perf bench: Fix a couple of spelling mistakes in options text
[linux-2.6-microblaze.git] / mm / huge_memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/coredump.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/oom.h>
34 #include <linux/numa.h>
35 #include <linux/page_owner.h>
36
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
40
41 /*
42  * By default, transparent hugepage support is disabled in order to avoid
43  * risking an increased memory footprint for applications that are not
44  * guaranteed to benefit from it. When transparent hugepage support is
45  * enabled, it is for all mappings, and khugepaged scans all mappings.
46  * Defrag is invoked by khugepaged hugepage allocations and by page faults
47  * for all hugepage allocations.
48  */
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51         (1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54         (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58         (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
59
60 static struct shrinker deferred_split_shrinker;
61
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
64
65 bool transparent_hugepage_enabled(struct vm_area_struct *vma)
66 {
67         /* The addr is used to check if the vma size fits */
68         unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
69
70         if (!transhuge_vma_suitable(vma, addr))
71                 return false;
72         if (vma_is_anonymous(vma))
73                 return __transparent_hugepage_enabled(vma);
74         if (vma_is_shmem(vma))
75                 return shmem_huge_enabled(vma);
76
77         return false;
78 }
79
80 static struct page *get_huge_zero_page(void)
81 {
82         struct page *zero_page;
83 retry:
84         if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
85                 return READ_ONCE(huge_zero_page);
86
87         zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
88                         HPAGE_PMD_ORDER);
89         if (!zero_page) {
90                 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
91                 return NULL;
92         }
93         count_vm_event(THP_ZERO_PAGE_ALLOC);
94         preempt_disable();
95         if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
96                 preempt_enable();
97                 __free_pages(zero_page, compound_order(zero_page));
98                 goto retry;
99         }
100
101         /* We take additional reference here. It will be put back by shrinker */
102         atomic_set(&huge_zero_refcount, 2);
103         preempt_enable();
104         return READ_ONCE(huge_zero_page);
105 }
106
107 static void put_huge_zero_page(void)
108 {
109         /*
110          * Counter should never go to zero here. Only shrinker can put
111          * last reference.
112          */
113         BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
114 }
115
116 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
117 {
118         if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119                 return READ_ONCE(huge_zero_page);
120
121         if (!get_huge_zero_page())
122                 return NULL;
123
124         if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
125                 put_huge_zero_page();
126
127         return READ_ONCE(huge_zero_page);
128 }
129
130 void mm_put_huge_zero_page(struct mm_struct *mm)
131 {
132         if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
133                 put_huge_zero_page();
134 }
135
136 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
137                                         struct shrink_control *sc)
138 {
139         /* we can free zero page only if last reference remains */
140         return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
141 }
142
143 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
144                                        struct shrink_control *sc)
145 {
146         if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
147                 struct page *zero_page = xchg(&huge_zero_page, NULL);
148                 BUG_ON(zero_page == NULL);
149                 __free_pages(zero_page, compound_order(zero_page));
150                 return HPAGE_PMD_NR;
151         }
152
153         return 0;
154 }
155
156 static struct shrinker huge_zero_page_shrinker = {
157         .count_objects = shrink_huge_zero_page_count,
158         .scan_objects = shrink_huge_zero_page_scan,
159         .seeks = DEFAULT_SEEKS,
160 };
161
162 #ifdef CONFIG_SYSFS
163 static ssize_t enabled_show(struct kobject *kobj,
164                             struct kobj_attribute *attr, char *buf)
165 {
166         if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
167                 return sprintf(buf, "[always] madvise never\n");
168         else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
169                 return sprintf(buf, "always [madvise] never\n");
170         else
171                 return sprintf(buf, "always madvise [never]\n");
172 }
173
174 static ssize_t enabled_store(struct kobject *kobj,
175                              struct kobj_attribute *attr,
176                              const char *buf, size_t count)
177 {
178         ssize_t ret = count;
179
180         if (sysfs_streq(buf, "always")) {
181                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
182                 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
183         } else if (sysfs_streq(buf, "madvise")) {
184                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
185                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
186         } else if (sysfs_streq(buf, "never")) {
187                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
188                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
189         } else
190                 ret = -EINVAL;
191
192         if (ret > 0) {
193                 int err = start_stop_khugepaged();
194                 if (err)
195                         ret = err;
196         }
197         return ret;
198 }
199 static struct kobj_attribute enabled_attr =
200         __ATTR(enabled, 0644, enabled_show, enabled_store);
201
202 ssize_t single_hugepage_flag_show(struct kobject *kobj,
203                                 struct kobj_attribute *attr, char *buf,
204                                 enum transparent_hugepage_flag flag)
205 {
206         return sprintf(buf, "%d\n",
207                        !!test_bit(flag, &transparent_hugepage_flags));
208 }
209
210 ssize_t single_hugepage_flag_store(struct kobject *kobj,
211                                  struct kobj_attribute *attr,
212                                  const char *buf, size_t count,
213                                  enum transparent_hugepage_flag flag)
214 {
215         unsigned long value;
216         int ret;
217
218         ret = kstrtoul(buf, 10, &value);
219         if (ret < 0)
220                 return ret;
221         if (value > 1)
222                 return -EINVAL;
223
224         if (value)
225                 set_bit(flag, &transparent_hugepage_flags);
226         else
227                 clear_bit(flag, &transparent_hugepage_flags);
228
229         return count;
230 }
231
232 static ssize_t defrag_show(struct kobject *kobj,
233                            struct kobj_attribute *attr, char *buf)
234 {
235         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
236                 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
237         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
238                 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
239         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
240                 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
241         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
242                 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
243         return sprintf(buf, "always defer defer+madvise madvise [never]\n");
244 }
245
246 static ssize_t defrag_store(struct kobject *kobj,
247                             struct kobj_attribute *attr,
248                             const char *buf, size_t count)
249 {
250         if (sysfs_streq(buf, "always")) {
251                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
252                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
253                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
254                 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
255         } else if (sysfs_streq(buf, "defer+madvise")) {
256                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
257                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
258                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
259                 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
260         } else if (sysfs_streq(buf, "defer")) {
261                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
262                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
263                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
264                 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
265         } else if (sysfs_streq(buf, "madvise")) {
266                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
267                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
268                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
269                 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
270         } else if (sysfs_streq(buf, "never")) {
271                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
272                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
273                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
274                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
275         } else
276                 return -EINVAL;
277
278         return count;
279 }
280 static struct kobj_attribute defrag_attr =
281         __ATTR(defrag, 0644, defrag_show, defrag_store);
282
283 static ssize_t use_zero_page_show(struct kobject *kobj,
284                 struct kobj_attribute *attr, char *buf)
285 {
286         return single_hugepage_flag_show(kobj, attr, buf,
287                                 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
288 }
289 static ssize_t use_zero_page_store(struct kobject *kobj,
290                 struct kobj_attribute *attr, const char *buf, size_t count)
291 {
292         return single_hugepage_flag_store(kobj, attr, buf, count,
293                                  TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
294 }
295 static struct kobj_attribute use_zero_page_attr =
296         __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
297
298 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
299                 struct kobj_attribute *attr, char *buf)
300 {
301         return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
302 }
303 static struct kobj_attribute hpage_pmd_size_attr =
304         __ATTR_RO(hpage_pmd_size);
305
306 #ifdef CONFIG_DEBUG_VM
307 static ssize_t debug_cow_show(struct kobject *kobj,
308                                 struct kobj_attribute *attr, char *buf)
309 {
310         return single_hugepage_flag_show(kobj, attr, buf,
311                                 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
312 }
313 static ssize_t debug_cow_store(struct kobject *kobj,
314                                struct kobj_attribute *attr,
315                                const char *buf, size_t count)
316 {
317         return single_hugepage_flag_store(kobj, attr, buf, count,
318                                  TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
319 }
320 static struct kobj_attribute debug_cow_attr =
321         __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
322 #endif /* CONFIG_DEBUG_VM */
323
324 static struct attribute *hugepage_attr[] = {
325         &enabled_attr.attr,
326         &defrag_attr.attr,
327         &use_zero_page_attr.attr,
328         &hpage_pmd_size_attr.attr,
329 #ifdef CONFIG_SHMEM
330         &shmem_enabled_attr.attr,
331 #endif
332 #ifdef CONFIG_DEBUG_VM
333         &debug_cow_attr.attr,
334 #endif
335         NULL,
336 };
337
338 static const struct attribute_group hugepage_attr_group = {
339         .attrs = hugepage_attr,
340 };
341
342 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
343 {
344         int err;
345
346         *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
347         if (unlikely(!*hugepage_kobj)) {
348                 pr_err("failed to create transparent hugepage kobject\n");
349                 return -ENOMEM;
350         }
351
352         err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
353         if (err) {
354                 pr_err("failed to register transparent hugepage group\n");
355                 goto delete_obj;
356         }
357
358         err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
359         if (err) {
360                 pr_err("failed to register transparent hugepage group\n");
361                 goto remove_hp_group;
362         }
363
364         return 0;
365
366 remove_hp_group:
367         sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
368 delete_obj:
369         kobject_put(*hugepage_kobj);
370         return err;
371 }
372
373 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
374 {
375         sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
376         sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
377         kobject_put(hugepage_kobj);
378 }
379 #else
380 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
381 {
382         return 0;
383 }
384
385 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
386 {
387 }
388 #endif /* CONFIG_SYSFS */
389
390 static int __init hugepage_init(void)
391 {
392         int err;
393         struct kobject *hugepage_kobj;
394
395         if (!has_transparent_hugepage()) {
396                 transparent_hugepage_flags = 0;
397                 return -EINVAL;
398         }
399
400         /*
401          * hugepages can't be allocated by the buddy allocator
402          */
403         MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
404         /*
405          * we use page->mapping and page->index in second tail page
406          * as list_head: assuming THP order >= 2
407          */
408         MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
409
410         err = hugepage_init_sysfs(&hugepage_kobj);
411         if (err)
412                 goto err_sysfs;
413
414         err = khugepaged_init();
415         if (err)
416                 goto err_slab;
417
418         err = register_shrinker(&huge_zero_page_shrinker);
419         if (err)
420                 goto err_hzp_shrinker;
421         err = register_shrinker(&deferred_split_shrinker);
422         if (err)
423                 goto err_split_shrinker;
424
425         /*
426          * By default disable transparent hugepages on smaller systems,
427          * where the extra memory used could hurt more than TLB overhead
428          * is likely to save.  The admin can still enable it through /sys.
