mm/huge_memory.c: don't discard hugepage if other processes are mapping it
[linux-2.6-microblaze.git] / mm / huge_memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/dax.h>
22 #include <linux/khugepaged.h>
23 #include <linux/freezer.h>
24 #include <linux/pfn_t.h>
25 #include <linux/mman.h>
26 #include <linux/memremap.h>
27 #include <linux/pagemap.h>
28 #include <linux/debugfs.h>
29 #include <linux/migrate.h>
30 #include <linux/hashtable.h>
31 #include <linux/userfaultfd_k.h>
32 #include <linux/page_idle.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/oom.h>
35 #include <linux/numa.h>
36 #include <linux/page_owner.h>
37
38 #include <asm/tlb.h>
39 #include <asm/pgalloc.h>
40 #include "internal.h"
41
42 /*
43  * By default, transparent hugepage support is disabled in order to avoid
44  * risking an increased memory footprint for applications that are not
45  * guaranteed to benefit from it. When transparent hugepage support is
46  * enabled, it is for all mappings, and khugepaged scans all mappings.
47  * Defrag is invoked by khugepaged hugepage allocations and by page faults
48  * for all hugepage allocations.
49  */
50 unsigned long transparent_hugepage_flags __read_mostly =
51 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
52         (1<<TRANSPARENT_HUGEPAGE_FLAG)|
53 #endif
54 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
55         (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
56 #endif
57         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
58         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
59         (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
60
61 static struct shrinker deferred_split_shrinker;
62
63 static atomic_t huge_zero_refcount;
64 struct page *huge_zero_page __read_mostly;
65 unsigned long huge_zero_pfn __read_mostly = ~0UL;
66
67 static inline bool file_thp_enabled(struct vm_area_struct *vma)
68 {
69         return transhuge_vma_enabled(vma, vma->vm_flags) && vma->vm_file &&
70                !inode_is_open_for_write(vma->vm_file->f_inode) &&
71                (vma->vm_flags & VM_EXEC);
72 }
73
74 bool transparent_hugepage_active(struct vm_area_struct *vma)
75 {
76         /* The addr is used to check if the vma size fits */
77         unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
78
79         if (!transhuge_vma_suitable(vma, addr))
80                 return false;
81         if (vma_is_anonymous(vma))
82                 return __transparent_hugepage_enabled(vma);
83         if (vma_is_shmem(vma))
84                 return shmem_huge_enabled(vma);
85         if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS))
86                 return file_thp_enabled(vma);
87
88         return false;
89 }
90
91 static bool get_huge_zero_page(void)
92 {
93         struct page *zero_page;
94 retry:
95         if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
96                 return true;
97
98         zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
99                         HPAGE_PMD_ORDER);
100         if (!zero_page) {
101                 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
102                 return false;
103         }
104         count_vm_event(THP_ZERO_PAGE_ALLOC);
105         preempt_disable();
106         if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
107                 preempt_enable();
108                 __free_pages(zero_page, compound_order(zero_page));
109                 goto retry;
110         }
111         WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
112
113         /* We take additional reference here. It will be put back by shrinker */
114         atomic_set(&huge_zero_refcount, 2);
115         preempt_enable();
116         return true;
117 }
118
119 static void put_huge_zero_page(void)
120 {
121         /*
122          * Counter should never go to zero here. Only shrinker can put
123          * last reference.
124          */
125         BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
126 }
127
128 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
129 {
130         if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
131                 return READ_ONCE(huge_zero_page);
132
133         if (!get_huge_zero_page())
134                 return NULL;
135
136         if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
137                 put_huge_zero_page();
138
139         return READ_ONCE(huge_zero_page);
140 }
141
142 void mm_put_huge_zero_page(struct mm_struct *mm)
143 {
144         if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
145                 put_huge_zero_page();
146 }
147
148 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
149                                         struct shrink_control *sc)
150 {
151         /* we can free zero page only if last reference remains */
152         return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
153 }
154
155 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
156                                        struct shrink_control *sc)
157 {
158         if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
159                 struct page *zero_page = xchg(&huge_zero_page, NULL);
160                 BUG_ON(zero_page == NULL);
161                 WRITE_ONCE(huge_zero_pfn, ~0UL);
162                 __free_pages(zero_page, compound_order(zero_page));
163                 return HPAGE_PMD_NR;
164         }
165
166         return 0;
167 }
168
169 static struct shrinker huge_zero_page_shrinker = {
170         .count_objects = shrink_huge_zero_page_count,
171         .scan_objects = shrink_huge_zero_page_scan,
172         .seeks = DEFAULT_SEEKS,
173 };
174
175 #ifdef CONFIG_SYSFS
176 static ssize_t enabled_show(struct kobject *kobj,
177                             struct kobj_attribute *attr, char *buf)
178 {
179         const char *output;
180
181         if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
182                 output = "[always] madvise never";
183         else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
184                           &transparent_hugepage_flags))
185                 output = "always [madvise] never";
186         else
187                 output = "always madvise [never]";
188
189         return sysfs_emit(buf, "%s\n", output);
190 }
191
192 static ssize_t enabled_store(struct kobject *kobj,
193                              struct kobj_attribute *attr,
194                              const char *buf, size_t count)
195 {
196         ssize_t ret = count;
197
198         if (sysfs_streq(buf, "always")) {
199                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
200                 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
201         } else if (sysfs_streq(buf, "madvise")) {
202                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
203                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
204         } else if (sysfs_streq(buf, "never")) {
205                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
206                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
207         } else
208                 ret = -EINVAL;
209
210         if (ret > 0) {
211                 int err = start_stop_khugepaged();
212                 if (err)
213                         ret = err;
214         }
215         return ret;
216 }
217 static struct kobj_attribute enabled_attr =
218         __ATTR(enabled, 0644, enabled_show, enabled_store);
219
220 ssize_t single_hugepage_flag_show(struct kobject *kobj,
221                                   struct kobj_attribute *attr, char *buf,
222                                   enum transparent_hugepage_flag flag)
223 {
224         return sysfs_emit(buf, "%d\n",
225                           !!test_bit(flag, &transparent_hugepage_flags));
226 }
227
228 ssize_t single_hugepage_flag_store(struct kobject *kobj,
229                                  struct kobj_attribute *attr,
230                                  const char *buf, size_t count,
231                                  enum transparent_hugepage_flag flag)
232 {
233         unsigned long value;
234         int ret;
235
236         ret = kstrtoul(buf, 10, &value);
237         if (ret < 0)
238                 return ret;
239         if (value > 1)
240                 return -EINVAL;
241
242         if (value)
243                 set_bit(flag, &transparent_hugepage_flags);
244         else
245                 clear_bit(flag, &transparent_hugepage_flags);
246
247         return count;
248 }
249
250 static ssize_t defrag_show(struct kobject *kobj,
251                            struct kobj_attribute *attr, char *buf)
252 {
253         const char *output;
254
255         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
256                      &transparent_hugepage_flags))
257                 output = "[always] defer defer+madvise madvise never";
258         else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
259                           &transparent_hugepage_flags))
260                 output = "always [defer] defer+madvise madvise never";
261         else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
262                           &transparent_hugepage_flags))
263                 output = "always defer [defer+madvise] madvise never";
264         else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
265                           &transparent_hugepage_flags))
266                 output = "always defer defer+madvise [madvise] never";
267         else
268                 output = "always defer defer+madvise madvise [never]";
269
270         return sysfs_emit(buf, "%s\n", output);
271 }
272
273 static ssize_t defrag_store(struct kobject *kobj,
274                             struct kobj_attribute *attr,
275                             const char *buf, size_t count)
276 {
277         if (sysfs_streq(buf, "always")) {
278                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
279                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
280                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
281                 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
282         } else if (sysfs_streq(buf, "defer+madvise")) {
283                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
284                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
285                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
286                 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
287         } else if (sysfs_streq(buf, "defer")) {
288                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
289                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
290                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
291                 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
292         } else if (sysfs_streq(buf, "madvise")) {
293                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
294                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
295                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
296                 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
297         } else if (sysfs_streq(buf, "never")) {
298                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
299                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
300                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
301                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
302         } else
303                 return -EINVAL;
304
305         return count;
306 }
307 static struct kobj_attribute defrag_attr =
308         __ATTR(defrag, 0644, defrag_show, defrag_store);
309
310 static ssize_t use_zero_page_show(struct kobject *kobj,
311                                   struct kobj_attribute *attr, char *buf)
312 {
313         return single_hugepage_flag_show(kobj, attr, buf,
314                                          TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
315 }
316 static ssize_t use_zero_page_store(struct kobject *kobj,
317                 struct kobj_attribute *attr, const char *buf, size_t count)
318 {
319         return single_hugepage_flag_store(kobj, attr, buf, count,
320                                  TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
321 }
322 static struct kobj_attribute use_zero_page_attr =
323         __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
324
325 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
326                                    struct kobj_attribute *attr, char *buf)
327 {
328         return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
329 }
330 static struct kobj_attribute hpage_pmd_size_attr =
331         __ATTR_RO(hpage_pmd_size);
332
333 static struct attribute *hugepage_attr[] = {
334         &enabled_attr.attr,
335         &defrag_attr.attr,
336         &use_zero_page_attr.attr,
337         &hpage_pmd_size_attr.attr,
338 #ifdef CONFIG_SHMEM
339         &shmem_enabled_attr.attr,
340 #endif
341         NULL,
342 };
343
344 static const struct attribute_group hugepage_attr_group = {
345         .attrs = hugepage_attr,
346 };
347
348 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
349 {
350         int err;
351
352         *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
353         if (unlikely(!*hugepage_kobj)) {
354                 pr_err("failed to create transparent hugepage kobject\n");
355                 return -ENOMEM;
356         }
357
358         err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
359         if (err) {
360                 pr_err("failed to register transparent hugepage group\n");
361                 goto delete_obj;
362         }
363
364         err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
365         if (err) {
366                 pr_err("failed to register transparent hugepage group\n");
367                 goto remove_hp_group;
368         }
369
370         return 0;
371
372 remove_hp_group:
373         sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
374 delete_obj:
375         kobject_put(*hugepage_kobj);
376         return err;
377 }
378
379 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
380 {
381         sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
382         sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
383         kobject_put(hugepage_kobj);
384 }
385 #else
386 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
387 {
388         return 0;
389 }
390
391 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
392 {
393 }
394 #endif /* CONFIG_SYSFS */
395
396 static int __init hugepage_init(void)
397 {
398         int err;
399         struct kobject *hugepage_kobj;
400
401         if (!has_transparent_hugepage()) {
402                 /*
403                  * Hardware doesn't support hugepages, hence disable
404                  * DAX PMD support.
405                  */
406                 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
407                 return -EINVAL;
408         }
409
410         /*
411          * hugepages can't be allocated by the buddy allocator
412          */
413         MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
414         /*
415          * we use page->mapping and page->index in second tail page
416          * as list_head: assuming THP order >= 2
417          */
418         MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
419
420         err = hugepage_init_sysfs(&hugepage_kobj);
421         if (err)
422                 goto err_sysfs;
423
424         err = khugepaged_init();
425         if (err)
426                 goto err_slab;
427
428         err = register_shrinker(&huge_zero_page_shrinker);
429         if (err)
430                 goto err_hzp_shrinker;
431         err = register_shrinker(&deferred_split_shrinker);
432         if (err)
433                 goto err_split_shrinker;
434
435         /*
436          * By default disable transparent hugepages on smaller systems,
437          * where the extra memory used could hurt more than TLB overhead
438          * is likely to save.  The admin can still enable it through /sys.
