Merge tag 'amd-drm-fixes-5.11-2020-12-16' of git://people.freedesktop.org/~agd5f...
[linux-2.6-microblaze.git] / mm / compaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
29 static inline void count_compact_event(enum vm_event_item item)
30 {
31         count_vm_event(item);
32 }
33
34 static inline void count_compact_events(enum vm_event_item item, long delta)
35 {
36         count_vm_events(item, delta);
37 }
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
42
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
47
48 #define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
49 #define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
50 #define pageblock_start_pfn(pfn)        block_start_pfn(pfn, pageblock_order)
51 #define pageblock_end_pfn(pfn)          block_end_pfn(pfn, pageblock_order)
52
53 /*
54  * Fragmentation score check interval for proactive compaction purposes.
55  */
56 static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500;
57
58 /*
59  * Page order with-respect-to which proactive compaction
60  * calculates external fragmentation, which is used as
61  * the "fragmentation score" of a node/zone.
62  */
63 #if defined CONFIG_TRANSPARENT_HUGEPAGE
64 #define COMPACTION_HPAGE_ORDER  HPAGE_PMD_ORDER
65 #elif defined CONFIG_HUGETLBFS
66 #define COMPACTION_HPAGE_ORDER  HUGETLB_PAGE_ORDER
67 #else
68 #define COMPACTION_HPAGE_ORDER  (PMD_SHIFT - PAGE_SHIFT)
69 #endif
70
71 static unsigned long release_freepages(struct list_head *freelist)
72 {
73         struct page *page, *next;
74         unsigned long high_pfn = 0;
75
76         list_for_each_entry_safe(page, next, freelist, lru) {
77                 unsigned long pfn = page_to_pfn(page);
78                 list_del(&page->lru);
79                 __free_page(page);
80                 if (pfn > high_pfn)
81                         high_pfn = pfn;
82         }
83
84         return high_pfn;
85 }
86
87 static void split_map_pages(struct list_head *list)
88 {
89         unsigned int i, order, nr_pages;
90         struct page *page, *next;
91         LIST_HEAD(tmp_list);
92
93         list_for_each_entry_safe(page, next, list, lru) {
94                 list_del(&page->lru);
95
96                 order = page_private(page);
97                 nr_pages = 1 << order;
98
99                 post_alloc_hook(page, order, __GFP_MOVABLE);
100                 if (order)
101                         split_page(page, order);
102
103                 for (i = 0; i < nr_pages; i++) {
104                         list_add(&page->lru, &tmp_list);
105                         page++;
106                 }
107         }
108
109         list_splice(&tmp_list, list);
110 }
111
112 #ifdef CONFIG_COMPACTION
113
114 int PageMovable(struct page *page)
115 {
116         struct address_space *mapping;
117
118         VM_BUG_ON_PAGE(!PageLocked(page), page);
119         if (!__PageMovable(page))
120                 return 0;
121
122         mapping = page_mapping(page);
123         if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
124                 return 1;
125
126         return 0;
127 }
128 EXPORT_SYMBOL(PageMovable);
129
130 void __SetPageMovable(struct page *page, struct address_space *mapping)
131 {
132         VM_BUG_ON_PAGE(!PageLocked(page), page);
133         VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
134         page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
135 }
136 EXPORT_SYMBOL(__SetPageMovable);
137
138 void __ClearPageMovable(struct page *page)
139 {
140         VM_BUG_ON_PAGE(!PageLocked(page), page);
141         VM_BUG_ON_PAGE(!PageMovable(page), page);
142         /*
143          * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
144          * flag so that VM can catch up released page by driver after isolation.
145          * With it, VM migration doesn't try to put it back.
146          */
147         page->mapping = (void *)((unsigned long)page->mapping &
148                                 PAGE_MAPPING_MOVABLE);
149 }
150 EXPORT_SYMBOL(__ClearPageMovable);
151
152 /* Do not skip compaction more than 64 times */
153 #define COMPACT_MAX_DEFER_SHIFT 6
154
155 /*
156  * Compaction is deferred when compaction fails to result in a page
157  * allocation success. 1 << compact_defer_shift, compactions are skipped up
158  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
159  */
160 void defer_compaction(struct zone *zone, int order)
161 {
162         zone->compact_considered = 0;
163         zone->compact_defer_shift++;
164
165         if (order < zone->compact_order_failed)
166                 zone->compact_order_failed = order;
167
168         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
169                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
170
171         trace_mm_compaction_defer_compaction(zone, order);
172 }
173
174 /* Returns true if compaction should be skipped this time */
175 bool compaction_deferred(struct zone *zone, int order)
176 {
177         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
178
179         if (order < zone->compact_order_failed)
180                 return false;
181
182         /* Avoid possible overflow */
183         if (++zone->compact_considered >= defer_limit) {
184                 zone->compact_considered = defer_limit;
185                 return false;
186         }
187
188         trace_mm_compaction_deferred(zone, order);
189
190         return true;
191 }
192
193 /*
194  * Update defer tracking counters after successful compaction of given order,
195  * which means an allocation either succeeded (alloc_success == true) or is
196  * expected to succeed.
197  */
198 void compaction_defer_reset(struct zone *zone, int order,
199                 bool alloc_success)
200 {
201         if (alloc_success) {
202                 zone->compact_considered = 0;
203                 zone->compact_defer_shift = 0;
204         }
205         if (order >= zone->compact_order_failed)
206                 zone->compact_order_failed = order + 1;
207
208         trace_mm_compaction_defer_reset(zone, order);
209 }
210
211 /* Returns true if restarting compaction after many failures */
212 bool compaction_restarting(struct zone *zone, int order)
213 {
214         if (order < zone->compact_order_failed)
215                 return false;
216
217         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
218                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
219 }
220
221 /* Returns true if the pageblock should be scanned for pages to isolate. */
222 static inline bool isolation_suitable(struct compact_control *cc,
223                                         struct page *page)
224 {
225         if (cc->ignore_skip_hint)
226                 return true;
227
228         return !get_pageblock_skip(page);
229 }
230
231 static void reset_cached_positions(struct zone *zone)
232 {
233         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
234         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
235         zone->compact_cached_free_pfn =
236                                 pageblock_start_pfn(zone_end_pfn(zone) - 1);
237 }
238
239 /*
240  * Compound pages of >= pageblock_order should consistenly be skipped until
241  * released. It is always pointless to compact pages of such order (if they are
242  * migratable), and the pageblocks they occupy cannot contain any free pages.
243  */
244 static bool pageblock_skip_persistent(struct page *page)
245 {
246         if (!PageCompound(page))
247                 return false;
248
249         page = compound_head(page);
250
251         if (compound_order(page) >= pageblock_order)
252                 return true;
253
254         return false;
255 }
256
257 static bool
258 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
259                                                         bool check_target)
260 {
261         struct page *page = pfn_to_online_page(pfn);
262         struct page *block_page;
263         struct page *end_page;
264         unsigned long block_pfn;
265
266         if (!page)
267                 return false;
268         if (zone != page_zone(page))
269                 return false;
270         if (pageblock_skip_persistent(page))
271                 return false;
272
273         /*
274          * If skip is already cleared do no further checking once the
275          * restart points have been set.
276          */
277         if (check_source && check_target && !get_pageblock_skip(page))
278                 return true;
279
280         /*
281          * If clearing skip for the target scanner, do not select a
282          * non-movable pageblock as the starting point.
283          */
284         if (!check_source && check_target &&
285             get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
286                 return false;
287
288         /* Ensure the start of the pageblock or zone is online and valid */
289         block_pfn = pageblock_start_pfn(pfn);
290         block_pfn = max(block_pfn, zone->zone_start_pfn);
291         block_page = pfn_to_online_page(block_pfn);
292         if (block_page) {
293                 page = block_page;
294                 pfn = block_pfn;
295         }
296
297         /* Ensure the end of the pageblock or zone is online and valid */
298         block_pfn = pageblock_end_pfn(pfn) - 1;
299         block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
300         end_page = pfn_to_online_page(block_pfn);
301         if (!end_page)
302                 return false;
303
304         /*
305          * Only clear the hint if a sample indicates there is either a
306          * free page or an LRU page in the block. One or other condition
307          * is necessary for the block to be a migration source/target.
308          */
309         do {
310                 if (pfn_valid_within(pfn)) {
311                         if (check_source && PageLRU(page)) {
312                                 clear_pageblock_skip(page);
313                                 return true;
314                         }
315
316                         if (check_target && PageBuddy(page)) {
317                                 clear_pageblock_skip(page);
318                                 return true;
319                         }
320                 }
321
322                 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
323                 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
324         } while (page <= end_page);
325
326         return false;
327 }
328
329 /*
330  * This function is called to clear all cached information on pageblocks that
331  * should be skipped for page isolation when the migrate and free page scanner
332  * meet.
333  */
334 static void __reset_isolation_suitable(struct zone *zone)
335 {
336         unsigned long migrate_pfn = zone->zone_start_pfn;
337         unsigned long free_pfn = zone_end_pfn(zone) - 1;
338         unsigned long reset_migrate = free_pfn;
339         unsigned long reset_free = migrate_pfn;
340         bool source_set = false;
341         bool free_set = false;
342
343         if (!zone->compact_blockskip_flush)
344                 return;
345
346         zone->compact_blockskip_flush = false;
347
348         /*
349          * Walk the zone and update pageblock skip information. Source looks
350          * for PageLRU while target looks for PageBuddy. When the scanner
351          * is found, both PageBuddy and PageLRU are checked as the pageblock
352          * is suitable as both source and target.
353          */
354         for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
355                                         free_pfn -= pageblock_nr_pages) {
356                 cond_resched();
357
358                 /* Update the migrate PFN */
359                 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
360                     migrate_pfn < reset_migrate) {
361                         source_set = true;
362                         reset_migrate = migrate_pfn;
363                         zone->compact_init_migrate_pfn = reset_migrate;
364                         zone->compact_cached_migrate_pfn[0] = reset_migrate;
365                         zone->compact_cached_migrate_pfn[1] = reset_migrate;
366                 }
367
368                 /* Update the free PFN */
369                 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
370                     free_pfn > reset_free) {
371                         free_set = true;
372                         reset_free = free_pfn;
373                         zone->compact_init_free_pfn = reset_free;
374                         zone->compact_cached_free_pfn = reset_free;
375                 }
376         }
377
378         /* Leave no distance if no suitable block was reset */
379         if (reset_migrate >= reset_free) {
380                 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
381                 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
382                 zone->compact_cached_free_pfn = free_pfn;
383         }
384 }
385
386 void reset_isolation_suitable(pg_data_t *pgdat)
387 {
388         int zoneid;
389
390         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
391                 struct zone *zone = &pgdat->node_zones[zoneid];
392                 if (!populated_zone(zone))
393                         continue;
394
395                 /* Only flush if a full compaction finished recently */
396                 if (zone->compact_blockskip_flush)
397                         __reset_isolation_suitable(zone);
398         }
399 }
400
401 /*
402  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
403  * locks are not required for read/writers. Returns true if it was already set.
