Merge tag 'locking-core-2021-02-17' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlb.h>
37
38 #include <linux/io.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45
46 int hugetlb_max_hstate __read_mostly;
47 unsigned int default_hstate_idx;
48 struct hstate hstates[HUGE_MAX_HSTATE];
49
50 #ifdef CONFIG_CMA
51 static struct cma *hugetlb_cma[MAX_NUMNODES];
52 #endif
53 static unsigned long hugetlb_cma_size __initdata;
54
55 /*
56  * Minimum page order among possible hugepage sizes, set to a proper value
57  * at boot time.
58  */
59 static unsigned int minimum_order __read_mostly = UINT_MAX;
60
61 __initdata LIST_HEAD(huge_boot_pages);
62
63 /* for command line parsing */
64 static struct hstate * __initdata parsed_hstate;
65 static unsigned long __initdata default_hstate_max_huge_pages;
66 static bool __initdata parsed_valid_hugepagesz = true;
67 static bool __initdata parsed_default_hugepagesz;
68
69 /*
70  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71  * free_huge_pages, and surplus_huge_pages.
72  */
73 DEFINE_SPINLOCK(hugetlb_lock);
74
75 /*
76  * Serializes faults on the same logical page.  This is used to
77  * prevent spurious OOMs when the hugepage pool is fully utilized.
78  */
79 static int num_fault_mutexes;
80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81
82 static inline bool PageHugeFreed(struct page *head)
83 {
84         return page_private(head + 4) == -1UL;
85 }
86
87 static inline void SetPageHugeFreed(struct page *head)
88 {
89         set_page_private(head + 4, -1UL);
90 }
91
92 static inline void ClearPageHugeFreed(struct page *head)
93 {
94         set_page_private(head + 4, 0);
95 }
96
97 /* Forward declaration */
98 static int hugetlb_acct_memory(struct hstate *h, long delta);
99
100 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
101 {
102         bool free = (spool->count == 0) && (spool->used_hpages == 0);
103
104         spin_unlock(&spool->lock);
105
106         /* If no pages are used, and no other handles to the subpool
107          * remain, give up any reservations based on minimum size and
108          * free the subpool */
109         if (free) {
110                 if (spool->min_hpages != -1)
111                         hugetlb_acct_memory(spool->hstate,
112                                                 -spool->min_hpages);
113                 kfree(spool);
114         }
115 }
116
117 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
118                                                 long min_hpages)
119 {
120         struct hugepage_subpool *spool;
121
122         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
123         if (!spool)
124                 return NULL;
125
126         spin_lock_init(&spool->lock);
127         spool->count = 1;
128         spool->max_hpages = max_hpages;
129         spool->hstate = h;
130         spool->min_hpages = min_hpages;
131
132         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
133                 kfree(spool);
134                 return NULL;
135         }
136         spool->rsv_hpages = min_hpages;
137
138         return spool;
139 }
140
141 void hugepage_put_subpool(struct hugepage_subpool *spool)
142 {
143         spin_lock(&spool->lock);
144         BUG_ON(!spool->count);
145         spool->count--;
146         unlock_or_release_subpool(spool);
147 }
148
149 /*
150  * Subpool accounting for allocating and reserving pages.
151  * Return -ENOMEM if there are not enough resources to satisfy the
152  * request.  Otherwise, return the number of pages by which the
153  * global pools must be adjusted (upward).  The returned value may
154  * only be different than the passed value (delta) in the case where
155  * a subpool minimum size must be maintained.
156  */
157 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
158                                       long delta)
159 {
160         long ret = delta;
161
162         if (!spool)
163                 return ret;
164
165         spin_lock(&spool->lock);
166
167         if (spool->max_hpages != -1) {          /* maximum size accounting */
168                 if ((spool->used_hpages + delta) <= spool->max_hpages)
169                         spool->used_hpages += delta;
170                 else {
171                         ret = -ENOMEM;
172                         goto unlock_ret;
173                 }
174         }
175
176         /* minimum size accounting */
177         if (spool->min_hpages != -1 && spool->rsv_hpages) {
178                 if (delta > spool->rsv_hpages) {
179                         /*
180                          * Asking for more reserves than those already taken on
181                          * behalf of subpool.  Return difference.
182                          */
183                         ret = delta - spool->rsv_hpages;
184                         spool->rsv_hpages = 0;
185                 } else {
186                         ret = 0;        /* reserves already accounted for */
187                         spool->rsv_hpages -= delta;
188                 }
189         }
190
191 unlock_ret:
192         spin_unlock(&spool->lock);
193         return ret;
194 }
195
196 /*
197  * Subpool accounting for freeing and unreserving pages.
198  * Return the number of global page reservations that must be dropped.
199  * The return value may only be different than the passed value (delta)
200  * in the case where a subpool minimum size must be maintained.
201  */
202 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
203                                        long delta)
204 {
205         long ret = delta;
206
207         if (!spool)
208                 return delta;
209
210         spin_lock(&spool->lock);
211
212         if (spool->max_hpages != -1)            /* maximum size accounting */
213                 spool->used_hpages -= delta;
214
215          /* minimum size accounting */
216         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
217                 if (spool->rsv_hpages + delta <= spool->min_hpages)
218                         ret = 0;
219                 else
220                         ret = spool->rsv_hpages + delta - spool->min_hpages;
221
222                 spool->rsv_hpages += delta;
223                 if (spool->rsv_hpages > spool->min_hpages)
224                         spool->rsv_hpages = spool->min_hpages;
225         }
226
227         /*
228          * If hugetlbfs_put_super couldn't free spool due to an outstanding
229          * quota reference, free it now.
230          */
231         unlock_or_release_subpool(spool);
232
233         return ret;
234 }
235
236 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
237 {
238         return HUGETLBFS_SB(inode->i_sb)->spool;
239 }
240
241 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
242 {
243         return subpool_inode(file_inode(vma->vm_file));
244 }
245
246 /* Helper that removes a struct file_region from the resv_map cache and returns
247  * it for use.
248  */
249 static struct file_region *
250 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
251 {
252         struct file_region *nrg = NULL;
253
254         VM_BUG_ON(resv->region_cache_count <= 0);
255
256         resv->region_cache_count--;
257         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
258         list_del(&nrg->link);
259
260         nrg->from = from;
261         nrg->to = to;
262
263         return nrg;
264 }
265
266 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
267                                               struct file_region *rg)
268 {
269 #ifdef CONFIG_CGROUP_HUGETLB
270         nrg->reservation_counter = rg->reservation_counter;
271         nrg->css = rg->css;
272         if (rg->css)
273                 css_get(rg->css);
274 #endif
275 }
276
277 /* Helper that records hugetlb_cgroup uncharge info. */
278 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
279                                                 struct hstate *h,
280                                                 struct resv_map *resv,
281                                                 struct file_region *nrg)
282 {
283 #ifdef CONFIG_CGROUP_HUGETLB
284         if (h_cg) {
285                 nrg->reservation_counter =
286                         &h_cg->rsvd_hugepage[hstate_index(h)];
287                 nrg->css = &h_cg->css;
288                 if (!resv->pages_per_hpage)
289                         resv->pages_per_hpage = pages_per_huge_page(h);
290                 /* pages_per_hpage should be the same for all entries in
291                  * a resv_map.
292                  */
293                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
294         } else {
295                 nrg->reservation_counter = NULL;
296                 nrg->css = NULL;
297         }
298 #endif
299 }
300
301 static bool has_same_uncharge_info(struct file_region *rg,
302                                    struct file_region *org)
303 {
304 #ifdef CONFIG_CGROUP_HUGETLB
305         return rg && org &&
306                rg->reservation_counter == org->reservation_counter &&
307                rg->css == org->css;
308
309 #else
310         return true;
311 #endif
312 }
313
314 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
315 {
316         struct file_region *nrg = NULL, *prg = NULL;
317
318         prg = list_prev_entry(rg, link);
319         if (&prg->link != &resv->regions && prg->to == rg->from &&
320             has_same_uncharge_info(prg, rg)) {
321                 prg->to = rg->to;
322
323                 list_del(&rg->link);
324                 kfree(rg);
325
326                 rg = prg;
327         }
328
329         nrg = list_next_entry(rg, link);
330         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
331             has_same_uncharge_info(nrg, rg)) {
332                 nrg->from = rg->from;
333
334                 list_del(&rg->link);
335                 kfree(rg);
336         }
337 }
338
339 /*
340  * Must be called with resv->lock held.
341  *
342  * Calling this with regions_needed != NULL will count the number of pages
343  * to be added but will not modify the linked list. And regions_needed will
344  * indicate the number of file_regions needed in the cache to carry out to add
345  * the regions for this range.
346  */
347 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
348                                      struct hugetlb_cgroup *h_cg,
349                                      struct hstate *h, long *regions_needed)
350 {
351         long add = 0;
352         struct list_head *head = &resv->regions;
353         long last_accounted_offset = f;
354         struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
355
356         if (regions_needed)
357                 *regions_needed = 0;
358
359         /* In this loop, we essentially handle an entry for the range
360          * [last_accounted_offset, rg->from), at every iteration, with some
361          * bounds checking.
362          */
363         list_for_each_entry_safe(rg, trg, head, link) {
364                 /* Skip irrelevant regions that start before our range. */
365                 if (rg->from < f) {
366                         /* If this region ends after the last accounted offset,
367                          * then we need to update last_accounted_offset.
368                          */
369                         if (rg->to > last_accounted_offset)
370                                 last_accounted_offset = rg->to;
371                         continue;
372                 }
373
374                 /* When we find a region that starts beyond our range, we've
375                  * finished.
376                  */
377                 if (rg->from > t)
378                         break;
379
380                 /* Add an entry for last_accounted_offset -> rg->from, and
381                  * update last_accounted_offset.
382                  */
383                 if (rg->from > last_accounted_offset) {
384                         add += rg->from - last_accounted_offset;
385                         if (!regions_needed) {
386                                 nrg = get_file_region_entry_from_cache(
387                                         resv, last_accounted_offset, rg->from);
388                                 record_hugetlb_cgroup_uncharge_info(h_cg, h,
389                                                                     resv, nrg);
390                                 list_add(&nrg->link, rg->link.prev);
391                                 coalesce_file_region(resv, nrg);
392                         } else
393                                 *regions_needed += 1;
394                 }
395
396                 last_accounted_offset = rg->to;
397         }
398
399         /* Handle the case where our range extends beyond
400          * last_accounted_offset.
401          */
402         if (last_accounted_offset < t) {
403                 add += t - last_accounted_offset;
404                 if (!regions_needed) {
405                         nrg = get_file_region_entry_from_cache(
406                                 resv, last_accounted_offset, t);
407                         record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
408                         list_add(&nrg->link, rg->link.prev);
409                         coalesce_file_region(resv, nrg);
410                 } else
411                         *regions_needed += 1;
412         }
413
414         VM_BUG_ON(add < 0);
415         return add;
416 }
417
418 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
419  */
420 static int allocate_file_region_entries(struct resv_map *resv,
421                                         int regions_needed)
422         __must_hold(&resv->lock)
423 {
424         struct list_head allocated_regions;
425         int to_allocate = 0, i = 0;
426         struct file_region *trg = NULL, *rg = NULL;
427
428         VM_BUG_ON(regions_needed < 0);
429
430         INIT_LIST_HEAD(&allocated_regions);
431
432         /*
433          * Check for sufficient descriptors in the cache to accommodate
434          * the number of in progress add operations plus regions_needed.
435          *
436          * This is a while loop because when we drop the lock, some other call
437          * to region_add or region_del may have consumed some region_entries,
438          * so we keep looping here until we finally have enough entries for
439          * (adds_in_progress + regions_needed).
440          */
441         while (resv->region_cache_count <
442                (resv->adds_in_progress + regions_needed)) {
443                 to_allocate = resv->adds_in_progress + regions_needed -
444                               resv->region_cache_count;
445
446                 /* At this point, we should have enough entries in the cache
447                  * for all the existings adds_in_progress. We should only be
448                  * needing to allocate for regions_needed.
449                  */
450                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
451
452                 spin_unlock(&resv->lock);
453                 for (i = 0; i < to_allocate; i++) {
454                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
455                         if (!trg)
456                                 goto out_of_memory;
457                         list_add(&trg->link, &allocated_regions);
458                 }
459
460                 spin_lock(&resv->lock);
461
462                 list_splice(&allocated_regions, &resv->region_cache);
463                 resv->region_cache_count += to_allocate;
464         }
465
466         return 0;
467
468 out_of_memory:
469         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
470                 list_del(&rg->link);
471                 kfree(rg);
472         }
473         return -ENOMEM;
474 }
475
476 /*
477  * Add the huge page range represented by [f, t) to the reserve
478  * map.  Regions will be taken from the cache to fill in this range.
479  * Sufficient regions should exist in the cache due to the previous
480  * call to region_chg with the same range, but in some cases the cache will not
481  * have sufficient entries due to races with other code doing region_add or
482  * region_del.  The extra needed entries will be allocated.
483  *
484  * regions_needed is the out value provided by a previous call to region_chg.
485  *
486  * Return the number of new huge pages added to the map.  This number is greater
487  * than or equal to zero.  If file_region entries needed to be allocated for
488  * this operation and we were not able to allocate, it returns -ENOMEM.
489  * region_add of regions of length 1 never allocate file_regions and cannot
490  * fail; region_chg will always allocate at least 1 entry and a region_add for
491  * 1 page will only require at most 1 entry.
492  */
493 static long region_add(struct resv_map *resv, long f, long t,
494                        long in_regions_needed, struct hstate *h,
495                        struct hugetlb_cgroup *h_cg)
496 {
497         long add = 0, actual_regions_needed = 0;
498
499         spin_lock(&resv->lock);
500 retry:
501
502         /* Count how many regions are actually needed to execute this add. */
503         add_reservation_in_range(resv, f, t, NULL, NULL,
504                                  &actual_regions_needed);
505
506         /*
507          * Check for sufficient descriptors in the cache to accommodate
508          * this add operation. Note that actual_regions_needed may be greater
509          * than in_regions_needed, as the resv_map may have been modified since
510          * the region_chg call. In this case, we need to make sure that we
511          * allocate extra entries, such that we have enough for all the
512          * existing adds_in_progress, plus the excess needed for this
513          * operation.
514          */
515         if (actual_regions_needed > in_regions_needed &&
516             resv->region_cache_count <
517                     resv->adds_in_progress +
518                             (actual_regions_needed - in_regions_needed)) {
519                 /* region_add operation of range 1 should never need to
520                  * allocate file_region entries.
521                  */
522                 VM_BUG_ON(t - f <= 1);
523
524                 if (allocate_file_region_entries(
525                             resv, actual_regions_needed - in_regions_needed)) {
526                         return -ENOMEM;
527                 }
528
529                 goto retry;
530         }
531
532         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
533
534         resv->adds_in_progress -= in_regions_needed;
535
536         spin_unlock(&resv->lock);
537         VM_BUG_ON(add < 0);
538         return add;
539 }
540
541 /*
542  * Examine the existing reserve map and determine how many
543  * huge pages in the specified range [f, t) are NOT currently
544  * represented.  This routine is called before a subsequent
545  * call to region_add that will actually modify the reserve
546  * map to add the specified range [f, t).  region_chg does
547  * not change the number of huge pages represented by the
548  * map.  A number of new file_region structures is added to the cache as a
549  * placeholder, for the subsequent region_add call to use. At least 1
550  * file_region structure is added.
551  *
552  * out_regions_needed is the number of regions added to the
553  * resv->adds_in_progress.  This value needs to be provided to a follow up call
554  * to region_add or region_abort for proper accounting.
555  *
556  * Returns the number of huge pages that need to be added to the existing
557  * reservation map for the range [f, t).  This number is greater or equal to
558  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
559  * is needed and can not be allocated.
560  */
561 static long region_chg(struct resv_map *resv, long f, long t,
562                        long *out_regions_needed)
563 {
564         long chg = 0;
565
566         spin_lock(&resv->lock);
567
568         /* Count how many hugepages in this range are NOT represented. */
569         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
570                                        out_regions_needed);
571
572         if (*out_regions_needed == 0)
573                 *out_regions_needed = 1;
574
575         if (allocate_file_region_entries(resv, *out_regions_needed))
576                 return -ENOMEM;
577
578         resv->adds_in_progress += *out_regions_needed;
579
580         spin_unlock(&resv->lock);
581         return chg;
582 }
583
584 /*
585  * Abort the in progress add operation.  The adds_in_progress field
586  * of the resv_map keeps track of the operations in progress between
587  * calls to region_chg and region_add.  Operations are sometimes
588  * aborted after the call to region_chg.  In such cases, region_abort
589  * is called to decrement the adds_in_progress counter. regions_needed
590  * is the value returned by the region_chg call, it is used to decrement
591  * the adds_in_progress counter.
592  *
593  * NOTE: The range arguments [f, t) are not needed or used in this
594  * routine.  They are kept to make reading the calling code easier as
595  * arguments will match the associated region_chg call.
596  */
597 static void region_abort(struct resv_map *resv, long f, long t,
598                          long regions_needed)
599 {
600         spin_lock(&resv->lock);
601         VM_BUG_ON(!resv->region_cache_count);
602         resv->adds_in_progress -= regions_needed;
603         spin_unlock(&resv->lock);
604 }
605
606 /*
607  * Delete the specified range [f, t) from the reserve map.  If the
608  * t parameter is LONG_MAX, this indicates that ALL regions after f
609  * should be deleted.  Locate the regions which intersect [f, t)
610  * and either trim, delete or split the existing regions.
611  *
612  * Returns the number of huge pages deleted from the reserve map.
613  * In the normal case, the return value is zero or more.  In the
614  * case where a region must be split, a new region descriptor must
615  * be allocated.  If the allocation fails, -ENOMEM will be returned.
616  * NOTE: If the parameter t == LONG_MAX, then we will never split
617  * a region and possibly return -ENOMEM.  Callers specifying
618  * t == LONG_MAX do not need to check for -ENOMEM error.
619  */
620 static long region_del(struct resv_map *resv, long f, long t)
621 {
622         struct list_head *head = &resv->regions;
623         struct file_region *rg, *trg;
624         struct file_region *nrg = NULL;
625         long del = 0;
626
627 retry:
628         spin_lock(&resv->lock);
629         list_for_each_entry_safe(rg, trg, head, link) {
630                 /*
631                  * Skip regions before the range to be deleted.  file_region
632                  * ranges are normally of the form [from, to).  However, there
633                  * may be a "placeholder" entry in the map which is of the form
634                  * (from, to) with from == to.  Check for placeholder entries
635                  * at the beginning of the range to be deleted.
636                  */
637                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
638                         continue;
639
640                 if (rg->from >= t)
641                         break;
642
643                 if (f > rg->from && t < rg->to) { /* Must split region */
644                         /*
645                          * Check for an entry in the cache before dropping
646                          * lock and attempting allocation.
647                          */
648                         if (!nrg &&
649                             resv->region_cache_count > resv->adds_in_progress) {
650                                 nrg = list_first_entry(&resv->region_cache,
651                                                         struct file_region,
652                                                         link);
653                                 list_del(&nrg->link);
654                                 resv->region_cache_count--;
655                         }
656
657                         if (!nrg) {
658                                 spin_unlock(&resv->lock);
659                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
660                                 if (!nrg)
661                                         return -ENOMEM;
662                                 goto retry;
663                         }
664
665                         del += t - f;
666                         hugetlb_cgroup_uncharge_file_region(
667                                 resv, rg, t - f);
668
669                         /* New entry for end of split region */
670                         nrg->from = t;
671                         nrg->to = rg->to;
672
673                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
674
675                         INIT_LIST_HEAD(&nrg->link);
676
677                         /* Original entry is trimmed */
678                         rg->to = f;
679
680                         list_add(&nrg->link, &rg->link);
681                         nrg = NULL;
682                         break;
683                 }
684
685                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
686                         del += rg->to - rg->from;
687                         hugetlb_cgroup_uncharge_file_region(resv, rg,
688                                                             rg->to - rg->from);
689                         list_del(&rg->link);
690                         kfree(rg);
691                         continue;
692                 }
693
694                 if (f <= rg->from) {    /* Trim beginning of region */
695                         hugetlb_cgroup_uncharge_file_region(resv, rg,
696                                                             t - rg->from);
697
698                         del += t - rg->from;
699                         rg->from = t;
700                 } else {                /* Trim end of region */
701                         hugetlb_cgroup_uncharge_file_region(resv, rg,
702                                                             rg->to - f);
703
704                         del += rg->to - f;
705                         rg->to = f;
706                 }
707         }
708
709         spin_unlock(&resv->lock);
710         kfree(nrg);
711         return del;
712 }
713
714 /*
715  * A rare out of memory error was encountered which prevented removal of
716  * the reserve map region for a page.  The huge page itself was free'ed
717  * and removed from the page cache.  This routine will adjust the subpool
718  * usage count, and the global reserve count if needed.  By incrementing
719  * these counts, the reserve map entry which could not be deleted will
720  * appear as a "reserved" entry instead of simply dangling with incorrect
721  * counts.
722  */
723 void hugetlb_fix_reserve_counts(struct inode *inode)
724 {
725         struct hugepage_subpool *spool = subpool_inode(inode);
726         long rsv_adjust;
727
728         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
729         if (rsv_adjust) {
730                 struct hstate *h = hstate_inode(inode);
731
732                 hugetlb_acct_memory(h, 1);
733         }
734 }
735
736 /*
737  * Count and return the number of huge pages in the reserve map
738  * that intersect with the range [f, t).
739  */
740 static long region_count(struct resv_map *resv, long f, long t)
741 {
742         struct list_head *head = &resv->regions;
743         struct file_region *rg;
744         long chg = 0;
745
746         spin_lock(&resv->lock);
747         /* Locate each segment we overlap with, and count that overlap. */
748         list_for_each_entry(rg, head, link) {
749                 long seg_from;
750                 long seg_to;
751
752                 if (rg->to <= f)
753                         continue;
754                 if (rg->from >= t)
755                         break;
756
757                 seg_from = max(rg->from, f);
758                 seg_to = min(rg->to, t);
759
760                 chg += seg_to - seg_from;
761         }
762         spin_unlock(&resv->lock);
763
764         return chg;
765 }
766
767 /*
768  * Convert the address within this vma to the page offset within
769  * the mapping, in pagecache page units; huge pages here.
