Merge tag 'nfsd-5.7' of git://git.linux-nfs.org/projects/cel/cel-2.6
[linux-2.6-microblaze.git] / mm / compaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
29 static inline void count_compact_event(enum vm_event_item item)
30 {
31         count_vm_event(item);
32 }
33
34 static inline void count_compact_events(enum vm_event_item item, long delta)
35 {
36         count_vm_events(item, delta);
37 }
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
42
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
47
48 #define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
49 #define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
50 #define pageblock_start_pfn(pfn)        block_start_pfn(pfn, pageblock_order)
51 #define pageblock_end_pfn(pfn)          block_end_pfn(pfn, pageblock_order)
52
53 static unsigned long release_freepages(struct list_head *freelist)
54 {
55         struct page *page, *next;
56         unsigned long high_pfn = 0;
57
58         list_for_each_entry_safe(page, next, freelist, lru) {
59                 unsigned long pfn = page_to_pfn(page);
60                 list_del(&page->lru);
61                 __free_page(page);
62                 if (pfn > high_pfn)
63                         high_pfn = pfn;
64         }
65
66         return high_pfn;
67 }
68
69 static void split_map_pages(struct list_head *list)
70 {
71         unsigned int i, order, nr_pages;
72         struct page *page, *next;
73         LIST_HEAD(tmp_list);
74
75         list_for_each_entry_safe(page, next, list, lru) {
76                 list_del(&page->lru);
77
78                 order = page_private(page);
79                 nr_pages = 1 << order;
80
81                 post_alloc_hook(page, order, __GFP_MOVABLE);
82                 if (order)
83                         split_page(page, order);
84
85                 for (i = 0; i < nr_pages; i++) {
86                         list_add(&page->lru, &tmp_list);
87                         page++;
88                 }
89         }
90
91         list_splice(&tmp_list, list);
92 }
93
94 #ifdef CONFIG_COMPACTION
95
96 int PageMovable(struct page *page)
97 {
98         struct address_space *mapping;
99
100         VM_BUG_ON_PAGE(!PageLocked(page), page);
101         if (!__PageMovable(page))
102                 return 0;
103
104         mapping = page_mapping(page);
105         if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
106                 return 1;
107
108         return 0;
109 }
110 EXPORT_SYMBOL(PageMovable);
111
112 void __SetPageMovable(struct page *page, struct address_space *mapping)
113 {
114         VM_BUG_ON_PAGE(!PageLocked(page), page);
115         VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
116         page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
117 }
118 EXPORT_SYMBOL(__SetPageMovable);
119
120 void __ClearPageMovable(struct page *page)
121 {
122         VM_BUG_ON_PAGE(!PageLocked(page), page);
123         VM_BUG_ON_PAGE(!PageMovable(page), page);
124         /*
125          * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
126          * flag so that VM can catch up released page by driver after isolation.
127          * With it, VM migration doesn't try to put it back.
128          */
129         page->mapping = (void *)((unsigned long)page->mapping &
130                                 PAGE_MAPPING_MOVABLE);
131 }
132 EXPORT_SYMBOL(__ClearPageMovable);
133
134 /* Do not skip compaction more than 64 times */
135 #define COMPACT_MAX_DEFER_SHIFT 6
136
137 /*
138  * Compaction is deferred when compaction fails to result in a page
139  * allocation success. 1 << compact_defer_limit compactions are skipped up
140  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
141  */
142 void defer_compaction(struct zone *zone, int order)
143 {
144         zone->compact_considered = 0;
145         zone->compact_defer_shift++;
146
147         if (order < zone->compact_order_failed)
148                 zone->compact_order_failed = order;
149
150         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
151                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
152
153         trace_mm_compaction_defer_compaction(zone, order);
154 }
155
156 /* Returns true if compaction should be skipped this time */
157 bool compaction_deferred(struct zone *zone, int order)
158 {
159         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
160
161         if (order < zone->compact_order_failed)
162                 return false;
163
164         /* Avoid possible overflow */
165         if (++zone->compact_considered > defer_limit)
166                 zone->compact_considered = defer_limit;
167
168         if (zone->compact_considered >= defer_limit)
169                 return false;
170
171         trace_mm_compaction_deferred(zone, order);
172
173         return true;
174 }
175
176 /*
177  * Update defer tracking counters after successful compaction of given order,
178  * which means an allocation either succeeded (alloc_success == true) or is
179  * expected to succeed.
180  */
181 void compaction_defer_reset(struct zone *zone, int order,
182                 bool alloc_success)
183 {
184         if (alloc_success) {
185                 zone->compact_considered = 0;
186                 zone->compact_defer_shift = 0;
187         }
188         if (order >= zone->compact_order_failed)
189                 zone->compact_order_failed = order + 1;
190
191         trace_mm_compaction_defer_reset(zone, order);
192 }
193
194 /* Returns true if restarting compaction after many failures */
195 bool compaction_restarting(struct zone *zone, int order)
196 {
197         if (order < zone->compact_order_failed)
198                 return false;
199
200         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
201                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
202 }
203
204 /* Returns true if the pageblock should be scanned for pages to isolate. */
205 static inline bool isolation_suitable(struct compact_control *cc,
206                                         struct page *page)
207 {
208         if (cc->ignore_skip_hint)
209                 return true;
210
211         return !get_pageblock_skip(page);
212 }
213
214 static void reset_cached_positions(struct zone *zone)
215 {
216         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
217         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
218         zone->compact_cached_free_pfn =
219                                 pageblock_start_pfn(zone_end_pfn(zone) - 1);
220 }
221
222 /*
223  * Compound pages of >= pageblock_order should consistenly be skipped until
224  * released. It is always pointless to compact pages of such order (if they are
225  * migratable), and the pageblocks they occupy cannot contain any free pages.
226  */
227 static bool pageblock_skip_persistent(struct page *page)
228 {
229         if (!PageCompound(page))
230                 return false;
231
232         page = compound_head(page);
233
234         if (compound_order(page) >= pageblock_order)
235                 return true;
236
237         return false;
238 }
239
240 static bool
241 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
242                                                         bool check_target)
243 {
244         struct page *page = pfn_to_online_page(pfn);
245         struct page *block_page;
246         struct page *end_page;
247         unsigned long block_pfn;
248
249         if (!page)
250                 return false;
251         if (zone != page_zone(page))
252                 return false;
253         if (pageblock_skip_persistent(page))
254                 return false;
255
256         /*
257          * If skip is already cleared do no further checking once the
258          * restart points have been set.
259          */
260         if (check_source && check_target && !get_pageblock_skip(page))
261                 return true;
262
263         /*
264          * If clearing skip for the target scanner, do not select a
265          * non-movable pageblock as the starting point.
266          */
267         if (!check_source && check_target &&
268             get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
269                 return false;
270
271         /* Ensure the start of the pageblock or zone is online and valid */
272         block_pfn = pageblock_start_pfn(pfn);
273         block_pfn = max(block_pfn, zone->zone_start_pfn);
274         block_page = pfn_to_online_page(block_pfn);
275         if (block_page) {
276                 page = block_page;
277                 pfn = block_pfn;
278         }
279
280         /* Ensure the end of the pageblock or zone is online and valid */
281         block_pfn = pageblock_end_pfn(pfn) - 1;
282         block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
283         end_page = pfn_to_online_page(block_pfn);
284         if (!end_page)
285                 return false;
286
287         /*
288          * Only clear the hint if a sample indicates there is either a
289          * free page or an LRU page in the block. One or other condition
290          * is necessary for the block to be a migration source/target.
291          */
292         do {
293                 if (pfn_valid_within(pfn)) {
294                         if (check_source && PageLRU(page)) {
295                                 clear_pageblock_skip(page);
296                                 return true;
297                         }
298
299                         if (check_target && PageBuddy(page)) {
300                                 clear_pageblock_skip(page);
301                                 return true;
302                         }
303                 }
304
305                 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
306                 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
307         } while (page <= end_page);
308
309         return false;
310 }
311
312 /*
313  * This function is called to clear all cached information on pageblocks that
314  * should be skipped for page isolation when the migrate and free page scanner
315  * meet.
316  */
317 static void __reset_isolation_suitable(struct zone *zone)
318 {
319         unsigned long migrate_pfn = zone->zone_start_pfn;
320         unsigned long free_pfn = zone_end_pfn(zone) - 1;
321         unsigned long reset_migrate = free_pfn;
322         unsigned long reset_free = migrate_pfn;
323         bool source_set = false;
324         bool free_set = false;
325
326         if (!zone->compact_blockskip_flush)
327                 return;
328
329         zone->compact_blockskip_flush = false;
330
331         /*
332          * Walk the zone and update pageblock skip information. Source looks
333          * for PageLRU while target looks for PageBuddy. When the scanner
334          * is found, both PageBuddy and PageLRU are checked as the pageblock
335          * is suitable as both source and target.
336          */
337         for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
338                                         free_pfn -= pageblock_nr_pages) {
339                 cond_resched();
340
341                 /* Update the migrate PFN */
342                 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
343                     migrate_pfn < reset_migrate) {
344                         source_set = true;
345                         reset_migrate = migrate_pfn;
346                         zone->compact_init_migrate_pfn = reset_migrate;
347                         zone->compact_cached_migrate_pfn[0] = reset_migrate;
348                         zone->compact_cached_migrate_pfn[1] = reset_migrate;
349                 }
350
351                 /* Update the free PFN */
352                 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
353                     free_pfn > reset_free) {
354                         free_set = true;
355                         reset_free = free_pfn;
356                         zone->compact_init_free_pfn = reset_free;
357                         zone->compact_cached_free_pfn = reset_free;
358                 }
359         }
360
361         /* Leave no distance if no suitable block was reset */
362         if (reset_migrate >= reset_free) {
363                 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
364                 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
365                 zone->compact_cached_free_pfn = free_pfn;
366         }
367 }
368
369 void reset_isolation_suitable(pg_data_t *pgdat)
370 {
371         int zoneid;
372
373         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
374                 struct zone *zone = &pgdat->node_zones[zoneid];
375                 if (!populated_zone(zone))
376                         continue;
377
378                 /* Only flush if a full compaction finished recently */
379                 if (zone->compact_blockskip_flush)
380                         __reset_isolation_suitable(zone);
381         }
382 }
383
384 /*
385  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
386  * locks are not required for read/writers. Returns true if it was already set.