404  */
405 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
406                                                         unsigned long pfn)
407 {
408         bool skip;
409
410         /* Do no update if skip hint is being ignored */
411         if (cc->ignore_skip_hint)
412                 return false;
413
414         if (!IS_ALIGNED(pfn, pageblock_nr_pages))
415                 return false;
416
417         skip = get_pageblock_skip(page);
418         if (!skip && !cc->no_set_skip_hint)
419                 set_pageblock_skip(page);
420
421         return skip;
422 }
423
424 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
425 {
426         struct zone *zone = cc->zone;
427
428         pfn = pageblock_end_pfn(pfn);
429
430         /* Set for isolation rather than compaction */
431         if (cc->no_set_skip_hint)
432                 return;
433
434         if (pfn > zone->compact_cached_migrate_pfn[0])
435                 zone->compact_cached_migrate_pfn[0] = pfn;
436         if (cc->mode != MIGRATE_ASYNC &&
437             pfn > zone->compact_cached_migrate_pfn[1])
438                 zone->compact_cached_migrate_pfn[1] = pfn;
439 }
440
441 /*
442  * If no pages were isolated then mark this pageblock to be skipped in the
443  * future. The information is later cleared by __reset_isolation_suitable().
444  */
445 static void update_pageblock_skip(struct compact_control *cc,
446                         struct page *page, unsigned long pfn)
447 {
448         struct zone *zone = cc->zone;
449
450         if (cc->no_set_skip_hint)
451                 return;
452
453         if (!page)
454                 return;
455
456         set_pageblock_skip(page);
457
458         /* Update where async and sync compaction should restart */
459         if (pfn < zone->compact_cached_free_pfn)
460                 zone->compact_cached_free_pfn = pfn;
461 }
462 #else
463 static inline bool isolation_suitable(struct compact_control *cc,
464                                         struct page *page)
465 {
466         return true;
467 }
468
469 static inline bool pageblock_skip_persistent(struct page *page)
470 {
471         return false;
472 }
473
474 static inline void update_pageblock_skip(struct compact_control *cc,
475                         struct page *page, unsigned long pfn)
476 {
477 }
478
479 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
480 {
481 }
482
483 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
484                                                         unsigned long pfn)
485 {
486         return false;
487 }
488 #endif /* CONFIG_COMPACTION */
489
490 /*
491  * Compaction requires the taking of some coarse locks that are potentially
492  * very heavily contended. For async compaction, trylock and record if the
493  * lock is contended. The lock will still be acquired but compaction will
494  * abort when the current block is finished regardless of success rate.
495  * Sync compaction acquires the lock.
496  *
497  * Always returns true which makes it easier to track lock state in callers.
498  */
499 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
500                                                 struct compact_control *cc)
501         __acquires(lock)
502 {
503         /* Track if the lock is contended in async mode */
504         if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
505                 if (spin_trylock_irqsave(lock, *flags))
506                         return true;
507
508                 cc->contended = true;
509         }
510
511         spin_lock_irqsave(lock, *flags);
512         return true;
513 }
514
515 /*
516  * Compaction requires the taking of some coarse locks that are potentially
517  * very heavily contended. The lock should be periodically unlocked to avoid
518  * having disabled IRQs for a long time, even when there is nobody waiting on
519  * the lock. It might also be that allowing the IRQs will result in
520  * need_resched() becoming true. If scheduling is needed, async compaction
521  * aborts. Sync compaction schedules.
522  * Either compaction type will also abort if a fatal signal is pending.
523  * In either case if the lock was locked, it is dropped and not regained.
524  *
525  * Returns true if compaction should abort due to fatal signal pending, or
526  *              async compaction due to need_resched()
527  * Returns false when compaction can continue (sync compaction might have
528  *              scheduled)
529  */
530 static bool compact_unlock_should_abort(spinlock_t *lock,
531                 unsigned long flags, bool *locked, struct compact_control *cc)
532 {
533         if (*locked) {
534                 spin_unlock_irqrestore(lock, flags);
535                 *locked = false;
536         }
537
538         if (fatal_signal_pending(current)) {
539                 cc->contended = true;
540                 return true;
541         }
542
543         cond_resched();
544
545         return false;
546 }
547
548 /*
549  * Isolate free pages onto a private freelist. If @strict is true, will abort
550  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
551  * (even though it may still end up isolating some pages).
552  */
553 static unsigned long isolate_freepages_block(struct compact_control *cc,
554                                 unsigned long *start_pfn,
555                                 unsigned long end_pfn,
556                                 struct list_head *freelist,
557                                 unsigned int stride,
558                                 bool strict)
559 {
560         int nr_scanned = 0, total_isolated = 0;
561         struct page *cursor;
562         unsigned long flags = 0;
563         bool locked = false;
564         unsigned long blockpfn = *start_pfn;
565         unsigned int order;
566
567         /* Strict mode is for isolation, speed is secondary */
568         if (strict)
569                 stride = 1;
570
571         cursor = pfn_to_page(blockpfn);
572
573         /* Isolate free pages. */
574         for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
575                 int isolated;
576                 struct page *page = cursor;
577
578                 /*
579                  * Periodically drop the lock (if held) regardless of its
580                  * contention, to give chance to IRQs. Abort if fatal signal
581                  * pending or async compaction detects need_resched()
582                  */
583                 if (!(blockpfn % SWAP_CLUSTER_MAX)
584                     && compact_unlock_should_abort(&cc->zone->lock, flags,
585                                                                 &locked, cc))
586                         break;
587
588                 nr_scanned++;
589                 if (!pfn_valid_within(blockpfn))
590                         goto isolate_fail;
591
592                 /*
593                  * For compound pages such as THP and hugetlbfs, we can save
594                  * potentially a lot of iterations if we skip them at once.
595                  * The check is racy, but we can consider only valid values
596                  * and the only danger is skipping too much.
597                  */
598                 if (PageCompound(page)) {
599                         const unsigned int order = compound_order(page);
600
601                         if (likely(order < MAX_ORDER)) {
602                                 blockpfn += (1UL << order) - 1;
603                                 cursor += (1UL << order) - 1;
604                         }
605                         goto isolate_fail;
606                 }
607
608                 if (!PageBuddy(page))
609                         goto isolate_fail;
610
611                 /*
612                  * If we already hold the lock, we can skip some rechecking.
613                  * Note that if we hold the lock now, checked_pageblock was
614                  * already set in some previous iteration (or strict is true),
615                  * so it is correct to skip the suitable migration target
616                  * recheck as well.
617                  */
618                 if (!locked) {
619                         locked = compact_lock_irqsave(&cc->zone->lock,
620                                                                 &flags, cc);
621
622                         /* Recheck this is a buddy page under lock */
623                         if (!PageBuddy(page))
624                                 goto isolate_fail;
625                 }
626
627                 /* Found a free page, will break it into order-0 pages */
628                 order = buddy_order(page);
629                 isolated = __isolate_free_page(page, order);
630                 if (!isolated)
631                         break;
632                 set_page_private(page, order);
633
634                 total_isolated += isolated;
635                 cc->nr_freepages += isolated;
636                 list_add_tail(&page->lru, freelist);
637
638                 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
639                         blockpfn += isolated;
640                         break;
641                 }
642                 /* Advance to the end of split page */
643                 blockpfn += isolated - 1;
644                 cursor += isolated - 1;
645                 continue;
646
647 isolate_fail:
648                 if (strict)
649                         break;
650                 else
651                         continue;
652
653         }
654
655         if (locked)
656                 spin_unlock_irqrestore(&cc->zone->lock, flags);
657
658         /*
659          * There is a tiny chance that we have read bogus compound_order(),
660          * so be careful to not go outside of the pageblock.
661          */
662         if (unlikely(blockpfn > end_pfn))
663                 blockpfn = end_pfn;
664
665         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
666                                         nr_scanned, total_isolated);
667
668         /* Record how far we have got within the block */
669         *start_pfn = blockpfn;
670
671         /*
672          * If strict isolation is requested by CMA then check that all the
673          * pages requested were isolated. If there were any failures, 0 is
674          * returned and CMA will fail.
675          */
676         if (strict && blockpfn < end_pfn)
677                 total_isolated = 0;
678
679         cc->total_free_scanned += nr_scanned;
680         if (total_isolated)
681                 count_compact_events(COMPACTISOLATED, total_isolated);
682         return total_isolated;
683 }
684
685 /**
686  * isolate_freepages_range() - isolate free pages.
687  * @cc:        Compaction control structure.
688  * @start_pfn: The first PFN to start isolating.
689  * @end_pfn:   The one-past-last PFN.
690  *
691  * Non-free pages, invalid PFNs, or zone boundaries within the
692  * [start_pfn, end_pfn) range are considered errors, cause function to
693  * undo its actions and return zero.
694  *
695  * Otherwise, function returns one-past-the-last PFN of isolated page
696  * (which may be greater then end_pfn if end fell in a middle of
697  * a free page).
698  */
699 unsigned long
700 isolate_freepages_range(struct compact_control *cc,
701                         unsigned long start_pfn, unsigned long end_pfn)
702 {
703         unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
704         LIST_HEAD(freelist);
705
706         pfn = start_pfn;
707         block_start_pfn = pageblock_start_pfn(pfn);
708         if (block_start_pfn < cc->zone->zone_start_pfn)
709                 block_start_pfn = cc->zone->zone_start_pfn;
710         block_end_pfn = pageblock_end_pfn(pfn);
711
712         for (; pfn < end_pfn; pfn += isolated,
713                                 block_start_pfn = block_end_pfn,
714                                 block_end_pfn += pageblock_nr_pages) {
715                 /* Protect pfn from changing by isolate_freepages_block */
716                 unsigned long isolate_start_pfn = pfn;
717
718                 block_end_pfn = min(block_end_pfn, end_pfn);
719
720                 /*
721                  * pfn could pass the block_end_pfn if isolated freepage
722                  * is more than pageblock order. In this case, we adjust
723                  * scanning range to right one.
724                  */
725                 if (pfn >= block_end_pfn) {
726                         block_start_pfn = pageblock_start_pfn(pfn);
727                         block_end_pfn = pageblock_end_pfn(pfn);
728                         block_end_pfn = min(block_end_pfn, end_pfn);
729                 }
730
731                 if (!pageblock_pfn_to_page(block_start_pfn,
732                                         block_end_pfn, cc->zone))
733                         break;
734
735                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
736                                         block_end_pfn, &freelist, 0, true);
737
738                 /*
739                  * In strict mode, isolate_freepages_block() returns 0 if
740                  * there are any holes in the block (ie. invalid PFNs or
741                  * non-free pages).
742                  */
743                 if (!isolated)
744                         break;
745
746                 /*
747                  * If we managed to isolate pages, it is always (1 << n) *
748                  * pageblock_nr_pages for some non-negative n.  (Max order
749                  * page may span two pageblocks).
750                  */
751         }
752
753         /* __isolate_free_page() does not map the pages */
754         split_map_pages(&freelist);
755
756         if (pfn < end_pfn) {
757                 /* Loop terminated early, cleanup. */
758                 release_freepages(&freelist);
759                 return 0;
760         }
761
762         /* We don't use freelists for anything. */
763         return pfn;
764 }
765
766 /* Similar to reclaim, but different enough that they don't share logic */
767 static bool too_many_isolated(pg_data_t *pgdat)
768 {
769         unsigned long active, inactive, isolated;
770
771         inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
772                         node_page_state(pgdat, NR_INACTIVE_ANON);
773         active = node_page_state(pgdat, NR_ACTIVE_FILE) +
774                         node_page_state(pgdat, NR_ACTIVE_ANON);
775         isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
776                         node_page_state(pgdat, NR_ISOLATED_ANON);
777
778         return isolated > (inactive + active) / 2;
779 }
780
781 /**
782  * isolate_migratepages_block() - isolate all migrate-able pages within
783  *                                a single pageblock
784  * @cc:         Compaction control structure.
785  * @low_pfn:    The first PFN to isolate
786  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
787  * @isolate_mode: Isolation mode to be used.
788  *
789  * Isolate all pages that can be migrated from the range specified by
790  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
791  * Returns zero if there is a fatal signal pending, otherwise PFN of the
792  * first page that was not scanned (which may be both less, equal to or more
793  * than end_pfn).