439          */
440         if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
441                 transparent_hugepage_flags = 0;
442                 return 0;
443         }
444
445         err = start_stop_khugepaged();
446         if (err)
447                 goto err_khugepaged;
448
449         return 0;
450 err_khugepaged:
451         unregister_shrinker(&deferred_split_shrinker);
452 err_split_shrinker:
453         unregister_shrinker(&huge_zero_page_shrinker);
454 err_hzp_shrinker:
455         khugepaged_destroy();
456 err_slab:
457         hugepage_exit_sysfs(hugepage_kobj);
458 err_sysfs:
459         return err;
460 }
461 subsys_initcall(hugepage_init);
462
463 static int __init setup_transparent_hugepage(char *str)
464 {
465         int ret = 0;
466         if (!str)
467                 goto out;
468         if (!strcmp(str, "always")) {
469                 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
470                         &transparent_hugepage_flags);
471                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
472                           &transparent_hugepage_flags);
473                 ret = 1;
474         } else if (!strcmp(str, "madvise")) {
475                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
476                           &transparent_hugepage_flags);
477                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
478                         &transparent_hugepage_flags);
479                 ret = 1;
480         } else if (!strcmp(str, "never")) {
481                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
482                           &transparent_hugepage_flags);
483                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
484                           &transparent_hugepage_flags);
485                 ret = 1;
486         }
487 out:
488         if (!ret)
489                 pr_warn("transparent_hugepage= cannot parse, ignored\n");
490         return ret;
491 }
492 __setup("transparent_hugepage=", setup_transparent_hugepage);
493
494 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
495 {
496         if (likely(vma->vm_flags & VM_WRITE))
497                 pmd = pmd_mkwrite(pmd);
498         return pmd;
499 }
500
501 #ifdef CONFIG_MEMCG
502 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
503 {
504         struct mem_cgroup *memcg = page_memcg(compound_head(page));
505         struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
506
507         if (memcg)
508                 return &memcg->deferred_split_queue;
509         else
510                 return &pgdat->deferred_split_queue;
511 }
512 #else
513 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
514 {
515         struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
516
517         return &pgdat->deferred_split_queue;
518 }
519 #endif
520
521 void prep_transhuge_page(struct page *page)
522 {
523         /*
524          * we use page->mapping and page->indexlru in second tail page
525          * as list_head: assuming THP order >= 2
526          */
527
528         INIT_LIST_HEAD(page_deferred_list(page));
529         set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
530 }
531
532 bool is_transparent_hugepage(struct page *page)
533 {
534         if (!PageCompound(page))
535                 return false;
536
537         page = compound_head(page);
538         return is_huge_zero_page(page) ||
539                page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
540 }
541 EXPORT_SYMBOL_GPL(is_transparent_hugepage);
542
543 static unsigned long __thp_get_unmapped_area(struct file *filp,
544                 unsigned long addr, unsigned long len,
545                 loff_t off, unsigned long flags, unsigned long size)
546 {
547         loff_t off_end = off + len;
548         loff_t off_align = round_up(off, size);
549         unsigned long len_pad, ret;
550
551         if (off_end <= off_align || (off_end - off_align) < size)
552                 return 0;
553
554         len_pad = len + size;
555         if (len_pad < len || (off + len_pad) < off)
556                 return 0;
557
558         ret = current->mm->get_unmapped_area(filp, addr, len_pad,
559                                               off >> PAGE_SHIFT, flags);
560
561         /*
562          * The failure might be due to length padding. The caller will retry
563          * without the padding.
564          */
565         if (IS_ERR_VALUE(ret))
566                 return 0;
567
568         /*
569          * Do not try to align to THP boundary if allocation at the address
570          * hint succeeds.
571          */
572         if (ret == addr)
573                 return addr;
574
575         ret += (off - ret) & (size - 1);
576         return ret;
577 }
578
579 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
580                 unsigned long len, unsigned long pgoff, unsigned long flags)
581 {
582         unsigned long ret;
583         loff_t off = (loff_t)pgoff << PAGE_SHIFT;
584
585         if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
586                 goto out;
587
588         ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
589         if (ret)
590                 return ret;
591 out:
592         return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
593 }
594 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
595
596 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
597                         struct page *page, gfp_t gfp)
598 {
599         struct vm_area_struct *vma = vmf->vma;
600         pgtable_t pgtable;
601         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
602         vm_fault_t ret = 0;
603
604         VM_BUG_ON_PAGE(!PageCompound(page), page);
605
606         if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
607                 put_page(page);
608                 count_vm_event(THP_FAULT_FALLBACK);
609                 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
610                 return VM_FAULT_FALLBACK;
611         }
612         cgroup_throttle_swaprate(page, gfp);
613
614         pgtable = pte_alloc_one(vma->vm_mm);
615         if (unlikely(!pgtable)) {
616                 ret = VM_FAULT_OOM;
617                 goto release;
618         }
619
620         clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
621         /*
622          * The memory barrier inside __SetPageUptodate makes sure that
623          * clear_huge_page writes become visible before the set_pmd_at()
624          * write.
625          */
626         __SetPageUptodate(page);
627
628         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
629         if (unlikely(!pmd_none(*vmf->pmd))) {
630                 goto unlock_release;
631         } else {
632                 pmd_t entry;
633
634                 ret = check_stable_address_space(vma->vm_mm);
635                 if (ret)
636                         goto unlock_release;
637
638                 /* Deliver the page fault to userland */
639                 if (userfaultfd_missing(vma)) {
640                         spin_unlock(vmf->ptl);
641                         put_page(page);
642                         pte_free(vma->vm_mm, pgtable);
643                         ret = handle_userfault(vmf, VM_UFFD_MISSING);
644                         VM_BUG_ON(ret & VM_FAULT_FALLBACK);
645                         return ret;
646                 }
647
648                 entry = mk_huge_pmd(page, vma->vm_page_prot);
649                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
650                 page_add_new_anon_rmap(page, vma, haddr, true);
651                 lru_cache_add_inactive_or_unevictable(page, vma);
652                 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
653                 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
654                 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
655                 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
656                 mm_inc_nr_ptes(vma->vm_mm);
657                 spin_unlock(vmf->ptl);
658                 count_vm_event(THP_FAULT_ALLOC);
659                 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
660         }
661
662         return 0;
663 unlock_release:
664         spin_unlock(vmf->ptl);
665 release:
666         if (pgtable)
667                 pte_free(vma->vm_mm, pgtable);
668         put_page(page);
669         return ret;
670
671 }
672
673 /*
674  * always: directly stall for all thp allocations
675  * defer: wake kswapd and fail if not immediately available
676  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
677  *                fail if not immediately available
678  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
679  *          available
680  * never: never stall for any thp allocation
681  */
682 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
683 {
684         const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
685
686         /* Always do synchronous compaction */
687         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
688                 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
689
690         /* Kick kcompactd and fail quickly */
691         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
692                 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
693
694         /* Synchronous compaction if madvised, otherwise kick kcompactd */
695         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
696                 return GFP_TRANSHUGE_LIGHT |
697                         (vma_madvised ? __GFP_DIRECT_RECLAIM :
698                                         __GFP_KSWAPD_RECLAIM);
699
700         /* Only do synchronous compaction if madvised */
701         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
702                 return GFP_TRANSHUGE_LIGHT |
703                        (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
704
705         return GFP_TRANSHUGE_LIGHT;
706 }
707
708 /* Caller must hold page table lock. */
709 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
710                 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
711                 struct page *zero_page)
712 {
713         pmd_t entry;
714         if (!pmd_none(*pmd))
715                 return;
716         entry = mk_pmd(zero_page, vma->vm_page_prot);
717         entry = pmd_mkhuge(entry);
718         if (pgtable)
719                 pgtable_trans_huge_deposit(mm, pmd, pgtable);
720         set_pmd_at(mm, haddr, pmd, entry);
721         mm_inc_nr_ptes(mm);
722 }
723
724 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
725 {
726         struct vm_area_struct *vma = vmf->vma;
727         gfp_t gfp;
728         struct page *page;
729         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
730
731         if (!transhuge_vma_suitable(vma, haddr))
732                 return VM_FAULT_FALLBACK;
733         if (unlikely(anon_vma_prepare(vma)))
734                 return VM_FAULT_OOM;
735         if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
736                 return VM_FAULT_OOM;
737         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
738                         !mm_forbids_zeropage(vma->vm_mm) &&
739                         transparent_hugepage_use_zero_page()) {
740                 pgtable_t pgtable;
741                 struct page *zero_page;
742                 vm_fault_t ret;
743                 pgtable = pte_alloc_one(vma->vm_mm);
744                 if (unlikely(!pgtable))
745                         return VM_FAULT_OOM;
746                 zero_page = mm_get_huge_zero_page(vma->vm_mm);
747                 if (unlikely(!zero_page)) {
748                         pte_free(vma->vm_mm, pgtable);
749                         count_vm_event(THP_FAULT_FALLBACK);
750                         return VM_FAULT_FALLBACK;
751                 }
752                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
753                 ret = 0;
754                 if (pmd_none(*vmf->pmd)) {
755                         ret = check_stable_address_space(vma->vm_mm);
756                         if (ret) {
757                                 spin_unlock(vmf->ptl);
758                                 pte_free(vma->vm_mm, pgtable);
759                         } else if (userfaultfd_missing(vma)) {
760                                 spin_unlock(vmf->ptl);
761                                 pte_free(vma->vm_mm, pgtable);
762                                 ret = handle_userfault(vmf, VM_UFFD_MISSING);
763                                 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
764                         } else {
765                                 set_huge_zero_page(pgtable, vma->vm_mm, vma,
766                                                    haddr, vmf->pmd, zero_page);
767                                 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
768                                 spin_unlock(vmf->ptl);
769                         }
770                 } else {
771                         spin_unlock(vmf->ptl);
772                         pte_free(vma->vm_mm, pgtable);
773                 }
774                 return ret;
775         }
776         gfp = vma_thp_gfp_mask(vma);
777         page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
778         if (unlikely(!page)) {
779                 count_vm_event(THP_FAULT_FALLBACK);
780                 return VM_FAULT_FALLBACK;
781         }
782         prep_transhuge_page(page);
783         return __do_huge_pmd_anonymous_page(vmf, page, gfp);
784 }
785
786 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
787                 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
788                 pgtable_t pgtable)
789 {
790         struct mm_struct *mm = vma->vm_mm;
791         pmd_t entry;
792         spinlock_t *ptl;
793
794         ptl = pmd_lock(mm, pmd);
795         if (!pmd_none(*pmd)) {
796                 if (write) {
797                         if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
798                                 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
799                                 goto out_unlock;
800                         }
801                         entry = pmd_mkyoung(*pmd);
802                         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
803                         if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
804                                 update_mmu_cache_pmd(vma, addr, pmd);
805                 }
806
807                 goto out_unlock;
808         }
809
810         entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
811         if (pfn_t_devmap(pfn))
812                 entry = pmd_mkdevmap(entry);
813         if (write) {
814                 entry = pmd_mkyoung(pmd_mkdirty(entry));
815                 entry = maybe_pmd_mkwrite(entry, vma);
816         }
817
818         if (pgtable) {
819                 pgtable_trans_huge_deposit(mm, pmd, pgtable);
820                 mm_inc_nr_ptes(mm);
821                 pgtable = NULL;
822         }
823
824         set_pmd_at(mm, addr, pmd, entry);
825         update_mmu_cache_pmd(vma, addr, pmd);
826
827 out_unlock:
828         spin_unlock(ptl);
829         if (pgtable)
830                 pte_free(mm, pgtable);
831 }
832
833 /**
834  * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
835  * @vmf: Structure describing the fault
836  * @pfn: pfn to insert
837  * @pgprot: page protection to use
838  * @write: whether it's a write fault
839  *
840  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
841  * also consult the vmf_insert_mixed_prot() documentation when
842  * @pgprot != @vmf->vma->vm_page_prot.
843  *
844  * Return: vm_fault_t value.
845  */
846 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
847                                    pgprot_t pgprot, bool write)
848 {
849         unsigned long addr = vmf->address & PMD_MASK;
850         struct vm_area_struct *vma = vmf->vma;
851         pgtable_t pgtable = NULL;
852
853         /*
854          * If we had pmd_special, we could avoid all these restrictions,
855          * but we need to be consistent with PTEs and architectures that
856          * can't support a 'special' bit.
857          */
858         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
859                         !pfn_t_devmap(pfn));
860         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
861                                                 (VM_PFNMAP|VM_MIXEDMAP));
862         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
863
864         if (addr < vma->vm_start || addr >= vma->vm_end)
865                 return VM_FAULT_SIGBUS;
866
867         if (arch_needs_pgtable_deposit()) {
868                 pgtable = pte_alloc_one(vma->vm_mm);
869                 if (!pgtable)
870                         return VM_FAULT_OOM;
871         }
872
873         track_pfn_insert(vma, &pgprot, pfn);
874
875         insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
876         return VM_FAULT_NOPAGE;
877 }
878 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
879
880 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
881 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
882 {
883         if (likely(vma->vm_flags & VM_WRITE))
884                 pud = pud_mkwrite(pud);
885         return pud;
886 }
887
888 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
889                 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
890 {
891         struct mm_struct *mm = vma->vm_mm;
892         pud_t entry;
893         spinlock_t *ptl;
894
895         ptl = pud_lock(mm, pud);
896         if (!pud_none(*pud)) {
897                 if (write) {
898                         if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
899                                 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
900                                 goto out_unlock;
901                         }
902                         entry = pud_mkyoung(*pud);
903                         entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
904                         if (pudp_set_access_flags(vma, addr, pud, entry, 1))
905                                 update_mmu_cache_pud(vma, addr, pud);
906                 }
907                 goto out_unlock;
908         }
909
910         entry = pud_mkhuge(pfn_t_pud(pfn, prot));
911         if (pfn_t_devmap(pfn))
912                 entry = pud_mkdevmap(entry);
913         if (write) {
914                 entry = pud_mkyoung(pud_mkdirty(entry));
915                 entry = maybe_pud_mkwrite(entry, vma);
916         }
917         set_pud_at(mm, addr, pud, entry);
918         update_mmu_cache_pud(vma, addr, pud);
919
920 out_unlock:
921         spin_unlock(ptl);
922 }
923
924 /**
925  * vmf_insert_pfn_pud_prot - insert a pud size pfn
926  * @vmf: Structure describing the fault
927  * @pfn: pfn to insert
928  * @pgprot: page protection to use
929  * @write: whether it's a write fault
930  *
931  * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
932  * also consult the vmf_insert_mixed_prot() documentation when
933  * @pgprot != @vmf->vma->vm_page_prot.
