Merge tag 'x86_cpu_for_v6.9_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / mm / compaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
29 /*
30  * Fragmentation score check interval for proactive compaction purposes.
31  */
32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC  (500)
33
34 static inline void count_compact_event(enum vm_event_item item)
35 {
36         count_vm_event(item);
37 }
38
39 static inline void count_compact_events(enum vm_event_item item, long delta)
40 {
41         count_vm_events(item, delta);
42 }
43 #else
44 #define count_compact_event(item) do { } while (0)
45 #define count_compact_events(item, delta) do { } while (0)
46 #endif
47
48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
52
53 #define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
54 #define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
55
56 /*
57  * Page order with-respect-to which proactive compaction
58  * calculates external fragmentation, which is used as
59  * the "fragmentation score" of a node/zone.
60  */
61 #if defined CONFIG_TRANSPARENT_HUGEPAGE
62 #define COMPACTION_HPAGE_ORDER  HPAGE_PMD_ORDER
63 #elif defined CONFIG_HUGETLBFS
64 #define COMPACTION_HPAGE_ORDER  HUGETLB_PAGE_ORDER
65 #else
66 #define COMPACTION_HPAGE_ORDER  (PMD_SHIFT - PAGE_SHIFT)
67 #endif
68
69 static unsigned long release_freepages(struct list_head *freelist)
70 {
71         struct page *page, *next;
72         unsigned long high_pfn = 0;
73
74         list_for_each_entry_safe(page, next, freelist, lru) {
75                 unsigned long pfn = page_to_pfn(page);
76                 list_del(&page->lru);
77                 __free_page(page);
78                 if (pfn > high_pfn)
79                         high_pfn = pfn;
80         }
81
82         return high_pfn;
83 }
84
85 static void split_map_pages(struct list_head *list)
86 {
87         unsigned int i, order, nr_pages;
88         struct page *page, *next;
89         LIST_HEAD(tmp_list);
90
91         list_for_each_entry_safe(page, next, list, lru) {
92                 list_del(&page->lru);
93
94                 order = page_private(page);
95                 nr_pages = 1 << order;
96
97                 post_alloc_hook(page, order, __GFP_MOVABLE);
98                 if (order)
99                         split_page(page, order);
100
101                 for (i = 0; i < nr_pages; i++) {
102                         list_add(&page->lru, &tmp_list);
103                         page++;
104                 }
105         }
106
107         list_splice(&tmp_list, list);
108 }
109
110 #ifdef CONFIG_COMPACTION
111 bool PageMovable(struct page *page)
112 {
113         const struct movable_operations *mops;
114
115         VM_BUG_ON_PAGE(!PageLocked(page), page);
116         if (!__PageMovable(page))
117                 return false;
118
119         mops = page_movable_ops(page);
120         if (mops)
121                 return true;
122
123         return false;
124 }
125
126 void __SetPageMovable(struct page *page, const struct movable_operations *mops)
127 {
128         VM_BUG_ON_PAGE(!PageLocked(page), page);
129         VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
130         page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
131 }
132 EXPORT_SYMBOL(__SetPageMovable);
133
134 void __ClearPageMovable(struct page *page)
135 {
136         VM_BUG_ON_PAGE(!PageMovable(page), page);
137         /*
138          * This page still has the type of a movable page, but it's
139          * actually not movable any more.
140          */
141         page->mapping = (void *)PAGE_MAPPING_MOVABLE;
142 }
143 EXPORT_SYMBOL(__ClearPageMovable);
144
145 /* Do not skip compaction more than 64 times */
146 #define COMPACT_MAX_DEFER_SHIFT 6
147
148 /*
149  * Compaction is deferred when compaction fails to result in a page
150  * allocation success. 1 << compact_defer_shift, compactions are skipped up
151  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
152  */
153 static void defer_compaction(struct zone *zone, int order)
154 {
155         zone->compact_considered = 0;
156         zone->compact_defer_shift++;
157
158         if (order < zone->compact_order_failed)
159                 zone->compact_order_failed = order;
160
161         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
162                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
163
164         trace_mm_compaction_defer_compaction(zone, order);
165 }
166
167 /* Returns true if compaction should be skipped this time */
168 static bool compaction_deferred(struct zone *zone, int order)
169 {
170         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
171
172         if (order < zone->compact_order_failed)
173                 return false;
174
175         /* Avoid possible overflow */
176         if (++zone->compact_considered >= defer_limit) {
177                 zone->compact_considered = defer_limit;
178                 return false;
179         }
180
181         trace_mm_compaction_deferred(zone, order);
182
183         return true;
184 }
185
186 /*
187  * Update defer tracking counters after successful compaction of given order,
188  * which means an allocation either succeeded (alloc_success == true) or is
189  * expected to succeed.
190  */
191 void compaction_defer_reset(struct zone *zone, int order,
192                 bool alloc_success)
193 {
194         if (alloc_success) {
195                 zone->compact_considered = 0;
196                 zone->compact_defer_shift = 0;
197         }
198         if (order >= zone->compact_order_failed)
199                 zone->compact_order_failed = order + 1;
200
201         trace_mm_compaction_defer_reset(zone, order);
202 }
203
204 /* Returns true if restarting compaction after many failures */
205 static bool compaction_restarting(struct zone *zone, int order)
206 {
207         if (order < zone->compact_order_failed)
208                 return false;
209
210         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
211                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
212 }
213
214 /* Returns true if the pageblock should be scanned for pages to isolate. */
215 static inline bool isolation_suitable(struct compact_control *cc,
216                                         struct page *page)
217 {
218         if (cc->ignore_skip_hint)
219                 return true;
220
221         return !get_pageblock_skip(page);
222 }
223
224 static void reset_cached_positions(struct zone *zone)
225 {
226         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
227         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
228         zone->compact_cached_free_pfn =
229                                 pageblock_start_pfn(zone_end_pfn(zone) - 1);
230 }
231
232 #ifdef CONFIG_SPARSEMEM
233 /*
234  * If the PFN falls into an offline section, return the start PFN of the
235  * next online section. If the PFN falls into an online section or if
236  * there is no next online section, return 0.
