perf metric: Add cache_miss_cycles to metric parse test
[linux-2.6-microblaze.git] / mm / hmm.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2013 Red Hat Inc.
4  *
5  * Authors: Jérôme Glisse <jglisse@redhat.com>
6  */
7 /*
8  * Refer to include/linux/hmm.h for information about heterogeneous memory
9  * management or HMM for short.
10  */
11 #include <linux/pagewalk.h>
12 #include <linux/hmm.h>
13 #include <linux/init.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/mmzone.h>
19 #include <linux/pagemap.h>
20 #include <linux/swapops.h>
21 #include <linux/hugetlb.h>
22 #include <linux/memremap.h>
23 #include <linux/sched/mm.h>
24 #include <linux/jump_label.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/mmu_notifier.h>
27 #include <linux/memory_hotplug.h>
28
29 struct hmm_vma_walk {
30         struct hmm_range        *range;
31         unsigned long           last;
32 };
33
34 enum {
35         HMM_NEED_FAULT = 1 << 0,
36         HMM_NEED_WRITE_FAULT = 1 << 1,
37         HMM_NEED_ALL_BITS = HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT,
38 };
39
40 static int hmm_pfns_fill(unsigned long addr, unsigned long end,
41                          struct hmm_range *range, unsigned long cpu_flags)
42 {
43         unsigned long i = (addr - range->start) >> PAGE_SHIFT;
44
45         for (; addr < end; addr += PAGE_SIZE, i++)
46                 range->hmm_pfns[i] = cpu_flags;
47         return 0;
48 }
49
50 /*
51  * hmm_vma_fault() - fault in a range lacking valid pmd or pte(s)
52  * @addr: range virtual start address (inclusive)
53  * @end: range virtual end address (exclusive)
54  * @required_fault: HMM_NEED_* flags
55  * @walk: mm_walk structure
56  * Return: -EBUSY after page fault, or page fault error
57  *
58  * This function will be called whenever pmd_none() or pte_none() returns true,
59  * or whenever there is no page directory covering the virtual address range.
60  */
61 static int hmm_vma_fault(unsigned long addr, unsigned long end,
62                          unsigned int required_fault, struct mm_walk *walk)
63 {
64         struct hmm_vma_walk *hmm_vma_walk = walk->private;
65         struct vm_area_struct *vma = walk->vma;
66         unsigned int fault_flags = FAULT_FLAG_REMOTE;
67
68         WARN_ON_ONCE(!required_fault);
69         hmm_vma_walk->last = addr;
70
71         if (required_fault & HMM_NEED_WRITE_FAULT) {
72                 if (!(vma->vm_flags & VM_WRITE))
73                         return -EPERM;
74                 fault_flags |= FAULT_FLAG_WRITE;
75         }
76
77         for (; addr < end; addr += PAGE_SIZE)
78                 if (handle_mm_fault(vma, addr, fault_flags) & VM_FAULT_ERROR)
79                         return -EFAULT;
80         return -EBUSY;
81 }
82
83 static unsigned int hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
84                                        unsigned long pfn_req_flags,
85                                        unsigned long cpu_flags)
86 {
87         struct hmm_range *range = hmm_vma_walk->range;
88
89         /*
90          * So we not only consider the individual per page request we also
91          * consider the default flags requested for the range. The API can
92          * be used 2 ways. The first one where the HMM user coalesces
93          * multiple page faults into one request and sets flags per pfn for
94          * those faults. The second one where the HMM user wants to pre-
95          * fault a range with specific flags. For the latter one it is a
96          * waste to have the user pre-fill the pfn arrays with a default
97          * flags value.