794  *
795  * The pages are isolated on cc->migratepages list (not required to be empty),
796  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
797  * is neither read nor updated.
798  */
799 static unsigned long
800 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
801                         unsigned long end_pfn, isolate_mode_t isolate_mode)
802 {
803         pg_data_t *pgdat = cc->zone->zone_pgdat;
804         unsigned long nr_scanned = 0, nr_isolated = 0;
805         struct lruvec *lruvec;
806         unsigned long flags = 0;
807         bool locked = false;
808         struct page *page = NULL, *valid_page = NULL;
809         unsigned long start_pfn = low_pfn;
810         bool skip_on_failure = false;
811         unsigned long next_skip_pfn = 0;
812         bool skip_updated = false;
813
814         /*
815          * Ensure that there are not too many pages isolated from the LRU
816          * list by either parallel reclaimers or compaction. If there are,
817          * delay for some time until fewer pages are isolated
818          */
819         while (unlikely(too_many_isolated(pgdat))) {
820                 /* stop isolation if there are still pages not migrated */
821                 if (cc->nr_migratepages)
822                         return 0;
823
824                 /* async migration should just abort */
825                 if (cc->mode == MIGRATE_ASYNC)
826                         return 0;
827
828                 congestion_wait(BLK_RW_ASYNC, HZ/10);
829
830                 if (fatal_signal_pending(current))
831                         return 0;
832         }
833
834         cond_resched();
835
836         if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
837                 skip_on_failure = true;
838                 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
839         }
840
841         /* Time to isolate some pages for migration */
842         for (; low_pfn < end_pfn; low_pfn++) {
843
844                 if (skip_on_failure && low_pfn >= next_skip_pfn) {
845                         /*
846                          * We have isolated all migration candidates in the
847                          * previous order-aligned block, and did not skip it due
848                          * to failure. We should migrate the pages now and
849                          * hopefully succeed compaction.
850                          */
851                         if (nr_isolated)
852                                 break;
853
854                         /*
855                          * We failed to isolate in the previous order-aligned
856                          * block. Set the new boundary to the end of the
857                          * current block. Note we can't simply increase
858                          * next_skip_pfn by 1 << order, as low_pfn might have
859                          * been incremented by a higher number due to skipping
860                          * a compound or a high-order buddy page in the
861                          * previous loop iteration.
862                          */
863                         next_skip_pfn = block_end_pfn(low_pfn, cc->order);
864                 }
865
866                 /*
867                  * Periodically drop the lock (if held) regardless of its
868                  * contention, to give chance to IRQs. Abort completely if
869                  * a fatal signal is pending.
870                  */
871                 if (!(low_pfn % SWAP_CLUSTER_MAX)
872                     && compact_unlock_should_abort(&pgdat->lru_lock,
873                                             flags, &locked, cc)) {
874                         low_pfn = 0;
875                         goto fatal_pending;
876                 }
877
878                 if (!pfn_valid_within(low_pfn))
879                         goto isolate_fail;
880                 nr_scanned++;
881
882                 page = pfn_to_page(low_pfn);
883
884                 /*
885                  * Check if the pageblock has already been marked skipped.
886                  * Only the aligned PFN is checked as the caller isolates
887                  * COMPACT_CLUSTER_MAX at a time so the second call must
888                  * not falsely conclude that the block should be skipped.
889                  */
890                 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
891                         if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
892                                 low_pfn = end_pfn;
893                                 goto isolate_abort;
894                         }
895                         valid_page = page;
896                 }
897
898                 /*
899                  * Skip if free. We read page order here without zone lock
900                  * which is generally unsafe, but the race window is small and
901                  * the worst thing that can happen is that we skip some
902                  * potential isolation targets.
903                  */
904                 if (PageBuddy(page)) {
905                         unsigned long freepage_order = buddy_order_unsafe(page);
906
907                         /*
908                          * Without lock, we cannot be sure that what we got is
909                          * a valid page order. Consider only values in the
910                          * valid order range to prevent low_pfn overflow.
911                          */
912                         if (freepage_order > 0 && freepage_order < MAX_ORDER)
913                                 low_pfn += (1UL << freepage_order) - 1;
914                         continue;
915                 }
916
917                 /*
918                  * Regardless of being on LRU, compound pages such as THP and
919                  * hugetlbfs are not to be compacted unless we are attempting
920                  * an allocation much larger than the huge page size (eg CMA).
921                  * We can potentially save a lot of iterations if we skip them
922                  * at once. The check is racy, but we can consider only valid
923                  * values and the only danger is skipping too much.
924                  */
925                 if (PageCompound(page) && !cc->alloc_contig) {
926                         const unsigned int order = compound_order(page);
927
928                         if (likely(order < MAX_ORDER))
929                                 low_pfn += (1UL << order) - 1;
930                         goto isolate_fail;
931                 }
932
933                 /*
934                  * Check may be lockless but that's ok as we recheck later.
935                  * It's possible to migrate LRU and non-lru movable pages.
936                  * Skip any other type of page
937                  */
938                 if (!PageLRU(page)) {
939                         /*
940                          * __PageMovable can return false positive so we need
941                          * to verify it under page_lock.
942                          */
943                         if (unlikely(__PageMovable(page)) &&
944                                         !PageIsolated(page)) {
945                                 if (locked) {
946                                         spin_unlock_irqrestore(&pgdat->lru_lock,
947                                                                         flags);
948                                         locked = false;
949                                 }
950
951                                 if (!isolate_movable_page(page, isolate_mode))
952                                         goto isolate_success;
953                         }
954
955                         goto isolate_fail;
956                 }
957
958                 /*
959                  * Migration will fail if an anonymous page is pinned in memory,
960                  * so avoid taking lru_lock and isolating it unnecessarily in an
961                  * admittedly racy check.
962                  */
963                 if (!page_mapping(page) &&
964                     page_count(page) > page_mapcount(page))
965                         goto isolate_fail;
966
967                 /*
968                  * Only allow to migrate anonymous pages in GFP_NOFS context
969                  * because those do not depend on fs locks.
970                  */
971                 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
972                         goto isolate_fail;
973
974                 /* If we already hold the lock, we can skip some rechecking */
975                 if (!locked) {
976                         locked = compact_lock_irqsave(&pgdat->lru_lock,
977                                                                 &flags, cc);
978
979                         /* Try get exclusive access under lock */
980                         if (!skip_updated) {
981                                 skip_updated = true;
982                                 if (test_and_set_skip(cc, page, low_pfn))
983                                         goto isolate_abort;
984                         }
985
986                         /* Recheck PageLRU and PageCompound under lock */
987                         if (!PageLRU(page))
988                                 goto isolate_fail;
989
990                         /*
991                          * Page become compound since the non-locked check,
992                          * and it's on LRU. It can only be a THP so the order
993                          * is safe to read and it's 0 for tail pages.
994                          */
995                         if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
996                                 low_pfn += compound_nr(page) - 1;
997                                 goto isolate_fail;
998                         }
999                 }
1000
1001                 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1002
1003                 /* Try isolate the page */
1004                 if (__isolate_lru_page(page, isolate_mode) != 0)
1005                         goto isolate_fail;
1006
1007                 /* The whole page is taken off the LRU; skip the tail pages. */
1008                 if (PageCompound(page))
1009                         low_pfn += compound_nr(page) - 1;
1010
1011                 /* Successfully isolated */
1012                 del_page_from_lru_list(page, lruvec, page_lru(page));
1013                 mod_node_page_state(page_pgdat(page),
1014                                 NR_ISOLATED_ANON + page_is_file_lru(page),
1015                                 thp_nr_pages(page));
1016
1017 isolate_success:
1018                 list_add(&page->lru, &cc->migratepages);
1019                 cc->nr_migratepages += compound_nr(page);
1020                 nr_isolated += compound_nr(page);
1021
1022                 /*
1023                  * Avoid isolating too much unless this block is being
1024                  * rescanned (e.g. dirty/writeback pages, parallel allocation)
1025                  * or a lock is contended. For contention, isolate quickly to
1026                  * potentially remove one source of contention.
1027                  */
1028                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1029                     !cc->rescan && !cc->contended) {
1030                         ++low_pfn;
1031                         break;
1032                 }
1033
1034                 continue;
1035 isolate_fail:
1036                 if (!skip_on_failure)
1037                         continue;
1038
1039                 /*
1040                  * We have isolated some pages, but then failed. Release them
1041                  * instead of migrating, as we cannot form the cc->order buddy
1042                  * page anyway.
1043                  */
1044                 if (nr_isolated) {
1045                         if (locked) {
1046                                 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1047                                 locked = false;
1048                         }
1049                         putback_movable_pages(&cc->migratepages);
1050                         cc->nr_migratepages = 0;
1051                         nr_isolated = 0;
1052                 }
1053
1054                 if (low_pfn < next_skip_pfn) {
1055                         low_pfn = next_skip_pfn - 1;
1056                         /*
1057                          * The check near the loop beginning would have updated
1058                          * next_skip_pfn too, but this is a bit simpler.
1059                          */
1060                         next_skip_pfn += 1UL << cc->order;
1061                 }
1062         }
1063
1064         /*
1065          * The PageBuddy() check could have potentially brought us outside
1066          * the range to be scanned.
1067          */
1068         if (unlikely(low_pfn > end_pfn))
1069                 low_pfn = end_pfn;
1070
1071 isolate_abort:
1072         if (locked)
1073                 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1074
1075         /*
1076          * Updated the cached scanner pfn once the pageblock has been scanned
1077          * Pages will either be migrated in which case there is no point
1078          * scanning in the near future or migration failed in which case the
1079          * failure reason may persist. The block is marked for skipping if
1080          * there were no pages isolated in the block or if the block is
1081          * rescanned twice in a row.
1082          */
1083         if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1084                 if (valid_page && !skip_updated)
1085                         set_pageblock_skip(valid_page);
1086                 update_cached_migrate(cc, low_pfn);
1087         }
1088
1089         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1090                                                 nr_scanned, nr_isolated);
1091
1092 fatal_pending:
1093         cc->total_migrate_scanned += nr_scanned;
1094         if (nr_isolated)
1095                 count_compact_events(COMPACTISOLATED, nr_isolated);
1096
1097         return low_pfn;
1098 }
1099
1100 /**
1101  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1102  * @cc:        Compaction control structure.
1103  * @start_pfn: The first PFN to start isolating.
1104  * @end_pfn:   The one-past-last PFN.
1105  *
1106  * Returns zero if isolation fails fatally due to e.g. pending signal.
1107  * Otherwise, function returns one-past-the-last PFN of isolated page
1108  * (which may be greater than end_pfn if end fell in a middle of a THP page).
