be done for private mappings here
5191          */
5192         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5193                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5194
5195                 if (unlikely(add < 0)) {
5196                         hugetlb_acct_memory(h, -gbl_reserve);
5197                         goto out_put_pages;
5198                 } else if (unlikely(chg > add)) {
5199                         /*
5200                          * pages in this range were added to the reserve
5201                          * map between region_chg and region_add.  This
5202                          * indicates a race with alloc_huge_page.  Adjust
5203                          * the subpool and reserve counts modified above
5204                          * based on the difference.
5205                          */
5206                         long rsv_adjust;
5207
5208                         hugetlb_cgroup_uncharge_cgroup_rsvd(
5209                                 hstate_index(h),
5210                                 (chg - add) * pages_per_huge_page(h), h_cg);
5211
5212                         rsv_adjust = hugepage_subpool_put_pages(spool,
5213                                                                 chg - add);
5214                         hugetlb_acct_memory(h, -rsv_adjust);
5215                 }
5216         }
5217         return 0;
5218 out_put_pages:
5219         /* put back original number of pages, chg */
5220         (void)hugepage_subpool_put_pages(spool, chg);
5221 out_uncharge_cgroup:
5222         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5223                                             chg * pages_per_huge_page(h), h_cg);
5224 out_err:
5225         if (!vma || vma->vm_flags & VM_MAYSHARE)
5226                 /* Only call region_abort if the region_chg succeeded but the
5227                  * region_add failed or didn't run.
5228                  */
5229                 if (chg >= 0 && add < 0)
5230                         region_abort(resv_map, from, to, regions_needed);
5231         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5232                 kref_put(&resv_map->refs, resv_map_release);
5233         return ret;
5234 }
5235
5236 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5237                                                                 long freed)
5238 {
5239         struct hstate *h = hstate_inode(inode);
5240         struct resv_map *resv_map = inode_resv_map(inode);
5241         long chg = 0;
5242         struct hugepage_subpool *spool = subpool_inode(inode);
5243         long gbl_reserve;
5244
5245         /*
5246          * Since this routine can be called in the evict inode path for all
5247          * hugetlbfs inodes, resv_map could be NULL.
5248          */
5249         if (resv_map) {
5250                 chg = region_del(resv_map, start, end);
5251                 /*
5252                  * region_del() can fail in the rare case where a region
5253                  * must be split and another region descriptor can not be
5254                  * allocated.  If end == LONG_MAX, it will not fail.
5255                  */
5256                 if (chg < 0)
5257                         return chg;
5258         }
5259
5260         spin_lock(&inode->i_lock);
5261         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5262         spin_unlock(&inode->i_lock);
5263
5264         /*
5265          * If the subpool has a minimum size, the number of global
5266          * reservations to be released may be adjusted.
5267          */
5268         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5269         hugetlb_acct_memory(h, -gbl_reserve);
5270
5271         return 0;
5272 }
5273
5274 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5275 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5276                                 struct vm_area_struct *vma,
5277                                 unsigned long addr, pgoff_t idx)
5278 {
5279         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5280                                 svma->vm_start;
5281         unsigned long sbase = saddr & PUD_MASK;
5282         unsigned long s_end = sbase + PUD_SIZE;
5283
5284         /* Allow segments to share if only one is marked locked */
5285         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5286         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5287
5288         /*
5289          * match the virtual addresses, permission and the alignment of the
5290          * page table page.
5291          */
5292         if (pmd_index(addr) != pmd_index(saddr) ||
5293             vm_flags != svm_flags ||
5294             sbase < svma->vm_start || svma->vm_end < s_end)
5295                 return 0;
5296
5297         return saddr;
5298 }
5299
5300 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5301 {
5302         unsigned long base = addr & PUD_MASK;
5303         unsigned long end = base + PUD_SIZE;
5304
5305         /*
5306          * check on proper vm_flags and page table alignment
5307          */
5308         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5309                 return true;
5310         return false;
5311 }
5312
5313 /*
5314  * Determine if start,end range within vma could be mapped by shared pmd.
5315  * If yes, adjust start and end to cover range associated with possible
5316  * shared pmd mappings.