98          */
99         pfn_req_flags &= range->pfn_flags_mask;
100         pfn_req_flags |= range->default_flags;
101
102         /* We aren't ask to do anything ... */
103         if (!(pfn_req_flags & HMM_PFN_REQ_FAULT))
104                 return 0;
105
106         /* Need to write fault ? */
107         if ((pfn_req_flags & HMM_PFN_REQ_WRITE) &&
108             !(cpu_flags & HMM_PFN_WRITE))
109                 return HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT;
110
111         /* If CPU page table is not valid then we need to fault */
112         if (!(cpu_flags & HMM_PFN_VALID))
113                 return HMM_NEED_FAULT;
114         return 0;
115 }
116
117 static unsigned int
118 hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
119                      const unsigned long hmm_pfns[], unsigned long npages,
120                      unsigned long cpu_flags)
121 {
122         struct hmm_range *range = hmm_vma_walk->range;
123         unsigned int required_fault = 0;
124         unsigned long i;
125
126         /*
127          * If the default flags do not request to fault pages, and the mask does
128          * not allow for individual pages to be faulted, then
129          * hmm_pte_need_fault() will always return 0.
130          */
131         if (!((range->default_flags | range->pfn_flags_mask) &
132               HMM_PFN_REQ_FAULT))
133                 return 0;
134
135         for (i = 0; i < npages; ++i) {
136                 required_fault |= hmm_pte_need_fault(hmm_vma_walk, hmm_pfns[i],
137                                                      cpu_flags);
138                 if (required_fault == HMM_NEED_ALL_BITS)
139                         return required_fault;
140         }
141         return required_fault;
142 }
143
144 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
145                              __always_unused int depth, struct mm_walk *walk)
146 {
147         struct hmm_vma_walk *hmm_vma_walk = walk->private;
148         struct hmm_range *range = hmm_vma_walk->range;
149         unsigned int required_fault;
150         unsigned long i, npages;
151         unsigned long *hmm_pfns;
152
153         i = (addr - range->start) >> PAGE_SHIFT;
154         npages = (end - addr) >> PAGE_SHIFT;
155         hmm_pfns = &range->hmm_pfns[i];
156         required_fault =
157                 hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0);
158         if (!walk->vma) {
159                 if (required_fault)
160                         return -EFAULT;
161                 return hmm_pfns_fill(addr, end, range, HMM_PFN_ERROR);
162         }
163         if (required_fault)
164                 return hmm_vma_fault(addr, end, required_fault, walk);
165         return hmm_pfns_fill(addr, end, range, 0);
166 }
167
168 static inline unsigned long pmd_to_hmm_pfn_flags(struct hmm_range *range,
169                                                  pmd_t pmd)
170 {
171         if (pmd_protnone(pmd))
172                 return 0;
173         return pmd_write(pmd) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : HMM_PFN_VALID;
174 }
175
176 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
177 static int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
178                               unsigned long end, unsigned long hmm_pfns[],
179                               pmd_t pmd)
180 {
181         struct hmm_vma_walk *hmm_vma_walk = walk->private;
182         struct hmm_range *range = hmm_vma_walk->range;
183         unsigned long pfn, npages, i;
184         unsigned int required_fault;
185         unsigned long cpu_flags;
186
187         npages = (end - addr) >> PAGE_SHIFT;
188         cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
189         required_fault =
190                 hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, cpu_flags);
191         if (required_fault)
192                 return hmm_vma_fault(addr, end, required_fault, walk);
193
194         pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
195         for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++)
196                 hmm_pfns[i] = pfn | cpu_flags;
197         return 0;
198 }
199 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
200 /* stub to allow the code below to compile */
201 int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
202                 unsigned long end, unsigned long hmm_pfns[], pmd_t pmd);
203 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
204
205 static inline bool hmm_is_device_private_entry(struct hmm_range *range,
206                 swp_entry_t entry)
207 {
208         return is_device_private_entry(entry) &&
209                 device_private_entry_to_page(entry)->pgmap->owner ==
210                 range->dev_private_owner;
211 }
212
213 static inline unsigned long pte_to_hmm_pfn_flags(struct hmm_range *range,
214                                                  pte_t pte)
215 {
216         if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte))
217                 return 0;
218         return pte_write(pte) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : HMM_PFN_VALID;
219 }
220
221 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
222                               unsigned long end, pmd_t *pmdp, pte_t *ptep,
223                               unsigned long *hmm_pfn)
224 {
225         struct hmm_vma_walk *hmm_vma_walk = walk->private;
226         struct hmm_range *range = hmm_vma_walk->range;
227         unsigned int required_fault;
228         unsigned long cpu_flags;
229         pte_t pte = *ptep;
230         uint64_t pfn_req_flags = *hmm_pfn;
231
232         if (pte_none(pte)) {
233                 required_fault =
234                         hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0);
235                 if (required_fault)
236                         goto fault;
237                 *hmm_pfn = 0;
238                 return 0;
239         }
240
241         if (!pte_present(pte)) {
242                 swp_entry_t entry = pte_to_swp_entry(pte);
243
244                 /*
245                  * Never fault in device private pages pages, but just report
246                  * the PFN even if not present.
