Linux 6.9-rc1
[linux-2.6-microblaze.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36
37 #include <asm/page.h>
38 #include <asm/pgalloc.h>
39 #include <asm/tlb.h>
40
41 #include <linux/io.h>
42 #include <linux/hugetlb.h>
43 #include <linux/hugetlb_cgroup.h>
44 #include <linux/node.h>
45 #include <linux/page_owner.h>
46 #include "internal.h"
47 #include "hugetlb_vmemmap.h"
48
49 int hugetlb_max_hstate __read_mostly;
50 unsigned int default_hstate_idx;
51 struct hstate hstates[HUGE_MAX_HSTATE];
52
53 #ifdef CONFIG_CMA
54 static struct cma *hugetlb_cma[MAX_NUMNODES];
55 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
56 static bool hugetlb_cma_page(struct page *page, unsigned int order)
57 {
58         return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page,
59                                 1 << order);
60 }
61 #else
62 static bool hugetlb_cma_page(struct page *page, unsigned int order)
63 {
64         return false;
65 }
66 #endif
67 static unsigned long hugetlb_cma_size __initdata;
68
69 __initdata LIST_HEAD(huge_boot_pages);
70
71 /* for command line parsing */
72 static struct hstate * __initdata parsed_hstate;
73 static unsigned long __initdata default_hstate_max_huge_pages;
74 static bool __initdata parsed_valid_hugepagesz = true;
75 static bool __initdata parsed_default_hugepagesz;
76 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
77
78 /*
79  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
80  * free_huge_pages, and surplus_huge_pages.
81  */
82 DEFINE_SPINLOCK(hugetlb_lock);
83
84 /*
85  * Serializes faults on the same logical page.  This is used to
86  * prevent spurious OOMs when the hugepage pool is fully utilized.
87  */
88 static int num_fault_mutexes;
89 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
90
91 /* Forward declaration */
92 static int hugetlb_acct_memory(struct hstate *h, long delta);
93
94 static inline bool subpool_is_free(struct hugepage_subpool *spool)
95 {
96         if (spool->count)
97                 return false;
98         if (spool->max_hpages != -1)
99                 return spool->used_hpages == 0;
100         if (spool->min_hpages != -1)
101                 return spool->rsv_hpages == spool->min_hpages;
102
103         return true;
104 }
105
106 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
107                                                 unsigned long irq_flags)
108 {
109         spin_unlock_irqrestore(&spool->lock, irq_flags);
110
111         /* If no pages are used, and no other handles to the subpool
112          * remain, give up any reservations based on minimum size and
113          * free the subpool */
114         if (subpool_is_free(spool)) {
115                 if (spool->min_hpages != -1)
116                         hugetlb_acct_memory(spool->hstate,
117                                                 -spool->min_hpages);
118                 kfree(spool);
119         }
120 }
121
122 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
123                                                 long min_hpages)
124 {
125         struct hugepage_subpool *spool;
126
127         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
128         if (!spool)
129                 return NULL;
130
131         spin_lock_init(&spool->lock);
132         spool->count = 1;
133         spool->max_hpages = max_hpages;
134         spool->hstate = h;
135         spool->min_hpages = min_hpages;
136
137         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
138                 kfree(spool);
139                 return NULL;
140         }
141         spool->rsv_hpages = min_hpages;
142
143         return spool;
144 }
145
146 void hugepage_put_subpool(struct hugepage_subpool *spool)
147 {
148         unsigned long flags;
149
150         spin_lock_irqsave(&spool->lock, flags);
151         BUG_ON(!spool->count);
152         spool->count--;
153         unlock_or_release_subpool(spool, flags);
154 }
155
156 /*
157  * Subpool accounting for allocating and reserving pages.
158  * Return -ENOMEM if there are not enough resources to satisfy the
159  * request.  Otherwise, return the number of pages by which the
160  * global pools must be adjusted (upward).  The returned value may
161  * only be different than the passed value (delta) in the case where
162  * a subpool minimum size must be maintained.
163  */
164 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
165                                       long delta)
166 {
167         long ret = delta;
168
169         if (!spool)
170                 return ret;
171
172         spin_lock_irq(&spool->lock);
173
174         if (spool->max_hpages != -1) {          /* maximum size accounting */
175                 if ((spool->used_hpages + delta) <= spool->max_hpages)
176                         spool->used_hpages += delta;
177                 else {
178                         ret = -ENOMEM;
179                         goto unlock_ret;
180                 }
181         }
182
183         /* minimum size accounting */
184         if (spool->min_hpages != -1 && spool->rsv_hpages) {
185                 if (delta > spool->rsv_hpages) {
186                         /*
187                          * Asking for more reserves than those already taken on
188                          * behalf of subpool.  Return difference.
189                          */
190                         ret = delta - spool->rsv_hpages;
191                         spool->rsv_hpages = 0;
192                 } else {
193                         ret = 0;        /* reserves already accounted for */
194                         spool->rsv_hpages -= delta;
195                 }
196         }
197
198 unlock_ret:
199         spin_unlock_irq(&spool->lock);
200         return ret;
201 }
202
203 /*
204  * Subpool accounting for freeing and unreserving pages.
205  * Return the number of global page reservations that must be dropped.
206  * The return value may only be different than the passed value (delta)
207  * in the case where a subpool minimum size must be maintained.
208  */
209 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
210                                        long delta)
211 {
212         long ret = delta;
213         unsigned long flags;
214
215         if (!spool)
216                 return delta;
217
218         spin_lock_irqsave(&spool->lock, flags);
219
220         if (spool->max_hpages != -1)            /* maximum size accounting */
221                 spool->used_hpages -= delta;
222
223          /* minimum size accounting */
224         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
225                 if (spool->rsv_hpages + delta <= spool->min_hpages)
226                         ret = 0;
227                 else
228                         ret = spool->rsv_hpages + delta - spool->min_hpages;
229
230                 spool->rsv_hpages += delta;
231                 if (spool->rsv_hpages > spool->min_hpages)
232                         spool->rsv_hpages = spool->min_hpages;
233         }
234
235         /*
236          * If hugetlbfs_put_super couldn't free spool due to an outstanding
237          * quota reference, free it now.
238          */
239         unlock_or_release_subpool(spool, flags);
240
241         return ret;
242 }
243
244 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
245 {
246         return HUGETLBFS_SB(inode->i_sb)->spool;
247 }
248
249 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
250 {
251         return subpool_inode(file_inode(vma->vm_file));
252 }
253
254 /* Helper that removes a struct file_region from the resv_map cache and returns
255  * it for use.
256  */
257 static struct file_region *
258 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
259 {
260         struct file_region *nrg = NULL;
261
262         VM_BUG_ON(resv->region_cache_count <= 0);
263
264         resv->region_cache_count--;
265         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
266         list_del(&nrg->link);
267
268         nrg->from = from;
269         nrg->to = to;
270
271         return nrg;
272 }
273
274 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
275                                               struct file_region *rg)
276 {
277 #ifdef CONFIG_CGROUP_HUGETLB
278         nrg->reservation_counter = rg->reservation_counter;
279         nrg->css = rg->css;
280         if (rg->css)
281                 css_get(rg->css);
282 #endif
283 }
284
285 /* Helper that records hugetlb_cgroup uncharge info. */
286 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
287                                                 struct hstate *h,
288                                                 struct resv_map *resv,
289                                                 struct file_region *nrg)
290 {
291 #ifdef CONFIG_CGROUP_HUGETLB
292         if (h_cg) {
293                 nrg->reservation_counter =
294                         &h_cg->rsvd_hugepage[hstate_index(h)];
295                 nrg->css = &h_cg->css;
296                 /*
297                  * The caller will hold exactly one h_cg->css reference for the
298                  * whole contiguous reservation region. But this area might be
299                  * scattered when there are already some file_regions reside in
300                  * it. As a result, many file_regions may share only one css
301                  * reference. In order to ensure that one file_region must hold
302                  * exactly one h_cg->css reference, we should do css_get for
303                  * each file_region and leave the reference held by caller
304                  * untouched.
305                  */
306                 css_get(&h_cg->css);
307                 if (!resv->pages_per_hpage)
308                         resv->pages_per_hpage = pages_per_huge_page(h);
309                 /* pages_per_hpage should be the same for all entries in
310                  * a resv_map.
311                  */
312                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
313         } else {
314                 nrg->reservation_counter = NULL;
315                 nrg->css = NULL;
316         }
317 #endif
318 }
319
320 static void put_uncharge_info(struct file_region *rg)
321 {
322 #ifdef CONFIG_CGROUP_HUGETLB
323         if (rg->css)
324                 css_put(rg->css);
325 #endif
326 }
327
328 static bool has_same_uncharge_info(struct file_region *rg,
329                                    struct file_region *org)
330 {
331 #ifdef CONFIG_CGROUP_HUGETLB
332         return rg->reservation_counter == org->reservation_counter &&
333                rg->css == org->css;
334
335 #else
336         return true;
337 #endif
338 }
339
340 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
341 {
342         struct file_region *nrg = NULL, *prg = NULL;
343
344         prg = list_prev_entry(rg, link);
345         if (&prg->link != &resv->regions && prg->to == rg->from &&
346             has_same_uncharge_info(prg, rg)) {
347                 prg->to = rg->to;
348
349                 list_del(&rg->link);
350                 put_uncharge_info(rg);
351                 kfree(rg);
352
353                 rg = prg;
354         }
355
356         nrg = list_next_entry(rg, link);
357         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
358             has_same_uncharge_info(nrg, rg)) {
359                 nrg->from = rg->from;
360
361                 list_del(&rg->link);
362                 put_uncharge_info(rg);
363                 kfree(rg);
364         }
365 }
366
367 static inline long
368 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
369                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
370                      long *regions_needed)
371 {
372         struct file_region *nrg;
373
374         if (!regions_needed) {
375                 nrg = get_file_region_entry_from_cache(map, from, to);
376                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
377                 list_add(&nrg->link, rg);
378                 coalesce_file_region(map, nrg);
379         } else
380                 *regions_needed += 1;
381
382         return to - from;
383 }
384
385 /*
386  * Must be called with resv->lock held.
387  *
388  * Calling this with regions_needed != NULL will count the number of pages
389  * to be added but will not modify the linked list. And regions_needed will
390  * indicate the number of file_regions needed in the cache to carry out to add
391  * the regions for this range.
392  */
393 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
394                                      struct hugetlb_cgroup *h_cg,
395                                      struct hstate *h, long *regions_needed)
396 {
397         long add = 0;
398         struct list_head *head = &resv->regions;
399         long last_accounted_offset = f;
400         struct file_region *iter, *trg = NULL;
401         struct list_head *rg = NULL;
402
403         if (regions_needed)
404                 *regions_needed = 0;
405
406         /* In this loop, we essentially handle an entry for the range
407          * [last_accounted_offset, iter->from), at every iteration, with some
408          * bounds checking.
409          */
410         list_for_each_entry_safe(iter, trg, head, link) {
411                 /* Skip irrelevant regions that start before our range. */
412                 if (iter->from < f) {
413                         /* If this region ends after the last accounted offset,
414                          * then we need to update last_accounted_offset.
415                          */
416                         if (iter->to > last_accounted_offset)
417                                 last_accounted_offset = iter->to;
418                         continue;
419                 }
420
421                 /* When we find a region that starts beyond our range, we've
422                  * finished.
423                  */
424                 if (iter->from >= t) {
425                         rg = iter->link.prev;
426                         break;
427                 }
428
429                 /* Add an entry for last_accounted_offset -> iter->from, and
430                  * update last_accounted_offset.
431                  */
432                 if (iter->from > last_accounted_offset)
433                         add += hugetlb_resv_map_add(resv, iter->link.prev,
434                                                     last_accounted_offset,
435                                                     iter->from, h, h_cg,
436                                                     regions_needed);
437
438                 last_accounted_offset = iter->to;
439         }
440
441         /* Handle the case where our range extends beyond
442          * last_accounted_offset.
443          */
444         if (!rg)
445                 rg = head->prev;
446         if (last_accounted_offset < t)
447                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
448                                             t, h, h_cg, regions_needed);
449
450         return add;
451 }
452
453 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
454  */
455 static int allocate_file_region_entries(struct resv_map *resv,
456                                         int regions_needed)
457         __must_hold(&resv->lock)
458 {
459         struct list_head allocated_regions;
460         int to_allocate = 0, i = 0;
461         struct file_region *trg = NULL, *rg = NULL;
462
463         VM_BUG_ON(regions_needed < 0);
464
465         INIT_LIST_HEAD(&allocated_regions);
466
467         /*
468          * Check for sufficient descriptors in the cache to accommodate
469          * the number of in progress add operations plus regions_needed.
470          *
471          * This is a while loop because when we drop the lock, some other call
472          * to region_add or region_del may have consumed some region_entries,
473          * so we keep looping here until we finally have enough entries for
474          * (adds_in_progress + regions_needed).
475          */
476         while (resv->region_cache_count <
477                (resv->adds_in_progress + regions_needed)) {
478                 to_allocate = resv->adds_in_progress + regions_needed -
479                               resv->region_cache_count;
480
481                 /* At this point, we should have enough entries in the cache
482                  * for all the existing adds_in_progress. We should only be
483                  * needing to allocate for regions_needed.
484                  */
485                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
486
487                 spin_unlock(&resv->lock);
488                 for (i = 0; i < to_allocate; i++) {
489                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
490                         if (!trg)
491                                 goto out_of_memory;
492                         list_add(&trg->link, &allocated_regions);
493                 }
494
495                 spin_lock(&resv->lock);
496
497                 list_splice(&allocated_regions, &resv->region_cache);
498                 resv->region_cache_count += to_allocate;
499         }
500
501         return 0;
502
503 out_of_memory:
504         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
505                 list_del(&rg->link);
506                 kfree(rg);
507         }
508         return -ENOMEM;
509 }
510
511 /*
512  * Add the huge page range represented by [f, t) to the reserve
513  * map.  Regions will be taken from the cache to fill in this range.
514  * Sufficient regions should exist in the cache due to the previous
515  * call to region_chg with the same range, but in some cases the cache will not
516  * have sufficient entries due to races with other code doing region_add or
517  * region_del.  The extra needed entries will be allocated.
518  *
519  * regions_needed is the out value provided by a previous call to region_chg.
520  *
521  * Return the number of new huge pages added to the map.  This number is greater
522  * than or equal to zero.  If file_region entries needed to be allocated for
523  * this operation and we were not able to allocate, it returns -ENOMEM.
524  * region_add of regions of length 1 never allocate file_regions and cannot
525  * fail; region_chg will always allocate at least 1 entry and a region_add for
526  * 1 page will only require at most 1 entry.
527  */
528 static long region_add(struct resv_map *resv, long f, long t,
529                        long in_regions_needed, struct hstate *h,
530                        struct hugetlb_cgroup *h_cg)
531 {
532         long add = 0, actual_regions_needed = 0;
533
534         spin_lock(&resv->lock);
535 retry:
536
537         /* Count how many regions are actually needed to execute this add. */
538         add_reservation_in_range(resv, f, t, NULL, NULL,
539                                  &actual_regions_needed);
540
541         /*
542          * Check for sufficient descriptors in the cache to accommodate
543          * this add operation. Note that actual_regions_needed may be greater
544          * than in_regions_needed, as the resv_map may have been modified since
545          * the region_chg call. In this case, we need to make sure that we
546          * allocate extra entries, such that we have enough for all the
547          * existing adds_in_progress, plus the excess needed for this
548          * operation.
549          */
550         if (actual_regions_needed > in_regions_needed &&
551             resv->region_cache_count <
552                     resv->adds_in_progress +
553                             (actual_regions_needed - in_regions_needed)) {
554                 /* region_add operation of range 1 should never need to
555                  * allocate file_region entries.
556                  */
557                 VM_BUG_ON(t - f <= 1);
558
559                 if (allocate_file_region_entries(
560                             resv, actual_regions_needed - in_regions_needed)) {
561                         return -ENOMEM;
562                 }
563
564                 goto retry;
565         }
566
567         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
568
569         resv->adds_in_progress -= in_regions_needed;
570
571         spin_unlock(&resv->lock);
572         return add;
573 }
574
575 /*
576  * Examine the existing reserve map and determine how many
577  * huge pages in the specified range [f, t) are NOT currently
578  * represented.  This routine is called before a subsequent
579  * call to region_add that will actually modify the reserve
580  * map to add the specified range [f, t).  region_chg does
581  * not change the number of huge pages represented by the
582  * map.  A number of new file_region structures is added to the cache as a
583  * placeholder, for the subsequent region_add call to use. At least 1
584  * file_region structure is added.
585  *
586  * out_regions_needed is the number of regions added to the
587  * resv->adds_in_progress.  This value needs to be provided to a follow up call
588  * to region_add or region_abort for proper accounting.
589  *
590  * Returns the number of huge pages that need to be added to the existing
591  * reservation map for the range [f, t).  This number is greater or equal to
592  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
593  * is needed and can not be allocated.
594  */
595 static long region_chg(struct resv_map *resv, long f, long t,
596                        long *out_regions_needed)
597 {
598         long chg = 0;
599
600         spin_lock(&resv->lock);
601
602         /* Count how many hugepages in this range are NOT represented. */
603         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
604                                        out_regions_needed);
605
606         if (*out_regions_needed == 0)
607                 *out_regions_needed = 1;
608
609         if (allocate_file_region_entries(resv, *out_regions_needed))
610                 return -ENOMEM;
611
612         resv->adds_in_progress += *out_regions_needed;
613
614         spin_unlock(&resv->lock);
615         return chg;
616 }
617
618 /*
619  * Abort the in progress add operation.  The adds_in_progress field
620  * of the resv_map keeps track of the operations in progress between
621  * calls to region_chg and region_add.  Operations are sometimes
622  * aborted after the call to region_chg.  In such cases, region_abort
623  * is called to decrement the adds_in_progress counter. regions_needed
624  * is the value returned by the region_chg call, it is used to decrement
625  * the adds_in_progress counter.
626  *
627  * NOTE: The range arguments [f, t) are not needed or used in this
628  * routine.  They are kept to make reading the calling code easier as
629  * arguments will match the associated region_chg call.
630  */
631 static void region_abort(struct resv_map *resv, long f, long t,
632                          long regions_needed)
633 {
634         spin_lock(&resv->lock);
635         VM_BUG_ON(!resv->region_cache_count);
636         resv->adds_in_progress -= regions_needed;
637         spin_unlock(&resv->lock);
638 }
639
640 /*
641  * Delete the specified range [f, t) from the reserve map.  If the
642  * t parameter is LONG_MAX, this indicates that ALL regions after f
643  * should be deleted.  Locate the regions which intersect [f, t)
644  * and either trim, delete or split the existing regions.
645  *
646  * Returns the number of huge pages deleted from the reserve map.
647  * In the normal case, the return value is zero or more.  In the
648  * case where a region must be split, a new region descriptor must
649  * be allocated.  If the allocation fails, -ENOMEM will be returned.
650  * NOTE: If the parameter t == LONG_MAX, then we will never split
651  * a region and possibly return -ENOMEM.  Callers specifying
652  * t == LONG_MAX do not need to check for -ENOMEM error.
653  */
654 static long region_del(struct resv_map *resv, long f, long t)
655 {
656         struct list_head *head = &resv->regions;
657         struct file_region *rg, *trg;
658         struct file_region *nrg = NULL;
659         long del = 0;
660
661 retry:
662         spin_lock(&resv->lock);
663         list_for_each_entry_safe(rg, trg, head, link) {
664                 /*
665                  * Skip regions before the range to be deleted.  file_region
666                  * ranges are normally of the form [from, to).  However, there
667                  * may be a "placeholder" entry in the map which is of the form
668                  * (from, to) with from == to.  Check for placeholder entries
669                  * at the beginning of the range to be deleted.
670                  */
671                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
672                         continue;
673
674                 if (rg->from >= t)
675                         break;
676
677                 if (f > rg->from && t < rg->to) { /* Must split region */
678                         /*
679                          * Check for an entry in the cache before dropping
680                          * lock and attempting allocation.
681                          */
682                         if (!nrg &&
683                             resv->region_cache_count > resv->adds_in_progress) {
684                                 nrg = list_first_entry(&resv->region_cache,
685                                                         struct file_region,
686                                                         link);
687                                 list_del(&nrg->link);
688                                 resv->region_cache_count--;
689                         }
690
691                         if (!nrg) {
692                                 spin_unlock(&resv->lock);
693                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
694                                 if (!nrg)
695                                         return -ENOMEM;
696                                 goto retry;
697                         }
698
699                         del += t - f;
700                         hugetlb_cgroup_uncharge_file_region(
701                                 resv, rg, t - f, false);
702
703                         /* New entry for end of split region */
704                         nrg->from = t;
705                         nrg->to = rg->to;
706
707                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
708
709                         INIT_LIST_HEAD(&nrg->link);
710
711                         /* Original entry is trimmed */
712                         rg->to = f;
713
714                         list_add(&nrg->link, &rg->link);
715                         nrg = NULL;
716                         break;
717                 }
718
719                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
720                         del += rg->to - rg->from;
721                         hugetlb_cgroup_uncharge_file_region(resv, rg,
722                                                             rg->to - rg->from, true);
723                         list_del(&rg->link);
724                         kfree(rg);
725                         continue;
726                 }
727
728                 if (f <= rg->from) {    /* Trim beginning of region */
729                         hugetlb_cgroup_uncharge_file_region(resv, rg,
730                                                             t - rg->from, false);
731
732                         del += t - rg->from;
733                         rg->from = t;
734                 } else {                /* Trim end of region */
735                         hugetlb_cgroup_uncharge_file_region(resv, rg,
736                                                             rg->to - f, false);
737
738                         del += rg->to - f;
739                         rg->to = f;
740                 }
741         }
742
743         spin_unlock(&resv->lock);
744         kfree(nrg);
745         return del;
746 }
747
748 /*
749  * A rare out of memory error was encountered which prevented removal of
750  * the reserve map region for a page.  The huge page itself was free'ed
751  * and removed from the page cache.  This routine will adjust the subpool
752  * usage count, and the global reserve count if needed.  By incrementing
753  * these counts, the reserve map entry which could not be deleted will
754  * appear as a "reserved" entry instead of simply dangling with incorrect
755  * counts.
756  */
757 void hugetlb_fix_reserve_counts(struct inode *inode)
758 {
759         struct hugepage_subpool *spool = subpool_inode(inode);
760         long rsv_adjust;
761         bool reserved = false;
762
763         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
764         if (rsv_adjust > 0) {
765                 struct hstate *h = hstate_inode(inode);
766
767                 if (!hugetlb_acct_memory(h, 1))
768                         reserved = true;
769         } else if (!rsv_adjust) {
770                 reserved = true;
771         }
772
773         if (!reserved)
774                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
775 }
776
777 /*
778  * Count and return the number of huge pages in the reserve map
779  * that intersect with the range [f, t).
780  */
781 static long region_count(struct resv_map *resv, long f, long t)
782 {
783         struct list_head *head = &resv->regions;
784         struct file_region *rg;
785         long chg = 0;
786
787         spin_lock(&resv->lock);
788         /* Locate each segment we overlap with, and count that overlap. */
789         list_for_each_entry(rg, head, link) {
790                 long seg_from;
791                 long seg_to;
792
793                 if (rg->to <= f)
794                         continue;
795                 if (rg->from >= t)
796                         break;
797
798                 seg_from = max(rg->from, f);
799                 seg_to = min(rg->to, t);
800
801                 chg += seg_to - seg_from;
802         }
803         spin_unlock(&resv->lock);
804
805         return chg;
806 }
807
808 /*
809  * Convert the address within this vma to the page offset within
810  * the mapping, in pagecache page units; huge pages here.
811  */
812 static pgoff_t vma_hugecache_offset(struct hstate *h,
813                         struct vm_area_struct *vma, unsigned long address)
814 {
815         return ((address - vma->vm_start) >> huge_page_shift(h)) +
816                         (vma->vm_pgoff >> huge_page_order(h));
817 }
818
819 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
820                                      unsigned long address)
821 {
822         return vma_hugecache_offset(hstate_vma(vma), vma, address);
823 }
824 EXPORT_SYMBOL_GPL(linear_hugepage_index);
825
826 /*
827  * Return the size of the pages allocated when backing a VMA. In the majority
828  * cases this will be same size as used by the page table entries.
829  */
830 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
831 {
832         if (vma->vm_ops && vma->vm_ops->pagesize)
833                 return vma->vm_ops->pagesize(vma);
834         return PAGE_SIZE;
835 }
836 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
837
838 /*
839  * Return the page size being used by the MMU to back a VMA. In the majority
840  * of cases, the page size used by the kernel matches the MMU size. On
841  * architectures where it differs, an architecture-specific 'strong'
842  * version of this symbol is required.
843  */
844 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
845 {
846         return vma_kernel_pagesize(vma);
847 }
848
849 /*
850  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
851  * bits of the reservation map pointer, which are always clear due to
852  * alignment.
853  */
854 #define HPAGE_RESV_OWNER    (1UL << 0)
855 #define HPAGE_RESV_UNMAPPED (1UL << 1)
856 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
857
858 /*
859  * These helpers are used to track how many pages are reserved for
860  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
861  * is guaranteed to have their future faults succeed.
862  *
863  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
864  * the reserve counters are updated with the hugetlb_lock held. It is safe
865  * to reset the VMA at fork() time as it is not in use yet and there is no
866  * chance of the global counters getting corrupted as a result of the values.
867  *
868  * The private mapping reservation is represented in a subtly different
869  * manner to a shared mapping.  A shared mapping has a region map associated
870  * with the underlying file, this region map represents the backing file
871  * pages which have ever had a reservation assigned which this persists even
872  * after the page is instantiated.  A private mapping has a region map
873  * associated with the original mmap which is attached to all VMAs which
874  * reference it, this region map represents those offsets which have consumed
875  * reservation ie. where pages have been instantiated.
876  */
877 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
878 {
879         return (unsigned long)vma->vm_private_data;
880 }
881
882 static void set_vma_private_data(struct vm_area_struct *vma,
883                                                         unsigned long value)
884 {
885         vma->vm_private_data = (void *)value;
886 }
887
888 static void
889 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
890                                           struct hugetlb_cgroup *h_cg,
891                                           struct hstate *h)
892 {
893 #ifdef CONFIG_CGROUP_HUGETLB
894         if (!h_cg || !h) {
895                 resv_map->reservation_counter = NULL;
896                 resv_map->pages_per_hpage = 0;
897                 resv_map->css = NULL;
898         } else {
899                 resv_map->reservation_counter =
900                         &h_cg->rsvd_hugepage[hstate_index(h)];
901                 resv_map->pages_per_hpage = pages_per_huge_page(h);
902                 resv_map->css = &h_cg->css;
903         }
904 #endif
905 }
906
907 struct resv_map *resv_map_alloc(void)
908 {
909         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
910         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
911
912         if (!resv_map || !rg) {
913                 kfree(resv_map);
914                 kfree(rg);
915                 return NULL;
916         }
917
918         kref_init(&resv_map->refs);
919         spin_lock_init(&resv_map->lock);
920         INIT_LIST_HEAD(&resv_map->regions);
921
922         resv_map->adds_in_progress = 0;
923         /*
924          * Initialize these to 0. On shared mappings, 0's here indicate these
925          * fields don't do cgroup accounting. On private mappings, these will be
926          * re-initialized to the proper values, to indicate that hugetlb cgroup
927          * reservations are to be un-charged from here.
928          */
929         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
930
931         INIT_LIST_HEAD(&resv_map->region_cache);
932         list_add(&rg->link, &resv_map->region_cache);
933         resv_map->region_cache_count = 1;
934
935         return resv_map;
936 }
937
938 void resv_map_release(struct kref *ref)
939 {
940         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
941         struct list_head *head = &resv_map->region_cache;
942         struct file_region *rg, *trg;
943
944         /* Clear out any active regions before we release the map. */
945         region_del(resv_map, 0, LONG_MAX);
946
947         /* ... and any entries left in the cache */
948         list_for_each_entry_safe(rg, trg, head, link) {
949                 list_del(&rg->link);
950                 kfree(rg);
951         }
952
953         VM_BUG_ON(resv_map->adds_in_progress);
954
955         kfree(resv_map);
956 }
957
958 static inline struct resv_map *inode_resv_map(struct inode *inode)
959 {
960         /*
961          * At inode evict time, i_mapping may not point to the original
962          * address space within the inode.  This original address space
963          * contains the pointer to the resv_map.  So, always use the
964          * address space embedded within the inode.
965          * The VERY common case is inode->mapping == &inode->i_data but,
966          * this may not be true for device special inodes.