5317  */
5318 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5319                                 unsigned long *start, unsigned long *end)
5320 {
5321         unsigned long a_start, a_end;
5322
5323         if (!(vma->vm_flags & VM_MAYSHARE))
5324                 return;
5325
5326         /* Extend the range to be PUD aligned for a worst case scenario */
5327         a_start = ALIGN_DOWN(*start, PUD_SIZE);
5328         a_end = ALIGN(*end, PUD_SIZE);
5329
5330         /*
5331          * Intersect the range with the vma range, since pmd sharing won't be
5332          * across vma after all
5333          */
5334         *start = max(vma->vm_start, a_start);
5335         *end = min(vma->vm_end, a_end);
5336 }
5337
5338 /*
5339  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5340  * and returns the corresponding pte. While this is not necessary for the
5341  * !shared pmd case because we can allocate the pmd later as well, it makes the
5342  * code much cleaner.
5343  *
5344  * This routine must be called with i_mmap_rwsem held in at least read mode if
5345  * sharing is possible.  For hugetlbfs, this prevents removal of any page
5346  * table entries associated with the address space.  This is important as we
5347  * are setting up sharing based on existing page table entries (mappings).
5348  *
5349  * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
5350  * huge_pte_alloc know that sharing is not possible and do not take
5351  * i_mmap_rwsem as a performance optimization.  This is handled by the
5352  * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5353  * only required for subsequent processing.
5354  */
5355 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5356 {
5357         struct vm_area_struct *vma = find_vma(mm, addr);
5358         struct address_space *mapping = vma->vm_file->f_mapping;
5359         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5360                         vma->vm_pgoff;
5361         struct vm_area_struct *svma;
5362         unsigned long saddr;
5363         pte_t *spte = NULL;
5364         pte_t *pte;
5365         spinlock_t *ptl;
5366
5367         if (!vma_shareable(vma, addr))
5368                 return (pte_t *)pmd_alloc(mm, pud, addr);
5369
5370         i_mmap_assert_locked(mapping);
5371         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5372                 if (svma == vma)
5373                         continue;
5374
5375                 saddr = page_table_shareable(svma, vma, addr, idx);
5376                 if (saddr) {
5377                         spte = huge_pte_offset(svma->vm_mm, saddr,
5378                                                vma_mmu_pagesize(svma));
5379                         if (spte) {
5380                                 get_page(virt_to_page(spte));
5381                                 break;
5382                         }
5383                 }
5384         }
5385
5386         if (!spte)
5387                 goto out;
5388
5389         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5390         if (pud_none(*pud)) {
5391                 pud_populate(mm, pud,
5392                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
5393                 mm_inc_nr_pmds(mm);
5394         } else {
5395                 put_page(virt_to_page(spte));
5396         }
5397         spin_unlock(ptl);
5398 out:
5399         pte = (pte_t *)pmd_alloc(mm, pud, addr);
5400         return pte;
5401 }
5402
5403 /*
5404  * unmap huge page backed by shared pte.
5405  *
5406  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5407  * indicated by page_count > 1, unmap is achieved by clearing pud and
5408  * decrementing the ref count. If count == 1, the pte page is not shared.
5409  *
5410  * Called with page table lock held and i_mmap_rwsem held in write mode.
5411  *
5412  * returns: 1 successfully unmapped a shared pte page
5413  *          0 the underlying pte page is not shared, or it is the last user
5414  */
5415 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5416                                         unsigned long *addr, pte_t *ptep)
5417 {
5418         pgd_t *pgd = pgd_offset(mm, *addr);
5419         p4d_t *p4d = p4d_offset(pgd, *addr);
5420         pud_t *pud = pud_offset(p4d, *addr);
5421
5422         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5423         BUG_ON(page_count(virt_to_page(ptep)) == 0);
5424         if (page_count(virt_to_page(ptep)) == 1)
5425                 return 0;
5426
5427         pud_clear(pud);
5428         put_page(virt_to_page(ptep));
5429         mm_dec_nr_pmds(mm);
5430         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5431         return 1;
5432 }
5433 #define want_pmd_share()        (1)
5434 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5435 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5436 {
5437         return NULL;
5438 }
5439
5440 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5441                                 unsigned long *addr, pte_t *ptep)
5442 {
5443         return 0;
5444 }
5445
5446 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5447                                 unsigned long *start, unsigned long *end)
5448 {
5449 }
5450 #define want_pmd_share()        (0)
5451 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5452
5453 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5454 pte_t *huge_pte_alloc(struct mm_struct *mm,
5455                         unsigned long addr, unsigned long sz)
5456 {
5457         pgd_t *pgd;
5458         p4d_t *p4d;
5459         pud_t *pud;
5460         pte_t *pte = NULL;
5461
5462         pgd = pgd_offset(mm, addr);
5463         p4d = p4d_alloc(mm, pgd, addr);
5464         if (!p4d)
5465                 return NULL;
5466         pud = pud_alloc(mm, p4d, addr);
5467         if (pud) {
5468                 if (sz == PUD_SIZE) {
5469                         pte = (pte_t *)pud;
5470                 } else {
5471                         BUG_ON(sz != PMD_SIZE);
5472                         if (want_pmd_share() && pud_none(*pud))
5473                                 pte = huge_pmd_share(mm, addr, pud);
5474                         else
5475                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5476                 }
5477         }
5478         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5479
5480         return pte;
5481 }
5482
5483 /*
5484  * huge_pte_offset() - Walk the page table to resolve the hugepage
5485  * entry at address @addr
5486  *
5487  * Return: Pointer to page table entry (PUD or PMD) for
5488  * address @addr, or NULL if a !p*d_present() entry is encountered and the
5489  * size @sz doesn't match the hugepage size at this level of the page
5490  * table.