237  */
238 static unsigned long skip_offline_sections(unsigned long start_pfn)
239 {
240         unsigned long start_nr = pfn_to_section_nr(start_pfn);
241
242         if (online_section_nr(start_nr))
243                 return 0;
244
245         while (++start_nr <= __highest_present_section_nr) {
246                 if (online_section_nr(start_nr))
247                         return section_nr_to_pfn(start_nr);
248         }
249
250         return 0;
251 }
252
253 /*
254  * If the PFN falls into an offline section, return the end PFN of the
255  * next online section in reverse. If the PFN falls into an online section
256  * or if there is no next online section in reverse, return 0.
257  */
258 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
259 {
260         unsigned long start_nr = pfn_to_section_nr(start_pfn);
261
262         if (!start_nr || online_section_nr(start_nr))
263                 return 0;
264
265         while (start_nr-- > 0) {
266                 if (online_section_nr(start_nr))
267                         return section_nr_to_pfn(start_nr) + PAGES_PER_SECTION;
268         }
269
270         return 0;
271 }
272 #else
273 static unsigned long skip_offline_sections(unsigned long start_pfn)
274 {
275         return 0;
276 }
277
278 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
279 {
280         return 0;
281 }
282 #endif
283
284 /*
285  * Compound pages of >= pageblock_order should consistently be skipped until
286  * released. It is always pointless to compact pages of such order (if they are
287  * migratable), and the pageblocks they occupy cannot contain any free pages.
288  */
289 static bool pageblock_skip_persistent(struct page *page)
290 {
291         if (!PageCompound(page))
292                 return false;
293
294         page = compound_head(page);
295
296         if (compound_order(page) >= pageblock_order)
297                 return true;
298
299         return false;
300 }
301
302 static bool
303 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
304                                                         bool check_target)
305 {
306         struct page *page = pfn_to_online_page(pfn);
307         struct page *block_page;
308         struct page *end_page;
309         unsigned long block_pfn;
310
311         if (!page)
312                 return false;
313         if (zone != page_zone(page))
314                 return false;
315         if (pageblock_skip_persistent(page))
316                 return false;
317
318         /*
319          * If skip is already cleared do no further checking once the
320          * restart points have been set.
321          */
322         if (check_source && check_target && !get_pageblock_skip(page))
323                 return true;
324
325         /*
326          * If clearing skip for the target scanner, do not select a
327          * non-movable pageblock as the starting point.
328          */
329         if (!check_source && check_target &&
330             get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
331                 return false;
332
333         /* Ensure the start of the pageblock or zone is online and valid */
334         block_pfn = pageblock_start_pfn(pfn);
335         block_pfn = max(block_pfn, zone->zone_start_pfn);
336         block_page = pfn_to_online_page(block_pfn);
337         if (block_page) {
338                 page = block_page;
339                 pfn = block_pfn;
340         }
341
342         /* Ensure the end of the pageblock or zone is online and valid */
343         block_pfn = pageblock_end_pfn(pfn) - 1;
344         block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
345         end_page = pfn_to_online_page(block_pfn);
346         if (!end_page)
347                 return false;
348
349         /*
350          * Only clear the hint if a sample indicates there is either a
351          * free page or an LRU page in the block. One or other condition
352          * is necessary for the block to be a migration source/target.
353          */
354         do {
355                 if (check_source && PageLRU(page)) {
356                         clear_pageblock_skip(page);
357                         return true;
358                 }
359
360                 if (check_target && PageBuddy(page)) {
361                         clear_pageblock_skip(page);
362                         return true;
363                 }
364
365                 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
366         } while (page <= end_page);
367
368         return false;
369 }
370
371 /*
372  * This function is called to clear all cached information on pageblocks that
373  * should be skipped for page isolation when the migrate and free page scanner
374  * meet.
375  */
376 static void __reset_isolation_suitable(struct zone *zone)
377 {
378         unsigned long migrate_pfn = zone->zone_start_pfn;
379         unsigned long free_pfn = zone_end_pfn(zone) - 1;
380         unsigned long reset_migrate = free_pfn;
381         unsigned long reset_free = migrate_pfn;
382         bool source_set = false;
383         bool free_set = false;
384
385         /* Only flush if a full compaction finished recently */
386         if (!zone->compact_blockskip_flush)
387                 return;
388
389         zone->compact_blockskip_flush = false;
390
391         /*
392          * Walk the zone and update pageblock skip information. Source looks
393          * for PageLRU while target looks for PageBuddy. When the scanner
394          * is found, both PageBuddy and PageLRU are checked as the pageblock
395          * is suitable as both source and target.