967          */
968         return (struct resv_map *)(&inode->i_data)->private_data;
969 }
970
971 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
972 {
973         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
974         if (vma->vm_flags & VM_MAYSHARE) {
975                 struct address_space *mapping = vma->vm_file->f_mapping;
976                 struct inode *inode = mapping->host;
977
978                 return inode_resv_map(inode);
979
980         } else {
981                 return (struct resv_map *)(get_vma_private_data(vma) &
982                                                         ~HPAGE_RESV_MASK);
983         }
984 }
985
986 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
987 {
988         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
989         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
990
991         set_vma_private_data(vma, (get_vma_private_data(vma) &
992                                 HPAGE_RESV_MASK) | (unsigned long)map);
993 }
994
995 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
996 {
997         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
998         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
999
1000         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1001 }
1002
1003 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1004 {
1005         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1006
1007         return (get_vma_private_data(vma) & flag) != 0;
1008 }
1009
1010 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
1011 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1012 {
1013         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1014         if (!(vma->vm_flags & VM_MAYSHARE))
1015                 vma->vm_private_data = (void *)0;
1016 }
1017
1018 /*
1019  * Reset and decrement one ref on hugepage private reservation.
1020  * Called with mm->mmap_sem writer semaphore held.
1021  * This function should be only used by move_vma() and operate on
1022  * same sized vma. It should never come here with last ref on the
1023  * reservation.
1024  */
1025 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1026 {
1027         /*
1028          * Clear the old hugetlb private page reservation.
1029          * It has already been transferred to new_vma.
1030          *
1031          * During a mremap() operation of a hugetlb vma we call move_vma()
1032          * which copies vma into new_vma and unmaps vma. After the copy
1033          * operation both new_vma and vma share a reference to the resv_map
1034          * struct, and at that point vma is about to be unmapped. We don't
1035          * want to return the reservation to the pool at unmap of vma because
1036          * the reservation still lives on in new_vma, so simply decrement the
1037          * ref here and remove the resv_map reference from this vma.
1038          */
1039         struct resv_map *reservations = vma_resv_map(vma);
1040
1041         if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1042                 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1043                 kref_put(&reservations->refs, resv_map_release);
1044         }
1045
1046         reset_vma_resv_huge_pages(vma);
1047 }
1048
1049 /* Returns true if the VMA has associated reserve pages */
1050 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1051 {
1052         if (vma->vm_flags & VM_NORESERVE) {
1053                 /*
1054                  * This address is already reserved by other process(chg == 0),
1055                  * so, we should decrement reserved count. Without decrementing,
1056                  * reserve count remains after releasing inode, because this
1057                  * allocated page will go into page cache and is regarded as
1058                  * coming from reserved pool in releasing step.  Currently, we
1059                  * don't have any other solution to deal with this situation
1060                  * properly, so add work-around here.
1061                  */
1062                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1063                         return true;
1064                 else
1065                         return false;
1066         }
1067
1068         /* Shared mappings always use reserves */
1069         if (vma->vm_flags & VM_MAYSHARE) {
1070                 /*
1071                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1072                  * be a region map for all pages.  The only situation where
1073                  * there is no region map is if a hole was punched via
1074                  * fallocate.  In this case, there really are no reserves to
1075                  * use.  This situation is indicated if chg != 0.
1076                  */
1077                 if (chg)
1078                         return false;
1079                 else
1080                         return true;
1081         }
1082
1083         /*
1084          * Only the process that called mmap() has reserves for
1085          * private mappings.
1086          */
1087         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1088                 /*
1089                  * Like the shared case above, a hole punch or truncate
1090                  * could have been performed on the private mapping.
1091                  * Examine the value of chg to determine if reserves
1092                  * actually exist or were previously consumed.
1093                  * Very Subtle - The value of chg comes from a previous
1094                  * call to vma_needs_reserves().  The reserve map for
1095                  * private mappings has different (opposite) semantics
1096                  * than that of shared mappings.  vma_needs_reserves()
1097                  * has already taken this difference in semantics into
1098                  * account.  Therefore, the meaning of chg is the same
1099                  * as in the shared case above.  Code could easily be
1100                  * combined, but keeping it separate draws attention to
1101                  * subtle differences.
1102                  */
1103                 if (chg)
1104                         return false;
1105                 else
1106                         return true;
1107         }
1108
1109         return false;
1110 }
1111
1112 static void enqueue_huge_page(struct hstate *h, struct page *page)
1113 {
1114         int nid = page_to_nid(page);
1115
1116         lockdep_assert_held(&hugetlb_lock);
1117         VM_BUG_ON_PAGE(page_count(page), page);
1118
1119         list_move(&page->lru, &h->hugepage_freelists[nid]);
1120         h->free_huge_pages++;
1121         h->free_huge_pages_node[nid]++;
1122         SetHPageFreed(page);
1123 }
1124
1125 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1126 {
1127         struct page *page;
1128         bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1129
1130         lockdep_assert_held(&hugetlb_lock);
1131         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1132                 if (pin && !is_longterm_pinnable_page(page))
1133                         continue;
1134
1135                 if (PageHWPoison(page))
1136                         continue;
1137
1138                 list_move(&page->lru, &h->hugepage_activelist);
1139                 set_page_refcounted(page);
1140                 ClearHPageFreed(page);
1141                 h->free_huge_pages--;
1142                 h->free_huge_pages_node[nid]--;
1143                 return page;
1144         }
1145
1146         return NULL;
1147 }
1148
1149 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1150                 nodemask_t *nmask)
1151 {
1152         unsigned int cpuset_mems_cookie;
1153         struct zonelist *zonelist;
1154         struct zone *zone;
1155         struct zoneref *z;
1156         int node = NUMA_NO_NODE;
1157
1158         zonelist = node_zonelist(nid, gfp_mask);
1159
1160 retry_cpuset:
1161         cpuset_mems_cookie = read_mems_allowed_begin();
1162         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1163                 struct page *page;
1164
1165                 if (!cpuset_zone_allowed(zone, gfp_mask))
1166                         continue;
1167                 /*
1168                  * no need to ask again on the same node. Pool is node rather than
1169                  * zone aware
1170                  */
1171                 if (zone_to_nid(zone) == node)
1172                         continue;
1173                 node = zone_to_nid(zone);
1174
1175                 page = dequeue_huge_page_node_exact(h, node);
1176                 if (page)
1177                         return page;
1178         }
1179         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1180                 goto retry_cpuset;
1181
1182         return NULL;
1183 }
1184
1185 static struct page *dequeue_huge_page_vma(struct hstate *h,
1186                                 struct vm_area_struct *vma,
1187                                 unsigned long address, int avoid_reserve,
1188                                 long chg)
1189 {
1190         struct page *page = NULL;
1191         struct mempolicy *mpol;
1192         gfp_t gfp_mask;
1193         nodemask_t *nodemask;
1194         int nid;
1195
1196         /*
1197          * A child process with MAP_PRIVATE mappings created by their parent
1198          * have no page reserves. This check ensures that reservations are
1199          * not "stolen". The child may still get SIGKILLed
1200          */
1201         if (!vma_has_reserves(vma, chg) &&
1202                         h->free_huge_pages - h->resv_huge_pages == 0)
1203                 goto err;
1204
1205         /* If reserves cannot be used, ensure enough pages are in the pool */
1206         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1207                 goto err;
1208
1209         gfp_mask = htlb_alloc_mask(h);
1210         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1211
1212         if (mpol_is_preferred_many(mpol)) {
1213                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1214
1215                 /* Fallback to all nodes if page==NULL */
1216                 nodemask = NULL;
1217         }
1218
1219         if (!page)
1220                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1221
1222         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1223                 SetHPageRestoreReserve(page);
1224                 h->resv_huge_pages--;
1225         }
1226
1227         mpol_cond_put(mpol);
1228         return page;
1229
1230 err:
1231         return NULL;
1232 }
1233
1234 /*
1235  * common helper functions for hstate_next_node_to_{alloc|free}.
1236  * We may have allocated or freed a huge page based on a different
1237  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1238  * be outside of *nodes_allowed.  Ensure that we use an allowed
1239  * node for alloc or free.
1240  */
1241 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1242 {
1243         nid = next_node_in(nid, *nodes_allowed);
1244         VM_BUG_ON(nid >= MAX_NUMNODES);
1245
1246         return nid;
1247 }
1248
1249 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1250 {
1251         if (!node_isset(nid, *nodes_allowed))
1252                 nid = next_node_allowed(nid, nodes_allowed);
1253         return nid;
1254 }
1255
1256 /*
1257  * returns the previously saved node ["this node"] from which to
1258  * allocate a persistent huge page for the pool and advance the
1259  * next node from which to allocate, handling wrap at end of node
1260  * mask.
1261  */
1262 static int hstate_next_node_to_alloc(struct hstate *h,
1263                                         nodemask_t *nodes_allowed)
1264 {
1265         int nid;
1266
1267         VM_BUG_ON(!nodes_allowed);
1268
1269         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1270         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1271
1272         return nid;
1273 }
1274
1275 /*
1276  * helper for remove_pool_huge_page() - return the previously saved
1277  * node ["this node"] from which to free a huge page.  Advance the
1278  * next node id whether or not we find a free huge page to free so
1279  * that the next attempt to free addresses the next node.
1280  */
1281 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1282 {
1283         int nid;
1284
1285         VM_BUG_ON(!nodes_allowed);
1286
1287         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1288         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1289
1290         return nid;
1291 }
1292
1293 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1294         for (nr_nodes = nodes_weight(*mask);                            \
1295                 nr_nodes > 0 &&                                         \
1296                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1297                 nr_nodes--)
1298
1299 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1300         for (nr_nodes = nodes_weight(*mask);                            \
1301                 nr_nodes > 0 &&                                         \
1302                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1303                 nr_nodes--)
1304
1305 /* used to demote non-gigantic_huge pages as well */
1306 static void __destroy_compound_gigantic_page(struct page *page,
1307                                         unsigned int order, bool demote)
1308 {
1309         int i;
1310         int nr_pages = 1 << order;
1311         struct page *p = page + 1;
1312
1313         atomic_set(compound_mapcount_ptr(page), 0);
1314         atomic_set(compound_pincount_ptr(page), 0);
1315
1316         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1317                 p->mapping = NULL;
1318                 clear_compound_head(p);
1319                 if (!demote)
1320                         set_page_refcounted(p);
1321         }
1322
1323         set_compound_order(page, 0);
1324 #ifdef CONFIG_64BIT
1325         page[1].compound_nr = 0;
1326 #endif
1327         __ClearPageHead(page);
1328 }
1329
1330 static void destroy_compound_hugetlb_page_for_demote(struct page *page,
1331                                         unsigned int order)
1332 {
1333         __destroy_compound_gigantic_page(page, order, true);
1334 }
1335
1336 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1337 static void destroy_compound_gigantic_page(struct page *page,
1338                                         unsigned int order)
1339 {
1340         __destroy_compound_gigantic_page(page, order, false);
1341 }
1342
1343 static void free_gigantic_page(struct page *page, unsigned int order)
1344 {
1345         /*
1346          * If the page isn't allocated using the cma allocator,
1347          * cma_release() returns false.
1348          */
1349 #ifdef CONFIG_CMA
1350         if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1351                 return;
1352 #endif
1353
1354         free_contig_range(page_to_pfn(page), 1 << order);
1355 }
1356
1357 #ifdef CONFIG_CONTIG_ALLOC
1358 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1359                 int nid, nodemask_t *nodemask)
1360 {
1361         unsigned long nr_pages = pages_per_huge_page(h);
1362         if (nid == NUMA_NO_NODE)
1363                 nid = numa_mem_id();
1364
1365 #ifdef CONFIG_CMA
1366         {
1367                 struct page *page;
1368                 int node;
1369
1370                 if (hugetlb_cma[nid]) {
1371                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1372                                         huge_page_order(h), true);
1373                         if (page)
1374                                 return page;
1375                 }
1376
1377                 if (!(gfp_mask & __GFP_THISNODE)) {
1378                         for_each_node_mask(node, *nodemask) {
1379                                 if (node == nid || !hugetlb_cma[node])
1380                                         continue;
1381
1382                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1383                                                 huge_page_order(h), true);
1384                                 if (page)
1385                                         return page;
1386                         }
1387                 }
1388         }
1389 #endif
1390
1391         return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1392 }
1393
1394 #else /* !CONFIG_CONTIG_ALLOC */
1395 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1396                                         int nid, nodemask_t *nodemask)
1397 {
1398         return NULL;
1399 }
1400 #endif /* CONFIG_CONTIG_ALLOC */
1401
1402 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1403 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1404                                         int nid, nodemask_t *nodemask)
1405 {
1406         return NULL;
1407 }
1408 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1409 static inline void destroy_compound_gigantic_page(struct page *page,
1410                                                 unsigned int order) { }
1411 #endif
1412
1413 /*
1414  * Remove hugetlb page from lists, and update dtor so that page appears
1415  * as just a compound page.
1416  *
1417  * A reference is held on the page, except in the case of demote.
1418  *
1419  * Must be called with hugetlb lock held.
1420  */
1421 static void __remove_hugetlb_page(struct hstate *h, struct page *page,
1422                                                         bool adjust_surplus,
1423                                                         bool demote)
1424 {
1425         int nid = page_to_nid(page);
1426
1427         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1428         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1429
1430         lockdep_assert_held(&hugetlb_lock);
1431         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1432                 return;
1433
1434         list_del(&page->lru);
1435
1436         if (HPageFreed(page)) {
1437                 h->free_huge_pages--;
1438                 h->free_huge_pages_node[nid]--;
1439         }
1440         if (adjust_surplus) {
1441                 h->surplus_huge_pages--;
1442                 h->surplus_huge_pages_node[nid]--;
1443         }
1444
1445         /*
1446          * Very subtle
1447          *
1448          * For non-gigantic pages set the destructor to the normal compound
1449          * page dtor.  This is needed in case someone takes an additional
1450          * temporary ref to the page, and freeing is delayed until they drop
1451          * their reference.
1452          *
1453          * For gigantic pages set the destructor to the null dtor.  This
1454          * destructor will never be called.  Before freeing the gigantic
1455          * page destroy_compound_gigantic_page will turn the compound page
1456          * into a simple group of pages.  After this the destructor does not
1457          * apply.
1458          *
1459          * This handles the case where more than one ref is held when and
1460          * after update_and_free_page is called.
1461          *
1462          * In the case of demote we do not ref count the page as it will soon
1463          * be turned into a page of smaller size.
1464          */
1465         if (!demote)
1466                 set_page_refcounted(page);
1467         if (hstate_is_gigantic(h))
1468                 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1469         else
1470                 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1471
1472         h->nr_huge_pages--;
1473         h->nr_huge_pages_node[nid]--;
1474 }
1475
1476 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1477                                                         bool adjust_surplus)
1478 {
1479         __remove_hugetlb_page(h, page, adjust_surplus, false);
1480 }
1481
1482 static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page,
1483                                                         bool adjust_surplus)
1484 {
1485         __remove_hugetlb_page(h, page, adjust_surplus, true);
1486 }
1487
1488 static void add_hugetlb_page(struct hstate *h, struct page *page,
1489                              bool adjust_surplus)
1490 {
1491         int zeroed;
1492         int nid = page_to_nid(page);
1493
1494         VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1495
1496         lockdep_assert_held(&hugetlb_lock);
1497
1498         INIT_LIST_HEAD(&page->lru);
1499         h->nr_huge_pages++;
1500         h->nr_huge_pages_node[nid]++;
1501
1502         if (adjust_surplus) {
1503                 h->surplus_huge_pages++;
1504                 h->surplus_huge_pages_node[nid]++;
1505         }
1506
1507         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1508         set_page_private(page, 0);
1509         SetHPageVmemmapOptimized(page);
1510
1511         /*
1512          * This page is about to be managed by the hugetlb allocator and
1513          * should have no users.  Drop our reference, and check for others
1514          * just in case.
1515          */
1516         zeroed = put_page_testzero(page);
1517         if (!zeroed)
1518                 /*
1519                  * It is VERY unlikely soneone else has taken a ref on
1520                  * the page.  In this case, we simply return as the
1521                  * hugetlb destructor (free_huge_page) will be called
1522                  * when this other ref is dropped.
1523                  */
1524                 return;
1525
1526         arch_clear_hugepage_flags(page);
1527         enqueue_huge_page(h, page);
1528 }
1529
1530 static void __update_and_free_page(struct hstate *h, struct page *page)
1531 {
1532         int i;
1533         struct page *subpage = page;
1534
1535         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1536                 return;
1537
1538         /*
1539          * If we don't know which subpages are hwpoisoned, we can't free
1540          * the hugepage, so it's leaked intentionally.
1541          */
1542         if (HPageRawHwpUnreliable(page))
1543                 return;
1544
1545         if (hugetlb_vmemmap_restore(h, page)) {
1546                 spin_lock_irq(&hugetlb_lock);
1547                 /*
1548                  * If we cannot allocate vmemmap pages, just refuse to free the
1549                  * page and put the page back on the hugetlb free list and treat
1550                  * as a surplus page.
1551                  */
1552                 add_hugetlb_page(h, page, true);
1553                 spin_unlock_irq(&hugetlb_lock);
1554                 return;
1555         }
1556
1557         /*
1558          * Move PageHWPoison flag from head page to the raw error pages,
1559          * which makes any healthy subpages reusable.
1560          */
1561         if (unlikely(PageHWPoison(page)))
1562                 hugetlb_clear_page_hwpoison(page);
1563
1564         for (i = 0; i < pages_per_huge_page(h);
1565              i++, subpage = mem_map_next(subpage, page, i)) {
1566                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1567                                 1 << PG_referenced | 1 << PG_dirty |
1568                                 1 << PG_active | 1 << PG_private |
1569                                 1 << PG_writeback);
1570         }
1571
1572         /*
1573          * Non-gigantic pages demoted from CMA allocated gigantic pages
1574          * need to be given back to CMA in free_gigantic_page.
1575          */
1576         if (hstate_is_gigantic(h) ||
1577             hugetlb_cma_page(page, huge_page_order(h))) {
1578                 destroy_compound_gigantic_page(page, huge_page_order(h));
1579                 free_gigantic_page(page, huge_page_order(h));
1580         } else {
1581                 __free_pages(page, huge_page_order(h));
1582         }
1583 }
1584
1585 /*
1586  * As update_and_free_page() can be called under any context, so we cannot
1587  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1588  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1589  * the vmemmap pages.
1590  *
1591  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1592  * freed and frees them one-by-one. As the page->mapping pointer is going
1593  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1594  * structure of a lockless linked list of huge pages to be freed.
1595  */
1596 static LLIST_HEAD(hpage_freelist);
1597
1598 static void free_hpage_workfn(struct work_struct *work)
1599 {
1600         struct llist_node *node;
1601
1602         node = llist_del_all(&hpage_freelist);
1603
1604         while (node) {
1605                 struct page *page;
1606                 struct hstate *h;
1607
1608                 page = container_of((struct address_space **)node,
1609                                      struct page, mapping);
1610                 node = node->next;
1611                 page->mapping = NULL;
1612                 /*
1613                  * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1614                  * is going to trigger because a previous call to
1615                  * remove_hugetlb_page() will set_compound_page_dtor(page,
1616                  * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1617                  */
1618                 h = size_to_hstate(page_size(page));
1619
1620                 __update_and_free_page(h, page);
1621
1622                 cond_resched();
1623         }
1624 }
1625 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1626
1627 static inline void flush_free_hpage_work(struct hstate *h)
1628 {
1629         if (hugetlb_vmemmap_optimizable(h))
1630                 flush_work(&free_hpage_work);
1631 }
1632
1633 static void update_and_free_page(struct hstate *h, struct page *page,
1634                                  bool atomic)
1635 {
1636         if (!HPageVmemmapOptimized(page) || !atomic) {
1637                 __update_and_free_page(h, page);
1638                 return;
1639         }
1640
1641         /*
1642          * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1643          *
1644          * Only call schedule_work() if hpage_freelist is previously
1645          * empty. Otherwise, schedule_work() had been called but the workfn
1646          * hasn't retrieved the list yet.
1647          */
1648         if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1649                 schedule_work(&free_hpage_work);
1650 }
1651
1652 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1653 {
1654         struct page *page, *t_page;
1655
1656         list_for_each_entry_safe(page, t_page, list, lru) {
1657                 update_and_free_page(h, page, false);
1658                 cond_resched();
1659         }
1660 }
1661
1662 struct hstate *size_to_hstate(unsigned long size)
1663 {
1664         struct hstate *h;
1665
1666         for_each_hstate(h) {
1667                 if (huge_page_size(h) == size)
1668                         return h;
1669         }
1670         return NULL;
1671 }
1672
1673 void free_huge_page(struct page *page)
1674 {
1675         /*
1676          * Can't pass hstate in here because it is called from the
1677          * compound page destructor.
1678          */
1679         struct hstate *h = page_hstate(page);
1680         int nid = page_to_nid(page);
1681         struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1682         bool restore_reserve;
1683         unsigned long flags;
1684
1685         VM_BUG_ON_PAGE(page_count(page), page);
1686         VM_BUG_ON_PAGE(page_mapcount(page), page);
1687
1688         hugetlb_set_page_subpool(page, NULL);
1689         if (PageAnon(page))
1690                 __ClearPageAnonExclusive(page);
1691         page->mapping = NULL;
1692         restore_reserve = HPageRestoreReserve(page);
1693         ClearHPageRestoreReserve(page);
1694
1695         /*
1696          * If HPageRestoreReserve was set on page, page allocation consumed a
1697          * reservation.  If the page was associated with a subpool, there
1698          * would have been a page reserved in the subpool before allocation
1699          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1700          * reservation, do not call hugepage_subpool_put_pages() as this will
1701          * remove the reserved page from the subpool.
1702          */
1703         if (!restore_reserve) {
1704                 /*
1705                  * A return code of zero implies that the subpool will be
1706                  * under its minimum size if the reservation is not restored
1707                  * after page is free.  Therefore, force restore_reserve
1708                  * operation.
1709                  */
1710                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1711                         restore_reserve = true;
1712         }
1713
1714         spin_lock_irqsave(&hugetlb_lock, flags);
1715         ClearHPageMigratable(page);
1716         hugetlb_cgroup_uncharge_page(hstate_index(h),
1717                                      pages_per_huge_page(h), page);
1718         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1719                                           pages_per_huge_page(h), page);
1720         if (restore_reserve)
1721                 h->resv_huge_pages++;
1722
1723         if (HPageTemporary(page)) {
1724                 remove_hugetlb_page(h, page, false);
1725                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1726                 update_and_free_page(h, page, true);
1727         } else if (h->surplus_huge_pages_node[nid]) {
1728                 /* remove the page from active list */
1729                 remove_hugetlb_page(h, page, true);
1730                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1731                 update_and_free_page(h, page, true);
1732         } else {
1733                 arch_clear_hugepage_flags(page);
1734                 enqueue_huge_page(h, page);
1735                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1736         }
1737 }
1738
1739 /*
1740  * Must be called with the hugetlb lock held
1741  */
1742 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1743 {
1744         lockdep_assert_held(&hugetlb_lock);
1745         h->nr_huge_pages++;
1746         h->nr_huge_pages_node[nid]++;
1747 }
1748
1749 static void __prep_new_huge_page(struct hstate *h, struct page *page)
1750 {
1751         hugetlb_vmemmap_optimize(h, page);
1752         INIT_LIST_HEAD(&page->lru);
1753         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1754         hugetlb_set_page_subpool(page, NULL);
1755         set_hugetlb_cgroup(page, NULL);
1756         set_hugetlb_cgroup_rsvd(page, NULL);
1757 }
1758
1759 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1760 {
1761         __prep_new_huge_page(h, page);
1762         spin_lock_irq(&hugetlb_lock);
1763         __prep_account_new_huge_page(h, nid);
1764         spin_unlock_irq(&hugetlb_lock);
1765 }
1766
1767 static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
1768                                                                 bool demote)
1769 {
1770         int i, j;
1771         int nr_pages = 1 << order;
1772         struct page *p = page + 1;
1773
1774         /* we rely on prep_new_huge_page to set the destructor */
1775         set_compound_order(page, order);
1776         __ClearPageReserved(page);
1777         __SetPageHead(page);
1778         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1779                 /*
1780                  * For gigantic hugepages allocated through bootmem at
1781                  * boot, it's safer to be consistent with the not-gigantic
1782                  * hugepages and clear the PG_reserved bit from all tail pages
1783                  * too.  Otherwise drivers using get_user_pages() to access tail
1784                  * pages may get the reference counting wrong if they see
1785                  * PG_reserved set on a tail page (despite the head page not
1786                  * having PG_reserved set).  Enforcing this consistency between
1787                  * head and tail pages allows drivers to optimize away a check
1788                  * on the head page when they need know if put_page() is needed
1789                  * after get_user_pages().
1790                  */
1791                 __ClearPageReserved(p);
1792                 /*
1793                  * Subtle and very unlikely
1794                  *
1795                  * Gigantic 'page allocators' such as memblock or cma will
1796                  * return a set of pages with each page ref counted.  We need
1797                  * to turn this set of pages into a compound page with tail
1798                  * page ref counts set to zero.  Code such as speculative page
1799                  * cache adding could take a ref on a 'to be' tail page.
1800                  * We need to respect any increased ref count, and only set
1801                  * the ref count to zero if count is currently 1.  If count
1802                  * is not 1, we return an error.  An error return indicates
1803                  * the set of pages can not be converted to a gigantic page.
1804                  * The caller who allocated the pages should then discard the
1805                  * pages using the appropriate free interface.
1806                  *
1807                  * In the case of demote, the ref count will be zero.
1808                  */
1809                 if (!demote) {
1810                         if (!page_ref_freeze(p, 1)) {
1811                                 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1812                                 goto out_error;
1813                         }
1814                 } else {
1815                         VM_BUG_ON_PAGE(page_count(p), p);
1816                 }
1817                 set_compound_head(p, page);
1818         }
1819         atomic_set(compound_mapcount_ptr(page), -1);
1820         atomic_set(compound_pincount_ptr(page), 0);
1821         return true;
1822
1823 out_error:
1824         /* undo tail page modifications made above */
1825         p = page + 1;
1826         for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) {
1827                 clear_compound_head(p);
1828                 set_page_refcounted(p);
1829         }
1830         /* need to clear PG_reserved on remaining tail pages  */
1831         for (; j < nr_pages; j++, p = mem_map_next(p, page, j))
1832                 __ClearPageReserved(p);
1833         set_compound_order(page, 0);
1834 #ifdef CONFIG_64BIT
1835         page[1].compound_nr = 0;
1836 #endif
1837         __ClearPageHead(page);
1838         return false;
1839 }
1840
1841 static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1842 {
1843         return __prep_compound_gigantic_page(page, order, false);
1844 }
1845
1846 static bool prep_compound_gigantic_page_for_demote(struct page *page,
1847                                                         unsigned int order)
1848 {
1849         return __prep_compound_gigantic_page(page, order, true);
1850 }
1851
1852 /*
1853  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1854  * transparent huge pages.  See the PageTransHuge() documentation for more
1855  * details.
1856  */
1857 int PageHuge(struct page *page)
1858 {
1859         if (!PageCompound(page))
1860                 return 0;
1861
1862         page = compound_head(page);
1863         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1864 }
1865 EXPORT_SYMBOL_GPL(PageHuge);
1866
1867 /*
1868  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1869  * normal or transparent huge pages.
1870  */
1871 int PageHeadHuge(struct page *page_head)
1872 {
1873         if (!PageHead(page_head))
1874                 return 0;
1875
1876         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1877 }
1878 EXPORT_SYMBOL_GPL(PageHeadHuge);
1879
1880 /*
1881  * Find and lock address space (mapping) in write mode.
1882  *
1883  * Upon entry, the page is locked which means that page_mapping() is
1884  * stable.  Due to locking order, we can only trylock_write.  If we can
1885  * not get the lock, simply return NULL to caller.
1886  */
1887 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1888 {
1889         struct address_space *mapping = page_mapping(hpage);
1890
1891         if (!mapping)
1892                 return mapping;
1893
1894         if (i_mmap_trylock_write(mapping))
1895                 return mapping;
1896
1897         return NULL;
1898 }
1899
1900 pgoff_t hugetlb_basepage_index(struct page *page)
1901 {
1902         struct page *page_head = compound_head(page);
1903         pgoff_t index = page_index(page_head);
1904         unsigned long compound_idx;
1905
1906         if (compound_order(page_head) >= MAX_ORDER)
1907                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1908         else
1909                 compound_idx = page - page_head;
1910
1911         return (index << compound_order(page_head)) + compound_idx;
1912 }
1913
1914 static struct page *alloc_buddy_huge_page(struct hstate *h,
1915                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1916                 nodemask_t *node_alloc_noretry)
1917 {
1918         int order = huge_page_order(h);
1919         struct page *page;
1920         bool alloc_try_hard = true;
1921
1922         /*
1923          * By default we always try hard to allocate the page with
1924          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1925          * a loop (to adjust global huge page counts) and previous allocation
1926          * failed, do not continue to try hard on the same node.  Use the
1927          * node_alloc_noretry bitmap to manage this state information.
1928          */
1929         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1930                 alloc_try_hard = false;
1931         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1932         if (alloc_try_hard)
1933                 gfp_mask |= __GFP_RETRY_MAYFAIL;
1934         if (nid == NUMA_NO_NODE)
1935                 nid = numa_mem_id();
1936         page = __alloc_pages(gfp_mask, order, nid, nmask);
1937         if (page)
1938                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1939         else
1940                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1941
1942         /*
1943          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1944          * indicates an overall state change.  Clear bit so that we resume
1945          * normal 'try hard' allocations.