934  *
935  * Return: vm_fault_t value.
936  */
937 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
938                                    pgprot_t pgprot, bool write)
939 {
940         unsigned long addr = vmf->address & PUD_MASK;
941         struct vm_area_struct *vma = vmf->vma;
942
943         /*
944          * If we had pud_special, we could avoid all these restrictions,
945          * but we need to be consistent with PTEs and architectures that
946          * can't support a 'special' bit.
947          */
948         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
949                         !pfn_t_devmap(pfn));
950         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
951                                                 (VM_PFNMAP|VM_MIXEDMAP));
952         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
953
954         if (addr < vma->vm_start || addr >= vma->vm_end)
955                 return VM_FAULT_SIGBUS;
956
957         track_pfn_insert(vma, &pgprot, pfn);
958
959         insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
960         return VM_FAULT_NOPAGE;
961 }
962 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
963 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
964
965 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
966                 pmd_t *pmd, int flags)
967 {
968         pmd_t _pmd;
969
970         _pmd = pmd_mkyoung(*pmd);
971         if (flags & FOLL_WRITE)
972                 _pmd = pmd_mkdirty(_pmd);
973         if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
974                                 pmd, _pmd, flags & FOLL_WRITE))
975                 update_mmu_cache_pmd(vma, addr, pmd);
976 }
977
978 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
979                 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
980 {
981         unsigned long pfn = pmd_pfn(*pmd);
982         struct mm_struct *mm = vma->vm_mm;
983         struct page *page;
984
985         assert_spin_locked(pmd_lockptr(mm, pmd));
986
987         /*
988          * When we COW a devmap PMD entry, we split it into PTEs, so we should
989          * not be in this function with `flags & FOLL_COW` set.
990          */
991         WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
992
993         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
994         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
995                          (FOLL_PIN | FOLL_GET)))
996                 return NULL;
997
998         if (flags & FOLL_WRITE && !pmd_write(*pmd))
999                 return NULL;
1000
1001         if (pmd_present(*pmd) && pmd_devmap(*pmd))
1002                 /* pass */;
1003         else
1004                 return NULL;
1005
1006         if (flags & FOLL_TOUCH)
1007                 touch_pmd(vma, addr, pmd, flags);
1008
1009         /*
1010          * device mapped pages can only be returned if the
1011          * caller will manage the page reference count.
1012          */
1013         if (!(flags & (FOLL_GET | FOLL_PIN)))
1014                 return ERR_PTR(-EEXIST);
1015
1016         pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1017         *pgmap = get_dev_pagemap(pfn, *pgmap);
1018         if (!*pgmap)
1019                 return ERR_PTR(-EFAULT);
1020         page = pfn_to_page(pfn);
1021         if (!try_grab_page(page, flags))
1022                 page = ERR_PTR(-ENOMEM);
1023
1024         return page;
1025 }
1026
1027 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1028                   pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1029                   struct vm_area_struct *vma)
1030 {
1031         spinlock_t *dst_ptl, *src_ptl;
1032         struct page *src_page;
1033         pmd_t pmd;
1034         pgtable_t pgtable = NULL;
1035         int ret = -ENOMEM;
1036
1037         /* Skip if can be re-fill on fault */
1038         if (!vma_is_anonymous(vma))
1039                 return 0;
1040
1041         pgtable = pte_alloc_one(dst_mm);
1042         if (unlikely(!pgtable))
1043                 goto out;
1044
1045         dst_ptl = pmd_lock(dst_mm, dst_pmd);
1046         src_ptl = pmd_lockptr(src_mm, src_pmd);
1047         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1048
1049         ret = -EAGAIN;
1050         pmd = *src_pmd;
1051
1052         /*
1053          * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
1054          * does not have the VM_UFFD_WP, which means that the uffd
1055          * fork event is not enabled.
1056          */
1057         if (!(vma->vm_flags & VM_UFFD_WP))
1058                 pmd = pmd_clear_uffd_wp(pmd);
1059
1060 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1061         if (unlikely(is_swap_pmd(pmd))) {
1062                 swp_entry_t entry = pmd_to_swp_entry(pmd);
1063
1064                 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1065                 if (is_write_migration_entry(entry)) {
1066                         make_migration_entry_read(&entry);
1067                         pmd = swp_entry_to_pmd(entry);
1068                         if (pmd_swp_soft_dirty(*src_pmd))
1069                                 pmd = pmd_swp_mksoft_dirty(pmd);
1070                         set_pmd_at(src_mm, addr, src_pmd, pmd);
1071                 }
1072                 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1073                 mm_inc_nr_ptes(dst_mm);
1074                 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1075                 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1076                 ret = 0;
1077                 goto out_unlock;
1078         }
1079 #endif
1080
1081         if (unlikely(!pmd_trans_huge(pmd))) {
1082                 pte_free(dst_mm, pgtable);
1083                 goto out_unlock;
1084         }
1085         /*
1086          * When page table lock is held, the huge zero pmd should not be
1087          * under splitting since we don't split the page itself, only pmd to
1088          * a page table.
1089          */
1090         if (is_huge_zero_pmd(pmd)) {
1091                 struct page *zero_page;
1092                 /*
1093                  * get_huge_zero_page() will never allocate a new page here,
1094                  * since we already have a zero page to copy. It just takes a
1095                  * reference.
1096                  */
1097                 zero_page = mm_get_huge_zero_page(dst_mm);
1098                 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1099                                 zero_page);
1100                 ret = 0;
1101                 goto out_unlock;
1102         }
1103
1104         src_page = pmd_page(pmd);
1105         VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1106
1107         /*
1108          * If this page is a potentially pinned page, split and retry the fault
1109          * with smaller page size.  Normally this should not happen because the
1110          * userspace should use MADV_DONTFORK upon pinned regions.  This is a
1111          * best effort that the pinned pages won't be replaced by another
1112          * random page during the coming copy-on-write.
1113          */
1114         if (unlikely(page_needs_cow_for_dma(vma, src_page))) {
1115                 pte_free(dst_mm, pgtable);
1116                 spin_unlock(src_ptl);
1117                 spin_unlock(dst_ptl);
1118                 __split_huge_pmd(vma, src_pmd, addr, false, NULL);
1119                 return -EAGAIN;
1120         }
1121
1122         get_page(src_page);
1123         page_dup_rmap(src_page, true);
1124         add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1125         mm_inc_nr_ptes(dst_mm);
1126         pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1127
1128         pmdp_set_wrprotect(src_mm, addr, src_pmd);
1129         pmd = pmd_mkold(pmd_wrprotect(pmd));
1130         set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1131
1132         ret = 0;
1133 out_unlock:
1134         spin_unlock(src_ptl);
1135         spin_unlock(dst_ptl);
1136 out:
1137         return ret;
1138 }
1139
1140 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1141 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1142                 pud_t *pud, int flags)
1143 {
1144         pud_t _pud;
1145
1146         _pud = pud_mkyoung(*pud);
1147         if (flags & FOLL_WRITE)
1148                 _pud = pud_mkdirty(_pud);
1149         if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1150                                 pud, _pud, flags & FOLL_WRITE))
1151                 update_mmu_cache_pud(vma, addr, pud);
1152 }
1153
1154 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1155                 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1156 {
1157         unsigned long pfn = pud_pfn(*pud);
1158         struct mm_struct *mm = vma->vm_mm;
1159         struct page *page;
1160
1161         assert_spin_locked(pud_lockptr(mm, pud));
1162
1163         if (flags & FOLL_WRITE && !pud_write(*pud))
1164                 return NULL;
1165
1166         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1167         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1168                          (FOLL_PIN | FOLL_GET)))
1169                 return NULL;
1170
1171         if (pud_present(*pud) && pud_devmap(*pud))
1172                 /* pass */;
1173         else
1174                 return NULL;
1175
1176         if (flags & FOLL_TOUCH)
1177                 touch_pud(vma, addr, pud, flags);
1178
1179         /*
1180          * device mapped pages can only be returned if the
1181          * caller will manage the page reference count.
1182          *
1183          * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1184          */
1185         if (!(flags & (FOLL_GET | FOLL_PIN)))
1186                 return ERR_PTR(-EEXIST);
1187
1188         pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1189         *pgmap = get_dev_pagemap(pfn, *pgmap);
1190         if (!*pgmap)
1191                 return ERR_PTR(-EFAULT);
1192         page = pfn_to_page(pfn);
1193         if (!try_grab_page(page, flags))
1194                 page = ERR_PTR(-ENOMEM);
1195
1196         return page;
1197 }
1198
1199 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1200                   pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1201                   struct vm_area_struct *vma)
1202 {
1203         spinlock_t *dst_ptl, *src_ptl;
1204         pud_t pud;
1205         int ret;
1206
1207         dst_ptl = pud_lock(dst_mm, dst_pud);
1208         src_ptl = pud_lockptr(src_mm, src_pud);
1209         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1210
1211         ret = -EAGAIN;
1212         pud = *src_pud;
1213         if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1214                 goto out_unlock;
1215
1216         /*
1217          * When page table lock is held, the huge zero pud should not be
1218          * under splitting since we don't split the page itself, only pud to
1219          * a page table.
1220          */
1221         if (is_huge_zero_pud(pud)) {
1222                 /* No huge zero pud yet */
1223         }
1224
1225         /* Please refer to comments in copy_huge_pmd() */
1226         if (unlikely(page_needs_cow_for_dma(vma, pud_page(pud)))) {
1227                 spin_unlock(src_ptl);
1228                 spin_unlock(dst_ptl);
1229                 __split_huge_pud(vma, src_pud, addr);
1230                 return -EAGAIN;
1231         }
1232
1233         pudp_set_wrprotect(src_mm, addr, src_pud);
1234         pud = pud_mkold(pud_wrprotect(pud));
1235         set_pud_at(dst_mm, addr, dst_pud, pud);
1236
1237         ret = 0;
1238 out_unlock:
1239         spin_unlock(src_ptl);
1240         spin_unlock(dst_ptl);
1241         return ret;
1242 }
1243
1244 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1245 {
1246         pud_t entry;
1247         unsigned long haddr;
1248         bool write = vmf->flags & FAULT_FLAG_WRITE;
1249
1250         vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1251         if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1252                 goto unlock;
1253
1254         entry = pud_mkyoung(orig_pud);
1255         if (write)
1256                 entry = pud_mkdirty(entry);
1257         haddr = vmf->address & HPAGE_PUD_MASK;
1258         if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1259                 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1260
1261 unlock:
1262         spin_unlock(vmf->ptl);
1263 }
1264 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1265
1266 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1267 {
1268         pmd_t entry;
1269         unsigned long haddr;
1270         bool write = vmf->flags & FAULT_FLAG_WRITE;
1271
1272         vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1273         if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1274                 goto unlock;
1275
1276         entry = pmd_mkyoung(orig_pmd);
1277         if (write)
1278                 entry = pmd_mkdirty(entry);
1279         haddr = vmf->address & HPAGE_PMD_MASK;
1280         if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1281                 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1282
1283 unlock:
1284         spin_unlock(vmf->ptl);
1285 }
1286
1287 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1288 {
1289         struct vm_area_struct *vma = vmf->vma;
1290         struct page *page;
1291         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1292
1293         vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1294         VM_BUG_ON_VMA(!vma->anon_vma, vma);
1295
1296         if (is_huge_zero_pmd(orig_pmd))
1297                 goto fallback;
1298
1299         spin_lock(vmf->ptl);
1300
1301         if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1302                 spin_unlock(vmf->ptl);
1303                 return 0;
1304         }
1305
1306         page = pmd_page(orig_pmd);
1307         VM_BUG_ON_PAGE(!PageHead(page), page);
1308
1309         /* Lock page for reuse_swap_page() */
1310         if (!trylock_page(page)) {
1311                 get_page(page);
1312                 spin_unlock(vmf->ptl);
1313                 lock_page(page);
1314                 spin_lock(vmf->ptl);
1315                 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1316                         spin_unlock(vmf->ptl);
1317                         unlock_page(page);
1318                         put_page(page);
1319                         return 0;
1320                 }
1321                 put_page(page);
1322         }
1323
1324         /*
1325          * We can only reuse the page if nobody else maps the huge page or it's
1326          * part.