429          */
430         if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
431                 transparent_hugepage_flags = 0;
432                 return 0;
433         }
434
435         err = start_stop_khugepaged();
436         if (err)
437                 goto err_khugepaged;
438
439         return 0;
440 err_khugepaged:
441         unregister_shrinker(&deferred_split_shrinker);
442 err_split_shrinker:
443         unregister_shrinker(&huge_zero_page_shrinker);
444 err_hzp_shrinker:
445         khugepaged_destroy();
446 err_slab:
447         hugepage_exit_sysfs(hugepage_kobj);
448 err_sysfs:
449         return err;
450 }
451 subsys_initcall(hugepage_init);
452
453 static int __init setup_transparent_hugepage(char *str)
454 {
455         int ret = 0;
456         if (!str)
457                 goto out;
458         if (!strcmp(str, "always")) {
459                 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
460                         &transparent_hugepage_flags);
461                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
462                           &transparent_hugepage_flags);
463                 ret = 1;
464         } else if (!strcmp(str, "madvise")) {
465                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
466                           &transparent_hugepage_flags);
467                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
468                         &transparent_hugepage_flags);
469                 ret = 1;
470         } else if (!strcmp(str, "never")) {
471                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
472                           &transparent_hugepage_flags);
473                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
474                           &transparent_hugepage_flags);
475                 ret = 1;
476         }
477 out:
478         if (!ret)
479                 pr_warn("transparent_hugepage= cannot parse, ignored\n");
480         return ret;
481 }
482 __setup("transparent_hugepage=", setup_transparent_hugepage);
483
484 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
485 {
486         if (likely(vma->vm_flags & VM_WRITE))
487                 pmd = pmd_mkwrite(pmd);
488         return pmd;
489 }
490
491 #ifdef CONFIG_MEMCG
492 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
493 {
494         struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
495         struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
496
497         if (memcg)
498                 return &memcg->deferred_split_queue;
499         else
500                 return &pgdat->deferred_split_queue;
501 }
502 #else
503 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
504 {
505         struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
506
507         return &pgdat->deferred_split_queue;
508 }
509 #endif
510
511 void prep_transhuge_page(struct page *page)
512 {
513         /*
514          * we use page->mapping and page->indexlru in second tail page
515          * as list_head: assuming THP order >= 2
516          */
517
518         INIT_LIST_HEAD(page_deferred_list(page));
519         set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
520 }
521
522 bool is_transparent_hugepage(struct page *page)
523 {
524         if (!PageCompound(page))
525                 return false;
526
527         page = compound_head(page);
528         return is_huge_zero_page(page) ||
529                page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
530 }
531 EXPORT_SYMBOL_GPL(is_transparent_hugepage);
532
533 static unsigned long __thp_get_unmapped_area(struct file *filp,
534                 unsigned long addr, unsigned long len,
535                 loff_t off, unsigned long flags, unsigned long size)
536 {
537         loff_t off_end = off + len;
538         loff_t off_align = round_up(off, size);
539         unsigned long len_pad, ret;
540
541         if (off_end <= off_align || (off_end - off_align) < size)
542                 return 0;
543
544         len_pad = len + size;
545         if (len_pad < len || (off + len_pad) < off)
546                 return 0;
547
548         ret = current->mm->get_unmapped_area(filp, addr, len_pad,
549                                               off >> PAGE_SHIFT, flags);
550
551         /*
552          * The failure might be due to length padding. The caller will retry
553          * without the padding.
554          */
555         if (IS_ERR_VALUE(ret))
556                 return 0;
557
558         /*
559          * Do not try to align to THP boundary if allocation at the address
560          * hint succeeds.
561          */
562         if (ret == addr)
563                 return addr;
564
565         ret += (off - ret) & (size - 1);
566         return ret;
567 }
568
569 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
570                 unsigned long len, unsigned long pgoff, unsigned long flags)
571 {
572         unsigned long ret;
573         loff_t off = (loff_t)pgoff << PAGE_SHIFT;
574
575         if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
576                 goto out;
577
578         ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
579         if (ret)
580                 return ret;
581 out:
582         return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
583 }
584 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
585
586 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
587                         struct page *page, gfp_t gfp)
588 {
589         struct vm_area_struct *vma = vmf->vma;
590         pgtable_t pgtable;
591         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
592         vm_fault_t ret = 0;
593
594         VM_BUG_ON_PAGE(!PageCompound(page), page);
595
596         if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
597                 put_page(page);
598                 count_vm_event(THP_FAULT_FALLBACK);
599                 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
600                 return VM_FAULT_FALLBACK;
601         }
602         cgroup_throttle_swaprate(page, gfp);
603
604         pgtable = pte_alloc_one(vma->vm_mm);
605         if (unlikely(!pgtable)) {
606                 ret = VM_FAULT_OOM;
607                 goto release;
608         }
609
610         clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
611         /*
612          * The memory barrier inside __SetPageUptodate makes sure that
613          * clear_huge_page writes become visible before the set_pmd_at()
614          * write.
615          */
616         __SetPageUptodate(page);
617
618         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
619         if (unlikely(!pmd_none(*vmf->pmd))) {
620                 goto unlock_release;
621         } else {
622                 pmd_t entry;
623
624                 ret = check_stable_address_space(vma->vm_mm);
625                 if (ret)
626                         goto unlock_release;
627
628                 /* Deliver the page fault to userland */
629                 if (userfaultfd_missing(vma)) {
630                         vm_fault_t ret2;
631
632                         spin_unlock(vmf->ptl);
633                         put_page(page);
634                         pte_free(vma->vm_mm, pgtable);
635                         ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
636                         VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
637                         return ret2;
638                 }
639
640                 entry = mk_huge_pmd(page, vma->vm_page_prot);
641                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
642                 page_add_new_anon_rmap(page, vma, haddr, true);
643                 lru_cache_add_active_or_unevictable(page, vma);
644                 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
645                 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
646                 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
647                 mm_inc_nr_ptes(vma->vm_mm);
648                 spin_unlock(vmf->ptl);
649                 count_vm_event(THP_FAULT_ALLOC);
650                 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
651         }
652
653         return 0;
654 unlock_release:
655         spin_unlock(vmf->ptl);
656 release:
657         if (pgtable)
658                 pte_free(vma->vm_mm, pgtable);
659         put_page(page);
660         return ret;
661
662 }
663
664 /*
665  * always: directly stall for all thp allocations
666  * defer: wake kswapd and fail if not immediately available
667  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
668  *                fail if not immediately available
669  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
670  *          available
671  * never: never stall for any thp allocation
672  */
673 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
674 {
675         const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
676
677         /* Always do synchronous compaction */
678         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
679                 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
680
681         /* Kick kcompactd and fail quickly */
682         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
683                 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
684
685         /* Synchronous compaction if madvised, otherwise kick kcompactd */
686         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
687                 return GFP_TRANSHUGE_LIGHT |
688                         (vma_madvised ? __GFP_DIRECT_RECLAIM :
689                                         __GFP_KSWAPD_RECLAIM);
690
691         /* Only do synchronous compaction if madvised */
692         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
693                 return GFP_TRANSHUGE_LIGHT |
694                        (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
695
696         return GFP_TRANSHUGE_LIGHT;
697 }
698
699 /* Caller must hold page table lock. */
700 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
701                 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
702                 struct page *zero_page)
703 {
704         pmd_t entry;
705         if (!pmd_none(*pmd))
706                 return false;
707         entry = mk_pmd(zero_page, vma->vm_page_prot);
708         entry = pmd_mkhuge(entry);
709         if (pgtable)
710                 pgtable_trans_huge_deposit(mm, pmd, pgtable);
711         set_pmd_at(mm, haddr, pmd, entry);
712         mm_inc_nr_ptes(mm);
713         return true;
714 }
715
716 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
717 {
718         struct vm_area_struct *vma = vmf->vma;
719         gfp_t gfp;
720         struct page *page;
721         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
722
723         if (!transhuge_vma_suitable(vma, haddr))
724                 return VM_FAULT_FALLBACK;
725         if (unlikely(anon_vma_prepare(vma)))
726                 return VM_FAULT_OOM;
727         if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
728                 return VM_FAULT_OOM;
729         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
730                         !mm_forbids_zeropage(vma->vm_mm) &&
731                         transparent_hugepage_use_zero_page()) {
732                 pgtable_t pgtable;
733                 struct page *zero_page;
734                 bool set;
735                 vm_fault_t ret;
736                 pgtable = pte_alloc_one(vma->vm_mm);
737                 if (unlikely(!pgtable))
738                         return VM_FAULT_OOM;
739                 zero_page = mm_get_huge_zero_page(vma->vm_mm);
740                 if (unlikely(!zero_page)) {
741                         pte_free(vma->vm_mm, pgtable);
742                         count_vm_event(THP_FAULT_FALLBACK);
743                         return VM_FAULT_FALLBACK;
744                 }
745                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
746                 ret = 0;
747                 set = false;
748                 if (pmd_none(*vmf->pmd)) {
749                         ret = check_stable_address_space(vma->vm_mm);
750                         if (ret) {
751                                 spin_unlock(vmf->ptl);
752                         } else if (userfaultfd_missing(vma)) {
753                                 spin_unlock(vmf->ptl);
754                                 ret = handle_userfault(vmf, VM_UFFD_MISSING);
755                                 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
756                         } else {
757                                 set_huge_zero_page(pgtable, vma->vm_mm, vma,
758                                                    haddr, vmf->pmd, zero_page);
759                                 spin_unlock(vmf->ptl);
760                                 set = true;
761                         }
762                 } else
763                         spin_unlock(vmf->ptl);
764                 if (!set)
765                         pte_free(vma->vm_mm, pgtable);
766                 return ret;
767         }
768         gfp = alloc_hugepage_direct_gfpmask(vma);
769         page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
770         if (unlikely(!page)) {
771                 count_vm_event(THP_FAULT_FALLBACK);
772                 return VM_FAULT_FALLBACK;
773         }
774         prep_transhuge_page(page);
775         return __do_huge_pmd_anonymous_page(vmf, page, gfp);
776 }
777
778 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
779                 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
780                 pgtable_t pgtable)
781 {
782         struct mm_struct *mm = vma->vm_mm;
783         pmd_t entry;
784         spinlock_t *ptl;
785
786         ptl = pmd_lock(mm, pmd);
787         if (!pmd_none(*pmd)) {
788                 if (write) {
789                         if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
790                                 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
791                                 goto out_unlock;
792                         }
793                         entry = pmd_mkyoung(*pmd);
794                         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
795                         if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
796                                 update_mmu_cache_pmd(vma, addr, pmd);
797                 }
798
799                 goto out_unlock;
800         }
801
802         entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
803         if (pfn_t_devmap(pfn))
804                 entry = pmd_mkdevmap(entry);
805         if (write) {
806                 entry = pmd_mkyoung(pmd_mkdirty(entry));
807                 entry = maybe_pmd_mkwrite(entry, vma);
808         }
809
810         if (pgtable) {
811                 pgtable_trans_huge_deposit(mm, pmd, pgtable);
812                 mm_inc_nr_ptes(mm);
813                 pgtable = NULL;
814         }
815
816         set_pmd_at(mm, addr, pmd, entry);
817         update_mmu_cache_pmd(vma, addr, pmd);
818
819 out_unlock:
820         spin_unlock(ptl);
821         if (pgtable)
822                 pte_free(mm, pgtable);
823 }
824
825 /**
826  * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
827  * @vmf: Structure describing the fault
828  * @pfn: pfn to insert
829  * @pgprot: page protection to use
830  * @write: whether it's a write fault
831  *
832  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
833  * also consult the vmf_insert_mixed_prot() documentation when
834  * @pgprot != @vmf->vma->vm_page_prot.
835  *
836  * Return: vm_fault_t value.
837  */
838 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
839                                    pgprot_t pgprot, bool write)
840 {
841         unsigned long addr = vmf->address & PMD_MASK;
842         struct vm_area_struct *vma = vmf->vma;
843         pgtable_t pgtable = NULL;
844
845         /*
846          * If we had pmd_special, we could avoid all these restrictions,
847          * but we need to be consistent with PTEs and architectures that
848          * can't support a 'special' bit.