387  */
388 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
389                                                         unsigned long pfn)
390 {
391         bool skip;
392
393         /* Do no update if skip hint is being ignored */
394         if (cc->ignore_skip_hint)
395                 return false;
396
397         if (!IS_ALIGNED(pfn, pageblock_nr_pages))
398                 return false;
399
400         skip = get_pageblock_skip(page);
401         if (!skip && !cc->no_set_skip_hint)
402                 set_pageblock_skip(page);
403
404         return skip;
405 }
406
407 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
408 {
409         struct zone *zone = cc->zone;
410
411         pfn = pageblock_end_pfn(pfn);
412
413         /* Set for isolation rather than compaction */
414         if (cc->no_set_skip_hint)
415                 return;
416
417         if (pfn > zone->compact_cached_migrate_pfn[0])
418                 zone->compact_cached_migrate_pfn[0] = pfn;
419         if (cc->mode != MIGRATE_ASYNC &&
420             pfn > zone->compact_cached_migrate_pfn[1])
421                 zone->compact_cached_migrate_pfn[1] = pfn;
422 }
423
424 /*
425  * If no pages were isolated then mark this pageblock to be skipped in the
426  * future. The information is later cleared by __reset_isolation_suitable().
427  */
428 static void update_pageblock_skip(struct compact_control *cc,
429                         struct page *page, unsigned long pfn)
430 {
431         struct zone *zone = cc->zone;
432
433         if (cc->no_set_skip_hint)
434                 return;
435
436         if (!page)
437                 return;
438
439         set_pageblock_skip(page);
440
441         /* Update where async and sync compaction should restart */
442         if (pfn < zone->compact_cached_free_pfn)
443                 zone->compact_cached_free_pfn = pfn;
444 }
445 #else
446 static inline bool isolation_suitable(struct compact_control *cc,
447                                         struct page *page)
448 {
449         return true;
450 }
451
452 static inline bool pageblock_skip_persistent(struct page *page)
453 {
454         return false;
455 }
456
457 static inline void update_pageblock_skip(struct compact_control *cc,
458                         struct page *page, unsigned long pfn)
459 {
460 }
461
462 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
463 {
464 }
465
466 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
467                                                         unsigned long pfn)
468 {
469         return false;
470 }
471 #endif /* CONFIG_COMPACTION */
472
473 /*
474  * Compaction requires the taking of some coarse locks that are potentially
475  * very heavily contended. For async compaction, trylock and record if the
476  * lock is contended. The lock will still be acquired but compaction will
477  * abort when the current block is finished regardless of success rate.
478  * Sync compaction acquires the lock.
479  *
480  * Always returns true which makes it easier to track lock state in callers.
481  */
482 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
483                                                 struct compact_control *cc)
484 {
485         /* Track if the lock is contended in async mode */
486         if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
487                 if (spin_trylock_irqsave(lock, *flags))
488                         return true;
489
490                 cc->contended = true;
491         }
492
493         spin_lock_irqsave(lock, *flags);
494         return true;
495 }
496
497 /*
498  * Compaction requires the taking of some coarse locks that are potentially
499  * very heavily contended. The lock should be periodically unlocked to avoid
500  * having disabled IRQs for a long time, even when there is nobody waiting on
501  * the lock. It might also be that allowing the IRQs will result in
502  * need_resched() becoming true. If scheduling is needed, async compaction
503  * aborts. Sync compaction schedules.
504  * Either compaction type will also abort if a fatal signal is pending.
505  * In either case if the lock was locked, it is dropped and not regained.
506  *
507  * Returns true if compaction should abort due to fatal signal pending, or
508  *              async compaction due to need_resched()
509  * Returns false when compaction can continue (sync compaction might have
510  *              scheduled)
511  */
512 static bool compact_unlock_should_abort(spinlock_t *lock,
513                 unsigned long flags, bool *locked, struct compact_control *cc)
514 {
515         if (*locked) {
516                 spin_unlock_irqrestore(lock, flags);
517                 *locked = false;
518         }
519
520         if (fatal_signal_pending(current)) {
521                 cc->contended = true;
522                 return true;
523         }
524
525         cond_resched();
526
527         return false;
528 }
529
530 /*
531  * Isolate free pages onto a private freelist. If @strict is true, will abort
532  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
533  * (even though it may still end up isolating some pages).
534  */
535 static unsigned long isolate_freepages_block(struct compact_control *cc,
536                                 unsigned long *start_pfn,
537                                 unsigned long end_pfn,
538                                 struct list_head *freelist,
539                                 unsigned int stride,
540                                 bool strict)
541 {
542         int nr_scanned = 0, total_isolated = 0;
543         struct page *cursor;
544         unsigned long flags = 0;
545         bool locked = false;
546         unsigned long blockpfn = *start_pfn;
547         unsigned int order;
548
549         /* Strict mode is for isolation, speed is secondary */
550         if (strict)
551                 stride = 1;
552
553         cursor = pfn_to_page(blockpfn);
554
555         /* Isolate free pages. */
556         for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
557                 int isolated;
558                 struct page *page = cursor;
559
560                 /*
561                  * Periodically drop the lock (if held) regardless of its
562                  * contention, to give chance to IRQs. Abort if fatal signal
563                  * pending or async compaction detects need_resched()
564                  */
565                 if (!(blockpfn % SWAP_CLUSTER_MAX)
566                     && compact_unlock_should_abort(&cc->zone->lock, flags,
567                                                                 &locked, cc))
568                         break;
569
570                 nr_scanned++;
571                 if (!pfn_valid_within(blockpfn))
572                         goto isolate_fail;
573
574                 /*
575                  * For compound pages such as THP and hugetlbfs, we can save
576                  * potentially a lot of iterations if we skip them at once.
577                  * The check is racy, but we can consider only valid values
578                  * and the only danger is skipping too much.
579                  */
580                 if (PageCompound(page)) {
581                         const unsigned int order = compound_order(page);
582
583                         if (likely(order < MAX_ORDER)) {
584                                 blockpfn += (1UL << order) - 1;
585                                 cursor += (1UL << order) - 1;
586                         }
587                         goto isolate_fail;
588                 }
589
590                 if (!PageBuddy(page))
591                         goto isolate_fail;
592
593                 /*
594                  * If we already hold the lock, we can skip some rechecking.
595                  * Note that if we hold the lock now, checked_pageblock was
596                  * already set in some previous iteration (or strict is true),
597                  * so it is correct to skip the suitable migration target
598                  * recheck as well.
599                  */
600                 if (!locked) {
601                         locked = compact_lock_irqsave(&cc->zone->lock,
602                                                                 &flags, cc);
603
604                         /* Recheck this is a buddy page under lock */
605                         if (!PageBuddy(page))
606                                 goto isolate_fail;
607                 }
608
609                 /* Found a free page, will break it into order-0 pages */
610                 order = page_order(page);
611                 isolated = __isolate_free_page(page, order);
612                 if (!isolated)
613                         break;
614                 set_page_private(page, order);
615
616                 total_isolated += isolated;
617                 cc->nr_freepages += isolated;
618                 list_add_tail(&page->lru, freelist);
619
620                 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
621                         blockpfn += isolated;
622                         break;
623                 }
624                 /* Advance to the end of split page */
625                 blockpfn += isolated - 1;
626                 cursor += isolated - 1;
627                 continue;
628
629 isolate_fail:
630                 if (strict)
631                         break;
632                 else
633                         continue;
634
635         }
636
637         if (locked)
638                 spin_unlock_irqrestore(&cc->zone->lock, flags);
639
640         /*
641          * There is a tiny chance that we have read bogus compound_order(),
642          * so be careful to not go outside of the pageblock.
643          */
644         if (unlikely(blockpfn > end_pfn))
645                 blockpfn = end_pfn;
646
647         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
648                                         nr_scanned, total_isolated);
649
650         /* Record how far we have got within the block */
651         *start_pfn = blockpfn;
652
653         /*
654          * If strict isolation is requested by CMA then check that all the
655          * pages requested were isolated. If there were any failures, 0 is
656          * returned and CMA will fail.
657          */
658         if (strict && blockpfn < end_pfn)
659                 total_isolated = 0;
660
661         cc->total_free_scanned += nr_scanned;
662         if (total_isolated)
663                 count_compact_events(COMPACTISOLATED, total_isolated);
664         return total_isolated;
665 }
666
667 /**
668  * isolate_freepages_range() - isolate free pages.
669  * @cc:        Compaction control structure.
670  * @start_pfn: The first PFN to start isolating.
671  * @end_pfn:   The one-past-last PFN.
672  *
673  * Non-free pages, invalid PFNs, or zone boundaries within the
674  * [start_pfn, end_pfn) range are considered errors, cause function to
675  * undo its actions and return zero.
676  *
677  * Otherwise, function returns one-past-the-last PFN of isolated page
678  * (which may be greater then end_pfn if end fell in a middle of
679  * a free page).
680  */
681 unsigned long
682 isolate_freepages_range(struct compact_control *cc,
683                         unsigned long start_pfn, unsigned long end_pfn)
684 {
685         unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
686         LIST_HEAD(freelist);
687
688         pfn = start_pfn;
689         block_start_pfn = pageblock_start_pfn(pfn);
690         if (block_start_pfn < cc->zone->zone_start_pfn)
691                 block_start_pfn = cc->zone->zone_start_pfn;
692         block_end_pfn = pageblock_end_pfn(pfn);
693
694         for (; pfn < end_pfn; pfn += isolated,
695                                 block_start_pfn = block_end_pfn,
696                                 block_end_pfn += pageblock_nr_pages) {
697                 /* Protect pfn from changing by isolate_freepages_block */
698                 unsigned long isolate_start_pfn = pfn;
699
700                 block_end_pfn = min(block_end_pfn, end_pfn);
701
702                 /*
703                  * pfn could pass the block_end_pfn if isolated freepage
704                  * is more than pageblock order. In this case, we adjust
705                  * scanning range to right one.
706                  */
707                 if (pfn >= block_end_pfn) {
708                         block_start_pfn = pageblock_start_pfn(pfn);
709                         block_end_pfn = pageblock_end_pfn(pfn);
710                         block_end_pfn = min(block_end_pfn, end_pfn);
711                 }
712
713                 if (!pageblock_pfn_to_page(block_start_pfn,
714                                         block_end_pfn, cc->zone))
715                         break;
716
717                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
718                                         block_end_pfn, &freelist, 0, true);
719
720                 /*
721                  * In strict mode, isolate_freepages_block() returns 0 if
722                  * there are any holes in the block (ie. invalid PFNs or
723                  * non-free pages).
724                  */
725                 if (!isolated)
726                         break;
727
728                 /*
729                  * If we managed to isolate pages, it is always (1 << n) *
730                  * pageblock_nr_pages for some non-negative n.  (Max order
731                  * page may span two pageblocks).
732                  */
733         }
734
735         /* __isolate_free_page() does not map the pages */
736         split_map_pages(&freelist);
737
738         if (pfn < end_pfn) {
739                 /* Loop terminated early, cleanup. */
740                 release_freepages(&freelist);
741                 return 0;
742         }
743
744         /* We don't use freelists for anything. */
745         return pfn;
746 }
747
748 /* Similar to reclaim, but different enough that they don't share logic */
749 static bool too_many_isolated(pg_data_t *pgdat)
750 {
751         unsigned long active, inactive, isolated;
752
753         inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
754                         node_page_state(pgdat, NR_INACTIVE_ANON);
755         active = node_page_state(pgdat, NR_ACTIVE_FILE) +
756                         node_page_state(pgdat, NR_ACTIVE_ANON);
757         isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
758                         node_page_state(pgdat, NR_ISOLATED_ANON);
759
760         return isolated > (inactive + active) / 2;
761 }
762
763 /**
764  * isolate_migratepages_block() - isolate all migrate-able pages within
765  *                                a single pageblock
766  * @cc:         Compaction control structure.