1327          */
1328         if (reuse_swap_page(page, NULL)) {
1329                 pmd_t entry;
1330                 entry = pmd_mkyoung(orig_pmd);
1331                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1332                 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1333                         update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1334                 unlock_page(page);
1335                 spin_unlock(vmf->ptl);
1336                 return VM_FAULT_WRITE;
1337         }
1338
1339         unlock_page(page);
1340         spin_unlock(vmf->ptl);
1341 fallback:
1342         __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1343         return VM_FAULT_FALLBACK;
1344 }
1345
1346 /*
1347  * FOLL_FORCE can write to even unwritable pmd's, but only
1348  * after we've gone through a COW cycle and they are dirty.
1349  */
1350 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1351 {
1352         return pmd_write(pmd) ||
1353                ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1354 }
1355
1356 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1357                                    unsigned long addr,
1358                                    pmd_t *pmd,
1359                                    unsigned int flags)
1360 {
1361         struct mm_struct *mm = vma->vm_mm;
1362         struct page *page = NULL;
1363
1364         assert_spin_locked(pmd_lockptr(mm, pmd));
1365
1366         if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1367                 goto out;
1368
1369         /* Avoid dumping huge zero page */
1370         if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1371                 return ERR_PTR(-EFAULT);
1372
1373         /* Full NUMA hinting faults to serialise migration in fault paths */
1374         if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1375                 goto out;
1376
1377         page = pmd_page(*pmd);
1378         VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1379
1380         if (!try_grab_page(page, flags))
1381                 return ERR_PTR(-ENOMEM);
1382
1383         if (flags & FOLL_TOUCH)
1384                 touch_pmd(vma, addr, pmd, flags);
1385
1386         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1387                 /*
1388                  * We don't mlock() pte-mapped THPs. This way we can avoid
1389                  * leaking mlocked pages into non-VM_LOCKED VMAs.
1390                  *
1391                  * For anon THP:
1392                  *
1393                  * In most cases the pmd is the only mapping of the page as we
1394                  * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1395                  * writable private mappings in populate_vma_page_range().
1396                  *
1397                  * The only scenario when we have the page shared here is if we
1398                  * mlocking read-only mapping shared over fork(). We skip
1399                  * mlocking such pages.
1400                  *
1401                  * For file THP:
1402                  *
1403                  * We can expect PageDoubleMap() to be stable under page lock:
1404                  * for file pages we set it in page_add_file_rmap(), which
1405                  * requires page to be locked.
1406                  */
1407
1408                 if (PageAnon(page) && compound_mapcount(page) != 1)
1409                         goto skip_mlock;
1410                 if (PageDoubleMap(page) || !page->mapping)
1411                         goto skip_mlock;
1412                 if (!trylock_page(page))
1413                         goto skip_mlock;
1414                 if (page->mapping && !PageDoubleMap(page))
1415                         mlock_vma_page(page);
1416                 unlock_page(page);
1417         }
1418 skip_mlock:
1419         page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1420         VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1421
1422 out:
1423         return page;
1424 }
1425
1426 /* NUMA hinting page fault entry point for trans huge pmds */
1427 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1428 {
1429         struct vm_area_struct *vma = vmf->vma;
1430         struct anon_vma *anon_vma = NULL;
1431         struct page *page;
1432         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1433         int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1434         int target_nid, last_cpupid = -1;
1435         bool page_locked;
1436         bool migrated = false;
1437         bool was_writable;
1438         int flags = 0;
1439
1440         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1441         if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1442                 goto out_unlock;
1443
1444         /*
1445          * If there are potential migrations, wait for completion and retry
1446          * without disrupting NUMA hinting information. Do not relock and
1447          * check_same as the page may no longer be mapped.
1448          */
1449         if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1450                 page = pmd_page(*vmf->pmd);
1451                 if (!get_page_unless_zero(page))
1452                         goto out_unlock;
1453                 spin_unlock(vmf->ptl);
1454                 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
1455                 goto out;
1456         }
1457
1458         page = pmd_page(pmd);
1459         BUG_ON(is_huge_zero_page(page));
1460         page_nid = page_to_nid(page);
1461         last_cpupid = page_cpupid_last(page);
1462         count_vm_numa_event(NUMA_HINT_FAULTS);
1463         if (page_nid == this_nid) {
1464                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1465                 flags |= TNF_FAULT_LOCAL;
1466         }
1467
1468         /* See similar comment in do_numa_page for explanation */
1469         if (!pmd_savedwrite(pmd))
1470                 flags |= TNF_NO_GROUP;
1471
1472         /*
1473          * Acquire the page lock to serialise THP migrations but avoid dropping
1474          * page_table_lock if at all possible
1475          */
1476         page_locked = trylock_page(page);
1477         target_nid = mpol_misplaced(page, vma, haddr);
1478         /* Migration could have started since the pmd_trans_migrating check */
1479         if (!page_locked) {
1480                 page_nid = NUMA_NO_NODE;
1481                 if (!get_page_unless_zero(page))
1482                         goto out_unlock;
1483                 spin_unlock(vmf->ptl);
1484                 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
1485                 goto out;
1486         } else if (target_nid == NUMA_NO_NODE) {
1487                 /* There are no parallel migrations and page is in the right
1488                  * node. Clear the numa hinting info in this pmd.
1489                  */
1490                 goto clear_pmdnuma;
1491         }
1492
1493         /*
1494          * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1495          * to serialises splits
1496          */
1497         get_page(page);
1498         spin_unlock(vmf->ptl);
1499         anon_vma = page_lock_anon_vma_read(page);
1500
1501         /* Confirm the PMD did not change while page_table_lock was released */
1502         spin_lock(vmf->ptl);
1503         if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1504                 unlock_page(page);
1505                 put_page(page);
1506                 page_nid = NUMA_NO_NODE;
1507                 goto out_unlock;
1508         }
1509
1510         /* Bail if we fail to protect against THP splits for any reason */
1511         if (unlikely(!anon_vma)) {
1512                 put_page(page);
1513                 page_nid = NUMA_NO_NODE;
1514                 goto clear_pmdnuma;
1515         }
1516
1517         /*
1518          * Since we took the NUMA fault, we must have observed the !accessible
1519          * bit. Make sure all other CPUs agree with that, to avoid them
1520          * modifying the page we're about to migrate.
1521          *
1522          * Must be done under PTL such that we'll observe the relevant
1523          * inc_tlb_flush_pending().
1524          *
1525          * We are not sure a pending tlb flush here is for a huge page
1526          * mapping or not. Hence use the tlb range variant
1527          */
1528         if (mm_tlb_flush_pending(vma->vm_mm)) {
1529                 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1530                 /*
1531                  * change_huge_pmd() released the pmd lock before
1532                  * invalidating the secondary MMUs sharing the primary
1533                  * MMU pagetables (with ->invalidate_range()). The
1534                  * mmu_notifier_invalidate_range_end() (which
1535                  * internally calls ->invalidate_range()) in
1536                  * change_pmd_range() will run after us, so we can't
1537                  * rely on it here and we need an explicit invalidate.
1538                  */
1539                 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1540                                               haddr + HPAGE_PMD_SIZE);
1541         }
1542
1543         /*
1544          * Migrate the THP to the requested node, returns with page unlocked
1545          * and access rights restored.
1546          */
1547         spin_unlock(vmf->ptl);
1548
1549         migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1550                                 vmf->pmd, pmd, vmf->address, page, target_nid);
1551         if (migrated) {
1552                 flags |= TNF_MIGRATED;
1553                 page_nid = target_nid;
1554         } else
1555                 flags |= TNF_MIGRATE_FAIL;
1556
1557         goto out;
1558 clear_pmdnuma:
1559         BUG_ON(!PageLocked(page));
1560         was_writable = pmd_savedwrite(pmd);
1561         pmd = pmd_modify(pmd, vma->vm_page_prot);
1562         pmd = pmd_mkyoung(pmd);
1563         if (was_writable)
1564                 pmd = pmd_mkwrite(pmd);
1565         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1566         update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1567         unlock_page(page);
1568 out_unlock:
1569         spin_unlock(vmf->ptl);
1570
1571 out:
1572         if (anon_vma)
1573                 page_unlock_anon_vma_read(anon_vma);
1574
1575         if (page_nid != NUMA_NO_NODE)
1576                 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1577                                 flags);
1578
1579         return 0;
1580 }
1581
1582 /*
1583  * Return true if we do MADV_FREE successfully on entire pmd page.
1584  * Otherwise, return false.
1585  */
1586 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1587                 pmd_t *pmd, unsigned long addr, unsigned long next)
1588 {
1589         spinlock_t *ptl;
1590         pmd_t orig_pmd;
1591         struct page *page;
1592         struct mm_struct *mm = tlb->mm;
1593         bool ret = false;
1594
1595         tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1596
1597         ptl = pmd_trans_huge_lock(pmd, vma);
1598         if (!ptl)
1599                 goto out_unlocked;
1600
1601         orig_pmd = *pmd;
1602         if (is_huge_zero_pmd(orig_pmd))
1603                 goto out;
1604
1605         if (unlikely(!pmd_present(orig_pmd))) {
1606                 VM_BUG_ON(thp_migration_supported() &&
1607                                   !is_pmd_migration_entry(orig_pmd));
1608                 goto out;
1609         }
1610
1611         page = pmd_page(orig_pmd);
1612         /*
1613          * If other processes are mapping this page, we couldn't discard
1614          * the page unless they all do MADV_FREE so let's skip the page.
1615          */
1616         if (total_mapcount(page) != 1)
1617                 goto out;
1618
1619         if (!trylock_page(page))
1620                 goto out;
1621
1622         /*
1623          * If user want to discard part-pages of THP, split it so MADV_FREE
1624          * will deactivate only them.
1625          */
1626         if (next - addr != HPAGE_PMD_SIZE) {
1627                 get_page(page);
1628                 spin_unlock(ptl);
1629                 split_huge_page(page);
1630                 unlock_page(page);
1631                 put_page(page);
1632                 goto out_unlocked;
1633         }
1634
1635         if (PageDirty(page))
1636                 ClearPageDirty(page);
1637         unlock_page(page);
1638
1639         if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1640                 pmdp_invalidate(vma, addr, pmd);
1641                 orig_pmd = pmd_mkold(orig_pmd);
1642                 orig_pmd = pmd_mkclean(orig_pmd);
1643
1644                 set_pmd_at(mm, addr, pmd, orig_pmd);
1645                 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1646         }
1647
1648         mark_page_lazyfree(page);
1649         ret = true;
1650 out:
1651         spin_unlock(ptl);
1652 out_unlocked:
1653         return ret;
1654 }
1655
1656 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1657 {
1658         pgtable_t pgtable;
1659
1660         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1661         pte_free(mm, pgtable);
1662         mm_dec_nr_ptes(mm);
1663 }
1664
1665 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1666                  pmd_t *pmd, unsigned long addr)
1667 {
1668         pmd_t orig_pmd;
1669         spinlock_t *ptl;
1670
1671         tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1672
1673         ptl = __pmd_trans_huge_lock(pmd, vma);
1674         if (!ptl)
1675                 return 0;
1676         /*
1677          * For architectures like ppc64 we look at deposited pgtable
1678          * when calling pmdp_huge_get_and_clear. So do the
1679          * pgtable_trans_huge_withdraw after finishing pmdp related
1680          * operations.
1681          */
1682         orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1683                                                 tlb->fullmm);
1684         tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1685         if (vma_is_special_huge(vma)) {
1686                 if (arch_needs_pgtable_deposit())
1687                         zap_deposited_table(tlb->mm, pmd);
1688                 spin_unlock(ptl);
1689         } else if (is_huge_zero_pmd(orig_pmd)) {
1690                 zap_deposited_table(tlb->mm, pmd);
1691                 spin_unlock(ptl);
1692         } else {
1693                 struct page *page = NULL;
1694                 int flush_needed = 1;
1695
1696                 if (pmd_present(orig_pmd)) {
1697                         page = pmd_page(orig_pmd);
1698                         page_remove_rmap(page, true);
1699                         VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1700                         VM_BUG_ON_PAGE(!PageHead(page), page);
1701                 } else if (thp_migration_supported()) {
1702                         swp_entry_t entry;
1703
1704                         VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1705                         entry = pmd_to_swp_entry(orig_pmd);
1706                         page = migration_entry_to_page(entry);
1707                         flush_needed = 0;
1708                 } else
1709                         WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1710
1711                 if (PageAnon(page)) {
1712                         zap_deposited_table(tlb->mm, pmd);
1713                         add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1714                 } else {
1715                         if (arch_needs_pgtable_deposit())
1716                                 zap_deposited_table(tlb->mm, pmd);
1717                         add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1718                 }
1719
1720                 spin_unlock(ptl);
1721                 if (flush_needed)
1722                         tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1723         }
1724         return 1;
1725 }
1726
1727 #ifndef pmd_move_must_withdraw
1728 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1729                                          spinlock_t *old_pmd_ptl,
1730                                          struct vm_area_struct *vma)
1731 {
1732         /*
1733          * With split pmd lock we also need to move preallocated
1734          * PTE page table if new_pmd is on different PMD page table.