1109  */
1110 unsigned long
1111 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1112                                                         unsigned long end_pfn)
1113 {
1114         unsigned long pfn, block_start_pfn, block_end_pfn;
1115
1116         /* Scan block by block. First and last block may be incomplete */
1117         pfn = start_pfn;
1118         block_start_pfn = pageblock_start_pfn(pfn);
1119         if (block_start_pfn < cc->zone->zone_start_pfn)
1120                 block_start_pfn = cc->zone->zone_start_pfn;
1121         block_end_pfn = pageblock_end_pfn(pfn);
1122
1123         for (; pfn < end_pfn; pfn = block_end_pfn,
1124                                 block_start_pfn = block_end_pfn,
1125                                 block_end_pfn += pageblock_nr_pages) {
1126
1127                 block_end_pfn = min(block_end_pfn, end_pfn);
1128
1129                 if (!pageblock_pfn_to_page(block_start_pfn,
1130                                         block_end_pfn, cc->zone))
1131                         continue;
1132
1133                 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
1134                                                         ISOLATE_UNEVICTABLE);
1135
1136                 if (!pfn)
1137                         break;
1138
1139                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1140                         break;
1141         }
1142
1143         return pfn;
1144 }
1145
1146 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1147 #ifdef CONFIG_COMPACTION
1148
1149 static bool suitable_migration_source(struct compact_control *cc,
1150                                                         struct page *page)
1151 {
1152         int block_mt;
1153
1154         if (pageblock_skip_persistent(page))
1155                 return false;
1156
1157         if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1158                 return true;
1159
1160         block_mt = get_pageblock_migratetype(page);
1161
1162         if (cc->migratetype == MIGRATE_MOVABLE)
1163                 return is_migrate_movable(block_mt);
1164         else
1165                 return block_mt == cc->migratetype;
1166 }
1167
1168 /* Returns true if the page is within a block suitable for migration to */
1169 static bool suitable_migration_target(struct compact_control *cc,
1170                                                         struct page *page)
1171 {
1172         /* If the page is a large free page, then disallow migration */
1173         if (PageBuddy(page)) {
1174                 /*
1175                  * We are checking page_order without zone->lock taken. But
1176                  * the only small danger is that we skip a potentially suitable
1177                  * pageblock, so it's not worth to check order for valid range.
1178                  */
1179                 if (buddy_order_unsafe(page) >= pageblock_order)
1180                         return false;
1181         }
1182
1183         if (cc->ignore_block_suitable)
1184                 return true;
1185
1186         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1187         if (is_migrate_movable(get_pageblock_migratetype(page)))
1188                 return true;
1189
1190         /* Otherwise skip the block */
1191         return false;
1192 }
1193
1194 static inline unsigned int
1195 freelist_scan_limit(struct compact_control *cc)
1196 {
1197         unsigned short shift = BITS_PER_LONG - 1;
1198
1199         return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1200 }
1201
1202 /*
1203  * Test whether the free scanner has reached the same or lower pageblock than
1204  * the migration scanner, and compaction should thus terminate.
1205  */
1206 static inline bool compact_scanners_met(struct compact_control *cc)
1207 {
1208         return (cc->free_pfn >> pageblock_order)
1209                 <= (cc->migrate_pfn >> pageblock_order);
1210 }
1211
1212 /*
1213  * Used when scanning for a suitable migration target which scans freelists
1214  * in reverse. Reorders the list such as the unscanned pages are scanned
1215  * first on the next iteration of the free scanner
1216  */
1217 static void
1218 move_freelist_head(struct list_head *freelist, struct page *freepage)
1219 {
1220         LIST_HEAD(sublist);
1221
1222         if (!list_is_last(freelist, &freepage->lru)) {
1223                 list_cut_before(&sublist, freelist, &freepage->lru);
1224                 if (!list_empty(&sublist))
1225                         list_splice_tail(&sublist, freelist);
1226         }
1227 }
1228
1229 /*
1230  * Similar to move_freelist_head except used by the migration scanner
1231  * when scanning forward. It's possible for these list operations to
1232  * move against each other if they search the free list exactly in
1233  * lockstep.
1234  */
1235 static void
1236 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1237 {
1238         LIST_HEAD(sublist);
1239
1240         if (!list_is_first(freelist, &freepage->lru)) {
1241                 list_cut_position(&sublist, freelist, &freepage->lru);
1242                 if (!list_empty(&sublist))
1243                         list_splice_tail(&sublist, freelist);
1244         }
1245 }
1246
1247 static void
1248 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1249 {
1250         unsigned long start_pfn, end_pfn;
1251         struct page *page = pfn_to_page(pfn);
1252
1253         /* Do not search around if there are enough pages already */
1254         if (cc->nr_freepages >= cc->nr_migratepages)
1255                 return;
1256
1257         /* Minimise scanning during async compaction */
1258         if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1259                 return;
1260
1261         /* Pageblock boundaries */
1262         start_pfn = pageblock_start_pfn(pfn);
1263         end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)) - 1;
1264
1265         /* Scan before */
1266         if (start_pfn != pfn) {
1267                 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1268                 if (cc->nr_freepages >= cc->nr_migratepages)
1269                         return;
1270         }
1271
1272         /* Scan after */
1273         start_pfn = pfn + nr_isolated;
1274         if (start_pfn < end_pfn)
1275                 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1276
1277         /* Skip this pageblock in the future as it's full or nearly full */
1278         if (cc->nr_freepages < cc->nr_migratepages)
1279                 set_pageblock_skip(page);
1280 }
1281
1282 /* Search orders in round-robin fashion */
1283 static int next_search_order(struct compact_control *cc, int order)
1284 {
1285         order--;
1286         if (order < 0)
1287                 order = cc->order - 1;
1288
1289         /* Search wrapped around? */
1290         if (order == cc->search_order) {
1291                 cc->search_order--;
1292                 if (cc->search_order < 0)
1293                         cc->search_order = cc->order - 1;
1294                 return -1;
1295         }
1296
1297         return order;
1298 }
1299
1300 static unsigned long
1301 fast_isolate_freepages(struct compact_control *cc)
1302 {
1303         unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
1304         unsigned int nr_scanned = 0;
1305         unsigned long low_pfn, min_pfn, high_pfn = 0, highest = 0;
1306         unsigned long nr_isolated = 0;
1307         unsigned long distance;
1308         struct page *page = NULL;
1309         bool scan_start = false;
1310         int order;
1311
1312         /* Full compaction passes in a negative order */
1313         if (cc->order <= 0)
1314                 return cc->free_pfn;
1315
1316         /*
1317          * If starting the scan, use a deeper search and use the highest
1318          * PFN found if a suitable one is not found.
1319          */
1320         if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1321                 limit = pageblock_nr_pages >> 1;
1322                 scan_start = true;
1323         }
1324
1325         /*
1326          * Preferred point is in the top quarter of the scan space but take
1327          * a pfn from the top half if the search is problematic.
1328          */
1329         distance = (cc->free_pfn - cc->migrate_pfn);
1330         low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1331         min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1332
1333         if (WARN_ON_ONCE(min_pfn > low_pfn))
1334                 low_pfn = min_pfn;
1335
1336         /*
1337          * Search starts from the last successful isolation order or the next
1338          * order to search after a previous failure
1339          */
1340         cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1341
1342         for (order = cc->search_order;
1343              !page && order >= 0;
1344              order = next_search_order(cc, order)) {
1345                 struct free_area *area = &cc->zone->free_area[order];
1346                 struct list_head *freelist;
1347                 struct page *freepage;
1348                 unsigned long flags;
1349                 unsigned int order_scanned = 0;
1350
1351                 if (!area->nr_free)
1352                         continue;
1353
1354                 spin_lock_irqsave(&cc->zone->lock, flags);
1355                 freelist = &area->free_list[MIGRATE_MOVABLE];
1356                 list_for_each_entry_reverse(freepage, freelist, lru) {
1357                         unsigned long pfn;
1358
1359                         order_scanned++;
1360                         nr_scanned++;
1361                         pfn = page_to_pfn(freepage);
1362
1363                         if (pfn >= highest)
1364                                 highest = pageblock_start_pfn(pfn);
1365
1366                         if (pfn >= low_pfn) {
1367                                 cc->fast_search_fail = 0;
1368                                 cc->search_order = order;
1369                                 page = freepage;
1370                                 break;
1371                         }
1372
1373                         if (pfn >= min_pfn && pfn > high_pfn) {
1374                                 high_pfn = pfn;
1375
1376                                 /* Shorten the scan if a candidate is found */
1377                                 limit >>= 1;
1378                         }
1379
1380                         if (order_scanned >= limit)
1381                                 break;
1382                 }
1383
1384                 /* Use a minimum pfn if a preferred one was not found */
1385                 if (!page && high_pfn) {
1386                         page = pfn_to_page(high_pfn);
1387
1388                         /* Update freepage for the list reorder below */
1389                         freepage = page;
1390                 }
1391
1392                 /* Reorder to so a future search skips recent pages */
1393                 move_freelist_head(freelist, freepage);
1394
1395                 /* Isolate the page if available */
1396                 if (page) {
1397                         if (__isolate_free_page(page, order)) {
1398                                 set_page_private(page, order);
1399                                 nr_isolated = 1 << order;
1400                                 cc->nr_freepages += nr_isolated;
1401                                 list_add_tail(&page->lru, &cc->freepages);
1402                                 count_compact_events(COMPACTISOLATED, nr_isolated);
1403                         } else {
1404                                 /* If isolation fails, abort the search */
1405                                 order = cc->search_order + 1;
1406                                 page = NULL;
1407                         }
1408                 }
1409
1410                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1411
1412                 /*
1413                  * Smaller scan on next order so the total scan ig related
1414                  * to freelist_scan_limit.
1415                  */
1416                 if (order_scanned >= limit)
1417                         limit = min(1U, limit >> 1);
1418         }
1419
1420         if (!page) {
1421                 cc->fast_search_fail++;
1422                 if (scan_start) {
1423                         /*
1424                          * Use the highest PFN found above min. If one was
1425                          * not found, be pessimistic for direct compaction
1426                          * and use the min mark.
1427                          */
1428                         if (highest) {
1429                                 page = pfn_to_page(highest);
1430                                 cc->free_pfn = highest;
1431                         } else {
1432                                 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1433                                         page = pageblock_pfn_to_page(min_pfn,
1434                                                 pageblock_end_pfn(min_pfn),
1435                                                 cc->zone);
1436                                         cc->free_pfn = min_pfn;
1437                                 }
1438                         }
1439                 }
1440         }
1441
1442         if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1443                 highest -= pageblock_nr_pages;
1444                 cc->zone->compact_cached_free_pfn = highest;
1445         }
1446
1447         cc->total_free_scanned += nr_scanned;
1448         if (!page)
1449                 return cc->free_pfn;
1450
1451         low_pfn = page_to_pfn(page);
1452         fast_isolate_around(cc, low_pfn, nr_isolated);
1453         return low_pfn;
1454 }
1455
1456 /*
1457  * Based on information in the current compact_control, find blocks
1458  * suitable for isolating free pages from and then isolate them.
1459  */
1460 static void isolate_freepages(struct compact_control *cc)
1461 {
1462         struct zone *zone = cc->zone;
1463         struct page *page;
1464         unsigned long block_start_pfn;  /* start of current pageblock */
1465         unsigned long isolate_start_pfn; /* exact pfn we start at */
1466         unsigned long block_end_pfn;    /* end of current pageblock */
1467         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
1468         struct list_head *freelist = &cc->freepages;
1469         unsigned int stride;
1470
1471         /* Try a small search of the free lists for a candidate */
1472         isolate_start_pfn = fast_isolate_freepages(cc);
1473         if (cc->nr_freepages)
1474                 goto splitmap;
1475
1476         /*
1477          * Initialise the free scanner. The starting point is where we last
1478          * successfully isolated from, zone-cached value, or the end of the
1479          * zone when isolating for the first time. For looping we also need
1480          * this pfn aligned down to the pageblock boundary, because we do
1481          * block_start_pfn -= pageblock_nr_pages in the for loop.
1482          * For ending point, take care when isolating in last pageblock of a
1483          * zone which ends in the middle of a pageblock.
1484          * The low boundary is the end of the pageblock the migration scanner
1485          * is using.
1486          */
1487         isolate_start_pfn = cc->free_pfn;
1488         block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1489         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1490                                                 zone_end_pfn(zone));
1491         low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1492         stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1493
1494         /*
1495          * Isolate free pages until enough are available to migrate the
1496          * pages on cc->migratepages. We stop searching if the migrate
1497          * and free page scanners meet or enough free pages are isolated.