396          */
397         for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
398                                         free_pfn -= pageblock_nr_pages) {
399                 cond_resched();
400
401                 /* Update the migrate PFN */
402                 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
403                     migrate_pfn < reset_migrate) {
404                         source_set = true;
405                         reset_migrate = migrate_pfn;
406                         zone->compact_init_migrate_pfn = reset_migrate;
407                         zone->compact_cached_migrate_pfn[0] = reset_migrate;
408                         zone->compact_cached_migrate_pfn[1] = reset_migrate;
409                 }
410
411                 /* Update the free PFN */
412                 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
413                     free_pfn > reset_free) {
414                         free_set = true;
415                         reset_free = free_pfn;
416                         zone->compact_init_free_pfn = reset_free;
417                         zone->compact_cached_free_pfn = reset_free;
418                 }
419         }
420
421         /* Leave no distance if no suitable block was reset */
422         if (reset_migrate >= reset_free) {
423                 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
424                 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
425                 zone->compact_cached_free_pfn = free_pfn;
426         }
427 }
428
429 void reset_isolation_suitable(pg_data_t *pgdat)
430 {
431         int zoneid;
432
433         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
434                 struct zone *zone = &pgdat->node_zones[zoneid];
435                 if (!populated_zone(zone))
436                         continue;
437
438                 __reset_isolation_suitable(zone);
439         }
440 }
441
442 /*
443  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
444  * locks are not required for read/writers. Returns true if it was already set.
445  */
446 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
447 {
448         bool skip;
449
450         /* Do not update if skip hint is being ignored */
451         if (cc->ignore_skip_hint)
452                 return false;
453
454         skip = get_pageblock_skip(page);
455         if (!skip && !cc->no_set_skip_hint)
456                 set_pageblock_skip(page);
457
458         return skip;
459 }
460
461 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
462 {
463         struct zone *zone = cc->zone;
464
465         /* Set for isolation rather than compaction */
466         if (cc->no_set_skip_hint)
467                 return;
468
469         pfn = pageblock_end_pfn(pfn);
470
471         /* Update where async and sync compaction should restart */
472         if (pfn > zone->compact_cached_migrate_pfn[0])
473                 zone->compact_cached_migrate_pfn[0] = pfn;
474         if (cc->mode != MIGRATE_ASYNC &&
475             pfn > zone->compact_cached_migrate_pfn[1])
476                 zone->compact_cached_migrate_pfn[1] = pfn;
477 }
478
479 /*
480  * If no pages were isolated then mark this pageblock to be skipped in the
481  * future. The information is later cleared by __reset_isolation_suitable().
482  */
483 static void update_pageblock_skip(struct compact_control *cc,
484                         struct page *page, unsigned long pfn)
485 {
486         struct zone *zone = cc->zone;
487
488         if (cc->no_set_skip_hint)
489                 return;
490
491         set_pageblock_skip(page);
492
493         if (pfn < zone->compact_cached_free_pfn)
494                 zone->compact_cached_free_pfn = pfn;
495 }
496 #else
497 static inline bool isolation_suitable(struct compact_control *cc,
498                                         struct page *page)
499 {
500         return true;
501 }
502
503 static inline bool pageblock_skip_persistent(struct page *page)
504 {
505         return false;
506 }
507
508 static inline void update_pageblock_skip(struct compact_control *cc,
509                         struct page *page, unsigned long pfn)
510 {
511 }
512
513 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
514 {
515 }
516
517 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
518 {
519         return false;
520 }
521 #endif /* CONFIG_COMPACTION */
522
523 /*
524  * Compaction requires the taking of some coarse locks that are potentially
525  * very heavily contended. For async compaction, trylock and record if the
526  * lock is contended. The lock will still be acquired but compaction will
527  * abort when the current block is finished regardless of success rate.
528  * Sync compaction acquires the lock.
529  *
530  * Always returns true which makes it easier to track lock state in callers.
531  */
532 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
533                                                 struct compact_control *cc)
534         __acquires(lock)
535 {
536         /* Track if the lock is contended in async mode */
537         if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
538                 if (spin_trylock_irqsave(lock, *flags))
539                         return true;
540
541                 cc->contended = true;
542         }
543
544         spin_lock_irqsave(lock, *flags);
545         return true;
546 }
547
548 /*
549  * Compaction requires the taking of some coarse locks that are potentially
550  * very heavily contended. The lock should be periodically unlocked to avoid
551  * having disabled IRQs for a long time, even when there is nobody waiting on
552  * the lock. It might also be that allowing the IRQs will result in
553  * need_resched() becoming true. If scheduling is needed, compaction schedules.
554  * Either compaction type will also abort if a fatal signal is pending.
555  * In either case if the lock was locked, it is dropped and not regained.
556  *
557  * Returns true if compaction should abort due to fatal signal pending.
558  * Returns false when compaction can continue.
559  */
560 static bool compact_unlock_should_abort(spinlock_t *lock,
561                 unsigned long flags, bool *locked, struct compact_control *cc)
562 {
563         if (*locked) {
564                 spin_unlock_irqrestore(lock, flags);
565                 *locked = false;
566         }
567
568         if (fatal_signal_pending(current)) {
569                 cc->contended = true;
570                 return true;
571         }
572
573         cond_resched();
574
575         return false;
576 }
577
578 /*
579  * Isolate free pages onto a private freelist. If @strict is true, will abort
580  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
581  * (even though it may still end up isolating some pages).