1735          *
1736          * We also don't deposit and withdraw tables for file pages.
1737          */
1738         return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1739 }
1740 #endif
1741
1742 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1743 {
1744 #ifdef CONFIG_MEM_SOFT_DIRTY
1745         if (unlikely(is_pmd_migration_entry(pmd)))
1746                 pmd = pmd_swp_mksoft_dirty(pmd);
1747         else if (pmd_present(pmd))
1748                 pmd = pmd_mksoft_dirty(pmd);
1749 #endif
1750         return pmd;
1751 }
1752
1753 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1754                   unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1755 {
1756         spinlock_t *old_ptl, *new_ptl;
1757         pmd_t pmd;
1758         struct mm_struct *mm = vma->vm_mm;
1759         bool force_flush = false;
1760
1761         /*
1762          * The destination pmd shouldn't be established, free_pgtables()
1763          * should have release it.
1764          */
1765         if (WARN_ON(!pmd_none(*new_pmd))) {
1766                 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1767                 return false;
1768         }
1769
1770         /*
1771          * We don't have to worry about the ordering of src and dst
1772          * ptlocks because exclusive mmap_lock prevents deadlock.
1773          */
1774         old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1775         if (old_ptl) {
1776                 new_ptl = pmd_lockptr(mm, new_pmd);
1777                 if (new_ptl != old_ptl)
1778                         spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1779                 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1780                 if (pmd_present(pmd))
1781                         force_flush = true;
1782                 VM_BUG_ON(!pmd_none(*new_pmd));
1783
1784                 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1785                         pgtable_t pgtable;
1786                         pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1787                         pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1788                 }
1789                 pmd = move_soft_dirty_pmd(pmd);
1790                 set_pmd_at(mm, new_addr, new_pmd, pmd);
1791                 if (force_flush)
1792                         flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1793                 if (new_ptl != old_ptl)
1794                         spin_unlock(new_ptl);
1795                 spin_unlock(old_ptl);
1796                 return true;
1797         }
1798         return false;
1799 }
1800
1801 /*
1802  * Returns
1803  *  - 0 if PMD could not be locked
1804  *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1805  *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
1806  */
1807 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1808                 unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1809 {
1810         struct mm_struct *mm = vma->vm_mm;
1811         spinlock_t *ptl;
1812         pmd_t entry;
1813         bool preserve_write;
1814         int ret;
1815         bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1816         bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1817         bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1818
1819         ptl = __pmd_trans_huge_lock(pmd, vma);
1820         if (!ptl)
1821                 return 0;
1822
1823         preserve_write = prot_numa && pmd_write(*pmd);
1824         ret = 1;
1825
1826 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1827         if (is_swap_pmd(*pmd)) {
1828                 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1829
1830                 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1831                 if (is_write_migration_entry(entry)) {
1832                         pmd_t newpmd;
1833                         /*
1834                          * A protection check is difficult so
1835                          * just be safe and disable write
1836                          */
1837                         make_migration_entry_read(&entry);
1838                         newpmd = swp_entry_to_pmd(entry);
1839                         if (pmd_swp_soft_dirty(*pmd))
1840                                 newpmd = pmd_swp_mksoft_dirty(newpmd);
1841                         set_pmd_at(mm, addr, pmd, newpmd);
1842                 }
1843                 goto unlock;
1844         }
1845 #endif
1846
1847         /*
1848          * Avoid trapping faults against the zero page. The read-only
1849          * data is likely to be read-cached on the local CPU and
1850          * local/remote hits to the zero page are not interesting.
1851          */
1852         if (prot_numa && is_huge_zero_pmd(*pmd))
1853                 goto unlock;
1854
1855         if (prot_numa && pmd_protnone(*pmd))
1856                 goto unlock;
1857
1858         /*
1859          * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1860          * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1861          * which is also under mmap_read_lock(mm):
1862          *
1863          *      CPU0:                           CPU1:
1864          *                              change_huge_pmd(prot_numa=1)
1865          *                               pmdp_huge_get_and_clear_notify()
1866          * madvise_dontneed()
1867          *  zap_pmd_range()
1868          *   pmd_trans_huge(*pmd) == 0 (without ptl)
1869          *   // skip the pmd
1870          *                               set_pmd_at();
1871          *                               // pmd is re-established
1872          *
1873          * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1874          * which may break userspace.
1875          *
1876          * pmdp_invalidate() is required to make sure we don't miss
1877          * dirty/young flags set by hardware.
1878          */
1879         entry = pmdp_invalidate(vma, addr, pmd);
1880
1881         entry = pmd_modify(entry, newprot);
1882         if (preserve_write)
1883                 entry = pmd_mk_savedwrite(entry);
1884         if (uffd_wp) {
1885                 entry = pmd_wrprotect(entry);
1886                 entry = pmd_mkuffd_wp(entry);
1887         } else if (uffd_wp_resolve) {
1888                 /*
1889                  * Leave the write bit to be handled by PF interrupt
1890                  * handler, then things like COW could be properly
1891                  * handled.
1892                  */
1893                 entry = pmd_clear_uffd_wp(entry);
1894         }
1895         ret = HPAGE_PMD_NR;
1896         set_pmd_at(mm, addr, pmd, entry);
1897         BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1898 unlock:
1899         spin_unlock(ptl);
1900         return ret;
1901 }
1902
1903 /*
1904  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1905  *
1906  * Note that if it returns page table lock pointer, this routine returns without
1907  * unlocking page table lock. So callers must unlock it.
1908  */
1909 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1910 {
1911         spinlock_t *ptl;
1912         ptl = pmd_lock(vma->vm_mm, pmd);
1913         if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1914                         pmd_devmap(*pmd)))
1915                 return ptl;
1916         spin_unlock(ptl);
1917         return NULL;
1918 }
1919
1920 /*
1921  * Returns true if a given pud maps a thp, false otherwise.
1922  *
1923  * Note that if it returns true, this routine returns without unlocking page
1924  * table lock. So callers must unlock it.
1925  */
1926 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1927 {
1928         spinlock_t *ptl;
1929
1930         ptl = pud_lock(vma->vm_mm, pud);
1931         if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1932                 return ptl;
1933         spin_unlock(ptl);
1934         return NULL;
1935 }
1936
1937 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1938 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1939                  pud_t *pud, unsigned long addr)
1940 {
1941         spinlock_t *ptl;
1942
1943         ptl = __pud_trans_huge_lock(pud, vma);
1944         if (!ptl)
1945                 return 0;
1946         /*
1947          * For architectures like ppc64 we look at deposited pgtable
1948          * when calling pudp_huge_get_and_clear. So do the
1949          * pgtable_trans_huge_withdraw after finishing pudp related
1950          * operations.
1951          */
1952         pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1953         tlb_remove_pud_tlb_entry(tlb, pud, addr);
1954         if (vma_is_special_huge(vma)) {
1955                 spin_unlock(ptl);
1956                 /* No zero page support yet */
1957         } else {
1958                 /* No support for anonymous PUD pages yet */
1959                 BUG();
1960         }
1961         return 1;
1962 }
1963
1964 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1965                 unsigned long haddr)
1966 {
1967         VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1968         VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1969         VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1970         VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1971
1972         count_vm_event(THP_SPLIT_PUD);
1973
1974         pudp_huge_clear_flush_notify(vma, haddr, pud);
1975 }
1976
1977 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1978                 unsigned long address)
1979 {
1980         spinlock_t *ptl;
1981         struct mmu_notifier_range range;
1982
1983         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1984                                 address & HPAGE_PUD_MASK,
1985                                 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1986         mmu_notifier_invalidate_range_start(&range);
1987         ptl = pud_lock(vma->vm_mm, pud);
1988         if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1989                 goto out;
1990         __split_huge_pud_locked(vma, pud, range.start);
1991
1992 out:
1993         spin_unlock(ptl);
1994         /*
1995          * No need to double call mmu_notifier->invalidate_range() callback as
1996          * the above pudp_huge_clear_flush_notify() did already call it.
1997          */
1998         mmu_notifier_invalidate_range_only_end(&range);
1999 }
2000 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2001
2002 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2003                 unsigned long haddr, pmd_t *pmd)
2004 {
2005         struct mm_struct *mm = vma->vm_mm;
2006         pgtable_t pgtable;
2007         pmd_t _pmd;
2008         int i;
2009
2010         /*
2011          * Leave pmd empty until pte is filled note that it is fine to delay
2012          * notification until mmu_notifier_invalidate_range_end() as we are
2013          * replacing a zero pmd write protected page with a zero pte write
2014          * protected page.
2015          *
2016          * See Documentation/vm/mmu_notifier.rst
2017          */
2018         pmdp_huge_clear_flush(vma, haddr, pmd);
2019
2020         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2021         pmd_populate(mm, &_pmd, pgtable);
2022
2023         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2024                 pte_t *pte, entry;
2025                 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2026                 entry = pte_mkspecial(entry);
2027                 pte = pte_offset_map(&_pmd, haddr);
2028                 VM_BUG_ON(!pte_none(*pte));
2029                 set_pte_at(mm, haddr, pte, entry);
2030                 pte_unmap(pte);
2031         }
2032         smp_wmb(); /* make pte visible before pmd */
2033         pmd_populate(mm, pmd, pgtable);
2034 }
2035
2036 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2037                 unsigned long haddr, bool freeze)
2038 {
2039         struct mm_struct *mm = vma->vm_mm;
2040         struct page *page;
2041         pgtable_t pgtable;
2042         pmd_t old_pmd, _pmd;
2043         bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2044         unsigned long addr;
2045         int i;
2046
2047         VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2048         VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2049         VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2050         VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2051                                 && !pmd_devmap(*pmd));
2052
2053         count_vm_event(THP_SPLIT_PMD);
2054
2055         if (!vma_is_anonymous(vma)) {
2056                 old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2057                 /*
2058                  * We are going to unmap this huge page. So
2059                  * just go ahead and zap it
2060                  */
2061                 if (arch_needs_pgtable_deposit())
2062                         zap_deposited_table(mm, pmd);
2063                 if (vma_is_special_huge(vma))
2064                         return;
2065                 if (unlikely(is_pmd_migration_entry(old_pmd))) {
2066                         swp_entry_t entry;
2067
2068                         entry = pmd_to_swp_entry(old_pmd);
2069                         page = migration_entry_to_page(entry);
2070                 } else {
2071                         page = pmd_page(old_pmd);
2072                         if (!PageDirty(page) && pmd_dirty(old_pmd))
2073                                 set_page_dirty(page);
2074                         if (!PageReferenced(page) && pmd_young(old_pmd))
2075                                 SetPageReferenced(page);
2076                         page_remove_rmap(page, true);
2077                         put_page(page);
2078                 }
2079                 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2080                 return;
2081         }
2082
2083         if (is_huge_zero_pmd(*pmd)) {
2084                 /*
2085                  * FIXME: Do we want to invalidate secondary mmu by calling
2086                  * mmu_notifier_invalidate_range() see comments below inside
2087                  * __split_huge_pmd() ?
2088                  *
2089                  * We are going from a zero huge page write protected to zero
2090                  * small page also write protected so it does not seems useful
2091                  * to invalidate secondary mmu at this time.
2092                  */
2093                 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2094         }
2095
2096         /*
2097          * Up to this point the pmd is present and huge and userland has the
2098          * whole access to the hugepage during the split (which happens in
2099          * place). If we overwrite the pmd with the not-huge version pointing
2100          * to the pte here (which of course we could if all CPUs were bug
2101          * free), userland could trigger a small page size TLB miss on the
2102          * small sized TLB while the hugepage TLB entry is still established in
2103          * the huge TLB. Some CPU doesn't like that.
2104          * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2105          * 383 on page 105. Intel should be safe but is also warns that it's
2106          * only safe if the permission and cache attributes of the two entries
2107          * loaded in the two TLB is identical (which should be the case here).
2108          * But it is generally safer to never allow small and huge TLB entries
2109          * for the same virtual address to be loaded simultaneously. So instead
2110          * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2111          * current pmd notpresent (atomically because here the pmd_trans_huge
2112          * must remain set at all times on the pmd until the split is complete
2113          * for this pmd), then we flush the SMP TLB and finally we write the
2114          * non-huge version of the pmd entry with pmd_populate.