1498          */
1499         for (; block_start_pfn >= low_pfn;
1500                                 block_end_pfn = block_start_pfn,
1501                                 block_start_pfn -= pageblock_nr_pages,
1502                                 isolate_start_pfn = block_start_pfn) {
1503                 unsigned long nr_isolated;
1504
1505                 /*
1506                  * This can iterate a massively long zone without finding any
1507                  * suitable migration targets, so periodically check resched.
1508                  */
1509                 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1510                         cond_resched();
1511
1512                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1513                                                                         zone);
1514                 if (!page)
1515                         continue;
1516
1517                 /* Check the block is suitable for migration */
1518                 if (!suitable_migration_target(cc, page))
1519                         continue;
1520
1521                 /* If isolation recently failed, do not retry */
1522                 if (!isolation_suitable(cc, page))
1523                         continue;
1524
1525                 /* Found a block suitable for isolating free pages from. */
1526                 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1527                                         block_end_pfn, freelist, stride, false);
1528
1529                 /* Update the skip hint if the full pageblock was scanned */
1530                 if (isolate_start_pfn == block_end_pfn)
1531                         update_pageblock_skip(cc, page, block_start_pfn);
1532
1533                 /* Are enough freepages isolated? */
1534                 if (cc->nr_freepages >= cc->nr_migratepages) {
1535                         if (isolate_start_pfn >= block_end_pfn) {
1536                                 /*
1537                                  * Restart at previous pageblock if more
1538                                  * freepages can be isolated next time.
1539                                  */
1540                                 isolate_start_pfn =
1541                                         block_start_pfn - pageblock_nr_pages;
1542                         }
1543                         break;
1544                 } else if (isolate_start_pfn < block_end_pfn) {
1545                         /*
1546                          * If isolation failed early, do not continue
1547                          * needlessly.
1548                          */
1549                         break;
1550                 }
1551
1552                 /* Adjust stride depending on isolation */
1553                 if (nr_isolated) {
1554                         stride = 1;
1555                         continue;
1556                 }
1557                 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1558         }
1559
1560         /*
1561          * Record where the free scanner will restart next time. Either we
1562          * broke from the loop and set isolate_start_pfn based on the last
1563          * call to isolate_freepages_block(), or we met the migration scanner
1564          * and the loop terminated due to isolate_start_pfn < low_pfn
1565          */
1566         cc->free_pfn = isolate_start_pfn;
1567
1568 splitmap:
1569         /* __isolate_free_page() does not map the pages */
1570         split_map_pages(freelist);
1571 }
1572
1573 /*
1574  * This is a migrate-callback that "allocates" freepages by taking pages
1575  * from the isolated freelists in the block we are migrating to.
1576  */
1577 static struct page *compaction_alloc(struct page *migratepage,
1578                                         unsigned long data)
1579 {
1580         struct compact_control *cc = (struct compact_control *)data;
1581         struct page *freepage;
1582
1583         if (list_empty(&cc->freepages)) {
1584                 isolate_freepages(cc);
1585
1586                 if (list_empty(&cc->freepages))
1587                         return NULL;
1588         }
1589
1590         freepage = list_entry(cc->freepages.next, struct page, lru);
1591         list_del(&freepage->lru);
1592         cc->nr_freepages--;
1593
1594         return freepage;
1595 }
1596
1597 /*
1598  * This is a migrate-callback that "frees" freepages back to the isolated
1599  * freelist.  All pages on the freelist are from the same zone, so there is no
1600  * special handling needed for NUMA.
1601  */
1602 static void compaction_free(struct page *page, unsigned long data)
1603 {
1604         struct compact_control *cc = (struct compact_control *)data;
1605
1606         list_add(&page->lru, &cc->freepages);
1607         cc->nr_freepages++;
1608 }
1609
1610 /* possible outcome of isolate_migratepages */
1611 typedef enum {
1612         ISOLATE_ABORT,          /* Abort compaction now */
1613         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1614         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1615 } isolate_migrate_t;
1616
1617 /*
1618  * Allow userspace to control policy on scanning the unevictable LRU for
1619  * compactable pages.
1620  */
1621 #ifdef CONFIG_PREEMPT_RT
1622 int sysctl_compact_unevictable_allowed __read_mostly = 0;
1623 #else
1624 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1625 #endif
1626
1627 static inline void
1628 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1629 {
1630         if (cc->fast_start_pfn == ULONG_MAX)
1631                 return;
1632
1633         if (!cc->fast_start_pfn)
1634                 cc->fast_start_pfn = pfn;
1635
1636         cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1637 }
1638
1639 static inline unsigned long
1640 reinit_migrate_pfn(struct compact_control *cc)
1641 {
1642         if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1643                 return cc->migrate_pfn;
1644
1645         cc->migrate_pfn = cc->fast_start_pfn;
1646         cc->fast_start_pfn = ULONG_MAX;
1647
1648         return cc->migrate_pfn;
1649 }
1650
1651 /*
1652  * Briefly search the free lists for a migration source that already has
1653  * some free pages to reduce the number of pages that need migration
1654  * before a pageblock is free.
1655  */
1656 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1657 {
1658         unsigned int limit = freelist_scan_limit(cc);
1659         unsigned int nr_scanned = 0;
1660         unsigned long distance;
1661         unsigned long pfn = cc->migrate_pfn;
1662         unsigned long high_pfn;
1663         int order;
1664
1665         /* Skip hints are relied on to avoid repeats on the fast search */
1666         if (cc->ignore_skip_hint)
1667                 return pfn;
1668
1669         /*
1670          * If the migrate_pfn is not at the start of a zone or the start
1671          * of a pageblock then assume this is a continuation of a previous
1672          * scan restarted due to COMPACT_CLUSTER_MAX.
1673          */
1674         if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1675                 return pfn;
1676
1677         /*
1678          * For smaller orders, just linearly scan as the number of pages
1679          * to migrate should be relatively small and does not necessarily
1680          * justify freeing up a large block for a small allocation.
1681          */
1682         if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1683                 return pfn;
1684
1685         /*
1686          * Only allow kcompactd and direct requests for movable pages to
1687          * quickly clear out a MOVABLE pageblock for allocation. This
1688          * reduces the risk that a large movable pageblock is freed for
1689          * an unmovable/reclaimable small allocation.
1690          */
1691         if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1692                 return pfn;
1693
1694         /*
1695          * When starting the migration scanner, pick any pageblock within the
1696          * first half of the search space. Otherwise try and pick a pageblock
1697          * within the first eighth to reduce the chances that a migration
1698          * target later becomes a source.
1699          */
1700         distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1701         if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1702                 distance >>= 2;
1703         high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1704
1705         for (order = cc->order - 1;
1706              order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit;
1707              order--) {
1708                 struct free_area *area = &cc->zone->free_area[order];
1709                 struct list_head *freelist;
1710                 unsigned long flags;
1711                 struct page *freepage;
1712
1713                 if (!area->nr_free)
1714                         continue;
1715
1716                 spin_lock_irqsave(&cc->zone->lock, flags);
1717                 freelist = &area->free_list[MIGRATE_MOVABLE];
1718                 list_for_each_entry(freepage, freelist, lru) {
1719                         unsigned long free_pfn;
1720
1721                         nr_scanned++;
1722                         free_pfn = page_to_pfn(freepage);
1723                         if (free_pfn < high_pfn) {
1724                                 /*
1725                                  * Avoid if skipped recently. Ideally it would
1726                                  * move to the tail but even safe iteration of
1727                                  * the list assumes an entry is deleted, not
1728                                  * reordered.
1729                                  */
1730                                 if (get_pageblock_skip(freepage)) {
1731                                         if (list_is_last(freelist, &freepage->lru))
1732                                                 break;
1733
1734                                         continue;
1735                                 }
1736
1737                                 /* Reorder to so a future search skips recent pages */
1738                                 move_freelist_tail(freelist, freepage);
1739
1740                                 update_fast_start_pfn(cc, free_pfn);
1741                                 pfn = pageblock_start_pfn(free_pfn);
1742                                 cc->fast_search_fail = 0;
1743                                 set_pageblock_skip(freepage);
1744                                 break;
1745                         }
1746
1747                         if (nr_scanned >= limit) {
1748                                 cc->fast_search_fail++;
1749                                 move_freelist_tail(freelist, freepage);
1750                                 break;
1751                         }
1752                 }
1753                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1754         }
1755
1756         cc->total_migrate_scanned += nr_scanned;
1757
1758         /*
1759          * If fast scanning failed then use a cached entry for a page block
1760          * that had free pages as the basis for starting a linear scan.
1761          */
1762         if (pfn == cc->migrate_pfn)
1763                 pfn = reinit_migrate_pfn(cc);
1764
1765         return pfn;
1766 }
1767
1768 /*
1769  * Isolate all pages that can be migrated from the first suitable block,
1770  * starting at the block pointed to by the migrate scanner pfn within
1771  * compact_control.
1772  */
1773 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1774 {
1775         unsigned long block_start_pfn;
1776         unsigned long block_end_pfn;
1777         unsigned long low_pfn;
1778         struct page *page;
1779         const isolate_mode_t isolate_mode =
1780                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1781                 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1782         bool fast_find_block;
1783
1784         /*
1785          * Start at where we last stopped, or beginning of the zone as
1786          * initialized by compact_zone(). The first failure will use
1787          * the lowest PFN as the starting point for linear scanning.
1788          */
1789         low_pfn = fast_find_migrateblock(cc);
1790         block_start_pfn = pageblock_start_pfn(low_pfn);
1791         if (block_start_pfn < cc->zone->zone_start_pfn)
1792                 block_start_pfn = cc->zone->zone_start_pfn;
1793
1794         /*
1795          * fast_find_migrateblock marks a pageblock skipped so to avoid
1796          * the isolation_suitable check below, check whether the fast
1797          * search was successful.
1798          */
1799         fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1800
1801         /* Only scan within a pageblock boundary */
1802         block_end_pfn = pageblock_end_pfn(low_pfn);
1803
1804         /*
1805          * Iterate over whole pageblocks until we find the first suitable.
1806          * Do not cross the free scanner.
1807          */
1808         for (; block_end_pfn <= cc->free_pfn;
1809                         fast_find_block = false,
1810                         low_pfn = block_end_pfn,
1811                         block_start_pfn = block_end_pfn,
1812                         block_end_pfn += pageblock_nr_pages) {
1813
1814                 /*
1815                  * This can potentially iterate a massively long zone with
1816                  * many pageblocks unsuitable, so periodically check if we
1817                  * need to schedule.
1818                  */
1819                 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1820                         cond_resched();
1821
1822                 page = pageblock_pfn_to_page(block_start_pfn,
1823                                                 block_end_pfn, cc->zone);
1824                 if (!page)
1825                         continue;
1826
1827                 /*
1828                  * If isolation recently failed, do not retry. Only check the
1829                  * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1830                  * to be visited multiple times. Assume skip was checked
1831                  * before making it "skip" so other compaction instances do
1832                  * not scan the same block.
1833                  */
1834                 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1835                     !fast_find_block && !isolation_suitable(cc, page))
1836                         continue;
1837
1838                 /*
1839                  * For async compaction, also only scan in MOVABLE blocks
1840                  * without huge pages. Async compaction is optimistic to see
1841                  * if the minimum amount of work satisfies the allocation.
1842                  * The cached PFN is updated as it's possible that all
1843                  * remaining blocks between source and target are unsuitable
1844                  * and the compaction scanners fail to meet.