1946          */
1947         if (node_alloc_noretry && page && !alloc_try_hard)
1948                 node_clear(nid, *node_alloc_noretry);
1949
1950         /*
1951          * If we tried hard to get a page but failed, set bit so that
1952          * subsequent attempts will not try as hard until there is an
1953          * overall state change.
1954          */
1955         if (node_alloc_noretry && !page && alloc_try_hard)
1956                 node_set(nid, *node_alloc_noretry);
1957
1958         return page;
1959 }
1960
1961 /*
1962  * Common helper to allocate a fresh hugetlb page. All specific allocators
1963  * should use this function to get new hugetlb pages
1964  */
1965 static struct page *alloc_fresh_huge_page(struct hstate *h,
1966                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1967                 nodemask_t *node_alloc_noretry)
1968 {
1969         struct page *page;
1970         bool retry = false;
1971
1972 retry:
1973         if (hstate_is_gigantic(h))
1974                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1975         else
1976                 page = alloc_buddy_huge_page(h, gfp_mask,
1977                                 nid, nmask, node_alloc_noretry);
1978         if (!page)
1979                 return NULL;
1980
1981         if (hstate_is_gigantic(h)) {
1982                 if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
1983                         /*
1984                          * Rare failure to convert pages to compound page.
1985                          * Free pages and try again - ONCE!
1986                          */
1987                         free_gigantic_page(page, huge_page_order(h));
1988                         if (!retry) {
1989                                 retry = true;
1990                                 goto retry;
1991                         }
1992                         return NULL;
1993                 }
1994         }
1995         prep_new_huge_page(h, page, page_to_nid(page));
1996
1997         return page;
1998 }
1999
2000 /*
2001  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2002  * manner.
2003  */
2004 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2005                                 nodemask_t *node_alloc_noretry)
2006 {
2007         struct page *page;
2008         int nr_nodes, node;
2009         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2010
2011         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2012                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
2013                                                 node_alloc_noretry);
2014                 if (page)
2015                         break;
2016         }
2017
2018         if (!page)
2019                 return 0;
2020
2021         put_page(page); /* free it into the hugepage allocator */
2022
2023         return 1;
2024 }
2025
2026 /*
2027  * Remove huge page from pool from next node to free.  Attempt to keep
2028  * persistent huge pages more or less balanced over allowed nodes.
2029  * This routine only 'removes' the hugetlb page.  The caller must make
2030  * an additional call to free the page to low level allocators.
2031  * Called with hugetlb_lock locked.
2032  */
2033 static struct page *remove_pool_huge_page(struct hstate *h,
2034                                                 nodemask_t *nodes_allowed,
2035                                                  bool acct_surplus)
2036 {
2037         int nr_nodes, node;
2038         struct page *page = NULL;
2039
2040         lockdep_assert_held(&hugetlb_lock);
2041         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2042                 /*
2043                  * If we're returning unused surplus pages, only examine
2044                  * nodes with surplus pages.
2045                  */
2046                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2047                     !list_empty(&h->hugepage_freelists[node])) {
2048                         page = list_entry(h->hugepage_freelists[node].next,
2049                                           struct page, lru);
2050                         remove_hugetlb_page(h, page, acct_surplus);
2051                         break;
2052                 }
2053         }
2054
2055         return page;
2056 }
2057
2058 /*
2059  * Dissolve a given free hugepage into free buddy pages. This function does
2060  * nothing for in-use hugepages and non-hugepages.
2061  * This function returns values like below:
2062  *
2063  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2064  *           when the system is under memory pressure and the feature of
2065  *           freeing unused vmemmap pages associated with each hugetlb page
2066  *           is enabled.
2067  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2068  *           (allocated or reserved.)
2069  *       0:  successfully dissolved free hugepages or the page is not a
2070  *           hugepage (considered as already dissolved)
2071  */
2072 int dissolve_free_huge_page(struct page *page)
2073 {
2074         int rc = -EBUSY;
2075
2076 retry:
2077         /* Not to disrupt normal path by vainly holding hugetlb_lock */
2078         if (!PageHuge(page))
2079                 return 0;
2080
2081         spin_lock_irq(&hugetlb_lock);
2082         if (!PageHuge(page)) {
2083                 rc = 0;
2084                 goto out;
2085         }
2086
2087         if (!page_count(page)) {
2088                 struct page *head = compound_head(page);
2089                 struct hstate *h = page_hstate(head);
2090                 if (h->free_huge_pages - h->resv_huge_pages == 0)
2091                         goto out;
2092
2093                 /*
2094                  * We should make sure that the page is already on the free list
2095                  * when it is dissolved.
2096                  */
2097                 if (unlikely(!HPageFreed(head))) {
2098                         spin_unlock_irq(&hugetlb_lock);
2099                         cond_resched();
2100
2101                         /*
2102                          * Theoretically, we should return -EBUSY when we
2103                          * encounter this race. In fact, we have a chance
2104                          * to successfully dissolve the page if we do a
2105                          * retry. Because the race window is quite small.
2106                          * If we seize this opportunity, it is an optimization
2107                          * for increasing the success rate of dissolving page.
2108                          */
2109                         goto retry;
2110                 }
2111
2112                 remove_hugetlb_page(h, head, false);
2113                 h->max_huge_pages--;
2114                 spin_unlock_irq(&hugetlb_lock);
2115
2116                 /*
2117                  * Normally update_and_free_page will allocate required vmemmmap
2118                  * before freeing the page.  update_and_free_page will fail to
2119                  * free the page if it can not allocate required vmemmap.  We
2120                  * need to adjust max_huge_pages if the page is not freed.
2121                  * Attempt to allocate vmemmmap here so that we can take
2122                  * appropriate action on failure.
2123                  */
2124                 rc = hugetlb_vmemmap_restore(h, head);
2125                 if (!rc) {
2126                         update_and_free_page(h, head, false);
2127                 } else {
2128                         spin_lock_irq(&hugetlb_lock);
2129                         add_hugetlb_page(h, head, false);
2130                         h->max_huge_pages++;
2131                         spin_unlock_irq(&hugetlb_lock);
2132                 }
2133
2134                 return rc;
2135         }
2136 out:
2137         spin_unlock_irq(&hugetlb_lock);
2138         return rc;
2139 }
2140
2141 /*
2142  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2143  * make specified memory blocks removable from the system.
2144  * Note that this will dissolve a free gigantic hugepage completely, if any
2145  * part of it lies within the given range.
2146  * Also note that if dissolve_free_huge_page() returns with an error, all
2147  * free hugepages that were dissolved before that error are lost.
2148  */
2149 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2150 {
2151         unsigned long pfn;
2152         struct page *page;
2153         int rc = 0;
2154         unsigned int order;
2155         struct hstate *h;
2156
2157         if (!hugepages_supported())
2158                 return rc;
2159
2160         order = huge_page_order(&default_hstate);
2161         for_each_hstate(h)
2162                 order = min(order, huge_page_order(h));
2163
2164         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2165                 page = pfn_to_page(pfn);
2166                 rc = dissolve_free_huge_page(page);
2167                 if (rc)
2168                         break;
2169         }
2170
2171         return rc;
2172 }
2173
2174 /*
2175  * Allocates a fresh surplus page from the page allocator.
2176  */
2177 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2178                 int nid, nodemask_t *nmask, bool zero_ref)
2179 {
2180         struct page *page = NULL;
2181         bool retry = false;
2182
2183         if (hstate_is_gigantic(h))
2184                 return NULL;
2185
2186         spin_lock_irq(&hugetlb_lock);
2187         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2188                 goto out_unlock;
2189         spin_unlock_irq(&hugetlb_lock);
2190
2191 retry:
2192         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2193         if (!page)
2194                 return NULL;
2195
2196         spin_lock_irq(&hugetlb_lock);
2197         /*
2198          * We could have raced with the pool size change.
2199          * Double check that and simply deallocate the new page
2200          * if we would end up overcommiting the surpluses. Abuse
2201          * temporary page to workaround the nasty free_huge_page
2202          * codeflow
2203          */
2204         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2205                 SetHPageTemporary(page);
2206                 spin_unlock_irq(&hugetlb_lock);
2207                 put_page(page);
2208                 return NULL;
2209         }
2210
2211         if (zero_ref) {
2212                 /*
2213                  * Caller requires a page with zero ref count.
2214                  * We will drop ref count here.  If someone else is holding
2215                  * a ref, the page will be freed when they drop it.  Abuse
2216                  * temporary page flag to accomplish this.
2217                  */
2218                 SetHPageTemporary(page);
2219                 if (!put_page_testzero(page)) {
2220                         /*
2221                          * Unexpected inflated ref count on freshly allocated
2222                          * huge.  Retry once.
2223                          */
2224                         pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n");
2225                         spin_unlock_irq(&hugetlb_lock);
2226                         if (retry)
2227                                 return NULL;
2228
2229                         retry = true;
2230                         goto retry;
2231                 }
2232                 ClearHPageTemporary(page);
2233         }
2234
2235         h->surplus_huge_pages++;
2236         h->surplus_huge_pages_node[page_to_nid(page)]++;
2237
2238 out_unlock:
2239         spin_unlock_irq(&hugetlb_lock);
2240
2241         return page;
2242 }
2243
2244 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2245                                      int nid, nodemask_t *nmask)
2246 {
2247         struct page *page;
2248
2249         if (hstate_is_gigantic(h))
2250                 return NULL;
2251
2252         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2253         if (!page)
2254                 return NULL;
2255
2256         /*
2257          * We do not account these pages as surplus because they are only
2258          * temporary and will be released properly on the last reference
2259          */
2260         SetHPageTemporary(page);
2261
2262         return page;
2263 }
2264
2265 /*
2266  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2267  */
2268 static
2269 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2270                 struct vm_area_struct *vma, unsigned long addr)
2271 {
2272         struct page *page = NULL;
2273         struct mempolicy *mpol;
2274         gfp_t gfp_mask = htlb_alloc_mask(h);
2275         int nid;
2276         nodemask_t *nodemask;
2277
2278         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2279         if (mpol_is_preferred_many(mpol)) {
2280                 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2281
2282                 gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2283                 page = alloc_surplus_huge_page(h, gfp, nid, nodemask, false);
2284
2285                 /* Fallback to all nodes if page==NULL */
2286                 nodemask = NULL;
2287         }
2288
2289         if (!page)
2290                 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false);
2291         mpol_cond_put(mpol);
2292         return page;
2293 }
2294
2295 /* page migration callback function */
2296 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2297                 nodemask_t *nmask, gfp_t gfp_mask)
2298 {
2299         spin_lock_irq(&hugetlb_lock);
2300         if (h->free_huge_pages - h->resv_huge_pages > 0) {
2301                 struct page *page;
2302
2303                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2304                 if (page) {
2305                         spin_unlock_irq(&hugetlb_lock);
2306                         return page;
2307                 }
2308         }
2309         spin_unlock_irq(&hugetlb_lock);
2310
2311         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2312 }
2313
2314 /* mempolicy aware migration callback */
2315 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2316                 unsigned long address)
2317 {
2318         struct mempolicy *mpol;
2319         nodemask_t *nodemask;
2320         struct page *page;
2321         gfp_t gfp_mask;
2322         int node;
2323
2324         gfp_mask = htlb_alloc_mask(h);
2325         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2326         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2327         mpol_cond_put(mpol);
2328
2329         return page;
2330 }
2331
2332 /*
2333  * Increase the hugetlb pool such that it can accommodate a reservation
2334  * of size 'delta'.
2335  */
2336 static int gather_surplus_pages(struct hstate *h, long delta)
2337         __must_hold(&hugetlb_lock)
2338 {
2339         struct list_head surplus_list;
2340         struct page *page, *tmp;
2341         int ret;
2342         long i;
2343         long needed, allocated;
2344         bool alloc_ok = true;
2345
2346         lockdep_assert_held(&hugetlb_lock);
2347         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2348         if (needed <= 0) {
2349                 h->resv_huge_pages += delta;
2350                 return 0;
2351         }
2352
2353         allocated = 0;
2354         INIT_LIST_HEAD(&surplus_list);
2355
2356         ret = -ENOMEM;
2357 retry:
2358         spin_unlock_irq(&hugetlb_lock);
2359         for (i = 0; i < needed; i++) {
2360                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2361                                 NUMA_NO_NODE, NULL, true);
2362                 if (!page) {
2363                         alloc_ok = false;
2364                         break;
2365                 }
2366                 list_add(&page->lru, &surplus_list);
2367                 cond_resched();
2368         }
2369         allocated += i;
2370
2371         /*
2372          * After retaking hugetlb_lock, we need to recalculate 'needed'
2373          * because either resv_huge_pages or free_huge_pages may have changed.
2374          */
2375         spin_lock_irq(&hugetlb_lock);
2376         needed = (h->resv_huge_pages + delta) -
2377                         (h->free_huge_pages + allocated);
2378         if (needed > 0) {
2379                 if (alloc_ok)
2380                         goto retry;
2381                 /*
2382                  * We were not able to allocate enough pages to
2383                  * satisfy the entire reservation so we free what
2384                  * we've allocated so far.
2385                  */
2386                 goto free;
2387         }
2388         /*
2389          * The surplus_list now contains _at_least_ the number of extra pages
2390          * needed to accommodate the reservation.  Add the appropriate number
2391          * of pages to the hugetlb pool and free the extras back to the buddy
2392          * allocator.  Commit the entire reservation here to prevent another
2393          * process from stealing the pages as they are added to the pool but
2394          * before they are reserved.
2395          */
2396         needed += allocated;
2397         h->resv_huge_pages += delta;
2398         ret = 0;
2399
2400         /* Free the needed pages to the hugetlb pool */
2401         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2402                 if ((--needed) < 0)
2403                         break;
2404                 /* Add the page to the hugetlb allocator */
2405                 enqueue_huge_page(h, page);
2406         }
2407 free:
2408         spin_unlock_irq(&hugetlb_lock);
2409
2410         /*
2411          * Free unnecessary surplus pages to the buddy allocator.
2412          * Pages have no ref count, call free_huge_page directly.
2413          */
2414         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2415                 free_huge_page(page);
2416         spin_lock_irq(&hugetlb_lock);
2417
2418         return ret;
2419 }
2420
2421 /*
2422  * This routine has two main purposes:
2423  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2424  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2425  *    to the associated reservation map.
2426  * 2) Free any unused surplus pages that may have been allocated to satisfy
2427  *    the reservation.  As many as unused_resv_pages may be freed.
2428  */
2429 static void return_unused_surplus_pages(struct hstate *h,
2430                                         unsigned long unused_resv_pages)
2431 {
2432         unsigned long nr_pages;
2433         struct page *page;
2434         LIST_HEAD(page_list);
2435
2436         lockdep_assert_held(&hugetlb_lock);
2437         /* Uncommit the reservation */
2438         h->resv_huge_pages -= unused_resv_pages;
2439
2440         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2441                 goto out;
2442
2443         /*
2444          * Part (or even all) of the reservation could have been backed
2445          * by pre-allocated pages. Only free surplus pages.
2446          */
2447         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2448
2449         /*
2450          * We want to release as many surplus pages as possible, spread
2451          * evenly across all nodes with memory. Iterate across these nodes
2452          * until we can no longer free unreserved surplus pages. This occurs
2453          * when the nodes with surplus pages have no free pages.
2454          * remove_pool_huge_page() will balance the freed pages across the
2455          * on-line nodes with memory and will handle the hstate accounting.
2456          */
2457         while (nr_pages--) {
2458                 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2459                 if (!page)
2460                         goto out;
2461
2462                 list_add(&page->lru, &page_list);
2463         }
2464
2465 out:
2466         spin_unlock_irq(&hugetlb_lock);
2467         update_and_free_pages_bulk(h, &page_list);
2468         spin_lock_irq(&hugetlb_lock);
2469 }
2470
2471
2472 /*
2473  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2474  * are used by the huge page allocation routines to manage reservations.
2475  *
2476  * vma_needs_reservation is called to determine if the huge page at addr
2477  * within the vma has an associated reservation.  If a reservation is
2478  * needed, the value 1 is returned.  The caller is then responsible for
2479  * managing the global reservation and subpool usage counts.  After
2480  * the huge page has been allocated, vma_commit_reservation is called
2481  * to add the page to the reservation map.  If the page allocation fails,
2482  * the reservation must be ended instead of committed.  vma_end_reservation
2483  * is called in such cases.
2484  *
2485  * In the normal case, vma_commit_reservation returns the same value
2486  * as the preceding vma_needs_reservation call.  The only time this
2487  * is not the case is if a reserve map was changed between calls.  It
2488  * is the responsibility of the caller to notice the difference and
2489  * take appropriate action.
2490  *
2491  * vma_add_reservation is used in error paths where a reservation must
2492  * be restored when a newly allocated huge page must be freed.  It is
2493  * to be called after calling vma_needs_reservation to determine if a
2494  * reservation exists.
2495  *
2496  * vma_del_reservation is used in error paths where an entry in the reserve
2497  * map was created during huge page allocation and must be removed.  It is to
2498  * be called after calling vma_needs_reservation to determine if a reservation
2499  * exists.
2500  */
2501 enum vma_resv_mode {
2502         VMA_NEEDS_RESV,
2503         VMA_COMMIT_RESV,
2504         VMA_END_RESV,
2505         VMA_ADD_RESV,
2506         VMA_DEL_RESV,
2507 };
2508 static long __vma_reservation_common(struct hstate *h,
2509                                 struct vm_area_struct *vma, unsigned long addr,
2510                                 enum vma_resv_mode mode)
2511 {
2512         struct resv_map *resv;
2513         pgoff_t idx;
2514         long ret;
2515         long dummy_out_regions_needed;
2516
2517         resv = vma_resv_map(vma);
2518         if (!resv)
2519                 return 1;
2520
2521         idx = vma_hugecache_offset(h, vma, addr);
2522         switch (mode) {
2523         case VMA_NEEDS_RESV:
2524                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2525                 /* We assume that vma_reservation_* routines always operate on
2526                  * 1 page, and that adding to resv map a 1 page entry can only
2527                  * ever require 1 region.
2528                  */
2529                 VM_BUG_ON(dummy_out_regions_needed != 1);
2530                 break;
2531         case VMA_COMMIT_RESV:
2532                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2533                 /* region_add calls of range 1 should never fail. */
2534                 VM_BUG_ON(ret < 0);
2535                 break;
2536         case VMA_END_RESV:
2537                 region_abort(resv, idx, idx + 1, 1);
2538                 ret = 0;
2539                 break;
2540         case VMA_ADD_RESV:
2541                 if (vma->vm_flags & VM_MAYSHARE) {
2542                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2543                         /* region_add calls of range 1 should never fail. */
2544                         VM_BUG_ON(ret < 0);
2545                 } else {
2546                         region_abort(resv, idx, idx + 1, 1);
2547                         ret = region_del(resv, idx, idx + 1);
2548                 }
2549                 break;
2550         case VMA_DEL_RESV:
2551                 if (vma->vm_flags & VM_MAYSHARE) {
2552                         region_abort(resv, idx, idx + 1, 1);
2553                         ret = region_del(resv, idx, idx + 1);
2554                 } else {
2555                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2556                         /* region_add calls of range 1 should never fail. */
2557                         VM_BUG_ON(ret < 0);
2558                 }
2559                 break;
2560         default:
2561                 BUG();
2562         }
2563
2564         if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2565                 return ret;
2566         /*
2567          * We know private mapping must have HPAGE_RESV_OWNER set.
2568          *
2569          * In most cases, reserves always exist for private mappings.
2570          * However, a file associated with mapping could have been
2571          * hole punched or truncated after reserves were consumed.
2572          * As subsequent fault on such a range will not use reserves.
2573          * Subtle - The reserve map for private mappings has the
2574          * opposite meaning than that of shared mappings.  If NO
2575          * entry is in the reserve map, it means a reservation exists.
2576          * If an entry exists in the reserve map, it means the
2577          * reservation has already been consumed.  As a result, the
2578          * return value of this routine is the opposite of the
2579          * value returned from reserve map manipulation routines above.
2580          */
2581         if (ret > 0)
2582                 return 0;
2583         if (ret == 0)
2584                 return 1;
2585         return ret;
2586 }
2587
2588 static long vma_needs_reservation(struct hstate *h,
2589                         struct vm_area_struct *vma, unsigned long addr)
2590 {
2591         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2592 }
2593
2594 static long vma_commit_reservation(struct hstate *h,
2595                         struct vm_area_struct *vma, unsigned long addr)
2596 {
2597         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2598 }
2599
2600 static void vma_end_reservation(struct hstate *h,
2601                         struct vm_area_struct *vma, unsigned long addr)
2602 {
2603         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2604 }
2605
2606 static long vma_add_reservation(struct hstate *h,
2607                         struct vm_area_struct *vma, unsigned long addr)
2608 {
2609         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2610 }
2611
2612 static long vma_del_reservation(struct hstate *h,
2613                         struct vm_area_struct *vma, unsigned long addr)
2614 {
2615         return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2616 }
2617
2618 /*
2619  * This routine is called to restore reservation information on error paths.
2620  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2621  * the hugetlb mutex should remain held when calling this routine.
2622  *
2623  * It handles two specific cases:
2624  * 1) A reservation was in place and the page consumed the reservation.
2625  *    HPageRestoreReserve is set in the page.
2626  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2627  *    not set.  However, alloc_huge_page always updates the reserve map.
2628  *
2629  * In case 1, free_huge_page later in the error path will increment the
2630  * global reserve count.  But, free_huge_page does not have enough context
2631  * to adjust the reservation map.  This case deals primarily with private
2632  * mappings.  Adjust the reserve map here to be consistent with global
2633  * reserve count adjustments to be made by free_huge_page.  Make sure the
2634  * reserve map indicates there is a reservation present.
2635  *
2636  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2637  */
2638 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2639                         unsigned long address, struct page *page)
2640 {
2641         long rc = vma_needs_reservation(h, vma, address);
2642
2643         if (HPageRestoreReserve(page)) {
2644                 if (unlikely(rc < 0))
2645                         /*
2646                          * Rare out of memory condition in reserve map
2647                          * manipulation.  Clear HPageRestoreReserve so that
2648                          * global reserve count will not be incremented
2649                          * by free_huge_page.  This will make it appear
2650                          * as though the reservation for this page was
2651                          * consumed.  This may prevent the task from
2652                          * faulting in the page at a later time.  This
2653                          * is better than inconsistent global huge page
2654                          * accounting of reserve counts.
2655                          */
2656                         ClearHPageRestoreReserve(page);
2657                 else if (rc)
2658                         (void)vma_add_reservation(h, vma, address);
2659                 else
2660                         vma_end_reservation(h, vma, address);
2661         } else {
2662                 if (!rc) {
2663                         /*
2664                          * This indicates there is an entry in the reserve map
2665                          * not added by alloc_huge_page.  We know it was added
2666                          * before the alloc_huge_page call, otherwise
2667                          * HPageRestoreReserve would be set on the page.
2668                          * Remove the entry so that a subsequent allocation
2669                          * does not consume a reservation.
2670                          */
2671                         rc = vma_del_reservation(h, vma, address);
2672                         if (rc < 0)
2673                                 /*
2674                                  * VERY rare out of memory condition.  Since
2675                                  * we can not delete the entry, set
2676                                  * HPageRestoreReserve so that the reserve
2677                                  * count will be incremented when the page
2678                                  * is freed.  This reserve will be consumed
2679                                  * on a subsequent allocation.
2680                                  */
2681                                 SetHPageRestoreReserve(page);
2682                 } else if (rc < 0) {
2683                         /*
2684                          * Rare out of memory condition from
2685                          * vma_needs_reservation call.  Memory allocation is
2686                          * only attempted if a new entry is needed.  Therefore,
2687                          * this implies there is not an entry in the
2688                          * reserve map.
2689                          *
2690                          * For shared mappings, no entry in the map indicates
2691                          * no reservation.  We are done.
2692                          */
2693                         if (!(vma->vm_flags & VM_MAYSHARE))
2694                                 /*
2695                                  * For private mappings, no entry indicates
2696                                  * a reservation is present.  Since we can
2697                                  * not add an entry, set SetHPageRestoreReserve
2698                                  * on the page so reserve count will be
2699                                  * incremented when freed.  This reserve will
2700                                  * be consumed on a subsequent allocation.
2701                                  */
2702                                 SetHPageRestoreReserve(page);
2703                 } else
2704                         /*
2705                          * No reservation present, do nothing
2706                          */
2707                          vma_end_reservation(h, vma, address);
2708         }
2709 }
2710
2711 /*
2712  * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2713  * @h: struct hstate old page belongs to
2714  * @old_page: Old page to dissolve
2715  * @list: List to isolate the page in case we need to
2716  * Returns 0 on success, otherwise negated error.
2717  */
2718 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2719                                         struct list_head *list)
2720 {
2721         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2722         int nid = page_to_nid(old_page);
2723         bool alloc_retry = false;
2724         struct page *new_page;
2725         int ret = 0;
2726
2727         /*
2728          * Before dissolving the page, we need to allocate a new one for the
2729          * pool to remain stable.  Here, we allocate the page and 'prep' it
2730          * by doing everything but actually updating counters and adding to
2731          * the pool.  This simplifies and let us do most of the processing
2732          * under the lock.
2733          */
2734 alloc_retry:
2735         new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2736         if (!new_page)
2737                 return -ENOMEM;
2738         /*
2739          * If all goes well, this page will be directly added to the free
2740          * list in the pool.  For this the ref count needs to be zero.
2741          * Attempt to drop now, and retry once if needed.  It is VERY
2742          * unlikely there is another ref on the page.
2743          *
2744          * If someone else has a reference to the page, it will be freed
2745          * when they drop their ref.  Abuse temporary page flag to accomplish
2746          * this.  Retry once if there is an inflated ref count.
2747          */
2748         SetHPageTemporary(new_page);
2749         if (!put_page_testzero(new_page)) {
2750                 if (alloc_retry)
2751                         return -EBUSY;
2752
2753                 alloc_retry = true;
2754                 goto alloc_retry;
2755         }
2756         ClearHPageTemporary(new_page);
2757
2758         __prep_new_huge_page(h, new_page);
2759
2760 retry:
2761         spin_lock_irq(&hugetlb_lock);
2762         if (!PageHuge(old_page)) {
2763                 /*
2764                  * Freed from under us. Drop new_page too.
2765                  */
2766                 goto free_new;
2767         } else if (page_count(old_page)) {
2768                 /*
2769                  * Someone has grabbed the page, try to isolate it here.
2770                  * Fail with -EBUSY if not possible.
2771                  */
2772                 spin_unlock_irq(&hugetlb_lock);
2773                 ret = isolate_hugetlb(old_page, list);
2774                 spin_lock_irq(&hugetlb_lock);
2775                 goto free_new;
2776         } else if (!HPageFreed(old_page)) {
2777                 /*
2778                  * Page's refcount is 0 but it has not been enqueued in the
2779                  * freelist yet. Race window is small, so we can succeed here if
2780                  * we retry.
2781                  */
2782                 spin_unlock_irq(&hugetlb_lock);
2783                 cond_resched();
2784                 goto retry;
2785         } else {
2786                 /*
2787                  * Ok, old_page is still a genuine free hugepage. Remove it from
2788                  * the freelist and decrease the counters. These will be
2789                  * incremented again when calling __prep_account_new_huge_page()
2790                  * and enqueue_huge_page() for new_page. The counters will remain
2791                  * stable since this happens under the lock.
2792                  */
2793                 remove_hugetlb_page(h, old_page, false);
2794
2795                 /*
2796                  * Ref count on new page is already zero as it was dropped
2797                  * earlier.  It can be directly added to the pool free list.
2798                  */
2799                 __prep_account_new_huge_page(h, nid);
2800                 enqueue_huge_page(h, new_page);
2801
2802                 /*
2803                  * Pages have been replaced, we can safely free the old one.
2804                  */
2805                 spin_unlock_irq(&hugetlb_lock);
2806                 update_and_free_page(h, old_page, false);
2807         }
2808
2809         return ret;
2810
2811 free_new:
2812         spin_unlock_irq(&hugetlb_lock);
2813         /* Page has a zero ref count, but needs a ref to be freed */
2814         set_page_refcounted(new_page);
2815         update_and_free_page(h, new_page, false);
2816
2817         return ret;
2818 }
2819
2820 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2821 {
2822         struct hstate *h;
2823         struct page *head;
2824         int ret = -EBUSY;
2825
2826         /*
2827          * The page might have been dissolved from under our feet, so make sure
2828          * to carefully check the state under the lock.
2829          * Return success when racing as if we dissolved the page ourselves.
2830          */
2831         spin_lock_irq(&hugetlb_lock);
2832         if (PageHuge(page)) {
2833                 head = compound_head(page);
2834                 h = page_hstate(head);
2835         } else {
2836                 spin_unlock_irq(&hugetlb_lock);
2837                 return 0;
2838         }
2839         spin_unlock_irq(&hugetlb_lock);
2840
2841         /*
2842          * Fence off gigantic pages as there is a cyclic dependency between
2843          * alloc_contig_range and them. Return -ENOMEM as this has the effect
2844          * of bailing out right away without further retrying.