5491  */
5492 pte_t *huge_pte_offset(struct mm_struct *mm,
5493                        unsigned long addr, unsigned long sz)
5494 {
5495         pgd_t *pgd;
5496         p4d_t *p4d;
5497         pud_t *pud;
5498         pmd_t *pmd;
5499
5500         pgd = pgd_offset(mm, addr);
5501         if (!pgd_present(*pgd))
5502                 return NULL;
5503         p4d = p4d_offset(pgd, addr);
5504         if (!p4d_present(*p4d))
5505                 return NULL;
5506
5507         pud = pud_offset(p4d, addr);
5508         if (sz == PUD_SIZE)
5509                 /* must be pud huge, non-present or none */
5510                 return (pte_t *)pud;
5511         if (!pud_present(*pud))
5512                 return NULL;
5513         /* must have a valid entry and size to go further */
5514
5515         pmd = pmd_offset(pud, addr);
5516         /* must be pmd huge, non-present or none */
5517         return (pte_t *)pmd;
5518 }
5519
5520 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5521
5522 /*
5523  * These functions are overwritable if your architecture needs its own
5524  * behavior.
5525  */
5526 struct page * __weak
5527 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5528                               int write)
5529 {
5530         return ERR_PTR(-EINVAL);
5531 }
5532
5533 struct page * __weak
5534 follow_huge_pd(struct vm_area_struct *vma,
5535                unsigned long address, hugepd_t hpd, int flags, int pdshift)
5536 {
5537         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5538         return NULL;
5539 }
5540
5541 struct page * __weak
5542 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5543                 pmd_t *pmd, int flags)
5544 {
5545         struct page *page = NULL;
5546         spinlock_t *ptl;
5547         pte_t pte;
5548
5549         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5550         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5551                          (FOLL_PIN | FOLL_GET)))
5552                 return NULL;
5553
5554 retry:
5555         ptl = pmd_lockptr(mm, pmd);
5556         spin_lock(ptl);
5557         /*
5558          * make sure that the address range covered by this pmd is not
5559          * unmapped from other threads.
5560          */
5561         if (!pmd_huge(*pmd))
5562                 goto out;
5563         pte = huge_ptep_get((pte_t *)pmd);
5564         if (pte_present(pte)) {
5565                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5566                 /*
5567                  * try_grab_page() should always succeed here, because: a) we
5568                  * hold the pmd (ptl) lock, and b) we've just checked that the
5569                  * huge pmd (head) page is present in the page tables. The ptl
5570                  * prevents the head page and tail pages from being rearranged
5571                  * in any way. So this page must be available at this point,
5572                  * unless the page refcount overflowed:
5573                  */
5574                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5575                         page = NULL;
5576                         goto out;
5577                 }
5578         } else {
5579                 if (is_hugetlb_entry_migration(pte)) {
5580                         spin_unlock(ptl);
5581                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5582                         goto retry;
5583                 }
5584                 /*
5585                  * hwpoisoned entry is treated as no_page_table in
5586                  * follow_page_mask().