1845                  */
1846                 if (!suitable_migration_source(cc, page)) {
1847                         update_cached_migrate(cc, block_end_pfn);
1848                         continue;
1849                 }
1850
1851                 /* Perform the isolation */
1852                 low_pfn = isolate_migratepages_block(cc, low_pfn,
1853                                                 block_end_pfn, isolate_mode);
1854
1855                 if (!low_pfn)
1856                         return ISOLATE_ABORT;
1857
1858                 /*
1859                  * Either we isolated something and proceed with migration. Or
1860                  * we failed and compact_zone should decide if we should
1861                  * continue or not.
1862                  */
1863                 break;
1864         }
1865
1866         /* Record where migration scanner will be restarted. */
1867         cc->migrate_pfn = low_pfn;
1868
1869         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1870 }
1871
1872 /*
1873  * order == -1 is expected when compacting via
1874  * /proc/sys/vm/compact_memory
1875  */
1876 static inline bool is_via_compact_memory(int order)
1877 {
1878         return order == -1;
1879 }
1880
1881 static bool kswapd_is_running(pg_data_t *pgdat)
1882 {
1883         return pgdat->kswapd && (pgdat->kswapd->state == TASK_RUNNING);
1884 }
1885
1886 /*
1887  * A zone's fragmentation score is the external fragmentation wrt to the
1888  * COMPACTION_HPAGE_ORDER scaled by the zone's size. It returns a value
1889  * in the range [0, 100].
1890  *
1891  * The scaling factor ensures that proactive compaction focuses on larger
1892  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
1893  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
1894  * and thus never exceeds the high threshold for proactive compaction.
1895  */
1896 static unsigned int fragmentation_score_zone(struct zone *zone)
1897 {
1898         unsigned long score;
1899
1900         score = zone->present_pages *
1901                         extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1902         return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
1903 }
1904
1905 /*
1906  * The per-node proactive (background) compaction process is started by its
1907  * corresponding kcompactd thread when the node's fragmentation score
1908  * exceeds the high threshold. The compaction process remains active till
1909  * the node's score falls below the low threshold, or one of the back-off
1910  * conditions is met.
1911  */
1912 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
1913 {
1914         unsigned int score = 0;
1915         int zoneid;
1916
1917         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1918                 struct zone *zone;
1919
1920                 zone = &pgdat->node_zones[zoneid];
1921                 score += fragmentation_score_zone(zone);
1922         }
1923
1924         return score;
1925 }
1926
1927 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
1928 {
1929         unsigned int wmark_low;
1930
1931         /*
1932          * Cap the low watermak to avoid excessive compaction
1933          * activity in case a user sets the proactivess tunable
1934          * close to 100 (maximum).
1935          */
1936         wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
1937         return low ? wmark_low : min(wmark_low + 10, 100U);
1938 }
1939
1940 static bool should_proactive_compact_node(pg_data_t *pgdat)
1941 {
1942         int wmark_high;
1943
1944         if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
1945                 return false;
1946
1947         wmark_high = fragmentation_score_wmark(pgdat, false);
1948         return fragmentation_score_node(pgdat) > wmark_high;
1949 }
1950
1951 static enum compact_result __compact_finished(struct compact_control *cc)
1952 {
1953         unsigned int order;
1954         const int migratetype = cc->migratetype;
1955         int ret;
1956
1957         /* Compaction run completes if the migrate and free scanner meet */
1958         if (compact_scanners_met(cc)) {
1959                 /* Let the next compaction start anew. */
1960                 reset_cached_positions(cc->zone);
1961
1962                 /*
1963                  * Mark that the PG_migrate_skip information should be cleared
1964                  * by kswapd when it goes to sleep. kcompactd does not set the
1965                  * flag itself as the decision to be clear should be directly
1966                  * based on an allocation request.
1967                  */
1968                 if (cc->direct_compaction)
1969                         cc->zone->compact_blockskip_flush = true;
1970
1971                 if (cc->whole_zone)
1972                         return COMPACT_COMPLETE;
1973                 else
1974                         return COMPACT_PARTIAL_SKIPPED;
1975         }
1976
1977         if (cc->proactive_compaction) {
1978                 int score, wmark_low;
1979                 pg_data_t *pgdat;
1980
1981                 pgdat = cc->zone->zone_pgdat;
1982                 if (kswapd_is_running(pgdat))
1983                         return COMPACT_PARTIAL_SKIPPED;
1984
1985                 score = fragmentation_score_zone(cc->zone);
1986                 wmark_low = fragmentation_score_wmark(pgdat, true);
1987
1988                 if (score > wmark_low)
1989                         ret = COMPACT_CONTINUE;
1990                 else
1991                         ret = COMPACT_SUCCESS;
1992
1993                 goto out;
1994         }
1995
1996         if (is_via_compact_memory(cc->order))
1997                 return COMPACT_CONTINUE;
1998
1999         /*
2000          * Always finish scanning a pageblock to reduce the possibility of
2001          * fallbacks in the future. This is particularly important when
2002          * migration source is unmovable/reclaimable but it's not worth
2003          * special casing.
2004          */
2005         if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2006                 return COMPACT_CONTINUE;
2007
2008         /* Direct compactor: Is a suitable page free? */
2009         ret = COMPACT_NO_SUITABLE_PAGE;
2010         for (order = cc->order; order < MAX_ORDER; order++) {
2011                 struct free_area *area = &cc->zone->free_area[order];
2012                 bool can_steal;
2013
2014                 /* Job done if page is free of the right migratetype */
2015                 if (!free_area_empty(area, migratetype))
2016                         return COMPACT_SUCCESS;
2017
2018 #ifdef CONFIG_CMA
2019                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2020                 if (migratetype == MIGRATE_MOVABLE &&
2021                         !free_area_empty(area, MIGRATE_CMA))
2022                         return COMPACT_SUCCESS;
2023 #endif
2024                 /*
2025                  * Job done if allocation would steal freepages from
2026                  * other migratetype buddy lists.
2027                  */
2028                 if (find_suitable_fallback(area, order, migratetype,
2029                                                 true, &can_steal) != -1) {
2030
2031                         /* movable pages are OK in any pageblock */
2032                         if (migratetype == MIGRATE_MOVABLE)
2033                                 return COMPACT_SUCCESS;
2034
2035                         /*
2036                          * We are stealing for a non-movable allocation. Make
2037                          * sure we finish compacting the current pageblock
2038                          * first so it is as free as possible and we won't
2039                          * have to steal another one soon. This only applies
2040                          * to sync compaction, as async compaction operates
2041                          * on pageblocks of the same migratetype.
2042                          */
2043                         if (cc->mode == MIGRATE_ASYNC ||
2044                                         IS_ALIGNED(cc->migrate_pfn,
2045                                                         pageblock_nr_pages)) {
2046                                 return COMPACT_SUCCESS;
2047                         }
2048
2049                         ret = COMPACT_CONTINUE;
2050                         break;
2051                 }
2052         }
2053
2054 out:
2055         if (cc->contended || fatal_signal_pending(current))
2056                 ret = COMPACT_CONTENDED;
2057
2058         return ret;
2059 }
2060
2061 static enum compact_result compact_finished(struct compact_control *cc)
2062 {
2063         int ret;
2064
2065         ret = __compact_finished(cc);
2066         trace_mm_compaction_finished(cc->zone, cc->order, ret);
2067         if (ret == COMPACT_NO_SUITABLE_PAGE)
2068                 ret = COMPACT_CONTINUE;
2069
2070         return ret;
2071 }
2072
2073 /*
2074  * compaction_suitable: Is this suitable to run compaction on this zone now?
2075  * Returns
2076  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
2077  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
2078  *   COMPACT_CONTINUE - If compaction should run now
2079  */
2080 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2081                                         unsigned int alloc_flags,
2082                                         int highest_zoneidx,
2083                                         unsigned long wmark_target)
2084 {
2085         unsigned long watermark;
2086
2087         if (is_via_compact_memory(order))
2088                 return COMPACT_CONTINUE;
2089
2090         watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2091         /*
2092          * If watermarks for high-order allocation are already met, there
2093          * should be no need for compaction at all.
2094          */
2095         if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2096                                                                 alloc_flags))
2097                 return COMPACT_SUCCESS;
2098
2099         /*
2100          * Watermarks for order-0 must be met for compaction to be able to
2101          * isolate free pages for migration targets. This means that the
2102          * watermark and alloc_flags have to match, or be more pessimistic than
2103          * the check in __isolate_free_page(). We don't use the direct
2104          * compactor's alloc_flags, as they are not relevant for freepage
2105          * isolation. We however do use the direct compactor's highest_zoneidx
2106          * to skip over zones where lowmem reserves would prevent allocation
2107          * even if compaction succeeds.
2108          * For costly orders, we require low watermark instead of min for
2109          * compaction to proceed to increase its chances.
2110          * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2111          * suitable migration targets
2112          */
2113         watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2114                                 low_wmark_pages(zone) : min_wmark_pages(zone);
2115         watermark += compact_gap(order);
2116         if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2117                                                 ALLOC_CMA, wmark_target))
2118                 return COMPACT_SKIPPED;
2119
2120         return COMPACT_CONTINUE;
2121 }
2122
2123 enum compact_result compaction_suitable(struct zone *zone, int order,
2124                                         unsigned int alloc_flags,
2125                                         int highest_zoneidx)
2126 {
2127         enum compact_result ret;
2128         int fragindex;
2129
2130         ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2131                                     zone_page_state(zone, NR_FREE_PAGES));
2132         /*
2133          * fragmentation index determines if allocation failures are due to
2134          * low memory or external fragmentation
2135          *
2136          * index of -1000 would imply allocations might succeed depending on
2137          * watermarks, but we already failed the high-order watermark check
2138          * index towards 0 implies failure is due to lack of memory
2139          * index towards 1000 implies failure is due to fragmentation
2140          *
2141          * Only compact if a failure would be due to fragmentation. Also
2142          * ignore fragindex for non-costly orders where the alternative to
2143          * a successful reclaim/compaction is OOM. Fragindex and the
2144          * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2145          * excessive compaction for costly orders, but it should not be at the
2146          * expense of system stability.
2147          */
2148         if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2149                 fragindex = fragmentation_index(zone, order);
2150                 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2151                         ret = COMPACT_NOT_SUITABLE_ZONE;
2152         }
2153
2154         trace_mm_compaction_suitable(zone, order, ret);
2155         if (ret == COMPACT_NOT_SUITABLE_ZONE)
2156                 ret = COMPACT_SKIPPED;
2157
2158         return ret;
2159 }
2160
2161 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2162                 int alloc_flags)
2163 {
2164         struct zone *zone;
2165         struct zoneref *z;
2166
2167         /*
2168          * Make sure at least one zone would pass __compaction_suitable if we continue
2169          * retrying the reclaim.
2170          */
2171         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2172                                 ac->highest_zoneidx, ac->nodemask) {
2173                 unsigned long available;
2174                 enum compact_result compact_result;
2175
2176                 /*
2177                  * Do not consider all the reclaimable memory because we do not
2178                  * want to trash just for a single high order allocation which
2179                  * is even not guaranteed to appear even if __compaction_suitable
2180                  * is happy about the watermark check.