767  * @low_pfn:    The first PFN to isolate
768  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
769  * @isolate_mode: Isolation mode to be used.
770  *
771  * Isolate all pages that can be migrated from the range specified by
772  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
773  * Returns zero if there is a fatal signal pending, otherwise PFN of the
774  * first page that was not scanned (which may be both less, equal to or more
775  * than end_pfn).
776  *
777  * The pages are isolated on cc->migratepages list (not required to be empty),
778  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
779  * is neither read nor updated.
780  */
781 static unsigned long
782 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
783                         unsigned long end_pfn, isolate_mode_t isolate_mode)
784 {
785         pg_data_t *pgdat = cc->zone->zone_pgdat;
786         unsigned long nr_scanned = 0, nr_isolated = 0;
787         struct lruvec *lruvec;
788         unsigned long flags = 0;
789         bool locked = false;
790         struct page *page = NULL, *valid_page = NULL;
791         unsigned long start_pfn = low_pfn;
792         bool skip_on_failure = false;
793         unsigned long next_skip_pfn = 0;
794         bool skip_updated = false;
795
796         /*
797          * Ensure that there are not too many pages isolated from the LRU
798          * list by either parallel reclaimers or compaction. If there are,
799          * delay for some time until fewer pages are isolated
800          */
801         while (unlikely(too_many_isolated(pgdat))) {
802                 /* async migration should just abort */
803                 if (cc->mode == MIGRATE_ASYNC)
804                         return 0;
805
806                 congestion_wait(BLK_RW_ASYNC, HZ/10);
807
808                 if (fatal_signal_pending(current))
809                         return 0;
810         }
811
812         cond_resched();
813
814         if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
815                 skip_on_failure = true;
816                 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
817         }
818
819         /* Time to isolate some pages for migration */
820         for (; low_pfn < end_pfn; low_pfn++) {
821
822                 if (skip_on_failure && low_pfn >= next_skip_pfn) {
823                         /*
824                          * We have isolated all migration candidates in the
825                          * previous order-aligned block, and did not skip it due
826                          * to failure. We should migrate the pages now and
827                          * hopefully succeed compaction.
828                          */
829                         if (nr_isolated)
830                                 break;
831
832                         /*
833                          * We failed to isolate in the previous order-aligned
834                          * block. Set the new boundary to the end of the
835                          * current block. Note we can't simply increase
836                          * next_skip_pfn by 1 << order, as low_pfn might have
837                          * been incremented by a higher number due to skipping
838                          * a compound or a high-order buddy page in the
839                          * previous loop iteration.
840                          */
841                         next_skip_pfn = block_end_pfn(low_pfn, cc->order);
842                 }
843
844                 /*
845                  * Periodically drop the lock (if held) regardless of its
846                  * contention, to give chance to IRQs. Abort completely if
847                  * a fatal signal is pending.
848                  */
849                 if (!(low_pfn % SWAP_CLUSTER_MAX)
850                     && compact_unlock_should_abort(&pgdat->lru_lock,
851                                             flags, &locked, cc)) {
852                         low_pfn = 0;
853                         goto fatal_pending;
854                 }
855
856                 if (!pfn_valid_within(low_pfn))
857                         goto isolate_fail;
858                 nr_scanned++;
859
860                 page = pfn_to_page(low_pfn);
861
862                 /*
863                  * Check if the pageblock has already been marked skipped.
864                  * Only the aligned PFN is checked as the caller isolates
865                  * COMPACT_CLUSTER_MAX at a time so the second call must
866                  * not falsely conclude that the block should be skipped.
867                  */
868                 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
869                         if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
870                                 low_pfn = end_pfn;
871                                 goto isolate_abort;
872                         }
873                         valid_page = page;
874                 }
875
876                 /*
877                  * Skip if free. We read page order here without zone lock
878                  * which is generally unsafe, but the race window is small and
879                  * the worst thing that can happen is that we skip some
880                  * potential isolation targets.
881                  */
882                 if (PageBuddy(page)) {
883                         unsigned long freepage_order = page_order_unsafe(page);
884
885                         /*
886                          * Without lock, we cannot be sure that what we got is
887                          * a valid page order. Consider only values in the
888                          * valid order range to prevent low_pfn overflow.
889                          */
890                         if (freepage_order > 0 && freepage_order < MAX_ORDER)
891                                 low_pfn += (1UL << freepage_order) - 1;
892                         continue;
893                 }
894
895                 /*
896                  * Regardless of being on LRU, compound pages such as THP and
897                  * hugetlbfs are not to be compacted unless we are attempting
898                  * an allocation much larger than the huge page size (eg CMA).
899                  * We can potentially save a lot of iterations if we skip them
900                  * at once. The check is racy, but we can consider only valid
901                  * values and the only danger is skipping too much.
902                  */
903                 if (PageCompound(page) && !cc->alloc_contig) {
904                         const unsigned int order = compound_order(page);
905
906                         if (likely(order < MAX_ORDER))
907                                 low_pfn += (1UL << order) - 1;
908                         goto isolate_fail;
909                 }
910
911                 /*
912                  * Check may be lockless but that's ok as we recheck later.
913                  * It's possible to migrate LRU and non-lru movable pages.
914                  * Skip any other type of page
915                  */
916                 if (!PageLRU(page)) {
917                         /*
918                          * __PageMovable can return false positive so we need
919                          * to verify it under page_lock.
920                          */
921                         if (unlikely(__PageMovable(page)) &&
922                                         !PageIsolated(page)) {
923                                 if (locked) {
924                                         spin_unlock_irqrestore(&pgdat->lru_lock,
925                                                                         flags);
926                                         locked = false;
927                                 }
928
929                                 if (!isolate_movable_page(page, isolate_mode))
930                                         goto isolate_success;
931                         }
932
933                         goto isolate_fail;
934                 }
935
936                 /*
937                  * Migration will fail if an anonymous page is pinned in memory,
938                  * so avoid taking lru_lock and isolating it unnecessarily in an
939                  * admittedly racy check.
940                  */
941                 if (!page_mapping(page) &&
942                     page_count(page) > page_mapcount(page))
943                         goto isolate_fail;
944
945                 /*
946                  * Only allow to migrate anonymous pages in GFP_NOFS context
947                  * because those do not depend on fs locks.
948                  */
949                 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
950                         goto isolate_fail;
951
952                 /* If we already hold the lock, we can skip some rechecking */
953                 if (!locked) {
954                         locked = compact_lock_irqsave(&pgdat->lru_lock,
955                                                                 &flags, cc);
956
957                         /* Try get exclusive access under lock */
958                         if (!skip_updated) {
959                                 skip_updated = true;
960                                 if (test_and_set_skip(cc, page, low_pfn))
961                                         goto isolate_abort;
962                         }
963
964                         /* Recheck PageLRU and PageCompound under lock */
965                         if (!PageLRU(page))
966                                 goto isolate_fail;
967
968                         /*
969                          * Page become compound since the non-locked check,
970                          * and it's on LRU. It can only be a THP so the order
971                          * is safe to read and it's 0 for tail pages.
972                          */
973                         if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
974                                 low_pfn += compound_nr(page) - 1;
975                                 goto isolate_fail;
976                         }
977                 }
978
979                 lruvec = mem_cgroup_page_lruvec(page, pgdat);
980
981                 /* Try isolate the page */
982                 if (__isolate_lru_page(page, isolate_mode) != 0)
983                         goto isolate_fail;
984
985                 /* The whole page is taken off the LRU; skip the tail pages. */
986                 if (PageCompound(page))
987                         low_pfn += compound_nr(page) - 1;
988
989                 /* Successfully isolated */
990                 del_page_from_lru_list(page, lruvec, page_lru(page));
991                 mod_node_page_state(page_pgdat(page),
992                                 NR_ISOLATED_ANON + page_is_file_cache(page),
993                                 hpage_nr_pages(page));
994
995 isolate_success:
996                 list_add(&page->lru, &cc->migratepages);
997                 cc->nr_migratepages++;
998                 nr_isolated++;
999
1000                 /*
1001                  * Avoid isolating too much unless this block is being
1002                  * rescanned (e.g. dirty/writeback pages, parallel allocation)
1003                  * or a lock is contended. For contention, isolate quickly to
1004                  * potentially remove one source of contention.
1005                  */
1006                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX &&
1007                     !cc->rescan && !cc->contended) {
1008                         ++low_pfn;
1009                         break;
1010                 }
1011
1012                 continue;
1013 isolate_fail:
1014                 if (!skip_on_failure)
1015                         continue;
1016
1017                 /*
1018                  * We have isolated some pages, but then failed. Release them
1019                  * instead of migrating, as we cannot form the cc->order buddy
1020                  * page anyway.
1021                  */
1022                 if (nr_isolated) {
1023                         if (locked) {
1024                                 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1025                                 locked = false;
1026                         }
1027                         putback_movable_pages(&cc->migratepages);
1028                         cc->nr_migratepages = 0;
1029                         nr_isolated = 0;
1030                 }
1031
1032                 if (low_pfn < next_skip_pfn) {
1033                         low_pfn = next_skip_pfn - 1;
1034                         /*
1035                          * The check near the loop beginning would have updated
1036                          * next_skip_pfn too, but this is a bit simpler.
1037                          */
1038                         next_skip_pfn += 1UL << cc->order;
1039                 }
1040         }
1041
1042         /*
1043          * The PageBuddy() check could have potentially brought us outside
1044          * the range to be scanned.
1045          */
1046         if (unlikely(low_pfn > end_pfn))
1047                 low_pfn = end_pfn;
1048
1049 isolate_abort:
1050         if (locked)
1051                 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1052
1053         /*
1054          * Updated the cached scanner pfn once the pageblock has been scanned
1055          * Pages will either be migrated in which case there is no point
1056          * scanning in the near future or migration failed in which case the
1057          * failure reason may persist. The block is marked for skipping if
1058          * there were no pages isolated in the block or if the block is
1059          * rescanned twice in a row.
1060          */
1061         if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1062                 if (valid_page && !skip_updated)
1063                         set_pageblock_skip(valid_page);
1064                 update_cached_migrate(cc, low_pfn);
1065         }
1066
1067         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1068                                                 nr_scanned, nr_isolated);
1069
1070 fatal_pending:
1071         cc->total_migrate_scanned += nr_scanned;
1072         if (nr_isolated)
1073                 count_compact_events(COMPACTISOLATED, nr_isolated);
1074
1075         return low_pfn;
1076 }
1077
1078 /**
1079  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1080  * @cc:        Compaction control structure.