849          */
850         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
851                         !pfn_t_devmap(pfn));
852         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
853                                                 (VM_PFNMAP|VM_MIXEDMAP));
854         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
855
856         if (addr < vma->vm_start || addr >= vma->vm_end)
857                 return VM_FAULT_SIGBUS;
858
859         if (arch_needs_pgtable_deposit()) {
860                 pgtable = pte_alloc_one(vma->vm_mm);
861                 if (!pgtable)
862                         return VM_FAULT_OOM;
863         }
864
865         track_pfn_insert(vma, &pgprot, pfn);
866
867         insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
868         return VM_FAULT_NOPAGE;
869 }
870 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
871
872 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
873 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
874 {
875         if (likely(vma->vm_flags & VM_WRITE))
876                 pud = pud_mkwrite(pud);
877         return pud;
878 }
879
880 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
881                 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
882 {
883         struct mm_struct *mm = vma->vm_mm;
884         pud_t entry;
885         spinlock_t *ptl;
886
887         ptl = pud_lock(mm, pud);
888         if (!pud_none(*pud)) {
889                 if (write) {
890                         if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
891                                 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
892                                 goto out_unlock;
893                         }
894                         entry = pud_mkyoung(*pud);
895                         entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
896                         if (pudp_set_access_flags(vma, addr, pud, entry, 1))
897                                 update_mmu_cache_pud(vma, addr, pud);
898                 }
899                 goto out_unlock;
900         }
901
902         entry = pud_mkhuge(pfn_t_pud(pfn, prot));
903         if (pfn_t_devmap(pfn))
904                 entry = pud_mkdevmap(entry);
905         if (write) {
906                 entry = pud_mkyoung(pud_mkdirty(entry));
907                 entry = maybe_pud_mkwrite(entry, vma);
908         }
909         set_pud_at(mm, addr, pud, entry);
910         update_mmu_cache_pud(vma, addr, pud);
911
912 out_unlock:
913         spin_unlock(ptl);
914 }
915
916 /**
917  * vmf_insert_pfn_pud_prot - insert a pud size pfn
918  * @vmf: Structure describing the fault
919  * @pfn: pfn to insert
920  * @pgprot: page protection to use
921  * @write: whether it's a write fault
922  *
923  * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
924  * also consult the vmf_insert_mixed_prot() documentation when
925  * @pgprot != @vmf->vma->vm_page_prot.
926  *
927  * Return: vm_fault_t value.
928  */
929 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
930                                    pgprot_t pgprot, bool write)
931 {
932         unsigned long addr = vmf->address & PUD_MASK;
933         struct vm_area_struct *vma = vmf->vma;
934
935         /*
936          * If we had pud_special, we could avoid all these restrictions,
937          * but we need to be consistent with PTEs and architectures that
938          * can't support a 'special' bit.
939          */
940         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
941                         !pfn_t_devmap(pfn));
942         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
943                                                 (VM_PFNMAP|VM_MIXEDMAP));
944         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
945
946         if (addr < vma->vm_start || addr >= vma->vm_end)
947                 return VM_FAULT_SIGBUS;
948
949         track_pfn_insert(vma, &pgprot, pfn);
950
951         insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
952         return VM_FAULT_NOPAGE;
953 }
954 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
955 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
956
957 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
958                 pmd_t *pmd, int flags)
959 {
960         pmd_t _pmd;
961
962         _pmd = pmd_mkyoung(*pmd);
963         if (flags & FOLL_WRITE)
964                 _pmd = pmd_mkdirty(_pmd);
965         if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
966                                 pmd, _pmd, flags & FOLL_WRITE))
967                 update_mmu_cache_pmd(vma, addr, pmd);
968 }
969
970 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
971                 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
972 {
973         unsigned long pfn = pmd_pfn(*pmd);
974         struct mm_struct *mm = vma->vm_mm;
975         struct page *page;
976
977         assert_spin_locked(pmd_lockptr(mm, pmd));
978
979         /*
980          * When we COW a devmap PMD entry, we split it into PTEs, so we should
981          * not be in this function with `flags & FOLL_COW` set.
982          */
983         WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
984
985         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
986         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
987                          (FOLL_PIN | FOLL_GET)))
988                 return NULL;
989
990         if (flags & FOLL_WRITE && !pmd_write(*pmd))
991                 return NULL;
992
993         if (pmd_present(*pmd) && pmd_devmap(*pmd))
994                 /* pass */;
995         else
996                 return NULL;
997
998         if (flags & FOLL_TOUCH)
999                 touch_pmd(vma, addr, pmd, flags);
1000
1001         /*
1002          * device mapped pages can only be returned if the
1003          * caller will manage the page reference count.
1004          */
1005         if (!(flags & (FOLL_GET | FOLL_PIN)))
1006                 return ERR_PTR(-EEXIST);
1007
1008         pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1009         *pgmap = get_dev_pagemap(pfn, *pgmap);
1010         if (!*pgmap)
1011                 return ERR_PTR(-EFAULT);
1012         page = pfn_to_page(pfn);
1013         if (!try_grab_page(page, flags))
1014                 page = ERR_PTR(-ENOMEM);
1015
1016         return page;
1017 }
1018
1019 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1020                   pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1021                   struct vm_area_struct *vma)
1022 {
1023         spinlock_t *dst_ptl, *src_ptl;
1024         struct page *src_page;
1025         pmd_t pmd;
1026         pgtable_t pgtable = NULL;
1027         int ret = -ENOMEM;
1028
1029         /* Skip if can be re-fill on fault */
1030         if (!vma_is_anonymous(vma))
1031                 return 0;
1032
1033         pgtable = pte_alloc_one(dst_mm);
1034         if (unlikely(!pgtable))
1035                 goto out;
1036
1037         dst_ptl = pmd_lock(dst_mm, dst_pmd);
1038         src_ptl = pmd_lockptr(src_mm, src_pmd);
1039         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1040
1041         ret = -EAGAIN;
1042         pmd = *src_pmd;
1043
1044         /*
1045          * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
1046          * does not have the VM_UFFD_WP, which means that the uffd
1047          * fork event is not enabled.
1048          */
1049         if (!(vma->vm_flags & VM_UFFD_WP))
1050                 pmd = pmd_clear_uffd_wp(pmd);
1051
1052 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1053         if (unlikely(is_swap_pmd(pmd))) {
1054                 swp_entry_t entry = pmd_to_swp_entry(pmd);
1055
1056                 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1057                 if (is_write_migration_entry(entry)) {
1058                         make_migration_entry_read(&entry);
1059                         pmd = swp_entry_to_pmd(entry);
1060                         if (pmd_swp_soft_dirty(*src_pmd))
1061                                 pmd = pmd_swp_mksoft_dirty(pmd);
1062                         set_pmd_at(src_mm, addr, src_pmd, pmd);
1063                 }
1064                 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1065                 mm_inc_nr_ptes(dst_mm);
1066                 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1067                 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1068                 ret = 0;
1069                 goto out_unlock;
1070         }
1071 #endif
1072
1073         if (unlikely(!pmd_trans_huge(pmd))) {
1074                 pte_free(dst_mm, pgtable);
1075                 goto out_unlock;
1076         }
1077         /*
1078          * When page table lock is held, the huge zero pmd should not be
1079          * under splitting since we don't split the page itself, only pmd to
1080          * a page table.
1081          */
1082         if (is_huge_zero_pmd(pmd)) {
1083                 struct page *zero_page;
1084                 /*
1085                  * get_huge_zero_page() will never allocate a new page here,
1086                  * since we already have a zero page to copy. It just takes a
1087                  * reference.
1088                  */
1089                 zero_page = mm_get_huge_zero_page(dst_mm);
1090                 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1091                                 zero_page);
1092                 ret = 0;
1093                 goto out_unlock;
1094         }
1095
1096         src_page = pmd_page(pmd);
1097         VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1098         get_page(src_page);
1099         page_dup_rmap(src_page, true);
1100         add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1101         mm_inc_nr_ptes(dst_mm);
1102         pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1103
1104         pmdp_set_wrprotect(src_mm, addr, src_pmd);
1105         pmd = pmd_mkold(pmd_wrprotect(pmd));
1106         set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1107
1108         ret = 0;
1109 out_unlock:
1110         spin_unlock(src_ptl);
1111         spin_unlock(dst_ptl);
1112 out:
1113         return ret;
1114 }
1115
1116 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1117 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1118                 pud_t *pud, int flags)
1119 {
1120         pud_t _pud;
1121
1122         _pud = pud_mkyoung(*pud);
1123         if (flags & FOLL_WRITE)
1124                 _pud = pud_mkdirty(_pud);
1125         if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1126                                 pud, _pud, flags & FOLL_WRITE))
1127                 update_mmu_cache_pud(vma, addr, pud);
1128 }
1129
1130 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1131                 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1132 {
1133         unsigned long pfn = pud_pfn(*pud);
1134         struct mm_struct *mm = vma->vm_mm;
1135         struct page *page;
1136
1137         assert_spin_locked(pud_lockptr(mm, pud));
1138
1139         if (flags & FOLL_WRITE && !pud_write(*pud))
1140                 return NULL;
1141
1142         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1143         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1144                          (FOLL_PIN | FOLL_GET)))
1145                 return NULL;
1146
1147         if (pud_present(*pud) && pud_devmap(*pud))
1148                 /* pass */;
1149         else
1150                 return NULL;
1151
1152         if (flags & FOLL_TOUCH)
1153                 touch_pud(vma, addr, pud, flags);
1154
1155         /*
1156          * device mapped pages can only be returned if the
1157          * caller will manage the page reference count.
1158          *
1159          * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1160          */
1161         if (!(flags & (FOLL_GET | FOLL_PIN)))
1162                 return ERR_PTR(-EEXIST);
1163
1164         pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1165         *pgmap = get_dev_pagemap(pfn, *pgmap);
1166         if (!*pgmap)
1167                 return ERR_PTR(-EFAULT);
1168         page = pfn_to_page(pfn);
1169         if (!try_grab_page(page, flags))
1170                 page = ERR_PTR(-ENOMEM);
1171
1172         return page;
1173 }
1174
1175 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1176                   pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1177                   struct vm_area_struct *vma)
1178 {
1179         spinlock_t *dst_ptl, *src_ptl;
1180         pud_t pud;
1181         int ret;
1182
1183         dst_ptl = pud_lock(dst_mm, dst_pud);
1184         src_ptl = pud_lockptr(src_mm, src_pud);
1185         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1186
1187         ret = -EAGAIN;
1188         pud = *src_pud;
1189         if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1190                 goto out_unlock;
1191
1192         /*
1193          * When page table lock is held, the huge zero pud should not be
1194          * under splitting since we don't split the page itself, only pud to
1195          * a page table.