770  */
771 static pgoff_t vma_hugecache_offset(struct hstate *h,
772                         struct vm_area_struct *vma, unsigned long address)
773 {
774         return ((address - vma->vm_start) >> huge_page_shift(h)) +
775                         (vma->vm_pgoff >> huge_page_order(h));
776 }
777
778 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
779                                      unsigned long address)
780 {
781         return vma_hugecache_offset(hstate_vma(vma), vma, address);
782 }
783 EXPORT_SYMBOL_GPL(linear_hugepage_index);
784
785 /*
786  * Return the size of the pages allocated when backing a VMA. In the majority
787  * cases this will be same size as used by the page table entries.
788  */
789 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
790 {
791         if (vma->vm_ops && vma->vm_ops->pagesize)
792                 return vma->vm_ops->pagesize(vma);
793         return PAGE_SIZE;
794 }
795 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
796
797 /*
798  * Return the page size being used by the MMU to back a VMA. In the majority
799  * of cases, the page size used by the kernel matches the MMU size. On
800  * architectures where it differs, an architecture-specific 'strong'
801  * version of this symbol is required.
802  */
803 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
804 {
805         return vma_kernel_pagesize(vma);
806 }
807
808 /*
809  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
810  * bits of the reservation map pointer, which are always clear due to
811  * alignment.
812  */
813 #define HPAGE_RESV_OWNER    (1UL << 0)
814 #define HPAGE_RESV_UNMAPPED (1UL << 1)
815 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
816
817 /*
818  * These helpers are used to track how many pages are reserved for
819  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
820  * is guaranteed to have their future faults succeed.
821  *
822  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
823  * the reserve counters are updated with the hugetlb_lock held. It is safe
824  * to reset the VMA at fork() time as it is not in use yet and there is no
825  * chance of the global counters getting corrupted as a result of the values.
826  *
827  * The private mapping reservation is represented in a subtly different
828  * manner to a shared mapping.  A shared mapping has a region map associated
829  * with the underlying file, this region map represents the backing file
830  * pages which have ever had a reservation assigned which this persists even
831  * after the page is instantiated.  A private mapping has a region map
832  * associated with the original mmap which is attached to all VMAs which
833  * reference it, this region map represents those offsets which have consumed
834  * reservation ie. where pages have been instantiated.
835  */
836 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
837 {
838         return (unsigned long)vma->vm_private_data;
839 }
840
841 static void set_vma_private_data(struct vm_area_struct *vma,
842                                                         unsigned long value)
843 {
844         vma->vm_private_data = (void *)value;
845 }
846
847 static void
848 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
849                                           struct hugetlb_cgroup *h_cg,
850                                           struct hstate *h)
851 {
852 #ifdef CONFIG_CGROUP_HUGETLB
853         if (!h_cg || !h) {
854                 resv_map->reservation_counter = NULL;
855                 resv_map->pages_per_hpage = 0;
856                 resv_map->css = NULL;
857         } else {
858                 resv_map->reservation_counter =
859                         &h_cg->rsvd_hugepage[hstate_index(h)];
860                 resv_map->pages_per_hpage = pages_per_huge_page(h);
861                 resv_map->css = &h_cg->css;
862         }
863 #endif
864 }
865
866 struct resv_map *resv_map_alloc(void)
867 {
868         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
869         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
870
871         if (!resv_map || !rg) {
872                 kfree(resv_map);
873                 kfree(rg);
874                 return NULL;
875         }
876
877         kref_init(&resv_map->refs);
878         spin_lock_init(&resv_map->lock);
879         INIT_LIST_HEAD(&resv_map->regions);
880
881         resv_map->adds_in_progress = 0;
882         /*
883          * Initialize these to 0. On shared mappings, 0's here indicate these
884          * fields don't do cgroup accounting. On private mappings, these will be
885          * re-initialized to the proper values, to indicate that hugetlb cgroup
886          * reservations are to be un-charged from here.
887          */
888         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
889
890         INIT_LIST_HEAD(&resv_map->region_cache);
891         list_add(&rg->link, &resv_map->region_cache);
892         resv_map->region_cache_count = 1;
893
894         return resv_map;
895 }
896
897 void resv_map_release(struct kref *ref)
898 {
899         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
900         struct list_head *head = &resv_map->region_cache;
901         struct file_region *rg, *trg;
902
903         /* Clear out any active regions before we release the map. */
904         region_del(resv_map, 0, LONG_MAX);
905
906         /* ... and any entries left in the cache */
907         list_for_each_entry_safe(rg, trg, head, link) {
908                 list_del(&rg->link);
909                 kfree(rg);
910         }
911
912         VM_BUG_ON(resv_map->adds_in_progress);
913
914         kfree(resv_map);
915 }
916
917 static inline struct resv_map *inode_resv_map(struct inode *inode)
918 {
919         /*
920          * At inode evict time, i_mapping may not point to the original
921          * address space within the inode.  This original address space
922          * contains the pointer to the resv_map.  So, always use the
923          * address space embedded within the inode.
924          * The VERY common case is inode->mapping == &inode->i_data but,
925          * this may not be true for device special inodes.
926          */
927         return (struct resv_map *)(&inode->i_data)->private_data;
928 }
929
930 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
931 {
932         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
933         if (vma->vm_flags & VM_MAYSHARE) {
934                 struct address_space *mapping = vma->vm_file->f_mapping;
935                 struct inode *inode = mapping->host;
936
937                 return inode_resv_map(inode);
938
939         } else {
940                 return (struct resv_map *)(get_vma_private_data(vma) &
941                                                         ~HPAGE_RESV_MASK);
942         }
943 }
944
945 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
946 {
947         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
948         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
949
950         set_vma_private_data(vma, (get_vma_private_data(vma) &
951                                 HPAGE_RESV_MASK) | (unsigned long)map);
952 }
953
954 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
955 {
956         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
957         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
958
959         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
960 }
961
962 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
963 {
964         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
965
966         return (get_vma_private_data(vma) & flag) != 0;
967 }
968
969 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
970 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
971 {
972         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
973         if (!(vma->vm_flags & VM_MAYSHARE))
974                 vma->vm_private_data = (void *)0;
975 }
976
977 /* Returns true if the VMA has associated reserve pages */
978 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
979 {
980         if (vma->vm_flags & VM_NORESERVE) {
981                 /*
982                  * This address is already reserved by other process(chg == 0),
983                  * so, we should decrement reserved count. Without decrementing,
984                  * reserve count remains after releasing inode, because this
985                  * allocated page will go into page cache and is regarded as
986                  * coming from reserved pool in releasing step.  Currently, we
987                  * don't have any other solution to deal with this situation
988                  * properly, so add work-around here.
989                  */
990                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
991                         return true;
992                 else
993                         return false;
994         }
995
996         /* Shared mappings always use reserves */
997         if (vma->vm_flags & VM_MAYSHARE) {
998                 /*
999                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1000                  * be a region map for all pages.  The only situation where
1001                  * there is no region map is if a hole was punched via
1002                  * fallocate.  In this case, there really are no reserves to
1003                  * use.  This situation is indicated if chg != 0.
1004                  */
1005                 if (chg)
1006                         return false;
1007                 else
1008                         return true;
1009         }
1010
1011         /*
1012          * Only the process that called mmap() has reserves for
1013          * private mappings.
1014          */
1015         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1016                 /*
1017                  * Like the shared case above, a hole punch or truncate
1018                  * could have been performed on the private mapping.
1019                  * Examine the value of chg to determine if reserves
1020                  * actually exist or were previously consumed.
1021                  * Very Subtle - The value of chg comes from a previous
1022                  * call to vma_needs_reserves().  The reserve map for
1023                  * private mappings has different (opposite) semantics
1024                  * than that of shared mappings.  vma_needs_reserves()
1025                  * has already taken this difference in semantics into
1026                  * account.  Therefore, the meaning of chg is the same
1027                  * as in the shared case above.  Code could easily be
1028                  * combined, but keeping it separate draws attention to
1029                  * subtle differences.
1030                  */
1031                 if (chg)
1032                         return false;
1033                 else
1034                         return true;
1035         }
1036
1037         return false;
1038 }
1039
1040 static void enqueue_huge_page(struct hstate *h, struct page *page)
1041 {
1042         int nid = page_to_nid(page);
1043         list_move(&page->lru, &h->hugepage_freelists[nid]);
1044         h->free_huge_pages++;
1045         h->free_huge_pages_node[nid]++;
1046         SetPageHugeFreed(page);
1047 }
1048
1049 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1050 {
1051         struct page *page;
1052         bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1053
1054         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1055                 if (nocma && is_migrate_cma_page(page))
1056                         continue;
1057
1058                 if (PageHWPoison(page))
1059                         continue;
1060
1061                 list_move(&page->lru, &h->hugepage_activelist);
1062                 set_page_refcounted(page);
1063                 ClearPageHugeFreed(page);
1064                 h->free_huge_pages--;
1065                 h->free_huge_pages_node[nid]--;
1066                 return page;
1067         }
1068
1069         return NULL;
1070 }
1071
1072 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1073                 nodemask_t *nmask)
1074 {
1075         unsigned int cpuset_mems_cookie;
1076         struct zonelist *zonelist;
1077         struct zone *zone;
1078         struct zoneref *z;
1079         int node = NUMA_NO_NODE;
1080
1081         zonelist = node_zonelist(nid, gfp_mask);
1082
1083 retry_cpuset:
1084         cpuset_mems_cookie = read_mems_allowed_begin();
1085         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1086                 struct page *page;
1087
1088                 if (!cpuset_zone_allowed(zone, gfp_mask))
1089                         continue;
1090                 /*
1091                  * no need to ask again on the same node. Pool is node rather than
1092                  * zone aware
1093                  */
1094                 if (zone_to_nid(zone) == node)
1095                         continue;
1096                 node = zone_to_nid(zone);
1097
1098                 page = dequeue_huge_page_node_exact(h, node);
1099                 if (page)
1100                         return page;
1101         }
1102         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1103                 goto retry_cpuset;
1104
1105         return NULL;
1106 }
1107
1108 static struct page *dequeue_huge_page_vma(struct hstate *h,
1109                                 struct vm_area_struct *vma,
1110                                 unsigned long address, int avoid_reserve,
1111                                 long chg)
1112 {
1113         struct page *page;
1114         struct mempolicy *mpol;
1115         gfp_t gfp_mask;
1116         nodemask_t *nodemask;
1117         int nid;
1118
1119         /*
1120          * A child process with MAP_PRIVATE mappings created by their parent
1121          * have no page reserves. This check ensures that reservations are
1122          * not "stolen". The child may still get SIGKILLed
1123          */
1124         if (!vma_has_reserves(vma, chg) &&
1125                         h->free_huge_pages - h->resv_huge_pages == 0)
1126                 goto err;
1127
1128         /* If reserves cannot be used, ensure enough pages are in the pool */
1129         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1130                 goto err;
1131
1132         gfp_mask = htlb_alloc_mask(h);
1133         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1134         page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1135         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1136                 SetPagePrivate(page);
1137                 h->resv_huge_pages--;
1138         }
1139
1140         mpol_cond_put(mpol);
1141         return page;
1142
1143 err:
1144         return NULL;
1145 }
1146
1147 /*
1148  * common helper functions for hstate_next_node_to_{alloc|free}.
1149  * We may have allocated or freed a huge page based on a different
1150  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1151  * be outside of *nodes_allowed.  Ensure that we use an allowed
1152  * node for alloc or free.
1153  */
1154 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1155 {
1156         nid = next_node_in(nid, *nodes_allowed);
1157         VM_BUG_ON(nid >= MAX_NUMNODES);
1158
1159         return nid;
1160 }
1161
1162 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1163 {
1164         if (!node_isset(nid, *nodes_allowed))
1165                 nid = next_node_allowed(nid, nodes_allowed);
1166         return nid;
1167 }
1168
1169 /*
1170  * returns the previously saved node ["this node"] from which to
1171  * allocate a persistent huge page for the pool and advance the
1172  * next node from which to allocate, handling wrap at end of node
1173  * mask.
1174  */
1175 static int hstate_next_node_to_alloc(struct hstate *h,
1176                                         nodemask_t *nodes_allowed)
1177 {
1178         int nid;
1179
1180         VM_BUG_ON(!nodes_allowed);
1181
1182         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1183         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1184
1185         return nid;
1186 }
1187
1188 /*
1189  * helper for free_pool_huge_page() - return the previously saved
1190  * node ["this node"] from which to free a huge page.  Advance the
1191  * next node id whether or not we find a free huge page to free so
1192  * that the next attempt to free addresses the next node.
1193  */
1194 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1195 {
1196         int nid;
1197
1198         VM_BUG_ON(!nodes_allowed);
1199
1200         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1201         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1202
1203         return nid;
1204 }
1205
1206 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1207         for (nr_nodes = nodes_weight(*mask);                            \
1208                 nr_nodes > 0 &&                                         \
1209                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1210                 nr_nodes--)
1211
1212 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1213         for (nr_nodes = nodes_weight(*mask);                            \
1214                 nr_nodes > 0 &&                                         \
1215                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1216                 nr_nodes--)
1217
1218 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1219 static void destroy_compound_gigantic_page(struct page *page,
1220                                         unsigned int order)
1221 {
1222         int i;
1223         int nr_pages = 1 << order;
1224         struct page *p = page + 1;
1225
1226         atomic_set(compound_mapcount_ptr(page), 0);
1227         if (hpage_pincount_available(page))
1228                 atomic_set(compound_pincount_ptr(page), 0);
1229
1230         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1231                 clear_compound_head(p);
1232                 set_page_refcounted(p);
1233         }
1234
1235         set_compound_order(page, 0);
1236         page[1].compound_nr = 0;
1237         __ClearPageHead(page);
1238 }
1239
1240 static void free_gigantic_page(struct page *page, unsigned int order)
1241 {
1242         /*
1243          * If the page isn't allocated using the cma allocator,
1244          * cma_release() returns false.
1245          */
1246 #ifdef CONFIG_CMA
1247         if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1248                 return;
1249 #endif
1250
1251         free_contig_range(page_to_pfn(page), 1 << order);
1252 }
1253
1254 #ifdef CONFIG_CONTIG_ALLOC
1255 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1256                 int nid, nodemask_t *nodemask)
1257 {
1258         unsigned long nr_pages = 1UL << huge_page_order(h);
1259         if (nid == NUMA_NO_NODE)
1260                 nid = numa_mem_id();
1261
1262 #ifdef CONFIG_CMA
1263         {
1264                 struct page *page;
1265                 int node;
1266
1267                 if (hugetlb_cma[nid]) {
1268                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1269                                         huge_page_order(h), true);
1270                         if (page)
1271                                 return page;
1272                 }
1273
1274                 if (!(gfp_mask & __GFP_THISNODE)) {
1275                         for_each_node_mask(node, *nodemask) {
1276                                 if (node == nid || !hugetlb_cma[node])
1277                                         continue;
1278
1279                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1280                                                 huge_page_order(h), true);
1281                                 if (page)
1282                                         return page;
1283                         }
1284                 }
1285         }
1286 #endif
1287
1288         return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1289 }
1290
1291 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1292 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1293 #else /* !CONFIG_CONTIG_ALLOC */
1294 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1295                                         int nid, nodemask_t *nodemask)
1296 {
1297         return NULL;
1298 }
1299 #endif /* CONFIG_CONTIG_ALLOC */
1300
1301 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1302 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1303                                         int nid, nodemask_t *nodemask)
1304 {
1305         return NULL;
1306 }
1307 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1308 static inline void destroy_compound_gigantic_page(struct page *page,
1309                                                 unsigned int order) { }
1310 #endif
1311
1312 static void update_and_free_page(struct hstate *h, struct page *page)
1313 {
1314         int i;
1315
1316         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1317                 return;
1318
1319         h->nr_huge_pages--;
1320         h->nr_huge_pages_node[page_to_nid(page)]--;
1321         for (i = 0; i < pages_per_huge_page(h); i++) {
1322                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1323                                 1 << PG_referenced | 1 << PG_dirty |
1324                                 1 << PG_active | 1 << PG_private |
1325                                 1 << PG_writeback);
1326         }
1327         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1328         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1329         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1330         set_page_refcounted(page);
1331         if (hstate_is_gigantic(h)) {
1332                 /*
1333                  * Temporarily drop the hugetlb_lock, because
1334                  * we might block in free_gigantic_page().
1335                  */
1336                 spin_unlock(&hugetlb_lock);
1337                 destroy_compound_gigantic_page(page, huge_page_order(h));
1338                 free_gigantic_page(page, huge_page_order(h));
1339                 spin_lock(&hugetlb_lock);
1340         } else {
1341                 __free_pages(page, huge_page_order(h));
1342         }
1343 }
1344
1345 struct hstate *size_to_hstate(unsigned long size)
1346 {
1347         struct hstate *h;
1348
1349         for_each_hstate(h) {
1350                 if (huge_page_size(h) == size)
1351                         return h;
1352         }
1353         return NULL;
1354 }
1355
1356 /*
1357  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1358  * to hstate->hugepage_activelist.)
1359  *
1360  * This function can be called for tail pages, but never returns true for them.
1361  */
1362 bool page_huge_active(struct page *page)
1363 {
1364         return PageHeadHuge(page) && PagePrivate(&page[1]);
1365 }
1366
1367 /* never called for tail page */
1368 void set_page_huge_active(struct page *page)
1369 {
1370         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1371         SetPagePrivate(&page[1]);
1372 }
1373
1374 static void clear_page_huge_active(struct page *page)
1375 {
1376         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1377         ClearPagePrivate(&page[1]);
1378 }
1379
1380 /*
1381  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1382  * code
1383  */
1384 static inline bool PageHugeTemporary(struct page *page)
1385 {
1386         if (!PageHuge(page))
1387                 return false;
1388
1389         return (unsigned long)page[2].mapping == -1U;
1390 }
1391
1392 static inline void SetPageHugeTemporary(struct page *page)
1393 {
1394         page[2].mapping = (void *)-1U;
1395 }
1396
1397 static inline void ClearPageHugeTemporary(struct page *page)
1398 {
1399         page[2].mapping = NULL;
1400 }
1401
1402 static void __free_huge_page(struct page *page)
1403 {
1404         /*
1405          * Can't pass hstate in here because it is called from the
1406          * compound page destructor.
1407          */
1408         struct hstate *h = page_hstate(page);
1409         int nid = page_to_nid(page);
1410         struct hugepage_subpool *spool =
1411                 (struct hugepage_subpool *)page_private(page);
1412         bool restore_reserve;
1413
1414         VM_BUG_ON_PAGE(page_count(page), page);
1415         VM_BUG_ON_PAGE(page_mapcount(page), page);
1416
1417         set_page_private(page, 0);
1418         page->mapping = NULL;
1419         restore_reserve = PagePrivate(page);
1420         ClearPagePrivate(page);
1421
1422         /*
1423          * If PagePrivate() was set on page, page allocation consumed a
1424          * reservation.  If the page was associated with a subpool, there
1425          * would have been a page reserved in the subpool before allocation
1426          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1427          * reservtion, do not call hugepage_subpool_put_pages() as this will
1428          * remove the reserved page from the subpool.
1429          */
1430         if (!restore_reserve) {
1431                 /*
1432                  * A return code of zero implies that the subpool will be
1433                  * under its minimum size if the reservation is not restored
1434                  * after page is free.  Therefore, force restore_reserve
1435                  * operation.
1436                  */
1437                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1438                         restore_reserve = true;
1439         }
1440
1441         spin_lock(&hugetlb_lock);
1442         clear_page_huge_active(page);
1443         hugetlb_cgroup_uncharge_page(hstate_index(h),
1444                                      pages_per_huge_page(h), page);
1445         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1446                                           pages_per_huge_page(h), page);
1447         if (restore_reserve)
1448                 h->resv_huge_pages++;
1449
1450         if (PageHugeTemporary(page)) {
1451                 list_del(&page->lru);
1452                 ClearPageHugeTemporary(page);
1453                 update_and_free_page(h, page);
1454         } else if (h->surplus_huge_pages_node[nid]) {
1455                 /* remove the page from active list */
1456                 list_del(&page->lru);
1457                 update_and_free_page(h, page);
1458                 h->surplus_huge_pages--;
1459                 h->surplus_huge_pages_node[nid]--;
1460         } else {
1461                 arch_clear_hugepage_flags(page);
1462                 enqueue_huge_page(h, page);
1463         }
1464         spin_unlock(&hugetlb_lock);
1465 }
1466
1467 /*
1468  * As free_huge_page() can be called from a non-task context, we have
1469  * to defer the actual freeing in a workqueue to prevent potential
1470  * hugetlb_lock deadlock.
1471  *
1472  * free_hpage_workfn() locklessly retrieves the linked list of pages to
1473  * be freed and frees them one-by-one. As the page->mapping pointer is
1474  * going to be cleared in __free_huge_page() anyway, it is reused as the
1475  * llist_node structure of a lockless linked list of huge pages to be freed.
1476  */
1477 static LLIST_HEAD(hpage_freelist);
1478
1479 static void free_hpage_workfn(struct work_struct *work)
1480 {
1481         struct llist_node *node;
1482         struct page *page;
1483
1484         node = llist_del_all(&hpage_freelist);
1485
1486         while (node) {
1487                 page = container_of((struct address_space **)node,
1488                                      struct page, mapping);
1489                 node = node->next;
1490                 __free_huge_page(page);
1491         }
1492 }
1493 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1494
1495 void free_huge_page(struct page *page)
1496 {
1497         /*
1498          * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1499          */
1500         if (!in_task()) {
1501                 /*
1502                  * Only call schedule_work() if hpage_freelist is previously
1503                  * empty. Otherwise, schedule_work() had been called but the
1504                  * workfn hasn't retrieved the list yet.