1081  * @start_pfn: The first PFN to start isolating.
1082  * @end_pfn:   The one-past-last PFN.
1083  *
1084  * Returns zero if isolation fails fatally due to e.g. pending signal.
1085  * Otherwise, function returns one-past-the-last PFN of isolated page
1086  * (which may be greater than end_pfn if end fell in a middle of a THP page).
1087  */
1088 unsigned long
1089 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1090                                                         unsigned long end_pfn)
1091 {
1092         unsigned long pfn, block_start_pfn, block_end_pfn;
1093
1094         /* Scan block by block. First and last block may be incomplete */
1095         pfn = start_pfn;
1096         block_start_pfn = pageblock_start_pfn(pfn);
1097         if (block_start_pfn < cc->zone->zone_start_pfn)
1098                 block_start_pfn = cc->zone->zone_start_pfn;
1099         block_end_pfn = pageblock_end_pfn(pfn);
1100
1101         for (; pfn < end_pfn; pfn = block_end_pfn,
1102                                 block_start_pfn = block_end_pfn,
1103                                 block_end_pfn += pageblock_nr_pages) {
1104
1105                 block_end_pfn = min(block_end_pfn, end_pfn);
1106
1107                 if (!pageblock_pfn_to_page(block_start_pfn,
1108                                         block_end_pfn, cc->zone))
1109                         continue;
1110
1111                 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
1112                                                         ISOLATE_UNEVICTABLE);
1113
1114                 if (!pfn)
1115                         break;
1116
1117                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
1118                         break;
1119         }
1120
1121         return pfn;
1122 }
1123
1124 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1125 #ifdef CONFIG_COMPACTION
1126
1127 static bool suitable_migration_source(struct compact_control *cc,
1128                                                         struct page *page)
1129 {
1130         int block_mt;
1131
1132         if (pageblock_skip_persistent(page))
1133                 return false;
1134
1135         if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1136                 return true;
1137
1138         block_mt = get_pageblock_migratetype(page);
1139
1140         if (cc->migratetype == MIGRATE_MOVABLE)
1141                 return is_migrate_movable(block_mt);
1142         else
1143                 return block_mt == cc->migratetype;
1144 }
1145
1146 /* Returns true if the page is within a block suitable for migration to */
1147 static bool suitable_migration_target(struct compact_control *cc,
1148                                                         struct page *page)
1149 {
1150         /* If the page is a large free page, then disallow migration */
1151         if (PageBuddy(page)) {
1152                 /*
1153                  * We are checking page_order without zone->lock taken. But
1154                  * the only small danger is that we skip a potentially suitable
1155                  * pageblock, so it's not worth to check order for valid range.
1156                  */
1157                 if (page_order_unsafe(page) >= pageblock_order)
1158                         return false;
1159         }
1160
1161         if (cc->ignore_block_suitable)
1162                 return true;
1163
1164         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1165         if (is_migrate_movable(get_pageblock_migratetype(page)))
1166                 return true;
1167
1168         /* Otherwise skip the block */
1169         return false;
1170 }
1171
1172 static inline unsigned int
1173 freelist_scan_limit(struct compact_control *cc)
1174 {
1175         unsigned short shift = BITS_PER_LONG - 1;
1176
1177         return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1178 }
1179
1180 /*
1181  * Test whether the free scanner has reached the same or lower pageblock than
1182  * the migration scanner, and compaction should thus terminate.
1183  */
1184 static inline bool compact_scanners_met(struct compact_control *cc)
1185 {
1186         return (cc->free_pfn >> pageblock_order)
1187                 <= (cc->migrate_pfn >> pageblock_order);
1188 }
1189
1190 /*
1191  * Used when scanning for a suitable migration target which scans freelists
1192  * in reverse. Reorders the list such as the unscanned pages are scanned
1193  * first on the next iteration of the free scanner
1194  */
1195 static void
1196 move_freelist_head(struct list_head *freelist, struct page *freepage)
1197 {
1198         LIST_HEAD(sublist);
1199
1200         if (!list_is_last(freelist, &freepage->lru)) {
1201                 list_cut_before(&sublist, freelist, &freepage->lru);
1202                 if (!list_empty(&sublist))
1203                         list_splice_tail(&sublist, freelist);
1204         }
1205 }
1206
1207 /*
1208  * Similar to move_freelist_head except used by the migration scanner
1209  * when scanning forward. It's possible for these list operations to
1210  * move against each other if they search the free list exactly in
1211  * lockstep.
1212  */
1213 static void
1214 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1215 {
1216         LIST_HEAD(sublist);
1217
1218         if (!list_is_first(freelist, &freepage->lru)) {
1219                 list_cut_position(&sublist, freelist, &freepage->lru);
1220                 if (!list_empty(&sublist))
1221                         list_splice_tail(&sublist, freelist);
1222         }
1223 }
1224
1225 static void
1226 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1227 {
1228         unsigned long start_pfn, end_pfn;
1229         struct page *page = pfn_to_page(pfn);
1230
1231         /* Do not search around if there are enough pages already */
1232         if (cc->nr_freepages >= cc->nr_migratepages)
1233                 return;
1234
1235         /* Minimise scanning during async compaction */
1236         if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1237                 return;
1238
1239         /* Pageblock boundaries */
1240         start_pfn = pageblock_start_pfn(pfn);
1241         end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)) - 1;
1242
1243         /* Scan before */
1244         if (start_pfn != pfn) {
1245                 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1246                 if (cc->nr_freepages >= cc->nr_migratepages)
1247                         return;
1248         }
1249
1250         /* Scan after */
1251         start_pfn = pfn + nr_isolated;
1252         if (start_pfn < end_pfn)
1253                 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1254
1255         /* Skip this pageblock in the future as it's full or nearly full */
1256         if (cc->nr_freepages < cc->nr_migratepages)
1257                 set_pageblock_skip(page);
1258 }
1259
1260 /* Search orders in round-robin fashion */
1261 static int next_search_order(struct compact_control *cc, int order)
1262 {
1263         order--;
1264         if (order < 0)
1265                 order = cc->order - 1;
1266
1267         /* Search wrapped around? */
1268         if (order == cc->search_order) {
1269                 cc->search_order--;
1270                 if (cc->search_order < 0)
1271                         cc->search_order = cc->order - 1;
1272                 return -1;
1273         }
1274
1275         return order;
1276 }
1277
1278 static unsigned long
1279 fast_isolate_freepages(struct compact_control *cc)
1280 {
1281         unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
1282         unsigned int nr_scanned = 0;
1283         unsigned long low_pfn, min_pfn, high_pfn = 0, highest = 0;
1284         unsigned long nr_isolated = 0;
1285         unsigned long distance;
1286         struct page *page = NULL;
1287         bool scan_start = false;
1288         int order;
1289
1290         /* Full compaction passes in a negative order */
1291         if (cc->order <= 0)
1292                 return cc->free_pfn;
1293
1294         /*
1295          * If starting the scan, use a deeper search and use the highest
1296          * PFN found if a suitable one is not found.
1297          */
1298         if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1299                 limit = pageblock_nr_pages >> 1;
1300                 scan_start = true;
1301         }
1302
1303         /*
1304          * Preferred point is in the top quarter of the scan space but take
1305          * a pfn from the top half if the search is problematic.
1306          */
1307         distance = (cc->free_pfn - cc->migrate_pfn);
1308         low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1309         min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1310
1311         if (WARN_ON_ONCE(min_pfn > low_pfn))
1312                 low_pfn = min_pfn;
1313
1314         /*
1315          * Search starts from the last successful isolation order or the next
1316          * order to search after a previous failure
1317          */
1318         cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1319
1320         for (order = cc->search_order;
1321              !page && order >= 0;
1322              order = next_search_order(cc, order)) {
1323                 struct free_area *area = &cc->zone->free_area[order];
1324                 struct list_head *freelist;
1325                 struct page *freepage;
1326                 unsigned long flags;
1327                 unsigned int order_scanned = 0;
1328
1329                 if (!area->nr_free)
1330                         continue;
1331
1332                 spin_lock_irqsave(&cc->zone->lock, flags);
1333                 freelist = &area->free_list[MIGRATE_MOVABLE];
1334                 list_for_each_entry_reverse(freepage, freelist, lru) {
1335                         unsigned long pfn;
1336
1337                         order_scanned++;
1338                         nr_scanned++;
1339                         pfn = page_to_pfn(freepage);
1340
1341                         if (pfn >= highest)
1342                                 highest = pageblock_start_pfn(pfn);
1343
1344                         if (pfn >= low_pfn) {
1345                                 cc->fast_search_fail = 0;
1346                                 cc->search_order = order;
1347                                 page = freepage;
1348                                 break;
1349                         }
1350
1351                         if (pfn >= min_pfn && pfn > high_pfn) {
1352                                 high_pfn = pfn;
1353
1354                                 /* Shorten the scan if a candidate is found */
1355                                 limit >>= 1;
1356                         }
1357
1358                         if (order_scanned >= limit)
1359                                 break;
1360                 }
1361
1362                 /* Use a minimum pfn if a preferred one was not found */
1363                 if (!page && high_pfn) {
1364                         page = pfn_to_page(high_pfn);
1365
1366                         /* Update freepage for the list reorder below */
1367                         freepage = page;
1368                 }
1369
1370                 /* Reorder to so a future search skips recent pages */
1371                 move_freelist_head(freelist, freepage);
1372
1373                 /* Isolate the page if available */
1374                 if (page) {
1375                         if (__isolate_free_page(page, order)) {
1376                                 set_page_private(page, order);
1377                                 nr_isolated = 1 << order;
1378                                 cc->nr_freepages += nr_isolated;
1379                                 list_add_tail(&page->lru, &cc->freepages);
1380                                 count_compact_events(COMPACTISOLATED, nr_isolated);
1381                         } else {
1382                                 /* If isolation fails, abort the search */
1383                                 order = cc->search_order + 1;
1384                                 page = NULL;
1385                         }
1386                 }
1387
1388                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1389
1390                 /*
1391                  * Smaller scan on next order so the total scan ig related
1392                  * to freelist_scan_limit.
1393                  */
1394                 if (order_scanned >= limit)
1395                         limit = min(1U, limit >> 1);
1396         }
1397
1398         if (!page) {
1399                 cc->fast_search_fail++;
1400                 if (scan_start) {
1401                         /*
1402                          * Use the highest PFN found above min. If one was
1403                          * not found, be pessemistic for direct compaction
1404                          * and use the min mark.