1196          */
1197         if (is_huge_zero_pud(pud)) {
1198                 /* No huge zero pud yet */
1199         }
1200
1201         pudp_set_wrprotect(src_mm, addr, src_pud);
1202         pud = pud_mkold(pud_wrprotect(pud));
1203         set_pud_at(dst_mm, addr, dst_pud, pud);
1204
1205         ret = 0;
1206 out_unlock:
1207         spin_unlock(src_ptl);
1208         spin_unlock(dst_ptl);
1209         return ret;
1210 }
1211
1212 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1213 {
1214         pud_t entry;
1215         unsigned long haddr;
1216         bool write = vmf->flags & FAULT_FLAG_WRITE;
1217
1218         vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1219         if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1220                 goto unlock;
1221
1222         entry = pud_mkyoung(orig_pud);
1223         if (write)
1224                 entry = pud_mkdirty(entry);
1225         haddr = vmf->address & HPAGE_PUD_MASK;
1226         if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1227                 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1228
1229 unlock:
1230         spin_unlock(vmf->ptl);
1231 }
1232 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1233
1234 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1235 {
1236         pmd_t entry;
1237         unsigned long haddr;
1238         bool write = vmf->flags & FAULT_FLAG_WRITE;
1239
1240         vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1241         if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1242                 goto unlock;
1243
1244         entry = pmd_mkyoung(orig_pmd);
1245         if (write)
1246                 entry = pmd_mkdirty(entry);
1247         haddr = vmf->address & HPAGE_PMD_MASK;
1248         if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1249                 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1250
1251 unlock:
1252         spin_unlock(vmf->ptl);
1253 }
1254
1255 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1256 {
1257         struct vm_area_struct *vma = vmf->vma;
1258         struct page *page;
1259         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1260
1261         vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1262         VM_BUG_ON_VMA(!vma->anon_vma, vma);
1263
1264         if (is_huge_zero_pmd(orig_pmd))
1265                 goto fallback;
1266
1267         spin_lock(vmf->ptl);
1268
1269         if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1270                 spin_unlock(vmf->ptl);
1271                 return 0;
1272         }
1273
1274         page = pmd_page(orig_pmd);
1275         VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1276
1277         /* Lock page for reuse_swap_page() */
1278         if (!trylock_page(page)) {
1279                 get_page(page);
1280                 spin_unlock(vmf->ptl);
1281                 lock_page(page);
1282                 spin_lock(vmf->ptl);
1283                 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1284                         spin_unlock(vmf->ptl);
1285                         unlock_page(page);
1286                         put_page(page);
1287                         return 0;
1288                 }
1289                 put_page(page);
1290         }
1291
1292         /*
1293          * We can only reuse the page if nobody else maps the huge page or it's
1294          * part.
1295          */
1296         if (reuse_swap_page(page, NULL)) {
1297                 pmd_t entry;
1298                 entry = pmd_mkyoung(orig_pmd);
1299                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1300                 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1301                         update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1302                 unlock_page(page);
1303                 spin_unlock(vmf->ptl);
1304                 return VM_FAULT_WRITE;
1305         }
1306
1307         unlock_page(page);
1308         spin_unlock(vmf->ptl);
1309 fallback:
1310         __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1311         return VM_FAULT_FALLBACK;
1312 }
1313
1314 /*
1315  * FOLL_FORCE or a forced COW break can write even to unwritable pmd's,
1316  * but only after we've gone through a COW cycle and they are dirty.
1317  */
1318 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1319 {
1320         return pmd_write(pmd) || ((flags & FOLL_COW) && pmd_dirty(pmd));
1321 }
1322
1323 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1324                                    unsigned long addr,
1325                                    pmd_t *pmd,
1326                                    unsigned int flags)
1327 {
1328         struct mm_struct *mm = vma->vm_mm;
1329         struct page *page = NULL;
1330
1331         assert_spin_locked(pmd_lockptr(mm, pmd));
1332
1333         if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1334                 goto out;
1335
1336         /* Avoid dumping huge zero page */
1337         if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1338                 return ERR_PTR(-EFAULT);
1339
1340         /* Full NUMA hinting faults to serialise migration in fault paths */
1341         if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1342                 goto out;
1343
1344         page = pmd_page(*pmd);
1345         VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1346
1347         if (!try_grab_page(page, flags))
1348                 return ERR_PTR(-ENOMEM);
1349
1350         if (flags & FOLL_TOUCH)
1351                 touch_pmd(vma, addr, pmd, flags);
1352
1353         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1354                 /*
1355                  * We don't mlock() pte-mapped THPs. This way we can avoid
1356                  * leaking mlocked pages into non-VM_LOCKED VMAs.
1357                  *
1358                  * For anon THP:
1359                  *
1360                  * In most cases the pmd is the only mapping of the page as we
1361                  * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1362                  * writable private mappings in populate_vma_page_range().
1363                  *
1364                  * The only scenario when we have the page shared here is if we
1365                  * mlocking read-only mapping shared over fork(). We skip
1366                  * mlocking such pages.
1367                  *
1368                  * For file THP:
1369                  *
1370                  * We can expect PageDoubleMap() to be stable under page lock:
1371                  * for file pages we set it in page_add_file_rmap(), which
1372                  * requires page to be locked.
1373                  */
1374
1375                 if (PageAnon(page) && compound_mapcount(page) != 1)
1376                         goto skip_mlock;
1377                 if (PageDoubleMap(page) || !page->mapping)
1378                         goto skip_mlock;
1379                 if (!trylock_page(page))
1380                         goto skip_mlock;
1381                 if (page->mapping && !PageDoubleMap(page))
1382                         mlock_vma_page(page);
1383                 unlock_page(page);
1384         }
1385 skip_mlock:
1386         page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1387         VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1388
1389 out:
1390         return page;
1391 }
1392
1393 /* NUMA hinting page fault entry point for trans huge pmds */
1394 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1395 {
1396         struct vm_area_struct *vma = vmf->vma;
1397         struct anon_vma *anon_vma = NULL;
1398         struct page *page;
1399         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1400         int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1401         int target_nid, last_cpupid = -1;
1402         bool page_locked;
1403         bool migrated = false;
1404         bool was_writable;
1405         int flags = 0;
1406
1407         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1408         if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1409                 goto out_unlock;
1410
1411         /*
1412          * If there are potential migrations, wait for completion and retry
1413          * without disrupting NUMA hinting information. Do not relock and
1414          * check_same as the page may no longer be mapped.
1415          */
1416         if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1417                 page = pmd_page(*vmf->pmd);
1418                 if (!get_page_unless_zero(page))
1419                         goto out_unlock;
1420                 spin_unlock(vmf->ptl);
1421                 put_and_wait_on_page_locked(page);
1422                 goto out;
1423         }
1424
1425         page = pmd_page(pmd);
1426         BUG_ON(is_huge_zero_page(page));
1427         page_nid = page_to_nid(page);
1428         last_cpupid = page_cpupid_last(page);
1429         count_vm_numa_event(NUMA_HINT_FAULTS);
1430         if (page_nid == this_nid) {
1431                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1432                 flags |= TNF_FAULT_LOCAL;
1433         }
1434
1435         /* See similar comment in do_numa_page for explanation */
1436         if (!pmd_savedwrite(pmd))
1437                 flags |= TNF_NO_GROUP;
1438
1439         /*
1440          * Acquire the page lock to serialise THP migrations but avoid dropping
1441          * page_table_lock if at all possible
1442          */
1443         page_locked = trylock_page(page);
1444         target_nid = mpol_misplaced(page, vma, haddr);
1445         if (target_nid == NUMA_NO_NODE) {
1446                 /* If the page was locked, there are no parallel migrations */
1447                 if (page_locked)
1448                         goto clear_pmdnuma;
1449         }
1450
1451         /* Migration could have started since the pmd_trans_migrating check */
1452         if (!page_locked) {
1453                 page_nid = NUMA_NO_NODE;
1454                 if (!get_page_unless_zero(page))
1455                         goto out_unlock;
1456                 spin_unlock(vmf->ptl);
1457                 put_and_wait_on_page_locked(page);
1458                 goto out;
1459         }
1460
1461         /*
1462          * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1463          * to serialises splits
1464          */
1465         get_page(page);
1466         spin_unlock(vmf->ptl);
1467         anon_vma = page_lock_anon_vma_read(page);
1468
1469         /* Confirm the PMD did not change while page_table_lock was released */
1470         spin_lock(vmf->ptl);
1471         if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1472                 unlock_page(page);
1473                 put_page(page);
1474                 page_nid = NUMA_NO_NODE;
1475                 goto out_unlock;
1476         }
1477
1478         /* Bail if we fail to protect against THP splits for any reason */
1479         if (unlikely(!anon_vma)) {
1480                 put_page(page);
1481                 page_nid = NUMA_NO_NODE;
1482                 goto clear_pmdnuma;
1483         }
1484
1485         /*
1486          * Since we took the NUMA fault, we must have observed the !accessible
1487          * bit. Make sure all other CPUs agree with that, to avoid them
1488          * modifying the page we're about to migrate.
1489          *
1490          * Must be done under PTL such that we'll observe the relevant
1491          * inc_tlb_flush_pending().
1492          *
1493          * We are not sure a pending tlb flush here is for a huge page
1494          * mapping or not. Hence use the tlb range variant
1495          */
1496         if (mm_tlb_flush_pending(vma->vm_mm)) {
1497                 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1498                 /*
1499                  * change_huge_pmd() released the pmd lock before
1500                  * invalidating the secondary MMUs sharing the primary
1501                  * MMU pagetables (with ->invalidate_range()). The
1502                  * mmu_notifier_invalidate_range_end() (which
1503                  * internally calls ->invalidate_range()) in
1504                  * change_pmd_range() will run after us, so we can't
1505                  * rely on it here and we need an explicit invalidate.
1506                  */
1507                 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1508                                               haddr + HPAGE_PMD_SIZE);
1509         }
1510
1511         /*
1512          * Migrate the THP to the requested node, returns with page unlocked
1513          * and access rights restored.
1514          */
1515         spin_unlock(vmf->ptl);
1516
1517         migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1518                                 vmf->pmd, pmd, vmf->address, page, target_nid);
1519         if (migrated) {
1520                 flags |= TNF_MIGRATED;
1521                 page_nid = target_nid;
1522         } else
1523                 flags |= TNF_MIGRATE_FAIL;
1524
1525         goto out;
1526 clear_pmdnuma:
1527         BUG_ON(!PageLocked(page));
1528         was_writable = pmd_savedwrite(pmd);
1529         pmd = pmd_modify(pmd, vma->vm_page_prot);
1530         pmd = pmd_mkyoung(pmd);
1531         if (was_writable)
1532                 pmd = pmd_mkwrite(pmd);
1533         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1534         update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1535         unlock_page(page);
1536 out_unlock:
1537         spin_unlock(vmf->ptl);
1538
1539 out:
1540         if (anon_vma)
1541                 page_unlock_anon_vma_read(anon_vma);
1542
1543         if (page_nid != NUMA_NO_NODE)
1544                 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1545                                 flags);
1546
1547         return 0;
1548 }
1549
1550 /*
1551  * Return true if we do MADV_FREE successfully on entire pmd page.
1552  * Otherwise, return false.
1553  */
1554 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1555                 pmd_t *pmd, unsigned long addr, unsigned long next)
1556 {
1557         spinlock_t *ptl;
1558         pmd_t orig_pmd;
1559         struct page *page;
1560         struct mm_struct *mm = tlb->mm;
1561         bool ret = false;
1562
1563         tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1564
1565         ptl = pmd_trans_huge_lock(pmd, vma);
1566         if (!ptl)
1567                 goto out_unlocked;
1568
1569         orig_pmd = *pmd;
1570         if (is_huge_zero_pmd(orig_pmd))
1571                 goto out;
1572
1573         if (unlikely(!pmd_present(orig_pmd))) {
1574                 VM_BUG_ON(thp_migration_supported() &&
1575                                   !is_pmd_migration_entry(orig_pmd));
1576                 goto out;
1577         }
1578
1579         page = pmd_page(orig_pmd);
1580         /*
1581          * If other processes are mapping this page, we couldn't discard
1582          * the page unless they all do MADV_FREE so let's skip the page.
1583          */
1584         if (page_mapcount(page) != 1)
1585                 goto out;
1586
1587         if (!trylock_page(page))
1588                 goto out;
1589
1590         /*
1591          * If user want to discard part-pages of THP, split it so MADV_FREE
1592          * will deactivate only them.