2115          */
2116         old_pmd = pmdp_invalidate(vma, haddr, pmd);
2117
2118         pmd_migration = is_pmd_migration_entry(old_pmd);
2119         if (unlikely(pmd_migration)) {
2120                 swp_entry_t entry;
2121
2122                 entry = pmd_to_swp_entry(old_pmd);
2123                 page = migration_entry_to_page(entry);
2124                 write = is_write_migration_entry(entry);
2125                 young = false;
2126                 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2127                 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2128         } else {
2129                 page = pmd_page(old_pmd);
2130                 if (pmd_dirty(old_pmd))
2131                         SetPageDirty(page);
2132                 write = pmd_write(old_pmd);
2133                 young = pmd_young(old_pmd);
2134                 soft_dirty = pmd_soft_dirty(old_pmd);
2135                 uffd_wp = pmd_uffd_wp(old_pmd);
2136         }
2137         VM_BUG_ON_PAGE(!page_count(page), page);
2138         page_ref_add(page, HPAGE_PMD_NR - 1);
2139
2140         /*
2141          * Withdraw the table only after we mark the pmd entry invalid.
2142          * This's critical for some architectures (Power).
2143          */
2144         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2145         pmd_populate(mm, &_pmd, pgtable);
2146
2147         for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2148                 pte_t entry, *pte;
2149                 /*
2150                  * Note that NUMA hinting access restrictions are not
2151                  * transferred to avoid any possibility of altering
2152                  * permissions across VMAs.
2153                  */
2154                 if (freeze || pmd_migration) {
2155                         swp_entry_t swp_entry;
2156                         swp_entry = make_migration_entry(page + i, write);
2157                         entry = swp_entry_to_pte(swp_entry);
2158                         if (soft_dirty)
2159                                 entry = pte_swp_mksoft_dirty(entry);
2160                         if (uffd_wp)
2161                                 entry = pte_swp_mkuffd_wp(entry);
2162                 } else {
2163                         entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2164                         entry = maybe_mkwrite(entry, vma);
2165                         if (!write)
2166                                 entry = pte_wrprotect(entry);
2167                         if (!young)
2168                                 entry = pte_mkold(entry);
2169                         if (soft_dirty)
2170                                 entry = pte_mksoft_dirty(entry);
2171                         if (uffd_wp)
2172                                 entry = pte_mkuffd_wp(entry);
2173                 }
2174                 pte = pte_offset_map(&_pmd, addr);
2175                 BUG_ON(!pte_none(*pte));
2176                 set_pte_at(mm, addr, pte, entry);
2177                 if (!pmd_migration)
2178                         atomic_inc(&page[i]._mapcount);
2179                 pte_unmap(pte);
2180         }
2181
2182         if (!pmd_migration) {
2183                 /*
2184                  * Set PG_double_map before dropping compound_mapcount to avoid
2185                  * false-negative page_mapped().
2186                  */
2187                 if (compound_mapcount(page) > 1 &&
2188                     !TestSetPageDoubleMap(page)) {
2189                         for (i = 0; i < HPAGE_PMD_NR; i++)
2190                                 atomic_inc(&page[i]._mapcount);
2191                 }
2192
2193                 lock_page_memcg(page);
2194                 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2195                         /* Last compound_mapcount is gone. */
2196                         __mod_lruvec_page_state(page, NR_ANON_THPS,
2197                                                 -HPAGE_PMD_NR);
2198                         if (TestClearPageDoubleMap(page)) {
2199                                 /* No need in mapcount reference anymore */
2200                                 for (i = 0; i < HPAGE_PMD_NR; i++)
2201                                         atomic_dec(&page[i]._mapcount);
2202                         }
2203                 }
2204                 unlock_page_memcg(page);
2205         }
2206
2207         smp_wmb(); /* make pte visible before pmd */
2208         pmd_populate(mm, pmd, pgtable);
2209
2210         if (freeze) {
2211                 for (i = 0; i < HPAGE_PMD_NR; i++) {
2212                         page_remove_rmap(page + i, false);
2213                         put_page(page + i);
2214                 }
2215         }
2216 }
2217
2218 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2219                 unsigned long address, bool freeze, struct page *page)
2220 {
2221         spinlock_t *ptl;
2222         struct mmu_notifier_range range;
2223         bool do_unlock_page = false;
2224         pmd_t _pmd;
2225
2226         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2227                                 address & HPAGE_PMD_MASK,
2228                                 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2229         mmu_notifier_invalidate_range_start(&range);
2230         ptl = pmd_lock(vma->vm_mm, pmd);
2231
2232         /*
2233          * If caller asks to setup a migration entries, we need a page to check
2234          * pmd against. Otherwise we can end up replacing wrong page.
2235          */
2236         VM_BUG_ON(freeze && !page);
2237         if (page) {
2238                 VM_WARN_ON_ONCE(!PageLocked(page));
2239                 if (page != pmd_page(*pmd))
2240                         goto out;
2241         }
2242
2243 repeat:
2244         if (pmd_trans_huge(*pmd)) {
2245                 if (!page) {
2246                         page = pmd_page(*pmd);
2247                         /*
2248                          * An anonymous page must be locked, to ensure that a
2249                          * concurrent reuse_swap_page() sees stable mapcount;
2250                          * but reuse_swap_page() is not used on shmem or file,
2251                          * and page lock must not be taken when zap_pmd_range()
2252                          * calls __split_huge_pmd() while i_mmap_lock is held.
2253                          */
2254                         if (PageAnon(page)) {
2255                                 if (unlikely(!trylock_page(page))) {
2256                                         get_page(page);
2257                                         _pmd = *pmd;
2258                                         spin_unlock(ptl);
2259                                         lock_page(page);
2260                                         spin_lock(ptl);
2261                                         if (unlikely(!pmd_same(*pmd, _pmd))) {
2262                                                 unlock_page(page);
2263                                                 put_page(page);
2264                                                 page = NULL;
2265                                                 goto repeat;
2266                                         }
2267                                         put_page(page);
2268                                 }
2269                                 do_unlock_page = true;
2270                         }
2271                 }
2272                 if (PageMlocked(page))
2273                         clear_page_mlock(page);
2274         } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2275                 goto out;
2276         __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2277 out:
2278         spin_unlock(ptl);
2279         if (do_unlock_page)
2280                 unlock_page(page);
2281         /*
2282          * No need to double call mmu_notifier->invalidate_range() callback.
2283          * They are 3 cases to consider inside __split_huge_pmd_locked():
2284          *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2285          *  2) __split_huge_zero_page_pmd() read only zero page and any write
2286          *    fault will trigger a flush_notify before pointing to a new page
2287          *    (it is fine if the secondary mmu keeps pointing to the old zero
2288          *    page in the meantime)
2289          *  3) Split a huge pmd into pte pointing to the same page. No need
2290          *     to invalidate secondary tlb entry they are all still valid.
2291          *     any further changes to individual pte will notify. So no need
2292          *     to call mmu_notifier->invalidate_range()
2293          */
2294         mmu_notifier_invalidate_range_only_end(&range);
2295 }
2296
2297 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2298                 bool freeze, struct page *page)
2299 {
2300         pgd_t *pgd;
2301         p4d_t *p4d;
2302         pud_t *pud;
2303         pmd_t *pmd;
2304
2305         pgd = pgd_offset(vma->vm_mm, address);
2306         if (!pgd_present(*pgd))
2307                 return;
2308
2309         p4d = p4d_offset(pgd, address);
2310         if (!p4d_present(*p4d))
2311                 return;
2312
2313         pud = pud_offset(p4d, address);
2314         if (!pud_present(*pud))
2315                 return;
2316
2317         pmd = pmd_offset(pud, address);
2318
2319         __split_huge_pmd(vma, pmd, address, freeze, page);
2320 }
2321
2322 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2323 {
2324         /*
2325          * If the new address isn't hpage aligned and it could previously
2326          * contain an hugepage: check if we need to split an huge pmd.
2327          */
2328         if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2329             range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2330                          ALIGN(address, HPAGE_PMD_SIZE)))
2331                 split_huge_pmd_address(vma, address, false, NULL);
2332 }
2333
2334 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2335                              unsigned long start,
2336                              unsigned long end,
2337                              long adjust_next)
2338 {
2339         /* Check if we need to split start first. */
2340         split_huge_pmd_if_needed(vma, start);
2341
2342         /* Check if we need to split end next. */
2343         split_huge_pmd_if_needed(vma, end);
2344
2345         /*
2346          * If we're also updating the vma->vm_next->vm_start,
2347          * check if we need to split it.
2348          */
2349         if (adjust_next > 0) {
2350                 struct vm_area_struct *next = vma->vm_next;
2351                 unsigned long nstart = next->vm_start;
2352                 nstart += adjust_next;
2353                 split_huge_pmd_if_needed(next, nstart);
2354         }
2355 }
2356
2357 static void unmap_page(struct page *page)
2358 {
2359         enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_SYNC |
2360                 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2361
2362         VM_BUG_ON_PAGE(!PageHead(page), page);
2363
2364         if (PageAnon(page))
2365                 ttu_flags |= TTU_SPLIT_FREEZE;
2366
2367         try_to_unmap(page, ttu_flags);
2368
2369         VM_WARN_ON_ONCE_PAGE(page_mapped(page), page);
2370 }
2371
2372 static void remap_page(struct page *page, unsigned int nr)
2373 {
2374         int i;
2375         if (PageTransHuge(page)) {
2376                 remove_migration_ptes(page, page, true);
2377         } else {
2378                 for (i = 0; i < nr; i++)
2379                         remove_migration_ptes(page + i, page + i, true);
2380         }
2381 }
2382
2383 static void lru_add_page_tail(struct page *head, struct page *tail,
2384                 struct lruvec *lruvec, struct list_head *list)
2385 {
2386         VM_BUG_ON_PAGE(!PageHead(head), head);
2387         VM_BUG_ON_PAGE(PageCompound(tail), head);
2388         VM_BUG_ON_PAGE(PageLRU(tail), head);
2389         lockdep_assert_held(&lruvec->lru_lock);
2390
2391         if (list) {
2392                 /* page reclaim is reclaiming a huge page */
2393                 VM_WARN_ON(PageLRU(head));
2394                 get_page(tail);
2395                 list_add_tail(&tail->lru, list);
2396         } else {
2397                 /* head is still on lru (and we have it frozen) */
2398                 VM_WARN_ON(!PageLRU(head));
2399                 SetPageLRU(tail);
2400                 list_add_tail(&tail->lru, &head->lru);
2401         }
2402 }
2403
2404 static void __split_huge_page_tail(struct page *head, int tail,
2405                 struct lruvec *lruvec, struct list_head *list)
2406 {
2407         struct page *page_tail = head + tail;
2408
2409         VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2410
2411         /*
2412          * Clone page flags before unfreezing refcount.
2413          *
2414          * After successful get_page_unless_zero() might follow flags change,
2415          * for example lock_page() which set PG_waiters.
2416          */
2417         page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2418         page_tail->flags |= (head->flags &
2419                         ((1L << PG_referenced) |
2420                          (1L << PG_swapbacked) |
2421                          (1L << PG_swapcache) |
2422                          (1L << PG_mlocked) |
2423                          (1L << PG_uptodate) |
2424                          (1L << PG_active) |
2425                          (1L << PG_workingset) |
2426                          (1L << PG_locked) |
2427                          (1L << PG_unevictable) |
2428 #ifdef CONFIG_64BIT
2429                          (1L << PG_arch_2) |
2430 #endif
2431                          (1L << PG_dirty)));
2432
2433         /* ->mapping in first tail page is compound_mapcount */
2434         VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2435                         page_tail);
2436         page_tail->mapping = head->mapping;
2437         page_tail->index = head->index + tail;
2438
2439         /* Page flags must be visible before we make the page non-compound. */
2440         smp_wmb();
2441
2442         /*
2443          * Clear PageTail before unfreezing page refcount.
2444          *
2445          * After successful get_page_unless_zero() might follow put_page()
2446          * which needs correct compound_head().
2447          */
2448         clear_compound_head(page_tail);
2449
2450         /* Finally unfreeze refcount. Additional reference from page cache. */
2451         page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2452                                           PageSwapCache(head)));
2453
2454         if (page_is_young(head))
2455                 set_page_young(page_tail);
2456         if (page_is_idle(head))
2457                 set_page_idle(page_tail);
2458
2459         page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2460
2461         /*
2462          * always add to the tail because some iterators expect new
2463          * pages to show after the currently processed elements - e.g.