1405                          */
1406                         if (highest) {
1407                                 page = pfn_to_page(highest);
1408                                 cc->free_pfn = highest;
1409                         } else {
1410                                 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1411                                         page = pfn_to_page(min_pfn);
1412                                         cc->free_pfn = min_pfn;
1413                                 }
1414                         }
1415                 }
1416         }
1417
1418         if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1419                 highest -= pageblock_nr_pages;
1420                 cc->zone->compact_cached_free_pfn = highest;
1421         }
1422
1423         cc->total_free_scanned += nr_scanned;
1424         if (!page)
1425                 return cc->free_pfn;
1426
1427         low_pfn = page_to_pfn(page);
1428         fast_isolate_around(cc, low_pfn, nr_isolated);
1429         return low_pfn;
1430 }
1431
1432 /*
1433  * Based on information in the current compact_control, find blocks
1434  * suitable for isolating free pages from and then isolate them.
1435  */
1436 static void isolate_freepages(struct compact_control *cc)
1437 {
1438         struct zone *zone = cc->zone;
1439         struct page *page;
1440         unsigned long block_start_pfn;  /* start of current pageblock */
1441         unsigned long isolate_start_pfn; /* exact pfn we start at */
1442         unsigned long block_end_pfn;    /* end of current pageblock */
1443         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
1444         struct list_head *freelist = &cc->freepages;
1445         unsigned int stride;
1446
1447         /* Try a small search of the free lists for a candidate */
1448         isolate_start_pfn = fast_isolate_freepages(cc);
1449         if (cc->nr_freepages)
1450                 goto splitmap;
1451
1452         /*
1453          * Initialise the free scanner. The starting point is where we last
1454          * successfully isolated from, zone-cached value, or the end of the
1455          * zone when isolating for the first time. For looping we also need
1456          * this pfn aligned down to the pageblock boundary, because we do
1457          * block_start_pfn -= pageblock_nr_pages in the for loop.
1458          * For ending point, take care when isolating in last pageblock of a
1459          * a zone which ends in the middle of a pageblock.
1460          * The low boundary is the end of the pageblock the migration scanner
1461          * is using.
1462          */
1463         isolate_start_pfn = cc->free_pfn;
1464         block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1465         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1466                                                 zone_end_pfn(zone));
1467         low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1468         stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1469
1470         /*
1471          * Isolate free pages until enough are available to migrate the
1472          * pages on cc->migratepages. We stop searching if the migrate
1473          * and free page scanners meet or enough free pages are isolated.
1474          */
1475         for (; block_start_pfn >= low_pfn;
1476                                 block_end_pfn = block_start_pfn,
1477                                 block_start_pfn -= pageblock_nr_pages,
1478                                 isolate_start_pfn = block_start_pfn) {
1479                 unsigned long nr_isolated;
1480
1481                 /*
1482                  * This can iterate a massively long zone without finding any
1483                  * suitable migration targets, so periodically check resched.
1484                  */
1485                 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1486                         cond_resched();
1487
1488                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1489                                                                         zone);
1490                 if (!page)
1491                         continue;
1492
1493                 /* Check the block is suitable for migration */
1494                 if (!suitable_migration_target(cc, page))
1495                         continue;
1496
1497                 /* If isolation recently failed, do not retry */
1498                 if (!isolation_suitable(cc, page))
1499                         continue;
1500
1501                 /* Found a block suitable for isolating free pages from. */
1502                 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1503                                         block_end_pfn, freelist, stride, false);
1504
1505                 /* Update the skip hint if the full pageblock was scanned */
1506                 if (isolate_start_pfn == block_end_pfn)
1507                         update_pageblock_skip(cc, page, block_start_pfn);
1508
1509                 /* Are enough freepages isolated? */
1510                 if (cc->nr_freepages >= cc->nr_migratepages) {
1511                         if (isolate_start_pfn >= block_end_pfn) {
1512                                 /*
1513                                  * Restart at previous pageblock if more
1514                                  * freepages can be isolated next time.
1515                                  */
1516                                 isolate_start_pfn =
1517                                         block_start_pfn - pageblock_nr_pages;
1518                         }
1519                         break;
1520                 } else if (isolate_start_pfn < block_end_pfn) {
1521                         /*
1522                          * If isolation failed early, do not continue
1523                          * needlessly.
1524                          */
1525                         break;
1526                 }
1527
1528                 /* Adjust stride depending on isolation */
1529                 if (nr_isolated) {
1530                         stride = 1;
1531                         continue;
1532                 }
1533                 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1534         }
1535
1536         /*
1537          * Record where the free scanner will restart next time. Either we
1538          * broke from the loop and set isolate_start_pfn based on the last
1539          * call to isolate_freepages_block(), or we met the migration scanner
1540          * and the loop terminated due to isolate_start_pfn < low_pfn
1541          */
1542         cc->free_pfn = isolate_start_pfn;
1543
1544 splitmap:
1545         /* __isolate_free_page() does not map the pages */
1546         split_map_pages(freelist);
1547 }
1548
1549 /*
1550  * This is a migrate-callback that "allocates" freepages by taking pages
1551  * from the isolated freelists in the block we are migrating to.
1552  */
1553 static struct page *compaction_alloc(struct page *migratepage,
1554                                         unsigned long data)
1555 {
1556         struct compact_control *cc = (struct compact_control *)data;
1557         struct page *freepage;
1558
1559         if (list_empty(&cc->freepages)) {
1560                 isolate_freepages(cc);
1561
1562                 if (list_empty(&cc->freepages))
1563                         return NULL;
1564         }
1565
1566         freepage = list_entry(cc->freepages.next, struct page, lru);
1567         list_del(&freepage->lru);
1568         cc->nr_freepages--;
1569
1570         return freepage;
1571 }
1572
1573 /*
1574  * This is a migrate-callback that "frees" freepages back to the isolated
1575  * freelist.  All pages on the freelist are from the same zone, so there is no
1576  * special handling needed for NUMA.
1577  */
1578 static void compaction_free(struct page *page, unsigned long data)
1579 {
1580         struct compact_control *cc = (struct compact_control *)data;
1581
1582         list_add(&page->lru, &cc->freepages);
1583         cc->nr_freepages++;
1584 }
1585
1586 /* possible outcome of isolate_migratepages */
1587 typedef enum {
1588         ISOLATE_ABORT,          /* Abort compaction now */
1589         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1590         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1591 } isolate_migrate_t;
1592
1593 /*
1594  * Allow userspace to control policy on scanning the unevictable LRU for
1595  * compactable pages.
1596  */
1597 #ifdef CONFIG_PREEMPT_RT
1598 int sysctl_compact_unevictable_allowed __read_mostly = 0;
1599 #else
1600 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1601 #endif
1602
1603 static inline void
1604 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1605 {
1606         if (cc->fast_start_pfn == ULONG_MAX)
1607                 return;
1608
1609         if (!cc->fast_start_pfn)
1610                 cc->fast_start_pfn = pfn;
1611
1612         cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1613 }
1614
1615 static inline unsigned long
1616 reinit_migrate_pfn(struct compact_control *cc)
1617 {
1618         if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1619                 return cc->migrate_pfn;
1620
1621         cc->migrate_pfn = cc->fast_start_pfn;
1622         cc->fast_start_pfn = ULONG_MAX;
1623
1624         return cc->migrate_pfn;
1625 }
1626
1627 /*
1628  * Briefly search the free lists for a migration source that already has
1629  * some free pages to reduce the number of pages that need migration
1630  * before a pageblock is free.
1631  */
1632 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1633 {
1634         unsigned int limit = freelist_scan_limit(cc);
1635         unsigned int nr_scanned = 0;
1636         unsigned long distance;
1637         unsigned long pfn = cc->migrate_pfn;
1638         unsigned long high_pfn;
1639         int order;
1640
1641         /* Skip hints are relied on to avoid repeats on the fast search */
1642         if (cc->ignore_skip_hint)
1643                 return pfn;
1644
1645         /*
1646          * If the migrate_pfn is not at the start of a zone or the start
1647          * of a pageblock then assume this is a continuation of a previous
1648          * scan restarted due to COMPACT_CLUSTER_MAX.
1649          */
1650         if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1651                 return pfn;
1652
1653         /*
1654          * For smaller orders, just linearly scan as the number of pages
1655          * to migrate should be relatively small and does not necessarily
1656          * justify freeing up a large block for a small allocation.
1657          */
1658         if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1659                 return pfn;
1660
1661         /*
1662          * Only allow kcompactd and direct requests for movable pages to
1663          * quickly clear out a MOVABLE pageblock for allocation. This
1664          * reduces the risk that a large movable pageblock is freed for
1665          * an unmovable/reclaimable small allocation.
1666          */
1667         if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1668                 return pfn;
1669
1670         /*
1671          * When starting the migration scanner, pick any pageblock within the
1672          * first half of the search space. Otherwise try and pick a pageblock
1673          * within the first eighth to reduce the chances that a migration
1674          * target later becomes a source.
1675          */
1676         distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1677         if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1678                 distance >>= 2;
1679         high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1680
1681         for (order = cc->order - 1;
1682              order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit;
1683              order--) {
1684                 struct free_area *area = &cc->zone->free_area[order];
1685                 struct list_head *freelist;
1686                 unsigned long flags;
1687                 struct page *freepage;
1688
1689                 if (!area->nr_free)
1690                         continue;
1691
1692                 spin_lock_irqsave(&cc->zone->lock, flags);
1693                 freelist = &area->free_list[MIGRATE_MOVABLE];
1694                 list_for_each_entry(freepage, freelist, lru) {
1695                         unsigned long free_pfn;
1696
1697                         nr_scanned++;
1698                         free_pfn = page_to_pfn(freepage);
1699                         if (free_pfn < high_pfn) {
1700                                 /*
1701                                  * Avoid if skipped recently. Ideally it would
1702                                  * move to the tail but even safe iteration of
1703                                  * the list assumes an entry is deleted, not
1704                                  * reordered.
1705                                  */
1706                                 if (get_pageblock_skip(freepage)) {
1707                                         if (list_is_last(freelist, &freepage->lru))
1708                                                 break;
1709
1710                                         continue;
1711                                 }
1712
1713                                 /* Reorder to so a future search skips recent pages */
1714                                 move_freelist_tail(freelist, freepage);
1715
1716                                 update_fast_start_pfn(cc, free_pfn);
1717                                 pfn = pageblock_start_pfn(free_pfn);
1718                                 cc->fast_search_fail = 0;
1719                                 set_pageblock_skip(freepage);
1720                                 break;
1721                         }
1722
1723                         if (nr_scanned >= limit) {
1724                                 cc->fast_search_fail++;
1725                                 move_freelist_tail(freelist, freepage);
1726                                 break;
1727                         }
1728                 }
1729                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1730         }
1731
1732         cc->total_migrate_scanned += nr_scanned;
1733
1734         /*
1735          * If fast scanning failed then use a cached entry for a page block
1736          * that had free pages as the basis for starting a linear scan.