1593          */
1594         if (next - addr != HPAGE_PMD_SIZE) {
1595                 get_page(page);
1596                 spin_unlock(ptl);
1597                 split_huge_page(page);
1598                 unlock_page(page);
1599                 put_page(page);
1600                 goto out_unlocked;
1601         }
1602
1603         if (PageDirty(page))
1604                 ClearPageDirty(page);
1605         unlock_page(page);
1606
1607         if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1608                 pmdp_invalidate(vma, addr, pmd);
1609                 orig_pmd = pmd_mkold(orig_pmd);
1610                 orig_pmd = pmd_mkclean(orig_pmd);
1611
1612                 set_pmd_at(mm, addr, pmd, orig_pmd);
1613                 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1614         }
1615
1616         mark_page_lazyfree(page);
1617         ret = true;
1618 out:
1619         spin_unlock(ptl);
1620 out_unlocked:
1621         return ret;
1622 }
1623
1624 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1625 {
1626         pgtable_t pgtable;
1627
1628         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1629         pte_free(mm, pgtable);
1630         mm_dec_nr_ptes(mm);
1631 }
1632
1633 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1634                  pmd_t *pmd, unsigned long addr)
1635 {
1636         pmd_t orig_pmd;
1637         spinlock_t *ptl;
1638
1639         tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1640
1641         ptl = __pmd_trans_huge_lock(pmd, vma);
1642         if (!ptl)
1643                 return 0;
1644         /*
1645          * For architectures like ppc64 we look at deposited pgtable
1646          * when calling pmdp_huge_get_and_clear. So do the
1647          * pgtable_trans_huge_withdraw after finishing pmdp related
1648          * operations.
1649          */
1650         orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1651                                                 tlb->fullmm);
1652         tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1653         if (vma_is_special_huge(vma)) {
1654                 if (arch_needs_pgtable_deposit())
1655                         zap_deposited_table(tlb->mm, pmd);
1656                 spin_unlock(ptl);
1657                 if (is_huge_zero_pmd(orig_pmd))
1658                         tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1659         } else if (is_huge_zero_pmd(orig_pmd)) {
1660                 zap_deposited_table(tlb->mm, pmd);
1661                 spin_unlock(ptl);
1662                 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1663         } else {
1664                 struct page *page = NULL;
1665                 int flush_needed = 1;
1666
1667                 if (pmd_present(orig_pmd)) {
1668                         page = pmd_page(orig_pmd);
1669                         page_remove_rmap(page, true);
1670                         VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1671                         VM_BUG_ON_PAGE(!PageHead(page), page);
1672                 } else if (thp_migration_supported()) {
1673                         swp_entry_t entry;
1674
1675                         VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1676                         entry = pmd_to_swp_entry(orig_pmd);
1677                         page = pfn_to_page(swp_offset(entry));
1678                         flush_needed = 0;
1679                 } else
1680                         WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1681
1682                 if (PageAnon(page)) {
1683                         zap_deposited_table(tlb->mm, pmd);
1684                         add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1685                 } else {
1686                         if (arch_needs_pgtable_deposit())
1687                                 zap_deposited_table(tlb->mm, pmd);
1688                         add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1689                 }
1690
1691                 spin_unlock(ptl);
1692                 if (flush_needed)
1693                         tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1694         }
1695         return 1;
1696 }
1697
1698 #ifndef pmd_move_must_withdraw
1699 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1700                                          spinlock_t *old_pmd_ptl,
1701                                          struct vm_area_struct *vma)
1702 {
1703         /*
1704          * With split pmd lock we also need to move preallocated
1705          * PTE page table if new_pmd is on different PMD page table.
1706          *
1707          * We also don't deposit and withdraw tables for file pages.
1708          */
1709         return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1710 }
1711 #endif
1712
1713 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1714 {
1715 #ifdef CONFIG_MEM_SOFT_DIRTY
1716         if (unlikely(is_pmd_migration_entry(pmd)))
1717                 pmd = pmd_swp_mksoft_dirty(pmd);
1718         else if (pmd_present(pmd))
1719                 pmd = pmd_mksoft_dirty(pmd);
1720 #endif
1721         return pmd;
1722 }
1723
1724 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1725                   unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1726 {
1727         spinlock_t *old_ptl, *new_ptl;
1728         pmd_t pmd;
1729         struct mm_struct *mm = vma->vm_mm;
1730         bool force_flush = false;
1731
1732         /*
1733          * The destination pmd shouldn't be established, free_pgtables()
1734          * should have release it.
1735          */
1736         if (WARN_ON(!pmd_none(*new_pmd))) {
1737                 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1738                 return false;
1739         }
1740
1741         /*
1742          * We don't have to worry about the ordering of src and dst
1743          * ptlocks because exclusive mmap_lock prevents deadlock.
1744          */
1745         old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1746         if (old_ptl) {
1747                 new_ptl = pmd_lockptr(mm, new_pmd);
1748                 if (new_ptl != old_ptl)
1749                         spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1750                 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1751                 if (pmd_present(pmd))
1752                         force_flush = true;
1753                 VM_BUG_ON(!pmd_none(*new_pmd));
1754
1755                 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1756                         pgtable_t pgtable;
1757                         pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1758                         pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1759                 }
1760                 pmd = move_soft_dirty_pmd(pmd);
1761                 set_pmd_at(mm, new_addr, new_pmd, pmd);
1762                 if (force_flush)
1763                         flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1764                 if (new_ptl != old_ptl)
1765                         spin_unlock(new_ptl);
1766                 spin_unlock(old_ptl);
1767                 return true;
1768         }
1769         return false;
1770 }
1771
1772 /*
1773  * Returns
1774  *  - 0 if PMD could not be locked
1775  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1776  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1777  */
1778 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1779                 unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1780 {
1781         struct mm_struct *mm = vma->vm_mm;
1782         spinlock_t *ptl;
1783         pmd_t entry;
1784         bool preserve_write;
1785         int ret;
1786         bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1787         bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1788         bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1789
1790         ptl = __pmd_trans_huge_lock(pmd, vma);
1791         if (!ptl)
1792                 return 0;
1793
1794         preserve_write = prot_numa && pmd_write(*pmd);
1795         ret = 1;
1796
1797 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1798         if (is_swap_pmd(*pmd)) {
1799                 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1800
1801                 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1802                 if (is_write_migration_entry(entry)) {
1803                         pmd_t newpmd;
1804                         /*
1805                          * A protection check is difficult so
1806                          * just be safe and disable write
1807                          */
1808                         make_migration_entry_read(&entry);
1809                         newpmd = swp_entry_to_pmd(entry);
1810                         if (pmd_swp_soft_dirty(*pmd))
1811                                 newpmd = pmd_swp_mksoft_dirty(newpmd);
1812                         set_pmd_at(mm, addr, pmd, newpmd);
1813                 }
1814                 goto unlock;
1815         }
1816 #endif
1817
1818         /*
1819          * Avoid trapping faults against the zero page. The read-only
1820          * data is likely to be read-cached on the local CPU and
1821          * local/remote hits to the zero page are not interesting.
1822          */
1823         if (prot_numa && is_huge_zero_pmd(*pmd))
1824                 goto unlock;
1825
1826         if (prot_numa && pmd_protnone(*pmd))
1827                 goto unlock;
1828
1829         /*
1830          * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1831          * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1832          * which is also under mmap_read_lock(mm):
1833          *
1834          *      CPU0:                           CPU1:
1835          *                              change_huge_pmd(prot_numa=1)
1836          *                               pmdp_huge_get_and_clear_notify()
1837          * madvise_dontneed()
1838          *  zap_pmd_range()
1839          *   pmd_trans_huge(*pmd) == 0 (without ptl)
1840          *   // skip the pmd
1841          *                               set_pmd_at();
1842          *                               // pmd is re-established
1843          *
1844          * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1845          * which may break userspace.
1846          *
1847          * pmdp_invalidate() is required to make sure we don't miss
1848          * dirty/young flags set by hardware.
1849          */
1850         entry = pmdp_invalidate(vma, addr, pmd);
1851
1852         entry = pmd_modify(entry, newprot);
1853         if (preserve_write)
1854                 entry = pmd_mk_savedwrite(entry);
1855         if (uffd_wp) {
1856                 entry = pmd_wrprotect(entry);
1857                 entry = pmd_mkuffd_wp(entry);
1858         } else if (uffd_wp_resolve) {
1859                 /*
1860                  * Leave the write bit to be handled by PF interrupt
1861                  * handler, then things like COW could be properly
1862                  * handled.
1863                  */
1864                 entry = pmd_clear_uffd_wp(entry);
1865         }
1866         ret = HPAGE_PMD_NR;
1867         set_pmd_at(mm, addr, pmd, entry);
1868         BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1869 unlock:
1870         spin_unlock(ptl);
1871         return ret;
1872 }
1873
1874 /*
1875  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1876  *
1877  * Note that if it returns page table lock pointer, this routine returns without
1878  * unlocking page table lock. So callers must unlock it.
1879  */
1880 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1881 {
1882         spinlock_t *ptl;
1883         ptl = pmd_lock(vma->vm_mm, pmd);
1884         if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1885                         pmd_devmap(*pmd)))
1886                 return ptl;
1887         spin_unlock(ptl);
1888         return NULL;
1889 }
1890
1891 /*
1892  * Returns true if a given pud maps a thp, false otherwise.
1893  *
1894  * Note that if it returns true, this routine returns without unlocking page
1895  * table lock. So callers must unlock it.
1896  */
1897 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1898 {
1899         spinlock_t *ptl;
1900
1901         ptl = pud_lock(vma->vm_mm, pud);
1902         if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1903                 return ptl;
1904         spin_unlock(ptl);
1905         return NULL;
1906 }
1907
1908 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1909 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1910                  pud_t *pud, unsigned long addr)
1911 {
1912         spinlock_t *ptl;
1913
1914         ptl = __pud_trans_huge_lock(pud, vma);
1915         if (!ptl)
1916                 return 0;
1917         /*
1918          * For architectures like ppc64 we look at deposited pgtable
1919          * when calling pudp_huge_get_and_clear. So do the
1920          * pgtable_trans_huge_withdraw after finishing pudp related
1921          * operations.
1922          */
1923         pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1924         tlb_remove_pud_tlb_entry(tlb, pud, addr);
1925         if (vma_is_special_huge(vma)) {
1926                 spin_unlock(ptl);
1927                 /* No zero page support yet */
1928         } else {
1929                 /* No support for anonymous PUD pages yet */
1930                 BUG();
1931         }
1932         return 1;
1933 }
1934
1935 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1936                 unsigned long haddr)
1937 {
1938         VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1939         VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1940         VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1941         VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1942
1943         count_vm_event(THP_SPLIT_PUD);
1944
1945         pudp_huge_clear_flush_notify(vma, haddr, pud);
1946 }
1947
1948 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1949                 unsigned long address)
1950 {
1951         spinlock_t *ptl;
1952         struct mmu_notifier_range range;
1953
1954         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1955                                 address & HPAGE_PUD_MASK,
1956                                 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1957         mmu_notifier_invalidate_range_start(&range);
1958         ptl = pud_lock(vma->vm_mm, pud);
1959         if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1960                 goto out;
1961         __split_huge_pud_locked(vma, pud, range.start);
1962
1963 out:
1964         spin_unlock(ptl);
1965         /*
1966          * No need to double call mmu_notifier->invalidate_range() callback as
1967          * the above pudp_huge_clear_flush_notify() did already call it.
1968          */
1969         mmu_notifier_invalidate_range_only_end(&range);
1970 }
1971 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1972
1973 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1974                 unsigned long haddr, pmd_t *pmd)
1975 {
1976         struct mm_struct *mm = vma->vm_mm;
1977         pgtable_t pgtable;
1978         pmd_t _pmd;
1979         int i;
1980
1981         /*
1982          * Leave pmd empty until pte is filled note that it is fine to delay
1983          * notification until mmu_notifier_invalidate_range_end() as we are
1984          * replacing a zero pmd write protected page with a zero pte write
1985          * protected page.