582  */
583 static unsigned long isolate_freepages_block(struct compact_control *cc,
584                                 unsigned long *start_pfn,
585                                 unsigned long end_pfn,
586                                 struct list_head *freelist,
587                                 unsigned int stride,
588                                 bool strict)
589 {
590         int nr_scanned = 0, total_isolated = 0;
591         struct page *page;
592         unsigned long flags = 0;
593         bool locked = false;
594         unsigned long blockpfn = *start_pfn;
595         unsigned int order;
596
597         /* Strict mode is for isolation, speed is secondary */
598         if (strict)
599                 stride = 1;
600
601         page = pfn_to_page(blockpfn);
602
603         /* Isolate free pages. */
604         for (; blockpfn < end_pfn; blockpfn += stride, page += stride) {
605                 int isolated;
606
607                 /*
608                  * Periodically drop the lock (if held) regardless of its
609                  * contention, to give chance to IRQs. Abort if fatal signal
610                  * pending.
611                  */
612                 if (!(blockpfn % COMPACT_CLUSTER_MAX)
613                     && compact_unlock_should_abort(&cc->zone->lock, flags,
614                                                                 &locked, cc))
615                         break;
616
617                 nr_scanned++;
618
619                 /*
620                  * For compound pages such as THP and hugetlbfs, we can save
621                  * potentially a lot of iterations if we skip them at once.
622                  * The check is racy, but we can consider only valid values
623                  * and the only danger is skipping too much.
624                  */
625                 if (PageCompound(page)) {
626                         const unsigned int order = compound_order(page);
627
628                         if (blockpfn + (1UL << order) <= end_pfn) {
629                                 blockpfn += (1UL << order) - 1;
630                                 page += (1UL << order) - 1;
631                                 nr_scanned += (1UL << order) - 1;
632                         }
633
634                         goto isolate_fail;
635                 }
636
637                 if (!PageBuddy(page))
638                         goto isolate_fail;
639
640                 /* If we already hold the lock, we can skip some rechecking. */
641                 if (!locked) {
642                         locked = compact_lock_irqsave(&cc->zone->lock,
643                                                                 &flags, cc);
644
645                         /* Recheck this is a buddy page under lock */
646                         if (!PageBuddy(page))
647                                 goto isolate_fail;
648                 }
649
650                 /* Found a free page, will break it into order-0 pages */
651                 order = buddy_order(page);
652                 isolated = __isolate_free_page(page, order);
653                 if (!isolated)
654                         break;
655                 set_page_private(page, order);
656
657                 nr_scanned += isolated - 1;
658                 total_isolated += isolated;
659                 cc->nr_freepages += isolated;
660                 list_add_tail(&page->lru, freelist);
661
662                 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
663                         blockpfn += isolated;
664                         break;
665                 }
666                 /* Advance to the end of split page */
667                 blockpfn += isolated - 1;
668                 page += isolated - 1;
669                 continue;
670
671 isolate_fail:
672                 if (strict)
673                         break;
674
675         }
676
677         if (locked)
678                 spin_unlock_irqrestore(&cc->zone->lock, flags);
679
680         /*
681          * Be careful to not go outside of the pageblock.
682          */
683         if (unlikely(blockpfn > end_pfn))
684                 blockpfn = end_pfn;
685
686         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
687                                         nr_scanned, total_isolated);
688
689         /* Record how far we have got within the block */
690         *start_pfn = blockpfn;
691
692         /*
693          * If strict isolation is requested by CMA then check that all the
694          * pages requested were isolated. If there were any failures, 0 is
695          * returned and CMA will fail.
696          */
697         if (strict && blockpfn < end_pfn)
698                 total_isolated = 0;
699
700         cc->total_free_scanned += nr_scanned;
701         if (total_isolated)
702                 count_compact_events(COMPACTISOLATED, total_isolated);
703         return total_isolated;
704 }
705
706 /**
707  * isolate_freepages_range() - isolate free pages.
708  * @cc:        Compaction control structure.
709  * @start_pfn: The first PFN to start isolating.
710  * @end_pfn:   The one-past-last PFN.
711  *
712  * Non-free pages, invalid PFNs, or zone boundaries within the
713  * [start_pfn, end_pfn) range are considered errors, cause function to
714  * undo its actions and return zero.
715  *
716  * Otherwise, function returns one-past-the-last PFN of isolated page
717  * (which may be greater then end_pfn if end fell in a middle of
718  * a free page).
719  */
720 unsigned long
721 isolate_freepages_range(struct compact_control *cc,
722                         unsigned long start_pfn, unsigned long end_pfn)
723 {
724         unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
725         LIST_HEAD(freelist);
726
727         pfn = start_pfn;
728         block_start_pfn = pageblock_start_pfn(pfn);
729         if (block_start_pfn < cc->zone->zone_start_pfn)
730                 block_start_pfn = cc->zone->zone_start_pfn;
731         block_end_pfn = pageblock_end_pfn(pfn);
732
733         for (; pfn < end_pfn; pfn += isolated,
734                                 block_start_pfn = block_end_pfn,
735                                 block_end_pfn += pageblock_nr_pages) {
736                 /* Protect pfn from changing by isolate_freepages_block */
737                 unsigned long isolate_start_pfn = pfn;
738
739                 /*
740                  * pfn could pass the block_end_pfn if isolated freepage
741                  * is more than pageblock order. In this case, we adjust
742                  * scanning range to right one.
743                  */
744                 if (pfn >= block_end_pfn) {
745                         block_start_pfn = pageblock_start_pfn(pfn);
746                         block_end_pfn = pageblock_end_pfn(pfn);
747                 }
748
749                 block_end_pfn = min(block_end_pfn, end_pfn);
750
751                 if (!pageblock_pfn_to_page(block_start_pfn,
752                                         block_end_pfn, cc->zone))
753                         break;
754
755                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
756                                         block_end_pfn, &freelist, 0, true);
757
758                 /*
759                  * In strict mode, isolate_freepages_block() returns 0 if
760                  * there are any holes in the block (ie. invalid PFNs or
761                  * non-free pages).