1505                  */
1506                 if (llist_add((struct llist_node *)&page->mapping,
1507                               &hpage_freelist))
1508                         schedule_work(&free_hpage_work);
1509                 return;
1510         }
1511
1512         __free_huge_page(page);
1513 }
1514
1515 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1516 {
1517         INIT_LIST_HEAD(&page->lru);
1518         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1519         set_hugetlb_cgroup(page, NULL);
1520         set_hugetlb_cgroup_rsvd(page, NULL);
1521         spin_lock(&hugetlb_lock);
1522         h->nr_huge_pages++;
1523         h->nr_huge_pages_node[nid]++;
1524         ClearPageHugeFreed(page);
1525         spin_unlock(&hugetlb_lock);
1526 }
1527
1528 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1529 {
1530         int i;
1531         int nr_pages = 1 << order;
1532         struct page *p = page + 1;
1533
1534         /* we rely on prep_new_huge_page to set the destructor */
1535         set_compound_order(page, order);
1536         __ClearPageReserved(page);
1537         __SetPageHead(page);
1538         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1539                 /*
1540                  * For gigantic hugepages allocated through bootmem at
1541                  * boot, it's safer to be consistent with the not-gigantic
1542                  * hugepages and clear the PG_reserved bit from all tail pages
1543                  * too.  Otherwise drivers using get_user_pages() to access tail
1544                  * pages may get the reference counting wrong if they see
1545                  * PG_reserved set on a tail page (despite the head page not
1546                  * having PG_reserved set).  Enforcing this consistency between
1547                  * head and tail pages allows drivers to optimize away a check
1548                  * on the head page when they need know if put_page() is needed
1549                  * after get_user_pages().
1550                  */
1551                 __ClearPageReserved(p);
1552                 set_page_count(p, 0);
1553                 set_compound_head(p, page);
1554         }
1555         atomic_set(compound_mapcount_ptr(page), -1);
1556
1557         if (hpage_pincount_available(page))
1558                 atomic_set(compound_pincount_ptr(page), 0);
1559 }
1560
1561 /*
1562  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1563  * transparent huge pages.  See the PageTransHuge() documentation for more
1564  * details.
1565  */
1566 int PageHuge(struct page *page)
1567 {
1568         if (!PageCompound(page))
1569                 return 0;
1570
1571         page = compound_head(page);
1572         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1573 }
1574 EXPORT_SYMBOL_GPL(PageHuge);
1575
1576 /*
1577  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1578  * normal or transparent huge pages.
1579  */
1580 int PageHeadHuge(struct page *page_head)
1581 {
1582         if (!PageHead(page_head))
1583                 return 0;
1584
1585         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1586 }
1587
1588 /*
1589  * Find and lock address space (mapping) in write mode.
1590  *
1591  * Upon entry, the page is locked which means that page_mapping() is
1592  * stable.  Due to locking order, we can only trylock_write.  If we can
1593  * not get the lock, simply return NULL to caller.
1594  */
1595 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1596 {
1597         struct address_space *mapping = page_mapping(hpage);
1598
1599         if (!mapping)
1600                 return mapping;
1601
1602         if (i_mmap_trylock_write(mapping))
1603                 return mapping;
1604
1605         return NULL;
1606 }
1607
1608 pgoff_t __basepage_index(struct page *page)
1609 {
1610         struct page *page_head = compound_head(page);
1611         pgoff_t index = page_index(page_head);
1612         unsigned long compound_idx;
1613
1614         if (!PageHuge(page_head))
1615                 return page_index(page);
1616
1617         if (compound_order(page_head) >= MAX_ORDER)
1618                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1619         else
1620                 compound_idx = page - page_head;
1621
1622         return (index << compound_order(page_head)) + compound_idx;
1623 }
1624
1625 static struct page *alloc_buddy_huge_page(struct hstate *h,
1626                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1627                 nodemask_t *node_alloc_noretry)
1628 {
1629         int order = huge_page_order(h);
1630         struct page *page;
1631         bool alloc_try_hard = true;
1632
1633         /*
1634          * By default we always try hard to allocate the page with
1635          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1636          * a loop (to adjust global huge page counts) and previous allocation
1637          * failed, do not continue to try hard on the same node.  Use the
1638          * node_alloc_noretry bitmap to manage this state information.
1639          */
1640         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1641                 alloc_try_hard = false;
1642         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1643         if (alloc_try_hard)
1644                 gfp_mask |= __GFP_RETRY_MAYFAIL;
1645         if (nid == NUMA_NO_NODE)
1646                 nid = numa_mem_id();
1647         page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1648         if (page)
1649                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1650         else
1651                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1652
1653         /*
1654          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1655          * indicates an overall state change.  Clear bit so that we resume
1656          * normal 'try hard' allocations.
1657          */
1658         if (node_alloc_noretry && page && !alloc_try_hard)
1659                 node_clear(nid, *node_alloc_noretry);
1660
1661         /*
1662          * If we tried hard to get a page but failed, set bit so that
1663          * subsequent attempts will not try as hard until there is an
1664          * overall state change.
1665          */
1666         if (node_alloc_noretry && !page && alloc_try_hard)
1667                 node_set(nid, *node_alloc_noretry);
1668
1669         return page;
1670 }
1671
1672 /*
1673  * Common helper to allocate a fresh hugetlb page. All specific allocators
1674  * should use this function to get new hugetlb pages
1675  */
1676 static struct page *alloc_fresh_huge_page(struct hstate *h,
1677                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1678                 nodemask_t *node_alloc_noretry)
1679 {
1680         struct page *page;
1681
1682         if (hstate_is_gigantic(h))
1683                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1684         else
1685                 page = alloc_buddy_huge_page(h, gfp_mask,
1686                                 nid, nmask, node_alloc_noretry);
1687         if (!page)
1688                 return NULL;
1689
1690         if (hstate_is_gigantic(h))
1691                 prep_compound_gigantic_page(page, huge_page_order(h));
1692         prep_new_huge_page(h, page, page_to_nid(page));
1693
1694         return page;
1695 }
1696
1697 /*
1698  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1699  * manner.
1700  */
1701 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1702                                 nodemask_t *node_alloc_noretry)
1703 {
1704         struct page *page;
1705         int nr_nodes, node;
1706         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1707
1708         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1709                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1710                                                 node_alloc_noretry);
1711                 if (page)
1712                         break;
1713         }
1714
1715         if (!page)
1716                 return 0;
1717
1718         put_page(page); /* free it into the hugepage allocator */
1719
1720         return 1;
1721 }
1722
1723 /*
1724  * Free huge page from pool from next node to free.
1725  * Attempt to keep persistent huge pages more or less
1726  * balanced over allowed nodes.
1727  * Called with hugetlb_lock locked.
1728  */
1729 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1730                                                          bool acct_surplus)
1731 {
1732         int nr_nodes, node;
1733         int ret = 0;
1734
1735         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1736                 /*
1737                  * If we're returning unused surplus pages, only examine
1738                  * nodes with surplus pages.
1739                  */
1740                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1741                     !list_empty(&h->hugepage_freelists[node])) {
1742                         struct page *page =
1743                                 list_entry(h->hugepage_freelists[node].next,
1744                                           struct page, lru);
1745                         list_del(&page->lru);
1746                         h->free_huge_pages--;
1747                         h->free_huge_pages_node[node]--;
1748                         if (acct_surplus) {
1749                                 h->surplus_huge_pages--;
1750                                 h->surplus_huge_pages_node[node]--;
1751                         }
1752                         update_and_free_page(h, page);
1753                         ret = 1;
1754                         break;
1755                 }
1756         }
1757
1758         return ret;
1759 }
1760
1761 /*
1762  * Dissolve a given free hugepage into free buddy pages. This function does
1763  * nothing for in-use hugepages and non-hugepages.
1764  * This function returns values like below:
1765  *
1766  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1767  *          (allocated or reserved.)
1768  *       0: successfully dissolved free hugepages or the page is not a
1769  *          hugepage (considered as already dissolved)
1770  */
1771 int dissolve_free_huge_page(struct page *page)
1772 {
1773         int rc = -EBUSY;
1774
1775 retry:
1776         /* Not to disrupt normal path by vainly holding hugetlb_lock */
1777         if (!PageHuge(page))
1778                 return 0;
1779
1780         spin_lock(&hugetlb_lock);
1781         if (!PageHuge(page)) {
1782                 rc = 0;
1783                 goto out;
1784         }
1785
1786         if (!page_count(page)) {
1787                 struct page *head = compound_head(page);
1788                 struct hstate *h = page_hstate(head);
1789                 int nid = page_to_nid(head);
1790                 if (h->free_huge_pages - h->resv_huge_pages == 0)
1791                         goto out;
1792
1793                 /*
1794                  * We should make sure that the page is already on the free list
1795                  * when it is dissolved.
1796                  */
1797                 if (unlikely(!PageHugeFreed(head))) {
1798                         spin_unlock(&hugetlb_lock);
1799                         cond_resched();
1800
1801                         /*
1802                          * Theoretically, we should return -EBUSY when we
1803                          * encounter this race. In fact, we have a chance
1804                          * to successfully dissolve the page if we do a
1805                          * retry. Because the race window is quite small.
1806                          * If we seize this opportunity, it is an optimization
1807                          * for increasing the success rate of dissolving page.
1808                          */
1809                         goto retry;
1810                 }
1811
1812                 /*
1813                  * Move PageHWPoison flag from head page to the raw error page,
1814                  * which makes any subpages rather than the error page reusable.
1815                  */
1816                 if (PageHWPoison(head) && page != head) {
1817                         SetPageHWPoison(page);
1818                         ClearPageHWPoison(head);
1819                 }
1820                 list_del(&head->lru);
1821                 h->free_huge_pages--;
1822                 h->free_huge_pages_node[nid]--;
1823                 h->max_huge_pages--;
1824                 update_and_free_page(h, head);
1825                 rc = 0;
1826         }
1827 out:
1828         spin_unlock(&hugetlb_lock);
1829         return rc;
1830 }
1831
1832 /*
1833  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1834  * make specified memory blocks removable from the system.
1835  * Note that this will dissolve a free gigantic hugepage completely, if any
1836  * part of it lies within the given range.
1837  * Also note that if dissolve_free_huge_page() returns with an error, all
1838  * free hugepages that were dissolved before that error are lost.
1839  */
1840 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1841 {
1842         unsigned long pfn;
1843         struct page *page;
1844         int rc = 0;
1845
1846         if (!hugepages_supported())
1847                 return rc;
1848
1849         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1850                 page = pfn_to_page(pfn);
1851                 rc = dissolve_free_huge_page(page);
1852                 if (rc)
1853                         break;
1854         }
1855
1856         return rc;
1857 }
1858
1859 /*
1860  * Allocates a fresh surplus page from the page allocator.
1861  */
1862 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1863                 int nid, nodemask_t *nmask)
1864 {
1865         struct page *page = NULL;
1866
1867         if (hstate_is_gigantic(h))
1868                 return NULL;
1869
1870         spin_lock(&hugetlb_lock);
1871         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1872                 goto out_unlock;
1873         spin_unlock(&hugetlb_lock);
1874
1875         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1876         if (!page)
1877                 return NULL;
1878
1879         spin_lock(&hugetlb_lock);
1880         /*
1881          * We could have raced with the pool size change.
1882          * Double check that and simply deallocate the new page
1883          * if we would end up overcommiting the surpluses. Abuse
1884          * temporary page to workaround the nasty free_huge_page
1885          * codeflow
1886          */
1887         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1888                 SetPageHugeTemporary(page);
1889                 spin_unlock(&hugetlb_lock);
1890                 put_page(page);
1891                 return NULL;
1892         } else {
1893                 h->surplus_huge_pages++;
1894                 h->surplus_huge_pages_node[page_to_nid(page)]++;
1895         }
1896
1897 out_unlock:
1898         spin_unlock(&hugetlb_lock);
1899
1900         return page;
1901 }
1902
1903 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1904                                      int nid, nodemask_t *nmask)
1905 {
1906         struct page *page;
1907
1908         if (hstate_is_gigantic(h))
1909                 return NULL;
1910
1911         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1912         if (!page)
1913                 return NULL;
1914
1915         /*
1916          * We do not account these pages as surplus because they are only
1917          * temporary and will be released properly on the last reference
1918          */
1919         SetPageHugeTemporary(page);
1920
1921         return page;
1922 }
1923
1924 /*
1925  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1926  */
1927 static
1928 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1929                 struct vm_area_struct *vma, unsigned long addr)
1930 {
1931         struct page *page;
1932         struct mempolicy *mpol;
1933         gfp_t gfp_mask = htlb_alloc_mask(h);
1934         int nid;
1935         nodemask_t *nodemask;
1936
1937         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1938         page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1939         mpol_cond_put(mpol);
1940
1941         return page;
1942 }
1943
1944 /* page migration callback function */
1945 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1946                 nodemask_t *nmask, gfp_t gfp_mask)
1947 {
1948         spin_lock(&hugetlb_lock);
1949         if (h->free_huge_pages - h->resv_huge_pages > 0) {
1950                 struct page *page;
1951
1952                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1953                 if (page) {
1954                         spin_unlock(&hugetlb_lock);
1955                         return page;
1956                 }
1957         }
1958         spin_unlock(&hugetlb_lock);
1959
1960         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1961 }
1962
1963 /* mempolicy aware migration callback */
1964 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1965                 unsigned long address)
1966 {
1967         struct mempolicy *mpol;
1968         nodemask_t *nodemask;
1969         struct page *page;
1970         gfp_t gfp_mask;
1971         int node;
1972
1973         gfp_mask = htlb_alloc_mask(h);
1974         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1975         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
1976         mpol_cond_put(mpol);
1977
1978         return page;
1979 }
1980
1981 /*
1982  * Increase the hugetlb pool such that it can accommodate a reservation
1983  * of size 'delta'.
1984  */
1985 static int gather_surplus_pages(struct hstate *h, long delta)
1986         __must_hold(&hugetlb_lock)
1987 {
1988         struct list_head surplus_list;
1989         struct page *page, *tmp;
1990         int ret;
1991         long i;
1992         long needed, allocated;
1993         bool alloc_ok = true;
1994
1995         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1996         if (needed <= 0) {
1997                 h->resv_huge_pages += delta;
1998                 return 0;
1999         }
2000
2001         allocated = 0;
2002         INIT_LIST_HEAD(&surplus_list);
2003
2004         ret = -ENOMEM;
2005 retry:
2006         spin_unlock(&hugetlb_lock);
2007         for (i = 0; i < needed; i++) {
2008                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2009                                 NUMA_NO_NODE, NULL);
2010                 if (!page) {
2011                         alloc_ok = false;
2012                         break;
2013                 }
2014                 list_add(&page->lru, &surplus_list);
2015                 cond_resched();
2016         }
2017         allocated += i;
2018
2019         /*
2020          * After retaking hugetlb_lock, we need to recalculate 'needed'
2021          * because either resv_huge_pages or free_huge_pages may have changed.
2022          */
2023         spin_lock(&hugetlb_lock);
2024         needed = (h->resv_huge_pages + delta) -
2025                         (h->free_huge_pages + allocated);
2026         if (needed > 0) {
2027                 if (alloc_ok)
2028                         goto retry;
2029                 /*
2030                  * We were not able to allocate enough pages to
2031                  * satisfy the entire reservation so we free what
2032                  * we've allocated so far.
2033                  */
2034                 goto free;
2035         }
2036         /*
2037          * The surplus_list now contains _at_least_ the number of extra pages
2038          * needed to accommodate the reservation.  Add the appropriate number
2039          * of pages to the hugetlb pool and free the extras back to the buddy
2040          * allocator.  Commit the entire reservation here to prevent another
2041          * process from stealing the pages as they are added to the pool but
2042          * before they are reserved.
2043          */
2044         needed += allocated;
2045         h->resv_huge_pages += delta;
2046         ret = 0;
2047
2048         /* Free the needed pages to the hugetlb pool */
2049         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2050                 int zeroed;
2051
2052                 if ((--needed) < 0)
2053                         break;
2054                 /*
2055                  * This page is now managed by the hugetlb allocator and has
2056                  * no users -- drop the buddy allocator's reference.
2057                  */
2058                 zeroed = put_page_testzero(page);
2059                 VM_BUG_ON_PAGE(!zeroed, page);
2060                 enqueue_huge_page(h, page);
2061         }
2062 free:
2063         spin_unlock(&hugetlb_lock);
2064
2065         /* Free unnecessary surplus pages to the buddy allocator */
2066         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2067                 put_page(page);
2068         spin_lock(&hugetlb_lock);
2069
2070         return ret;
2071 }
2072
2073 /*
2074  * This routine has two main purposes:
2075  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2076  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2077  *    to the associated reservation map.
2078  * 2) Free any unused surplus pages that may have been allocated to satisfy
2079  *    the reservation.  As many as unused_resv_pages may be freed.
2080  *
2081  * Called with hugetlb_lock held.  However, the lock could be dropped (and
2082  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
2083  * we must make sure nobody else can claim pages we are in the process of
2084  * freeing.  Do this by ensuring resv_huge_page always is greater than the
2085  * number of huge pages we plan to free when dropping the lock.
2086  */
2087 static void return_unused_surplus_pages(struct hstate *h,
2088                                         unsigned long unused_resv_pages)
2089 {
2090         unsigned long nr_pages;
2091
2092         /* Cannot return gigantic pages currently */
2093         if (hstate_is_gigantic(h))
2094                 goto out;
2095
2096         /*
2097          * Part (or even all) of the reservation could have been backed
2098          * by pre-allocated pages. Only free surplus pages.
2099          */
2100         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2101
2102         /*
2103          * We want to release as many surplus pages as possible, spread
2104          * evenly across all nodes with memory. Iterate across these nodes
2105          * until we can no longer free unreserved surplus pages. This occurs
2106          * when the nodes with surplus pages have no free pages.
2107          * free_pool_huge_page() will balance the freed pages across the
2108          * on-line nodes with memory and will handle the hstate accounting.
2109          *
2110          * Note that we decrement resv_huge_pages as we free the pages.  If
2111          * we drop the lock, resv_huge_pages will still be sufficiently large
2112          * to cover subsequent pages we may free.
2113          */
2114         while (nr_pages--) {
2115                 h->resv_huge_pages--;
2116                 unused_resv_pages--;
2117                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2118                         goto out;
2119                 cond_resched_lock(&hugetlb_lock);
2120         }
2121
2122 out:
2123         /* Fully uncommit the reservation */
2124         h->resv_huge_pages -= unused_resv_pages;
2125 }
2126
2127
2128 /*
2129  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2130  * are used by the huge page allocation routines to manage reservations.
2131  *
2132  * vma_needs_reservation is called to determine if the huge page at addr
2133  * within the vma has an associated reservation.  If a reservation is
2134  * needed, the value 1 is returned.  The caller is then responsible for
2135  * managing the global reservation and subpool usage counts.  After
2136  * the huge page has been allocated, vma_commit_reservation is called
2137  * to add the page to the reservation map.  If the page allocation fails,
2138  * the reservation must be ended instead of committed.  vma_end_reservation
2139  * is called in such cases.
2140  *
2141  * In the normal case, vma_commit_reservation returns the same value
2142  * as the preceding vma_needs_reservation call.  The only time this
2143  * is not the case is if a reserve map was changed between calls.  It
2144  * is the responsibility of the caller to notice the difference and
2145  * take appropriate action.
2146  *
2147  * vma_add_reservation is used in error paths where a reservation must
2148  * be restored when a newly allocated huge page must be freed.  It is
2149  * to be called after calling vma_needs_reservation to determine if a
2150  * reservation exists.
2151  */
2152 enum vma_resv_mode {
2153         VMA_NEEDS_RESV,
2154         VMA_COMMIT_RESV,
2155         VMA_END_RESV,
2156         VMA_ADD_RESV,
2157 };
2158 static long __vma_reservation_common(struct hstate *h,
2159                                 struct vm_area_struct *vma, unsigned long addr,
2160                                 enum vma_resv_mode mode)
2161 {
2162         struct resv_map *resv;
2163         pgoff_t idx;
2164         long ret;
2165         long dummy_out_regions_needed;
2166
2167         resv = vma_resv_map(vma);
2168         if (!resv)
2169                 return 1;
2170
2171         idx = vma_hugecache_offset(h, vma, addr);
2172         switch (mode) {
2173         case VMA_NEEDS_RESV:
2174                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2175                 /* We assume that vma_reservation_* routines always operate on
2176                  * 1 page, and that adding to resv map a 1 page entry can only
2177                  * ever require 1 region.
2178                  */
2179                 VM_BUG_ON(dummy_out_regions_needed != 1);
2180                 break;
2181         case VMA_COMMIT_RESV:
2182                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2183                 /* region_add calls of range 1 should never fail. */
2184                 VM_BUG_ON(ret < 0);
2185                 break;
2186         case VMA_END_RESV:
2187                 region_abort(resv, idx, idx + 1, 1);
2188                 ret = 0;
2189                 break;
2190         case VMA_ADD_RESV:
2191                 if (vma->vm_flags & VM_MAYSHARE) {
2192                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2193                         /* region_add calls of range 1 should never fail. */
2194                         VM_BUG_ON(ret < 0);
2195                 } else {
2196                         region_abort(resv, idx, idx + 1, 1);
2197                         ret = region_del(resv, idx, idx + 1);
2198                 }
2199                 break;
2200         default:
2201                 BUG();
2202         }
2203
2204         if (vma->vm_flags & VM_MAYSHARE)
2205                 return ret;
2206         else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2207                 /*
2208                  * In most cases, reserves always exist for private mappings.
2209                  * However, a file associated with mapping could have been
2210                  * hole punched or truncated after reserves were consumed.
2211                  * As subsequent fault on such a range will not use reserves.
2212                  * Subtle - The reserve map for private mappings has the
2213                  * opposite meaning than that of shared mappings.  If NO
2214                  * entry is in the reserve map, it means a reservation exists.
2215                  * If an entry exists in the reserve map, it means the
2216                  * reservation has already been consumed.  As a result, the
2217                  * return value of this routine is the opposite of the
2218                  * value returned from reserve map manipulation routines above.