2845          */
2846         if (hstate_is_gigantic(h))
2847                 return -ENOMEM;
2848
2849         if (page_count(head) && !isolate_hugetlb(head, list))
2850                 ret = 0;
2851         else if (!page_count(head))
2852                 ret = alloc_and_dissolve_huge_page(h, head, list);
2853
2854         return ret;
2855 }
2856
2857 struct page *alloc_huge_page(struct vm_area_struct *vma,
2858                                     unsigned long addr, int avoid_reserve)
2859 {
2860         struct hugepage_subpool *spool = subpool_vma(vma);
2861         struct hstate *h = hstate_vma(vma);
2862         struct page *page;
2863         long map_chg, map_commit;
2864         long gbl_chg;
2865         int ret, idx;
2866         struct hugetlb_cgroup *h_cg;
2867         bool deferred_reserve;
2868
2869         idx = hstate_index(h);
2870         /*
2871          * Examine the region/reserve map to determine if the process
2872          * has a reservation for the page to be allocated.  A return
2873          * code of zero indicates a reservation exists (no change).
2874          */
2875         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2876         if (map_chg < 0)
2877                 return ERR_PTR(-ENOMEM);
2878
2879         /*
2880          * Processes that did not create the mapping will have no
2881          * reserves as indicated by the region/reserve map. Check
2882          * that the allocation will not exceed the subpool limit.
2883          * Allocations for MAP_NORESERVE mappings also need to be
2884          * checked against any subpool limit.
2885          */
2886         if (map_chg || avoid_reserve) {
2887                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2888                 if (gbl_chg < 0) {
2889                         vma_end_reservation(h, vma, addr);
2890                         return ERR_PTR(-ENOSPC);
2891                 }
2892
2893                 /*
2894                  * Even though there was no reservation in the region/reserve
2895                  * map, there could be reservations associated with the
2896                  * subpool that can be used.  This would be indicated if the
2897                  * return value of hugepage_subpool_get_pages() is zero.
2898                  * However, if avoid_reserve is specified we still avoid even
2899                  * the subpool reservations.
2900                  */
2901                 if (avoid_reserve)
2902                         gbl_chg = 1;
2903         }
2904
2905         /* If this allocation is not consuming a reservation, charge it now.
2906          */
2907         deferred_reserve = map_chg || avoid_reserve;
2908         if (deferred_reserve) {
2909                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2910                         idx, pages_per_huge_page(h), &h_cg);
2911                 if (ret)
2912                         goto out_subpool_put;
2913         }
2914
2915         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2916         if (ret)
2917                 goto out_uncharge_cgroup_reservation;
2918
2919         spin_lock_irq(&hugetlb_lock);
2920         /*
2921          * glb_chg is passed to indicate whether or not a page must be taken
2922          * from the global free pool (global change).  gbl_chg == 0 indicates
2923          * a reservation exists for the allocation.
2924          */
2925         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2926         if (!page) {
2927                 spin_unlock_irq(&hugetlb_lock);
2928                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2929                 if (!page)
2930                         goto out_uncharge_cgroup;
2931                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2932                         SetHPageRestoreReserve(page);
2933                         h->resv_huge_pages--;
2934                 }
2935                 spin_lock_irq(&hugetlb_lock);
2936                 list_add(&page->lru, &h->hugepage_activelist);
2937                 /* Fall through */
2938         }
2939         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2940         /* If allocation is not consuming a reservation, also store the
2941          * hugetlb_cgroup pointer on the page.
2942          */
2943         if (deferred_reserve) {
2944                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2945                                                   h_cg, page);
2946         }
2947
2948         spin_unlock_irq(&hugetlb_lock);
2949
2950         hugetlb_set_page_subpool(page, spool);
2951
2952         map_commit = vma_commit_reservation(h, vma, addr);
2953         if (unlikely(map_chg > map_commit)) {
2954                 /*
2955                  * The page was added to the reservation map between
2956                  * vma_needs_reservation and vma_commit_reservation.
2957                  * This indicates a race with hugetlb_reserve_pages.
2958                  * Adjust for the subpool count incremented above AND
2959                  * in hugetlb_reserve_pages for the same page.  Also,
2960                  * the reservation count added in hugetlb_reserve_pages
2961                  * no longer applies.
2962                  */
2963                 long rsv_adjust;
2964
2965                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2966                 hugetlb_acct_memory(h, -rsv_adjust);
2967                 if (deferred_reserve)
2968                         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2969                                         pages_per_huge_page(h), page);
2970         }
2971         return page;
2972
2973 out_uncharge_cgroup:
2974         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2975 out_uncharge_cgroup_reservation:
2976         if (deferred_reserve)
2977                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2978                                                     h_cg);
2979 out_subpool_put:
2980         if (map_chg || avoid_reserve)
2981                 hugepage_subpool_put_pages(spool, 1);
2982         vma_end_reservation(h, vma, addr);
2983         return ERR_PTR(-ENOSPC);
2984 }
2985
2986 int alloc_bootmem_huge_page(struct hstate *h, int nid)
2987         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2988 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
2989 {
2990         struct huge_bootmem_page *m = NULL; /* initialize for clang */
2991         int nr_nodes, node;
2992
2993         /* do node specific alloc */
2994         if (nid != NUMA_NO_NODE) {
2995                 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
2996                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
2997                 if (!m)
2998                         return 0;
2999                 goto found;
3000         }
3001         /* allocate from next node when distributing huge pages */
3002         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3003                 m = memblock_alloc_try_nid_raw(
3004                                 huge_page_size(h), huge_page_size(h),
3005                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3006                 /*
3007                  * Use the beginning of the huge page to store the
3008                  * huge_bootmem_page struct (until gather_bootmem
3009                  * puts them into the mem_map).
3010                  */
3011                 if (!m)
3012                         return 0;
3013                 goto found;
3014         }
3015
3016 found:
3017         /* Put them into a private list first because mem_map is not up yet */
3018         INIT_LIST_HEAD(&m->list);
3019         list_add(&m->list, &huge_boot_pages);
3020         m->hstate = h;
3021         return 1;
3022 }
3023
3024 /*
3025  * Put bootmem huge pages into the standard lists after mem_map is up.
3026  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3027  */
3028 static void __init gather_bootmem_prealloc(void)
3029 {
3030         struct huge_bootmem_page *m;
3031
3032         list_for_each_entry(m, &huge_boot_pages, list) {
3033                 struct page *page = virt_to_page(m);
3034                 struct hstate *h = m->hstate;
3035
3036                 VM_BUG_ON(!hstate_is_gigantic(h));
3037                 WARN_ON(page_count(page) != 1);
3038                 if (prep_compound_gigantic_page(page, huge_page_order(h))) {
3039                         WARN_ON(PageReserved(page));
3040                         prep_new_huge_page(h, page, page_to_nid(page));
3041                         put_page(page); /* add to the hugepage allocator */
3042                 } else {
3043                         /* VERY unlikely inflated ref count on a tail page */
3044                         free_gigantic_page(page, huge_page_order(h));
3045                 }
3046
3047                 /*
3048                  * We need to restore the 'stolen' pages to totalram_pages
3049                  * in order to fix confusing memory reports from free(1) and
3050                  * other side-effects, like CommitLimit going negative.
3051                  */
3052                 adjust_managed_page_count(page, pages_per_huge_page(h));
3053                 cond_resched();
3054         }
3055 }
3056 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3057 {
3058         unsigned long i;
3059         char buf[32];
3060
3061         for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3062                 if (hstate_is_gigantic(h)) {
3063                         if (!alloc_bootmem_huge_page(h, nid))
3064                                 break;
3065                 } else {
3066                         struct page *page;
3067                         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3068
3069                         page = alloc_fresh_huge_page(h, gfp_mask, nid,
3070                                         &node_states[N_MEMORY], NULL);
3071                         if (!page)
3072                                 break;
3073                         put_page(page); /* free it into the hugepage allocator */
3074                 }
3075                 cond_resched();
3076         }
3077         if (i == h->max_huge_pages_node[nid])
3078                 return;
3079
3080         string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3081         pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3082                 h->max_huge_pages_node[nid], buf, nid, i);
3083         h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3084         h->max_huge_pages_node[nid] = i;
3085 }
3086
3087 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3088 {
3089         unsigned long i;
3090         nodemask_t *node_alloc_noretry;
3091         bool node_specific_alloc = false;
3092
3093         /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3094         if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3095                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3096                 return;
3097         }
3098
3099         /* do node specific alloc */
3100         for_each_online_node(i) {
3101                 if (h->max_huge_pages_node[i] > 0) {
3102                         hugetlb_hstate_alloc_pages_onenode(h, i);
3103                         node_specific_alloc = true;
3104                 }
3105         }
3106
3107         if (node_specific_alloc)
3108                 return;
3109
3110         /* below will do all node balanced alloc */
3111         if (!hstate_is_gigantic(h)) {
3112                 /*
3113                  * Bit mask controlling how hard we retry per-node allocations.
3114                  * Ignore errors as lower level routines can deal with
3115                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3116                  * time, we are likely in bigger trouble.
3117                  */
3118                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3119                                                 GFP_KERNEL);
3120         } else {
3121                 /* allocations done at boot time */
3122                 node_alloc_noretry = NULL;
3123         }
3124
3125         /* bit mask controlling how hard we retry per-node allocations */
3126         if (node_alloc_noretry)
3127                 nodes_clear(*node_alloc_noretry);
3128
3129         for (i = 0; i < h->max_huge_pages; ++i) {
3130                 if (hstate_is_gigantic(h)) {
3131                         if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3132                                 break;
3133                 } else if (!alloc_pool_huge_page(h,
3134                                          &node_states[N_MEMORY],
3135                                          node_alloc_noretry))
3136                         break;
3137                 cond_resched();
3138         }
3139         if (i < h->max_huge_pages) {
3140                 char buf[32];
3141
3142                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3143                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3144                         h->max_huge_pages, buf, i);
3145                 h->max_huge_pages = i;
3146         }
3147         kfree(node_alloc_noretry);
3148 }
3149
3150 static void __init hugetlb_init_hstates(void)
3151 {
3152         struct hstate *h, *h2;
3153
3154         for_each_hstate(h) {
3155                 /* oversize hugepages were init'ed in early boot */
3156                 if (!hstate_is_gigantic(h))
3157                         hugetlb_hstate_alloc_pages(h);
3158
3159                 /*
3160                  * Set demote order for each hstate.  Note that
3161                  * h->demote_order is initially 0.
3162                  * - We can not demote gigantic pages if runtime freeing
3163                  *   is not supported, so skip this.
3164                  * - If CMA allocation is possible, we can not demote
3165                  *   HUGETLB_PAGE_ORDER or smaller size pages.
3166                  */
3167                 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3168                         continue;
3169                 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3170                         continue;
3171                 for_each_hstate(h2) {
3172                         if (h2 == h)
3173                                 continue;
3174                         if (h2->order < h->order &&
3175                             h2->order > h->demote_order)
3176                                 h->demote_order = h2->order;
3177                 }
3178         }
3179 }
3180
3181 static void __init report_hugepages(void)
3182 {
3183         struct hstate *h;
3184
3185         for_each_hstate(h) {
3186                 char buf[32];
3187
3188                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3189                 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3190                         buf, h->free_huge_pages);
3191                 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3192                         hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3193         }
3194 }
3195
3196 #ifdef CONFIG_HIGHMEM
3197 static void try_to_free_low(struct hstate *h, unsigned long count,
3198                                                 nodemask_t *nodes_allowed)
3199 {
3200         int i;
3201         LIST_HEAD(page_list);
3202
3203         lockdep_assert_held(&hugetlb_lock);
3204         if (hstate_is_gigantic(h))
3205                 return;
3206
3207         /*
3208          * Collect pages to be freed on a list, and free after dropping lock
3209          */
3210         for_each_node_mask(i, *nodes_allowed) {
3211                 struct page *page, *next;
3212                 struct list_head *freel = &h->hugepage_freelists[i];
3213                 list_for_each_entry_safe(page, next, freel, lru) {
3214                         if (count >= h->nr_huge_pages)
3215                                 goto out;
3216                         if (PageHighMem(page))
3217                                 continue;
3218                         remove_hugetlb_page(h, page, false);
3219                         list_add(&page->lru, &page_list);
3220                 }
3221         }
3222
3223 out:
3224         spin_unlock_irq(&hugetlb_lock);
3225         update_and_free_pages_bulk(h, &page_list);
3226         spin_lock_irq(&hugetlb_lock);
3227 }
3228 #else
3229 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3230                                                 nodemask_t *nodes_allowed)
3231 {
3232 }
3233 #endif
3234
3235 /*
3236  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3237  * balanced by operating on them in a round-robin fashion.
3238  * Returns 1 if an adjustment was made.
3239  */
3240 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3241                                 int delta)
3242 {
3243         int nr_nodes, node;
3244
3245         lockdep_assert_held(&hugetlb_lock);
3246         VM_BUG_ON(delta != -1 && delta != 1);
3247
3248         if (delta < 0) {
3249                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3250                         if (h->surplus_huge_pages_node[node])
3251                                 goto found;
3252                 }
3253         } else {
3254                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3255                         if (h->surplus_huge_pages_node[node] <
3256                                         h->nr_huge_pages_node[node])
3257                                 goto found;
3258                 }
3259         }
3260         return 0;
3261
3262 found:
3263         h->surplus_huge_pages += delta;
3264         h->surplus_huge_pages_node[node] += delta;
3265         return 1;
3266 }
3267
3268 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3269 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3270                               nodemask_t *nodes_allowed)
3271 {
3272         unsigned long min_count, ret;
3273         struct page *page;
3274         LIST_HEAD(page_list);
3275         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3276
3277         /*
3278          * Bit mask controlling how hard we retry per-node allocations.
3279          * If we can not allocate the bit mask, do not attempt to allocate
3280          * the requested huge pages.
3281          */
3282         if (node_alloc_noretry)
3283                 nodes_clear(*node_alloc_noretry);
3284         else
3285                 return -ENOMEM;
3286
3287         /*
3288          * resize_lock mutex prevents concurrent adjustments to number of
3289          * pages in hstate via the proc/sysfs interfaces.
3290          */
3291         mutex_lock(&h->resize_lock);
3292         flush_free_hpage_work(h);
3293         spin_lock_irq(&hugetlb_lock);
3294
3295         /*
3296          * Check for a node specific request.
3297          * Changing node specific huge page count may require a corresponding
3298          * change to the global count.  In any case, the passed node mask
3299          * (nodes_allowed) will restrict alloc/free to the specified node.
3300          */
3301         if (nid != NUMA_NO_NODE) {
3302                 unsigned long old_count = count;
3303
3304                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3305                 /*
3306                  * User may have specified a large count value which caused the
3307                  * above calculation to overflow.  In this case, they wanted
3308                  * to allocate as many huge pages as possible.  Set count to
3309                  * largest possible value to align with their intention.
3310                  */
3311                 if (count < old_count)
3312                         count = ULONG_MAX;
3313         }
3314
3315         /*
3316          * Gigantic pages runtime allocation depend on the capability for large
3317          * page range allocation.
3318          * If the system does not provide this feature, return an error when
3319          * the user tries to allocate gigantic pages but let the user free the
3320          * boottime allocated gigantic pages.
3321          */
3322         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3323                 if (count > persistent_huge_pages(h)) {
3324                         spin_unlock_irq(&hugetlb_lock);
3325                         mutex_unlock(&h->resize_lock);
3326                         NODEMASK_FREE(node_alloc_noretry);
3327                         return -EINVAL;
3328                 }
3329                 /* Fall through to decrease pool */
3330         }
3331
3332         /*
3333          * Increase the pool size
3334          * First take pages out of surplus state.  Then make up the
3335          * remaining difference by allocating fresh huge pages.
3336          *
3337          * We might race with alloc_surplus_huge_page() here and be unable
3338          * to convert a surplus huge page to a normal huge page. That is
3339          * not critical, though, it just means the overall size of the
3340          * pool might be one hugepage larger than it needs to be, but
3341          * within all the constraints specified by the sysctls.
3342          */
3343         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3344                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3345                         break;
3346         }
3347
3348         while (count > persistent_huge_pages(h)) {
3349                 /*
3350                  * If this allocation races such that we no longer need the
3351                  * page, free_huge_page will handle it by freeing the page
3352                  * and reducing the surplus.
3353                  */
3354                 spin_unlock_irq(&hugetlb_lock);
3355
3356                 /* yield cpu to avoid soft lockup */
3357                 cond_resched();
3358
3359                 ret = alloc_pool_huge_page(h, nodes_allowed,
3360                                                 node_alloc_noretry);
3361                 spin_lock_irq(&hugetlb_lock);
3362                 if (!ret)
3363                         goto out;
3364
3365                 /* Bail for signals. Probably ctrl-c from user */
3366                 if (signal_pending(current))
3367                         goto out;
3368         }
3369
3370         /*
3371          * Decrease the pool size
3372          * First return free pages to the buddy allocator (being careful
3373          * to keep enough around to satisfy reservations).  Then place
3374          * pages into surplus state as needed so the pool will shrink
3375          * to the desired size as pages become free.
3376          *
3377          * By placing pages into the surplus state independent of the
3378          * overcommit value, we are allowing the surplus pool size to
3379          * exceed overcommit. There are few sane options here. Since
3380          * alloc_surplus_huge_page() is checking the global counter,
3381          * though, we'll note that we're not allowed to exceed surplus
3382          * and won't grow the pool anywhere else. Not until one of the
3383          * sysctls are changed, or the surplus pages go out of use.
3384          */
3385         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3386         min_count = max(count, min_count);
3387         try_to_free_low(h, min_count, nodes_allowed);
3388
3389         /*
3390          * Collect pages to be removed on list without dropping lock
3391          */
3392         while (min_count < persistent_huge_pages(h)) {
3393                 page = remove_pool_huge_page(h, nodes_allowed, 0);
3394                 if (!page)
3395                         break;
3396
3397                 list_add(&page->lru, &page_list);
3398         }
3399         /* free the pages after dropping lock */
3400         spin_unlock_irq(&hugetlb_lock);
3401         update_and_free_pages_bulk(h, &page_list);
3402         flush_free_hpage_work(h);
3403         spin_lock_irq(&hugetlb_lock);
3404
3405         while (count < persistent_huge_pages(h)) {
3406                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3407                         break;
3408         }
3409 out:
3410         h->max_huge_pages = persistent_huge_pages(h);
3411         spin_unlock_irq(&hugetlb_lock);
3412         mutex_unlock(&h->resize_lock);
3413
3414         NODEMASK_FREE(node_alloc_noretry);
3415
3416         return 0;
3417 }
3418
3419 static int demote_free_huge_page(struct hstate *h, struct page *page)
3420 {
3421         int i, nid = page_to_nid(page);
3422         struct hstate *target_hstate;
3423         int rc = 0;
3424
3425         target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3426
3427         remove_hugetlb_page_for_demote(h, page, false);
3428         spin_unlock_irq(&hugetlb_lock);
3429
3430         rc = hugetlb_vmemmap_restore(h, page);
3431         if (rc) {
3432                 /* Allocation of vmemmmap failed, we can not demote page */
3433                 spin_lock_irq(&hugetlb_lock);
3434                 set_page_refcounted(page);
3435                 add_hugetlb_page(h, page, false);
3436                 return rc;
3437         }
3438
3439         /*
3440          * Use destroy_compound_hugetlb_page_for_demote for all huge page
3441          * sizes as it will not ref count pages.
3442          */
3443         destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h));
3444
3445         /*
3446          * Taking target hstate mutex synchronizes with set_max_huge_pages.
3447          * Without the mutex, pages added to target hstate could be marked
3448          * as surplus.
3449          *
3450          * Note that we already hold h->resize_lock.  To prevent deadlock,
3451          * use the convention of always taking larger size hstate mutex first.
3452          */
3453         mutex_lock(&target_hstate->resize_lock);
3454         for (i = 0; i < pages_per_huge_page(h);
3455                                 i += pages_per_huge_page(target_hstate)) {
3456                 if (hstate_is_gigantic(target_hstate))
3457                         prep_compound_gigantic_page_for_demote(page + i,
3458                                                         target_hstate->order);
3459                 else
3460                         prep_compound_page(page + i, target_hstate->order);
3461                 set_page_private(page + i, 0);
3462                 set_page_refcounted(page + i);
3463                 prep_new_huge_page(target_hstate, page + i, nid);
3464                 put_page(page + i);
3465         }
3466         mutex_unlock(&target_hstate->resize_lock);
3467
3468         spin_lock_irq(&hugetlb_lock);
3469
3470         /*
3471          * Not absolutely necessary, but for consistency update max_huge_pages
3472          * based on pool changes for the demoted page.
3473          */
3474         h->max_huge_pages--;
3475         target_hstate->max_huge_pages += pages_per_huge_page(h);
3476
3477         return rc;
3478 }
3479
3480 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3481         __must_hold(&hugetlb_lock)
3482 {
3483         int nr_nodes, node;
3484         struct page *page;
3485
3486         lockdep_assert_held(&hugetlb_lock);
3487
3488         /* We should never get here if no demote order */
3489         if (!h->demote_order) {
3490                 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3491                 return -EINVAL;         /* internal error */
3492         }
3493
3494         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3495                 list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3496                         if (PageHWPoison(page))
3497                                 continue;
3498
3499                         return demote_free_huge_page(h, page);
3500                 }
3501         }
3502
3503         /*
3504          * Only way to get here is if all pages on free lists are poisoned.
3505          * Return -EBUSY so that caller will not retry.
3506          */
3507         return -EBUSY;
3508 }
3509
3510 #define HSTATE_ATTR_RO(_name) \
3511         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3512
3513 #define HSTATE_ATTR_WO(_name) \
3514         static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3515
3516 #define HSTATE_ATTR(_name) \
3517         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3518
3519 static struct kobject *hugepages_kobj;
3520 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3521
3522 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3523
3524 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3525 {
3526         int i;
3527
3528         for (i = 0; i < HUGE_MAX_HSTATE; i++)
3529                 if (hstate_kobjs[i] == kobj) {
3530                         if (nidp)
3531                                 *nidp = NUMA_NO_NODE;
3532                         return &hstates[i];
3533                 }
3534
3535         return kobj_to_node_hstate(kobj, nidp);
3536 }
3537
3538 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3539                                         struct kobj_attribute *attr, char *buf)
3540 {
3541         struct hstate *h;
3542         unsigned long nr_huge_pages;
3543         int nid;
3544
3545         h = kobj_to_hstate(kobj, &nid);
3546         if (nid == NUMA_NO_NODE)
3547                 nr_huge_pages = h->nr_huge_pages;
3548         else
3549                 nr_huge_pages = h->nr_huge_pages_node[nid];
3550
3551         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3552 }
3553
3554 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3555                                            struct hstate *h, int nid,
3556                                            unsigned long count, size_t len)
3557 {
3558         int err;
3559         nodemask_t nodes_allowed, *n_mask;
3560
3561         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3562                 return -EINVAL;
3563
3564         if (nid == NUMA_NO_NODE) {
3565                 /*
3566                  * global hstate attribute
3567                  */
3568                 if (!(obey_mempolicy &&
3569                                 init_nodemask_of_mempolicy(&nodes_allowed)))
3570                         n_mask = &node_states[N_MEMORY];
3571                 else
3572                         n_mask = &nodes_allowed;
3573         } else {
3574                 /*
3575                  * Node specific request.  count adjustment happens in
3576                  * set_max_huge_pages() after acquiring hugetlb_lock.
3577                  */
3578                 init_nodemask_of_node(&nodes_allowed, nid);
3579                 n_mask = &nodes_allowed;
3580         }
3581
3582         err = set_max_huge_pages(h, count, nid, n_mask);
3583
3584         return err ? err : len;
3585 }
3586
3587 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3588                                          struct kobject *kobj, const char *buf,
3589                                          size_t len)
3590 {
3591         struct hstate *h;
3592         unsigned long count;
3593         int nid;
3594         int err;
3595
3596         err = kstrtoul(buf, 10, &count);
3597         if (err)
3598                 return err;
3599
3600         h = kobj_to_hstate(kobj, &nid);
3601         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3602 }
3603
3604 static ssize_t nr_hugepages_show(struct kobject *kobj,
3605                                        struct kobj_attribute *attr, char *buf)
3606 {
3607         return nr_hugepages_show_common(kobj, attr, buf);
3608 }
3609
3610 static ssize_t nr_hugepages_store(struct kobject *kobj,
3611                struct kobj_attribute *attr, const char *buf, size_t len)
3612 {
3613         return nr_hugepages_store_common(false, kobj, buf, len);
3614 }
3615 HSTATE_ATTR(nr_hugepages);
3616
3617 #ifdef CONFIG_NUMA
3618
3619 /*
3620  * hstate attribute for optionally mempolicy-based constraint on persistent
3621  * huge page alloc/free.
3622  */
3623 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3624                                            struct kobj_attribute *attr,
3625                                            char *buf)
3626 {
3627         return nr_hugepages_show_common(kobj, attr, buf);
3628 }
3629
3630 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3631                struct kobj_attribute *attr, const char *buf, size_t len)
3632 {
3633         return nr_hugepages_store_common(true, kobj, buf, len);
3634 }
3635 HSTATE_ATTR(nr_hugepages_mempolicy);
3636 #endif
3637
3638
3639 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3640                                         struct kobj_attribute *attr, char *buf)
3641 {
3642         struct hstate *h = kobj_to_hstate(kobj, NULL);
3643         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3644 }
3645
3646 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3647                 struct kobj_attribute *attr, const char *buf, size_t count)
3648 {
3649         int err;
3650         unsigned long input;
3651         struct hstate *h = kobj_to_hstate(kobj, NULL);
3652
3653         if (hstate_is_gigantic(h))
3654                 return -EINVAL;
3655
3656         err = kstrtoul(buf, 10, &input);
3657         if (err)
3658                 return err;
3659
3660         spin_lock_irq(&hugetlb_lock);
3661         h->nr_overcommit_huge_pages = input;
3662         spin_unlock_irq(&hugetlb_lock);
3663
3664         return count;
3665 }
3666 HSTATE_ATTR(nr_overcommit_hugepages);
3667
3668 static ssize_t free_hugepages_show(struct kobject *kobj,
3669                                         struct kobj_attribute *attr, char *buf)
3670 {
3671         struct hstate *h;
3672         unsigned long free_huge_pages;
3673         int nid;
3674
3675         h = kobj_to_hstate(kobj, &nid);
3676         if (nid == NUMA_NO_NODE)
3677                 free_huge_pages = h->free_huge_pages;
3678         else
3679                 free_huge_pages = h->free_huge_pages_node[nid];
3680
3681         return sysfs_emit(buf, "%lu\n", free_huge_pages);
3682 }
3683 HSTATE_ATTR_RO(free_hugepages);
3684
3685 static ssize_t resv_hugepages_show(struct kobject *kobj,
3686                                         struct kobj_attribute *attr, char *buf)
3687 {
3688         struct hstate *h = kobj_to_hstate(kobj, NULL);
3689         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3690 }
3691 HSTATE_ATTR_RO(resv_hugepages);
3692
3693 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3694                                         struct kobj_attribute *attr, char *buf)
3695 {
3696         struct hstate *h;
3697         unsigned long surplus_huge_pages;
3698         int nid;
3699
3700         h = kobj_to_hstate(kobj, &nid);
3701         if (nid == NUMA_NO_NODE)
3702                 surplus_huge_pages = h->surplus_huge_pages;
3703         else
3704                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3705
3706         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3707 }
3708 HSTATE_ATTR_RO(surplus_hugepages);
3709
3710 static ssize_t demote_store(struct kobject *kobj,
3711                struct kobj_attribute *attr, const char *buf, size_t len)
3712 {
3713         unsigned long nr_demote;
3714         unsigned long nr_available;
3715         nodemask_t nodes_allowed, *n_mask;
3716         struct hstate *h;
3717         int err = 0;
3718         int nid;
3719
3720         err = kstrtoul(buf, 10, &nr_demote);
3721         if (err)
3722                 return err;
3723         h = kobj_to_hstate(kobj, &nid);
3724
3725         if (nid != NUMA_NO_NODE) {
3726                 init_nodemask_of_node(&nodes_allowed, nid);
3727                 n_mask = &nodes_allowed;
3728         } else {
3729                 n_mask = &node_states[N_MEMORY];
3730         }
3731
3732         /* Synchronize with other sysfs operations modifying huge pages */
3733         mutex_lock(&h->resize_lock);
3734         spin_lock_irq(&hugetlb_lock);
3735
3736         while (nr_demote) {
3737                 /*
3738                  * Check for available pages to demote each time thorough the
3739                  * loop as demote_pool_huge_page will drop hugetlb_lock.