762                  */
763                 if (!isolated)
764                         break;
765
766                 /*
767                  * If we managed to isolate pages, it is always (1 << n) *
768                  * pageblock_nr_pages for some non-negative n.  (Max order
769                  * page may span two pageblocks).
770                  */
771         }
772
773         /* __isolate_free_page() does not map the pages */
774         split_map_pages(&freelist);
775
776         if (pfn < end_pfn) {
777                 /* Loop terminated early, cleanup. */
778                 release_freepages(&freelist);
779                 return 0;
780         }
781
782         /* We don't use freelists for anything. */
783         return pfn;
784 }
785
786 /* Similar to reclaim, but different enough that they don't share logic */
787 static bool too_many_isolated(struct compact_control *cc)
788 {
789         pg_data_t *pgdat = cc->zone->zone_pgdat;
790         bool too_many;
791
792         unsigned long active, inactive, isolated;
793
794         inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
795                         node_page_state(pgdat, NR_INACTIVE_ANON);
796         active = node_page_state(pgdat, NR_ACTIVE_FILE) +
797                         node_page_state(pgdat, NR_ACTIVE_ANON);
798         isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
799                         node_page_state(pgdat, NR_ISOLATED_ANON);
800
801         /*
802          * Allow GFP_NOFS to isolate past the limit set for regular
803          * compaction runs. This prevents an ABBA deadlock when other
804          * compactors have already isolated to the limit, but are
805          * blocked on filesystem locks held by the GFP_NOFS thread.
806          */
807         if (cc->gfp_mask & __GFP_FS) {
808                 inactive >>= 3;
809                 active >>= 3;
810         }
811
812         too_many = isolated > (inactive + active) / 2;
813         if (!too_many)
814                 wake_throttle_isolated(pgdat);
815
816         return too_many;
817 }
818
819 /**
820  * isolate_migratepages_block() - isolate all migrate-able pages within
821  *                                a single pageblock
822  * @cc:         Compaction control structure.
823  * @low_pfn:    The first PFN to isolate
824  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
825  * @mode:       Isolation mode to be used.
826  *
827  * Isolate all pages that can be migrated from the range specified by
828  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
829  * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
830  * -ENOMEM in case we could not allocate a page, or 0.
831  * cc->migrate_pfn will contain the next pfn to scan.
832  *
833  * The pages are isolated on cc->migratepages list (not required to be empty),
834  * and cc->nr_migratepages is updated accordingly.
835  */
836 static int
837 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
838                         unsigned long end_pfn, isolate_mode_t mode)
839 {
840         pg_data_t *pgdat = cc->zone->zone_pgdat;
841         unsigned long nr_scanned = 0, nr_isolated = 0;
842         struct lruvec *lruvec;
843         unsigned long flags = 0;
844         struct lruvec *locked = NULL;
845         struct folio *folio = NULL;
846         struct page *page = NULL, *valid_page = NULL;
847         struct address_space *mapping;
848         unsigned long start_pfn = low_pfn;
849         bool skip_on_failure = false;
850         unsigned long next_skip_pfn = 0;
851         bool skip_updated = false;
852         int ret = 0;
853
854         cc->migrate_pfn = low_pfn;
855
856         /*
857          * Ensure that there are not too many pages isolated from the LRU
858          * list by either parallel reclaimers or compaction. If there are,
859          * delay for some time until fewer pages are isolated
860          */
861         while (unlikely(too_many_isolated(cc))) {
862                 /* stop isolation if there are still pages not migrated */
863                 if (cc->nr_migratepages)
864                         return -EAGAIN;
865
866                 /* async migration should just abort */
867                 if (cc->mode == MIGRATE_ASYNC)
868                         return -EAGAIN;
869
870                 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
871
872                 if (fatal_signal_pending(current))
873                         return -EINTR;
874         }
875
876         cond_resched();
877
878         if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
879                 skip_on_failure = true;
880                 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
881         }
882
883         /* Time to isolate some pages for migration */
884         for (; low_pfn < end_pfn; low_pfn++) {
885                 bool is_dirty, is_unevictable;
886
887                 if (skip_on_failure && low_pfn >= next_skip_pfn) {
888                         /*
889                          * We have isolated all migration candidates in the
890                          * previous order-aligned block, and did not skip it due
891                          * to failure. We should migrate the pages now and
892                          * hopefully succeed compaction.
893                          */
894                         if (nr_isolated)
895                                 break;
896
897                         /*
898                          * We failed to isolate in the previous order-aligned
899                          * block. Set the new boundary to the end of the
900                          * current block. Note we can't simply increase
901                          * next_skip_pfn by 1 << order, as low_pfn might have
902                          * been incremented by a higher number due to skipping
903                          * a compound or a high-order buddy page in the
904                          * previous loop iteration.
905                          */
906                         next_skip_pfn = block_end_pfn(low_pfn, cc->order);
907                 }
908
909                 /*
910                  * Periodically drop the lock (if held) regardless of its
911                  * contention, to give chance to IRQs. Abort completely if
912                  * a fatal signal is pending.