2219                  */
2220                 if (ret)
2221                         return 0;
2222                 else
2223                         return 1;
2224         }
2225         else
2226                 return ret < 0 ? ret : 0;
2227 }
2228
2229 static long vma_needs_reservation(struct hstate *h,
2230                         struct vm_area_struct *vma, unsigned long addr)
2231 {
2232         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2233 }
2234
2235 static long vma_commit_reservation(struct hstate *h,
2236                         struct vm_area_struct *vma, unsigned long addr)
2237 {
2238         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2239 }
2240
2241 static void vma_end_reservation(struct hstate *h,
2242                         struct vm_area_struct *vma, unsigned long addr)
2243 {
2244         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2245 }
2246
2247 static long vma_add_reservation(struct hstate *h,
2248                         struct vm_area_struct *vma, unsigned long addr)
2249 {
2250         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2251 }
2252
2253 /*
2254  * This routine is called to restore a reservation on error paths.  In the
2255  * specific error paths, a huge page was allocated (via alloc_huge_page)
2256  * and is about to be freed.  If a reservation for the page existed,
2257  * alloc_huge_page would have consumed the reservation and set PagePrivate
2258  * in the newly allocated page.  When the page is freed via free_huge_page,
2259  * the global reservation count will be incremented if PagePrivate is set.
2260  * However, free_huge_page can not adjust the reserve map.  Adjust the
2261  * reserve map here to be consistent with global reserve count adjustments
2262  * to be made by free_huge_page.
2263  */
2264 static void restore_reserve_on_error(struct hstate *h,
2265                         struct vm_area_struct *vma, unsigned long address,
2266                         struct page *page)
2267 {
2268         if (unlikely(PagePrivate(page))) {
2269                 long rc = vma_needs_reservation(h, vma, address);
2270
2271                 if (unlikely(rc < 0)) {
2272                         /*
2273                          * Rare out of memory condition in reserve map
2274                          * manipulation.  Clear PagePrivate so that
2275                          * global reserve count will not be incremented
2276                          * by free_huge_page.  This will make it appear
2277                          * as though the reservation for this page was
2278                          * consumed.  This may prevent the task from
2279                          * faulting in the page at a later time.  This
2280                          * is better than inconsistent global huge page
2281                          * accounting of reserve counts.
2282                          */
2283                         ClearPagePrivate(page);
2284                 } else if (rc) {
2285                         rc = vma_add_reservation(h, vma, address);
2286                         if (unlikely(rc < 0))
2287                                 /*
2288                                  * See above comment about rare out of
2289                                  * memory condition.
2290                                  */
2291                                 ClearPagePrivate(page);
2292                 } else
2293                         vma_end_reservation(h, vma, address);
2294         }
2295 }
2296
2297 struct page *alloc_huge_page(struct vm_area_struct *vma,
2298                                     unsigned long addr, int avoid_reserve)
2299 {
2300         struct hugepage_subpool *spool = subpool_vma(vma);
2301         struct hstate *h = hstate_vma(vma);
2302         struct page *page;
2303         long map_chg, map_commit;
2304         long gbl_chg;
2305         int ret, idx;
2306         struct hugetlb_cgroup *h_cg;
2307         bool deferred_reserve;
2308
2309         idx = hstate_index(h);
2310         /*
2311          * Examine the region/reserve map to determine if the process
2312          * has a reservation for the page to be allocated.  A return
2313          * code of zero indicates a reservation exists (no change).
2314          */
2315         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2316         if (map_chg < 0)
2317                 return ERR_PTR(-ENOMEM);
2318
2319         /*
2320          * Processes that did not create the mapping will have no
2321          * reserves as indicated by the region/reserve map. Check
2322          * that the allocation will not exceed the subpool limit.
2323          * Allocations for MAP_NORESERVE mappings also need to be
2324          * checked against any subpool limit.
2325          */
2326         if (map_chg || avoid_reserve) {
2327                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2328                 if (gbl_chg < 0) {
2329                         vma_end_reservation(h, vma, addr);
2330                         return ERR_PTR(-ENOSPC);
2331                 }
2332
2333                 /*
2334                  * Even though there was no reservation in the region/reserve
2335                  * map, there could be reservations associated with the
2336                  * subpool that can be used.  This would be indicated if the
2337                  * return value of hugepage_subpool_get_pages() is zero.
2338                  * However, if avoid_reserve is specified we still avoid even
2339                  * the subpool reservations.
2340                  */
2341                 if (avoid_reserve)
2342                         gbl_chg = 1;
2343         }
2344
2345         /* If this allocation is not consuming a reservation, charge it now.
2346          */
2347         deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2348         if (deferred_reserve) {
2349                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2350                         idx, pages_per_huge_page(h), &h_cg);
2351                 if (ret)
2352                         goto out_subpool_put;
2353         }
2354
2355         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2356         if (ret)
2357                 goto out_uncharge_cgroup_reservation;
2358
2359         spin_lock(&hugetlb_lock);
2360         /*
2361          * glb_chg is passed to indicate whether or not a page must be taken
2362          * from the global free pool (global change).  gbl_chg == 0 indicates
2363          * a reservation exists for the allocation.
2364          */
2365         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2366         if (!page) {
2367                 spin_unlock(&hugetlb_lock);
2368                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2369                 if (!page)
2370                         goto out_uncharge_cgroup;
2371                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2372                         SetPagePrivate(page);
2373                         h->resv_huge_pages--;
2374                 }
2375                 spin_lock(&hugetlb_lock);
2376                 list_add(&page->lru, &h->hugepage_activelist);
2377                 /* Fall through */
2378         }
2379         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2380         /* If allocation is not consuming a reservation, also store the
2381          * hugetlb_cgroup pointer on the page.
2382          */
2383         if (deferred_reserve) {
2384                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2385                                                   h_cg, page);
2386         }
2387
2388         spin_unlock(&hugetlb_lock);
2389
2390         set_page_private(page, (unsigned long)spool);
2391
2392         map_commit = vma_commit_reservation(h, vma, addr);
2393         if (unlikely(map_chg > map_commit)) {
2394                 /*
2395                  * The page was added to the reservation map between
2396                  * vma_needs_reservation and vma_commit_reservation.
2397                  * This indicates a race with hugetlb_reserve_pages.
2398                  * Adjust for the subpool count incremented above AND
2399                  * in hugetlb_reserve_pages for the same page.  Also,
2400                  * the reservation count added in hugetlb_reserve_pages
2401                  * no longer applies.
2402                  */
2403                 long rsv_adjust;
2404
2405                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2406                 hugetlb_acct_memory(h, -rsv_adjust);
2407                 if (deferred_reserve)
2408                         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2409                                         pages_per_huge_page(h), page);
2410         }
2411         return page;
2412
2413 out_uncharge_cgroup:
2414         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2415 out_uncharge_cgroup_reservation:
2416         if (deferred_reserve)
2417                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2418                                                     h_cg);
2419 out_subpool_put:
2420         if (map_chg || avoid_reserve)
2421                 hugepage_subpool_put_pages(spool, 1);
2422         vma_end_reservation(h, vma, addr);
2423         return ERR_PTR(-ENOSPC);
2424 }
2425
2426 int alloc_bootmem_huge_page(struct hstate *h)
2427         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2428 int __alloc_bootmem_huge_page(struct hstate *h)
2429 {
2430         struct huge_bootmem_page *m;
2431         int nr_nodes, node;
2432
2433         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2434                 void *addr;
2435
2436                 addr = memblock_alloc_try_nid_raw(
2437                                 huge_page_size(h), huge_page_size(h),
2438                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2439                 if (addr) {
2440                         /*
2441                          * Use the beginning of the huge page to store the
2442                          * huge_bootmem_page struct (until gather_bootmem
2443                          * puts them into the mem_map).
2444                          */
2445                         m = addr;
2446                         goto found;
2447                 }
2448         }
2449         return 0;
2450
2451 found:
2452         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2453         /* Put them into a private list first because mem_map is not up yet */
2454         INIT_LIST_HEAD(&m->list);
2455         list_add(&m->list, &huge_boot_pages);
2456         m->hstate = h;
2457         return 1;
2458 }
2459
2460 static void __init prep_compound_huge_page(struct page *page,
2461                 unsigned int order)
2462 {
2463         if (unlikely(order > (MAX_ORDER - 1)))
2464                 prep_compound_gigantic_page(page, order);
2465         else
2466                 prep_compound_page(page, order);
2467 }
2468
2469 /* Put bootmem huge pages into the standard lists after mem_map is up */
2470 static void __init gather_bootmem_prealloc(void)
2471 {
2472         struct huge_bootmem_page *m;
2473
2474         list_for_each_entry(m, &huge_boot_pages, list) {
2475                 struct page *page = virt_to_page(m);
2476                 struct hstate *h = m->hstate;
2477
2478                 WARN_ON(page_count(page) != 1);
2479                 prep_compound_huge_page(page, h->order);
2480                 WARN_ON(PageReserved(page));
2481                 prep_new_huge_page(h, page, page_to_nid(page));
2482                 put_page(page); /* free it into the hugepage allocator */
2483
2484                 /*
2485                  * If we had gigantic hugepages allocated at boot time, we need
2486                  * to restore the 'stolen' pages to totalram_pages in order to
2487                  * fix confusing memory reports from free(1) and another
2488                  * side-effects, like CommitLimit going negative.
2489                  */
2490                 if (hstate_is_gigantic(h))
2491                         adjust_managed_page_count(page, 1 << h->order);
2492                 cond_resched();
2493         }
2494 }
2495
2496 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2497 {
2498         unsigned long i;
2499         nodemask_t *node_alloc_noretry;
2500
2501         if (!hstate_is_gigantic(h)) {
2502                 /*
2503                  * Bit mask controlling how hard we retry per-node allocations.
2504                  * Ignore errors as lower level routines can deal with
2505                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2506                  * time, we are likely in bigger trouble.
2507                  */
2508                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2509                                                 GFP_KERNEL);
2510         } else {
2511                 /* allocations done at boot time */
2512                 node_alloc_noretry = NULL;
2513         }
2514
2515         /* bit mask controlling how hard we retry per-node allocations */
2516         if (node_alloc_noretry)
2517                 nodes_clear(*node_alloc_noretry);
2518
2519         for (i = 0; i < h->max_huge_pages; ++i) {
2520                 if (hstate_is_gigantic(h)) {
2521                         if (hugetlb_cma_size) {
2522                                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2523                                 break;
2524                         }
2525                         if (!alloc_bootmem_huge_page(h))
2526                                 break;
2527                 } else if (!alloc_pool_huge_page(h,
2528                                          &node_states[N_MEMORY],
2529                                          node_alloc_noretry))
2530                         break;
2531                 cond_resched();
2532         }
2533         if (i < h->max_huge_pages) {
2534                 char buf[32];
2535
2536                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2537                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2538                         h->max_huge_pages, buf, i);
2539                 h->max_huge_pages = i;
2540         }
2541
2542         kfree(node_alloc_noretry);
2543 }
2544
2545 static void __init hugetlb_init_hstates(void)
2546 {
2547         struct hstate *h;
2548
2549         for_each_hstate(h) {
2550                 if (minimum_order > huge_page_order(h))
2551                         minimum_order = huge_page_order(h);
2552
2553                 /* oversize hugepages were init'ed in early boot */
2554                 if (!hstate_is_gigantic(h))
2555                         hugetlb_hstate_alloc_pages(h);
2556         }
2557         VM_BUG_ON(minimum_order == UINT_MAX);
2558 }
2559
2560 static void __init report_hugepages(void)
2561 {
2562         struct hstate *h;
2563
2564         for_each_hstate(h) {
2565                 char buf[32];
2566
2567                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2568                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2569                         buf, h->free_huge_pages);
2570         }
2571 }
2572
2573 #ifdef CONFIG_HIGHMEM
2574 static void try_to_free_low(struct hstate *h, unsigned long count,
2575                                                 nodemask_t *nodes_allowed)
2576 {
2577         int i;
2578
2579         if (hstate_is_gigantic(h))
2580                 return;
2581
2582         for_each_node_mask(i, *nodes_allowed) {
2583                 struct page *page, *next;
2584                 struct list_head *freel = &h->hugepage_freelists[i];
2585                 list_for_each_entry_safe(page, next, freel, lru) {
2586                         if (count >= h->nr_huge_pages)
2587                                 return;
2588                         if (PageHighMem(page))
2589                                 continue;
2590                         list_del(&page->lru);
2591                         update_and_free_page(h, page);
2592                         h->free_huge_pages--;
2593                         h->free_huge_pages_node[page_to_nid(page)]--;
2594                 }
2595         }
2596 }
2597 #else
2598 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2599                                                 nodemask_t *nodes_allowed)
2600 {
2601 }
2602 #endif
2603
2604 /*
2605  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2606  * balanced by operating on them in a round-robin fashion.
2607  * Returns 1 if an adjustment was made.
2608  */
2609 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2610                                 int delta)
2611 {
2612         int nr_nodes, node;
2613
2614         VM_BUG_ON(delta != -1 && delta != 1);
2615
2616         if (delta < 0) {
2617                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2618                         if (h->surplus_huge_pages_node[node])
2619                                 goto found;
2620                 }
2621         } else {
2622                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2623                         if (h->surplus_huge_pages_node[node] <
2624                                         h->nr_huge_pages_node[node])
2625                                 goto found;
2626                 }
2627         }
2628         return 0;
2629
2630 found:
2631         h->surplus_huge_pages += delta;
2632         h->surplus_huge_pages_node[node] += delta;
2633         return 1;
2634 }
2635
2636 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2637 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2638                               nodemask_t *nodes_allowed)
2639 {
2640         unsigned long min_count, ret;
2641         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2642
2643         /*
2644          * Bit mask controlling how hard we retry per-node allocations.
2645          * If we can not allocate the bit mask, do not attempt to allocate
2646          * the requested huge pages.
2647          */
2648         if (node_alloc_noretry)
2649                 nodes_clear(*node_alloc_noretry);
2650         else
2651                 return -ENOMEM;
2652
2653         spin_lock(&hugetlb_lock);
2654
2655         /*
2656          * Check for a node specific request.
2657          * Changing node specific huge page count may require a corresponding
2658          * change to the global count.  In any case, the passed node mask
2659          * (nodes_allowed) will restrict alloc/free to the specified node.
2660          */
2661         if (nid != NUMA_NO_NODE) {
2662                 unsigned long old_count = count;
2663
2664                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2665                 /*
2666                  * User may have specified a large count value which caused the
2667                  * above calculation to overflow.  In this case, they wanted
2668                  * to allocate as many huge pages as possible.  Set count to
2669                  * largest possible value to align with their intention.
2670                  */
2671                 if (count < old_count)
2672                         count = ULONG_MAX;
2673         }
2674
2675         /*
2676          * Gigantic pages runtime allocation depend on the capability for large
2677          * page range allocation.
2678          * If the system does not provide this feature, return an error when
2679          * the user tries to allocate gigantic pages but let the user free the
2680          * boottime allocated gigantic pages.
2681          */
2682         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2683                 if (count > persistent_huge_pages(h)) {
2684                         spin_unlock(&hugetlb_lock);
2685                         NODEMASK_FREE(node_alloc_noretry);
2686                         return -EINVAL;
2687                 }
2688                 /* Fall through to decrease pool */
2689         }
2690
2691         /*
2692          * Increase the pool size
2693          * First take pages out of surplus state.  Then make up the
2694          * remaining difference by allocating fresh huge pages.
2695          *
2696          * We might race with alloc_surplus_huge_page() here and be unable
2697          * to convert a surplus huge page to a normal huge page. That is
2698          * not critical, though, it just means the overall size of the
2699          * pool might be one hugepage larger than it needs to be, but
2700          * within all the constraints specified by the sysctls.
2701          */
2702         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2703                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2704                         break;
2705         }
2706
2707         while (count > persistent_huge_pages(h)) {
2708                 /*
2709                  * If this allocation races such that we no longer need the
2710                  * page, free_huge_page will handle it by freeing the page
2711                  * and reducing the surplus.
2712                  */
2713                 spin_unlock(&hugetlb_lock);
2714
2715                 /* yield cpu to avoid soft lockup */
2716                 cond_resched();
2717
2718                 ret = alloc_pool_huge_page(h, nodes_allowed,
2719                                                 node_alloc_noretry);
2720                 spin_lock(&hugetlb_lock);
2721                 if (!ret)
2722                         goto out;
2723
2724                 /* Bail for signals. Probably ctrl-c from user */
2725                 if (signal_pending(current))
2726                         goto out;
2727         }
2728
2729         /*
2730          * Decrease the pool size
2731          * First return free pages to the buddy allocator (being careful
2732          * to keep enough around to satisfy reservations).  Then place
2733          * pages into surplus state as needed so the pool will shrink
2734          * to the desired size as pages become free.
2735          *
2736          * By placing pages into the surplus state independent of the
2737          * overcommit value, we are allowing the surplus pool size to
2738          * exceed overcommit. There are few sane options here. Since
2739          * alloc_surplus_huge_page() is checking the global counter,
2740          * though, we'll note that we're not allowed to exceed surplus
2741          * and won't grow the pool anywhere else. Not until one of the
2742          * sysctls are changed, or the surplus pages go out of use.
2743          */
2744         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2745         min_count = max(count, min_count);
2746         try_to_free_low(h, min_count, nodes_allowed);
2747         while (min_count < persistent_huge_pages(h)) {
2748                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2749                         break;
2750                 cond_resched_lock(&hugetlb_lock);
2751         }
2752         while (count < persistent_huge_pages(h)) {
2753                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2754                         break;
2755         }
2756 out:
2757         h->max_huge_pages = persistent_huge_pages(h);
2758         spin_unlock(&hugetlb_lock);
2759
2760         NODEMASK_FREE(node_alloc_noretry);
2761
2762         return 0;
2763 }
2764
2765 #define HSTATE_ATTR_RO(_name) \
2766         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2767
2768 #define HSTATE_ATTR(_name) \
2769         static struct kobj_attribute _name##_attr = \
2770                 __ATTR(_name, 0644, _name##_show, _name##_store)
2771
2772 static struct kobject *hugepages_kobj;
2773 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2774
2775 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2776
2777 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2778 {
2779         int i;
2780
2781         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2782                 if (hstate_kobjs[i] == kobj) {
2783                         if (nidp)
2784                                 *nidp = NUMA_NO_NODE;
2785                         return &hstates[i];
2786                 }
2787
2788         return kobj_to_node_hstate(kobj, nidp);
2789 }
2790
2791 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2792                                         struct kobj_attribute *attr, char *buf)
2793 {
2794         struct hstate *h;
2795         unsigned long nr_huge_pages;
2796         int nid;
2797
2798         h = kobj_to_hstate(kobj, &nid);
2799         if (nid == NUMA_NO_NODE)
2800                 nr_huge_pages = h->nr_huge_pages;
2801         else
2802                 nr_huge_pages = h->nr_huge_pages_node[nid];
2803
2804         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
2805 }
2806
2807 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2808                                            struct hstate *h, int nid,
2809                                            unsigned long count, size_t len)
2810 {
2811         int err;
2812         nodemask_t nodes_allowed, *n_mask;
2813
2814         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2815                 return -EINVAL;
2816
2817         if (nid == NUMA_NO_NODE) {
2818                 /*
2819                  * global hstate attribute
2820                  */
2821                 if (!(obey_mempolicy &&
2822                                 init_nodemask_of_mempolicy(&nodes_allowed)))
2823                         n_mask = &node_states[N_MEMORY];
2824                 else
2825                         n_mask = &nodes_allowed;
2826         } else {
2827                 /*
2828                  * Node specific request.  count adjustment happens in
2829                  * set_max_huge_pages() after acquiring hugetlb_lock.
2830                  */
2831                 init_nodemask_of_node(&nodes_allowed, nid);
2832                 n_mask = &nodes_allowed;
2833         }
2834
2835         err = set_max_huge_pages(h, count, nid, n_mask);
2836
2837         return err ? err : len;
2838 }
2839
2840 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2841                                          struct kobject *kobj, const char *buf,
2842                                          size_t len)
2843 {
2844         struct hstate *h;
2845         unsigned long count;
2846         int nid;
2847         int err;
2848
2849         err = kstrtoul(buf, 10, &count);
2850         if (err)
2851                 return err;
2852
2853         h = kobj_to_hstate(kobj, &nid);
2854         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2855 }
2856
2857 static ssize_t nr_hugepages_show(struct kobject *kobj,
2858                                        struct kobj_attribute *attr, char *buf)
2859 {
2860         return nr_hugepages_show_common(kobj, attr, buf);
2861 }
2862
2863 static ssize_t nr_hugepages_store(struct kobject *kobj,
2864                struct kobj_attribute *attr, const char *buf, size_t len)
2865 {
2866         return nr_hugepages_store_common(false, kobj, buf, len);
2867 }
2868 HSTATE_ATTR(nr_hugepages);
2869
2870 #ifdef CONFIG_NUMA
2871
2872 /*
2873  * hstate attribute for optionally mempolicy-based constraint on persistent
2874  * huge page alloc/free.