2464          * migrate_pages
2465          */
2466         lru_add_page_tail(head, page_tail, lruvec, list);
2467 }
2468
2469 static void __split_huge_page(struct page *page, struct list_head *list,
2470                 pgoff_t end)
2471 {
2472         struct page *head = compound_head(page);
2473         struct lruvec *lruvec;
2474         struct address_space *swap_cache = NULL;
2475         unsigned long offset = 0;
2476         unsigned int nr = thp_nr_pages(head);
2477         int i;
2478
2479         /* complete memcg works before add pages to LRU */
2480         split_page_memcg(head, nr);
2481
2482         if (PageAnon(head) && PageSwapCache(head)) {
2483                 swp_entry_t entry = { .val = page_private(head) };
2484
2485                 offset = swp_offset(entry);
2486                 swap_cache = swap_address_space(entry);
2487                 xa_lock(&swap_cache->i_pages);
2488         }
2489
2490         /* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2491         lruvec = lock_page_lruvec(head);
2492
2493         for (i = nr - 1; i >= 1; i--) {
2494                 __split_huge_page_tail(head, i, lruvec, list);
2495                 /* Some pages can be beyond i_size: drop them from page cache */
2496                 if (head[i].index >= end) {
2497                         ClearPageDirty(head + i);
2498                         __delete_from_page_cache(head + i, NULL);
2499                         if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2500                                 shmem_uncharge(head->mapping->host, 1);
2501                         put_page(head + i);
2502                 } else if (!PageAnon(page)) {
2503                         __xa_store(&head->mapping->i_pages, head[i].index,
2504                                         head + i, 0);
2505                 } else if (swap_cache) {
2506                         __xa_store(&swap_cache->i_pages, offset + i,
2507                                         head + i, 0);
2508                 }
2509         }
2510
2511         ClearPageCompound(head);
2512         unlock_page_lruvec(lruvec);
2513         /* Caller disabled irqs, so they are still disabled here */
2514
2515         split_page_owner(head, nr);
2516
2517         /* See comment in __split_huge_page_tail() */
2518         if (PageAnon(head)) {
2519                 /* Additional pin to swap cache */
2520                 if (PageSwapCache(head)) {
2521                         page_ref_add(head, 2);
2522                         xa_unlock(&swap_cache->i_pages);
2523                 } else {
2524                         page_ref_inc(head);
2525                 }
2526         } else {
2527                 /* Additional pin to page cache */
2528                 page_ref_add(head, 2);
2529                 xa_unlock(&head->mapping->i_pages);
2530         }
2531         local_irq_enable();
2532
2533         remap_page(head, nr);
2534
2535         if (PageSwapCache(head)) {
2536                 swp_entry_t entry = { .val = page_private(head) };
2537
2538                 split_swap_cluster(entry);
2539         }
2540
2541         for (i = 0; i < nr; i++) {
2542                 struct page *subpage = head + i;
2543                 if (subpage == page)
2544                         continue;
2545                 unlock_page(subpage);
2546
2547                 /*
2548                  * Subpages may be freed if there wasn't any mapping
2549                  * like if add_to_swap() is running on a lru page that
2550                  * had its mapping zapped. And freeing these pages
2551                  * requires taking the lru_lock so we do the put_page
2552                  * of the tail pages after the split is complete.
2553                  */
2554                 put_page(subpage);
2555         }
2556 }
2557
2558 int total_mapcount(struct page *page)
2559 {
2560         int i, compound, nr, ret;
2561
2562         VM_BUG_ON_PAGE(PageTail(page), page);
2563
2564         if (likely(!PageCompound(page)))
2565                 return atomic_read(&page->_mapcount) + 1;
2566
2567         compound = compound_mapcount(page);
2568         nr = compound_nr(page);
2569         if (PageHuge(page))
2570                 return compound;
2571         ret = compound;
2572         for (i = 0; i < nr; i++)
2573                 ret += atomic_read(&page[i]._mapcount) + 1;
2574         /* File pages has compound_mapcount included in _mapcount */
2575         if (!PageAnon(page))
2576                 return ret - compound * nr;
2577         if (PageDoubleMap(page))
2578                 ret -= nr;
2579         return ret;
2580 }
2581
2582 /*
2583  * This calculates accurately how many mappings a transparent hugepage
2584  * has (unlike page_mapcount() which isn't fully accurate). This full
2585  * accuracy is primarily needed to know if copy-on-write faults can
2586  * reuse the page and change the mapping to read-write instead of
2587  * copying them. At the same time this returns the total_mapcount too.
2588  *
2589  * The function returns the highest mapcount any one of the subpages
2590  * has. If the return value is one, even if different processes are
2591  * mapping different subpages of the transparent hugepage, they can
2592  * all reuse it, because each process is reusing a different subpage.
2593  *
2594  * The total_mapcount is instead counting all virtual mappings of the
2595  * subpages. If the total_mapcount is equal to "one", it tells the
2596  * caller all mappings belong to the same "mm" and in turn the
2597  * anon_vma of the transparent hugepage can become the vma->anon_vma
2598  * local one as no other process may be mapping any of the subpages.
2599  *
2600  * It would be more accurate to replace page_mapcount() with
2601  * page_trans_huge_mapcount(), however we only use
2602  * page_trans_huge_mapcount() in the copy-on-write faults where we
2603  * need full accuracy to avoid breaking page pinning, because
2604  * page_trans_huge_mapcount() is slower than page_mapcount().
2605  */
2606 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2607 {
2608         int i, ret, _total_mapcount, mapcount;
2609
2610         /* hugetlbfs shouldn't call it */
2611         VM_BUG_ON_PAGE(PageHuge(page), page);
2612
2613         if (likely(!PageTransCompound(page))) {
2614                 mapcount = atomic_read(&page->_mapcount) + 1;
2615                 if (total_mapcount)
2616                         *total_mapcount = mapcount;
2617                 return mapcount;
2618         }
2619
2620         page = compound_head(page);
2621
2622         _total_mapcount = ret = 0;
2623         for (i = 0; i < thp_nr_pages(page); i++) {
2624                 mapcount = atomic_read(&page[i]._mapcount) + 1;
2625                 ret = max(ret, mapcount);
2626                 _total_mapcount += mapcount;
2627         }
2628         if (PageDoubleMap(page)) {
2629                 ret -= 1;
2630                 _total_mapcount -= thp_nr_pages(page);
2631         }
2632         mapcount = compound_mapcount(page);
2633         ret += mapcount;
2634         _total_mapcount += mapcount;
2635         if (total_mapcount)
2636                 *total_mapcount = _total_mapcount;
2637         return ret;
2638 }
2639
2640 /* Racy check whether the huge page can be split */
2641 bool can_split_huge_page(struct page *page, int *pextra_pins)
2642 {
2643         int extra_pins;
2644
2645         /* Additional pins from page cache */
2646         if (PageAnon(page))
2647                 extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0;
2648         else
2649                 extra_pins = thp_nr_pages(page);
2650         if (pextra_pins)
2651                 *pextra_pins = extra_pins;
2652         return total_mapcount(page) == page_count(page) - extra_pins - 1;
2653 }
2654
2655 /*
2656  * This function splits huge page into normal pages. @page can point to any
2657  * subpage of huge page to split. Split doesn't change the position of @page.
2658  *
2659  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2660  * The huge page must be locked.
2661  *
2662  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2663  *
2664  * Both head page and tail pages will inherit mapping, flags, and so on from
2665  * the hugepage.
2666  *
2667  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2668  * they are not mapped.
2669  *
2670  * Returns 0 if the hugepage is split successfully.
2671  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2672  * us.
2673  */
2674 int split_huge_page_to_list(struct page *page, struct list_head *list)
2675 {
2676         struct page *head = compound_head(page);
2677         struct deferred_split *ds_queue = get_deferred_split_queue(head);
2678         struct anon_vma *anon_vma = NULL;
2679         struct address_space *mapping = NULL;
2680         int extra_pins, ret;
2681         pgoff_t end;
2682
2683         VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2684         VM_BUG_ON_PAGE(!PageLocked(head), head);
2685         VM_BUG_ON_PAGE(!PageCompound(head), head);
2686
2687         if (PageWriteback(head))
2688                 return -EBUSY;
2689
2690         if (PageAnon(head)) {
2691                 /*
2692                  * The caller does not necessarily hold an mmap_lock that would
2693                  * prevent the anon_vma disappearing so we first we take a
2694                  * reference to it and then lock the anon_vma for write. This
2695                  * is similar to page_lock_anon_vma_read except the write lock
2696                  * is taken to serialise against parallel split or collapse
2697                  * operations.
2698                  */
2699                 anon_vma = page_get_anon_vma(head);
2700                 if (!anon_vma) {
2701                         ret = -EBUSY;
2702                         goto out;
2703                 }
2704                 end = -1;
2705                 mapping = NULL;
2706                 anon_vma_lock_write(anon_vma);
2707         } else {
2708                 mapping = head->mapping;
2709
2710                 /* Truncated ? */
2711                 if (!mapping) {
2712                         ret = -EBUSY;
2713                         goto out;
2714                 }
2715
2716                 anon_vma = NULL;
2717                 i_mmap_lock_read(mapping);
2718
2719                 /*
2720                  *__split_huge_page() may need to trim off pages beyond EOF:
2721                  * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2722                  * which cannot be nested inside the page tree lock. So note
2723                  * end now: i_size itself may be changed at any moment, but
2724                  * head page lock is good enough to serialize the trimming.
2725                  */
2726                 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2727         }
2728
2729         /*
2730          * Racy check if we can split the page, before unmap_page() will
2731          * split PMDs
2732          */
2733         if (!can_split_huge_page(head, &extra_pins)) {
2734                 ret = -EBUSY;
2735                 goto out_unlock;
2736         }
2737
2738         unmap_page(head);
2739
2740         /* block interrupt reentry in xa_lock and spinlock */
2741         local_irq_disable();
2742         if (mapping) {
2743                 XA_STATE(xas, &mapping->i_pages, page_index(head));
2744
2745                 /*
2746                  * Check if the head page is present in page cache.
2747                  * We assume all tail are present too, if head is there.
2748                  */
2749                 xa_lock(&mapping->i_pages);
2750                 if (xas_load(&xas) != head)
2751                         goto fail;
2752         }
2753
2754         /* Prevent deferred_split_scan() touching ->_refcount */
2755         spin_lock(&ds_queue->split_queue_lock);
2756         if (page_ref_freeze(head, 1 + extra_pins)) {
2757                 if (!list_empty(page_deferred_list(head))) {
2758                         ds_queue->split_queue_len--;
2759                         list_del(page_deferred_list(head));
2760                 }
2761                 spin_unlock(&ds_queue->split_queue_lock);
2762                 if (mapping) {
2763                         int nr = thp_nr_pages(head);
2764
2765                         if (PageSwapBacked(head))
2766                                 __mod_lruvec_page_state(head, NR_SHMEM_THPS,
2767                                                         -nr);
2768                         else
2769                                 __mod_lruvec_page_state(head, NR_FILE_THPS,
2770                                                         -nr);
2771                 }
2772
2773                 __split_huge_page(page, list, end);
2774                 ret = 0;
2775         } else {
2776                 spin_unlock(&ds_queue->split_queue_lock);
2777 fail:
2778                 if (mapping)
2779                         xa_unlock(&mapping->i_pages);
2780                 local_irq_enable();
2781                 remap_page(head, thp_nr_pages(head));
2782                 ret = -EBUSY;
2783         }
2784
2785 out_unlock:
2786         if (anon_vma) {
2787                 anon_vma_unlock_write(anon_vma);
2788                 put_anon_vma(anon_vma);
2789         }
2790         if (mapping)
2791                 i_mmap_unlock_read(mapping);
2792 out:
2793         count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2794         return ret;
2795 }
2796
2797 void free_transhuge_page(struct page *page)
2798 {
2799         struct deferred_split *ds_queue = get_deferred_split_queue(page);
2800         unsigned long flags;
2801
2802         spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2803         if (!list_empty(page_deferred_list(page))) {
2804                 ds_queue->split_queue_len--;
2805                 list_del(page_deferred_list(page));
2806         }
2807         spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2808         free_compound_page(page);
2809 }
2810
2811 void deferred_split_huge_page(struct page *page)
2812 {
2813         struct deferred_split *ds_queue = get_deferred_split_queue(page);
2814 #ifdef CONFIG_MEMCG
2815         struct mem_cgroup *memcg = page_memcg(compound_head(page));
2816 #endif
2817         unsigned long flags;
2818
2819         VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2820
2821         /*
2822          * The try_to_unmap() in page reclaim path might reach here too,
2823          * this may cause a race condition to corrupt deferred split queue.
2824          * And, if page reclaim is already handling the same page, it is
2825          * unnecessary to handle it again in shrinker.
2826          *
2827          * Check PageSwapCache to determine if the page is being
2828          * handled by page reclaim since THP swap would add the page into
2829          * swap cache before calling try_to_unmap().