1986          *
1987          * See Documentation/vm/mmu_notifier.rst
1988          */
1989         pmdp_huge_clear_flush(vma, haddr, pmd);
1990
1991         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1992         pmd_populate(mm, &_pmd, pgtable);
1993
1994         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1995                 pte_t *pte, entry;
1996                 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1997                 entry = pte_mkspecial(entry);
1998                 pte = pte_offset_map(&_pmd, haddr);
1999                 VM_BUG_ON(!pte_none(*pte));
2000                 set_pte_at(mm, haddr, pte, entry);
2001                 pte_unmap(pte);
2002         }
2003         smp_wmb(); /* make pte visible before pmd */
2004         pmd_populate(mm, pmd, pgtable);
2005 }
2006
2007 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2008                 unsigned long haddr, bool freeze)
2009 {
2010         struct mm_struct *mm = vma->vm_mm;
2011         struct page *page;
2012         pgtable_t pgtable;
2013         pmd_t old_pmd, _pmd;
2014         bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2015         unsigned long addr;
2016         int i;
2017
2018         VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2019         VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2020         VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2021         VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2022                                 && !pmd_devmap(*pmd));
2023
2024         count_vm_event(THP_SPLIT_PMD);
2025
2026         if (!vma_is_anonymous(vma)) {
2027                 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2028                 /*
2029                  * We are going to unmap this huge page. So
2030                  * just go ahead and zap it
2031                  */
2032                 if (arch_needs_pgtable_deposit())
2033                         zap_deposited_table(mm, pmd);
2034                 if (vma_is_special_huge(vma))
2035                         return;
2036                 page = pmd_page(_pmd);
2037                 if (!PageDirty(page) && pmd_dirty(_pmd))
2038                         set_page_dirty(page);
2039                 if (!PageReferenced(page) && pmd_young(_pmd))
2040                         SetPageReferenced(page);
2041                 page_remove_rmap(page, true);
2042                 put_page(page);
2043                 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2044                 return;
2045         } else if (is_huge_zero_pmd(*pmd)) {
2046                 /*
2047                  * FIXME: Do we want to invalidate secondary mmu by calling
2048                  * mmu_notifier_invalidate_range() see comments below inside
2049                  * __split_huge_pmd() ?
2050                  *
2051                  * We are going from a zero huge page write protected to zero
2052                  * small page also write protected so it does not seems useful
2053                  * to invalidate secondary mmu at this time.
2054                  */
2055                 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2056         }
2057
2058         /*
2059          * Up to this point the pmd is present and huge and userland has the
2060          * whole access to the hugepage during the split (which happens in
2061          * place). If we overwrite the pmd with the not-huge version pointing
2062          * to the pte here (which of course we could if all CPUs were bug
2063          * free), userland could trigger a small page size TLB miss on the
2064          * small sized TLB while the hugepage TLB entry is still established in
2065          * the huge TLB. Some CPU doesn't like that.
2066          * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2067          * 383 on page 105. Intel should be safe but is also warns that it's
2068          * only safe if the permission and cache attributes of the two entries
2069          * loaded in the two TLB is identical (which should be the case here).
2070          * But it is generally safer to never allow small and huge TLB entries
2071          * for the same virtual address to be loaded simultaneously. So instead
2072          * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2073          * current pmd notpresent (atomically because here the pmd_trans_huge
2074          * must remain set at all times on the pmd until the split is complete
2075          * for this pmd), then we flush the SMP TLB and finally we write the
2076          * non-huge version of the pmd entry with pmd_populate.
2077          */
2078         old_pmd = pmdp_invalidate(vma, haddr, pmd);
2079
2080         pmd_migration = is_pmd_migration_entry(old_pmd);
2081         if (unlikely(pmd_migration)) {
2082                 swp_entry_t entry;
2083
2084                 entry = pmd_to_swp_entry(old_pmd);
2085                 page = pfn_to_page(swp_offset(entry));
2086                 write = is_write_migration_entry(entry);
2087                 young = false;
2088                 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2089                 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2090         } else {
2091                 page = pmd_page(old_pmd);
2092                 if (pmd_dirty(old_pmd))
2093                         SetPageDirty(page);
2094                 write = pmd_write(old_pmd);
2095                 young = pmd_young(old_pmd);
2096                 soft_dirty = pmd_soft_dirty(old_pmd);
2097                 uffd_wp = pmd_uffd_wp(old_pmd);
2098         }
2099         VM_BUG_ON_PAGE(!page_count(page), page);
2100         page_ref_add(page, HPAGE_PMD_NR - 1);
2101
2102         /*
2103          * Withdraw the table only after we mark the pmd entry invalid.
2104          * This's critical for some architectures (Power).
2105          */
2106         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2107         pmd_populate(mm, &_pmd, pgtable);
2108
2109         for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2110                 pte_t entry, *pte;
2111                 /*
2112                  * Note that NUMA hinting access restrictions are not
2113                  * transferred to avoid any possibility of altering
2114                  * permissions across VMAs.
2115                  */
2116                 if (freeze || pmd_migration) {
2117                         swp_entry_t swp_entry;
2118                         swp_entry = make_migration_entry(page + i, write);
2119                         entry = swp_entry_to_pte(swp_entry);
2120                         if (soft_dirty)
2121                                 entry = pte_swp_mksoft_dirty(entry);
2122                         if (uffd_wp)
2123                                 entry = pte_swp_mkuffd_wp(entry);
2124                 } else {
2125                         entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2126                         entry = maybe_mkwrite(entry, vma);
2127                         if (!write)
2128                                 entry = pte_wrprotect(entry);
2129                         if (!young)
2130                                 entry = pte_mkold(entry);
2131                         if (soft_dirty)
2132                                 entry = pte_mksoft_dirty(entry);
2133                         if (uffd_wp)
2134                                 entry = pte_mkuffd_wp(entry);
2135                 }
2136                 pte = pte_offset_map(&_pmd, addr);
2137                 BUG_ON(!pte_none(*pte));
2138                 set_pte_at(mm, addr, pte, entry);
2139                 atomic_inc(&page[i]._mapcount);
2140                 pte_unmap(pte);
2141         }
2142
2143         /*
2144          * Set PG_double_map before dropping compound_mapcount to avoid
2145          * false-negative page_mapped().
2146          */
2147         if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2148                 for (i = 0; i < HPAGE_PMD_NR; i++)
2149                         atomic_inc(&page[i]._mapcount);
2150         }
2151
2152         lock_page_memcg(page);
2153         if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2154                 /* Last compound_mapcount is gone. */
2155                 __dec_lruvec_page_state(page, NR_ANON_THPS);
2156                 if (TestClearPageDoubleMap(page)) {
2157                         /* No need in mapcount reference anymore */
2158                         for (i = 0; i < HPAGE_PMD_NR; i++)
2159                                 atomic_dec(&page[i]._mapcount);
2160                 }
2161         }
2162         unlock_page_memcg(page);
2163
2164         smp_wmb(); /* make pte visible before pmd */
2165         pmd_populate(mm, pmd, pgtable);
2166
2167         if (freeze) {
2168                 for (i = 0; i < HPAGE_PMD_NR; i++) {
2169                         page_remove_rmap(page + i, false);
2170                         put_page(page + i);
2171                 }
2172         }
2173 }
2174
2175 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2176                 unsigned long address, bool freeze, struct page *page)
2177 {
2178         spinlock_t *ptl;
2179         struct mmu_notifier_range range;
2180         bool was_locked = false;
2181         pmd_t _pmd;
2182
2183         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2184                                 address & HPAGE_PMD_MASK,
2185                                 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2186         mmu_notifier_invalidate_range_start(&range);
2187         ptl = pmd_lock(vma->vm_mm, pmd);
2188
2189         /*
2190          * If caller asks to setup a migration entries, we need a page to check
2191          * pmd against. Otherwise we can end up replacing wrong page.
2192          */
2193         VM_BUG_ON(freeze && !page);
2194         if (page) {
2195                 VM_WARN_ON_ONCE(!PageLocked(page));
2196                 was_locked = true;
2197                 if (page != pmd_page(*pmd))
2198                         goto out;
2199         }
2200
2201 repeat:
2202         if (pmd_trans_huge(*pmd)) {
2203                 if (!page) {
2204                         page = pmd_page(*pmd);
2205                         if (unlikely(!trylock_page(page))) {
2206                                 get_page(page);
2207                                 _pmd = *pmd;
2208                                 spin_unlock(ptl);
2209                                 lock_page(page);
2210                                 spin_lock(ptl);
2211                                 if (unlikely(!pmd_same(*pmd, _pmd))) {
2212                                         unlock_page(page);
2213                                         put_page(page);
2214                                         page = NULL;
2215                                         goto repeat;
2216                                 }
2217                                 put_page(page);
2218                         }
2219                 }
2220                 if (PageMlocked(page))
2221                         clear_page_mlock(page);
2222         } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2223                 goto out;
2224         __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2225 out:
2226         spin_unlock(ptl);
2227         if (!was_locked && page)
2228                 unlock_page(page);
2229         /*
2230          * No need to double call mmu_notifier->invalidate_range() callback.
2231          * They are 3 cases to consider inside __split_huge_pmd_locked():
2232          *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2233          *  2) __split_huge_zero_page_pmd() read only zero page and any write
2234          *    fault will trigger a flush_notify before pointing to a new page
2235          *    (it is fine if the secondary mmu keeps pointing to the old zero
2236          *    page in the meantime)
2237          *  3) Split a huge pmd into pte pointing to the same page. No need
2238          *     to invalidate secondary tlb entry they are all still valid.
2239          *     any further changes to individual pte will notify. So no need
2240          *     to call mmu_notifier->invalidate_range()
2241          */
2242         mmu_notifier_invalidate_range_only_end(&range);
2243 }
2244
2245 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2246                 bool freeze, struct page *page)
2247 {
2248         pgd_t *pgd;
2249         p4d_t *p4d;
2250         pud_t *pud;
2251         pmd_t *pmd;
2252
2253         pgd = pgd_offset(vma->vm_mm, address);
2254         if (!pgd_present(*pgd))
2255                 return;
2256
2257         p4d = p4d_offset(pgd, address);
2258         if (!p4d_present(*p4d))
2259                 return;
2260
2261         pud = pud_offset(p4d, address);
2262         if (!pud_present(*pud))
2263                 return;
2264
2265         pmd = pmd_offset(pud, address);
2266
2267         __split_huge_pmd(vma, pmd, address, freeze, page);
2268 }
2269
2270 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2271                              unsigned long start,
2272                              unsigned long end,
2273                              long adjust_next)
2274 {
2275         /*
2276          * If the new start address isn't hpage aligned and it could
2277          * previously contain an hugepage: check if we need to split
2278          * an huge pmd.
2279          */
2280         if (start & ~HPAGE_PMD_MASK &&
2281             (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2282             (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2283                 split_huge_pmd_address(vma, start, false, NULL);
2284
2285         /*
2286          * If the new end address isn't hpage aligned and it could
2287          * previously contain an hugepage: check if we need to split
2288          * an huge pmd.
2289          */
2290         if (end & ~HPAGE_PMD_MASK &&
2291             (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2292             (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2293                 split_huge_pmd_address(vma, end, false, NULL);
2294
2295         /*
2296          * If we're also updating the vma->vm_next->vm_start, if the new
2297          * vm_next->vm_start isn't page aligned and it could previously
2298          * contain an hugepage: check if we need to split an huge pmd.