2875  */
2876 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2877                                            struct kobj_attribute *attr,
2878                                            char *buf)
2879 {
2880         return nr_hugepages_show_common(kobj, attr, buf);
2881 }
2882
2883 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2884                struct kobj_attribute *attr, const char *buf, size_t len)
2885 {
2886         return nr_hugepages_store_common(true, kobj, buf, len);
2887 }
2888 HSTATE_ATTR(nr_hugepages_mempolicy);
2889 #endif
2890
2891
2892 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2893                                         struct kobj_attribute *attr, char *buf)
2894 {
2895         struct hstate *h = kobj_to_hstate(kobj, NULL);
2896         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
2897 }
2898
2899 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2900                 struct kobj_attribute *attr, const char *buf, size_t count)
2901 {
2902         int err;
2903         unsigned long input;
2904         struct hstate *h = kobj_to_hstate(kobj, NULL);
2905
2906         if (hstate_is_gigantic(h))
2907                 return -EINVAL;
2908
2909         err = kstrtoul(buf, 10, &input);
2910         if (err)
2911                 return err;
2912
2913         spin_lock(&hugetlb_lock);
2914         h->nr_overcommit_huge_pages = input;
2915         spin_unlock(&hugetlb_lock);
2916
2917         return count;
2918 }
2919 HSTATE_ATTR(nr_overcommit_hugepages);
2920
2921 static ssize_t free_hugepages_show(struct kobject *kobj,
2922                                         struct kobj_attribute *attr, char *buf)
2923 {
2924         struct hstate *h;
2925         unsigned long free_huge_pages;
2926         int nid;
2927
2928         h = kobj_to_hstate(kobj, &nid);
2929         if (nid == NUMA_NO_NODE)
2930                 free_huge_pages = h->free_huge_pages;
2931         else
2932                 free_huge_pages = h->free_huge_pages_node[nid];
2933
2934         return sysfs_emit(buf, "%lu\n", free_huge_pages);
2935 }
2936 HSTATE_ATTR_RO(free_hugepages);
2937
2938 static ssize_t resv_hugepages_show(struct kobject *kobj,
2939                                         struct kobj_attribute *attr, char *buf)
2940 {
2941         struct hstate *h = kobj_to_hstate(kobj, NULL);
2942         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
2943 }
2944 HSTATE_ATTR_RO(resv_hugepages);
2945
2946 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2947                                         struct kobj_attribute *attr, char *buf)
2948 {
2949         struct hstate *h;
2950         unsigned long surplus_huge_pages;
2951         int nid;
2952
2953         h = kobj_to_hstate(kobj, &nid);
2954         if (nid == NUMA_NO_NODE)
2955                 surplus_huge_pages = h->surplus_huge_pages;
2956         else
2957                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2958
2959         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
2960 }
2961 HSTATE_ATTR_RO(surplus_hugepages);
2962
2963 static struct attribute *hstate_attrs[] = {
2964         &nr_hugepages_attr.attr,
2965         &nr_overcommit_hugepages_attr.attr,
2966         &free_hugepages_attr.attr,
2967         &resv_hugepages_attr.attr,
2968         &surplus_hugepages_attr.attr,
2969 #ifdef CONFIG_NUMA
2970         &nr_hugepages_mempolicy_attr.attr,
2971 #endif
2972         NULL,
2973 };
2974
2975 static const struct attribute_group hstate_attr_group = {
2976         .attrs = hstate_attrs,
2977 };
2978
2979 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2980                                     struct kobject **hstate_kobjs,
2981                                     const struct attribute_group *hstate_attr_group)
2982 {
2983         int retval;
2984         int hi = hstate_index(h);
2985
2986         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2987         if (!hstate_kobjs[hi])
2988                 return -ENOMEM;
2989
2990         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2991         if (retval)
2992                 kobject_put(hstate_kobjs[hi]);
2993
2994         return retval;
2995 }
2996
2997 static void __init hugetlb_sysfs_init(void)
2998 {
2999         struct hstate *h;
3000         int err;
3001
3002         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3003         if (!hugepages_kobj)
3004                 return;
3005
3006         for_each_hstate(h) {
3007                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3008                                          hstate_kobjs, &hstate_attr_group);
3009                 if (err)
3010                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
3011         }
3012 }
3013
3014 #ifdef CONFIG_NUMA
3015
3016 /*
3017  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3018  * with node devices in node_devices[] using a parallel array.  The array
3019  * index of a node device or _hstate == node id.
3020  * This is here to avoid any static dependency of the node device driver, in
3021  * the base kernel, on the hugetlb module.
3022  */
3023 struct node_hstate {
3024         struct kobject          *hugepages_kobj;
3025         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
3026 };
3027 static struct node_hstate node_hstates[MAX_NUMNODES];
3028
3029 /*
3030  * A subset of global hstate attributes for node devices
3031  */
3032 static struct attribute *per_node_hstate_attrs[] = {
3033         &nr_hugepages_attr.attr,
3034         &free_hugepages_attr.attr,
3035         &surplus_hugepages_attr.attr,
3036         NULL,
3037 };
3038
3039 static const struct attribute_group per_node_hstate_attr_group = {
3040         .attrs = per_node_hstate_attrs,
3041 };
3042
3043 /*
3044  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3045  * Returns node id via non-NULL nidp.
3046  */
3047 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3048 {
3049         int nid;
3050
3051         for (nid = 0; nid < nr_node_ids; nid++) {
3052                 struct node_hstate *nhs = &node_hstates[nid];
3053                 int i;
3054                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3055                         if (nhs->hstate_kobjs[i] == kobj) {
3056                                 if (nidp)
3057                                         *nidp = nid;
3058                                 return &hstates[i];
3059                         }
3060         }
3061
3062         BUG();
3063         return NULL;
3064 }
3065
3066 /*
3067  * Unregister hstate attributes from a single node device.
3068  * No-op if no hstate attributes attached.
3069  */
3070 static void hugetlb_unregister_node(struct node *node)
3071 {
3072         struct hstate *h;
3073         struct node_hstate *nhs = &node_hstates[node->dev.id];
3074
3075         if (!nhs->hugepages_kobj)
3076                 return;         /* no hstate attributes */
3077
3078         for_each_hstate(h) {
3079                 int idx = hstate_index(h);
3080                 if (nhs->hstate_kobjs[idx]) {
3081                         kobject_put(nhs->hstate_kobjs[idx]);
3082                         nhs->hstate_kobjs[idx] = NULL;
3083                 }
3084         }
3085
3086         kobject_put(nhs->hugepages_kobj);
3087         nhs->hugepages_kobj = NULL;
3088 }
3089
3090
3091 /*
3092  * Register hstate attributes for a single node device.
3093  * No-op if attributes already registered.
3094  */
3095 static void hugetlb_register_node(struct node *node)
3096 {
3097         struct hstate *h;
3098         struct node_hstate *nhs = &node_hstates[node->dev.id];
3099         int err;
3100
3101         if (nhs->hugepages_kobj)
3102                 return;         /* already allocated */
3103
3104         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3105                                                         &node->dev.kobj);
3106         if (!nhs->hugepages_kobj)
3107                 return;
3108
3109         for_each_hstate(h) {
3110                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3111                                                 nhs->hstate_kobjs,
3112                                                 &per_node_hstate_attr_group);
3113                 if (err) {
3114                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3115                                 h->name, node->dev.id);
3116                         hugetlb_unregister_node(node);
3117                         break;
3118                 }
3119         }
3120 }
3121
3122 /*
3123  * hugetlb init time:  register hstate attributes for all registered node
3124  * devices of nodes that have memory.  All on-line nodes should have
3125  * registered their associated device by this time.
3126  */
3127 static void __init hugetlb_register_all_nodes(void)
3128 {
3129         int nid;
3130
3131         for_each_node_state(nid, N_MEMORY) {
3132                 struct node *node = node_devices[nid];
3133                 if (node->dev.id == nid)
3134                         hugetlb_register_node(node);
3135         }
3136
3137         /*
3138          * Let the node device driver know we're here so it can
3139          * [un]register hstate attributes on node hotplug.
3140          */
3141         register_hugetlbfs_with_node(hugetlb_register_node,
3142                                      hugetlb_unregister_node);
3143 }
3144 #else   /* !CONFIG_NUMA */
3145
3146 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3147 {
3148         BUG();
3149         if (nidp)
3150                 *nidp = -1;
3151         return NULL;
3152 }
3153
3154 static void hugetlb_register_all_nodes(void) { }
3155
3156 #endif
3157
3158 static int __init hugetlb_init(void)
3159 {
3160         int i;
3161
3162         if (!hugepages_supported()) {
3163                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3164                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3165                 return 0;
3166         }
3167
3168         /*
3169          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3170          * architectures depend on setup being done here.
3171          */
3172         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3173         if (!parsed_default_hugepagesz) {
3174                 /*
3175                  * If we did not parse a default huge page size, set
3176                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3177                  * number of huge pages for this default size was implicitly
3178                  * specified, set that here as well.
3179                  * Note that the implicit setting will overwrite an explicit
3180                  * setting.  A warning will be printed in this case.
3181                  */
3182                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3183                 if (default_hstate_max_huge_pages) {
3184                         if (default_hstate.max_huge_pages) {
3185                                 char buf[32];
3186
3187                                 string_get_size(huge_page_size(&default_hstate),
3188                                         1, STRING_UNITS_2, buf, 32);
3189                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3190                                         default_hstate.max_huge_pages, buf);
3191                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3192                                         default_hstate_max_huge_pages);
3193                         }
3194                         default_hstate.max_huge_pages =
3195                                 default_hstate_max_huge_pages;
3196                 }
3197         }
3198
3199         hugetlb_cma_check();
3200         hugetlb_init_hstates();
3201         gather_bootmem_prealloc();
3202         report_hugepages();
3203
3204         hugetlb_sysfs_init();
3205         hugetlb_register_all_nodes();
3206         hugetlb_cgroup_file_init();
3207
3208 #ifdef CONFIG_SMP
3209         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3210 #else
3211         num_fault_mutexes = 1;
3212 #endif
3213         hugetlb_fault_mutex_table =
3214                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3215                               GFP_KERNEL);
3216         BUG_ON(!hugetlb_fault_mutex_table);
3217
3218         for (i = 0; i < num_fault_mutexes; i++)
3219                 mutex_init(&hugetlb_fault_mutex_table[i]);
3220         return 0;
3221 }
3222 subsys_initcall(hugetlb_init);
3223
3224 /* Overwritten by architectures with more huge page sizes */
3225 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3226 {
3227         return size == HPAGE_SIZE;
3228 }
3229
3230 void __init hugetlb_add_hstate(unsigned int order)
3231 {
3232         struct hstate *h;
3233         unsigned long i;
3234
3235         if (size_to_hstate(PAGE_SIZE << order)) {
3236                 return;
3237         }
3238         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3239         BUG_ON(order == 0);
3240         h = &hstates[hugetlb_max_hstate++];
3241         h->order = order;
3242         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3243         for (i = 0; i < MAX_NUMNODES; ++i)
3244                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3245         INIT_LIST_HEAD(&h->hugepage_activelist);
3246         h->next_nid_to_alloc = first_memory_node;
3247         h->next_nid_to_free = first_memory_node;
3248         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3249                                         huge_page_size(h)/1024);
3250
3251         parsed_hstate = h;
3252 }
3253
3254 /*
3255  * hugepages command line processing
3256  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3257  * specification.  If not, ignore the hugepages value.  hugepages can also
3258  * be the first huge page command line  option in which case it implicitly
3259  * specifies the number of huge pages for the default size.
3260  */
3261 static int __init hugepages_setup(char *s)
3262 {
3263         unsigned long *mhp;
3264         static unsigned long *last_mhp;
3265
3266         if (!parsed_valid_hugepagesz) {
3267                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3268                 parsed_valid_hugepagesz = true;
3269                 return 0;
3270         }
3271
3272         /*
3273          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3274          * yet, so this hugepages= parameter goes to the "default hstate".
3275          * Otherwise, it goes with the previously parsed hugepagesz or
3276          * default_hugepagesz.
3277          */
3278         else if (!hugetlb_max_hstate)
3279                 mhp = &default_hstate_max_huge_pages;
3280         else
3281                 mhp = &parsed_hstate->max_huge_pages;
3282
3283         if (mhp == last_mhp) {
3284                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3285                 return 0;
3286         }
3287
3288         if (sscanf(s, "%lu", mhp) <= 0)
3289                 *mhp = 0;
3290
3291         /*
3292          * Global state is always initialized later in hugetlb_init.
3293          * But we need to allocate >= MAX_ORDER hstates here early to still
3294          * use the bootmem allocator.
3295          */
3296         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3297                 hugetlb_hstate_alloc_pages(parsed_hstate);
3298
3299         last_mhp = mhp;
3300
3301         return 1;
3302 }
3303 __setup("hugepages=", hugepages_setup);
3304
3305 /*
3306  * hugepagesz command line processing
3307  * A specific huge page size can only be specified once with hugepagesz.
3308  * hugepagesz is followed by hugepages on the command line.  The global
3309  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3310  * hugepagesz argument was valid.
3311  */
3312 static int __init hugepagesz_setup(char *s)
3313 {
3314         unsigned long size;
3315         struct hstate *h;
3316
3317         parsed_valid_hugepagesz = false;
3318         size = (unsigned long)memparse(s, NULL);
3319
3320         if (!arch_hugetlb_valid_size(size)) {
3321                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3322                 return 0;
3323         }
3324
3325         h = size_to_hstate(size);
3326         if (h) {
3327                 /*
3328                  * hstate for this size already exists.  This is normally
3329                  * an error, but is allowed if the existing hstate is the
3330                  * default hstate.  More specifically, it is only allowed if
3331                  * the number of huge pages for the default hstate was not
3332                  * previously specified.
3333                  */
3334                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3335                     default_hstate.max_huge_pages) {
3336                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3337                         return 0;
3338                 }
3339
3340                 /*
3341                  * No need to call hugetlb_add_hstate() as hstate already
3342                  * exists.  But, do set parsed_hstate so that a following
3343                  * hugepages= parameter will be applied to this hstate.
3344                  */
3345                 parsed_hstate = h;
3346                 parsed_valid_hugepagesz = true;
3347                 return 1;
3348         }
3349
3350         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3351         parsed_valid_hugepagesz = true;
3352         return 1;
3353 }
3354 __setup("hugepagesz=", hugepagesz_setup);
3355
3356 /*
3357  * default_hugepagesz command line input
3358  * Only one instance of default_hugepagesz allowed on command line.
3359  */
3360 static int __init default_hugepagesz_setup(char *s)
3361 {
3362         unsigned long size;
3363
3364         parsed_valid_hugepagesz = false;
3365         if (parsed_default_hugepagesz) {
3366                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3367                 return 0;
3368         }
3369
3370         size = (unsigned long)memparse(s, NULL);
3371
3372         if (!arch_hugetlb_valid_size(size)) {
3373                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3374                 return 0;
3375         }
3376
3377         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3378         parsed_valid_hugepagesz = true;
3379         parsed_default_hugepagesz = true;
3380         default_hstate_idx = hstate_index(size_to_hstate(size));
3381
3382         /*
3383          * The number of default huge pages (for this size) could have been
3384          * specified as the first hugetlb parameter: hugepages=X.  If so,
3385          * then default_hstate_max_huge_pages is set.  If the default huge
3386          * page size is gigantic (>= MAX_ORDER), then the pages must be
3387          * allocated here from bootmem allocator.
3388          */
3389         if (default_hstate_max_huge_pages) {
3390                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3391                 if (hstate_is_gigantic(&default_hstate))
3392                         hugetlb_hstate_alloc_pages(&default_hstate);
3393                 default_hstate_max_huge_pages = 0;
3394         }
3395
3396         return 1;
3397 }
3398 __setup("default_hugepagesz=", default_hugepagesz_setup);
3399
3400 static unsigned int allowed_mems_nr(struct hstate *h)
3401 {
3402         int node;
3403         unsigned int nr = 0;
3404         nodemask_t *mpol_allowed;
3405         unsigned int *array = h->free_huge_pages_node;
3406         gfp_t gfp_mask = htlb_alloc_mask(h);
3407
3408         mpol_allowed = policy_nodemask_current(gfp_mask);
3409
3410         for_each_node_mask(node, cpuset_current_mems_allowed) {
3411                 if (!mpol_allowed ||
3412                     (mpol_allowed && node_isset(node, *mpol_allowed)))
3413                         nr += array[node];
3414         }
3415
3416         return nr;
3417 }
3418
3419 #ifdef CONFIG_SYSCTL
3420 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3421                                           void *buffer, size_t *length,
3422                                           loff_t *ppos, unsigned long *out)
3423 {
3424         struct ctl_table dup_table;
3425
3426         /*
3427          * In order to avoid races with __do_proc_doulongvec_minmax(), we
3428          * can duplicate the @table and alter the duplicate of it.
3429          */
3430         dup_table = *table;
3431         dup_table.data = out;
3432
3433         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3434 }
3435
3436 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3437                          struct ctl_table *table, int write,
3438                          void *buffer, size_t *length, loff_t *ppos)
3439 {
3440         struct hstate *h = &default_hstate;
3441         unsigned long tmp = h->max_huge_pages;
3442         int ret;
3443
3444         if (!hugepages_supported())
3445                 return -EOPNOTSUPP;
3446
3447         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3448                                              &tmp);
3449         if (ret)
3450                 goto out;
3451
3452         if (write)
3453                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3454                                                   NUMA_NO_NODE, tmp, *length);
3455 out:
3456         return ret;
3457 }
3458
3459 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3460                           void *buffer, size_t *length, loff_t *ppos)
3461 {
3462
3463         return hugetlb_sysctl_handler_common(false, table, write,
3464                                                         buffer, length, ppos);
3465 }
3466
3467 #ifdef CONFIG_NUMA
3468 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3469                           void *buffer, size_t *length, loff_t *ppos)
3470 {
3471         return hugetlb_sysctl_handler_common(true, table, write,
3472                                                         buffer, length, ppos);
3473 }
3474 #endif /* CONFIG_NUMA */
3475
3476 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3477                 void *buffer, size_t *length, loff_t *ppos)
3478 {
3479         struct hstate *h = &default_hstate;
3480         unsigned long tmp;
3481         int ret;
3482
3483         if (!hugepages_supported())
3484                 return -EOPNOTSUPP;
3485
3486         tmp = h->nr_overcommit_huge_pages;
3487
3488         if (write && hstate_is_gigantic(h))
3489                 return -EINVAL;
3490
3491         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3492                                              &tmp);
3493         if (ret)
3494                 goto out;
3495
3496         if (write) {
3497                 spin_lock(&hugetlb_lock);
3498                 h->nr_overcommit_huge_pages = tmp;
3499                 spin_unlock(&hugetlb_lock);
3500         }
3501 out:
3502         return ret;
3503 }
3504
3505 #endif /* CONFIG_SYSCTL */
3506
3507 void hugetlb_report_meminfo(struct seq_file *m)
3508 {
3509         struct hstate *h;
3510         unsigned long total = 0;
3511
3512         if (!hugepages_supported())
3513                 return;
3514
3515         for_each_hstate(h) {
3516                 unsigned long count = h->nr_huge_pages;
3517
3518                 total += (PAGE_SIZE << huge_page_order(h)) * count;
3519
3520                 if (h == &default_hstate)
3521                         seq_printf(m,
3522                                    "HugePages_Total:   %5lu\n"
3523                                    "HugePages_Free:    %5lu\n"
3524                                    "HugePages_Rsvd:    %5lu\n"
3525                                    "HugePages_Surp:    %5lu\n"
3526                                    "Hugepagesize:   %8lu kB\n",
3527                                    count,
3528                                    h->free_huge_pages,
3529                                    h->resv_huge_pages,
3530                                    h->surplus_huge_pages,
3531                                    (PAGE_SIZE << huge_page_order(h)) / 1024);
3532         }
3533
3534         seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3535 }
3536
3537 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3538 {
3539         struct hstate *h = &default_hstate;
3540
3541         if (!hugepages_supported())
3542                 return 0;
3543
3544         return sysfs_emit_at(buf, len,
3545                              "Node %d HugePages_Total: %5u\n"
3546                              "Node %d HugePages_Free:  %5u\n"
3547                              "Node %d HugePages_Surp:  %5u\n",
3548                              nid, h->nr_huge_pages_node[nid],
3549                              nid, h->free_huge_pages_node[nid],
3550                              nid, h->surplus_huge_pages_node[nid]);
3551 }
3552
3553 void hugetlb_show_meminfo(void)
3554 {
3555         struct hstate *h;
3556         int nid;
3557
3558         if (!hugepages_supported())
3559                 return;
3560
3561         for_each_node_state(nid, N_MEMORY)
3562                 for_each_hstate(h)
3563                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3564                                 nid,
3565                                 h->nr_huge_pages_node[nid],
3566                                 h->free_huge_pages_node[nid],
3567                                 h->surplus_huge_pages_node[nid],
3568                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3569 }
3570
3571 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3572 {
3573         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3574                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3575 }
3576
3577 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3578 unsigned long hugetlb_total_pages(void)
3579 {
3580         struct hstate *h;
3581         unsigned long nr_total_pages = 0;
3582
3583         for_each_hstate(h)
3584                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3585         return nr_total_pages;
3586 }
3587
3588 static int hugetlb_acct_memory(struct hstate *h, long delta)
3589 {
3590         int ret = -ENOMEM;
3591
3592         spin_lock(&hugetlb_lock);
3593         /*
3594          * When cpuset is configured, it breaks the strict hugetlb page
3595          * reservation as the accounting is done on a global variable. Such
3596          * reservation is completely rubbish in the presence of cpuset because
3597          * the reservation is not checked against page availability for the
3598          * current cpuset. Application can still potentially OOM'ed by kernel
3599          * with lack of free htlb page in cpuset that the task is in.
3600          * Attempt to enforce strict accounting with cpuset is almost
3601          * impossible (or too ugly) because cpuset is too fluid that
3602          * task or memory node can be dynamically moved between cpusets.
3603          *
3604          * The change of semantics for shared hugetlb mapping with cpuset is
3605          * undesirable. However, in order to preserve some of the semantics,
3606          * we fall back to check against current free page availability as
3607          * a best attempt and hopefully to minimize the impact of changing
3608          * semantics that cpuset has.
3609          *
3610          * Apart from cpuset, we also have memory policy mechanism that
3611          * also determines from which node the kernel will allocate memory
3612          * in a NUMA system. So similar to cpuset, we also should consider
3613          * the memory policy of the current task. Similar to the description
3614          * above.
3615          */
3616         if (delta > 0) {
3617                 if (gather_surplus_pages(h, delta) < 0)
3618                         goto out;
3619
3620                 if (delta > allowed_mems_nr(h)) {
3621                         return_unused_surplus_pages(h, delta);
3622                         goto out;
3623                 }
3624         }
3625
3626         ret = 0;
3627         if (delta < 0)
3628                 return_unused_surplus_pages(h, (unsigned long) -delta);
3629
3630 out:
3631         spin_unlock(&hugetlb_lock);
3632         return ret;
3633 }
3634
3635 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3636 {
3637         struct resv_map *resv = vma_resv_map(vma);
3638
3639         /*
3640          * This new VMA should share its siblings reservation map if present.
3641          * The VMA will only ever have a valid reservation map pointer where
3642          * it is being copied for another still existing VMA.  As that VMA
3643          * has a reference to the reservation map it cannot disappear until
3644          * after this open call completes.  It is therefore safe to take a
3645          * new reference here without additional locking.