1737          */
1738         if (pfn == cc->migrate_pfn)
1739                 pfn = reinit_migrate_pfn(cc);
1740
1741         return pfn;
1742 }
1743
1744 /*
1745  * Isolate all pages that can be migrated from the first suitable block,
1746  * starting at the block pointed to by the migrate scanner pfn within
1747  * compact_control.
1748  */
1749 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1750 {
1751         unsigned long block_start_pfn;
1752         unsigned long block_end_pfn;
1753         unsigned long low_pfn;
1754         struct page *page;
1755         const isolate_mode_t isolate_mode =
1756                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1757                 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1758         bool fast_find_block;
1759
1760         /*
1761          * Start at where we last stopped, or beginning of the zone as
1762          * initialized by compact_zone(). The first failure will use
1763          * the lowest PFN as the starting point for linear scanning.
1764          */
1765         low_pfn = fast_find_migrateblock(cc);
1766         block_start_pfn = pageblock_start_pfn(low_pfn);
1767         if (block_start_pfn < cc->zone->zone_start_pfn)
1768                 block_start_pfn = cc->zone->zone_start_pfn;
1769
1770         /*
1771          * fast_find_migrateblock marks a pageblock skipped so to avoid
1772          * the isolation_suitable check below, check whether the fast
1773          * search was successful.
1774          */
1775         fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1776
1777         /* Only scan within a pageblock boundary */
1778         block_end_pfn = pageblock_end_pfn(low_pfn);
1779
1780         /*
1781          * Iterate over whole pageblocks until we find the first suitable.
1782          * Do not cross the free scanner.
1783          */
1784         for (; block_end_pfn <= cc->free_pfn;
1785                         fast_find_block = false,
1786                         low_pfn = block_end_pfn,
1787                         block_start_pfn = block_end_pfn,
1788                         block_end_pfn += pageblock_nr_pages) {
1789
1790                 /*
1791                  * This can potentially iterate a massively long zone with
1792                  * many pageblocks unsuitable, so periodically check if we
1793                  * need to schedule.
1794                  */
1795                 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1796                         cond_resched();
1797
1798                 page = pageblock_pfn_to_page(block_start_pfn,
1799                                                 block_end_pfn, cc->zone);
1800                 if (!page)
1801                         continue;
1802
1803                 /*
1804                  * If isolation recently failed, do not retry. Only check the
1805                  * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1806                  * to be visited multiple times. Assume skip was checked
1807                  * before making it "skip" so other compaction instances do
1808                  * not scan the same block.
1809                  */
1810                 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1811                     !fast_find_block && !isolation_suitable(cc, page))
1812                         continue;
1813
1814                 /*
1815                  * For async compaction, also only scan in MOVABLE blocks
1816                  * without huge pages. Async compaction is optimistic to see
1817                  * if the minimum amount of work satisfies the allocation.
1818                  * The cached PFN is updated as it's possible that all
1819                  * remaining blocks between source and target are unsuitable
1820                  * and the compaction scanners fail to meet.
1821                  */
1822                 if (!suitable_migration_source(cc, page)) {
1823                         update_cached_migrate(cc, block_end_pfn);
1824                         continue;
1825                 }
1826
1827                 /* Perform the isolation */
1828                 low_pfn = isolate_migratepages_block(cc, low_pfn,
1829                                                 block_end_pfn, isolate_mode);
1830
1831                 if (!low_pfn)
1832                         return ISOLATE_ABORT;
1833
1834                 /*
1835                  * Either we isolated something and proceed with migration. Or
1836                  * we failed and compact_zone should decide if we should
1837                  * continue or not.
1838                  */
1839                 break;
1840         }
1841
1842         /* Record where migration scanner will be restarted. */
1843         cc->migrate_pfn = low_pfn;
1844
1845         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1846 }
1847
1848 /*
1849  * order == -1 is expected when compacting via
1850  * /proc/sys/vm/compact_memory
1851  */
1852 static inline bool is_via_compact_memory(int order)
1853 {
1854         return order == -1;
1855 }
1856
1857 static enum compact_result __compact_finished(struct compact_control *cc)
1858 {
1859         unsigned int order;
1860         const int migratetype = cc->migratetype;
1861         int ret;
1862
1863         /* Compaction run completes if the migrate and free scanner meet */
1864         if (compact_scanners_met(cc)) {
1865                 /* Let the next compaction start anew. */
1866                 reset_cached_positions(cc->zone);
1867
1868                 /*
1869                  * Mark that the PG_migrate_skip information should be cleared
1870                  * by kswapd when it goes to sleep. kcompactd does not set the
1871                  * flag itself as the decision to be clear should be directly
1872                  * based on an allocation request.
1873                  */
1874                 if (cc->direct_compaction)
1875                         cc->zone->compact_blockskip_flush = true;
1876
1877                 if (cc->whole_zone)
1878                         return COMPACT_COMPLETE;
1879                 else
1880                         return COMPACT_PARTIAL_SKIPPED;
1881         }
1882
1883         if (is_via_compact_memory(cc->order))
1884                 return COMPACT_CONTINUE;
1885
1886         /*
1887          * Always finish scanning a pageblock to reduce the possibility of
1888          * fallbacks in the future. This is particularly important when
1889          * migration source is unmovable/reclaimable but it's not worth
1890          * special casing.
1891          */
1892         if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
1893                 return COMPACT_CONTINUE;
1894
1895         /* Direct compactor: Is a suitable page free? */
1896         ret = COMPACT_NO_SUITABLE_PAGE;
1897         for (order = cc->order; order < MAX_ORDER; order++) {
1898                 struct free_area *area = &cc->zone->free_area[order];
1899                 bool can_steal;
1900
1901                 /* Job done if page is free of the right migratetype */
1902                 if (!free_area_empty(area, migratetype))
1903                         return COMPACT_SUCCESS;
1904
1905 #ifdef CONFIG_CMA
1906                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1907                 if (migratetype == MIGRATE_MOVABLE &&
1908                         !free_area_empty(area, MIGRATE_CMA))
1909                         return COMPACT_SUCCESS;
1910 #endif
1911                 /*
1912                  * Job done if allocation would steal freepages from
1913                  * other migratetype buddy lists.
1914                  */
1915                 if (find_suitable_fallback(area, order, migratetype,
1916                                                 true, &can_steal) != -1) {
1917
1918                         /* movable pages are OK in any pageblock */
1919                         if (migratetype == MIGRATE_MOVABLE)
1920                                 return COMPACT_SUCCESS;
1921
1922                         /*
1923                          * We are stealing for a non-movable allocation. Make
1924                          * sure we finish compacting the current pageblock
1925                          * first so it is as free as possible and we won't
1926                          * have to steal another one soon. This only applies
1927                          * to sync compaction, as async compaction operates
1928                          * on pageblocks of the same migratetype.
1929                          */
1930                         if (cc->mode == MIGRATE_ASYNC ||
1931                                         IS_ALIGNED(cc->migrate_pfn,
1932                                                         pageblock_nr_pages)) {
1933                                 return COMPACT_SUCCESS;
1934                         }
1935
1936                         ret = COMPACT_CONTINUE;
1937                         break;
1938                 }
1939         }
1940
1941         if (cc->contended || fatal_signal_pending(current))
1942                 ret = COMPACT_CONTENDED;
1943
1944         return ret;
1945 }
1946
1947 static enum compact_result compact_finished(struct compact_control *cc)
1948 {
1949         int ret;
1950
1951         ret = __compact_finished(cc);
1952         trace_mm_compaction_finished(cc->zone, cc->order, ret);
1953         if (ret == COMPACT_NO_SUITABLE_PAGE)
1954                 ret = COMPACT_CONTINUE;
1955
1956         return ret;
1957 }
1958
1959 /*
1960  * compaction_suitable: Is this suitable to run compaction on this zone now?
1961  * Returns
1962  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1963  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
1964  *   COMPACT_CONTINUE - If compaction should run now
1965  */
1966 static enum compact_result __compaction_suitable(struct zone *zone, int order,
1967                                         unsigned int alloc_flags,
1968                                         int classzone_idx,
1969                                         unsigned long wmark_target)
1970 {
1971         unsigned long watermark;
1972
1973         if (is_via_compact_memory(order))
1974                 return COMPACT_CONTINUE;
1975
1976         watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
1977         /*
1978          * If watermarks for high-order allocation are already met, there
1979          * should be no need for compaction at all.
1980          */
1981         if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1982                                                                 alloc_flags))
1983                 return COMPACT_SUCCESS;
1984
1985         /*
1986          * Watermarks for order-0 must be met for compaction to be able to
1987          * isolate free pages for migration targets. This means that the
1988          * watermark and alloc_flags have to match, or be more pessimistic than
1989          * the check in __isolate_free_page(). We don't use the direct
1990          * compactor's alloc_flags, as they are not relevant for freepage
1991          * isolation. We however do use the direct compactor's classzone_idx to
1992          * skip over zones where lowmem reserves would prevent allocation even
1993          * if compaction succeeds.
1994          * For costly orders, we require low watermark instead of min for
1995          * compaction to proceed to increase its chances.
1996          * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1997          * suitable migration targets
1998          */
1999         watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2000                                 low_wmark_pages(zone) : min_wmark_pages(zone);
2001         watermark += compact_gap(order);
2002         if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
2003                                                 ALLOC_CMA, wmark_target))
2004                 return COMPACT_SKIPPED;
2005
2006         return COMPACT_CONTINUE;
2007 }
2008
2009 enum compact_result compaction_suitable(struct zone *zone, int order,
2010                                         unsigned int alloc_flags,
2011                                         int classzone_idx)
2012 {
2013         enum compact_result ret;
2014         int fragindex;
2015
2016         ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
2017                                     zone_page_state(zone, NR_FREE_PAGES));
2018         /*
2019          * fragmentation index determines if allocation failures are due to
2020          * low memory or external fragmentation
2021          *
2022          * index of -1000 would imply allocations might succeed depending on
2023          * watermarks, but we already failed the high-order watermark check
2024          * index towards 0 implies failure is due to lack of memory
2025          * index towards 1000 implies failure is due to fragmentation
2026          *
2027          * Only compact if a failure would be due to fragmentation. Also
2028          * ignore fragindex for non-costly orders where the alternative to
2029          * a successful reclaim/compaction is OOM. Fragindex and the
2030          * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2031          * excessive compaction for costly orders, but it should not be at the
2032          * expense of system stability.
2033          */
2034         if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2035                 fragindex = fragmentation_index(zone, order);
2036                 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2037                         ret = COMPACT_NOT_SUITABLE_ZONE;
2038         }
2039
2040         trace_mm_compaction_suitable(zone, order, ret);
2041         if (ret == COMPACT_NOT_SUITABLE_ZONE)
2042                 ret = COMPACT_SKIPPED;
2043
2044         return ret;
2045 }
2046
2047 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2048                 int alloc_flags)
2049 {
2050         struct zone *zone;
2051         struct zoneref *z;
2052
2053         /*
2054          * Make sure at least one zone would pass __compaction_suitable if we continue
2055          * retrying the reclaim.