3740                  */
3741                 if (nid != NUMA_NO_NODE)
3742                         nr_available = h->free_huge_pages_node[nid];
3743                 else
3744                         nr_available = h->free_huge_pages;
3745                 nr_available -= h->resv_huge_pages;
3746                 if (!nr_available)
3747                         break;
3748
3749                 err = demote_pool_huge_page(h, n_mask);
3750                 if (err)
3751                         break;
3752
3753                 nr_demote--;
3754         }
3755
3756         spin_unlock_irq(&hugetlb_lock);
3757         mutex_unlock(&h->resize_lock);
3758
3759         if (err)
3760                 return err;
3761         return len;
3762 }
3763 HSTATE_ATTR_WO(demote);
3764
3765 static ssize_t demote_size_show(struct kobject *kobj,
3766                                         struct kobj_attribute *attr, char *buf)
3767 {
3768         int nid;
3769         struct hstate *h = kobj_to_hstate(kobj, &nid);
3770         unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3771
3772         return sysfs_emit(buf, "%lukB\n", demote_size);
3773 }
3774
3775 static ssize_t demote_size_store(struct kobject *kobj,
3776                                         struct kobj_attribute *attr,
3777                                         const char *buf, size_t count)
3778 {
3779         struct hstate *h, *demote_hstate;
3780         unsigned long demote_size;
3781         unsigned int demote_order;
3782         int nid;
3783
3784         demote_size = (unsigned long)memparse(buf, NULL);
3785
3786         demote_hstate = size_to_hstate(demote_size);
3787         if (!demote_hstate)
3788                 return -EINVAL;
3789         demote_order = demote_hstate->order;
3790         if (demote_order < HUGETLB_PAGE_ORDER)
3791                 return -EINVAL;
3792
3793         /* demote order must be smaller than hstate order */
3794         h = kobj_to_hstate(kobj, &nid);
3795         if (demote_order >= h->order)
3796                 return -EINVAL;
3797
3798         /* resize_lock synchronizes access to demote size and writes */
3799         mutex_lock(&h->resize_lock);
3800         h->demote_order = demote_order;
3801         mutex_unlock(&h->resize_lock);
3802
3803         return count;
3804 }
3805 HSTATE_ATTR(demote_size);
3806
3807 static struct attribute *hstate_attrs[] = {
3808         &nr_hugepages_attr.attr,
3809         &nr_overcommit_hugepages_attr.attr,
3810         &free_hugepages_attr.attr,
3811         &resv_hugepages_attr.attr,
3812         &surplus_hugepages_attr.attr,
3813 #ifdef CONFIG_NUMA
3814         &nr_hugepages_mempolicy_attr.attr,
3815 #endif
3816         NULL,
3817 };
3818
3819 static const struct attribute_group hstate_attr_group = {
3820         .attrs = hstate_attrs,
3821 };
3822
3823 static struct attribute *hstate_demote_attrs[] = {
3824         &demote_size_attr.attr,
3825         &demote_attr.attr,
3826         NULL,
3827 };
3828
3829 static const struct attribute_group hstate_demote_attr_group = {
3830         .attrs = hstate_demote_attrs,
3831 };
3832
3833 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3834                                     struct kobject **hstate_kobjs,
3835                                     const struct attribute_group *hstate_attr_group)
3836 {
3837         int retval;
3838         int hi = hstate_index(h);
3839
3840         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3841         if (!hstate_kobjs[hi])
3842                 return -ENOMEM;
3843
3844         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3845         if (retval) {
3846                 kobject_put(hstate_kobjs[hi]);
3847                 hstate_kobjs[hi] = NULL;
3848         }
3849
3850         if (h->demote_order) {
3851                 if (sysfs_create_group(hstate_kobjs[hi],
3852                                         &hstate_demote_attr_group))
3853                         pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
3854         }
3855
3856         return retval;
3857 }
3858
3859 static void __init hugetlb_sysfs_init(void)
3860 {
3861         struct hstate *h;
3862         int err;
3863
3864         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3865         if (!hugepages_kobj)
3866                 return;
3867
3868         for_each_hstate(h) {
3869                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3870                                          hstate_kobjs, &hstate_attr_group);
3871                 if (err)
3872                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
3873         }
3874 }
3875
3876 #ifdef CONFIG_NUMA
3877
3878 /*
3879  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3880  * with node devices in node_devices[] using a parallel array.  The array
3881  * index of a node device or _hstate == node id.
3882  * This is here to avoid any static dependency of the node device driver, in
3883  * the base kernel, on the hugetlb module.
3884  */
3885 struct node_hstate {
3886         struct kobject          *hugepages_kobj;
3887         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
3888 };
3889 static struct node_hstate node_hstates[MAX_NUMNODES];
3890
3891 /*
3892  * A subset of global hstate attributes for node devices
3893  */
3894 static struct attribute *per_node_hstate_attrs[] = {
3895         &nr_hugepages_attr.attr,
3896         &free_hugepages_attr.attr,
3897         &surplus_hugepages_attr.attr,
3898         NULL,
3899 };
3900
3901 static const struct attribute_group per_node_hstate_attr_group = {
3902         .attrs = per_node_hstate_attrs,
3903 };
3904
3905 /*
3906  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3907  * Returns node id via non-NULL nidp.
3908  */
3909 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3910 {
3911         int nid;
3912
3913         for (nid = 0; nid < nr_node_ids; nid++) {
3914                 struct node_hstate *nhs = &node_hstates[nid];
3915                 int i;
3916                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3917                         if (nhs->hstate_kobjs[i] == kobj) {
3918                                 if (nidp)
3919                                         *nidp = nid;
3920                                 return &hstates[i];
3921                         }
3922         }
3923
3924         BUG();
3925         return NULL;
3926 }
3927
3928 /*
3929  * Unregister hstate attributes from a single node device.
3930  * No-op if no hstate attributes attached.
3931  */
3932 static void hugetlb_unregister_node(struct node *node)
3933 {
3934         struct hstate *h;
3935         struct node_hstate *nhs = &node_hstates[node->dev.id];
3936
3937         if (!nhs->hugepages_kobj)
3938                 return;         /* no hstate attributes */
3939
3940         for_each_hstate(h) {
3941                 int idx = hstate_index(h);
3942                 if (nhs->hstate_kobjs[idx]) {
3943                         kobject_put(nhs->hstate_kobjs[idx]);
3944                         nhs->hstate_kobjs[idx] = NULL;
3945                 }
3946         }
3947
3948         kobject_put(nhs->hugepages_kobj);
3949         nhs->hugepages_kobj = NULL;
3950 }
3951
3952
3953 /*
3954  * Register hstate attributes for a single node device.
3955  * No-op if attributes already registered.
3956  */
3957 static void hugetlb_register_node(struct node *node)
3958 {
3959         struct hstate *h;
3960         struct node_hstate *nhs = &node_hstates[node->dev.id];
3961         int err;
3962
3963         if (nhs->hugepages_kobj)
3964                 return;         /* already allocated */
3965
3966         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3967                                                         &node->dev.kobj);
3968         if (!nhs->hugepages_kobj)
3969                 return;
3970
3971         for_each_hstate(h) {
3972                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3973                                                 nhs->hstate_kobjs,
3974                                                 &per_node_hstate_attr_group);
3975                 if (err) {
3976                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3977                                 h->name, node->dev.id);
3978                         hugetlb_unregister_node(node);
3979                         break;
3980                 }
3981         }
3982 }
3983
3984 /*
3985  * hugetlb init time:  register hstate attributes for all registered node
3986  * devices of nodes that have memory.  All on-line nodes should have
3987  * registered their associated device by this time.
3988  */
3989 static void __init hugetlb_register_all_nodes(void)
3990 {
3991         int nid;
3992
3993         for_each_node_state(nid, N_MEMORY) {
3994                 struct node *node = node_devices[nid];
3995                 if (node->dev.id == nid)
3996                         hugetlb_register_node(node);
3997         }
3998
3999         /*
4000          * Let the node device driver know we're here so it can
4001          * [un]register hstate attributes on node hotplug.
4002          */
4003         register_hugetlbfs_with_node(hugetlb_register_node,
4004                                      hugetlb_unregister_node);
4005 }
4006 #else   /* !CONFIG_NUMA */
4007
4008 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4009 {
4010         BUG();
4011         if (nidp)
4012                 *nidp = -1;
4013         return NULL;
4014 }
4015
4016 static void hugetlb_register_all_nodes(void) { }
4017
4018 #endif
4019
4020 static int __init hugetlb_init(void)
4021 {
4022         int i;
4023
4024         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4025                         __NR_HPAGEFLAGS);
4026
4027         if (!hugepages_supported()) {
4028                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4029                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4030                 return 0;
4031         }
4032
4033         /*
4034          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4035          * architectures depend on setup being done here.
4036          */
4037         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4038         if (!parsed_default_hugepagesz) {
4039                 /*
4040                  * If we did not parse a default huge page size, set
4041                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4042                  * number of huge pages for this default size was implicitly
4043                  * specified, set that here as well.
4044                  * Note that the implicit setting will overwrite an explicit
4045                  * setting.  A warning will be printed in this case.
4046                  */
4047                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4048                 if (default_hstate_max_huge_pages) {
4049                         if (default_hstate.max_huge_pages) {
4050                                 char buf[32];
4051
4052                                 string_get_size(huge_page_size(&default_hstate),
4053                                         1, STRING_UNITS_2, buf, 32);
4054                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4055                                         default_hstate.max_huge_pages, buf);
4056                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4057                                         default_hstate_max_huge_pages);
4058                         }
4059                         default_hstate.max_huge_pages =
4060                                 default_hstate_max_huge_pages;
4061
4062                         for_each_online_node(i)
4063                                 default_hstate.max_huge_pages_node[i] =
4064                                         default_hugepages_in_node[i];
4065                 }
4066         }
4067
4068         hugetlb_cma_check();
4069         hugetlb_init_hstates();
4070         gather_bootmem_prealloc();
4071         report_hugepages();
4072
4073         hugetlb_sysfs_init();
4074         hugetlb_register_all_nodes();
4075         hugetlb_cgroup_file_init();
4076
4077 #ifdef CONFIG_SMP
4078         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4079 #else
4080         num_fault_mutexes = 1;
4081 #endif
4082         hugetlb_fault_mutex_table =
4083                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4084                               GFP_KERNEL);
4085         BUG_ON(!hugetlb_fault_mutex_table);
4086
4087         for (i = 0; i < num_fault_mutexes; i++)
4088                 mutex_init(&hugetlb_fault_mutex_table[i]);
4089         return 0;
4090 }
4091 subsys_initcall(hugetlb_init);
4092
4093 /* Overwritten by architectures with more huge page sizes */
4094 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4095 {
4096         return size == HPAGE_SIZE;
4097 }
4098
4099 void __init hugetlb_add_hstate(unsigned int order)
4100 {
4101         struct hstate *h;
4102         unsigned long i;
4103
4104         if (size_to_hstate(PAGE_SIZE << order)) {
4105                 return;
4106         }
4107         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4108         BUG_ON(order == 0);
4109         h = &hstates[hugetlb_max_hstate++];
4110         mutex_init(&h->resize_lock);
4111         h->order = order;
4112         h->mask = ~(huge_page_size(h) - 1);
4113         for (i = 0; i < MAX_NUMNODES; ++i)
4114                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4115         INIT_LIST_HEAD(&h->hugepage_activelist);
4116         h->next_nid_to_alloc = first_memory_node;
4117         h->next_nid_to_free = first_memory_node;
4118         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4119                                         huge_page_size(h)/1024);
4120
4121         parsed_hstate = h;
4122 }
4123
4124 bool __init __weak hugetlb_node_alloc_supported(void)
4125 {
4126         return true;
4127 }
4128
4129 static void __init hugepages_clear_pages_in_node(void)
4130 {
4131         if (!hugetlb_max_hstate) {
4132                 default_hstate_max_huge_pages = 0;
4133                 memset(default_hugepages_in_node, 0,
4134                         MAX_NUMNODES * sizeof(unsigned int));
4135         } else {
4136                 parsed_hstate->max_huge_pages = 0;
4137                 memset(parsed_hstate->max_huge_pages_node, 0,
4138                         MAX_NUMNODES * sizeof(unsigned int));
4139         }
4140 }
4141
4142 /*
4143  * hugepages command line processing
4144  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4145  * specification.  If not, ignore the hugepages value.  hugepages can also
4146  * be the first huge page command line  option in which case it implicitly
4147  * specifies the number of huge pages for the default size.
4148  */
4149 static int __init hugepages_setup(char *s)
4150 {
4151         unsigned long *mhp;
4152         static unsigned long *last_mhp;
4153         int node = NUMA_NO_NODE;
4154         int count;
4155         unsigned long tmp;
4156         char *p = s;
4157
4158         if (!parsed_valid_hugepagesz) {
4159                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4160                 parsed_valid_hugepagesz = true;
4161                 return 1;
4162         }
4163
4164         /*
4165          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4166          * yet, so this hugepages= parameter goes to the "default hstate".
4167          * Otherwise, it goes with the previously parsed hugepagesz or
4168          * default_hugepagesz.
4169          */
4170         else if (!hugetlb_max_hstate)
4171                 mhp = &default_hstate_max_huge_pages;
4172         else
4173                 mhp = &parsed_hstate->max_huge_pages;
4174
4175         if (mhp == last_mhp) {
4176                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4177                 return 1;
4178         }
4179
4180         while (*p) {
4181                 count = 0;
4182                 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4183                         goto invalid;
4184                 /* Parameter is node format */
4185                 if (p[count] == ':') {
4186                         if (!hugetlb_node_alloc_supported()) {
4187                                 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4188                                 return 1;
4189                         }
4190                         if (tmp >= MAX_NUMNODES || !node_online(tmp))
4191                                 goto invalid;
4192                         node = array_index_nospec(tmp, MAX_NUMNODES);
4193                         p += count + 1;
4194                         /* Parse hugepages */
4195                         if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4196                                 goto invalid;
4197                         if (!hugetlb_max_hstate)
4198                                 default_hugepages_in_node[node] = tmp;
4199                         else
4200                                 parsed_hstate->max_huge_pages_node[node] = tmp;
4201                         *mhp += tmp;
4202                         /* Go to parse next node*/
4203                         if (p[count] == ',')
4204                                 p += count + 1;
4205                         else
4206                                 break;
4207                 } else {
4208                         if (p != s)
4209                                 goto invalid;
4210                         *mhp = tmp;
4211                         break;
4212                 }
4213         }
4214
4215         /*
4216          * Global state is always initialized later in hugetlb_init.
4217          * But we need to allocate gigantic hstates here early to still
4218          * use the bootmem allocator.
4219          */
4220         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4221                 hugetlb_hstate_alloc_pages(parsed_hstate);
4222
4223         last_mhp = mhp;
4224
4225         return 1;
4226
4227 invalid:
4228         pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4229         hugepages_clear_pages_in_node();
4230         return 1;
4231 }
4232 __setup("hugepages=", hugepages_setup);
4233
4234 /*
4235  * hugepagesz command line processing
4236  * A specific huge page size can only be specified once with hugepagesz.
4237  * hugepagesz is followed by hugepages on the command line.  The global
4238  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4239  * hugepagesz argument was valid.
4240  */
4241 static int __init hugepagesz_setup(char *s)
4242 {
4243         unsigned long size;
4244         struct hstate *h;
4245
4246         parsed_valid_hugepagesz = false;
4247         size = (unsigned long)memparse(s, NULL);
4248
4249         if (!arch_hugetlb_valid_size(size)) {
4250                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4251                 return 1;
4252         }
4253
4254         h = size_to_hstate(size);
4255         if (h) {
4256                 /*
4257                  * hstate for this size already exists.  This is normally
4258                  * an error, but is allowed if the existing hstate is the
4259                  * default hstate.  More specifically, it is only allowed if
4260                  * the number of huge pages for the default hstate was not
4261                  * previously specified.
4262                  */
4263                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4264                     default_hstate.max_huge_pages) {
4265                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4266                         return 1;
4267                 }
4268
4269                 /*
4270                  * No need to call hugetlb_add_hstate() as hstate already
4271                  * exists.  But, do set parsed_hstate so that a following
4272                  * hugepages= parameter will be applied to this hstate.
4273                  */
4274                 parsed_hstate = h;
4275                 parsed_valid_hugepagesz = true;
4276                 return 1;
4277         }
4278
4279         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4280         parsed_valid_hugepagesz = true;
4281         return 1;
4282 }
4283 __setup("hugepagesz=", hugepagesz_setup);
4284
4285 /*
4286  * default_hugepagesz command line input
4287  * Only one instance of default_hugepagesz allowed on command line.
4288  */
4289 static int __init default_hugepagesz_setup(char *s)
4290 {
4291         unsigned long size;
4292         int i;
4293
4294         parsed_valid_hugepagesz = false;
4295         if (parsed_default_hugepagesz) {
4296                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4297                 return 1;
4298         }
4299
4300         size = (unsigned long)memparse(s, NULL);
4301
4302         if (!arch_hugetlb_valid_size(size)) {
4303                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4304                 return 1;
4305         }
4306
4307         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4308         parsed_valid_hugepagesz = true;
4309         parsed_default_hugepagesz = true;
4310         default_hstate_idx = hstate_index(size_to_hstate(size));
4311
4312         /*
4313          * The number of default huge pages (for this size) could have been
4314          * specified as the first hugetlb parameter: hugepages=X.  If so,
4315          * then default_hstate_max_huge_pages is set.  If the default huge
4316          * page size is gigantic (>= MAX_ORDER), then the pages must be
4317          * allocated here from bootmem allocator.
4318          */
4319         if (default_hstate_max_huge_pages) {
4320                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4321                 for_each_online_node(i)
4322                         default_hstate.max_huge_pages_node[i] =
4323                                 default_hugepages_in_node[i];
4324                 if (hstate_is_gigantic(&default_hstate))
4325                         hugetlb_hstate_alloc_pages(&default_hstate);
4326                 default_hstate_max_huge_pages = 0;
4327         }
4328
4329         return 1;
4330 }
4331 __setup("default_hugepagesz=", default_hugepagesz_setup);
4332
4333 static unsigned int allowed_mems_nr(struct hstate *h)
4334 {
4335         int node;
4336         unsigned int nr = 0;
4337         nodemask_t *mpol_allowed;
4338         unsigned int *array = h->free_huge_pages_node;
4339         gfp_t gfp_mask = htlb_alloc_mask(h);
4340
4341         mpol_allowed = policy_nodemask_current(gfp_mask);
4342
4343         for_each_node_mask(node, cpuset_current_mems_allowed) {
4344                 if (!mpol_allowed || node_isset(node, *mpol_allowed))
4345                         nr += array[node];
4346         }
4347
4348         return nr;
4349 }
4350
4351 #ifdef CONFIG_SYSCTL
4352 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4353                                           void *buffer, size_t *length,
4354                                           loff_t *ppos, unsigned long *out)
4355 {
4356         struct ctl_table dup_table;
4357
4358         /*
4359          * In order to avoid races with __do_proc_doulongvec_minmax(), we
4360          * can duplicate the @table and alter the duplicate of it.
4361          */
4362         dup_table = *table;
4363         dup_table.data = out;
4364
4365         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4366 }
4367
4368 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4369                          struct ctl_table *table, int write,
4370                          void *buffer, size_t *length, loff_t *ppos)
4371 {
4372         struct hstate *h = &default_hstate;
4373         unsigned long tmp = h->max_huge_pages;
4374         int ret;
4375
4376         if (!hugepages_supported())
4377                 return -EOPNOTSUPP;
4378
4379         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4380                                              &tmp);
4381         if (ret)
4382                 goto out;
4383
4384         if (write)
4385                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4386                                                   NUMA_NO_NODE, tmp, *length);
4387 out:
4388         return ret;
4389 }
4390
4391 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4392                           void *buffer, size_t *length, loff_t *ppos)
4393 {
4394
4395         return hugetlb_sysctl_handler_common(false, table, write,
4396                                                         buffer, length, ppos);
4397 }
4398
4399 #ifdef CONFIG_NUMA
4400 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4401                           void *buffer, size_t *length, loff_t *ppos)
4402 {
4403         return hugetlb_sysctl_handler_common(true, table, write,
4404                                                         buffer, length, ppos);
4405 }
4406 #endif /* CONFIG_NUMA */
4407
4408 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4409                 void *buffer, size_t *length, loff_t *ppos)
4410 {
4411         struct hstate *h = &default_hstate;
4412         unsigned long tmp;
4413         int ret;
4414
4415         if (!hugepages_supported())
4416                 return -EOPNOTSUPP;
4417
4418         tmp = h->nr_overcommit_huge_pages;
4419
4420         if (write && hstate_is_gigantic(h))
4421                 return -EINVAL;
4422
4423         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4424                                              &tmp);
4425         if (ret)
4426                 goto out;
4427
4428         if (write) {
4429                 spin_lock_irq(&hugetlb_lock);
4430                 h->nr_overcommit_huge_pages = tmp;
4431                 spin_unlock_irq(&hugetlb_lock);
4432         }
4433 out:
4434         return ret;
4435 }
4436
4437 #endif /* CONFIG_SYSCTL */
4438
4439 void hugetlb_report_meminfo(struct seq_file *m)
4440 {
4441         struct hstate *h;
4442         unsigned long total = 0;
4443
4444         if (!hugepages_supported())
4445                 return;
4446
4447         for_each_hstate(h) {
4448                 unsigned long count = h->nr_huge_pages;
4449
4450                 total += huge_page_size(h) * count;
4451
4452                 if (h == &default_hstate)
4453                         seq_printf(m,
4454                                    "HugePages_Total:   %5lu\n"
4455                                    "HugePages_Free:    %5lu\n"
4456                                    "HugePages_Rsvd:    %5lu\n"
4457                                    "HugePages_Surp:    %5lu\n"
4458                                    "Hugepagesize:   %8lu kB\n",
4459                                    count,
4460                                    h->free_huge_pages,
4461                                    h->resv_huge_pages,
4462                                    h->surplus_huge_pages,
4463                                    huge_page_size(h) / SZ_1K);
4464         }
4465
4466         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4467 }
4468
4469 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4470 {
4471         struct hstate *h = &default_hstate;
4472
4473         if (!hugepages_supported())
4474                 return 0;
4475
4476         return sysfs_emit_at(buf, len,
4477                              "Node %d HugePages_Total: %5u\n"
4478                              "Node %d HugePages_Free:  %5u\n"
4479                              "Node %d HugePages_Surp:  %5u\n",
4480                              nid, h->nr_huge_pages_node[nid],
4481                              nid, h->free_huge_pages_node[nid],
4482                              nid, h->surplus_huge_pages_node[nid]);
4483 }
4484
4485 void hugetlb_show_meminfo_node(int nid)
4486 {
4487         struct hstate *h;
4488
4489         if (!hugepages_supported())
4490                 return;
4491
4492         for_each_hstate(h)
4493                 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4494                         nid,
4495                         h->nr_huge_pages_node[nid],
4496                         h->free_huge_pages_node[nid],
4497                         h->surplus_huge_pages_node[nid],
4498                         huge_page_size(h) / SZ_1K);
4499 }
4500
4501 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4502 {
4503         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4504                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4505 }
4506
4507 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4508 unsigned long hugetlb_total_pages(void)
4509 {
4510         struct hstate *h;
4511         unsigned long nr_total_pages = 0;
4512
4513         for_each_hstate(h)
4514                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4515         return nr_total_pages;
4516 }
4517
4518 static int hugetlb_acct_memory(struct hstate *h, long delta)
4519 {
4520         int ret = -ENOMEM;
4521
4522         if (!delta)
4523                 return 0;
4524
4525         spin_lock_irq(&hugetlb_lock);
4526         /*
4527          * When cpuset is configured, it breaks the strict hugetlb page
4528          * reservation as the accounting is done on a global variable. Such
4529          * reservation is completely rubbish in the presence of cpuset because
4530          * the reservation is not checked against page availability for the
4531          * current cpuset. Application can still potentially OOM'ed by kernel
4532          * with lack of free htlb page in cpuset that the task is in.
4533          * Attempt to enforce strict accounting with cpuset is almost
4534          * impossible (or too ugly) because cpuset is too fluid that
4535          * task or memory node can be dynamically moved between cpusets.
4536          *
4537          * The change of semantics for shared hugetlb mapping with cpuset is
4538          * undesirable. However, in order to preserve some of the semantics,
4539          * we fall back to check against current free page availability as
4540          * a best attempt and hopefully to minimize the impact of changing
4541          * semantics that cpuset has.
4542          *
4543          * Apart from cpuset, we also have memory policy mechanism that
4544          * also determines from which node the kernel will allocate memory
4545          * in a NUMA system. So similar to cpuset, we also should consider
4546          * the memory policy of the current task. Similar to the description
4547          * above.
4548          */
4549         if (delta > 0) {
4550                 if (gather_surplus_pages(h, delta) < 0)
4551                         goto out;
4552
4553                 if (delta > allowed_mems_nr(h)) {
4554                         return_unused_surplus_pages(h, delta);
4555                         goto out;
4556                 }
4557         }
4558
4559         ret = 0;
4560         if (delta < 0)
4561                 return_unused_surplus_pages(h, (unsigned long) -delta);
4562
4563 out:
4564         spin_unlock_irq(&hugetlb_lock);
4565         return ret;
4566 }
4567
4568 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4569 {
4570         struct resv_map *resv = vma_resv_map(vma);
4571
4572         /*
4573          * This new VMA should share its siblings reservation map if present.
4574          * The VMA will only ever have a valid reservation map pointer where
4575          * it is being copied for another still existing VMA.  As that VMA
4576          * has a reference to the reservation map it cannot disappear until
4577          * after this open call completes.  It is therefore safe to take a
4578          * new reference here without additional locking.
4579          */
4580         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4581                 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4582                 kref_get(&resv->refs);
4583         }
4584 }
4585
4586 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4587 {
4588         struct hstate *h = hstate_vma(vma);
4589         struct resv_map *resv = vma_resv_map(vma);
4590         struct hugepage_subpool *spool = subpool_vma(vma);
4591         unsigned long reserve, start, end;
4592         long gbl_reserve;
4593
4594         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4595                 return;
4596
4597         start = vma_hugecache_offset(h, vma, vma->vm_start);
4598         end = vma_hugecache_offset(h, vma, vma->vm_end);
4599
4600         reserve = (end - start) - region_count(resv, start, end);
4601         hugetlb_cgroup_uncharge_counter(resv, start, end);
4602         if (reserve) {
4603                 /*
4604                  * Decrement reserve counts.  The global reserve count may be
4605                  * adjusted if the subpool has a minimum size.
4606                  */
4607                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4608                 hugetlb_acct_memory(h, -gbl_reserve);
4609         }
4610
4611         kref_put(&resv->refs, resv_map_release);
4612 }
4613
4614 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4615 {
4616         if (addr & ~(huge_page_mask(hstate_vma(vma))))
4617                 return -EINVAL;
4618         return 0;
4619 }
4620
4621 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4622 {
4623         return huge_page_size(hstate_vma(vma));
4624 }
4625
4626 /*
4627  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4628  * handle_mm_fault() to try to instantiate regular-sized pages in the
4629  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4630  * this far.
4631  */
4632 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4633 {
4634         BUG();
4635         return 0;
4636 }
4637
4638 /*
4639  * When a new function is introduced to vm_operations_struct and added
4640  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4641  * This is because under System V memory model, mappings created via
4642  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4643  * their original vm_ops are overwritten with shm_vm_ops.
4644  */
4645 const struct vm_operations_struct hugetlb_vm_ops = {
4646         .fault = hugetlb_vm_op_fault,
4647         .open = hugetlb_vm_op_open,
4648         .close = hugetlb_vm_op_close,
4649         .may_split = hugetlb_vm_op_split,
4650         .pagesize = hugetlb_vm_op_pagesize,
4651 };
4652
4653 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4654                                 int writable)
4655 {
4656         pte_t entry;
4657         unsigned int shift = huge_page_shift(hstate_vma(vma));
4658
4659         if (writable) {
4660                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4661                                          vma->vm_page_prot)));
4662         } else {
4663                 entry = huge_pte_wrprotect(mk_huge_pte(page,
4664                                            vma->vm_page_prot));
4665         }
4666         entry = pte_mkyoung(entry);
4667         entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4668
4669         return entry;
4670 }
4671
4672 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4673                                    unsigned long address, pte_t *ptep)
4674 {
4675         pte_t entry;
4676
4677         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4678         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4679                 update_mmu_cache(vma, address, ptep);
4680 }
4681
4682 bool is_hugetlb_entry_migration(pte_t pte)
4683 {
4684         swp_entry_t swp;
4685
4686         if (huge_pte_none(pte) || pte_present(pte))
4687                 return false;
4688         swp = pte_to_swp_entry(pte);
4689         if (is_migration_entry(swp))
4690                 return true;
4691         else
4692                 return false;
4693 }
4694
4695 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4696 {
4697         swp_entry_t swp;
4698
4699         if (huge_pte_none(pte) || pte_present(pte))
4700                 return false;
4701         swp = pte_to_swp_entry(pte);
4702         if (is_hwpoison_entry(swp))
4703                 return true;
4704         else
4705                 return false;
4706 }
4707
4708 static void
4709 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4710                      struct page *new_page)
4711 {
4712         __SetPageUptodate(new_page);
4713         hugepage_add_new_anon_rmap(new_page, vma, addr);
4714         set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4715         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4716         ClearHPageRestoreReserve(new_page);
4717         SetHPageMigratable(new_page);
4718 }
4719
4720 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4721                             struct vm_area_struct *dst_vma,
4722                             struct vm_area_struct *src_vma)
4723 {
4724         pte_t *src_pte, *dst_pte, entry, dst_entry;
4725         struct page *ptepage;
4726         unsigned long addr;
4727         bool cow = is_cow_mapping(src_vma->vm_flags);
4728         struct hstate *h = hstate_vma(src_vma);
4729         unsigned long sz = huge_page_size(h);
4730         unsigned long npages = pages_per_huge_page(h);
4731         struct address_space *mapping = src_vma->vm_file->f_mapping;
4732         struct mmu_notifier_range range;
4733         unsigned long last_addr_mask;
4734         int ret = 0;
4735
4736         if (cow) {
4737                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src,
4738                                         src_vma->vm_start,
4739                                         src_vma->vm_end);
4740                 mmu_notifier_invalidate_range_start(&range);
4741                 mmap_assert_write_locked(src);
4742                 raw_write_seqcount_begin(&src->write_protect_seq);
4743         } else {
4744                 /*
4745                  * For shared mappings i_mmap_rwsem must be held to call
4746                  * huge_pte_alloc, otherwise the returned ptep could go
4747                  * away if part of a shared pmd and another thread calls
4748                  * huge_pmd_unshare.