3646          */
3647         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3648                 kref_get(&resv->refs);
3649 }
3650
3651 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3652 {
3653         struct hstate *h = hstate_vma(vma);
3654         struct resv_map *resv = vma_resv_map(vma);
3655         struct hugepage_subpool *spool = subpool_vma(vma);
3656         unsigned long reserve, start, end;
3657         long gbl_reserve;
3658
3659         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3660                 return;
3661
3662         start = vma_hugecache_offset(h, vma, vma->vm_start);
3663         end = vma_hugecache_offset(h, vma, vma->vm_end);
3664
3665         reserve = (end - start) - region_count(resv, start, end);
3666         hugetlb_cgroup_uncharge_counter(resv, start, end);
3667         if (reserve) {
3668                 /*
3669                  * Decrement reserve counts.  The global reserve count may be
3670                  * adjusted if the subpool has a minimum size.
3671                  */
3672                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3673                 hugetlb_acct_memory(h, -gbl_reserve);
3674         }
3675
3676         kref_put(&resv->refs, resv_map_release);
3677 }
3678
3679 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3680 {
3681         if (addr & ~(huge_page_mask(hstate_vma(vma))))
3682                 return -EINVAL;
3683         return 0;
3684 }
3685
3686 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3687 {
3688         struct hstate *hstate = hstate_vma(vma);
3689
3690         return 1UL << huge_page_shift(hstate);
3691 }
3692
3693 /*
3694  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3695  * handle_mm_fault() to try to instantiate regular-sized pages in the
3696  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3697  * this far.
3698  */
3699 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3700 {
3701         BUG();
3702         return 0;
3703 }
3704
3705 /*
3706  * When a new function is introduced to vm_operations_struct and added
3707  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3708  * This is because under System V memory model, mappings created via
3709  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3710  * their original vm_ops are overwritten with shm_vm_ops.
3711  */
3712 const struct vm_operations_struct hugetlb_vm_ops = {
3713         .fault = hugetlb_vm_op_fault,
3714         .open = hugetlb_vm_op_open,
3715         .close = hugetlb_vm_op_close,
3716         .may_split = hugetlb_vm_op_split,
3717         .pagesize = hugetlb_vm_op_pagesize,
3718 };
3719
3720 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3721                                 int writable)
3722 {
3723         pte_t entry;
3724
3725         if (writable) {
3726                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3727                                          vma->vm_page_prot)));
3728         } else {
3729                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3730                                            vma->vm_page_prot));
3731         }
3732         entry = pte_mkyoung(entry);
3733         entry = pte_mkhuge(entry);
3734         entry = arch_make_huge_pte(entry, vma, page, writable);
3735
3736         return entry;
3737 }
3738
3739 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3740                                    unsigned long address, pte_t *ptep)
3741 {
3742         pte_t entry;
3743
3744         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3745         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3746                 update_mmu_cache(vma, address, ptep);
3747 }
3748
3749 bool is_hugetlb_entry_migration(pte_t pte)
3750 {
3751         swp_entry_t swp;
3752
3753         if (huge_pte_none(pte) || pte_present(pte))
3754                 return false;
3755         swp = pte_to_swp_entry(pte);
3756         if (is_migration_entry(swp))
3757                 return true;
3758         else
3759                 return false;
3760 }
3761
3762 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3763 {
3764         swp_entry_t swp;
3765
3766         if (huge_pte_none(pte) || pte_present(pte))
3767                 return false;
3768         swp = pte_to_swp_entry(pte);
3769         if (is_hwpoison_entry(swp))
3770                 return true;
3771         else
3772                 return false;
3773 }
3774
3775 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3776                             struct vm_area_struct *vma)
3777 {
3778         pte_t *src_pte, *dst_pte, entry, dst_entry;
3779         struct page *ptepage;
3780         unsigned long addr;
3781         int cow;
3782         struct hstate *h = hstate_vma(vma);
3783         unsigned long sz = huge_page_size(h);
3784         struct address_space *mapping = vma->vm_file->f_mapping;
3785         struct mmu_notifier_range range;
3786         int ret = 0;
3787
3788         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3789
3790         if (cow) {
3791                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3792                                         vma->vm_start,
3793                                         vma->vm_end);
3794                 mmu_notifier_invalidate_range_start(&range);
3795         } else {
3796                 /*
3797                  * For shared mappings i_mmap_rwsem must be held to call
3798                  * huge_pte_alloc, otherwise the returned ptep could go
3799                  * away if part of a shared pmd and another thread calls
3800                  * huge_pmd_unshare.
3801                  */
3802                 i_mmap_lock_read(mapping);
3803         }
3804
3805         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3806                 spinlock_t *src_ptl, *dst_ptl;
3807                 src_pte = huge_pte_offset(src, addr, sz);
3808                 if (!src_pte)
3809                         continue;
3810                 dst_pte = huge_pte_alloc(dst, addr, sz);
3811                 if (!dst_pte) {
3812                         ret = -ENOMEM;
3813                         break;
3814                 }
3815
3816                 /*
3817                  * If the pagetables are shared don't copy or take references.
3818                  * dst_pte == src_pte is the common case of src/dest sharing.
3819                  *
3820                  * However, src could have 'unshared' and dst shares with
3821                  * another vma.  If dst_pte !none, this implies sharing.
3822                  * Check here before taking page table lock, and once again
3823                  * after taking the lock below.
3824                  */
3825                 dst_entry = huge_ptep_get(dst_pte);
3826                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3827                         continue;
3828
3829                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3830                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3831                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3832                 entry = huge_ptep_get(src_pte);
3833                 dst_entry = huge_ptep_get(dst_pte);
3834                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3835                         /*
3836                          * Skip if src entry none.  Also, skip in the
3837                          * unlikely case dst entry !none as this implies
3838                          * sharing with another vma.
3839                          */
3840                         ;
3841                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3842                                     is_hugetlb_entry_hwpoisoned(entry))) {
3843                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3844
3845                         if (is_write_migration_entry(swp_entry) && cow) {
3846                                 /*
3847                                  * COW mappings require pages in both
3848                                  * parent and child to be set to read.
3849                                  */
3850                                 make_migration_entry_read(&swp_entry);
3851                                 entry = swp_entry_to_pte(swp_entry);
3852                                 set_huge_swap_pte_at(src, addr, src_pte,
3853                                                      entry, sz);
3854                         }
3855                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3856                 } else {
3857                         if (cow) {
3858                                 /*
3859                                  * No need to notify as we are downgrading page
3860                                  * table protection not changing it to point
3861                                  * to a new page.
3862                                  *
3863                                  * See Documentation/vm/mmu_notifier.rst
3864                                  */
3865                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3866                         }
3867                         entry = huge_ptep_get(src_pte);
3868                         ptepage = pte_page(entry);
3869                         get_page(ptepage);
3870                         page_dup_rmap(ptepage, true);
3871                         set_huge_pte_at(dst, addr, dst_pte, entry);
3872                         hugetlb_count_add(pages_per_huge_page(h), dst);
3873                 }
3874                 spin_unlock(src_ptl);
3875                 spin_unlock(dst_ptl);
3876         }
3877
3878         if (cow)
3879                 mmu_notifier_invalidate_range_end(&range);
3880         else
3881                 i_mmap_unlock_read(mapping);
3882
3883         return ret;
3884 }
3885
3886 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3887                             unsigned long start, unsigned long end,
3888                             struct page *ref_page)
3889 {
3890         struct mm_struct *mm = vma->vm_mm;
3891         unsigned long address;
3892         pte_t *ptep;
3893         pte_t pte;
3894         spinlock_t *ptl;
3895         struct page *page;
3896         struct hstate *h = hstate_vma(vma);
3897         unsigned long sz = huge_page_size(h);
3898         struct mmu_notifier_range range;
3899
3900         WARN_ON(!is_vm_hugetlb_page(vma));
3901         BUG_ON(start & ~huge_page_mask(h));
3902         BUG_ON(end & ~huge_page_mask(h));
3903
3904         /*
3905          * This is a hugetlb vma, all the pte entries should point
3906          * to huge page.
3907          */
3908         tlb_change_page_size(tlb, sz);
3909         tlb_start_vma(tlb, vma);
3910
3911         /*
3912          * If sharing possible, alert mmu notifiers of worst case.
3913          */
3914         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3915                                 end);
3916         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3917         mmu_notifier_invalidate_range_start(&range);
3918         address = start;
3919         for (; address < end; address += sz) {
3920                 ptep = huge_pte_offset(mm, address, sz);
3921                 if (!ptep)
3922                         continue;
3923
3924                 ptl = huge_pte_lock(h, mm, ptep);
3925                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3926                         spin_unlock(ptl);
3927                         /*
3928                          * We just unmapped a page of PMDs by clearing a PUD.
3929                          * The caller's TLB flush range should cover this area.
3930                          */
3931                         continue;
3932                 }
3933
3934                 pte = huge_ptep_get(ptep);
3935                 if (huge_pte_none(pte)) {
3936                         spin_unlock(ptl);
3937                         continue;
3938                 }
3939
3940                 /*
3941                  * Migrating hugepage or HWPoisoned hugepage is already
3942                  * unmapped and its refcount is dropped, so just clear pte here.
3943                  */
3944                 if (unlikely(!pte_present(pte))) {
3945                         huge_pte_clear(mm, address, ptep, sz);
3946                         spin_unlock(ptl);
3947                         continue;
3948                 }
3949
3950                 page = pte_page(pte);
3951                 /*
3952                  * If a reference page is supplied, it is because a specific
3953                  * page is being unmapped, not a range. Ensure the page we
3954                  * are about to unmap is the actual page of interest.
3955                  */
3956                 if (ref_page) {
3957                         if (page != ref_page) {
3958                                 spin_unlock(ptl);
3959                                 continue;
3960                         }
3961                         /*
3962                          * Mark the VMA as having unmapped its page so that
3963                          * future faults in this VMA will fail rather than
3964                          * looking like data was lost
3965                          */
3966                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3967                 }
3968
3969                 pte = huge_ptep_get_and_clear(mm, address, ptep);
3970                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3971                 if (huge_pte_dirty(pte))
3972                         set_page_dirty(page);
3973
3974                 hugetlb_count_sub(pages_per_huge_page(h), mm);
3975                 page_remove_rmap(page, true);
3976
3977                 spin_unlock(ptl);
3978                 tlb_remove_page_size(tlb, page, huge_page_size(h));
3979                 /*
3980                  * Bail out after unmapping reference page if supplied
3981                  */
3982                 if (ref_page)
3983                         break;
3984         }
3985         mmu_notifier_invalidate_range_end(&range);
3986         tlb_end_vma(tlb, vma);
3987 }
3988
3989 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3990                           struct vm_area_struct *vma, unsigned long start,
3991                           unsigned long end, struct page *ref_page)
3992 {
3993         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3994
3995         /*
3996          * Clear this flag so that x86's huge_pmd_share page_table_shareable
3997          * test will fail on a vma being torn down, and not grab a page table
3998          * on its way out.  We're lucky that the flag has such an appropriate
3999          * name, and can in fact be safely cleared here. We could clear it
4000          * before the __unmap_hugepage_range above, but all that's necessary
4001          * is to clear it before releasing the i_mmap_rwsem. This works
4002          * because in the context this is called, the VMA is about to be
4003          * destroyed and the i_mmap_rwsem is held.
4004          */
4005         vma->vm_flags &= ~VM_MAYSHARE;
4006 }
4007
4008 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4009                           unsigned long end, struct page *ref_page)
4010 {
4011         struct mm_struct *mm;
4012         struct mmu_gather tlb;
4013         unsigned long tlb_start = start;
4014         unsigned long tlb_end = end;
4015
4016         /*
4017          * If shared PMDs were possibly used within this vma range, adjust
4018          * start/end for worst case tlb flushing.
4019          * Note that we can not be sure if PMDs are shared until we try to
4020          * unmap pages.  However, we want to make sure TLB flushing covers
4021          * the largest possible range.
4022          */
4023         adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
4024
4025         mm = vma->vm_mm;
4026
4027         tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
4028         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4029         tlb_finish_mmu(&tlb, tlb_start, tlb_end);
4030 }
4031
4032 /*
4033  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4034  * mappping it owns the reserve page for. The intention is to unmap the page
4035  * from other VMAs and let the children be SIGKILLed if they are faulting the
4036  * same region.
4037  */
4038 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4039                               struct page *page, unsigned long address)
4040 {
4041         struct hstate *h = hstate_vma(vma);
4042         struct vm_area_struct *iter_vma;
4043         struct address_space *mapping;
4044         pgoff_t pgoff;
4045
4046         /*
4047          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4048          * from page cache lookup which is in HPAGE_SIZE units.
4049          */
4050         address = address & huge_page_mask(h);
4051         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4052                         vma->vm_pgoff;
4053         mapping = vma->vm_file->f_mapping;
4054
4055         /*
4056          * Take the mapping lock for the duration of the table walk. As
4057          * this mapping should be shared between all the VMAs,
4058          * __unmap_hugepage_range() is called as the lock is already held
4059          */
4060         i_mmap_lock_write(mapping);
4061         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4062                 /* Do not unmap the current VMA */
4063                 if (iter_vma == vma)
4064                         continue;
4065
4066                 /*
4067                  * Shared VMAs have their own reserves and do not affect
4068                  * MAP_PRIVATE accounting but it is possible that a shared
4069                  * VMA is using the same page so check and skip such VMAs.
4070                  */
4071                 if (iter_vma->vm_flags & VM_MAYSHARE)
4072                         continue;
4073
4074                 /*
4075                  * Unmap the page from other VMAs without their own reserves.
4076                  * They get marked to be SIGKILLed if they fault in these
4077                  * areas. This is because a future no-page fault on this VMA
4078                  * could insert a zeroed page instead of the data existing
4079                  * from the time of fork. This would look like data corruption
4080                  */
4081                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4082                         unmap_hugepage_range(iter_vma, address,
4083                                              address + huge_page_size(h), page);
4084         }
4085         i_mmap_unlock_write(mapping);
4086 }
4087
4088 /*
4089  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4090  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4091  * cannot race with other handlers or page migration.
4092  * Keep the pte_same checks anyway to make transition from the mutex easier.
4093  */
4094 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4095                        unsigned long address, pte_t *ptep,
4096                        struct page *pagecache_page, spinlock_t *ptl)
4097 {
4098         pte_t pte;
4099         struct hstate *h = hstate_vma(vma);
4100         struct page *old_page, *new_page;
4101         int outside_reserve = 0;
4102         vm_fault_t ret = 0;
4103         unsigned long haddr = address & huge_page_mask(h);
4104         struct mmu_notifier_range range;
4105
4106         pte = huge_ptep_get(ptep);
4107         old_page = pte_page(pte);
4108
4109 retry_avoidcopy:
4110         /* If no-one else is actually using this page, avoid the copy
4111          * and just make the page writable */
4112         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4113                 page_move_anon_rmap(old_page, vma);
4114                 set_huge_ptep_writable(vma, haddr, ptep);
4115                 return 0;
4116         }
4117
4118         /*
4119          * If the process that created a MAP_PRIVATE mapping is about to
4120          * perform a COW due to a shared page count, attempt to satisfy
4121          * the allocation without using the existing reserves. The pagecache
4122          * page is used to determine if the reserve at this address was
4123          * consumed or not. If reserves were used, a partial faulted mapping
4124          * at the time of fork() could consume its reserves on COW instead
4125          * of the full address range.
4126          */
4127         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4128                         old_page != pagecache_page)
4129                 outside_reserve = 1;
4130
4131         get_page(old_page);
4132
4133         /*
4134          * Drop page table lock as buddy allocator may be called. It will
4135          * be acquired again before returning to the caller, as expected.
4136          */
4137         spin_unlock(ptl);
4138         new_page = alloc_huge_page(vma, haddr, outside_reserve);
4139
4140         if (IS_ERR(new_page)) {
4141                 /*
4142                  * If a process owning a MAP_PRIVATE mapping fails to COW,
4143                  * it is due to references held by a child and an insufficient
4144                  * huge page pool. To guarantee the original mappers
4145                  * reliability, unmap the page from child processes. The child
4146                  * may get SIGKILLed if it later faults.
4147                  */
4148                 if (outside_reserve) {
4149                         struct address_space *mapping = vma->vm_file->f_mapping;
4150                         pgoff_t idx;
4151                         u32 hash;
4152
4153                         put_page(old_page);
4154                         BUG_ON(huge_pte_none(pte));
4155                         /*
4156                          * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4157                          * unmapping.  unmapping needs to hold i_mmap_rwsem
4158                          * in write mode.  Dropping i_mmap_rwsem in read mode
4159                          * here is OK as COW mappings do not interact with
4160                          * PMD sharing.
4161                          *
4162                          * Reacquire both after unmap operation.
4163                          */
4164                         idx = vma_hugecache_offset(h, vma, haddr);
4165                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4166                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4167                         i_mmap_unlock_read(mapping);
4168
4169                         unmap_ref_private(mm, vma, old_page, haddr);
4170
4171                         i_mmap_lock_read(mapping);
4172                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4173                         spin_lock(ptl);
4174                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4175                         if (likely(ptep &&
4176                                    pte_same(huge_ptep_get(ptep), pte)))
4177                                 goto retry_avoidcopy;
4178                         /*
4179                          * race occurs while re-acquiring page table
4180                          * lock, and our job is done.
4181                          */
4182                         return 0;
4183                 }
4184
4185                 ret = vmf_error(PTR_ERR(new_page));
4186                 goto out_release_old;
4187         }
4188
4189         /*
4190          * When the original hugepage is shared one, it does not have
4191          * anon_vma prepared.
4192          */
4193         if (unlikely(anon_vma_prepare(vma))) {
4194                 ret = VM_FAULT_OOM;
4195                 goto out_release_all;
4196         }
4197
4198         copy_user_huge_page(new_page, old_page, address, vma,
4199                             pages_per_huge_page(h));
4200         __SetPageUptodate(new_page);
4201
4202         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4203                                 haddr + huge_page_size(h));
4204         mmu_notifier_invalidate_range_start(&range);
4205
4206         /*
4207          * Retake the page table lock to check for racing updates
4208          * before the page tables are altered
4209          */
4210         spin_lock(ptl);
4211         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4212         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4213                 ClearPagePrivate(new_page);
4214
4215                 /* Break COW */
4216                 huge_ptep_clear_flush(vma, haddr, ptep);
4217                 mmu_notifier_invalidate_range(mm, range.start, range.end);
4218                 set_huge_pte_at(mm, haddr, ptep,
4219                                 make_huge_pte(vma, new_page, 1));
4220                 page_remove_rmap(old_page, true);
4221                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4222                 set_page_huge_active(new_page);
4223                 /* Make the old page be freed below */
4224                 new_page = old_page;
4225         }
4226         spin_unlock(ptl);
4227         mmu_notifier_invalidate_range_end(&range);
4228 out_release_all:
4229         restore_reserve_on_error(h, vma, haddr, new_page);
4230         put_page(new_page);
4231 out_release_old:
4232         put_page(old_page);
4233
4234         spin_lock(ptl); /* Caller expects lock to be held */
4235         return ret;
4236 }
4237
4238 /* Return the pagecache page at a given address within a VMA */
4239 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4240                         struct vm_area_struct *vma, unsigned long address)
4241 {
4242         struct address_space *mapping;
4243         pgoff_t idx;
4244
4245         mapping = vma->vm_file->f_mapping;
4246         idx = vma_hugecache_offset(h, vma, address);
4247
4248         return find_lock_page(mapping, idx);
4249 }
4250
4251 /*
4252  * Return whether there is a pagecache page to back given address within VMA.
4253  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4254  */
4255 static bool hugetlbfs_pagecache_present(struct hstate *h,
4256                         struct vm_area_struct *vma, unsigned long address)
4257 {
4258         struct address_space *mapping;
4259         pgoff_t idx;
4260         struct page *page;
4261
4262         mapping = vma->vm_file->f_mapping;
4263         idx = vma_hugecache_offset(h, vma, address);
4264
4265         page = find_get_page(mapping, idx);
4266         if (page)
4267                 put_page(page);
4268         return page != NULL;
4269 }
4270
4271 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4272                            pgoff_t idx)
4273 {
4274         struct inode *inode = mapping->host;
4275         struct hstate *h = hstate_inode(inode);
4276         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4277
4278         if (err)
4279                 return err;
4280         ClearPagePrivate(page);
4281
4282         /*
4283          * set page dirty so that it will not be removed from cache/file
4284          * by non-hugetlbfs specific code paths.
4285          */
4286         set_page_dirty(page);
4287
4288         spin_lock(&inode->i_lock);
4289         inode->i_blocks += blocks_per_huge_page(h);
4290         spin_unlock(&inode->i_lock);
4291         return 0;
4292 }
4293
4294 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4295                         struct vm_area_struct *vma,
4296                         struct address_space *mapping, pgoff_t idx,
4297                         unsigned long address, pte_t *ptep, unsigned int flags)
4298 {
4299         struct hstate *h = hstate_vma(vma);
4300         vm_fault_t ret = VM_FAULT_SIGBUS;
4301         int anon_rmap = 0;
4302         unsigned long size;
4303         struct page *page;
4304         pte_t new_pte;
4305         spinlock_t *ptl;
4306         unsigned long haddr = address & huge_page_mask(h);
4307         bool new_page = false;
4308
4309         /*
4310          * Currently, we are forced to kill the process in the event the
4311          * original mapper has unmapped pages from the child due to a failed
4312          * COW. Warn that such a situation has occurred as it may not be obvious
4313          */
4314         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4315                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4316                            current->pid);
4317                 return ret;
4318         }
4319
4320         /*
4321          * We can not race with truncation due to holding i_mmap_rwsem.
4322          * i_size is modified when holding i_mmap_rwsem, so check here
4323          * once for faults beyond end of file.
4324          */
4325         size = i_size_read(mapping->host) >> huge_page_shift(h);
4326         if (idx >= size)
4327                 goto out;
4328
4329 retry:
4330         page = find_lock_page(mapping, idx);
4331         if (!page) {
4332                 /*
4333                  * Check for page in userfault range
4334                  */
4335                 if (userfaultfd_missing(vma)) {
4336                         u32 hash;
4337                         struct vm_fault vmf = {
4338                                 .vma = vma,
4339                                 .address = haddr,
4340                                 .flags = flags,
4341                                 /*
4342                                  * Hard to debug if it ends up being
4343                                  * used by a callee that assumes
4344                                  * something about the other
4345                                  * uninitialized fields... same as in
4346                                  * memory.c
4347                                  */
4348                         };
4349
4350                         /*
4351                          * hugetlb_fault_mutex and i_mmap_rwsem must be
4352                          * dropped before handling userfault.  Reacquire
4353                          * after handling fault to make calling code simpler.