2830          */
2831         if (PageSwapCache(page))
2832                 return;
2833
2834         spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2835         if (list_empty(page_deferred_list(page))) {
2836                 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2837                 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2838                 ds_queue->split_queue_len++;
2839 #ifdef CONFIG_MEMCG
2840                 if (memcg)
2841                         set_shrinker_bit(memcg, page_to_nid(page),
2842                                          deferred_split_shrinker.id);
2843 #endif
2844         }
2845         spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2846 }
2847
2848 static unsigned long deferred_split_count(struct shrinker *shrink,
2849                 struct shrink_control *sc)
2850 {
2851         struct pglist_data *pgdata = NODE_DATA(sc->nid);
2852         struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2853
2854 #ifdef CONFIG_MEMCG
2855         if (sc->memcg)
2856                 ds_queue = &sc->memcg->deferred_split_queue;
2857 #endif
2858         return READ_ONCE(ds_queue->split_queue_len);
2859 }
2860
2861 static unsigned long deferred_split_scan(struct shrinker *shrink,
2862                 struct shrink_control *sc)
2863 {
2864         struct pglist_data *pgdata = NODE_DATA(sc->nid);
2865         struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2866         unsigned long flags;
2867         LIST_HEAD(list), *pos, *next;
2868         struct page *page;
2869         int split = 0;
2870
2871 #ifdef CONFIG_MEMCG
2872         if (sc->memcg)
2873                 ds_queue = &sc->memcg->deferred_split_queue;
2874 #endif
2875
2876         spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2877         /* Take pin on all head pages to avoid freeing them under us */
2878         list_for_each_safe(pos, next, &ds_queue->split_queue) {
2879                 page = list_entry((void *)pos, struct page, deferred_list);
2880                 page = compound_head(page);
2881                 if (get_page_unless_zero(page)) {
2882                         list_move(page_deferred_list(page), &list);
2883                 } else {
2884                         /* We lost race with put_compound_page() */
2885                         list_del_init(page_deferred_list(page));
2886                         ds_queue->split_queue_len--;
2887                 }
2888                 if (!--sc->nr_to_scan)
2889                         break;
2890         }
2891         spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2892
2893         list_for_each_safe(pos, next, &list) {
2894                 page = list_entry((void *)pos, struct page, deferred_list);
2895                 if (!trylock_page(page))
2896                         goto next;
2897                 /* split_huge_page() removes page from list on success */
2898                 if (!split_huge_page(page))
2899                         split++;
2900                 unlock_page(page);
2901 next:
2902                 put_page(page);
2903         }
2904
2905         spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2906         list_splice_tail(&list, &ds_queue->split_queue);
2907         spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2908
2909         /*
2910          * Stop shrinker if we didn't split any page, but the queue is empty.
2911          * This can happen if pages were freed under us.
2912          */
2913         if (!split && list_empty(&ds_queue->split_queue))
2914                 return SHRINK_STOP;
2915         return split;
2916 }
2917
2918 static struct shrinker deferred_split_shrinker = {
2919         .count_objects = deferred_split_count,
2920         .scan_objects = deferred_split_scan,
2921         .seeks = DEFAULT_SEEKS,
2922         .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2923                  SHRINKER_NONSLAB,
2924 };
2925
2926 #ifdef CONFIG_DEBUG_FS
2927 static void split_huge_pages_all(void)
2928 {
2929         struct zone *zone;
2930         struct page *page;
2931         unsigned long pfn, max_zone_pfn;
2932         unsigned long total = 0, split = 0;
2933
2934         pr_debug("Split all THPs\n");
2935         for_each_populated_zone(zone) {
2936                 max_zone_pfn = zone_end_pfn(zone);
2937                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2938                         if (!pfn_valid(pfn))
2939                                 continue;
2940
2941                         page = pfn_to_page(pfn);
2942                         if (!get_page_unless_zero(page))
2943                                 continue;
2944
2945                         if (zone != page_zone(page))
2946                                 goto next;
2947
2948                         if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2949                                 goto next;
2950
2951                         total++;
2952                         lock_page(page);
2953                         if (!split_huge_page(page))
2954                                 split++;
2955                         unlock_page(page);
2956 next:
2957                         put_page(page);
2958                         cond_resched();
2959                 }
2960         }
2961
2962         pr_debug("%lu of %lu THP split\n", split, total);
2963 }
2964
2965 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2966 {
2967         return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2968                     is_vm_hugetlb_page(vma);
2969 }
2970
2971 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2972                                 unsigned long vaddr_end)
2973 {
2974         int ret = 0;
2975         struct task_struct *task;
2976         struct mm_struct *mm;
2977         unsigned long total = 0, split = 0;
2978         unsigned long addr;
2979
2980         vaddr_start &= PAGE_MASK;
2981         vaddr_end &= PAGE_MASK;
2982
2983         /* Find the task_struct from pid */
2984         rcu_read_lock();
2985         task = find_task_by_vpid(pid);
2986         if (!task) {
2987                 rcu_read_unlock();
2988                 ret = -ESRCH;
2989                 goto out;
2990         }
2991         get_task_struct(task);
2992         rcu_read_unlock();
2993
2994         /* Find the mm_struct */
2995         mm = get_task_mm(task);
2996         put_task_struct(task);
2997
2998         if (!mm) {
2999                 ret = -EINVAL;
3000                 goto out;
3001         }
3002
3003         pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
3004                  pid, vaddr_start, vaddr_end);
3005
3006         mmap_read_lock(mm);
3007         /*
3008          * always increase addr by PAGE_SIZE, since we could have a PTE page
3009          * table filled with PTE-mapped THPs, each of which is distinct.
3010          */
3011         for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3012                 struct vm_area_struct *vma = find_vma(mm, addr);
3013                 unsigned int follflags;
3014                 struct page *page;
3015
3016                 if (!vma || addr < vma->vm_start)
3017                         break;
3018
3019                 /* skip special VMA and hugetlb VMA */
3020                 if (vma_not_suitable_for_thp_split(vma)) {
3021                         addr = vma->vm_end;
3022                         continue;
3023                 }
3024
3025                 /* FOLL_DUMP to ignore special (like zero) pages */
3026                 follflags = FOLL_GET | FOLL_DUMP;
3027                 page = follow_page(vma, addr, follflags);
3028
3029                 if (IS_ERR(page))
3030                         continue;
3031                 if (!page)
3032                         continue;
3033
3034                 if (!is_transparent_hugepage(page))
3035                         goto next;
3036
3037                 total++;
3038                 if (!can_split_huge_page(compound_head(page), NULL))
3039                         goto next;
3040
3041                 if (!trylock_page(page))
3042                         goto next;
3043
3044                 if (!split_huge_page(page))
3045                         split++;
3046
3047                 unlock_page(page);
3048 next:
3049                 put_page(page);
3050                 cond_resched();
3051         }
3052         mmap_read_unlock(mm);
3053         mmput(mm);
3054
3055         pr_debug("%lu of %lu THP split\n", split, total);
3056
3057 out:
3058         return ret;
3059 }
3060
3061 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3062                                 pgoff_t off_end)
3063 {
3064         struct filename *file;
3065         struct file *candidate;
3066         struct address_space *mapping;
3067         int ret = -EINVAL;
3068         pgoff_t index;
3069         int nr_pages = 1;
3070         unsigned long total = 0, split = 0;
3071
3072         file = getname_kernel(file_path);
3073         if (IS_ERR(file))
3074                 return ret;
3075
3076         candidate = file_open_name(file, O_RDONLY, 0);
3077         if (IS_ERR(candidate))
3078                 goto out;
3079
3080         pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3081                  file_path, off_start, off_end);
3082
3083         mapping = candidate->f_mapping;
3084
3085         for (index = off_start; index < off_end; index += nr_pages) {
3086                 struct page *fpage = pagecache_get_page(mapping, index,
3087                                                 FGP_ENTRY | FGP_HEAD, 0);
3088
3089                 nr_pages = 1;
3090                 if (xa_is_value(fpage) || !fpage)
3091                         continue;
3092
3093                 if (!is_transparent_hugepage(fpage))
3094                         goto next;
3095
3096                 total++;
3097                 nr_pages = thp_nr_pages(fpage);
3098
3099                 if (!trylock_page(fpage))
3100                         goto next;
3101
3102                 if (!split_huge_page(fpage))
3103                         split++;
3104
3105                 unlock_page(fpage);
3106 next:
3107                 put_page(fpage);
3108                 cond_resched();
3109         }
3110
3111         filp_close(candidate, NULL);
3112         ret = 0;
3113
3114         pr_debug("%lu of %lu file-backed THP split\n", split, total);
3115 out:
3116         putname(file);
3117         return ret;
3118 }
3119
3120 #define MAX_INPUT_BUF_SZ 255
3121
3122 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3123                                 size_t count, loff_t *ppops)
3124 {
3125         static DEFINE_MUTEX(split_debug_mutex);
3126         ssize_t ret;
3127         /* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3128         char input_buf[MAX_INPUT_BUF_SZ];
3129         int pid;
3130         unsigned long vaddr_start, vaddr_end;
3131
3132         ret = mutex_lock_interruptible(&split_debug_mutex);
3133         if (ret)
3134                 return ret;
3135
3136         ret = -EFAULT;
3137
3138         memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3139         if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3140                 goto out;
3141
3142         input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3143
3144         if (input_buf[0] == '/') {
3145                 char *tok;
3146                 char *buf = input_buf;
3147                 char file_path[MAX_INPUT_BUF_SZ];
3148                 pgoff_t off_start = 0, off_end = 0;
3149                 size_t input_len = strlen(input_buf);
3150
3151                 tok = strsep(&buf, ",");
3152                 if (tok) {
3153                         strncpy(file_path, tok, MAX_INPUT_BUF_SZ);
3154                 } else {
3155                         ret = -EINVAL;
3156                         goto out;
3157                 }
3158
3159                 ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3160                 if (ret != 2) {
3161                         ret = -EINVAL;
3162                         goto out;
3163                 }
3164                 ret = split_huge_pages_in_file(file_path, off_start, off_end);
3165                 if (!ret)
3166                         ret = input_len;
3167
3168                 goto out;
3169         }
3170
3171         ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3172         if (ret == 1 && pid == 1) {
3173                 split_huge_pages_all();
3174                 ret = strlen(input_buf);
3175                 goto out;
3176         } else if (ret != 3) {
3177                 ret = -EINVAL;
3178                 goto out;
3179         }
3180
3181         ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3182         if (!ret)
3183                 ret = strlen(input_buf);
3184 out:
3185         mutex_unlock(&split_debug_mutex);
3186         return ret;
3187
3188 }
3189
3190 static const struct file_operations split_huge_pages_fops = {
3191         .owner   = THIS_MODULE,
3192         .write   = split_huge_pages_write,
3193         .llseek  = no_llseek,
3194 };
3195
3196 static int __init split_huge_pages_debugfs(void)
3197 {
3198         debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3199                             &split_huge_pages_fops);
3200         return 0;
3201 }
3202 late_initcall(split_huge_pages_debugfs);
3203 #endif
3204
3205 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3206 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3207                 struct page *page)
3208 {
3209         struct vm_area_struct *vma = pvmw->vma;
3210         struct mm_struct *mm = vma->vm_mm;
3211         unsigned long address = pvmw->address;
3212         pmd_t pmdval;
3213         swp_entry_t entry;
3214         pmd_t pmdswp;
3215
3216         if (!(pvmw->pmd && !pvmw->pte))
3217                 return;
3218
3219         flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3220         pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3221         if (pmd_dirty(pmdval))
3222                 set_page_dirty(page);
3223         entry = make_migration_entry(page, pmd_write(pmdval));
3224         pmdswp = swp_entry_to_pmd(entry);
3225         if (pmd_soft_dirty(pmdval))
3226                 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3227         set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3228         page_remove_rmap(page, true);
3229         put_page(page);
3230 }
3231
3232 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3233 {
3234         struct vm_area_struct *vma = pvmw->vma;
3235         struct mm_struct *mm = vma->vm_mm;
3236         unsigned long address = pvmw->address;
3237         unsigned long mmun_start = address & HPAGE_PMD_MASK;
3238         pmd_t pmde;
3239         swp_entry_t entry;
3240
3241         if (!(pvmw->pmd && !pvmw->pte))
3242                 return;
3243
3244         entry = pmd_to_swp_entry(*pvmw->pmd);
3245         get_page(new);
3246         pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3247         if (pmd_swp_soft_dirty(*pvmw->pmd))
3248                 pmde = pmd_mksoft_dirty(pmde);
3249         if (is_write_migration_entry(entry))
3250                 pmde = maybe_pmd_mkwrite(pmde, vma);
3251
3252         flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3253         if (PageAnon(new))
3254                 page_add_anon_rmap(new, vma, mmun_start, true);
3255         else
3256                 page_add_file_rmap(new, true);
3257         set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3258         if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3259                 mlock_vma_page(new);
3260         update_mmu_cache_pmd(vma, address, pvmw->pmd);
3261 }
3262 #endif