2299          */
2300         if (adjust_next > 0) {
2301                 struct vm_area_struct *next = vma->vm_next;
2302                 unsigned long nstart = next->vm_start;
2303                 nstart += adjust_next << PAGE_SHIFT;
2304                 if (nstart & ~HPAGE_PMD_MASK &&
2305                     (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2306                     (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2307                         split_huge_pmd_address(next, nstart, false, NULL);
2308         }
2309 }
2310
2311 static void unmap_page(struct page *page)
2312 {
2313         enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2314                 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2315         bool unmap_success;
2316
2317         VM_BUG_ON_PAGE(!PageHead(page), page);
2318
2319         if (PageAnon(page))
2320                 ttu_flags |= TTU_SPLIT_FREEZE;
2321
2322         unmap_success = try_to_unmap(page, ttu_flags);
2323         VM_BUG_ON_PAGE(!unmap_success, page);
2324 }
2325
2326 static void remap_page(struct page *page)
2327 {
2328         int i;
2329         if (PageTransHuge(page)) {
2330                 remove_migration_ptes(page, page, true);
2331         } else {
2332                 for (i = 0; i < HPAGE_PMD_NR; i++)
2333                         remove_migration_ptes(page + i, page + i, true);
2334         }
2335 }
2336
2337 static void __split_huge_page_tail(struct page *head, int tail,
2338                 struct lruvec *lruvec, struct list_head *list)
2339 {
2340         struct page *page_tail = head + tail;
2341
2342         VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2343
2344         /*
2345          * Clone page flags before unfreezing refcount.
2346          *
2347          * After successful get_page_unless_zero() might follow flags change,
2348          * for exmaple lock_page() which set PG_waiters.
2349          */
2350         page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2351         page_tail->flags |= (head->flags &
2352                         ((1L << PG_referenced) |
2353                          (1L << PG_swapbacked) |
2354                          (1L << PG_swapcache) |
2355                          (1L << PG_mlocked) |
2356                          (1L << PG_uptodate) |
2357                          (1L << PG_active) |
2358                          (1L << PG_workingset) |
2359                          (1L << PG_locked) |
2360                          (1L << PG_unevictable) |
2361                          (1L << PG_dirty)));
2362
2363         /* ->mapping in first tail page is compound_mapcount */
2364         VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2365                         page_tail);
2366         page_tail->mapping = head->mapping;
2367         page_tail->index = head->index + tail;
2368
2369         /* Page flags must be visible before we make the page non-compound. */
2370         smp_wmb();
2371
2372         /*
2373          * Clear PageTail before unfreezing page refcount.
2374          *
2375          * After successful get_page_unless_zero() might follow put_page()
2376          * which needs correct compound_head().
2377          */
2378         clear_compound_head(page_tail);
2379
2380         /* Finally unfreeze refcount. Additional reference from page cache. */
2381         page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2382                                           PageSwapCache(head)));
2383
2384         if (page_is_young(head))
2385                 set_page_young(page_tail);
2386         if (page_is_idle(head))
2387                 set_page_idle(page_tail);
2388
2389         page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2390
2391         /*
2392          * always add to the tail because some iterators expect new
2393          * pages to show after the currently processed elements - e.g.
2394          * migrate_pages
2395          */
2396         lru_add_page_tail(head, page_tail, lruvec, list);
2397 }
2398
2399 static void __split_huge_page(struct page *page, struct list_head *list,
2400                 pgoff_t end, unsigned long flags)
2401 {
2402         struct page *head = compound_head(page);
2403         pg_data_t *pgdat = page_pgdat(head);
2404         struct lruvec *lruvec;
2405         struct address_space *swap_cache = NULL;
2406         unsigned long offset = 0;
2407         int i;
2408
2409         lruvec = mem_cgroup_page_lruvec(head, pgdat);
2410
2411         /* complete memcg works before add pages to LRU */
2412         mem_cgroup_split_huge_fixup(head);
2413
2414         if (PageAnon(head) && PageSwapCache(head)) {
2415                 swp_entry_t entry = { .val = page_private(head) };
2416
2417                 offset = swp_offset(entry);
2418                 swap_cache = swap_address_space(entry);
2419                 xa_lock(&swap_cache->i_pages);
2420         }
2421
2422         for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2423                 __split_huge_page_tail(head, i, lruvec, list);
2424                 /* Some pages can be beyond i_size: drop them from page cache */
2425                 if (head[i].index >= end) {
2426                         ClearPageDirty(head + i);
2427                         __delete_from_page_cache(head + i, NULL);
2428                         if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2429                                 shmem_uncharge(head->mapping->host, 1);
2430                         put_page(head + i);
2431                 } else if (!PageAnon(page)) {
2432                         __xa_store(&head->mapping->i_pages, head[i].index,
2433                                         head + i, 0);
2434                 } else if (swap_cache) {
2435                         __xa_store(&swap_cache->i_pages, offset + i,
2436                                         head + i, 0);
2437                 }
2438         }
2439
2440         ClearPageCompound(head);
2441
2442         split_page_owner(head, HPAGE_PMD_ORDER);
2443
2444         /* See comment in __split_huge_page_tail() */
2445         if (PageAnon(head)) {
2446                 /* Additional pin to swap cache */
2447                 if (PageSwapCache(head)) {
2448                         page_ref_add(head, 2);
2449                         xa_unlock(&swap_cache->i_pages);
2450                 } else {
2451                         page_ref_inc(head);
2452                 }
2453         } else {
2454                 /* Additional pin to page cache */
2455                 page_ref_add(head, 2);
2456                 xa_unlock(&head->mapping->i_pages);
2457         }
2458
2459         spin_unlock_irqrestore(&pgdat->lru_lock, flags);
2460
2461         remap_page(head);
2462
2463         for (i = 0; i < HPAGE_PMD_NR; i++) {
2464                 struct page *subpage = head + i;
2465                 if (subpage == page)
2466                         continue;
2467                 unlock_page(subpage);
2468
2469                 /*
2470                  * Subpages may be freed if there wasn't any mapping
2471                  * like if add_to_swap() is running on a lru page that
2472                  * had its mapping zapped. And freeing these pages
2473                  * requires taking the lru_lock so we do the put_page
2474                  * of the tail pages after the split is complete.
2475                  */
2476                 put_page(subpage);
2477         }
2478 }
2479
2480 int total_mapcount(struct page *page)
2481 {
2482         int i, compound, ret;
2483
2484         VM_BUG_ON_PAGE(PageTail(page), page);
2485
2486         if (likely(!PageCompound(page)))
2487                 return atomic_read(&page->_mapcount) + 1;
2488
2489         compound = compound_mapcount(page);
2490         if (PageHuge(page))
2491                 return compound;
2492         ret = compound;
2493         for (i = 0; i < HPAGE_PMD_NR; i++)
2494                 ret += atomic_read(&page[i]._mapcount) + 1;
2495         /* File pages has compound_mapcount included in _mapcount */
2496         if (!PageAnon(page))
2497                 return ret - compound * HPAGE_PMD_NR;
2498         if (PageDoubleMap(page))
2499                 ret -= HPAGE_PMD_NR;
2500         return ret;
2501 }
2502
2503 /*
2504  * This calculates accurately how many mappings a transparent hugepage
2505  * has (unlike page_mapcount() which isn't fully accurate). This full
2506  * accuracy is primarily needed to know if copy-on-write faults can
2507  * reuse the page and change the mapping to read-write instead of
2508  * copying them. At the same time this returns the total_mapcount too.
2509  *
2510  * The function returns the highest mapcount any one of the subpages
2511  * has. If the return value is one, even if different processes are
2512  * mapping different subpages of the transparent hugepage, they can
2513  * all reuse it, because each process is reusing a different subpage.
2514  *
2515  * The total_mapcount is instead counting all virtual mappings of the
2516  * subpages. If the total_mapcount is equal to "one", it tells the
2517  * caller all mappings belong to the same "mm" and in turn the
2518  * anon_vma of the transparent hugepage can become the vma->anon_vma
2519  * local one as no other process may be mapping any of the subpages.
2520  *
2521  * It would be more accurate to replace page_mapcount() with
2522  * page_trans_huge_mapcount(), however we only use
2523  * page_trans_huge_mapcount() in the copy-on-write faults where we
2524  * need full accuracy to avoid breaking page pinning, because
2525  * page_trans_huge_mapcount() is slower than page_mapcount().
2526  */
2527 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2528 {
2529         int i, ret, _total_mapcount, mapcount;
2530
2531         /* hugetlbfs shouldn't call it */
2532         VM_BUG_ON_PAGE(PageHuge(page), page);
2533
2534         if (likely(!PageTransCompound(page))) {
2535                 mapcount = atomic_read(&page->_mapcount) + 1;
2536                 if (total_mapcount)
2537                         *total_mapcount = mapcount;
2538                 return mapcount;
2539         }
2540
2541         page = compound_head(page);
2542
2543         _total_mapcount = ret = 0;
2544         for (i = 0; i < HPAGE_PMD_NR; i++) {
2545                 mapcount = atomic_read(&page[i]._mapcount) + 1;
2546                 ret = max(ret, mapcount);
2547                 _total_mapcount += mapcount;
2548         }
2549         if (PageDoubleMap(page)) {
2550                 ret -= 1;
2551                 _total_mapcount -= HPAGE_PMD_NR;
2552         }
2553         mapcount = compound_mapcount(page);
2554         ret += mapcount;
2555         _total_mapcount += mapcount;
2556         if (total_mapcount)
2557                 *total_mapcount = _total_mapcount;
2558         return ret;
2559 }
2560
2561 /* Racy check whether the huge page can be split */
2562 bool can_split_huge_page(struct page *page, int *pextra_pins)
2563 {
2564         int extra_pins;
2565
2566         /* Additional pins from page cache */
2567         if (PageAnon(page))
2568                 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2569         else
2570                 extra_pins = HPAGE_PMD_NR;
2571         if (pextra_pins)
2572                 *pextra_pins = extra_pins;
2573         return total_mapcount(page) == page_count(page) - extra_pins - 1;
2574 }
2575
2576 /*
2577  * This function splits huge page into normal pages. @page can point to any
2578  * subpage of huge page to split. Split doesn't change the position of @page.
2579  *
2580  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2581  * The huge page must be locked.
2582  *
2583  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2584  *
2585  * Both head page and tail pages will inherit mapping, flags, and so on from
2586  * the hugepage.
2587  *
2588  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2589  * they are not mapped.
2590  *
2591  * Returns 0 if the hugepage is split successfully.
2592  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2593  * us.
2594  */
2595 int split_huge_page_to_list(struct page *page, struct list_head *list)
2596 {
2597         struct page *head = compound_head(page);
2598         struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2599         struct deferred_split *ds_queue = get_deferred_split_queue(head);
2600         struct anon_vma *anon_vma = NULL;
2601         struct address_space *mapping = NULL;
2602         int count, mapcount, extra_pins, ret;
2603         unsigned long flags;
2604         pgoff_t end;
2605
2606         VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2607         VM_BUG_ON_PAGE(!PageLocked(head), head);
2608         VM_BUG_ON_PAGE(!PageCompound(head), head);
2609
2610         if (PageWriteback(head))
2611                 return -EBUSY;
2612
2613         if (PageAnon(head)) {
2614                 /*
2615                  * The caller does not necessarily hold an mmap_lock that would
2616                  * prevent the anon_vma disappearing so we first we take a
2617                  * reference to it and then lock the anon_vma for write. This
2618                  * is similar to page_lock_anon_vma_read except the write lock
2619                  * is taken to serialise against parallel split or collapse
2620                  * operations.