4354                          */
4355                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4356                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4357                         i_mmap_unlock_read(mapping);
4358                         ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4359                         i_mmap_lock_read(mapping);
4360                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4361                         goto out;
4362                 }
4363
4364                 page = alloc_huge_page(vma, haddr, 0);
4365                 if (IS_ERR(page)) {
4366                         /*
4367                          * Returning error will result in faulting task being
4368                          * sent SIGBUS.  The hugetlb fault mutex prevents two
4369                          * tasks from racing to fault in the same page which
4370                          * could result in false unable to allocate errors.
4371                          * Page migration does not take the fault mutex, but
4372                          * does a clear then write of pte's under page table
4373                          * lock.  Page fault code could race with migration,
4374                          * notice the clear pte and try to allocate a page
4375                          * here.  Before returning error, get ptl and make
4376                          * sure there really is no pte entry.
4377                          */
4378                         ptl = huge_pte_lock(h, mm, ptep);
4379                         if (!huge_pte_none(huge_ptep_get(ptep))) {
4380                                 ret = 0;
4381                                 spin_unlock(ptl);
4382                                 goto out;
4383                         }
4384                         spin_unlock(ptl);
4385                         ret = vmf_error(PTR_ERR(page));
4386                         goto out;
4387                 }
4388                 clear_huge_page(page, address, pages_per_huge_page(h));
4389                 __SetPageUptodate(page);
4390                 new_page = true;
4391
4392                 if (vma->vm_flags & VM_MAYSHARE) {
4393                         int err = huge_add_to_page_cache(page, mapping, idx);
4394                         if (err) {
4395                                 put_page(page);
4396                                 if (err == -EEXIST)
4397                                         goto retry;
4398                                 goto out;
4399                         }
4400                 } else {
4401                         lock_page(page);
4402                         if (unlikely(anon_vma_prepare(vma))) {
4403                                 ret = VM_FAULT_OOM;
4404                                 goto backout_unlocked;
4405                         }
4406                         anon_rmap = 1;
4407                 }
4408         } else {
4409                 /*
4410                  * If memory error occurs between mmap() and fault, some process
4411                  * don't have hwpoisoned swap entry for errored virtual address.
4412                  * So we need to block hugepage fault by PG_hwpoison bit check.
4413                  */
4414                 if (unlikely(PageHWPoison(page))) {
4415                         ret = VM_FAULT_HWPOISON_LARGE |
4416                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4417                         goto backout_unlocked;
4418                 }
4419         }
4420
4421         /*
4422          * If we are going to COW a private mapping later, we examine the
4423          * pending reservations for this page now. This will ensure that
4424          * any allocations necessary to record that reservation occur outside
4425          * the spinlock.
4426          */
4427         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4428                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4429                         ret = VM_FAULT_OOM;
4430                         goto backout_unlocked;
4431                 }
4432                 /* Just decrements count, does not deallocate */
4433                 vma_end_reservation(h, vma, haddr);
4434         }
4435
4436         ptl = huge_pte_lock(h, mm, ptep);
4437         ret = 0;
4438         if (!huge_pte_none(huge_ptep_get(ptep)))
4439                 goto backout;
4440
4441         if (anon_rmap) {
4442                 ClearPagePrivate(page);
4443                 hugepage_add_new_anon_rmap(page, vma, haddr);
4444         } else
4445                 page_dup_rmap(page, true);
4446         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4447                                 && (vma->vm_flags & VM_SHARED)));
4448         set_huge_pte_at(mm, haddr, ptep, new_pte);
4449
4450         hugetlb_count_add(pages_per_huge_page(h), mm);
4451         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4452                 /* Optimization, do the COW without a second fault */
4453                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4454         }
4455
4456         spin_unlock(ptl);
4457
4458         /*
4459          * Only make newly allocated pages active.  Existing pages found
4460          * in the pagecache could be !page_huge_active() if they have been
4461          * isolated for migration.
4462          */
4463         if (new_page)
4464                 set_page_huge_active(page);
4465
4466         unlock_page(page);
4467 out:
4468         return ret;
4469
4470 backout:
4471         spin_unlock(ptl);
4472 backout_unlocked:
4473         unlock_page(page);
4474         restore_reserve_on_error(h, vma, haddr, page);
4475         put_page(page);
4476         goto out;
4477 }
4478
4479 #ifdef CONFIG_SMP
4480 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4481 {
4482         unsigned long key[2];
4483         u32 hash;
4484
4485         key[0] = (unsigned long) mapping;
4486         key[1] = idx;
4487
4488         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4489
4490         return hash & (num_fault_mutexes - 1);
4491 }
4492 #else
4493 /*
4494  * For uniprocesor systems we always use a single mutex, so just
4495  * return 0 and avoid the hashing overhead.
4496  */
4497 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4498 {
4499         return 0;
4500 }
4501 #endif
4502
4503 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4504                         unsigned long address, unsigned int flags)
4505 {
4506         pte_t *ptep, entry;
4507         spinlock_t *ptl;
4508         vm_fault_t ret;
4509         u32 hash;
4510         pgoff_t idx;
4511         struct page *page = NULL;
4512         struct page *pagecache_page = NULL;
4513         struct hstate *h = hstate_vma(vma);
4514         struct address_space *mapping;
4515         int need_wait_lock = 0;
4516         unsigned long haddr = address & huge_page_mask(h);
4517
4518         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4519         if (ptep) {
4520                 /*
4521                  * Since we hold no locks, ptep could be stale.  That is
4522                  * OK as we are only making decisions based on content and
4523                  * not actually modifying content here.
4524                  */
4525                 entry = huge_ptep_get(ptep);
4526                 if (unlikely(is_hugetlb_entry_migration(entry))) {
4527                         migration_entry_wait_huge(vma, mm, ptep);
4528                         return 0;
4529                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4530                         return VM_FAULT_HWPOISON_LARGE |
4531                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4532         }
4533
4534         /*
4535          * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4536          * until finished with ptep.  This serves two purposes:
4537          * 1) It prevents huge_pmd_unshare from being called elsewhere
4538          *    and making the ptep no longer valid.
4539          * 2) It synchronizes us with i_size modifications during truncation.
4540          *
4541          * ptep could have already be assigned via huge_pte_offset.  That
4542          * is OK, as huge_pte_alloc will return the same value unless
4543          * something has changed.
4544          */
4545         mapping = vma->vm_file->f_mapping;
4546         i_mmap_lock_read(mapping);
4547         ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4548         if (!ptep) {
4549                 i_mmap_unlock_read(mapping);
4550                 return VM_FAULT_OOM;
4551         }
4552
4553         /*
4554          * Serialize hugepage allocation and instantiation, so that we don't
4555          * get spurious allocation failures if two CPUs race to instantiate
4556          * the same page in the page cache.
4557          */
4558         idx = vma_hugecache_offset(h, vma, haddr);
4559         hash = hugetlb_fault_mutex_hash(mapping, idx);
4560         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4561
4562         entry = huge_ptep_get(ptep);
4563         if (huge_pte_none(entry)) {
4564                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4565                 goto out_mutex;
4566         }
4567
4568         ret = 0;
4569
4570         /*
4571          * entry could be a migration/hwpoison entry at this point, so this
4572          * check prevents the kernel from going below assuming that we have
4573          * an active hugepage in pagecache. This goto expects the 2nd page
4574          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4575          * properly handle it.
4576          */
4577         if (!pte_present(entry))
4578                 goto out_mutex;
4579
4580         /*
4581          * If we are going to COW the mapping later, we examine the pending
4582          * reservations for this page now. This will ensure that any
4583          * allocations necessary to record that reservation occur outside the
4584          * spinlock. For private mappings, we also lookup the pagecache
4585          * page now as it is used to determine if a reservation has been
4586          * consumed.
4587          */
4588         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4589                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4590                         ret = VM_FAULT_OOM;
4591                         goto out_mutex;
4592                 }
4593                 /* Just decrements count, does not deallocate */
4594                 vma_end_reservation(h, vma, haddr);
4595
4596                 if (!(vma->vm_flags & VM_MAYSHARE))
4597                         pagecache_page = hugetlbfs_pagecache_page(h,
4598                                                                 vma, haddr);
4599         }
4600
4601         ptl = huge_pte_lock(h, mm, ptep);
4602
4603         /* Check for a racing update before calling hugetlb_cow */
4604         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4605                 goto out_ptl;
4606
4607         /*
4608          * hugetlb_cow() requires page locks of pte_page(entry) and
4609          * pagecache_page, so here we need take the former one
4610          * when page != pagecache_page or !pagecache_page.
4611          */
4612         page = pte_page(entry);
4613         if (page != pagecache_page)
4614                 if (!trylock_page(page)) {
4615                         need_wait_lock = 1;
4616                         goto out_ptl;
4617                 }
4618
4619         get_page(page);
4620
4621         if (flags & FAULT_FLAG_WRITE) {
4622                 if (!huge_pte_write(entry)) {
4623                         ret = hugetlb_cow(mm, vma, address, ptep,
4624                                           pagecache_page, ptl);
4625                         goto out_put_page;
4626                 }
4627                 entry = huge_pte_mkdirty(entry);
4628         }
4629         entry = pte_mkyoung(entry);
4630         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4631                                                 flags & FAULT_FLAG_WRITE))
4632                 update_mmu_cache(vma, haddr, ptep);
4633 out_put_page:
4634         if (page != pagecache_page)
4635                 unlock_page(page);
4636         put_page(page);
4637 out_ptl:
4638         spin_unlock(ptl);
4639
4640         if (pagecache_page) {
4641                 unlock_page(pagecache_page);
4642                 put_page(pagecache_page);
4643         }
4644 out_mutex:
4645         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4646         i_mmap_unlock_read(mapping);
4647         /*
4648          * Generally it's safe to hold refcount during waiting page lock. But
4649          * here we just wait to defer the next page fault to avoid busy loop and
4650          * the page is not used after unlocked before returning from the current
4651          * page fault. So we are safe from accessing freed page, even if we wait
4652          * here without taking refcount.
4653          */
4654         if (need_wait_lock)
4655                 wait_on_page_locked(page);
4656         return ret;
4657 }
4658
4659 /*
4660  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4661  * modifications for huge pages.
4662  */
4663 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4664                             pte_t *dst_pte,
4665                             struct vm_area_struct *dst_vma,
4666                             unsigned long dst_addr,
4667                             unsigned long src_addr,
4668                             struct page **pagep)
4669 {
4670         struct address_space *mapping;
4671         pgoff_t idx;
4672         unsigned long size;
4673         int vm_shared = dst_vma->vm_flags & VM_SHARED;
4674         struct hstate *h = hstate_vma(dst_vma);
4675         pte_t _dst_pte;
4676         spinlock_t *ptl;
4677         int ret;
4678         struct page *page;
4679
4680         if (!*pagep) {
4681                 ret = -ENOMEM;
4682                 page = alloc_huge_page(dst_vma, dst_addr, 0);
4683                 if (IS_ERR(page))
4684                         goto out;
4685
4686                 ret = copy_huge_page_from_user(page,
4687                                                 (const void __user *) src_addr,
4688                                                 pages_per_huge_page(h), false);
4689
4690                 /* fallback to copy_from_user outside mmap_lock */
4691                 if (unlikely(ret)) {
4692                         ret = -ENOENT;
4693                         *pagep = page;
4694                         /* don't free the page */
4695                         goto out;
4696                 }
4697         } else {
4698                 page = *pagep;
4699                 *pagep = NULL;
4700         }
4701
4702         /*
4703          * The memory barrier inside __SetPageUptodate makes sure that
4704          * preceding stores to the page contents become visible before
4705          * the set_pte_at() write.
4706          */
4707         __SetPageUptodate(page);
4708
4709         mapping = dst_vma->vm_file->f_mapping;
4710         idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4711
4712         /*
4713          * If shared, add to page cache
4714          */
4715         if (vm_shared) {
4716                 size = i_size_read(mapping->host) >> huge_page_shift(h);
4717                 ret = -EFAULT;
4718                 if (idx >= size)
4719                         goto out_release_nounlock;
4720
4721                 /*
4722                  * Serialization between remove_inode_hugepages() and
4723                  * huge_add_to_page_cache() below happens through the
4724                  * hugetlb_fault_mutex_table that here must be hold by
4725                  * the caller.
4726                  */
4727                 ret = huge_add_to_page_cache(page, mapping, idx);
4728                 if (ret)
4729                         goto out_release_nounlock;
4730         }
4731
4732         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4733         spin_lock(ptl);
4734
4735         /*
4736          * Recheck the i_size after holding PT lock to make sure not
4737          * to leave any page mapped (as page_mapped()) beyond the end
4738          * of the i_size (remove_inode_hugepages() is strict about
4739          * enforcing that). If we bail out here, we'll also leave a
4740          * page in the radix tree in the vm_shared case beyond the end
4741          * of the i_size, but remove_inode_hugepages() will take care
4742          * of it as soon as we drop the hugetlb_fault_mutex_table.
4743          */
4744         size = i_size_read(mapping->host) >> huge_page_shift(h);
4745         ret = -EFAULT;
4746         if (idx >= size)
4747                 goto out_release_unlock;
4748
4749         ret = -EEXIST;
4750         if (!huge_pte_none(huge_ptep_get(dst_pte)))
4751                 goto out_release_unlock;
4752
4753         if (vm_shared) {
4754                 page_dup_rmap(page, true);
4755         } else {
4756                 ClearPagePrivate(page);
4757                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4758         }
4759
4760         _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4761         if (dst_vma->vm_flags & VM_WRITE)
4762                 _dst_pte = huge_pte_mkdirty(_dst_pte);
4763         _dst_pte = pte_mkyoung(_dst_pte);
4764
4765         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4766
4767         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4768                                         dst_vma->vm_flags & VM_WRITE);
4769         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4770
4771         /* No need to invalidate - it was non-present before */
4772         update_mmu_cache(dst_vma, dst_addr, dst_pte);
4773
4774         spin_unlock(ptl);
4775         set_page_huge_active(page);
4776         if (vm_shared)
4777                 unlock_page(page);
4778         ret = 0;
4779 out:
4780         return ret;
4781 out_release_unlock:
4782         spin_unlock(ptl);
4783         if (vm_shared)
4784                 unlock_page(page);
4785 out_release_nounlock:
4786         put_page(page);
4787         goto out;
4788 }
4789
4790 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4791                          struct page **pages, struct vm_area_struct **vmas,
4792                          unsigned long *position, unsigned long *nr_pages,
4793                          long i, unsigned int flags, int *locked)
4794 {
4795         unsigned long pfn_offset;
4796         unsigned long vaddr = *position;
4797         unsigned long remainder = *nr_pages;
4798         struct hstate *h = hstate_vma(vma);
4799         int err = -EFAULT;
4800
4801         while (vaddr < vma->vm_end && remainder) {
4802                 pte_t *pte;
4803                 spinlock_t *ptl = NULL;
4804                 int absent;
4805                 struct page *page;
4806
4807                 /*
4808                  * If we have a pending SIGKILL, don't keep faulting pages and
4809                  * potentially allocating memory.
4810                  */
4811                 if (fatal_signal_pending(current)) {
4812                         remainder = 0;
4813                         break;
4814                 }
4815
4816                 /*
4817                  * Some archs (sparc64, sh*) have multiple pte_ts to
4818                  * each hugepage.  We have to make sure we get the
4819                  * first, for the page indexing below to work.
4820                  *
4821                  * Note that page table lock is not held when pte is null.
4822                  */
4823                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4824                                       huge_page_size(h));
4825                 if (pte)
4826                         ptl = huge_pte_lock(h, mm, pte);
4827                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4828
4829                 /*
4830                  * When coredumping, it suits get_dump_page if we just return
4831                  * an error where there's an empty slot with no huge pagecache
4832                  * to back it.  This way, we avoid allocating a hugepage, and
4833                  * the sparse dumpfile avoids allocating disk blocks, but its
4834                  * huge holes still show up with zeroes where they need to be.
4835                  */
4836                 if (absent && (flags & FOLL_DUMP) &&
4837                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4838                         if (pte)
4839                                 spin_unlock(ptl);
4840                         remainder = 0;
4841                         break;
4842                 }
4843
4844                 /*
4845                  * We need call hugetlb_fault for both hugepages under migration
4846                  * (in which case hugetlb_fault waits for the migration,) and
4847                  * hwpoisoned hugepages (in which case we need to prevent the
4848                  * caller from accessing to them.) In order to do this, we use
4849                  * here is_swap_pte instead of is_hugetlb_entry_migration and
4850                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4851                  * both cases, and because we can't follow correct pages
4852                  * directly from any kind of swap entries.
4853                  */
4854                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4855                     ((flags & FOLL_WRITE) &&
4856                       !huge_pte_write(huge_ptep_get(pte)))) {
4857                         vm_fault_t ret;
4858                         unsigned int fault_flags = 0;
4859
4860                         if (pte)
4861                                 spin_unlock(ptl);
4862                         if (flags & FOLL_WRITE)
4863                                 fault_flags |= FAULT_FLAG_WRITE;
4864                         if (locked)
4865                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4866                                         FAULT_FLAG_KILLABLE;
4867                         if (flags & FOLL_NOWAIT)
4868                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4869                                         FAULT_FLAG_RETRY_NOWAIT;
4870                         if (flags & FOLL_TRIED) {
4871                                 /*
4872                                  * Note: FAULT_FLAG_ALLOW_RETRY and
4873                                  * FAULT_FLAG_TRIED can co-exist
4874                                  */
4875                                 fault_flags |= FAULT_FLAG_TRIED;
4876                         }
4877                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4878                         if (ret & VM_FAULT_ERROR) {
4879                                 err = vm_fault_to_errno(ret, flags);
4880                                 remainder = 0;
4881                                 break;
4882                         }
4883                         if (ret & VM_FAULT_RETRY) {
4884                                 if (locked &&
4885                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4886                                         *locked = 0;
4887                                 *nr_pages = 0;
4888                                 /*
4889                                  * VM_FAULT_RETRY must not return an
4890                                  * error, it will return zero
4891                                  * instead.
4892                                  *
4893                                  * No need to update "position" as the
4894                                  * caller will not check it after
4895                                  * *nr_pages is set to 0.
4896                                  */
4897                                 return i;
4898                         }
4899                         continue;
4900                 }
4901
4902                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4903                 page = pte_page(huge_ptep_get(pte));
4904
4905                 /*
4906                  * If subpage information not requested, update counters
4907                  * and skip the same_page loop below.
4908                  */
4909                 if (!pages && !vmas && !pfn_offset &&
4910                     (vaddr + huge_page_size(h) < vma->vm_end) &&
4911                     (remainder >= pages_per_huge_page(h))) {
4912                         vaddr += huge_page_size(h);
4913                         remainder -= pages_per_huge_page(h);
4914                         i += pages_per_huge_page(h);
4915                         spin_unlock(ptl);
4916                         continue;
4917                 }
4918
4919 same_page:
4920                 if (pages) {
4921                         pages[i] = mem_map_offset(page, pfn_offset);
4922                         /*
4923                          * try_grab_page() should always succeed here, because:
4924                          * a) we hold the ptl lock, and b) we've just checked
4925                          * that the huge page is present in the page tables. If
4926                          * the huge page is present, then the tail pages must
4927                          * also be present. The ptl prevents the head page and
4928                          * tail pages from being rearranged in any way. So this
4929                          * page must be available at this point, unless the page
4930                          * refcount overflowed:
4931                          */
4932                         if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
4933                                 spin_unlock(ptl);
4934                                 remainder = 0;
4935                                 err = -ENOMEM;
4936                                 break;
4937                         }
4938                 }
4939
4940                 if (vmas)
4941                         vmas[i] = vma;
4942
4943                 vaddr += PAGE_SIZE;
4944                 ++pfn_offset;
4945                 --remainder;
4946                 ++i;
4947                 if (vaddr < vma->vm_end && remainder &&
4948                                 pfn_offset < pages_per_huge_page(h)) {
4949                         /*
4950                          * We use pfn_offset to avoid touching the pageframes
4951                          * of this compound page.
4952                          */
4953                         goto same_page;
4954                 }
4955                 spin_unlock(ptl);
4956         }
4957         *nr_pages = remainder;
4958         /*
4959          * setting position is actually required only if remainder is
4960          * not zero but it's faster not to add a "if (remainder)"
4961          * branch.
4962          */
4963         *position = vaddr;
4964
4965         return i ? i : err;
4966 }
4967
4968 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4969 /*
4970  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4971  * implement this.
4972  */
4973 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4974 #endif
4975
4976 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4977                 unsigned long address, unsigned long end, pgprot_t newprot)
4978 {
4979         struct mm_struct *mm = vma->vm_mm;
4980         unsigned long start = address;
4981         pte_t *ptep;
4982         pte_t pte;
4983         struct hstate *h = hstate_vma(vma);
4984         unsigned long pages = 0;
4985         bool shared_pmd = false;
4986         struct mmu_notifier_range range;
4987
4988         /*
4989          * In the case of shared PMDs, the area to flush could be beyond
4990          * start/end.  Set range.start/range.end to cover the maximum possible
4991          * range if PMD sharing is possible.