2181                  */
2182                 available = zone_reclaimable_pages(zone) / order;
2183                 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2184                 compact_result = __compaction_suitable(zone, order, alloc_flags,
2185                                 ac->highest_zoneidx, available);
2186                 if (compact_result != COMPACT_SKIPPED)
2187                         return true;
2188         }
2189
2190         return false;
2191 }
2192
2193 static enum compact_result
2194 compact_zone(struct compact_control *cc, struct capture_control *capc)
2195 {
2196         enum compact_result ret;
2197         unsigned long start_pfn = cc->zone->zone_start_pfn;
2198         unsigned long end_pfn = zone_end_pfn(cc->zone);
2199         unsigned long last_migrated_pfn;
2200         const bool sync = cc->mode != MIGRATE_ASYNC;
2201         bool update_cached;
2202
2203         /*
2204          * These counters track activities during zone compaction.  Initialize
2205          * them before compacting a new zone.
2206          */
2207         cc->total_migrate_scanned = 0;
2208         cc->total_free_scanned = 0;
2209         cc->nr_migratepages = 0;
2210         cc->nr_freepages = 0;
2211         INIT_LIST_HEAD(&cc->freepages);
2212         INIT_LIST_HEAD(&cc->migratepages);
2213
2214         cc->migratetype = gfp_migratetype(cc->gfp_mask);
2215         ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2216                                                         cc->highest_zoneidx);
2217         /* Compaction is likely to fail */
2218         if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2219                 return ret;
2220
2221         /* huh, compaction_suitable is returning something unexpected */
2222         VM_BUG_ON(ret != COMPACT_CONTINUE);
2223
2224         /*
2225          * Clear pageblock skip if there were failures recently and compaction
2226          * is about to be retried after being deferred.
2227          */
2228         if (compaction_restarting(cc->zone, cc->order))
2229                 __reset_isolation_suitable(cc->zone);
2230
2231         /*
2232          * Setup to move all movable pages to the end of the zone. Used cached
2233          * information on where the scanners should start (unless we explicitly
2234          * want to compact the whole zone), but check that it is initialised
2235          * by ensuring the values are within zone boundaries.
2236          */
2237         cc->fast_start_pfn = 0;
2238         if (cc->whole_zone) {
2239                 cc->migrate_pfn = start_pfn;
2240                 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2241         } else {
2242                 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2243                 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2244                 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2245                         cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2246                         cc->zone->compact_cached_free_pfn = cc->free_pfn;
2247                 }
2248                 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2249                         cc->migrate_pfn = start_pfn;
2250                         cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2251                         cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2252                 }
2253
2254                 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2255                         cc->whole_zone = true;
2256         }
2257
2258         last_migrated_pfn = 0;
2259
2260         /*
2261          * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2262          * the basis that some migrations will fail in ASYNC mode. However,
2263          * if the cached PFNs match and pageblocks are skipped due to having
2264          * no isolation candidates, then the sync state does not matter.
2265          * Until a pageblock with isolation candidates is found, keep the
2266          * cached PFNs in sync to avoid revisiting the same blocks.
2267          */
2268         update_cached = !sync &&
2269                 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2270
2271         trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2272                                 cc->free_pfn, end_pfn, sync);
2273
2274         migrate_prep_local();
2275
2276         while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2277                 int err;
2278                 unsigned long start_pfn = cc->migrate_pfn;
2279
2280                 /*
2281                  * Avoid multiple rescans which can happen if a page cannot be
2282                  * isolated (dirty/writeback in async mode) or if the migrated
2283                  * pages are being allocated before the pageblock is cleared.
2284                  * The first rescan will capture the entire pageblock for
2285                  * migration. If it fails, it'll be marked skip and scanning
2286                  * will proceed as normal.
2287                  */
2288                 cc->rescan = false;
2289                 if (pageblock_start_pfn(last_migrated_pfn) ==
2290                     pageblock_start_pfn(start_pfn)) {
2291                         cc->rescan = true;
2292                 }
2293
2294                 switch (isolate_migratepages(cc)) {
2295                 case ISOLATE_ABORT:
2296                         ret = COMPACT_CONTENDED;
2297                         putback_movable_pages(&cc->migratepages);
2298                         cc->nr_migratepages = 0;
2299                         goto out;
2300                 case ISOLATE_NONE:
2301                         if (update_cached) {
2302                                 cc->zone->compact_cached_migrate_pfn[1] =
2303                                         cc->zone->compact_cached_migrate_pfn[0];
2304                         }
2305
2306                         /*
2307                          * We haven't isolated and migrated anything, but
2308                          * there might still be unflushed migrations from
2309                          * previous cc->order aligned block.
2310                          */
2311                         goto check_drain;
2312                 case ISOLATE_SUCCESS:
2313                         update_cached = false;
2314                         last_migrated_pfn = start_pfn;
2315                         ;
2316                 }
2317
2318                 err = migrate_pages(&cc->migratepages, compaction_alloc,
2319                                 compaction_free, (unsigned long)cc, cc->mode,
2320                                 MR_COMPACTION);
2321
2322                 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2323                                                         &cc->migratepages);
2324
2325                 /* All pages were either migrated or will be released */
2326                 cc->nr_migratepages = 0;
2327                 if (err) {
2328                         putback_movable_pages(&cc->migratepages);
2329                         /*
2330                          * migrate_pages() may return -ENOMEM when scanners meet
2331                          * and we want compact_finished() to detect it
2332                          */
2333                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
2334                                 ret = COMPACT_CONTENDED;
2335                                 goto out;
2336                         }
2337                         /*
2338                          * We failed to migrate at least one page in the current
2339                          * order-aligned block, so skip the rest of it.
2340                          */
2341                         if (cc->direct_compaction &&
2342                                                 (cc->mode == MIGRATE_ASYNC)) {
2343                                 cc->migrate_pfn = block_end_pfn(
2344                                                 cc->migrate_pfn - 1, cc->order);
2345                                 /* Draining pcplists is useless in this case */
2346                                 last_migrated_pfn = 0;
2347                         }
2348                 }
2349
2350 check_drain:
2351                 /*
2352                  * Has the migration scanner moved away from the previous
2353                  * cc->order aligned block where we migrated from? If yes,
2354                  * flush the pages that were freed, so that they can merge and
2355                  * compact_finished() can detect immediately if allocation
2356                  * would succeed.
2357                  */
2358                 if (cc->order > 0 && last_migrated_pfn) {
2359                         unsigned long current_block_start =
2360                                 block_start_pfn(cc->migrate_pfn, cc->order);
2361
2362                         if (last_migrated_pfn < current_block_start) {
2363                                 lru_add_drain_cpu_zone(cc->zone);
2364                                 /* No more flushing until we migrate again */
2365                                 last_migrated_pfn = 0;
2366                         }
2367                 }
2368
2369                 /* Stop if a page has been captured */
2370                 if (capc && capc->page) {
2371                         ret = COMPACT_SUCCESS;
2372                         break;
2373                 }
2374         }
2375
2376 out:
2377         /*
2378          * Release free pages and update where the free scanner should restart,
2379          * so we don't leave any returned pages behind in the next attempt.
2380          */
2381         if (cc->nr_freepages > 0) {
2382                 unsigned long free_pfn = release_freepages(&cc->freepages);
2383
2384                 cc->nr_freepages = 0;
2385                 VM_BUG_ON(free_pfn == 0);
2386                 /* The cached pfn is always the first in a pageblock */
2387                 free_pfn = pageblock_start_pfn(free_pfn);
2388                 /*
2389                  * Only go back, not forward. The cached pfn might have been
2390                  * already reset to zone end in compact_finished()
2391                  */
2392                 if (free_pfn > cc->zone->compact_cached_free_pfn)
2393                         cc->zone->compact_cached_free_pfn = free_pfn;
2394         }
2395
2396         count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2397         count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2398
2399         trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2400                                 cc->free_pfn, end_pfn, sync, ret);
2401
2402         return ret;
2403 }
2404
2405 static enum compact_result compact_zone_order(struct zone *zone, int order,
2406                 gfp_t gfp_mask, enum compact_priority prio,
2407                 unsigned int alloc_flags, int highest_zoneidx,
2408                 struct page **capture)
2409 {
2410         enum compact_result ret;
2411         struct compact_control cc = {
2412                 .order = order,
2413                 .search_order = order,
2414                 .gfp_mask = gfp_mask,
2415                 .zone = zone,
2416                 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2417                                         MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2418                 .alloc_flags = alloc_flags,
2419                 .highest_zoneidx = highest_zoneidx,
2420                 .direct_compaction = true,
2421                 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2422                 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2423                 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2424         };
2425         struct capture_control capc = {
2426                 .cc = &cc,
2427                 .page = NULL,
2428         };
2429
2430         /*
2431          * Make sure the structs are really initialized before we expose the
2432          * capture control, in case we are interrupted and the interrupt handler
2433          * frees a page.
2434          */
2435         barrier();
2436         WRITE_ONCE(current->capture_control, &capc);
2437
2438         ret = compact_zone(&cc, &capc);
2439
2440         VM_BUG_ON(!list_empty(&cc.freepages));
2441         VM_BUG_ON(!list_empty(&cc.migratepages));
2442
2443         /*
2444          * Make sure we hide capture control first before we read the captured
2445          * page pointer, otherwise an interrupt could free and capture a page
2446          * and we would leak it.
2447          */
2448         WRITE_ONCE(current->capture_control, NULL);
2449         *capture = READ_ONCE(capc.page);
2450
2451         return ret;
2452 }
2453
2454 int sysctl_extfrag_threshold = 500;
2455
2456 /**
2457  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2458  * @gfp_mask: The GFP mask of the current allocation
2459  * @order: The order of the current allocation
2460  * @alloc_flags: The allocation flags of the current allocation
2461  * @ac: The context of current allocation
2462  * @prio: Determines how hard direct compaction should try to succeed
2463  * @capture: Pointer to free page created by compaction will be stored here
2464  *
2465  * This is the main entry point for direct page compaction.
2466  */
2467 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2468                 unsigned int alloc_flags, const struct alloc_context *ac,
2469                 enum compact_priority prio, struct page **capture)
2470 {
2471         int may_perform_io = gfp_mask & __GFP_IO;
2472         struct zoneref *z;
2473         struct zone *zone;
2474         enum compact_result rc = COMPACT_SKIPPED;
2475
2476         /*
2477          * Check if the GFP flags allow compaction - GFP_NOIO is really
2478          * tricky context because the migration might require IO
2479          */
2480         if (!may_perform_io)
2481                 return COMPACT_SKIPPED;
2482
2483         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2484
2485         /* Compact each zone in the list */
2486         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2487                                         ac->highest_zoneidx, ac->nodemask) {
2488                 enum compact_result status;
2489
2490                 if (prio > MIN_COMPACT_PRIORITY
2491                                         && compaction_deferred(zone, order)) {
2492                         rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2493                         continue;
2494                 }
2495
2496                 status = compact_zone_order(zone, order, gfp_mask, prio,
2497                                 alloc_flags, ac->highest_zoneidx, capture);
2498                 rc = max(status, rc);
2499
2500                 /* The allocation should succeed, stop compacting */
2501                 if (status == COMPACT_SUCCESS) {
2502                         /*
2503                          * We think the allocation will succeed in this zone,
2504                          * but it is not certain, hence the false. The caller
2505                          * will repeat this with true if allocation indeed
2506                          * succeeds in this zone.
2507                          */
2508                         compaction_defer_reset(zone, order, false);
2509
2510                         break;
2511                 }
2512
2513                 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2514                                         status == COMPACT_PARTIAL_SKIPPED))
2515                         /*
2516                          * We think that allocation won't succeed in this zone
2517                          * so we defer compaction there. If it ends up
2518                          * succeeding after all, it will be reset.
2519                          */
2520                         defer_compaction(zone, order);
2521
2522                 /*
2523                  * We might have stopped compacting due to need_resched() in
2524                  * async compaction, or due to a fatal signal detected. In that
2525                  * case do not try further zones
2526                  */
2527                 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2528                                         || fatal_signal_pending(current))
2529                         break;
2530         }
2531
2532         return rc;
2533 }
2534
2535 /*
2536  * Compact all zones within a node till each zone's fragmentation score
2537  * reaches within proactive compaction thresholds (as determined by the
2538  * proactiveness tunable).