4749                  */
4750                 i_mmap_lock_read(mapping);
4751         }
4752
4753         last_addr_mask = hugetlb_mask_last_page(h);
4754         for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
4755                 spinlock_t *src_ptl, *dst_ptl;
4756                 src_pte = huge_pte_offset(src, addr, sz);
4757                 if (!src_pte) {
4758                         addr |= last_addr_mask;
4759                         continue;
4760                 }
4761                 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
4762                 if (!dst_pte) {
4763                         ret = -ENOMEM;
4764                         break;
4765                 }
4766
4767                 /*
4768                  * If the pagetables are shared don't copy or take references.
4769                  * dst_pte == src_pte is the common case of src/dest sharing.
4770                  *
4771                  * However, src could have 'unshared' and dst shares with
4772                  * another vma.  If dst_pte !none, this implies sharing.
4773                  * Check here before taking page table lock, and once again
4774                  * after taking the lock below.
4775                  */
4776                 dst_entry = huge_ptep_get(dst_pte);
4777                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry)) {
4778                         addr |= last_addr_mask;
4779                         continue;
4780                 }
4781
4782                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4783                 src_ptl = huge_pte_lockptr(h, src, src_pte);
4784                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4785                 entry = huge_ptep_get(src_pte);
4786                 dst_entry = huge_ptep_get(dst_pte);
4787 again:
4788                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
4789                         /*
4790                          * Skip if src entry none.  Also, skip in the
4791                          * unlikely case dst entry !none as this implies
4792                          * sharing with another vma.
4793                          */
4794                         ;
4795                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
4796                         bool uffd_wp = huge_pte_uffd_wp(entry);
4797
4798                         if (!userfaultfd_wp(dst_vma) && uffd_wp)
4799                                 entry = huge_pte_clear_uffd_wp(entry);
4800                         set_huge_pte_at(dst, addr, dst_pte, entry);
4801                 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
4802                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
4803                         bool uffd_wp = huge_pte_uffd_wp(entry);
4804
4805                         if (!is_readable_migration_entry(swp_entry) && cow) {
4806                                 /*
4807                                  * COW mappings require pages in both
4808                                  * parent and child to be set to read.
4809                                  */
4810                                 swp_entry = make_readable_migration_entry(
4811                                                         swp_offset(swp_entry));
4812                                 entry = swp_entry_to_pte(swp_entry);
4813                                 if (userfaultfd_wp(src_vma) && uffd_wp)
4814                                         entry = huge_pte_mkuffd_wp(entry);
4815                                 set_huge_pte_at(src, addr, src_pte, entry);
4816                         }
4817                         if (!userfaultfd_wp(dst_vma) && uffd_wp)
4818                                 entry = huge_pte_clear_uffd_wp(entry);
4819                         set_huge_pte_at(dst, addr, dst_pte, entry);
4820                 } else if (unlikely(is_pte_marker(entry))) {
4821                         /*
4822                          * We copy the pte marker only if the dst vma has
4823                          * uffd-wp enabled.
4824                          */
4825                         if (userfaultfd_wp(dst_vma))
4826                                 set_huge_pte_at(dst, addr, dst_pte, entry);
4827                 } else {
4828                         entry = huge_ptep_get(src_pte);
4829                         ptepage = pte_page(entry);
4830                         get_page(ptepage);
4831
4832                         /*
4833                          * Failing to duplicate the anon rmap is a rare case
4834                          * where we see pinned hugetlb pages while they're
4835                          * prone to COW. We need to do the COW earlier during
4836                          * fork.
4837                          *
4838                          * When pre-allocating the page or copying data, we
4839                          * need to be without the pgtable locks since we could
4840                          * sleep during the process.
4841                          */
4842                         if (!PageAnon(ptepage)) {
4843                                 page_dup_file_rmap(ptepage, true);
4844                         } else if (page_try_dup_anon_rmap(ptepage, true,
4845                                                           src_vma)) {
4846                                 pte_t src_pte_old = entry;
4847                                 struct page *new;
4848
4849                                 spin_unlock(src_ptl);
4850                                 spin_unlock(dst_ptl);
4851                                 /* Do not use reserve as it's private owned */
4852                                 new = alloc_huge_page(dst_vma, addr, 1);
4853                                 if (IS_ERR(new)) {
4854                                         put_page(ptepage);
4855                                         ret = PTR_ERR(new);
4856                                         break;
4857                                 }
4858                                 copy_user_huge_page(new, ptepage, addr, dst_vma,
4859                                                     npages);
4860                                 put_page(ptepage);
4861
4862                                 /* Install the new huge page if src pte stable */
4863                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4864                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
4865                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4866                                 entry = huge_ptep_get(src_pte);
4867                                 if (!pte_same(src_pte_old, entry)) {
4868                                         restore_reserve_on_error(h, dst_vma, addr,
4869                                                                 new);
4870                                         put_page(new);
4871                                         /* dst_entry won't change as in child */
4872                                         goto again;
4873                                 }
4874                                 hugetlb_install_page(dst_vma, dst_pte, addr, new);
4875                                 spin_unlock(src_ptl);
4876                                 spin_unlock(dst_ptl);
4877                                 continue;
4878                         }
4879
4880                         if (cow) {
4881                                 /*
4882                                  * No need to notify as we are downgrading page
4883                                  * table protection not changing it to point
4884                                  * to a new page.
4885                                  *
4886                                  * See Documentation/mm/mmu_notifier.rst
4887                                  */
4888                                 huge_ptep_set_wrprotect(src, addr, src_pte);
4889                                 entry = huge_pte_wrprotect(entry);
4890                         }
4891
4892                         set_huge_pte_at(dst, addr, dst_pte, entry);
4893                         hugetlb_count_add(npages, dst);
4894                 }
4895                 spin_unlock(src_ptl);
4896                 spin_unlock(dst_ptl);
4897         }
4898
4899         if (cow) {
4900                 raw_write_seqcount_end(&src->write_protect_seq);
4901                 mmu_notifier_invalidate_range_end(&range);
4902         } else {
4903                 i_mmap_unlock_read(mapping);
4904         }
4905
4906         return ret;
4907 }
4908
4909 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
4910                           unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
4911 {
4912         struct hstate *h = hstate_vma(vma);
4913         struct mm_struct *mm = vma->vm_mm;
4914         spinlock_t *src_ptl, *dst_ptl;
4915         pte_t pte;
4916
4917         dst_ptl = huge_pte_lock(h, mm, dst_pte);
4918         src_ptl = huge_pte_lockptr(h, mm, src_pte);
4919
4920         /*
4921          * We don't have to worry about the ordering of src and dst ptlocks
4922          * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
4923          */
4924         if (src_ptl != dst_ptl)
4925                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4926
4927         pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
4928         set_huge_pte_at(mm, new_addr, dst_pte, pte);
4929
4930         if (src_ptl != dst_ptl)
4931                 spin_unlock(src_ptl);
4932         spin_unlock(dst_ptl);
4933 }
4934
4935 int move_hugetlb_page_tables(struct vm_area_struct *vma,
4936                              struct vm_area_struct *new_vma,
4937                              unsigned long old_addr, unsigned long new_addr,
4938                              unsigned long len)
4939 {
4940         struct hstate *h = hstate_vma(vma);
4941         struct address_space *mapping = vma->vm_file->f_mapping;
4942         unsigned long sz = huge_page_size(h);
4943         struct mm_struct *mm = vma->vm_mm;
4944         unsigned long old_end = old_addr + len;
4945         unsigned long last_addr_mask;
4946         pte_t *src_pte, *dst_pte;
4947         struct mmu_notifier_range range;
4948         bool shared_pmd = false;
4949
4950         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
4951                                 old_end);
4952         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4953         /*
4954          * In case of shared PMDs, we should cover the maximum possible
4955          * range.
4956          */
4957         flush_cache_range(vma, range.start, range.end);
4958
4959         mmu_notifier_invalidate_range_start(&range);
4960         last_addr_mask = hugetlb_mask_last_page(h);
4961         /* Prevent race with file truncation */
4962         i_mmap_lock_write(mapping);
4963         for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
4964                 src_pte = huge_pte_offset(mm, old_addr, sz);
4965                 if (!src_pte) {
4966                         old_addr |= last_addr_mask;
4967                         new_addr |= last_addr_mask;
4968                         continue;
4969                 }
4970                 if (huge_pte_none(huge_ptep_get(src_pte)))
4971                         continue;
4972
4973                 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
4974                         shared_pmd = true;
4975                         old_addr |= last_addr_mask;
4976                         new_addr |= last_addr_mask;
4977                         continue;
4978                 }
4979
4980                 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
4981                 if (!dst_pte)
4982                         break;
4983
4984                 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
4985         }
4986
4987         if (shared_pmd)
4988                 flush_tlb_range(vma, range.start, range.end);
4989         else
4990                 flush_tlb_range(vma, old_end - len, old_end);
4991         mmu_notifier_invalidate_range_end(&range);
4992         i_mmap_unlock_write(mapping);
4993
4994         return len + old_addr - old_end;
4995 }
4996
4997 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4998                                    unsigned long start, unsigned long end,
4999                                    struct page *ref_page, zap_flags_t zap_flags)
5000 {
5001         struct mm_struct *mm = vma->vm_mm;
5002         unsigned long address;
5003         pte_t *ptep;
5004         pte_t pte;
5005         spinlock_t *ptl;
5006         struct page *page;
5007         struct hstate *h = hstate_vma(vma);
5008         unsigned long sz = huge_page_size(h);
5009         struct mmu_notifier_range range;
5010         unsigned long last_addr_mask;
5011         bool force_flush = false;
5012
5013         WARN_ON(!is_vm_hugetlb_page(vma));
5014         BUG_ON(start & ~huge_page_mask(h));
5015         BUG_ON(end & ~huge_page_mask(h));
5016
5017         /*
5018          * This is a hugetlb vma, all the pte entries should point
5019          * to huge page.
5020          */
5021         tlb_change_page_size(tlb, sz);
5022         tlb_start_vma(tlb, vma);
5023
5024         /*
5025          * If sharing possible, alert mmu notifiers of worst case.
5026          */
5027         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
5028                                 end);
5029         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5030         mmu_notifier_invalidate_range_start(&range);
5031         last_addr_mask = hugetlb_mask_last_page(h);
5032         address = start;
5033         for (; address < end; address += sz) {
5034                 ptep = huge_pte_offset(mm, address, sz);
5035                 if (!ptep) {
5036                         address |= last_addr_mask;
5037                         continue;
5038                 }
5039
5040                 ptl = huge_pte_lock(h, mm, ptep);
5041                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5042                         spin_unlock(ptl);
5043                         tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5044                         force_flush = true;
5045                         address |= last_addr_mask;
5046                         continue;
5047                 }
5048
5049                 pte = huge_ptep_get(ptep);
5050                 if (huge_pte_none(pte)) {
5051                         spin_unlock(ptl);
5052                         continue;
5053                 }
5054
5055                 /*
5056                  * Migrating hugepage or HWPoisoned hugepage is already
5057                  * unmapped and its refcount is dropped, so just clear pte here.
5058                  */
5059                 if (unlikely(!pte_present(pte))) {
5060                         /*
5061                          * If the pte was wr-protected by uffd-wp in any of the
5062                          * swap forms, meanwhile the caller does not want to
5063                          * drop the uffd-wp bit in this zap, then replace the
5064                          * pte with a marker.
5065                          */
5066                         if (pte_swp_uffd_wp_any(pte) &&
5067                             !(zap_flags & ZAP_FLAG_DROP_MARKER))
5068                                 set_huge_pte_at(mm, address, ptep,
5069                                                 make_pte_marker(PTE_MARKER_UFFD_WP));
5070                         else
5071                                 huge_pte_clear(mm, address, ptep, sz);
5072                         spin_unlock(ptl);
5073                         continue;
5074                 }
5075
5076                 page = pte_page(pte);
5077                 /*
5078                  * If a reference page is supplied, it is because a specific
5079                  * page is being unmapped, not a range. Ensure the page we
5080                  * are about to unmap is the actual page of interest.
5081                  */
5082                 if (ref_page) {
5083                         if (page != ref_page) {
5084                                 spin_unlock(ptl);
5085                                 continue;
5086                         }
5087                         /*
5088                          * Mark the VMA as having unmapped its page so that
5089                          * future faults in this VMA will fail rather than
5090                          * looking like data was lost
5091                          */
5092                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5093                 }
5094
5095                 pte = huge_ptep_get_and_clear(mm, address, ptep);
5096                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5097                 if (huge_pte_dirty(pte))
5098                         set_page_dirty(page);
5099                 /* Leave a uffd-wp pte marker if needed */
5100                 if (huge_pte_uffd_wp(pte) &&
5101                     !(zap_flags & ZAP_FLAG_DROP_MARKER))
5102                         set_huge_pte_at(mm, address, ptep,
5103                                         make_pte_marker(PTE_MARKER_UFFD_WP));
5104                 hugetlb_count_sub(pages_per_huge_page(h), mm);
5105                 page_remove_rmap(page, vma, true);
5106
5107                 spin_unlock(ptl);
5108                 tlb_remove_page_size(tlb, page, huge_page_size(h));
5109                 /*
5110                  * Bail out after unmapping reference page if supplied
5111                  */
5112                 if (ref_page)
5113                         break;
5114         }
5115         mmu_notifier_invalidate_range_end(&range);
5116         tlb_end_vma(tlb, vma);
5117
5118         /*
5119          * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5120          * could defer the flush until now, since by holding i_mmap_rwsem we
5121          * guaranteed that the last refernece would not be dropped. But we must
5122          * do the flushing before we return, as otherwise i_mmap_rwsem will be
5123          * dropped and the last reference to the shared PMDs page might be
5124          * dropped as well.
5125          *
5126          * In theory we could defer the freeing of the PMD pages as well, but
5127          * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5128          * detect sharing, so we cannot defer the release of the page either.
5129          * Instead, do flush now.
5130          */
5131         if (force_flush)
5132                 tlb_flush_mmu_tlbonly(tlb);
5133 }
5134
5135 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5136                           struct vm_area_struct *vma, unsigned long start,
5137                           unsigned long end, struct page *ref_page,
5138                           zap_flags_t zap_flags)
5139 {
5140         __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5141
5142         /*
5143          * Clear this flag so that x86's huge_pmd_share page_table_shareable
5144          * test will fail on a vma being torn down, and not grab a page table
5145          * on its way out.  We're lucky that the flag has such an appropriate
5146          * name, and can in fact be safely cleared here. We could clear it
5147          * before the __unmap_hugepage_range above, but all that's necessary
5148          * is to clear it before releasing the i_mmap_rwsem. This works
5149          * because in the context this is called, the VMA is about to be
5150          * destroyed and the i_mmap_rwsem is held.
5151          */
5152         vma->vm_flags &= ~VM_MAYSHARE;
5153 }
5154
5155 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5156                           unsigned long end, struct page *ref_page,
5157                           zap_flags_t zap_flags)
5158 {
5159         struct mmu_gather tlb;
5160
5161         tlb_gather_mmu(&tlb, vma->vm_mm);
5162         __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5163         tlb_finish_mmu(&tlb);
5164 }
5165
5166 /*
5167  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5168  * mapping it owns the reserve page for. The intention is to unmap the page
5169  * from other VMAs and let the children be SIGKILLed if they are faulting the
5170  * same region.
5171  */
5172 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5173                               struct page *page, unsigned long address)
5174 {
5175         struct hstate *h = hstate_vma(vma);
5176         struct vm_area_struct *iter_vma;
5177         struct address_space *mapping;
5178         pgoff_t pgoff;
5179
5180         /*
5181          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5182          * from page cache lookup which is in HPAGE_SIZE units.
5183          */
5184         address = address & huge_page_mask(h);
5185         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5186                         vma->vm_pgoff;
5187         mapping = vma->vm_file->f_mapping;
5188
5189         /*
5190          * Take the mapping lock for the duration of the table walk. As
5191          * this mapping should be shared between all the VMAs,
5192          * __unmap_hugepage_range() is called as the lock is already held
5193          */
5194         i_mmap_lock_write(mapping);
5195         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5196                 /* Do not unmap the current VMA */
5197                 if (iter_vma == vma)
5198                         continue;
5199
5200                 /*
5201                  * Shared VMAs have their own reserves and do not affect
5202                  * MAP_PRIVATE accounting but it is possible that a shared
5203                  * VMA is using the same page so check and skip such VMAs.
5204                  */
5205                 if (iter_vma->vm_flags & VM_MAYSHARE)
5206                         continue;
5207
5208                 /*
5209                  * Unmap the page from other VMAs without their own reserves.
5210                  * They get marked to be SIGKILLed if they fault in these
5211                  * areas. This is because a future no-page fault on this VMA
5212                  * could insert a zeroed page instead of the data existing
5213                  * from the time of fork. This would look like data corruption
5214                  */
5215                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5216                         unmap_hugepage_range(iter_vma, address,
5217                                              address + huge_page_size(h), page, 0);
5218         }
5219         i_mmap_unlock_write(mapping);
5220 }
5221
5222 /*
5223  * hugetlb_wp() should be called with page lock of the original hugepage held.
5224  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5225  * cannot race with other handlers or page migration.
5226  * Keep the pte_same checks anyway to make transition from the mutex easier.
5227  */
5228 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5229                        unsigned long address, pte_t *ptep, unsigned int flags,
5230                        struct page *pagecache_page, spinlock_t *ptl)
5231 {
5232         const bool unshare = flags & FAULT_FLAG_UNSHARE;
5233         pte_t pte;
5234         struct hstate *h = hstate_vma(vma);
5235         struct page *old_page, *new_page;
5236         int outside_reserve = 0;
5237         vm_fault_t ret = 0;
5238         unsigned long haddr = address & huge_page_mask(h);
5239         struct mmu_notifier_range range;
5240
5241         VM_BUG_ON(unshare && (flags & FOLL_WRITE));
5242         VM_BUG_ON(!unshare && !(flags & FOLL_WRITE));
5243
5244         pte = huge_ptep_get(ptep);
5245         old_page = pte_page(pte);
5246
5247         delayacct_wpcopy_start();
5248
5249 retry_avoidcopy:
5250         /*
5251          * If no-one else is actually using this page, we're the exclusive
5252          * owner and can reuse this page.
5253          */
5254         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5255                 if (!PageAnonExclusive(old_page))
5256                         page_move_anon_rmap(old_page, vma);
5257                 if (likely(!unshare))
5258                         set_huge_ptep_writable(vma, haddr, ptep);
5259
5260                 delayacct_wpcopy_end();
5261                 return 0;
5262         }
5263         VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5264                        old_page);
5265
5266         /*
5267          * If the process that created a MAP_PRIVATE mapping is about to
5268          * perform a COW due to a shared page count, attempt to satisfy
5269          * the allocation without using the existing reserves. The pagecache
5270          * page is used to determine if the reserve at this address was
5271          * consumed or not. If reserves were used, a partial faulted mapping
5272          * at the time of fork() could consume its reserves on COW instead
5273          * of the full address range.
5274          */
5275         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5276                         old_page != pagecache_page)
5277                 outside_reserve = 1;
5278
5279         get_page(old_page);
5280
5281         /*
5282          * Drop page table lock as buddy allocator may be called. It will
5283          * be acquired again before returning to the caller, as expected.
5284          */
5285         spin_unlock(ptl);
5286         new_page = alloc_huge_page(vma, haddr, outside_reserve);
5287
5288         if (IS_ERR(new_page)) {
5289                 /*
5290                  * If a process owning a MAP_PRIVATE mapping fails to COW,
5291                  * it is due to references held by a child and an insufficient
5292                  * huge page pool. To guarantee the original mappers
5293                  * reliability, unmap the page from child processes. The child
5294                  * may get SIGKILLed if it later faults.
5295                  */
5296                 if (outside_reserve) {
5297                         struct address_space *mapping = vma->vm_file->f_mapping;
5298                         pgoff_t idx;
5299                         u32 hash;
5300
5301                         put_page(old_page);
5302                         BUG_ON(huge_pte_none(pte));
5303                         /*
5304                          * Drop hugetlb_fault_mutex and i_mmap_rwsem before
5305                          * unmapping.  unmapping needs to hold i_mmap_rwsem
5306                          * in write mode.  Dropping i_mmap_rwsem in read mode
5307                          * here is OK as COW mappings do not interact with
5308                          * PMD sharing.
5309                          *
5310                          * Reacquire both after unmap operation.
5311                          */
5312                         idx = vma_hugecache_offset(h, vma, haddr);
5313                         hash = hugetlb_fault_mutex_hash(mapping, idx);
5314                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5315                         i_mmap_unlock_read(mapping);
5316
5317                         unmap_ref_private(mm, vma, old_page, haddr);
5318
5319                         i_mmap_lock_read(mapping);
5320                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5321                         spin_lock(ptl);
5322                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5323                         if (likely(ptep &&
5324                                    pte_same(huge_ptep_get(ptep), pte)))
5325                                 goto retry_avoidcopy;
5326                         /*
5327                          * race occurs while re-acquiring page table
5328                          * lock, and our job is done.
5329                          */
5330                         delayacct_wpcopy_end();
5331                         return 0;
5332                 }
5333
5334                 ret = vmf_error(PTR_ERR(new_page));
5335                 goto out_release_old;
5336         }
5337
5338         /*
5339          * When the original hugepage is shared one, it does not have
5340          * anon_vma prepared.
5341          */
5342         if (unlikely(anon_vma_prepare(vma))) {
5343                 ret = VM_FAULT_OOM;
5344                 goto out_release_all;
5345         }
5346
5347         copy_user_huge_page(new_page, old_page, address, vma,
5348                             pages_per_huge_page(h));
5349         __SetPageUptodate(new_page);
5350
5351         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5352                                 haddr + huge_page_size(h));
5353         mmu_notifier_invalidate_range_start(&range);
5354
5355         /*
5356          * Retake the page table lock to check for racing updates
5357          * before the page tables are altered
5358          */
5359         spin_lock(ptl);
5360         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5361         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5362                 ClearHPageRestoreReserve(new_page);
5363
5364                 /* Break COW or unshare */
5365                 huge_ptep_clear_flush(vma, haddr, ptep);
5366                 mmu_notifier_invalidate_range(mm, range.start, range.end);
5367                 page_remove_rmap(old_page, vma, true);
5368                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
5369                 set_huge_pte_at(mm, haddr, ptep,
5370                                 make_huge_pte(vma, new_page, !unshare));
5371                 SetHPageMigratable(new_page);
5372                 /* Make the old page be freed below */
5373                 new_page = old_page;
5374         }
5375         spin_unlock(ptl);
5376         mmu_notifier_invalidate_range_end(&range);
5377 out_release_all:
5378         /*
5379          * No restore in case of successful pagetable update (Break COW or
5380          * unshare)
5381          */
5382         if (new_page != old_page)
5383                 restore_reserve_on_error(h, vma, haddr, new_page);
5384         put_page(new_page);
5385 out_release_old:
5386         put_page(old_page);
5387
5388         spin_lock(ptl); /* Caller expects lock to be held */
5389
5390         delayacct_wpcopy_end();
5391         return ret;
5392 }
5393
5394 /* Return the pagecache page at a given address within a VMA */
5395 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
5396                         struct vm_area_struct *vma, unsigned long address)
5397 {
5398         struct address_space *mapping;
5399         pgoff_t idx;
5400
5401         mapping = vma->vm_file->f_mapping;
5402         idx = vma_hugecache_offset(h, vma, address);
5403
5404         return find_lock_page(mapping, idx);
5405 }
5406
5407 /*
5408  * Return whether there is a pagecache page to back given address within VMA.
5409  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5410  */
5411 static bool hugetlbfs_pagecache_present(struct hstate *h,
5412                         struct vm_area_struct *vma, unsigned long address)
5413 {
5414         struct address_space *mapping;
5415         pgoff_t idx;
5416         struct page *page;
5417
5418         mapping = vma->vm_file->f_mapping;
5419         idx = vma_hugecache_offset(h, vma, address);
5420
5421         page = find_get_page(mapping, idx);
5422         if (page)
5423                 put_page(page);
5424         return page != NULL;
5425 }
5426
5427 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
5428                            pgoff_t idx)
5429 {
5430         struct folio *folio = page_folio(page);
5431         struct inode *inode = mapping->host;
5432         struct hstate *h = hstate_inode(inode);
5433         int err;
5434
5435         __folio_set_locked(folio);
5436         err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5437
5438         if (unlikely(err)) {
5439                 __folio_clear_locked(folio);
5440                 return err;
5441         }
5442         ClearHPageRestoreReserve(page);
5443
5444         /*
5445          * mark folio dirty so that it will not be removed from cache/file
5446          * by non-hugetlbfs specific code paths.
5447          */
5448         folio_mark_dirty(folio);
5449
5450         spin_lock(&inode->i_lock);
5451         inode->i_blocks += blocks_per_huge_page(h);
5452         spin_unlock(&inode->i_lock);
5453         return 0;
5454 }
5455
5456 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5457                                                   struct address_space *mapping,
5458                                                   pgoff_t idx,
5459                                                   unsigned int flags,
5460                                                   unsigned long haddr,
5461                                                   unsigned long addr,
5462                                                   unsigned long reason)
5463 {
5464         vm_fault_t ret;
5465         u32 hash;
5466         struct vm_fault vmf = {
5467                 .vma = vma,
5468                 .address = haddr,
5469                 .real_address = addr,
5470                 .flags = flags,
5471
5472                 /*
5473                  * Hard to debug if it ends up being
5474                  * used by a callee that assumes
5475                  * something about the other
5476                  * uninitialized fields... same as in
5477                  * memory.c
5478                  */
5479         };
5480
5481         /*
5482          * hugetlb_fault_mutex and i_mmap_rwsem must be
5483          * dropped before handling userfault.  Reacquire
5484          * after handling fault to make calling code simpler.
5485          */
5486         hash = hugetlb_fault_mutex_hash(mapping, idx);
5487         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5488         i_mmap_unlock_read(mapping);
5489         ret = handle_userfault(&vmf, reason);
5490         i_mmap_lock_read(mapping);
5491         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5492
5493         return ret;
5494 }
5495
5496 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5497                         struct vm_area_struct *vma,
5498                         struct address_space *mapping, pgoff_t idx,
5499                         unsigned long address, pte_t *ptep,
5500                         pte_t old_pte, unsigned int flags)
5501 {
5502         struct hstate *h = hstate_vma(vma);
5503         vm_fault_t ret = VM_FAULT_SIGBUS;
5504         int anon_rmap = 0;
5505         unsigned long size;
5506         struct page *page;
5507         pte_t new_pte;
5508         spinlock_t *ptl;
5509         unsigned long haddr = address & huge_page_mask(h);
5510         bool new_page, new_pagecache_page = false;
5511
5512         /*
5513          * Currently, we are forced to kill the process in the event the
5514          * original mapper has unmapped pages from the child due to a failed
5515          * COW/unsharing. Warn that such a situation has occurred as it may not
5516          * be obvious.
5517          */
5518         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5519                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5520                            current->pid);
5521                 return ret;
5522         }
5523
5524         /*
5525          * We can not race with truncation due to holding i_mmap_rwsem.
5526          * i_size is modified when holding i_mmap_rwsem, so check here
5527          * once for faults beyond end of file.
5528          */
5529         size = i_size_read(mapping->host) >> huge_page_shift(h);
5530         if (idx >= size)
5531                 goto out;
5532
5533 retry:
5534         new_page = false;
5535         page = find_lock_page(mapping, idx);
5536         if (!page) {
5537                 /* Check for page in userfault range */
5538                 if (userfaultfd_missing(vma)) {
5539                         ret = hugetlb_handle_userfault(vma, mapping, idx,
5540                                                        flags, haddr, address,
5541                                                        VM_UFFD_MISSING);
5542                         goto out;
5543                 }
5544
5545                 page = alloc_huge_page(vma, haddr, 0);
5546                 if (IS_ERR(page)) {
5547                         /*
5548                          * Returning error will result in faulting task being
5549                          * sent SIGBUS.  The hugetlb fault mutex prevents two
5550                          * tasks from racing to fault in the same page which
5551                          * could result in false unable to allocate errors.