2056          */
2057         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2058                                         ac->nodemask) {
2059                 unsigned long available;
2060                 enum compact_result compact_result;
2061
2062                 /*
2063                  * Do not consider all the reclaimable memory because we do not
2064                  * want to trash just for a single high order allocation which
2065                  * is even not guaranteed to appear even if __compaction_suitable
2066                  * is happy about the watermark check.
2067                  */
2068                 available = zone_reclaimable_pages(zone) / order;
2069                 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2070                 compact_result = __compaction_suitable(zone, order, alloc_flags,
2071                                 ac_classzone_idx(ac), available);
2072                 if (compact_result != COMPACT_SKIPPED)
2073                         return true;
2074         }
2075
2076         return false;
2077 }
2078
2079 static enum compact_result
2080 compact_zone(struct compact_control *cc, struct capture_control *capc)
2081 {
2082         enum compact_result ret;
2083         unsigned long start_pfn = cc->zone->zone_start_pfn;
2084         unsigned long end_pfn = zone_end_pfn(cc->zone);
2085         unsigned long last_migrated_pfn;
2086         const bool sync = cc->mode != MIGRATE_ASYNC;
2087         bool update_cached;
2088
2089         /*
2090          * These counters track activities during zone compaction.  Initialize
2091          * them before compacting a new zone.
2092          */
2093         cc->total_migrate_scanned = 0;
2094         cc->total_free_scanned = 0;
2095         cc->nr_migratepages = 0;
2096         cc->nr_freepages = 0;
2097         INIT_LIST_HEAD(&cc->freepages);
2098         INIT_LIST_HEAD(&cc->migratepages);
2099
2100         cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask);
2101         ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2102                                                         cc->classzone_idx);
2103         /* Compaction is likely to fail */
2104         if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2105                 return ret;
2106
2107         /* huh, compaction_suitable is returning something unexpected */
2108         VM_BUG_ON(ret != COMPACT_CONTINUE);
2109
2110         /*
2111          * Clear pageblock skip if there were failures recently and compaction
2112          * is about to be retried after being deferred.
2113          */
2114         if (compaction_restarting(cc->zone, cc->order))
2115                 __reset_isolation_suitable(cc->zone);
2116
2117         /*
2118          * Setup to move all movable pages to the end of the zone. Used cached
2119          * information on where the scanners should start (unless we explicitly
2120          * want to compact the whole zone), but check that it is initialised
2121          * by ensuring the values are within zone boundaries.
2122          */
2123         cc->fast_start_pfn = 0;
2124         if (cc->whole_zone) {
2125                 cc->migrate_pfn = start_pfn;
2126                 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2127         } else {
2128                 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2129                 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2130                 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2131                         cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2132                         cc->zone->compact_cached_free_pfn = cc->free_pfn;
2133                 }
2134                 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2135                         cc->migrate_pfn = start_pfn;
2136                         cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2137                         cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2138                 }
2139
2140                 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2141                         cc->whole_zone = true;
2142         }
2143
2144         last_migrated_pfn = 0;
2145
2146         /*
2147          * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2148          * the basis that some migrations will fail in ASYNC mode. However,
2149          * if the cached PFNs match and pageblocks are skipped due to having
2150          * no isolation candidates, then the sync state does not matter.
2151          * Until a pageblock with isolation candidates is found, keep the
2152          * cached PFNs in sync to avoid revisiting the same blocks.
2153          */
2154         update_cached = !sync &&
2155                 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2156
2157         trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2158                                 cc->free_pfn, end_pfn, sync);
2159
2160         migrate_prep_local();
2161
2162         while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2163                 int err;
2164                 unsigned long start_pfn = cc->migrate_pfn;
2165
2166                 /*
2167                  * Avoid multiple rescans which can happen if a page cannot be
2168                  * isolated (dirty/writeback in async mode) or if the migrated
2169                  * pages are being allocated before the pageblock is cleared.
2170                  * The first rescan will capture the entire pageblock for
2171                  * migration. If it fails, it'll be marked skip and scanning
2172                  * will proceed as normal.
2173                  */
2174                 cc->rescan = false;
2175                 if (pageblock_start_pfn(last_migrated_pfn) ==
2176                     pageblock_start_pfn(start_pfn)) {
2177                         cc->rescan = true;
2178                 }
2179
2180                 switch (isolate_migratepages(cc)) {
2181                 case ISOLATE_ABORT:
2182                         ret = COMPACT_CONTENDED;
2183                         putback_movable_pages(&cc->migratepages);
2184                         cc->nr_migratepages = 0;
2185                         goto out;
2186                 case ISOLATE_NONE:
2187                         if (update_cached) {
2188                                 cc->zone->compact_cached_migrate_pfn[1] =
2189                                         cc->zone->compact_cached_migrate_pfn[0];
2190                         }
2191
2192                         /*
2193                          * We haven't isolated and migrated anything, but
2194                          * there might still be unflushed migrations from
2195                          * previous cc->order aligned block.
2196                          */
2197                         goto check_drain;
2198                 case ISOLATE_SUCCESS:
2199                         update_cached = false;
2200                         last_migrated_pfn = start_pfn;
2201                         ;
2202                 }
2203
2204                 err = migrate_pages(&cc->migratepages, compaction_alloc,
2205                                 compaction_free, (unsigned long)cc, cc->mode,
2206                                 MR_COMPACTION);
2207
2208                 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2209                                                         &cc->migratepages);
2210
2211                 /* All pages were either migrated or will be released */
2212                 cc->nr_migratepages = 0;
2213                 if (err) {
2214                         putback_movable_pages(&cc->migratepages);
2215                         /*
2216                          * migrate_pages() may return -ENOMEM when scanners meet
2217                          * and we want compact_finished() to detect it
2218                          */
2219                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
2220                                 ret = COMPACT_CONTENDED;
2221                                 goto out;
2222                         }
2223                         /*
2224                          * We failed to migrate at least one page in the current
2225                          * order-aligned block, so skip the rest of it.
2226                          */
2227                         if (cc->direct_compaction &&
2228                                                 (cc->mode == MIGRATE_ASYNC)) {
2229                                 cc->migrate_pfn = block_end_pfn(
2230                                                 cc->migrate_pfn - 1, cc->order);
2231                                 /* Draining pcplists is useless in this case */
2232                                 last_migrated_pfn = 0;
2233                         }
2234                 }
2235
2236 check_drain:
2237                 /*
2238                  * Has the migration scanner moved away from the previous
2239                  * cc->order aligned block where we migrated from? If yes,
2240                  * flush the pages that were freed, so that they can merge and
2241                  * compact_finished() can detect immediately if allocation
2242                  * would succeed.
2243                  */
2244                 if (cc->order > 0 && last_migrated_pfn) {
2245                         int cpu;
2246                         unsigned long current_block_start =
2247                                 block_start_pfn(cc->migrate_pfn, cc->order);
2248
2249                         if (last_migrated_pfn < current_block_start) {
2250                                 cpu = get_cpu();
2251                                 lru_add_drain_cpu(cpu);
2252                                 drain_local_pages(cc->zone);
2253                                 put_cpu();
2254                                 /* No more flushing until we migrate again */
2255                                 last_migrated_pfn = 0;
2256                         }
2257                 }
2258
2259                 /* Stop if a page has been captured */
2260                 if (capc && capc->page) {
2261                         ret = COMPACT_SUCCESS;
2262                         break;
2263                 }
2264         }
2265
2266 out:
2267         /*
2268          * Release free pages and update where the free scanner should restart,
2269          * so we don't leave any returned pages behind in the next attempt.
2270          */
2271         if (cc->nr_freepages > 0) {
2272                 unsigned long free_pfn = release_freepages(&cc->freepages);
2273
2274                 cc->nr_freepages = 0;
2275                 VM_BUG_ON(free_pfn == 0);
2276                 /* The cached pfn is always the first in a pageblock */
2277                 free_pfn = pageblock_start_pfn(free_pfn);
2278                 /*
2279                  * Only go back, not forward. The cached pfn might have been
2280                  * already reset to zone end in compact_finished()
2281                  */
2282                 if (free_pfn > cc->zone->compact_cached_free_pfn)
2283                         cc->zone->compact_cached_free_pfn = free_pfn;
2284         }
2285
2286         count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2287         count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2288
2289         trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2290                                 cc->free_pfn, end_pfn, sync, ret);
2291
2292         return ret;
2293 }
2294
2295 static enum compact_result compact_zone_order(struct zone *zone, int order,
2296                 gfp_t gfp_mask, enum compact_priority prio,
2297                 unsigned int alloc_flags, int classzone_idx,
2298                 struct page **capture)
2299 {
2300         enum compact_result ret;
2301         struct compact_control cc = {
2302                 .order = order,
2303                 .search_order = order,
2304                 .gfp_mask = gfp_mask,
2305                 .zone = zone,
2306                 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2307                                         MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2308                 .alloc_flags = alloc_flags,
2309                 .classzone_idx = classzone_idx,
2310                 .direct_compaction = true,
2311                 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2312                 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2313                 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2314         };
2315         struct capture_control capc = {
2316                 .cc = &cc,
2317                 .page = NULL,
2318         };
2319
2320         current->capture_control = &capc;
2321
2322         ret = compact_zone(&cc, &capc);
2323
2324         VM_BUG_ON(!list_empty(&cc.freepages));
2325         VM_BUG_ON(!list_empty(&cc.migratepages));
2326
2327         *capture = capc.page;
2328         current->capture_control = NULL;
2329
2330         return ret;
2331 }
2332
2333 int sysctl_extfrag_threshold = 500;
2334
2335 /**
2336  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2337  * @gfp_mask: The GFP mask of the current allocation
2338  * @order: The order of the current allocation
2339  * @alloc_flags: The allocation flags of the current allocation
2340  * @ac: The context of current allocation
2341  * @prio: Determines how hard direct compaction should try to succeed
2342  * @capture: Pointer to free page created by compaction will be stored here
2343  *
2344  * This is the main entry point for direct page compaction.
2345  */
2346 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2347                 unsigned int alloc_flags, const struct alloc_context *ac,
2348                 enum compact_priority prio, struct page **capture)
2349 {
2350         int may_perform_io = gfp_mask & __GFP_IO;
2351         struct zoneref *z;
2352         struct zone *zone;
2353         enum compact_result rc = COMPACT_SKIPPED;
2354
2355         /*
2356          * Check if the GFP flags allow compaction - GFP_NOIO is really
2357          * tricky context because the migration might require IO
2358          */
2359         if (!may_perform_io)
2360                 return COMPACT_SKIPPED;
2361
2362         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2363
2364         /* Compact each zone in the list */
2365         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2366                                                                 ac->nodemask) {
2367                 enum compact_result status;
2368
2369                 if (prio > MIN_COMPACT_PRIORITY
2370                                         && compaction_deferred(zone, order)) {
2371                         rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2372                         continue;
2373                 }
2374
2375                 status = compact_zone_order(zone, order, gfp_mask, prio,
2376                                 alloc_flags, ac_classzone_idx(ac), capture);
2377                 rc = max(status, rc);
2378
2379                 /* The allocation should succeed, stop compacting */
2380                 if (status == COMPACT_SUCCESS) {
2381                         /*
2382                          * We think the allocation will succeed in this zone,
2383                          * but it is not certain, hence the false. The caller
2384                          * will repeat this with true if allocation indeed
2385                          * succeeds in this zone.