913                  */
914                 if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
915                         if (locked) {
916                                 unlock_page_lruvec_irqrestore(locked, flags);
917                                 locked = NULL;
918                         }
919
920                         if (fatal_signal_pending(current)) {
921                                 cc->contended = true;
922                                 ret = -EINTR;
923
924                                 goto fatal_pending;
925                         }
926
927                         cond_resched();
928                 }
929
930                 nr_scanned++;
931
932                 page = pfn_to_page(low_pfn);
933
934                 /*
935                  * Check if the pageblock has already been marked skipped.
936                  * Only the first PFN is checked as the caller isolates
937                  * COMPACT_CLUSTER_MAX at a time so the second call must
938                  * not falsely conclude that the block should be skipped.
939                  */
940                 if (!valid_page && (pageblock_aligned(low_pfn) ||
941                                     low_pfn == cc->zone->zone_start_pfn)) {
942                         if (!isolation_suitable(cc, page)) {
943                                 low_pfn = end_pfn;
944                                 folio = NULL;
945                                 goto isolate_abort;
946                         }
947                         valid_page = page;
948                 }
949
950                 if (PageHuge(page) && cc->alloc_contig) {
951                         if (locked) {
952                                 unlock_page_lruvec_irqrestore(locked, flags);
953                                 locked = NULL;
954                         }
955
956                         ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
957
958                         /*
959                          * Fail isolation in case isolate_or_dissolve_huge_page()
960                          * reports an error. In case of -ENOMEM, abort right away.
961                          */
962                         if (ret < 0) {
963                                  /* Do not report -EBUSY down the chain */
964                                 if (ret == -EBUSY)
965                                         ret = 0;
966                                 low_pfn += compound_nr(page) - 1;
967                                 nr_scanned += compound_nr(page) - 1;
968                                 goto isolate_fail;
969                         }
970
971                         if (PageHuge(page)) {
972                                 /*
973                                  * Hugepage was successfully isolated and placed
974                                  * on the cc->migratepages list.
975                                  */
976                                 folio = page_folio(page);
977                                 low_pfn += folio_nr_pages(folio) - 1;
978                                 goto isolate_success_no_list;
979                         }
980
981                         /*
982                          * Ok, the hugepage was dissolved. Now these pages are
983                          * Buddy and cannot be re-allocated because they are
984                          * isolated. Fall-through as the check below handles
985                          * Buddy pages.
986                          */
987                 }
988
989                 /*
990                  * Skip if free. We read page order here without zone lock
991                  * which is generally unsafe, but the race window is small and
992                  * the worst thing that can happen is that we skip some
993                  * potential isolation targets.
994                  */
995                 if (PageBuddy(page)) {
996                         unsigned long freepage_order = buddy_order_unsafe(page);
997
998                         /*
999                          * Without lock, we cannot be sure that what we got is
1000                          * a valid page order. Consider only values in the
1001                          * valid order range to prevent low_pfn overflow.
1002                          */
1003                         if (freepage_order > 0 && freepage_order <= MAX_PAGE_ORDER) {
1004                                 low_pfn += (1UL << freepage_order) - 1;
1005                                 nr_scanned += (1UL << freepage_order) - 1;
1006                         }
1007                         continue;
1008                 }
1009
1010                 /*
1011                  * Regardless of being on LRU, compound pages such as THP and
1012                  * hugetlbfs are not to be compacted unless we are attempting
1013                  * an allocation much larger than the huge page size (eg CMA).
1014                  * We can potentially save a lot of iterations if we skip them
1015                  * at once. The check is racy, but we can consider only valid
1016                  * values and the only danger is skipping too much.
1017                  */
1018                 if (PageCompound(page) && !cc->alloc_contig) {
1019                         const unsigned int order = compound_order(page);
1020
1021                         if (likely(order <= MAX_PAGE_ORDER)) {
1022                                 low_pfn += (1UL << order) - 1;
1023                                 nr_scanned += (1UL << order) - 1;
1024                         }
1025                         goto isolate_fail;
1026                 }
1027
1028                 /*
1029                  * Check may be lockless but that's ok as we recheck later.
1030                  * It's possible to migrate LRU and non-lru movable pages.
1031                  * Skip any other type of page
1032                  */
1033                 if (!PageLRU(page)) {
1034                         /*
1035                          * __PageMovable can return false positive so we need
1036                          * to verify it under page_lock.
1037                          */
1038                         if (unlikely(__PageMovable(page)) &&
1039                                         !PageIsolated(page)) {
1040                                 if (locked) {
1041                                         unlock_page_lruvec_irqrestore(locked, flags);
1042                                         locked = NULL;
1043                                 }
1044
1045                                 if (isolate_movable_page(page, mode)) {
1046                                         folio = page_folio(page);
1047                                         goto isolate_success;
1048                                 }
1049                         }
1050
1051                         goto isolate_fail;
1052                 }
1053
1054                 /*
1055                  * Be careful not to clear PageLRU until after we're
1056                  * sure the page is not being freed elsewhere -- the
1057                  * page release code relies on it.
1058                  */
1059                 folio = folio_get_nontail_page(page);
1060                 if (unlikely(!folio))
1061                         goto isolate_fail;
1062
1063                 /*
1064                  * Migration will fail if an anonymous page is pinned in memory,
1065                  * so avoid taking lru_lock and isolating it unnecessarily in an
1066                  * admittedly racy check.
1067                  */
1068                 mapping = folio_mapping(folio);
1069                 if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio))
1070                         goto isolate_fail_put;
1071
1072                 /*
1073                  * Only allow to migrate anonymous pages in GFP_NOFS context
1074                  * because those do not depend on fs locks.