5552                          * Page migration does not take the fault mutex, but
5553                          * does a clear then write of pte's under page table
5554                          * lock.  Page fault code could race with migration,
5555                          * notice the clear pte and try to allocate a page
5556                          * here.  Before returning error, get ptl and make
5557                          * sure there really is no pte entry.
5558                          */
5559                         ptl = huge_pte_lock(h, mm, ptep);
5560                         ret = 0;
5561                         if (huge_pte_none(huge_ptep_get(ptep)))
5562                                 ret = vmf_error(PTR_ERR(page));
5563                         spin_unlock(ptl);
5564                         goto out;
5565                 }
5566                 clear_huge_page(page, address, pages_per_huge_page(h));
5567                 __SetPageUptodate(page);
5568                 new_page = true;
5569
5570                 if (vma->vm_flags & VM_MAYSHARE) {
5571                         int err = huge_add_to_page_cache(page, mapping, idx);
5572                         if (err) {
5573                                 put_page(page);
5574                                 if (err == -EEXIST)
5575                                         goto retry;
5576                                 goto out;
5577                         }
5578                         new_pagecache_page = true;
5579                 } else {
5580                         lock_page(page);
5581                         if (unlikely(anon_vma_prepare(vma))) {
5582                                 ret = VM_FAULT_OOM;
5583                                 goto backout_unlocked;
5584                         }
5585                         anon_rmap = 1;
5586                 }
5587         } else {
5588                 /*
5589                  * If memory error occurs between mmap() and fault, some process
5590                  * don't have hwpoisoned swap entry for errored virtual address.
5591                  * So we need to block hugepage fault by PG_hwpoison bit check.
5592                  */
5593                 if (unlikely(PageHWPoison(page))) {
5594                         ret = VM_FAULT_HWPOISON_LARGE |
5595                                 VM_FAULT_SET_HINDEX(hstate_index(h));
5596                         goto backout_unlocked;
5597                 }
5598
5599                 /* Check for page in userfault range. */
5600                 if (userfaultfd_minor(vma)) {
5601                         unlock_page(page);
5602                         put_page(page);
5603                         ret = hugetlb_handle_userfault(vma, mapping, idx,
5604                                                        flags, haddr, address,
5605                                                        VM_UFFD_MINOR);
5606                         goto out;
5607                 }
5608         }
5609
5610         /*
5611          * If we are going to COW a private mapping later, we examine the
5612          * pending reservations for this page now. This will ensure that
5613          * any allocations necessary to record that reservation occur outside
5614          * the spinlock.
5615          */
5616         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5617                 if (vma_needs_reservation(h, vma, haddr) < 0) {
5618                         ret = VM_FAULT_OOM;
5619                         goto backout_unlocked;
5620                 }
5621                 /* Just decrements count, does not deallocate */
5622                 vma_end_reservation(h, vma, haddr);
5623         }
5624
5625         ptl = huge_pte_lock(h, mm, ptep);
5626         ret = 0;
5627         /* If pte changed from under us, retry */
5628         if (!pte_same(huge_ptep_get(ptep), old_pte))
5629                 goto backout;
5630
5631         if (anon_rmap) {
5632                 ClearHPageRestoreReserve(page);
5633                 hugepage_add_new_anon_rmap(page, vma, haddr);
5634         } else
5635                 page_dup_file_rmap(page, true);
5636         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5637                                 && (vma->vm_flags & VM_SHARED)));
5638         /*
5639          * If this pte was previously wr-protected, keep it wr-protected even
5640          * if populated.
5641          */
5642         if (unlikely(pte_marker_uffd_wp(old_pte)))
5643                 new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte));
5644         set_huge_pte_at(mm, haddr, ptep, new_pte);
5645
5646         hugetlb_count_add(pages_per_huge_page(h), mm);
5647         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5648                 /* Optimization, do the COW without a second fault */
5649                 ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
5650         }
5651
5652         spin_unlock(ptl);
5653
5654         /*
5655          * Only set HPageMigratable in newly allocated pages.  Existing pages
5656          * found in the pagecache may not have HPageMigratableset if they have
5657          * been isolated for migration.
5658          */
5659         if (new_page)
5660                 SetHPageMigratable(page);
5661
5662         unlock_page(page);
5663 out:
5664         return ret;
5665
5666 backout:
5667         spin_unlock(ptl);
5668 backout_unlocked:
5669         unlock_page(page);
5670         /* restore reserve for newly allocated pages not in page cache */
5671         if (new_page && !new_pagecache_page)
5672                 restore_reserve_on_error(h, vma, haddr, page);
5673         put_page(page);
5674         goto out;
5675 }
5676
5677 #ifdef CONFIG_SMP
5678 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5679 {
5680         unsigned long key[2];
5681         u32 hash;
5682
5683         key[0] = (unsigned long) mapping;
5684         key[1] = idx;
5685
5686         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5687
5688         return hash & (num_fault_mutexes - 1);
5689 }
5690 #else
5691 /*
5692  * For uniprocessor systems we always use a single mutex, so just
5693  * return 0 and avoid the hashing overhead.
5694  */
5695 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5696 {
5697         return 0;
5698 }
5699 #endif
5700
5701 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5702                         unsigned long address, unsigned int flags)
5703 {
5704         pte_t *ptep, entry;
5705         spinlock_t *ptl;
5706         vm_fault_t ret;
5707         u32 hash;
5708         pgoff_t idx;
5709         struct page *page = NULL;
5710         struct page *pagecache_page = NULL;
5711         struct hstate *h = hstate_vma(vma);
5712         struct address_space *mapping;
5713         int need_wait_lock = 0;
5714         unsigned long haddr = address & huge_page_mask(h);
5715
5716         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5717         if (ptep) {
5718                 /*
5719                  * Since we hold no locks, ptep could be stale.  That is
5720                  * OK as we are only making decisions based on content and
5721                  * not actually modifying content here.
5722                  */
5723                 entry = huge_ptep_get(ptep);
5724                 if (unlikely(is_hugetlb_entry_migration(entry))) {
5725                         migration_entry_wait_huge(vma, ptep);
5726                         return 0;
5727                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5728                         return VM_FAULT_HWPOISON_LARGE |
5729                                 VM_FAULT_SET_HINDEX(hstate_index(h));
5730         }
5731
5732         /*
5733          * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
5734          * until finished with ptep.  This serves two purposes:
5735          * 1) It prevents huge_pmd_unshare from being called elsewhere
5736          *    and making the ptep no longer valid.
5737          * 2) It synchronizes us with i_size modifications during truncation.
5738          *
5739          * ptep could have already be assigned via huge_pte_offset.  That
5740          * is OK, as huge_pte_alloc will return the same value unless
5741          * something has changed.
5742          */
5743         mapping = vma->vm_file->f_mapping;
5744         i_mmap_lock_read(mapping);
5745         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5746         if (!ptep) {
5747                 i_mmap_unlock_read(mapping);
5748                 return VM_FAULT_OOM;
5749         }
5750
5751         /*
5752          * Serialize hugepage allocation and instantiation, so that we don't
5753          * get spurious allocation failures if two CPUs race to instantiate
5754          * the same page in the page cache.
5755          */
5756         idx = vma_hugecache_offset(h, vma, haddr);
5757         hash = hugetlb_fault_mutex_hash(mapping, idx);
5758         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5759
5760         entry = huge_ptep_get(ptep);
5761         /* PTE markers should be handled the same way as none pte */
5762         if (huge_pte_none_mostly(entry)) {
5763                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
5764                                       entry, flags);
5765                 goto out_mutex;
5766         }
5767
5768         ret = 0;
5769
5770         /*
5771          * entry could be a migration/hwpoison entry at this point, so this
5772          * check prevents the kernel from going below assuming that we have
5773          * an active hugepage in pagecache. This goto expects the 2nd page
5774          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5775          * properly handle it.
5776          */
5777         if (!pte_present(entry))
5778                 goto out_mutex;
5779
5780         /*
5781          * If we are going to COW/unshare the mapping later, we examine the
5782          * pending reservations for this page now. This will ensure that any
5783          * allocations necessary to record that reservation occur outside the
5784          * spinlock. For private mappings, we also lookup the pagecache
5785          * page now as it is used to determine if a reservation has been
5786          * consumed.
5787          */
5788         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5789             !huge_pte_write(entry)) {
5790                 if (vma_needs_reservation(h, vma, haddr) < 0) {
5791                         ret = VM_FAULT_OOM;
5792                         goto out_mutex;
5793                 }
5794                 /* Just decrements count, does not deallocate */
5795                 vma_end_reservation(h, vma, haddr);
5796
5797                 if (!(vma->vm_flags & VM_MAYSHARE))
5798                         pagecache_page = hugetlbfs_pagecache_page(h,
5799                                                                 vma, haddr);
5800         }
5801
5802         ptl = huge_pte_lock(h, mm, ptep);
5803
5804         /* Check for a racing update before calling hugetlb_wp() */
5805         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5806                 goto out_ptl;
5807
5808         /* Handle userfault-wp first, before trying to lock more pages */
5809         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
5810             (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5811                 struct vm_fault vmf = {
5812                         .vma = vma,
5813                         .address = haddr,
5814                         .real_address = address,
5815                         .flags = flags,
5816                 };
5817
5818                 spin_unlock(ptl);
5819                 if (pagecache_page) {
5820                         unlock_page(pagecache_page);
5821                         put_page(pagecache_page);
5822                 }
5823                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5824                 i_mmap_unlock_read(mapping);
5825                 return handle_userfault(&vmf, VM_UFFD_WP);
5826         }
5827
5828         /*
5829          * hugetlb_wp() requires page locks of pte_page(entry) and
5830          * pagecache_page, so here we need take the former one
5831          * when page != pagecache_page or !pagecache_page.
5832          */
5833         page = pte_page(entry);
5834         if (page != pagecache_page)
5835                 if (!trylock_page(page)) {
5836                         need_wait_lock = 1;
5837                         goto out_ptl;
5838                 }
5839
5840         get_page(page);
5841
5842         if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5843                 if (!huge_pte_write(entry)) {
5844                         ret = hugetlb_wp(mm, vma, address, ptep, flags,
5845                                          pagecache_page, ptl);
5846                         goto out_put_page;
5847                 } else if (likely(flags & FAULT_FLAG_WRITE)) {
5848                         entry = huge_pte_mkdirty(entry);
5849                 }
5850         }
5851         entry = pte_mkyoung(entry);
5852         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5853                                                 flags & FAULT_FLAG_WRITE))
5854                 update_mmu_cache(vma, haddr, ptep);
5855 out_put_page:
5856         if (page != pagecache_page)
5857                 unlock_page(page);
5858         put_page(page);
5859 out_ptl:
5860         spin_unlock(ptl);
5861
5862         if (pagecache_page) {
5863                 unlock_page(pagecache_page);
5864                 put_page(pagecache_page);
5865         }
5866 out_mutex:
5867         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5868         i_mmap_unlock_read(mapping);
5869         /*
5870          * Generally it's safe to hold refcount during waiting page lock. But
5871          * here we just wait to defer the next page fault to avoid busy loop and
5872          * the page is not used after unlocked before returning from the current
5873          * page fault. So we are safe from accessing freed page, even if we wait
5874          * here without taking refcount.
5875          */
5876         if (need_wait_lock)
5877                 wait_on_page_locked(page);
5878         return ret;
5879 }
5880
5881 #ifdef CONFIG_USERFAULTFD
5882 /*
5883  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
5884  * modifications for huge pages.
5885  */
5886 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5887                             pte_t *dst_pte,
5888                             struct vm_area_struct *dst_vma,
5889                             unsigned long dst_addr,
5890                             unsigned long src_addr,
5891                             enum mcopy_atomic_mode mode,
5892                             struct page **pagep,
5893                             bool wp_copy)
5894 {
5895         bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
5896         struct hstate *h = hstate_vma(dst_vma);
5897         struct address_space *mapping = dst_vma->vm_file->f_mapping;
5898         pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
5899         unsigned long size;
5900         int vm_shared = dst_vma->vm_flags & VM_SHARED;
5901         pte_t _dst_pte;
5902         spinlock_t *ptl;
5903         int ret = -ENOMEM;
5904         struct page *page;
5905         int writable;
5906         bool page_in_pagecache = false;
5907
5908         if (is_continue) {
5909                 ret = -EFAULT;
5910                 page = find_lock_page(mapping, idx);
5911                 if (!page)
5912                         goto out;
5913                 page_in_pagecache = true;
5914         } else if (!*pagep) {
5915                 /* If a page already exists, then it's UFFDIO_COPY for
5916                  * a non-missing case. Return -EEXIST.
5917                  */
5918                 if (vm_shared &&
5919                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5920                         ret = -EEXIST;
5921                         goto out;
5922                 }
5923
5924                 page = alloc_huge_page(dst_vma, dst_addr, 0);
5925                 if (IS_ERR(page)) {
5926                         ret = -ENOMEM;
5927                         goto out;
5928                 }
5929
5930                 ret = copy_huge_page_from_user(page,
5931                                                 (const void __user *) src_addr,
5932                                                 pages_per_huge_page(h), false);
5933
5934                 /* fallback to copy_from_user outside mmap_lock */
5935                 if (unlikely(ret)) {
5936                         ret = -ENOENT;
5937                         /* Free the allocated page which may have
5938                          * consumed a reservation.
5939                          */
5940                         restore_reserve_on_error(h, dst_vma, dst_addr, page);
5941                         put_page(page);
5942
5943                         /* Allocate a temporary page to hold the copied
5944                          * contents.
5945                          */
5946                         page = alloc_huge_page_vma(h, dst_vma, dst_addr);
5947                         if (!page) {
5948                                 ret = -ENOMEM;
5949                                 goto out;
5950                         }
5951                         *pagep = page;
5952                         /* Set the outparam pagep and return to the caller to
5953                          * copy the contents outside the lock. Don't free the
5954                          * page.
5955                          */
5956                         goto out;
5957                 }
5958         } else {
5959                 if (vm_shared &&
5960                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5961                         put_page(*pagep);
5962                         ret = -EEXIST;
5963                         *pagep = NULL;
5964                         goto out;
5965                 }
5966
5967                 page = alloc_huge_page(dst_vma, dst_addr, 0);
5968                 if (IS_ERR(page)) {
5969                         put_page(*pagep);
5970                         ret = -ENOMEM;
5971                         *pagep = NULL;
5972                         goto out;
5973                 }
5974                 copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
5975                                     pages_per_huge_page(h));
5976                 put_page(*pagep);
5977                 *pagep = NULL;
5978         }
5979
5980         /*
5981          * The memory barrier inside __SetPageUptodate makes sure that
5982          * preceding stores to the page contents become visible before
5983          * the set_pte_at() write.
5984          */
5985         __SetPageUptodate(page);
5986
5987         /* Add shared, newly allocated pages to the page cache. */
5988         if (vm_shared && !is_continue) {
5989                 size = i_size_read(mapping->host) >> huge_page_shift(h);
5990                 ret = -EFAULT;
5991                 if (idx >= size)
5992                         goto out_release_nounlock;
5993
5994                 /*
5995                  * Serialization between remove_inode_hugepages() and
5996                  * huge_add_to_page_cache() below happens through the
5997                  * hugetlb_fault_mutex_table that here must be hold by
5998                  * the caller.
5999                  */
6000                 ret = huge_add_to_page_cache(page, mapping, idx);
6001                 if (ret)
6002                         goto out_release_nounlock;
6003                 page_in_pagecache = true;
6004         }
6005
6006         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
6007         spin_lock(ptl);
6008
6009         /*
6010          * Recheck the i_size after holding PT lock to make sure not
6011          * to leave any page mapped (as page_mapped()) beyond the end
6012          * of the i_size (remove_inode_hugepages() is strict about
6013          * enforcing that). If we bail out here, we'll also leave a
6014          * page in the radix tree in the vm_shared case beyond the end
6015          * of the i_size, but remove_inode_hugepages() will take care
6016          * of it as soon as we drop the hugetlb_fault_mutex_table.
6017          */
6018         size = i_size_read(mapping->host) >> huge_page_shift(h);
6019         ret = -EFAULT;
6020         if (idx >= size)
6021                 goto out_release_unlock;
6022
6023         ret = -EEXIST;
6024         /*
6025          * We allow to overwrite a pte marker: consider when both MISSING|WP
6026          * registered, we firstly wr-protect a none pte which has no page cache
6027          * page backing it, then access the page.
6028          */
6029         if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6030                 goto out_release_unlock;
6031
6032         if (vm_shared) {
6033                 page_dup_file_rmap(page, true);
6034         } else {
6035                 ClearHPageRestoreReserve(page);
6036                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
6037         }
6038
6039         /*
6040          * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6041          * with wp flag set, don't set pte write bit.
6042          */
6043         if (wp_copy || (is_continue && !vm_shared))
6044                 writable = 0;
6045         else
6046                 writable = dst_vma->vm_flags & VM_WRITE;
6047
6048         _dst_pte = make_huge_pte(dst_vma, page, writable);
6049         /*
6050          * Always mark UFFDIO_COPY page dirty; note that this may not be
6051          * extremely important for hugetlbfs for now since swapping is not
6052          * supported, but we should still be clear in that this page cannot be
6053          * thrown away at will, even if write bit not set.
6054          */
6055         _dst_pte = huge_pte_mkdirty(_dst_pte);
6056         _dst_pte = pte_mkyoung(_dst_pte);
6057
6058         if (wp_copy)
6059                 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6060
6061         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6062
6063         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6064
6065         /* No need to invalidate - it was non-present before */
6066         update_mmu_cache(dst_vma, dst_addr, dst_pte);
6067
6068         spin_unlock(ptl);
6069         if (!is_continue)
6070                 SetHPageMigratable(page);
6071         if (vm_shared || is_continue)
6072                 unlock_page(page);
6073         ret = 0;
6074 out:
6075         return ret;
6076 out_release_unlock:
6077         spin_unlock(ptl);
6078         if (vm_shared || is_continue)
6079                 unlock_page(page);
6080 out_release_nounlock:
6081         if (!page_in_pagecache)
6082                 restore_reserve_on_error(h, dst_vma, dst_addr, page);
6083         put_page(page);
6084         goto out;
6085 }
6086 #endif /* CONFIG_USERFAULTFD */
6087
6088 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6089                                  int refs, struct page **pages,
6090                                  struct vm_area_struct **vmas)
6091 {
6092         int nr;
6093
6094         for (nr = 0; nr < refs; nr++) {
6095                 if (likely(pages))
6096                         pages[nr] = mem_map_offset(page, nr);
6097                 if (vmas)
6098                         vmas[nr] = vma;
6099         }
6100 }
6101
6102 static inline bool __follow_hugetlb_must_fault(unsigned int flags, pte_t *pte,
6103                                                bool *unshare)
6104 {
6105         pte_t pteval = huge_ptep_get(pte);
6106
6107         *unshare = false;
6108         if (is_swap_pte(pteval))
6109                 return true;
6110         if (huge_pte_write(pteval))
6111                 return false;
6112         if (flags & FOLL_WRITE)
6113                 return true;
6114         if (gup_must_unshare(flags, pte_page(pteval))) {
6115                 *unshare = true;
6116                 return true;
6117         }
6118         return false;
6119 }
6120
6121 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6122                          struct page **pages, struct vm_area_struct **vmas,
6123                          unsigned long *position, unsigned long *nr_pages,
6124                          long i, unsigned int flags, int *locked)
6125 {
6126         unsigned long pfn_offset;
6127         unsigned long vaddr = *position;
6128         unsigned long remainder = *nr_pages;
6129         struct hstate *h = hstate_vma(vma);
6130         int err = -EFAULT, refs;
6131
6132         while (vaddr < vma->vm_end && remainder) {
6133                 pte_t *pte;
6134                 spinlock_t *ptl = NULL;
6135                 bool unshare = false;
6136                 int absent;
6137                 struct page *page;
6138
6139                 /*
6140                  * If we have a pending SIGKILL, don't keep faulting pages and
6141                  * potentially allocating memory.
6142                  */
6143                 if (fatal_signal_pending(current)) {
6144                         remainder = 0;
6145                         break;
6146                 }
6147
6148                 /*
6149                  * Some archs (sparc64, sh*) have multiple pte_ts to
6150                  * each hugepage.  We have to make sure we get the
6151                  * first, for the page indexing below to work.
6152                  *
6153                  * Note that page table lock is not held when pte is null.
6154                  */
6155                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
6156                                       huge_page_size(h));
6157                 if (pte)
6158                         ptl = huge_pte_lock(h, mm, pte);
6159                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
6160
6161                 /*
6162                  * When coredumping, it suits get_dump_page if we just return
6163                  * an error where there's an empty slot with no huge pagecache
6164                  * to back it.  This way, we avoid allocating a hugepage, and
6165                  * the sparse dumpfile avoids allocating disk blocks, but its
6166                  * huge holes still show up with zeroes where they need to be.
6167                  */
6168                 if (absent && (flags & FOLL_DUMP) &&
6169                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6170                         if (pte)
6171                                 spin_unlock(ptl);
6172                         remainder = 0;
6173                         break;
6174                 }
6175
6176                 /*
6177                  * We need call hugetlb_fault for both hugepages under migration
6178                  * (in which case hugetlb_fault waits for the migration,) and
6179                  * hwpoisoned hugepages (in which case we need to prevent the
6180                  * caller from accessing to them.) In order to do this, we use
6181                  * here is_swap_pte instead of is_hugetlb_entry_migration and
6182                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6183                  * both cases, and because we can't follow correct pages
6184                  * directly from any kind of swap entries.
6185                  */
6186                 if (absent ||
6187                     __follow_hugetlb_must_fault(flags, pte, &unshare)) {
6188                         vm_fault_t ret;
6189                         unsigned int fault_flags = 0;
6190
6191                         if (pte)
6192                                 spin_unlock(ptl);
6193                         if (flags & FOLL_WRITE)
6194                                 fault_flags |= FAULT_FLAG_WRITE;
6195                         else if (unshare)
6196                                 fault_flags |= FAULT_FLAG_UNSHARE;
6197                         if (locked)
6198                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6199                                         FAULT_FLAG_KILLABLE;
6200                         if (flags & FOLL_NOWAIT)
6201                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6202                                         FAULT_FLAG_RETRY_NOWAIT;
6203                         if (flags & FOLL_TRIED) {
6204                                 /*
6205                                  * Note: FAULT_FLAG_ALLOW_RETRY and
6206                                  * FAULT_FLAG_TRIED can co-exist
6207                                  */
6208                                 fault_flags |= FAULT_FLAG_TRIED;
6209                         }
6210                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6211                         if (ret & VM_FAULT_ERROR) {
6212                                 err = vm_fault_to_errno(ret, flags);
6213                                 remainder = 0;
6214                                 break;
6215                         }
6216                         if (ret & VM_FAULT_RETRY) {
6217                                 if (locked &&
6218                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6219                                         *locked = 0;
6220                                 *nr_pages = 0;
6221                                 /*
6222                                  * VM_FAULT_RETRY must not return an
6223                                  * error, it will return zero
6224                                  * instead.
6225                                  *
6226                                  * No need to update "position" as the
6227                                  * caller will not check it after
6228                                  * *nr_pages is set to 0.
6229                                  */
6230                                 return i;
6231                         }
6232                         continue;
6233                 }
6234
6235                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6236                 page = pte_page(huge_ptep_get(pte));
6237
6238                 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6239                                !PageAnonExclusive(page), page);
6240
6241                 /*
6242                  * If subpage information not requested, update counters
6243                  * and skip the same_page loop below.
6244                  */
6245                 if (!pages && !vmas && !pfn_offset &&
6246                     (vaddr + huge_page_size(h) < vma->vm_end) &&
6247                     (remainder >= pages_per_huge_page(h))) {
6248                         vaddr += huge_page_size(h);
6249                         remainder -= pages_per_huge_page(h);
6250                         i += pages_per_huge_page(h);
6251                         spin_unlock(ptl);
6252                         continue;
6253                 }
6254
6255                 /* vaddr may not be aligned to PAGE_SIZE */
6256                 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6257                     (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6258
6259                 if (pages || vmas)
6260                         record_subpages_vmas(mem_map_offset(page, pfn_offset),
6261                                              vma, refs,
6262                                              likely(pages) ? pages + i : NULL,
6263                                              vmas ? vmas + i : NULL);
6264
6265                 if (pages) {
6266                         /*
6267                          * try_grab_folio() should always succeed here,
6268                          * because: a) we hold the ptl lock, and b) we've just
6269                          * checked that the huge page is present in the page
6270                          * tables. If the huge page is present, then the tail
6271                          * pages must also be present. The ptl prevents the
6272                          * head page and tail pages from being rearranged in
6273                          * any way. So this page must be available at this
6274                          * point, unless the page refcount overflowed:
6275                          */
6276                         if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6277                                                          flags))) {
6278                                 spin_unlock(ptl);
6279                                 remainder = 0;
6280                                 err = -ENOMEM;
6281                                 break;
6282                         }
6283                 }
6284
6285                 vaddr += (refs << PAGE_SHIFT);
6286                 remainder -= refs;
6287                 i += refs;
6288
6289                 spin_unlock(ptl);
6290         }
6291         *nr_pages = remainder;
6292         /*
6293          * setting position is actually required only if remainder is
6294          * not zero but it's faster not to add a "if (remainder)"
6295          * branch.
6296          */
6297         *position = vaddr;
6298
6299         return i ? i : err;
6300 }
6301
6302 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6303                 unsigned long address, unsigned long end,
6304                 pgprot_t newprot, unsigned long cp_flags)
6305 {
6306         struct mm_struct *mm = vma->vm_mm;
6307         unsigned long start = address;
6308         pte_t *ptep;
6309         pte_t pte;
6310         struct hstate *h = hstate_vma(vma);
6311         unsigned long pages = 0, psize = huge_page_size(h);
6312         bool shared_pmd = false;
6313         struct mmu_notifier_range range;
6314         unsigned long last_addr_mask;
6315         bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6316         bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6317
6318         /*
6319          * In the case of shared PMDs, the area to flush could be beyond
6320          * start/end.  Set range.start/range.end to cover the maximum possible
6321          * range if PMD sharing is possible.
6322          */
6323         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6324                                 0, vma, mm, start, end);
6325         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6326
6327         BUG_ON(address >= end);
6328         flush_cache_range(vma, range.start, range.end);
6329
6330         mmu_notifier_invalidate_range_start(&range);
6331         last_addr_mask = hugetlb_mask_last_page(h);
6332         i_mmap_lock_write(vma->vm_file->f_mapping);
6333         for (; address < end; address += psize) {
6334                 spinlock_t *ptl;
6335                 ptep = huge_pte_offset(mm, address, psize);
6336                 if (!ptep) {
6337                         address |= last_addr_mask;
6338                         continue;
6339                 }
6340                 ptl = huge_pte_lock(h, mm, ptep);
6341                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6342                         /*
6343                          * When uffd-wp is enabled on the vma, unshare
6344                          * shouldn't happen at all.  Warn about it if it
6345                          * happened due to some reason.
6346                          */
6347                         WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6348                         pages++;
6349                         spin_unlock(ptl);
6350                         shared_pmd = true;
6351                         address |= last_addr_mask;
6352                         continue;
6353                 }
6354                 pte = huge_ptep_get(ptep);
6355                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6356                         spin_unlock(ptl);
6357                         continue;
6358                 }
6359                 if (unlikely(is_hugetlb_entry_migration(pte))) {
6360                         swp_entry_t entry = pte_to_swp_entry(pte);
6361                         struct page *page = pfn_swap_entry_to_page(entry);
6362
6363                         if (!is_readable_migration_entry(entry)) {
6364                                 pte_t newpte;
6365
6366                                 if (PageAnon(page))
6367                                         entry = make_readable_exclusive_migration_entry(
6368                                                                 swp_offset(entry));
6369                                 else
6370                                         entry = make_readable_migration_entry(
6371                                                                 swp_offset(entry));
6372                                 newpte = swp_entry_to_pte(entry);
6373                                 if (uffd_wp)
6374                                         newpte = pte_swp_mkuffd_wp(newpte);
6375                                 else if (uffd_wp_resolve)
6376                                         newpte = pte_swp_clear_uffd_wp(newpte);
6377                                 set_huge_pte_at(mm, address, ptep, newpte);
6378                                 pages++;
6379                         }
6380                         spin_unlock(ptl);
6381                         continue;
6382                 }
6383                 if (unlikely(pte_marker_uffd_wp(pte))) {
6384                         /*
6385                          * This is changing a non-present pte into a none pte,
6386                          * no need for huge_ptep_modify_prot_start/commit().