2539  *
2540  * It is possible that the function returns before reaching score targets
2541  * due to various back-off conditions, such as, contention on per-node or
2542  * per-zone locks.
2543  */
2544 static void proactive_compact_node(pg_data_t *pgdat)
2545 {
2546         int zoneid;
2547         struct zone *zone;
2548         struct compact_control cc = {
2549                 .order = -1,
2550                 .mode = MIGRATE_SYNC_LIGHT,
2551                 .ignore_skip_hint = true,
2552                 .whole_zone = true,
2553                 .gfp_mask = GFP_KERNEL,
2554                 .proactive_compaction = true,
2555         };
2556
2557         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2558                 zone = &pgdat->node_zones[zoneid];
2559                 if (!populated_zone(zone))
2560                         continue;
2561
2562                 cc.zone = zone;
2563
2564                 compact_zone(&cc, NULL);
2565
2566                 VM_BUG_ON(!list_empty(&cc.freepages));
2567                 VM_BUG_ON(!list_empty(&cc.migratepages));
2568         }
2569 }
2570
2571 /* Compact all zones within a node */
2572 static void compact_node(int nid)
2573 {
2574         pg_data_t *pgdat = NODE_DATA(nid);
2575         int zoneid;
2576         struct zone *zone;
2577         struct compact_control cc = {
2578                 .order = -1,
2579                 .mode = MIGRATE_SYNC,
2580                 .ignore_skip_hint = true,
2581                 .whole_zone = true,
2582                 .gfp_mask = GFP_KERNEL,
2583         };
2584
2585
2586         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2587
2588                 zone = &pgdat->node_zones[zoneid];
2589                 if (!populated_zone(zone))
2590                         continue;
2591
2592                 cc.zone = zone;
2593
2594                 compact_zone(&cc, NULL);
2595
2596                 VM_BUG_ON(!list_empty(&cc.freepages));
2597                 VM_BUG_ON(!list_empty(&cc.migratepages));
2598         }
2599 }
2600
2601 /* Compact all nodes in the system */
2602 static void compact_nodes(void)
2603 {
2604         int nid;
2605
2606         /* Flush pending updates to the LRU lists */
2607         lru_add_drain_all();
2608
2609         for_each_online_node(nid)
2610                 compact_node(nid);
2611 }
2612
2613 /* The written value is actually unused, all memory is compacted */
2614 int sysctl_compact_memory;
2615
2616 /*
2617  * Tunable for proactive compaction. It determines how
2618  * aggressively the kernel should compact memory in the
2619  * background. It takes values in the range [0, 100].
2620  */
2621 unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2622
2623 /*
2624  * This is the entry point for compacting all nodes via
2625  * /proc/sys/vm/compact_memory
2626  */
2627 int sysctl_compaction_handler(struct ctl_table *table, int write,
2628                         void *buffer, size_t *length, loff_t *ppos)
2629 {
2630         if (write)
2631                 compact_nodes();
2632
2633         return 0;
2634 }
2635
2636 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2637 static ssize_t sysfs_compact_node(struct device *dev,
2638                         struct device_attribute *attr,
2639                         const char *buf, size_t count)
2640 {
2641         int nid = dev->id;
2642
2643         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2644                 /* Flush pending updates to the LRU lists */
2645                 lru_add_drain_all();
2646
2647                 compact_node(nid);
2648         }
2649
2650         return count;
2651 }
2652 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
2653
2654 int compaction_register_node(struct node *node)
2655 {
2656         return device_create_file(&node->dev, &dev_attr_compact);
2657 }
2658
2659 void compaction_unregister_node(struct node *node)
2660 {
2661         return device_remove_file(&node->dev, &dev_attr_compact);
2662 }
2663 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2664
2665 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2666 {
2667         return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
2668 }
2669
2670 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2671 {
2672         int zoneid;
2673         struct zone *zone;
2674         enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2675
2676         for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2677                 zone = &pgdat->node_zones[zoneid];
2678
2679                 if (!populated_zone(zone))
2680                         continue;
2681
2682                 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2683                                         highest_zoneidx) == COMPACT_CONTINUE)
2684                         return true;
2685         }
2686
2687         return false;
2688 }
2689
2690 static void kcompactd_do_work(pg_data_t *pgdat)
2691 {
2692         /*
2693          * With no special task, compact all zones so that a page of requested
2694          * order is allocatable.
2695          */
2696         int zoneid;
2697         struct zone *zone;
2698         struct compact_control cc = {
2699                 .order = pgdat->kcompactd_max_order,
2700                 .search_order = pgdat->kcompactd_max_order,
2701                 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2702                 .mode = MIGRATE_SYNC_LIGHT,
2703                 .ignore_skip_hint = false,
2704                 .gfp_mask = GFP_KERNEL,
2705         };
2706         trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2707                                                         cc.highest_zoneidx);
2708         count_compact_event(KCOMPACTD_WAKE);
2709
2710         for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2711                 int status;
2712
2713                 zone = &pgdat->node_zones[zoneid];
2714                 if (!populated_zone(zone))
2715                         continue;
2716
2717                 if (compaction_deferred(zone, cc.order))
2718                         continue;
2719
2720                 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2721                                                         COMPACT_CONTINUE)
2722                         continue;
2723
2724                 if (kthread_should_stop())
2725                         return;
2726
2727                 cc.zone = zone;
2728                 status = compact_zone(&cc, NULL);
2729
2730                 if (status == COMPACT_SUCCESS) {
2731                         compaction_defer_reset(zone, cc.order, false);
2732                 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2733                         /*
2734                          * Buddy pages may become stranded on pcps that could
2735                          * otherwise coalesce on the zone's free area for
2736                          * order >= cc.order.  This is ratelimited by the
2737                          * upcoming deferral.
2738                          */
2739                         drain_all_pages(zone);
2740
2741                         /*
2742                          * We use sync migration mode here, so we defer like
2743                          * sync direct compaction does.
2744                          */
2745                         defer_compaction(zone, cc.order);
2746                 }
2747
2748                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2749                                      cc.total_migrate_scanned);
2750                 count_compact_events(KCOMPACTD_FREE_SCANNED,
2751                                      cc.total_free_scanned);
2752
2753                 VM_BUG_ON(!list_empty(&cc.freepages));
2754                 VM_BUG_ON(!list_empty(&cc.migratepages));
2755         }
2756
2757         /*
2758          * Regardless of success, we are done until woken up next. But remember
2759          * the requested order/highest_zoneidx in case it was higher/tighter
2760          * than our current ones
2761          */
2762         if (pgdat->kcompactd_max_order <= cc.order)
2763                 pgdat->kcompactd_max_order = 0;
2764         if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2765                 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2766 }
2767
2768 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2769 {
2770         if (!order)
2771                 return;
2772
2773         if (pgdat->kcompactd_max_order < order)
2774                 pgdat->kcompactd_max_order = order;
2775
2776         if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2777                 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2778
2779         /*
2780          * Pairs with implicit barrier in wait_event_freezable()
2781          * such that wakeups are not missed.
2782          */
2783         if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2784                 return;
2785
2786         if (!kcompactd_node_suitable(pgdat))
2787                 return;
2788
2789         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2790                                                         highest_zoneidx);
2791         wake_up_interruptible(&pgdat->kcompactd_wait);
2792 }
2793
2794 /*
2795  * The background compaction daemon, started as a kernel thread
2796  * from the init process.
2797  */
2798 static int kcompactd(void *p)
2799 {
2800         pg_data_t *pgdat = (pg_data_t*)p;
2801         struct task_struct *tsk = current;
2802         unsigned int proactive_defer = 0;
2803
2804         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2805
2806         if (!cpumask_empty(cpumask))
2807                 set_cpus_allowed_ptr(tsk, cpumask);
2808
2809         set_freezable();
2810
2811         pgdat->kcompactd_max_order = 0;
2812         pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2813
2814         while (!kthread_should_stop()) {
2815                 unsigned long pflags;
2816
2817                 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2818                 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2819                         kcompactd_work_requested(pgdat),
2820                         msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC))) {
2821
2822                         psi_memstall_enter(&pflags);
2823                         kcompactd_do_work(pgdat);
2824                         psi_memstall_leave(&pflags);
2825                         continue;
2826                 }
2827
2828                 /* kcompactd wait timeout */
2829                 if (should_proactive_compact_node(pgdat)) {
2830                         unsigned int prev_score, score;
2831
2832                         if (proactive_defer) {
2833                                 proactive_defer--;
2834                                 continue;
2835                         }
2836                         prev_score = fragmentation_score_node(pgdat);
2837                         proactive_compact_node(pgdat);
2838                         score = fragmentation_score_node(pgdat);
2839                         /*
2840                          * Defer proactive compaction if the fragmentation
2841                          * score did not go down i.e. no progress made.
2842                          */
2843                         proactive_defer = score < prev_score ?
2844                                         0 : 1 << COMPACT_MAX_DEFER_SHIFT;
2845                 }
2846         }
2847
2848         return 0;
2849 }
2850
2851 /*
2852  * This kcompactd start function will be called by init and node-hot-add.
2853  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2854  */
2855 int kcompactd_run(int nid)
2856 {
2857         pg_data_t *pgdat = NODE_DATA(nid);
2858         int ret = 0;
2859
2860         if (pgdat->kcompactd)
2861                 return 0;
2862
2863         pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2864         if (IS_ERR(pgdat->kcompactd)) {
2865                 pr_err("Failed to start kcompactd on node %d\n", nid);
2866                 ret = PTR_ERR(pgdat->kcompactd);
2867                 pgdat->kcompactd = NULL;
2868         }
2869         return ret;
2870 }
2871
2872 /*
2873  * Called by memory hotplug when all memory in a node is offlined. Caller must
2874  * hold mem_hotplug_begin/end().
2875  */
2876 void kcompactd_stop(int nid)
2877 {
2878         struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2879
2880         if (kcompactd) {
2881                 kthread_stop(kcompactd);
2882                 NODE_DATA(nid)->kcompactd = NULL;
2883         }
2884 }
2885
2886 /*
2887  * It's optimal to keep kcompactd on the same CPUs as their memory, but
2888  * not required for correctness. So if the last cpu in a node goes
2889  * away, we get changed to run anywhere: as the first one comes back,
2890  * restore their cpu bindings.
2891  */
2892 static int kcompactd_cpu_online(unsigned int cpu)
2893 {
2894         int nid;
2895
2896         for_each_node_state(nid, N_MEMORY) {
2897                 pg_data_t *pgdat = NODE_DATA(nid);
2898                 const struct cpumask *mask;
2899
2900                 mask = cpumask_of_node(pgdat->node_id);
2901
2902                 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2903                         /* One of our CPUs online: restore mask */
2904                         set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2905         }
2906         return 0;
2907 }
2908
2909 static int __init kcompactd_init(void)
2910 {
2911         int nid;
2912         int ret;
2913
2914         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2915                                         "mm/compaction:online",
2916                                         kcompactd_cpu_online, NULL);
2917         if (ret < 0) {
2918                 pr_err("kcompactd: failed to register hotplug callbacks.\n");
2919                 return ret;
2920         }
2921
2922         for_each_node_state(nid, N_MEMORY)
2923                 kcompactd_run(nid);
2924         return 0;
2925 }
2926 subsys_initcall(kcompactd_init)
2927
2928 #endif /* CONFIG_COMPACTION */