4992          */
4993         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4994                                 0, vma, mm, start, end);
4995         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4996
4997         BUG_ON(address >= end);
4998         flush_cache_range(vma, range.start, range.end);
4999
5000         mmu_notifier_invalidate_range_start(&range);
5001         i_mmap_lock_write(vma->vm_file->f_mapping);
5002         for (; address < end; address += huge_page_size(h)) {
5003                 spinlock_t *ptl;
5004                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5005                 if (!ptep)
5006                         continue;
5007                 ptl = huge_pte_lock(h, mm, ptep);
5008                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5009                         pages++;
5010                         spin_unlock(ptl);
5011                         shared_pmd = true;
5012                         continue;
5013                 }
5014                 pte = huge_ptep_get(ptep);
5015                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5016                         spin_unlock(ptl);
5017                         continue;
5018                 }
5019                 if (unlikely(is_hugetlb_entry_migration(pte))) {
5020                         swp_entry_t entry = pte_to_swp_entry(pte);
5021
5022                         if (is_write_migration_entry(entry)) {
5023                                 pte_t newpte;
5024
5025                                 make_migration_entry_read(&entry);
5026                                 newpte = swp_entry_to_pte(entry);
5027                                 set_huge_swap_pte_at(mm, address, ptep,
5028                                                      newpte, huge_page_size(h));
5029                                 pages++;
5030                         }
5031                         spin_unlock(ptl);
5032                         continue;
5033                 }
5034                 if (!huge_pte_none(pte)) {
5035                         pte_t old_pte;
5036
5037                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5038                         pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5039                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
5040                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5041                         pages++;
5042                 }
5043                 spin_unlock(ptl);
5044         }
5045         /*
5046          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5047          * may have cleared our pud entry and done put_page on the page table:
5048          * once we release i_mmap_rwsem, another task can do the final put_page
5049          * and that page table be reused and filled with junk.  If we actually
5050          * did unshare a page of pmds, flush the range corresponding to the pud.
5051          */
5052         if (shared_pmd)
5053                 flush_hugetlb_tlb_range(vma, range.start, range.end);
5054         else
5055                 flush_hugetlb_tlb_range(vma, start, end);
5056         /*
5057          * No need to call mmu_notifier_invalidate_range() we are downgrading
5058          * page table protection not changing it to point to a new page.
5059          *
5060          * See Documentation/vm/mmu_notifier.rst
5061          */
5062         i_mmap_unlock_write(vma->vm_file->f_mapping);
5063         mmu_notifier_invalidate_range_end(&range);
5064
5065         return pages << h->order;
5066 }
5067
5068 int hugetlb_reserve_pages(struct inode *inode,
5069                                         long from, long to,
5070                                         struct vm_area_struct *vma,
5071                                         vm_flags_t vm_flags)
5072 {
5073         long ret, chg, add = -1;
5074         struct hstate *h = hstate_inode(inode);
5075         struct hugepage_subpool *spool = subpool_inode(inode);
5076         struct resv_map *resv_map;
5077         struct hugetlb_cgroup *h_cg = NULL;
5078         long gbl_reserve, regions_needed = 0;
5079
5080         /* This should never happen */
5081         if (from > to) {
5082                 VM_WARN(1, "%s called with a negative range\n", __func__);
5083                 return -EINVAL;
5084         }
5085
5086         /*
5087          * Only apply hugepage reservation if asked. At fault time, an
5088          * attempt will be made for VM_NORESERVE to allocate a page
5089          * without using reserves
5090          */
5091         if (vm_flags & VM_NORESERVE)
5092                 return 0;
5093
5094         /*
5095          * Shared mappings base their reservation on the number of pages that
5096          * are already allocated on behalf of the file. Private mappings need
5097          * to reserve the full area even if read-only as mprotect() may be
5098          * called to make the mapping read-write. Assume !vma is a shm mapping
5099          */
5100         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5101                 /*
5102                  * resv_map can not be NULL as hugetlb_reserve_pages is only
5103                  * called for inodes for which resv_maps were created (see
5104                  * hugetlbfs_get_inode).
5105                  */
5106                 resv_map = inode_resv_map(inode);
5107
5108                 chg = region_chg(resv_map, from, to, &regions_needed);
5109
5110         } else {
5111                 /* Private mapping. */
5112                 resv_map = resv_map_alloc();
5113                 if (!resv_map)
5114                         return -ENOMEM;
5115
5116                 chg = to - from;
5117
5118                 set_vma_resv_map(vma, resv_map);
5119                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5120         }
5121
5122         if (chg < 0) {
5123                 ret = chg;
5124                 goto out_err;
5125         }
5126
5127         ret = hugetlb_cgroup_charge_cgroup_rsvd(
5128                 hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
5129
5130         if (ret < 0) {
5131                 ret = -ENOMEM;
5132                 goto out_err;
5133         }
5134
5135         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5136                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5137                  * of the resv_map.
5138                  */
5139                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5140         }
5141
5142         /*
5143          * There must be enough pages in the subpool for the mapping. If
5144          * the subpool has a minimum size, there may be some global
5145          * reservations already in place (gbl_reserve).
5146          */
5147         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5148         if (gbl_reserve < 0) {
5149                 ret = -ENOSPC;
5150                 goto out_uncharge_cgroup;
5151         }
5152
5153         /*
5154          * Check enough hugepages are available for the reservation.
5155          * Hand the pages back to the subpool if there are not
5156          */
5157         ret = hugetlb_acct_memory(h, gbl_reserve);
5158         if (ret < 0) {
5159                 goto out_put_pages;
5160         }
5161
5162         /*
5163          * Account for the reservations made. Shared mappings record regions
5164          * that have reservations as they are shared by multiple VMAs.
5165          * When the last VMA disappears, the region map says how much
5166          * the reservation was and the page cache tells how much of
5167          * the reservation was consumed. Private mappings are per-VMA and
5168          * only the consumed reservations are tracked. When the VMA
5169          * disappears, the original reservation is the VMA size and the
5170          * consumed reservations are stored in the map. Hence, nothing
5171          * else has to be done for private mappings here
5172          */
5173         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5174                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5175
5176                 if (unlikely(add < 0)) {
5177                         hugetlb_acct_memory(h, -gbl_reserve);
5178                         ret = add;
5179                         goto out_put_pages;
5180                 } else if (unlikely(chg > add)) {
5181                         /*
5182                          * pages in this range were added to the reserve
5183                          * map between region_chg and region_add.  This
5184                          * indicates a race with alloc_huge_page.  Adjust
5185                          * the subpool and reserve counts modified above
5186                          * based on the difference.
5187                          */
5188                         long rsv_adjust;
5189
5190                         hugetlb_cgroup_uncharge_cgroup_rsvd(
5191                                 hstate_index(h),
5192                                 (chg - add) * pages_per_huge_page(h), h_cg);
5193
5194                         rsv_adjust = hugepage_subpool_put_pages(spool,
5195                                                                 chg - add);
5196                         hugetlb_acct_memory(h, -rsv_adjust);
5197                 }
5198         }
5199         return 0;
5200 out_put_pages:
5201         /* put back original number of pages, chg */
5202         (void)hugepage_subpool_put_pages(spool, chg);
5203 out_uncharge_cgroup:
5204         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5205                                             chg * pages_per_huge_page(h), h_cg);
5206 out_err:
5207         if (!vma || vma->vm_flags & VM_MAYSHARE)
5208                 /* Only call region_abort if the region_chg succeeded but the
5209                  * region_add failed or didn't run.
5210                  */
5211                 if (chg >= 0 && add < 0)
5212                         region_abort(resv_map, from, to, regions_needed);
5213         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5214                 kref_put(&resv_map->refs, resv_map_release);
5215         return ret;
5216 }
5217
5218 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5219                                                                 long freed)
5220 {
5221         struct hstate *h = hstate_inode(inode);
5222         struct resv_map *resv_map = inode_resv_map(inode);
5223         long chg = 0;
5224         struct hugepage_subpool *spool = subpool_inode(inode);
5225         long gbl_reserve;
5226
5227         /*
5228          * Since this routine can be called in the evict inode path for all
5229          * hugetlbfs inodes, resv_map could be NULL.
5230          */
5231         if (resv_map) {
5232                 chg = region_del(resv_map, start, end);
5233                 /*
5234                  * region_del() can fail in the rare case where a region
5235                  * must be split and another region descriptor can not be
5236                  * allocated.  If end == LONG_MAX, it will not fail.
5237                  */
5238                 if (chg < 0)
5239                         return chg;
5240         }
5241
5242         spin_lock(&inode->i_lock);
5243         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5244         spin_unlock(&inode->i_lock);
5245
5246         /*
5247          * If the subpool has a minimum size, the number of global
5248          * reservations to be released may be adjusted.
5249          */
5250         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5251         hugetlb_acct_memory(h, -gbl_reserve);
5252
5253         return 0;
5254 }
5255
5256 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5257 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5258                                 struct vm_area_struct *vma,
5259                                 unsigned long addr, pgoff_t idx)
5260 {
5261         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5262                                 svma->vm_start;
5263         unsigned long sbase = saddr & PUD_MASK;
5264         unsigned long s_end = sbase + PUD_SIZE;
5265
5266         /* Allow segments to share if only one is marked locked */
5267         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5268         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5269
5270         /*
5271          * match the virtual addresses, permission and the alignment of the
5272          * page table page.
5273          */
5274         if (pmd_index(addr) != pmd_index(saddr) ||
5275             vm_flags != svm_flags ||
5276             sbase < svma->vm_start || svma->vm_end < s_end)
5277                 return 0;
5278
5279         return saddr;
5280 }
5281
5282 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5283 {
5284         unsigned long base = addr & PUD_MASK;
5285         unsigned long end = base + PUD_SIZE;
5286
5287         /*
5288          * check on proper vm_flags and page table alignment
5289          */
5290         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5291                 return true;
5292         return false;
5293 }
5294
5295 /*
5296  * Determine if start,end range within vma could be mapped by shared pmd.
5297  * If yes, adjust start and end to cover range associated with possible
5298  * shared pmd mappings.
5299  */
5300 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5301                                 unsigned long *start, unsigned long *end)
5302 {
5303         unsigned long a_start, a_end;
5304
5305         if (!(vma->vm_flags & VM_MAYSHARE))
5306                 return;
5307
5308         /* Extend the range to be PUD aligned for a worst case scenario */
5309         a_start = ALIGN_DOWN(*start, PUD_SIZE);
5310         a_end = ALIGN(*end, PUD_SIZE);
5311
5312         /*
5313          * Intersect the range with the vma range, since pmd sharing won't be
5314          * across vma after all
5315          */
5316         *start = max(vma->vm_start, a_start);
5317         *end = min(vma->vm_end, a_end);
5318 }
5319
5320 /*
5321  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5322  * and returns the corresponding pte. While this is not necessary for the
5323  * !shared pmd case because we can allocate the pmd later as well, it makes the
5324  * code much cleaner.
5325  *
5326  * This routine must be called with i_mmap_rwsem held in at least read mode if
5327  * sharing is possible.  For hugetlbfs, this prevents removal of any page
5328  * table entries associated with the address space.  This is important as we
5329  * are setting up sharing based on existing page table entries (mappings).
5330  *
5331  * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
5332  * huge_pte_alloc know that sharing is not possible and do not take
5333  * i_mmap_rwsem as a performance optimization.  This is handled by the
5334  * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5335  * only required for subsequent processing.
5336  */
5337 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5338 {
5339         struct vm_area_struct *vma = find_vma(mm, addr);
5340         struct address_space *mapping = vma->vm_file->f_mapping;
5341         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5342                         vma->vm_pgoff;
5343         struct vm_area_struct *svma;
5344         unsigned long saddr;
5345         pte_t *spte = NULL;
5346         pte_t *pte;
5347         spinlock_t *ptl;
5348
5349         if (!vma_shareable(vma, addr))
5350                 return (pte_t *)pmd_alloc(mm, pud, addr);
5351
5352         i_mmap_assert_locked(mapping);
5353         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5354                 if (svma == vma)
5355                         continue;
5356
5357                 saddr = page_table_shareable(svma, vma, addr, idx);
5358                 if (saddr) {
5359                         spte = huge_pte_offset(svma->vm_mm, saddr,
5360                                                vma_mmu_pagesize(svma));
5361                         if (spte) {
5362                                 get_page(virt_to_page(spte));
5363                                 break;
5364                         }
5365                 }
5366         }
5367
5368         if (!spte)
5369                 goto out;
5370
5371         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5372         if (pud_none(*pud)) {
5373                 pud_populate(mm, pud,
5374                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
5375                 mm_inc_nr_pmds(mm);
5376         } else {
5377                 put_page(virt_to_page(spte));
5378         }
5379         spin_unlock(ptl);
5380 out:
5381         pte = (pte_t *)pmd_alloc(mm, pud, addr);
5382         return pte;
5383 }
5384
5385 /*
5386  * unmap huge page backed by shared pte.
5387  *
5388  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5389  * indicated by page_count > 1, unmap is achieved by clearing pud and
5390  * decrementing the ref count. If count == 1, the pte page is not shared.
5391  *
5392  * Called with page table lock held and i_mmap_rwsem held in write mode.
5393  *
5394  * returns: 1 successfully unmapped a shared pte page
5395  *          0 the underlying pte page is not shared, or it is the last user
5396  */
5397 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5398                                         unsigned long *addr, pte_t *ptep)
5399 {
5400         pgd_t *pgd = pgd_offset(mm, *addr);
5401         p4d_t *p4d = p4d_offset(pgd, *addr);
5402         pud_t *pud = pud_offset(p4d, *addr);
5403
5404         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5405         BUG_ON(page_count(virt_to_page(ptep)) == 0);
5406         if (page_count(virt_to_page(ptep)) == 1)
5407                 return 0;
5408
5409         pud_clear(pud);
5410         put_page(virt_to_page(ptep));
5411         mm_dec_nr_pmds(mm);
5412         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5413         return 1;
5414 }
5415 #define want_pmd_share()        (1)
5416 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5417 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5418 {
5419         return NULL;
5420 }
5421
5422 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5423                                 unsigned long *addr, pte_t *ptep)
5424 {
5425         return 0;
5426 }
5427
5428 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5429                                 unsigned long *start, unsigned long *end)
5430 {
5431 }
5432 #define want_pmd_share()        (0)
5433 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5434
5435 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5436 pte_t *huge_pte_alloc(struct mm_struct *mm,
5437                         unsigned long addr, unsigned long sz)
5438 {
5439         pgd_t *pgd;
5440         p4d_t *p4d;
5441         pud_t *pud;
5442         pte_t *pte = NULL;
5443
5444         pgd = pgd_offset(mm, addr);
5445         p4d = p4d_alloc(mm, pgd, addr);
5446         if (!p4d)
5447                 return NULL;
5448         pud = pud_alloc(mm, p4d, addr);
5449         if (pud) {
5450                 if (sz == PUD_SIZE) {
5451                         pte = (pte_t *)pud;
5452                 } else {
5453                         BUG_ON(sz != PMD_SIZE);
5454                         if (want_pmd_share() && pud_none(*pud))
5455                                 pte = huge_pmd_share(mm, addr, pud);
5456                         else
5457                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5458                 }
5459         }
5460         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5461
5462         return pte;
5463 }
5464
5465 /*
5466  * huge_pte_offset() - Walk the page table to resolve the hugepage
5467  * entry at address @addr
5468  *
5469  * Return: Pointer to page table entry (PUD or PMD) for
5470  * address @addr, or NULL if a !p*d_present() entry is encountered and the
5471  * size @sz doesn't match the hugepage size at this level of the page
5472  * table.
5473  */
5474 pte_t *huge_pte_offset(struct mm_struct *mm,
5475                        unsigned long addr, unsigned long sz)
5476 {
5477         pgd_t *pgd;
5478         p4d_t *p4d;
5479         pud_t *pud;
5480         pmd_t *pmd;
5481
5482         pgd = pgd_offset(mm, addr);
5483         if (!pgd_present(*pgd))
5484                 return NULL;
5485         p4d = p4d_offset(pgd, addr);
5486         if (!p4d_present(*p4d))
5487                 return NULL;
5488
5489         pud = pud_offset(p4d, addr);
5490         if (sz == PUD_SIZE)
5491                 /* must be pud huge, non-present or none */
5492                 return (pte_t *)pud;
5493         if (!pud_present(*pud))
5494                 return NULL;
5495         /* must have a valid entry and size to go further */
5496
5497         pmd = pmd_offset(pud, addr);
5498         /* must be pmd huge, non-present or none */
5499         return (pte_t *)pmd;
5500 }
5501
5502 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5503
5504 /*
5505  * These functions are overwritable if your architecture needs its own
5506  * behavior.
5507  */
5508 struct page * __weak
5509 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5510                               int write)
5511 {
5512         return ERR_PTR(-EINVAL);
5513 }
5514
5515 struct page * __weak
5516 follow_huge_pd(struct vm_area_struct *vma,
5517                unsigned long address, hugepd_t hpd, int flags, int pdshift)
5518 {
5519         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5520         return NULL;
5521 }
5522
5523 struct page * __weak
5524 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5525                 pmd_t *pmd, int flags)
5526 {
5527         struct page *page = NULL;
5528         spinlock_t *ptl;
5529         pte_t pte;
5530
5531         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5532         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5533                          (FOLL_PIN | FOLL_GET)))
5534                 return NULL;
5535
5536 retry:
5537         ptl = pmd_lockptr(mm, pmd);
5538         spin_lock(ptl);
5539         /*
5540          * make sure that the address range covered by this pmd is not
5541          * unmapped from other threads.
5542          */
5543         if (!pmd_huge(*pmd))
5544                 goto out;
5545         pte = huge_ptep_get((pte_t *)pmd);
5546         if (pte_present(pte)) {
5547                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5548                 /*
5549                  * try_grab_page() should always succeed here, because: a) we
5550                  * hold the pmd (ptl) lock, and b) we've just checked that the
5551                  * huge pmd (head) page is present in the page tables. The ptl
5552                  * prevents the head page and tail pages from being rearranged
5553                  * in any way. So this page must be available at this point,
5554                  * unless the page refcount overflowed:
5555                  */
5556                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5557                         page = NULL;
5558                         goto out;
5559                 }
5560         } else {
5561                 if (is_hugetlb_entry_migration(pte)) {
5562                         spin_unlock(ptl);
5563                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5564                         goto retry;
5565                 }
5566                 /*
5567                  * hwpoisoned entry is treated as no_page_table in
5568                  * follow_page_mask().
5569                  */
5570         }
5571 out:
5572         spin_unlock(ptl);
5573         return page;
5574 }
5575
5576 struct page * __weak
5577 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5578                 pud_t *pud, int flags)
5579 {
5580         if (flags & (FOLL_GET | FOLL_PIN))
5581                 return NULL;
5582
5583         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5584 }
5585
5586 struct page * __weak
5587 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5588 {
5589         if (flags & (FOLL_GET | FOLL_PIN))
5590                 return NULL;
5591
5592         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5593 }
5594
5595 bool isolate_huge_page(struct page *page, struct list_head *list)
5596 {
5597         bool ret = true;
5598
5599         spin_lock(&hugetlb_lock);
5600         if (!PageHeadHuge(page) || !page_huge_active(page) ||
5601             !get_page_unless_zero(page)) {
5602                 ret = false;
5603                 goto unlock;
5604         }
5605         clear_page_huge_active(page);
5606         list_move_tail(&page->lru, list);
5607 unlock:
5608         spin_unlock(&hugetlb_lock);
5609         return ret;
5610 }
5611
5612 void putback_active_hugepage(struct page *page)
5613 {
5614         VM_BUG_ON_PAGE(!PageHead(page), page);
5615         spin_lock(&hugetlb_lock);
5616         set_page_huge_active(page);
5617         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5618         spin_unlock(&hugetlb_lock);
5619         put_page(page);
5620 }
5621
5622 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5623 {
5624         struct hstate *h = page_hstate(oldpage);
5625
5626         hugetlb_cgroup_migrate(oldpage, newpage);
5627         set_page_owner_migrate_reason(newpage, reason);
5628
5629         /*
5630          * transfer temporary state of the new huge page. This is
5631          * reverse to other transitions because the newpage is going to
5632          * be final while the old one will be freed so it takes over
5633          * the temporary status.
5634          *
5635          * Also note that we have to transfer the per-node surplus state
5636          * here as well otherwise the global surplus count will not match
5637          * the per-node's.
5638          */
5639         if (PageHugeTemporary(newpage)) {
5640                 int old_nid = page_to_nid(oldpage);
5641                 int new_nid = page_to_nid(newpage);
5642
5643                 SetPageHugeTemporary(oldpage);
5644                 ClearPageHugeTemporary(newpage);
5645
5646                 spin_lock(&hugetlb_lock);
5647                 if (h->surplus_huge_pages_node[old_nid]) {
5648                         h->surplus_huge_pages_node[old_nid]--;
5649                         h->surplus_huge_pages_node[new_nid]++;
5650                 }
5651                 spin_unlock(&hugetlb_lock);
5652         }
5653 }
5654
5655 #ifdef CONFIG_CMA
5656 static bool cma_reserve_called __initdata;
5657
5658 static int __init cmdline_parse_hugetlb_cma(char *p)
5659 {
5660         hugetlb_cma_size = memparse(p, &p);
5661         return 0;
5662 }
5663
5664 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5665
5666 void __init hugetlb_cma_reserve(int order)
5667 {
5668         unsigned long size, reserved, per_node;
5669         int nid;
5670
5671         cma_reserve_called = true;
5672
5673         if (!hugetlb_cma_size)
5674                 return;
5675
5676         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5677                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5678                         (PAGE_SIZE << order) / SZ_1M);
5679                 return;
5680         }
5681
5682         /*
5683          * If 3 GB area is requested on a machine with 4 numa nodes,
5684          * let's allocate 1 GB on first three nodes and ignore the last one.
5685          */
5686         per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5687         pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5688                 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5689
5690         reserved = 0;
5691         for_each_node_state(nid, N_ONLINE) {
5692                 int res;
5693                 char name[CMA_MAX_NAME];
5694
5695                 size = min(per_node, hugetlb_cma_size - reserved);
5696                 size = round_up(size, PAGE_SIZE << order);
5697
5698                 snprintf(name, sizeof(name), "hugetlb%d", nid);
5699                 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5700                                                  0, false, name,
5701                                                  &hugetlb_cma[nid], nid);
5702                 if (res) {
5703                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5704                                 res, nid);
5705                         continue;
5706                 }
5707
5708                 reserved += size;
5709                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5710                         size / SZ_1M, nid);
5711
5712                 if (reserved >= hugetlb_cma_size)
5713                         break;
5714         }
5715 }
5716
5717 void __init hugetlb_cma_check(void)
5718 {
5719         if (!hugetlb_cma_size || cma_reserve_called)
5720                 return;
5721
5722         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5723 }
5724
5725 #endif /* CONFIG_CMA */