247                  */
248                 if (hmm_is_device_private_entry(range, entry)) {
249                         cpu_flags = HMM_PFN_VALID;
250                         if (is_write_device_private_entry(entry))
251                                 cpu_flags |= HMM_PFN_WRITE;
252                         *hmm_pfn = device_private_entry_to_pfn(entry) |
253                                         cpu_flags;
254                         return 0;
255                 }
256
257                 required_fault =
258                         hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0);
259                 if (!required_fault) {
260                         *hmm_pfn = 0;
261                         return 0;
262                 }
263
264                 if (!non_swap_entry(entry))
265                         goto fault;
266
267                 if (is_migration_entry(entry)) {
268                         pte_unmap(ptep);
269                         hmm_vma_walk->last = addr;
270                         migration_entry_wait(walk->mm, pmdp, addr);
271                         return -EBUSY;
272                 }
273
274                 /* Report error for everything else */
275                 pte_unmap(ptep);
276                 return -EFAULT;
277         }
278
279         cpu_flags = pte_to_hmm_pfn_flags(range, pte);
280         required_fault =
281                 hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags);
282         if (required_fault)
283                 goto fault;
284
285         /*
286          * Since each architecture defines a struct page for the zero page, just
287          * fall through and treat it like a normal page.
288          */
289         if (pte_special(pte) && !is_zero_pfn(pte_pfn(pte))) {
290                 if (hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0)) {
291                         pte_unmap(ptep);
292                         return -EFAULT;
293                 }
294                 *hmm_pfn = HMM_PFN_ERROR;
295                 return 0;
296         }
297
298         *hmm_pfn = pte_pfn(pte) | cpu_flags;
299         return 0;
300
301 fault:
302         pte_unmap(ptep);
303         /* Fault any virtual address we were asked to fault */
304         return hmm_vma_fault(addr, end, required_fault, walk);
305 }
306
307 static int hmm_vma_walk_pmd(pmd_t *pmdp,
308                             unsigned long start,
309                             unsigned long end,
310                             struct mm_walk *walk)
311 {
312         struct hmm_vma_walk *hmm_vma_walk = walk->private;
313         struct hmm_range *range = hmm_vma_walk->range;
314         unsigned long *hmm_pfns =
315                 &range->hmm_pfns[(start - range->start) >> PAGE_SHIFT];
316         unsigned long npages = (end - start) >> PAGE_SHIFT;
317         unsigned long addr = start;
318         pte_t *ptep;
319         pmd_t pmd;
320
321 again:
322         pmd = READ_ONCE(*pmdp);
323         if (pmd_none(pmd))
324                 return hmm_vma_walk_hole(start, end, -1, walk);
325
326         if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
327                 if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) {
328                         hmm_vma_walk->last = addr;
329                         pmd_migration_entry_wait(walk->mm, pmdp);
330                         return -EBUSY;
331                 }
332                 return hmm_pfns_fill(start, end, range, 0);
333         }
334
335         if (!pmd_present(pmd)) {
336                 if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0))
337                         return -EFAULT;
338                 return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
339         }
340
341         if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
342                 /*
343                  * No need to take pmd_lock here, even if some other thread
344                  * is splitting the huge pmd we will get that event through
345                  * mmu_notifier callback.
346                  *
347                  * So just read pmd value and check again it's a transparent
348                  * huge or device mapping one and compute corresponding pfn
349                  * values.
350                  */
351                 pmd = pmd_read_atomic(pmdp);
352                 barrier();
353                 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
354                         goto again;
355
356                 return hmm_vma_handle_pmd(walk, addr, end, hmm_pfns, pmd);
357         }
358
359         /*
360          * We have handled all the valid cases above ie either none, migration,
361          * huge or transparent huge. At this point either it is a valid pmd
362          * entry pointing to pte directory or it is a bad pmd that will not
363          * recover.