1075                  */
1076                 if (!(cc->gfp_mask & __GFP_FS) && mapping)
1077                         goto isolate_fail_put;
1078
1079                 /* Only take pages on LRU: a check now makes later tests safe */
1080                 if (!folio_test_lru(folio))
1081                         goto isolate_fail_put;
1082
1083                 is_unevictable = folio_test_unevictable(folio);
1084
1085                 /* Compaction might skip unevictable pages but CMA takes them */
1086                 if (!(mode & ISOLATE_UNEVICTABLE) && is_unevictable)
1087                         goto isolate_fail_put;
1088
1089                 /*
1090                  * To minimise LRU disruption, the caller can indicate with
1091                  * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1092                  * it will be able to migrate without blocking - clean pages
1093                  * for the most part.  PageWriteback would require blocking.
1094                  */
1095                 if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio))
1096                         goto isolate_fail_put;
1097
1098                 is_dirty = folio_test_dirty(folio);
1099
1100                 if (((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) ||
1101                     (mapping && is_unevictable)) {
1102                         bool migrate_dirty = true;
1103                         bool is_unmovable;
1104
1105                         /*
1106                          * Only folios without mappings or that have
1107                          * a ->migrate_folio callback are possible to migrate
1108                          * without blocking.
1109                          *
1110                          * Folios from unmovable mappings are not migratable.
1111                          *
1112                          * However, we can be racing with truncation, which can
1113                          * free the mapping that we need to check. Truncation
1114                          * holds the folio lock until after the folio is removed
1115                          * from the page so holding it ourselves is sufficient.
1116                          *
1117                          * To avoid locking the folio just to check unmovable,
1118                          * assume every unmovable folio is also unevictable,
1119                          * which is a cheaper test.  If our assumption goes
1120                          * wrong, it's not a correctness bug, just potentially
1121                          * wasted cycles.
1122                          */
1123                         if (!folio_trylock(folio))
1124                                 goto isolate_fail_put;
1125
1126                         mapping = folio_mapping(folio);
1127                         if ((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) {
1128                                 migrate_dirty = !mapping ||
1129                                                 mapping->a_ops->migrate_folio;
1130                         }
1131                         is_unmovable = mapping && mapping_unmovable(mapping);
1132                         folio_unlock(folio);
1133                         if (!migrate_dirty || is_unmovable)
1134                                 goto isolate_fail_put;
1135                 }
1136
1137                 /* Try isolate the folio */
1138                 if (!folio_test_clear_lru(folio))
1139                         goto isolate_fail_put;
1140
1141                 lruvec = folio_lruvec(folio);
1142
1143                 /* If we already hold the lock, we can skip some rechecking */
1144                 if (lruvec != locked) {
1145                         if (locked)
1146                                 unlock_page_lruvec_irqrestore(locked, flags);
1147
1148                         compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1149                         locked = lruvec;
1150
1151                         lruvec_memcg_debug(lruvec, folio);
1152
1153                         /*
1154                          * Try get exclusive access under lock. If marked for
1155                          * skip, the scan is aborted unless the current context
1156                          * is a rescan to reach the end of the pageblock.
1157                          */
1158                         if (!skip_updated && valid_page) {
1159                                 skip_updated = true;
1160                                 if (test_and_set_skip(cc, valid_page) &&
1161                                     !cc->finish_pageblock) {
1162                                         low_pfn = end_pfn;
1163                                         goto isolate_abort;
1164                                 }
1165                         }
1166
1167                         /*
1168                          * folio become large since the non-locked check,
1169                          * and it's on LRU.
1170                          */
1171                         if (unlikely(folio_test_large(folio) && !cc->alloc_contig)) {
1172                                 low_pfn += folio_nr_pages(folio) - 1;
1173                                 nr_scanned += folio_nr_pages(folio) - 1;
1174                                 folio_set_lru(folio);
1175                                 goto isolate_fail_put;
1176                         }
1177                 }
1178
1179                 /* The folio is taken off the LRU */
1180                 if (folio_test_large(folio))
1181                         low_pfn += folio_nr_pages(folio) - 1;
1182
1183                 /* Successfully isolated */
1184                 lruvec_del_folio(lruvec, folio);
1185                 node_stat_mod_folio(folio,
1186                                 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1187                                 folio_nr_pages(folio));
1188
1189 isolate_success:
1190                 list_add(&folio->lru, &cc->migratepages);
1191 isolate_success_no_list:
1192                 cc->nr_migratepages += folio_nr_pages(folio);
1193                 nr_isolated += folio_nr_pages(folio);
1194                 nr_scanned += folio_nr_pages(folio) - 1;
1195
1196                 /*
1197                  * Avoid isolating too much unless this block is being
1198                  * fully scanned (e.g. dirty/writeback pages, parallel allocation)
1199                  * or a lock is contended. For contention, isolate quickly to
1200                  * potentially remove one source of contention.
1201                  */
1202                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1203                     !cc->finish_pageblock && !cc->contended) {
1204                         ++low_pfn;
1205                         break;
1206                 }
1207
1208                 continue;
1209
1210 isolate_fail_put:
1211                 /* Avoid potential deadlock in freeing page under lru_lock */
1212                 if (locked) {
1213                         unlock_page_lruvec_irqrestore(locked, flags);
1214                         locked = NULL;
1215                 }
1216                 folio_put(folio);
1217
1218 isolate_fail:
1219                 if (!skip_on_failure && ret != -ENOMEM)
1220                         continue;
1221
1222                 /*
1223                  * We have isolated some pages, but then failed. Release them
1224                  * instead of migrating, as we cannot form the cc->order buddy
1225                  * page anyway.