6387                          */
6388                         if (uffd_wp_resolve)
6389                                 huge_pte_clear(mm, address, ptep, psize);
6390                 }
6391                 if (!huge_pte_none(pte)) {
6392                         pte_t old_pte;
6393                         unsigned int shift = huge_page_shift(hstate_vma(vma));
6394
6395                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6396                         pte = huge_pte_modify(old_pte, newprot);
6397                         pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6398                         if (uffd_wp)
6399                                 pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte));
6400                         else if (uffd_wp_resolve)
6401                                 pte = huge_pte_clear_uffd_wp(pte);
6402                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6403                         pages++;
6404                 } else {
6405                         /* None pte */
6406                         if (unlikely(uffd_wp))
6407                                 /* Safe to modify directly (none->non-present). */
6408                                 set_huge_pte_at(mm, address, ptep,
6409                                                 make_pte_marker(PTE_MARKER_UFFD_WP));
6410                 }
6411                 spin_unlock(ptl);
6412         }
6413         /*
6414          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6415          * may have cleared our pud entry and done put_page on the page table:
6416          * once we release i_mmap_rwsem, another task can do the final put_page
6417          * and that page table be reused and filled with junk.  If we actually
6418          * did unshare a page of pmds, flush the range corresponding to the pud.
6419          */
6420         if (shared_pmd)
6421                 flush_hugetlb_tlb_range(vma, range.start, range.end);
6422         else
6423                 flush_hugetlb_tlb_range(vma, start, end);
6424         /*
6425          * No need to call mmu_notifier_invalidate_range() we are downgrading
6426          * page table protection not changing it to point to a new page.
6427          *
6428          * See Documentation/mm/mmu_notifier.rst
6429          */
6430         i_mmap_unlock_write(vma->vm_file->f_mapping);
6431         mmu_notifier_invalidate_range_end(&range);
6432
6433         return pages << h->order;
6434 }
6435
6436 /* Return true if reservation was successful, false otherwise.  */
6437 bool hugetlb_reserve_pages(struct inode *inode,
6438                                         long from, long to,
6439                                         struct vm_area_struct *vma,
6440                                         vm_flags_t vm_flags)
6441 {
6442         long chg, add = -1;
6443         struct hstate *h = hstate_inode(inode);
6444         struct hugepage_subpool *spool = subpool_inode(inode);
6445         struct resv_map *resv_map;
6446         struct hugetlb_cgroup *h_cg = NULL;
6447         long gbl_reserve, regions_needed = 0;
6448
6449         /* This should never happen */
6450         if (from > to) {
6451                 VM_WARN(1, "%s called with a negative range\n", __func__);
6452                 return false;
6453         }
6454
6455         /*
6456          * Only apply hugepage reservation if asked. At fault time, an
6457          * attempt will be made for VM_NORESERVE to allocate a page
6458          * without using reserves
6459          */
6460         if (vm_flags & VM_NORESERVE)
6461                 return true;
6462
6463         /*
6464          * Shared mappings base their reservation on the number of pages that
6465          * are already allocated on behalf of the file. Private mappings need
6466          * to reserve the full area even if read-only as mprotect() may be
6467          * called to make the mapping read-write. Assume !vma is a shm mapping
6468          */
6469         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6470                 /*
6471                  * resv_map can not be NULL as hugetlb_reserve_pages is only
6472                  * called for inodes for which resv_maps were created (see
6473                  * hugetlbfs_get_inode).
6474                  */
6475                 resv_map = inode_resv_map(inode);
6476
6477                 chg = region_chg(resv_map, from, to, &regions_needed);
6478
6479         } else {
6480                 /* Private mapping. */
6481                 resv_map = resv_map_alloc();
6482                 if (!resv_map)
6483                         return false;
6484
6485                 chg = to - from;
6486
6487                 set_vma_resv_map(vma, resv_map);
6488                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6489         }
6490
6491         if (chg < 0)
6492                 goto out_err;
6493
6494         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6495                                 chg * pages_per_huge_page(h), &h_cg) < 0)
6496                 goto out_err;
6497
6498         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6499                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6500                  * of the resv_map.
6501                  */
6502                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6503         }
6504
6505         /*
6506          * There must be enough pages in the subpool for the mapping. If
6507          * the subpool has a minimum size, there may be some global
6508          * reservations already in place (gbl_reserve).
6509          */
6510         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6511         if (gbl_reserve < 0)
6512                 goto out_uncharge_cgroup;
6513
6514         /*
6515          * Check enough hugepages are available for the reservation.
6516          * Hand the pages back to the subpool if there are not
6517          */
6518         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6519                 goto out_put_pages;
6520
6521         /*
6522          * Account for the reservations made. Shared mappings record regions
6523          * that have reservations as they are shared by multiple VMAs.
6524          * When the last VMA disappears, the region map says how much
6525          * the reservation was and the page cache tells how much of
6526          * the reservation was consumed. Private mappings are per-VMA and
6527          * only the consumed reservations are tracked. When the VMA
6528          * disappears, the original reservation is the VMA size and the
6529          * consumed reservations are stored in the map. Hence, nothing
6530          * else has to be done for private mappings here
6531          */
6532         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6533                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6534
6535                 if (unlikely(add < 0)) {
6536                         hugetlb_acct_memory(h, -gbl_reserve);
6537                         goto out_put_pages;
6538                 } else if (unlikely(chg > add)) {
6539                         /*
6540                          * pages in this range were added to the reserve
6541                          * map between region_chg and region_add.  This
6542                          * indicates a race with alloc_huge_page.  Adjust
6543                          * the subpool and reserve counts modified above
6544                          * based on the difference.
6545                          */
6546                         long rsv_adjust;
6547
6548                         /*
6549                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6550                          * reference to h_cg->css. See comment below for detail.
6551                          */
6552                         hugetlb_cgroup_uncharge_cgroup_rsvd(
6553                                 hstate_index(h),
6554                                 (chg - add) * pages_per_huge_page(h), h_cg);
6555
6556                         rsv_adjust = hugepage_subpool_put_pages(spool,
6557                                                                 chg - add);
6558                         hugetlb_acct_memory(h, -rsv_adjust);
6559                 } else if (h_cg) {
6560                         /*
6561                          * The file_regions will hold their own reference to
6562                          * h_cg->css. So we should release the reference held
6563                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6564                          * done.
6565                          */
6566                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6567                 }
6568         }
6569         return true;
6570
6571 out_put_pages:
6572         /* put back original number of pages, chg */
6573         (void)hugepage_subpool_put_pages(spool, chg);
6574 out_uncharge_cgroup:
6575         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6576                                             chg * pages_per_huge_page(h), h_cg);
6577 out_err:
6578         if (!vma || vma->vm_flags & VM_MAYSHARE)
6579                 /* Only call region_abort if the region_chg succeeded but the
6580                  * region_add failed or didn't run.
6581                  */
6582                 if (chg >= 0 && add < 0)
6583                         region_abort(resv_map, from, to, regions_needed);
6584         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6585                 kref_put(&resv_map->refs, resv_map_release);
6586         return false;
6587 }
6588
6589 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6590                                                                 long freed)
6591 {
6592         struct hstate *h = hstate_inode(inode);
6593         struct resv_map *resv_map = inode_resv_map(inode);
6594         long chg = 0;
6595         struct hugepage_subpool *spool = subpool_inode(inode);
6596         long gbl_reserve;
6597
6598         /*
6599          * Since this routine can be called in the evict inode path for all
6600          * hugetlbfs inodes, resv_map could be NULL.
6601          */
6602         if (resv_map) {
6603                 chg = region_del(resv_map, start, end);
6604                 /*
6605                  * region_del() can fail in the rare case where a region
6606                  * must be split and another region descriptor can not be
6607                  * allocated.  If end == LONG_MAX, it will not fail.
6608                  */
6609                 if (chg < 0)
6610                         return chg;
6611         }
6612
6613         spin_lock(&inode->i_lock);
6614         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6615         spin_unlock(&inode->i_lock);
6616
6617         /*
6618          * If the subpool has a minimum size, the number of global
6619          * reservations to be released may be adjusted.
6620          *
6621          * Note that !resv_map implies freed == 0. So (chg - freed)
6622          * won't go negative.
6623          */
6624         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6625         hugetlb_acct_memory(h, -gbl_reserve);
6626
6627         return 0;
6628 }
6629
6630 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6631 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6632                                 struct vm_area_struct *vma,
6633                                 unsigned long addr, pgoff_t idx)
6634 {
6635         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6636                                 svma->vm_start;
6637         unsigned long sbase = saddr & PUD_MASK;
6638         unsigned long s_end = sbase + PUD_SIZE;
6639
6640         /* Allow segments to share if only one is marked locked */
6641         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6642         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6643
6644         /*
6645          * match the virtual addresses, permission and the alignment of the
6646          * page table page.
6647          */
6648         if (pmd_index(addr) != pmd_index(saddr) ||
6649             vm_flags != svm_flags ||
6650             !range_in_vma(svma, sbase, s_end))
6651                 return 0;
6652
6653         return saddr;
6654 }
6655
6656 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
6657 {
6658         unsigned long base = addr & PUD_MASK;
6659         unsigned long end = base + PUD_SIZE;
6660
6661         /*
6662          * check on proper vm_flags and page table alignment
6663          */
6664         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
6665                 return true;
6666         return false;
6667 }
6668
6669 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6670 {
6671 #ifdef CONFIG_USERFAULTFD
6672         if (uffd_disable_huge_pmd_share(vma))
6673                 return false;
6674 #endif
6675         return vma_shareable(vma, addr);
6676 }
6677
6678 /*
6679  * Determine if start,end range within vma could be mapped by shared pmd.
6680  * If yes, adjust start and end to cover range associated with possible
6681  * shared pmd mappings.
6682  */
6683 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6684                                 unsigned long *start, unsigned long *end)
6685 {
6686         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6687                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6688
6689         /*
6690          * vma needs to span at least one aligned PUD size, and the range
6691          * must be at least partially within in.
6692          */
6693         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6694                 (*end <= v_start) || (*start >= v_end))
6695                 return;
6696
6697         /* Extend the range to be PUD aligned for a worst case scenario */
6698         if (*start > v_start)
6699                 *start = ALIGN_DOWN(*start, PUD_SIZE);
6700
6701         if (*end < v_end)
6702                 *end = ALIGN(*end, PUD_SIZE);
6703 }
6704
6705 /*
6706  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6707  * and returns the corresponding pte. While this is not necessary for the
6708  * !shared pmd case because we can allocate the pmd later as well, it makes the
6709  * code much cleaner.
6710  *
6711  * This routine must be called with i_mmap_rwsem held in at least read mode if
6712  * sharing is possible.  For hugetlbfs, this prevents removal of any page
6713  * table entries associated with the address space.  This is important as we
6714  * are setting up sharing based on existing page table entries (mappings).
6715  */
6716 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6717                       unsigned long addr, pud_t *pud)
6718 {
6719         struct address_space *mapping = vma->vm_file->f_mapping;
6720         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6721                         vma->vm_pgoff;
6722         struct vm_area_struct *svma;
6723         unsigned long saddr;
6724         pte_t *spte = NULL;
6725         pte_t *pte;
6726         spinlock_t *ptl;
6727
6728         i_mmap_assert_locked(mapping);
6729         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6730                 if (svma == vma)
6731                         continue;
6732
6733                 saddr = page_table_shareable(svma, vma, addr, idx);
6734                 if (saddr) {
6735                         spte = huge_pte_offset(svma->vm_mm, saddr,
6736                                                vma_mmu_pagesize(svma));
6737                         if (spte) {
6738                                 get_page(virt_to_page(spte));
6739                                 break;
6740                         }
6741                 }
6742         }
6743
6744         if (!spte)
6745                 goto out;
6746
6747         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
6748         if (pud_none(*pud)) {
6749                 pud_populate(mm, pud,
6750                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
6751                 mm_inc_nr_pmds(mm);
6752         } else {
6753                 put_page(virt_to_page(spte));
6754         }
6755         spin_unlock(ptl);
6756 out:
6757         pte = (pte_t *)pmd_alloc(mm, pud, addr);
6758         return pte;
6759 }
6760
6761 /*
6762  * unmap huge page backed by shared pte.
6763  *
6764  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
6765  * indicated by page_count > 1, unmap is achieved by clearing pud and
6766  * decrementing the ref count. If count == 1, the pte page is not shared.
6767  *
6768  * Called with page table lock held and i_mmap_rwsem held in write mode.
6769  *
6770  * returns: 1 successfully unmapped a shared pte page
6771  *          0 the underlying pte page is not shared, or it is the last user
6772  */
6773 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6774                                         unsigned long addr, pte_t *ptep)
6775 {
6776         pgd_t *pgd = pgd_offset(mm, addr);
6777         p4d_t *p4d = p4d_offset(pgd, addr);
6778         pud_t *pud = pud_offset(p4d, addr);
6779
6780         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
6781         BUG_ON(page_count(virt_to_page(ptep)) == 0);
6782         if (page_count(virt_to_page(ptep)) == 1)
6783                 return 0;
6784
6785         pud_clear(pud);
6786         put_page(virt_to_page(ptep));
6787         mm_dec_nr_pmds(mm);
6788         return 1;
6789 }
6790
6791 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6792 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6793                       unsigned long addr, pud_t *pud)
6794 {
6795         return NULL;
6796 }
6797
6798 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6799                                 unsigned long addr, pte_t *ptep)
6800 {
6801         return 0;
6802 }
6803
6804 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6805                                 unsigned long *start, unsigned long *end)
6806 {
6807 }
6808
6809 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6810 {
6811         return false;
6812 }
6813 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6814
6815 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
6816 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
6817                         unsigned long addr, unsigned long sz)
6818 {
6819         pgd_t *pgd;
6820         p4d_t *p4d;
6821         pud_t *pud;
6822         pte_t *pte = NULL;
6823
6824         pgd = pgd_offset(mm, addr);
6825         p4d = p4d_alloc(mm, pgd, addr);
6826         if (!p4d)
6827                 return NULL;
6828         pud = pud_alloc(mm, p4d, addr);
6829         if (pud) {
6830                 if (sz == PUD_SIZE) {
6831                         pte = (pte_t *)pud;
6832                 } else {
6833                         BUG_ON(sz != PMD_SIZE);
6834                         if (want_pmd_share(vma, addr) && pud_none(*pud))
6835                                 pte = huge_pmd_share(mm, vma, addr, pud);
6836                         else
6837                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
6838                 }
6839         }
6840         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
6841
6842         return pte;
6843 }
6844
6845 /*
6846  * huge_pte_offset() - Walk the page table to resolve the hugepage
6847  * entry at address @addr
6848  *
6849  * Return: Pointer to page table entry (PUD or PMD) for
6850  * address @addr, or NULL if a !p*d_present() entry is encountered and the
6851  * size @sz doesn't match the hugepage size at this level of the page
6852  * table.
6853  */
6854 pte_t *huge_pte_offset(struct mm_struct *mm,
6855                        unsigned long addr, unsigned long sz)
6856 {
6857         pgd_t *pgd;
6858         p4d_t *p4d;
6859         pud_t *pud;
6860         pmd_t *pmd;
6861
6862         pgd = pgd_offset(mm, addr);
6863         if (!pgd_present(*pgd))
6864                 return NULL;
6865         p4d = p4d_offset(pgd, addr);
6866         if (!p4d_present(*p4d))
6867                 return NULL;
6868
6869         pud = pud_offset(p4d, addr);
6870         if (sz == PUD_SIZE)
6871                 /* must be pud huge, non-present or none */
6872                 return (pte_t *)pud;
6873         if (!pud_present(*pud))
6874                 return NULL;
6875         /* must have a valid entry and size to go further */
6876
6877         pmd = pmd_offset(pud, addr);
6878         /* must be pmd huge, non-present or none */
6879         return (pte_t *)pmd;
6880 }
6881
6882 /*
6883  * Return a mask that can be used to update an address to the last huge
6884  * page in a page table page mapping size.  Used to skip non-present
6885  * page table entries when linearly scanning address ranges.  Architectures
6886  * with unique huge page to page table relationships can define their own
6887  * version of this routine.
6888  */
6889 unsigned long hugetlb_mask_last_page(struct hstate *h)
6890 {
6891         unsigned long hp_size = huge_page_size(h);
6892
6893         if (hp_size == PUD_SIZE)
6894                 return P4D_SIZE - PUD_SIZE;
6895         else if (hp_size == PMD_SIZE)
6896                 return PUD_SIZE - PMD_SIZE;
6897         else
6898                 return 0UL;
6899 }
6900
6901 #else
6902
6903 /* See description above.  Architectures can provide their own version. */
6904 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
6905 {
6906 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6907         if (huge_page_size(h) == PMD_SIZE)
6908                 return PUD_SIZE - PMD_SIZE;
6909 #endif
6910         return 0UL;
6911 }
6912
6913 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
6914
6915 /*
6916  * These functions are overwritable if your architecture needs its own
6917  * behavior.
6918  */
6919 struct page * __weak
6920 follow_huge_addr(struct mm_struct *mm, unsigned long address,
6921                               int write)
6922 {
6923         return ERR_PTR(-EINVAL);
6924 }
6925
6926 struct page * __weak
6927 follow_huge_pd(struct vm_area_struct *vma,
6928                unsigned long address, hugepd_t hpd, int flags, int pdshift)
6929 {
6930         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
6931         return NULL;
6932 }
6933
6934 struct page * __weak
6935 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
6936                 pmd_t *pmd, int flags)
6937 {
6938         struct page *page = NULL;
6939         spinlock_t *ptl;
6940         pte_t pte;
6941
6942         /*
6943          * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6944          * follow_hugetlb_page().
6945          */
6946         if (WARN_ON_ONCE(flags & FOLL_PIN))
6947                 return NULL;
6948
6949 retry:
6950         ptl = pmd_lockptr(mm, pmd);
6951         spin_lock(ptl);
6952         /*
6953          * make sure that the address range covered by this pmd is not
6954          * unmapped from other threads.
6955          */
6956         if (!pmd_huge(*pmd))
6957                 goto out;
6958         pte = huge_ptep_get((pte_t *)pmd);
6959         if (pte_present(pte)) {
6960                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
6961                 /*
6962                  * try_grab_page() should always succeed here, because: a) we
6963                  * hold the pmd (ptl) lock, and b) we've just checked that the
6964                  * huge pmd (head) page is present in the page tables. The ptl
6965                  * prevents the head page and tail pages from being rearranged
6966                  * in any way. So this page must be available at this point,
6967                  * unless the page refcount overflowed:
6968                  */
6969                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
6970                         page = NULL;
6971                         goto out;
6972                 }
6973         } else {
6974                 if (is_hugetlb_entry_migration(pte)) {
6975                         spin_unlock(ptl);
6976                         __migration_entry_wait_huge((pte_t *)pmd, ptl);
6977                         goto retry;
6978                 }
6979                 /*
6980                  * hwpoisoned entry is treated as no_page_table in
6981                  * follow_page_mask().
6982                  */
6983         }
6984 out:
6985         spin_unlock(ptl);
6986         return page;
6987 }
6988
6989 struct page * __weak
6990 follow_huge_pud(struct mm_struct *mm, unsigned long address,
6991                 pud_t *pud, int flags)
6992 {
6993         struct page *page = NULL;
6994         spinlock_t *ptl;
6995         pte_t pte;
6996
6997         if (WARN_ON_ONCE(flags & FOLL_PIN))
6998                 return NULL;
6999
7000 retry:
7001         ptl = huge_pte_lock(hstate_sizelog(PUD_SHIFT), mm, (pte_t *)pud);
7002         if (!pud_huge(*pud))
7003                 goto out;
7004         pte = huge_ptep_get((pte_t *)pud);
7005         if (pte_present(pte)) {
7006                 page = pud_page(*pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
7007                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
7008                         page = NULL;
7009                         goto out;
7010                 }
7011         } else {
7012                 if (is_hugetlb_entry_migration(pte)) {
7013                         spin_unlock(ptl);
7014                         __migration_entry_wait(mm, (pte_t *)pud, ptl);
7015                         goto retry;
7016                 }
7017                 /*
7018                  * hwpoisoned entry is treated as no_page_table in
7019                  * follow_page_mask().
7020                  */
7021         }
7022 out:
7023         spin_unlock(ptl);
7024         return page;
7025 }
7026
7027 struct page * __weak
7028 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
7029 {
7030         if (flags & (FOLL_GET | FOLL_PIN))
7031                 return NULL;
7032
7033         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
7034 }
7035
7036 int isolate_hugetlb(struct page *page, struct list_head *list)
7037 {
7038         int ret = 0;
7039
7040         spin_lock_irq(&hugetlb_lock);
7041         if (!PageHeadHuge(page) ||
7042             !HPageMigratable(page) ||
7043             !get_page_unless_zero(page)) {
7044                 ret = -EBUSY;
7045                 goto unlock;
7046         }
7047         ClearHPageMigratable(page);
7048         list_move_tail(&page->lru, list);
7049 unlock:
7050         spin_unlock_irq(&hugetlb_lock);
7051         return ret;
7052 }
7053
7054 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
7055 {
7056         int ret = 0;
7057
7058         *hugetlb = false;
7059         spin_lock_irq(&hugetlb_lock);
7060         if (PageHeadHuge(page)) {
7061                 *hugetlb = true;
7062                 if (HPageFreed(page))
7063                         ret = 0;
7064                 else if (HPageMigratable(page))
7065                         ret = get_page_unless_zero(page);
7066                 else
7067                         ret = -EBUSY;
7068         }
7069         spin_unlock_irq(&hugetlb_lock);
7070         return ret;
7071 }
7072
7073 int get_huge_page_for_hwpoison(unsigned long pfn, int flags)
7074 {
7075         int ret;
7076
7077         spin_lock_irq(&hugetlb_lock);
7078         ret = __get_huge_page_for_hwpoison(pfn, flags);
7079         spin_unlock_irq(&hugetlb_lock);
7080         return ret;
7081 }
7082
7083 void putback_active_hugepage(struct page *page)
7084 {
7085         spin_lock_irq(&hugetlb_lock);
7086         SetHPageMigratable(page);
7087         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
7088         spin_unlock_irq(&hugetlb_lock);
7089         put_page(page);
7090 }
7091
7092 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
7093 {
7094         struct hstate *h = page_hstate(oldpage);
7095
7096         hugetlb_cgroup_migrate(oldpage, newpage);
7097         set_page_owner_migrate_reason(newpage, reason);
7098
7099         /*
7100          * transfer temporary state of the new huge page. This is
7101          * reverse to other transitions because the newpage is going to
7102          * be final while the old one will be freed so it takes over
7103          * the temporary status.
7104          *
7105          * Also note that we have to transfer the per-node surplus state
7106          * here as well otherwise the global surplus count will not match
7107          * the per-node's.
7108          */
7109         if (HPageTemporary(newpage)) {
7110                 int old_nid = page_to_nid(oldpage);
7111                 int new_nid = page_to_nid(newpage);
7112
7113                 SetHPageTemporary(oldpage);
7114                 ClearHPageTemporary(newpage);
7115
7116                 /*
7117                  * There is no need to transfer the per-node surplus state
7118                  * when we do not cross the node.
7119                  */
7120                 if (new_nid == old_nid)
7121                         return;
7122                 spin_lock_irq(&hugetlb_lock);
7123                 if (h->surplus_huge_pages_node[old_nid]) {
7124                         h->surplus_huge_pages_node[old_nid]--;
7125                         h->surplus_huge_pages_node[new_nid]++;
7126                 }
7127                 spin_unlock_irq(&hugetlb_lock);
7128         }
7129 }
7130
7131 /*
7132  * This function will unconditionally remove all the shared pmd pgtable entries
7133  * within the specific vma for a hugetlbfs memory range.
7134  */
7135 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7136 {
7137         struct hstate *h = hstate_vma(vma);
7138         unsigned long sz = huge_page_size(h);
7139         struct mm_struct *mm = vma->vm_mm;
7140         struct mmu_notifier_range range;
7141         unsigned long address, start, end;
7142         spinlock_t *ptl;
7143         pte_t *ptep;
7144
7145         if (!(vma->vm_flags & VM_MAYSHARE))
7146                 return;
7147
7148         start = ALIGN(vma->vm_start, PUD_SIZE);
7149         end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7150
7151         if (start >= end)
7152                 return;
7153
7154         flush_cache_range(vma, start, end);
7155         /*
7156          * No need to call adjust_range_if_pmd_sharing_possible(), because
7157          * we have already done the PUD_SIZE alignment.
7158          */
7159         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
7160                                 start, end);
7161         mmu_notifier_invalidate_range_start(&range);
7162         i_mmap_lock_write(vma->vm_file->f_mapping);
7163         for (address = start; address < end; address += PUD_SIZE) {
7164                 ptep = huge_pte_offset(mm, address, sz);
7165                 if (!ptep)
7166                         continue;
7167                 ptl = huge_pte_lock(h, mm, ptep);
7168                 huge_pmd_unshare(mm, vma, address, ptep);
7169                 spin_unlock(ptl);
7170         }
7171         flush_hugetlb_tlb_range(vma, start, end);
7172         i_mmap_unlock_write(vma->vm_file->f_mapping);
7173         /*
7174          * No need to call mmu_notifier_invalidate_range(), see
7175          * Documentation/mm/mmu_notifier.rst.
7176          */
7177         mmu_notifier_invalidate_range_end(&range);
7178 }
7179
7180 #ifdef CONFIG_CMA
7181 static bool cma_reserve_called __initdata;
7182
7183 static int __init cmdline_parse_hugetlb_cma(char *p)
7184 {
7185         int nid, count = 0;
7186         unsigned long tmp;
7187         char *s = p;
7188
7189         while (*s) {
7190                 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7191                         break;
7192
7193                 if (s[count] == ':') {
7194                         if (tmp >= MAX_NUMNODES)
7195                                 break;
7196                         nid = array_index_nospec(tmp, MAX_NUMNODES);
7197
7198                         s += count + 1;
7199                         tmp = memparse(s, &s);
7200                         hugetlb_cma_size_in_node[nid] = tmp;
7201                         hugetlb_cma_size += tmp;
7202
7203                         /*
7204                          * Skip the separator if have one, otherwise
7205                          * break the parsing.
7206                          */
7207                         if (*s == ',')
7208                                 s++;
7209                         else
7210                                 break;
7211                 } else {
7212                         hugetlb_cma_size = memparse(p, &p);
7213                         break;
7214                 }
7215         }
7216
7217         return 0;
7218 }
7219
7220 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7221
7222 void __init hugetlb_cma_reserve(int order)
7223 {
7224         unsigned long size, reserved, per_node;
7225         bool node_specific_cma_alloc = false;
7226         int nid;
7227
7228         cma_reserve_called = true;
7229
7230         if (!hugetlb_cma_size)
7231                 return;
7232
7233         for (nid = 0; nid < MAX_NUMNODES; nid++) {
7234                 if (hugetlb_cma_size_in_node[nid] == 0)
7235                         continue;
7236
7237                 if (!node_online(nid)) {
7238                         pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7239                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7240                         hugetlb_cma_size_in_node[nid] = 0;
7241                         continue;
7242                 }
7243
7244                 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7245                         pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7246                                 nid, (PAGE_SIZE << order) / SZ_1M);
7247                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7248                         hugetlb_cma_size_in_node[nid] = 0;
7249                 } else {
7250                         node_specific_cma_alloc = true;
7251                 }
7252         }
7253
7254         /* Validate the CMA size again in case some invalid nodes specified. */
7255         if (!hugetlb_cma_size)
7256                 return;
7257
7258         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7259                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7260                         (PAGE_SIZE << order) / SZ_1M);
7261                 hugetlb_cma_size = 0;
7262                 return;
7263         }
7264
7265         if (!node_specific_cma_alloc) {
7266                 /*
7267                  * If 3 GB area is requested on a machine with 4 numa nodes,
7268                  * let's allocate 1 GB on first three nodes and ignore the last one.
7269                  */
7270                 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7271                 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7272                         hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7273         }
7274
7275         reserved = 0;
7276         for_each_online_node(nid) {
7277                 int res;
7278                 char name[CMA_MAX_NAME];
7279
7280                 if (node_specific_cma_alloc) {
7281                         if (hugetlb_cma_size_in_node[nid] == 0)
7282                                 continue;
7283
7284                         size = hugetlb_cma_size_in_node[nid];
7285                 } else {
7286                         size = min(per_node, hugetlb_cma_size - reserved);
7287                 }
7288
7289                 size = round_up(size, PAGE_SIZE << order);
7290
7291                 snprintf(name, sizeof(name), "hugetlb%d", nid);
7292                 /*
7293                  * Note that 'order per bit' is based on smallest size that
7294                  * may be returned to CMA allocator in the case of
7295                  * huge page demotion.
7296                  */
7297                 res = cma_declare_contiguous_nid(0, size, 0,
7298                                                 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7299                                                  0, false, name,
7300                                                  &hugetlb_cma[nid], nid);
7301                 if (res) {
7302                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7303                                 res, nid);
7304                         continue;
7305                 }
7306
7307                 reserved += size;
7308                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7309                         size / SZ_1M, nid);
7310
7311                 if (reserved >= hugetlb_cma_size)
7312                         break;
7313         }
7314
7315         if (!reserved)
7316                 /*
7317                  * hugetlb_cma_size is used to determine if allocations from
7318                  * cma are possible.  Set to zero if no cma regions are set up.
7319                  */
7320                 hugetlb_cma_size = 0;
7321 }
7322
7323 void __init hugetlb_cma_check(void)
7324 {
7325         if (!hugetlb_cma_size || cma_reserve_called)
7326                 return;
7327
7328         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7329 }
7330
7331 #endif /* CONFIG_CMA */