364          */
365         if (pmd_bad(pmd)) {
366                 if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0))
367                         return -EFAULT;
368                 return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
369         }
370
371         ptep = pte_offset_map(pmdp, addr);
372         for (; addr < end; addr += PAGE_SIZE, ptep++, hmm_pfns++) {
373                 int r;
374
375                 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, hmm_pfns);
376                 if (r) {
377                         /* hmm_vma_handle_pte() did pte_unmap() */
378                         return r;
379                 }
380         }
381         pte_unmap(ptep - 1);
382         return 0;
383 }
384
385 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && \
386     defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
387 static inline unsigned long pud_to_hmm_pfn_flags(struct hmm_range *range,
388                                                  pud_t pud)
389 {
390         if (!pud_present(pud))
391                 return 0;
392         return pud_write(pud) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : HMM_PFN_VALID;
393 }
394
395 static int hmm_vma_walk_pud(pud_t *pudp, unsigned long start, unsigned long end,
396                 struct mm_walk *walk)
397 {
398         struct hmm_vma_walk *hmm_vma_walk = walk->private;
399         struct hmm_range *range = hmm_vma_walk->range;
400         unsigned long addr = start;
401         pud_t pud;
402         int ret = 0;
403         spinlock_t *ptl = pud_trans_huge_lock(pudp, walk->vma);
404
405         if (!ptl)
406                 return 0;
407
408         /* Normally we don't want to split the huge page */
409         walk->action = ACTION_CONTINUE;
410
411         pud = READ_ONCE(*pudp);
412         if (pud_none(pud)) {
413                 spin_unlock(ptl);
414                 return hmm_vma_walk_hole(start, end, -1, walk);
415         }
416
417         if (pud_huge(pud) && pud_devmap(pud)) {
418                 unsigned long i, npages, pfn;
419                 unsigned int required_fault;
420                 unsigned long *hmm_pfns;
421                 unsigned long cpu_flags;
422
423                 if (!pud_present(pud)) {
424                         spin_unlock(ptl);
425                         return hmm_vma_walk_hole(start, end, -1, walk);
426                 }
427
428                 i = (addr - range->start) >> PAGE_SHIFT;
429                 npages = (end - addr) >> PAGE_SHIFT;
430                 hmm_pfns = &range->hmm_pfns[i];
431
432                 cpu_flags = pud_to_hmm_pfn_flags(range, pud);
433                 required_fault = hmm_range_need_fault(hmm_vma_walk, hmm_pfns,
434                                                       npages, cpu_flags);
435                 if (required_fault) {
436                         spin_unlock(ptl);
437                         return hmm_vma_fault(addr, end, required_fault, walk);
438                 }
439
440                 pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
441                 for (i = 0; i < npages; ++i, ++pfn)
442                         hmm_pfns[i] = pfn | cpu_flags;
443                 goto out_unlock;
444         }
445
446         /* Ask for the PUD to be split */
447         walk->action = ACTION_SUBTREE;
448
449 out_unlock:
450         spin_unlock(ptl);
451         return ret;
452 }
453 #else
454 #define hmm_vma_walk_pud        NULL
455 #endif
456
457 #ifdef CONFIG_HUGETLB_PAGE
458 static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
459                                       unsigned long start, unsigned long end,
460                                       struct mm_walk *walk)
461 {
462         unsigned long addr = start, i, pfn;
463         struct hmm_vma_walk *hmm_vma_walk = walk->private;
464         struct hmm_range *range = hmm_vma_walk->range;
465         struct vm_area_struct *vma = walk->vma;
466         unsigned int required_fault;
467         unsigned long pfn_req_flags;
468         unsigned long cpu_flags;
469         spinlock_t *ptl;
470         pte_t entry;
471
472         ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte);
473         entry = huge_ptep_get(pte);
474
475         i = (start - range->start) >> PAGE_SHIFT;
476         pfn_req_flags = range->hmm_pfns[i];
477         cpu_flags = pte_to_hmm_pfn_flags(range, entry);
478         required_fault =