2621                  */
2622                 anon_vma = page_get_anon_vma(head);
2623                 if (!anon_vma) {
2624                         ret = -EBUSY;
2625                         goto out;
2626                 }
2627                 end = -1;
2628                 mapping = NULL;
2629                 anon_vma_lock_write(anon_vma);
2630         } else {
2631                 mapping = head->mapping;
2632
2633                 /* Truncated ? */
2634                 if (!mapping) {
2635                         ret = -EBUSY;
2636                         goto out;
2637                 }
2638
2639                 anon_vma = NULL;
2640                 i_mmap_lock_read(mapping);
2641
2642                 /*
2643                  *__split_huge_page() may need to trim off pages beyond EOF:
2644                  * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2645                  * which cannot be nested inside the page tree lock. So note
2646                  * end now: i_size itself may be changed at any moment, but
2647                  * head page lock is good enough to serialize the trimming.
2648                  */
2649                 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2650         }
2651
2652         /*
2653          * Racy check if we can split the page, before unmap_page() will
2654          * split PMDs
2655          */
2656         if (!can_split_huge_page(head, &extra_pins)) {
2657                 ret = -EBUSY;
2658                 goto out_unlock;
2659         }
2660
2661         unmap_page(head);
2662         VM_BUG_ON_PAGE(compound_mapcount(head), head);
2663
2664         /* prevent PageLRU to go away from under us, and freeze lru stats */
2665         spin_lock_irqsave(&pgdata->lru_lock, flags);
2666
2667         if (mapping) {
2668                 XA_STATE(xas, &mapping->i_pages, page_index(head));
2669
2670                 /*
2671                  * Check if the head page is present in page cache.
2672                  * We assume all tail are present too, if head is there.
2673                  */
2674                 xa_lock(&mapping->i_pages);
2675                 if (xas_load(&xas) != head)
2676                         goto fail;
2677         }
2678
2679         /* Prevent deferred_split_scan() touching ->_refcount */
2680         spin_lock(&ds_queue->split_queue_lock);
2681         count = page_count(head);
2682         mapcount = total_mapcount(head);
2683         if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2684                 if (!list_empty(page_deferred_list(head))) {
2685                         ds_queue->split_queue_len--;
2686                         list_del(page_deferred_list(head));
2687                 }
2688                 spin_unlock(&ds_queue->split_queue_lock);
2689                 if (mapping) {
2690                         if (PageSwapBacked(head))
2691                                 __dec_node_page_state(head, NR_SHMEM_THPS);
2692                         else
2693                                 __dec_node_page_state(head, NR_FILE_THPS);
2694                 }
2695
2696                 __split_huge_page(page, list, end, flags);
2697                 if (PageSwapCache(head)) {
2698                         swp_entry_t entry = { .val = page_private(head) };
2699
2700                         ret = split_swap_cluster(entry);
2701                 } else
2702                         ret = 0;
2703         } else {
2704                 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2705                         pr_alert("total_mapcount: %u, page_count(): %u\n",
2706                                         mapcount, count);
2707                         if (PageTail(page))
2708                                 dump_page(head, NULL);
2709                         dump_page(page, "total_mapcount(head) > 0");
2710                         BUG();
2711                 }
2712                 spin_unlock(&ds_queue->split_queue_lock);
2713 fail:           if (mapping)
2714                         xa_unlock(&mapping->i_pages);
2715                 spin_unlock_irqrestore(&pgdata->lru_lock, flags);
2716                 remap_page(head);
2717                 ret = -EBUSY;
2718         }
2719
2720 out_unlock:
2721         if (anon_vma) {
2722                 anon_vma_unlock_write(anon_vma);
2723                 put_anon_vma(anon_vma);
2724         }
2725         if (mapping)
2726                 i_mmap_unlock_read(mapping);
2727 out:
2728         count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2729         return ret;
2730 }
2731
2732 void free_transhuge_page(struct page *page)
2733 {
2734         struct deferred_split *ds_queue = get_deferred_split_queue(page);
2735         unsigned long flags;
2736
2737         spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2738         if (!list_empty(page_deferred_list(page))) {
2739                 ds_queue->split_queue_len--;
2740                 list_del(page_deferred_list(page));
2741         }
2742         spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2743         free_compound_page(page);
2744 }
2745
2746 void deferred_split_huge_page(struct page *page)
2747 {
2748         struct deferred_split *ds_queue = get_deferred_split_queue(page);
2749 #ifdef CONFIG_MEMCG
2750         struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
2751 #endif
2752         unsigned long flags;
2753
2754         VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2755
2756         /*
2757          * The try_to_unmap() in page reclaim path might reach here too,
2758          * this may cause a race condition to corrupt deferred split queue.
2759          * And, if page reclaim is already handling the same page, it is
2760          * unnecessary to handle it again in shrinker.
2761          *
2762          * Check PageSwapCache to determine if the page is being
2763          * handled by page reclaim since THP swap would add the page into
2764          * swap cache before calling try_to_unmap().
2765          */
2766         if (PageSwapCache(page))
2767                 return;
2768
2769         spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2770         if (list_empty(page_deferred_list(page))) {
2771                 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2772                 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2773                 ds_queue->split_queue_len++;
2774 #ifdef CONFIG_MEMCG
2775                 if (memcg)
2776                         memcg_set_shrinker_bit(memcg, page_to_nid(page),
2777                                                deferred_split_shrinker.id);
2778 #endif
2779         }
2780         spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2781 }
2782
2783 static unsigned long deferred_split_count(struct shrinker *shrink,
2784                 struct shrink_control *sc)
2785 {
2786         struct pglist_data *pgdata = NODE_DATA(sc->nid);
2787         struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2788
2789 #ifdef CONFIG_MEMCG
2790         if (sc->memcg)
2791                 ds_queue = &sc->memcg->deferred_split_queue;
2792 #endif
2793         return READ_ONCE(ds_queue->split_queue_len);
2794 }
2795
2796 static unsigned long deferred_split_scan(struct shrinker *shrink,
2797                 struct shrink_control *sc)
2798 {
2799         struct pglist_data *pgdata = NODE_DATA(sc->nid);
2800         struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2801         unsigned long flags;
2802         LIST_HEAD(list), *pos, *next;
2803         struct page *page;
2804         int split = 0;
2805
2806 #ifdef CONFIG_MEMCG
2807         if (sc->memcg)
2808                 ds_queue = &sc->memcg->deferred_split_queue;
2809 #endif
2810
2811         spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2812         /* Take pin on all head pages to avoid freeing them under us */
2813         list_for_each_safe(pos, next, &ds_queue->split_queue) {
2814                 page = list_entry((void *)pos, struct page, mapping);
2815                 page = compound_head(page);
2816                 if (get_page_unless_zero(page)) {
2817                         list_move(page_deferred_list(page), &list);
2818                 } else {
2819                         /* We lost race with put_compound_page() */
2820                         list_del_init(page_deferred_list(page));
2821                         ds_queue->split_queue_len--;
2822                 }
2823                 if (!--sc->nr_to_scan)
2824                         break;
2825         }
2826         spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2827
2828         list_for_each_safe(pos, next, &list) {
2829                 page = list_entry((void *)pos, struct page, mapping);
2830                 if (!trylock_page(page))
2831                         goto next;
2832                 /* split_huge_page() removes page from list on success */
2833                 if (!split_huge_page(page))
2834                         split++;
2835                 unlock_page(page);
2836 next:
2837                 put_page(page);
2838         }
2839
2840         spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2841         list_splice_tail(&list, &ds_queue->split_queue);
2842         spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2843
2844         /*
2845          * Stop shrinker if we didn't split any page, but the queue is empty.
2846          * This can happen if pages were freed under us.
2847          */
2848         if (!split && list_empty(&ds_queue->split_queue))
2849                 return SHRINK_STOP;
2850         return split;
2851 }
2852
2853 static struct shrinker deferred_split_shrinker = {
2854         .count_objects = deferred_split_count,
2855         .scan_objects = deferred_split_scan,
2856         .seeks = DEFAULT_SEEKS,
2857         .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2858                  SHRINKER_NONSLAB,
2859 };
2860
2861 #ifdef CONFIG_DEBUG_FS
2862 static int split_huge_pages_set(void *data, u64 val)
2863 {
2864         struct zone *zone;
2865         struct page *page;
2866         unsigned long pfn, max_zone_pfn;
2867         unsigned long total = 0, split = 0;
2868
2869         if (val != 1)
2870                 return -EINVAL;
2871
2872         for_each_populated_zone(zone) {
2873                 max_zone_pfn = zone_end_pfn(zone);
2874                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2875                         if (!pfn_valid(pfn))
2876                                 continue;
2877
2878                         page = pfn_to_page(pfn);
2879                         if (!get_page_unless_zero(page))
2880                                 continue;
2881
2882                         if (zone != page_zone(page))
2883                                 goto next;
2884
2885                         if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2886                                 goto next;
2887
2888                         total++;
2889                         lock_page(page);
2890                         if (!split_huge_page(page))
2891                                 split++;
2892                         unlock_page(page);
2893 next:
2894                         put_page(page);
2895                 }
2896         }
2897
2898         pr_info("%lu of %lu THP split\n", split, total);
2899
2900         return 0;
2901 }
2902 DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2903                 "%llu\n");
2904
2905 static int __init split_huge_pages_debugfs(void)
2906 {
2907         debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2908                             &split_huge_pages_fops);
2909         return 0;
2910 }
2911 late_initcall(split_huge_pages_debugfs);
2912 #endif
2913
2914 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2915 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2916                 struct page *page)
2917 {
2918         struct vm_area_struct *vma = pvmw->vma;
2919         struct mm_struct *mm = vma->vm_mm;
2920         unsigned long address = pvmw->address;
2921         pmd_t pmdval;
2922         swp_entry_t entry;
2923         pmd_t pmdswp;
2924
2925         if (!(pvmw->pmd && !pvmw->pte))
2926                 return;
2927
2928         flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2929         pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
2930         if (pmd_dirty(pmdval))
2931                 set_page_dirty(page);
2932         entry = make_migration_entry(page, pmd_write(pmdval));
2933         pmdswp = swp_entry_to_pmd(entry);
2934         if (pmd_soft_dirty(pmdval))
2935                 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2936         set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2937         page_remove_rmap(page, true);
2938         put_page(page);
2939 }
2940
2941 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2942 {
2943         struct vm_area_struct *vma = pvmw->vma;
2944         struct mm_struct *mm = vma->vm_mm;
2945         unsigned long address = pvmw->address;
2946         unsigned long mmun_start = address & HPAGE_PMD_MASK;
2947         pmd_t pmde;
2948         swp_entry_t entry;
2949
2950         if (!(pvmw->pmd && !pvmw->pte))
2951                 return;
2952
2953         entry = pmd_to_swp_entry(*pvmw->pmd);
2954         get_page(new);
2955         pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2956         if (pmd_swp_soft_dirty(*pvmw->pmd))
2957                 pmde = pmd_mksoft_dirty(pmde);
2958         if (is_write_migration_entry(entry))
2959                 pmde = maybe_pmd_mkwrite(pmde, vma);
2960
2961         flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2962         if (PageAnon(new))
2963                 page_add_anon_rmap(new, vma, mmun_start, true);
2964         else
2965                 page_add_file_rmap(new, true);
2966         set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2967         if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
2968                 mlock_vma_page(new);
2969         update_mmu_cache_pmd(vma, address, pvmw->pmd);
2970 }
2971 #endif