2386                          */
2387                         compaction_defer_reset(zone, order, false);
2388
2389                         break;
2390                 }
2391
2392                 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2393                                         status == COMPACT_PARTIAL_SKIPPED))
2394                         /*
2395                          * We think that allocation won't succeed in this zone
2396                          * so we defer compaction there. If it ends up
2397                          * succeeding after all, it will be reset.
2398                          */
2399                         defer_compaction(zone, order);
2400
2401                 /*
2402                  * We might have stopped compacting due to need_resched() in
2403                  * async compaction, or due to a fatal signal detected. In that
2404                  * case do not try further zones
2405                  */
2406                 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2407                                         || fatal_signal_pending(current))
2408                         break;
2409         }
2410
2411         return rc;
2412 }
2413
2414
2415 /* Compact all zones within a node */
2416 static void compact_node(int nid)
2417 {
2418         pg_data_t *pgdat = NODE_DATA(nid);
2419         int zoneid;
2420         struct zone *zone;
2421         struct compact_control cc = {
2422                 .order = -1,
2423                 .mode = MIGRATE_SYNC,
2424                 .ignore_skip_hint = true,
2425                 .whole_zone = true,
2426                 .gfp_mask = GFP_KERNEL,
2427         };
2428
2429
2430         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2431
2432                 zone = &pgdat->node_zones[zoneid];
2433                 if (!populated_zone(zone))
2434                         continue;
2435
2436                 cc.zone = zone;
2437
2438                 compact_zone(&cc, NULL);
2439
2440                 VM_BUG_ON(!list_empty(&cc.freepages));
2441                 VM_BUG_ON(!list_empty(&cc.migratepages));
2442         }
2443 }
2444
2445 /* Compact all nodes in the system */
2446 static void compact_nodes(void)
2447 {
2448         int nid;
2449
2450         /* Flush pending updates to the LRU lists */
2451         lru_add_drain_all();
2452
2453         for_each_online_node(nid)
2454                 compact_node(nid);
2455 }
2456
2457 /* The written value is actually unused, all memory is compacted */
2458 int sysctl_compact_memory;
2459
2460 /*
2461  * This is the entry point for compacting all nodes via
2462  * /proc/sys/vm/compact_memory
2463  */
2464 int sysctl_compaction_handler(struct ctl_table *table, int write,
2465                         void __user *buffer, size_t *length, loff_t *ppos)
2466 {
2467         if (write)
2468                 compact_nodes();
2469
2470         return 0;
2471 }
2472
2473 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2474 static ssize_t sysfs_compact_node(struct device *dev,
2475                         struct device_attribute *attr,
2476                         const char *buf, size_t count)
2477 {
2478         int nid = dev->id;
2479
2480         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2481                 /* Flush pending updates to the LRU lists */
2482                 lru_add_drain_all();
2483
2484                 compact_node(nid);
2485         }
2486
2487         return count;
2488 }
2489 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
2490
2491 int compaction_register_node(struct node *node)
2492 {
2493         return device_create_file(&node->dev, &dev_attr_compact);
2494 }
2495
2496 void compaction_unregister_node(struct node *node)
2497 {
2498         return device_remove_file(&node->dev, &dev_attr_compact);
2499 }
2500 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2501
2502 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2503 {
2504         return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
2505 }
2506
2507 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2508 {
2509         int zoneid;
2510         struct zone *zone;
2511         enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
2512
2513         for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
2514                 zone = &pgdat->node_zones[zoneid];
2515
2516                 if (!populated_zone(zone))
2517                         continue;
2518
2519                 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2520                                         classzone_idx) == COMPACT_CONTINUE)
2521                         return true;
2522         }
2523
2524         return false;
2525 }
2526
2527 static void kcompactd_do_work(pg_data_t *pgdat)
2528 {
2529         /*
2530          * With no special task, compact all zones so that a page of requested
2531          * order is allocatable.
2532          */
2533         int zoneid;
2534         struct zone *zone;
2535         struct compact_control cc = {
2536                 .order = pgdat->kcompactd_max_order,
2537                 .search_order = pgdat->kcompactd_max_order,
2538                 .classzone_idx = pgdat->kcompactd_classzone_idx,
2539                 .mode = MIGRATE_SYNC_LIGHT,
2540                 .ignore_skip_hint = false,
2541                 .gfp_mask = GFP_KERNEL,
2542         };
2543         trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2544                                                         cc.classzone_idx);
2545         count_compact_event(KCOMPACTD_WAKE);
2546
2547         for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
2548                 int status;
2549
2550                 zone = &pgdat->node_zones[zoneid];
2551                 if (!populated_zone(zone))
2552                         continue;
2553
2554                 if (compaction_deferred(zone, cc.order))
2555                         continue;
2556
2557                 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2558                                                         COMPACT_CONTINUE)
2559                         continue;
2560
2561                 if (kthread_should_stop())
2562                         return;
2563
2564                 cc.zone = zone;
2565                 status = compact_zone(&cc, NULL);
2566
2567                 if (status == COMPACT_SUCCESS) {
2568                         compaction_defer_reset(zone, cc.order, false);
2569                 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2570                         /*
2571                          * Buddy pages may become stranded on pcps that could
2572                          * otherwise coalesce on the zone's free area for
2573                          * order >= cc.order.  This is ratelimited by the
2574                          * upcoming deferral.
2575                          */
2576                         drain_all_pages(zone);
2577
2578                         /*
2579                          * We use sync migration mode here, so we defer like
2580                          * sync direct compaction does.
2581                          */
2582                         defer_compaction(zone, cc.order);
2583                 }
2584
2585                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2586                                      cc.total_migrate_scanned);
2587                 count_compact_events(KCOMPACTD_FREE_SCANNED,
2588                                      cc.total_free_scanned);
2589
2590                 VM_BUG_ON(!list_empty(&cc.freepages));
2591                 VM_BUG_ON(!list_empty(&cc.migratepages));
2592         }
2593
2594         /*
2595          * Regardless of success, we are done until woken up next. But remember
2596          * the requested order/classzone_idx in case it was higher/tighter than
2597          * our current ones
2598          */
2599         if (pgdat->kcompactd_max_order <= cc.order)
2600                 pgdat->kcompactd_max_order = 0;
2601         if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
2602                 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2603 }
2604
2605 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
2606 {
2607         if (!order)
2608                 return;
2609
2610         if (pgdat->kcompactd_max_order < order)
2611                 pgdat->kcompactd_max_order = order;
2612
2613         if (pgdat->kcompactd_classzone_idx > classzone_idx)
2614                 pgdat->kcompactd_classzone_idx = classzone_idx;
2615
2616         /*
2617          * Pairs with implicit barrier in wait_event_freezable()
2618          * such that wakeups are not missed.
2619          */
2620         if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2621                 return;
2622
2623         if (!kcompactd_node_suitable(pgdat))
2624                 return;
2625
2626         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2627                                                         classzone_idx);
2628         wake_up_interruptible(&pgdat->kcompactd_wait);
2629 }
2630
2631 /*
2632  * The background compaction daemon, started as a kernel thread
2633  * from the init process.
2634  */
2635 static int kcompactd(void *p)
2636 {
2637         pg_data_t *pgdat = (pg_data_t*)p;
2638         struct task_struct *tsk = current;
2639
2640         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2641
2642         if (!cpumask_empty(cpumask))
2643                 set_cpus_allowed_ptr(tsk, cpumask);
2644
2645         set_freezable();
2646
2647         pgdat->kcompactd_max_order = 0;
2648         pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2649
2650         while (!kthread_should_stop()) {
2651                 unsigned long pflags;
2652
2653                 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2654                 wait_event_freezable(pgdat->kcompactd_wait,
2655                                 kcompactd_work_requested(pgdat));
2656
2657                 psi_memstall_enter(&pflags);
2658                 kcompactd_do_work(pgdat);
2659                 psi_memstall_leave(&pflags);
2660         }
2661
2662         return 0;
2663 }
2664
2665 /*
2666  * This kcompactd start function will be called by init and node-hot-add.
2667  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2668  */
2669 int kcompactd_run(int nid)
2670 {
2671         pg_data_t *pgdat = NODE_DATA(nid);
2672         int ret = 0;
2673
2674         if (pgdat->kcompactd)
2675                 return 0;
2676
2677         pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2678         if (IS_ERR(pgdat->kcompactd)) {
2679                 pr_err("Failed to start kcompactd on node %d\n", nid);
2680                 ret = PTR_ERR(pgdat->kcompactd);
2681                 pgdat->kcompactd = NULL;
2682         }
2683         return ret;
2684 }
2685
2686 /*
2687  * Called by memory hotplug when all memory in a node is offlined. Caller must
2688  * hold mem_hotplug_begin/end().
2689  */
2690 void kcompactd_stop(int nid)
2691 {
2692         struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2693
2694         if (kcompactd) {
2695                 kthread_stop(kcompactd);
2696                 NODE_DATA(nid)->kcompactd = NULL;
2697         }
2698 }
2699
2700 /*
2701  * It's optimal to keep kcompactd on the same CPUs as their memory, but
2702  * not required for correctness. So if the last cpu in a node goes
2703  * away, we get changed to run anywhere: as the first one comes back,
2704  * restore their cpu bindings.
2705  */
2706 static int kcompactd_cpu_online(unsigned int cpu)
2707 {
2708         int nid;
2709
2710         for_each_node_state(nid, N_MEMORY) {
2711                 pg_data_t *pgdat = NODE_DATA(nid);
2712                 const struct cpumask *mask;
2713
2714                 mask = cpumask_of_node(pgdat->node_id);
2715
2716                 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2717                         /* One of our CPUs online: restore mask */
2718                         set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2719         }
2720         return 0;
2721 }
2722
2723 static int __init kcompactd_init(void)
2724 {
2725         int nid;
2726         int ret;
2727
2728         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2729                                         "mm/compaction:online",
2730                                         kcompactd_cpu_online, NULL);
2731         if (ret < 0) {
2732                 pr_err("kcompactd: failed to register hotplug callbacks.\n");
2733                 return ret;
2734         }
2735
2736         for_each_node_state(nid, N_MEMORY)
2737                 kcompactd_run(nid);
2738         return 0;
2739 }
2740 subsys_initcall(kcompactd_init)
2741
2742 #endif /* CONFIG_COMPACTION */