5587                  */
5588         }
5589 out:
5590         spin_unlock(ptl);
5591         return page;
5592 }
5593
5594 struct page * __weak
5595 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5596                 pud_t *pud, int flags)
5597 {
5598         if (flags & (FOLL_GET | FOLL_PIN))
5599                 return NULL;
5600
5601         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5602 }
5603
5604 struct page * __weak
5605 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5606 {
5607         if (flags & (FOLL_GET | FOLL_PIN))
5608                 return NULL;
5609
5610         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5611 }
5612
5613 bool isolate_huge_page(struct page *page, struct list_head *list)
5614 {
5615         bool ret = true;
5616
5617         VM_BUG_ON_PAGE(!PageHead(page), page);
5618         spin_lock(&hugetlb_lock);
5619         if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5620                 ret = false;
5621                 goto unlock;
5622         }
5623         clear_page_huge_active(page);
5624         list_move_tail(&page->lru, list);
5625 unlock:
5626         spin_unlock(&hugetlb_lock);
5627         return ret;
5628 }
5629
5630 void putback_active_hugepage(struct page *page)
5631 {
5632         VM_BUG_ON_PAGE(!PageHead(page), page);
5633         spin_lock(&hugetlb_lock);
5634         set_page_huge_active(page);
5635         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5636         spin_unlock(&hugetlb_lock);
5637         put_page(page);
5638 }
5639
5640 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5641 {
5642         struct hstate *h = page_hstate(oldpage);
5643
5644         hugetlb_cgroup_migrate(oldpage, newpage);
5645         set_page_owner_migrate_reason(newpage, reason);
5646
5647         /*
5648          * transfer temporary state of the new huge page. This is
5649          * reverse to other transitions because the newpage is going to
5650          * be final while the old one will be freed so it takes over
5651          * the temporary status.
5652          *
5653          * Also note that we have to transfer the per-node surplus state
5654          * here as well otherwise the global surplus count will not match
5655          * the per-node's.
5656          */
5657         if (PageHugeTemporary(newpage)) {
5658                 int old_nid = page_to_nid(oldpage);
5659                 int new_nid = page_to_nid(newpage);
5660
5661                 SetPageHugeTemporary(oldpage);
5662                 ClearPageHugeTemporary(newpage);
5663
5664                 spin_lock(&hugetlb_lock);
5665                 if (h->surplus_huge_pages_node[old_nid]) {
5666                         h->surplus_huge_pages_node[old_nid]--;
5667                         h->surplus_huge_pages_node[new_nid]++;
5668                 }
5669                 spin_unlock(&hugetlb_lock);
5670         }
5671 }
5672
5673 #ifdef CONFIG_CMA
5674 static bool cma_reserve_called __initdata;
5675
5676 static int __init cmdline_parse_hugetlb_cma(char *p)
5677 {
5678         hugetlb_cma_size = memparse(p, &p);
5679         return 0;
5680 }
5681
5682 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5683
5684 void __init hugetlb_cma_reserve(int order)
5685 {
5686         unsigned long size, reserved, per_node;
5687         int nid;
5688
5689         cma_reserve_called = true;
5690
5691         if (!hugetlb_cma_size)
5692                 return;
5693
5694         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5695                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5696                         (PAGE_SIZE << order) / SZ_1M);
5697                 return;
5698         }
5699
5700         /*
5701          * If 3 GB area is requested on a machine with 4 numa nodes,
5702          * let's allocate 1 GB on first three nodes and ignore the last one.
5703          */
5704         per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5705         pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5706                 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5707
5708         reserved = 0;
5709         for_each_node_state(nid, N_ONLINE) {
5710                 int res;
5711                 char name[CMA_MAX_NAME];
5712
5713                 size = min(per_node, hugetlb_cma_size - reserved);
5714                 size = round_up(size, PAGE_SIZE << order);
5715
5716                 snprintf(name, sizeof(name), "hugetlb%d", nid);
5717                 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5718                                                  0, false, name,
5719                                                  &hugetlb_cma[nid], nid);
5720                 if (res) {
5721                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5722                                 res, nid);
5723                         continue;
5724                 }
5725
5726                 reserved += size;
5727                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5728                         size / SZ_1M, nid);
5729
5730                 if (reserved >= hugetlb_cma_size)
5731                         break;
5732         }
5733 }
5734
5735 void __init hugetlb_cma_check(void)
5736 {
5737         if (!hugetlb_cma_size || cma_reserve_called)
5738                 return;
5739
5740         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5741 }
5742
5743 #endif /* CONFIG_CMA */