479                 hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags);
480         if (required_fault) {
481                 spin_unlock(ptl);
482                 return hmm_vma_fault(addr, end, required_fault, walk);
483         }
484
485         pfn = pte_pfn(entry) + ((start & ~hmask) >> PAGE_SHIFT);
486         for (; addr < end; addr += PAGE_SIZE, i++, pfn++)
487                 range->hmm_pfns[i] = pfn | cpu_flags;
488
489         spin_unlock(ptl);
490         return 0;
491 }
492 #else
493 #define hmm_vma_walk_hugetlb_entry NULL
494 #endif /* CONFIG_HUGETLB_PAGE */
495
496 static int hmm_vma_walk_test(unsigned long start, unsigned long end,
497                              struct mm_walk *walk)
498 {
499         struct hmm_vma_walk *hmm_vma_walk = walk->private;
500         struct hmm_range *range = hmm_vma_walk->range;
501         struct vm_area_struct *vma = walk->vma;
502
503         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP | VM_MIXEDMAP)) &&
504             vma->vm_flags & VM_READ)
505                 return 0;
506
507         /*
508          * vma ranges that don't have struct page backing them or map I/O
509          * devices directly cannot be handled by hmm_range_fault().
510          *
511          * If the vma does not allow read access, then assume that it does not
512          * allow write access either. HMM does not support architectures that
513          * allow write without read.
514          *
515          * If a fault is requested for an unsupported range then it is a hard
516          * failure.
517          */
518         if (hmm_range_need_fault(hmm_vma_walk,
519                                  range->hmm_pfns +
520                                          ((start - range->start) >> PAGE_SHIFT),
521                                  (end - start) >> PAGE_SHIFT, 0))
522                 return -EFAULT;
523
524         hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
525
526         /* Skip this vma and continue processing the next vma. */
527         return 1;
528 }
529
530 static const struct mm_walk_ops hmm_walk_ops = {
531         .pud_entry      = hmm_vma_walk_pud,
532         .pmd_entry      = hmm_vma_walk_pmd,
533         .pte_hole       = hmm_vma_walk_hole,
534         .hugetlb_entry  = hmm_vma_walk_hugetlb_entry,
535         .test_walk      = hmm_vma_walk_test,
536 };
537
538 /**
539  * hmm_range_fault - try to fault some address in a virtual address range
540  * @range:      argument structure
541  *
542  * Returns 0 on success or one of the following error codes:
543  *
544  * -EINVAL:     Invalid arguments or mm or virtual address is in an invalid vma
545  *              (e.g., device file vma).
546  * -ENOMEM:     Out of memory.
547  * -EPERM:      Invalid permission (e.g., asking for write and range is read
548  *              only).
549  * -EBUSY:      The range has been invalidated and the caller needs to wait for
550  *              the invalidation to finish.
551  * -EFAULT:     A page was requested to be valid and could not be made valid
552  *              ie it has no backing VMA or it is illegal to access
553  *
554  * This is similar to get_user_pages(), except that it can read the page tables
555  * without mutating them (ie causing faults).
556  */
557 int hmm_range_fault(struct hmm_range *range)
558 {
559         struct hmm_vma_walk hmm_vma_walk = {
560                 .range = range,
561                 .last = range->start,
562         };
563         struct mm_struct *mm = range->notifier->mm;
564         int ret;
565
566         mmap_assert_locked(mm);
567
568         do {
569                 /* If range is no longer valid force retry. */
570                 if (mmu_interval_check_retry(range->notifier,
571                                              range->notifier_seq))
572                         return -EBUSY;
573                 ret = walk_page_range(mm, hmm_vma_walk.last, range->end,
574                                       &hmm_walk_ops, &hmm_vma_walk);
575                 /*
576                  * When -EBUSY is returned the loop restarts with
577                  * hmm_vma_walk.last set to an address that has not been stored
578                  * in pfns. All entries < last in the pfn array are set to their
579                  * output, and all >= are still at their input values.
580                  */
581         } while (ret == -EBUSY);
582         return ret;
583 }
584 EXPORT_SYMBOL(hmm_range_fault);