1226                  */
1227                 if (nr_isolated) {
1228                         if (locked) {
1229                                 unlock_page_lruvec_irqrestore(locked, flags);
1230                                 locked = NULL;
1231                         }
1232                         putback_movable_pages(&cc->migratepages);
1233                         cc->nr_migratepages = 0;
1234                         nr_isolated = 0;
1235                 }
1236
1237                 if (low_pfn < next_skip_pfn) {
1238                         low_pfn = next_skip_pfn - 1;
1239                         /*
1240                          * The check near the loop beginning would have updated
1241                          * next_skip_pfn too, but this is a bit simpler.
1242                          */
1243                         next_skip_pfn += 1UL << cc->order;
1244                 }
1245
1246                 if (ret == -ENOMEM)
1247                         break;
1248         }
1249
1250         /*
1251          * The PageBuddy() check could have potentially brought us outside
1252          * the range to be scanned.
1253          */
1254         if (unlikely(low_pfn > end_pfn))
1255                 low_pfn = end_pfn;
1256
1257         folio = NULL;
1258
1259 isolate_abort:
1260         if (locked)
1261                 unlock_page_lruvec_irqrestore(locked, flags);
1262         if (folio) {
1263                 folio_set_lru(folio);
1264                 folio_put(folio);
1265         }
1266
1267         /*
1268          * Update the cached scanner pfn once the pageblock has been scanned.
1269          * Pages will either be migrated in which case there is no point
1270          * scanning in the near future or migration failed in which case the
1271          * failure reason may persist. The block is marked for skipping if
1272          * there were no pages isolated in the block or if the block is
1273          * rescanned twice in a row.
1274          */
1275         if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
1276                 if (!cc->no_set_skip_hint && valid_page && !skip_updated)
1277                         set_pageblock_skip(valid_page);
1278                 update_cached_migrate(cc, low_pfn);
1279         }
1280
1281         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1282                                                 nr_scanned, nr_isolated);
1283
1284 fatal_pending:
1285         cc->total_migrate_scanned += nr_scanned;
1286         if (nr_isolated)
1287                 count_compact_events(COMPACTISOLATED, nr_isolated);
1288
1289         cc->migrate_pfn = low_pfn;
1290
1291         return ret;
1292 }
1293
1294 /**
1295  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1296  * @cc:        Compaction control structure.
1297  * @start_pfn: The first PFN to start isolating.
1298  * @end_pfn:   The one-past-last PFN.
1299  *
1300  * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1301  * in case we could not allocate a page, or 0.
1302  */
1303 int
1304 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1305                                                         unsigned long end_pfn)
1306 {
1307         unsigned long pfn, block_start_pfn, block_end_pfn;
1308         int ret = 0;
1309
1310         /* Scan block by block. First and last block may be incomplete */
1311         pfn = start_pfn;
1312         block_start_pfn = pageblock_start_pfn(pfn);
1313         if (block_start_pfn < cc->zone->zone_start_pfn)
1314                 block_start_pfn = cc->zone->zone_start_pfn;
1315         block_end_pfn = pageblock_end_pfn(pfn);
1316
1317         for (; pfn < end_pfn; pfn = block_end_pfn,
1318                                 block_start_pfn = block_end_pfn,
1319                                 block_end_pfn += pageblock_nr_pages) {
1320
1321                 block_end_pfn = min(block_end_pfn, end_pfn);
1322
1323                 if (!pageblock_pfn_to_page(block_start_pfn,
1324                                         block_end_pfn, cc->zone))
1325                         continue;
1326
1327                 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1328                                                  ISOLATE_UNEVICTABLE);
1329
1330                 if (ret)
1331                         break;
1332
1333                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1334                         break;
1335         }
1336
1337         return ret;
1338 }
1339
1340 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1341 #ifdef CONFIG_COMPACTION
1342
1343 static bool suitable_migration_source(struct compact_control *cc,
1344                                                         struct page *page)
1345 {
1346         int block_mt;
1347
1348         if (pageblock_skip_persistent(page))
1349                 return false;
1350
1351         if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1352                 return true;
1353
1354         block_mt = get_pageblock_migratetype(page);
1355
1356         if (cc->migratetype == MIGRATE_MOVABLE)
1357                 return is_migrate_movable(block_mt);
1358         else
1359                 return block_mt == cc->migratetype;
1360 }
1361
1362 /* Returns true if the page is within a block suitable for migration to */
1363 static bool suitable_migration_target(struct compact_control *cc,
1364                                                         struct page *page)
1365 {
1366         /* If the page is a large free page, then disallow migration */
1367         if (PageBuddy(page)) {
1368                 /*
1369                  * We are checking page_order without zone->lock taken. But
1370                  * the only small danger is that we skip a potentially suitable
1371                  * pageblock, so it's not worth to check order for valid range.
1372                  */
1373                 if (buddy_order_unsafe(page) >= pageblock_order)
1374                         return false;
1375         }
1376
1377         if (cc->ignore_block_suitable)
1378                 return true;
1379
1380         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1381         if (is_migrate_movable(get_pageblock_migratetype(page)))
1382                 return true;
1383
1384         /* Otherwise skip the block */
1385         return false;
1386 }
1387
1388 static inline unsigned int
1389 freelist_scan_limit(struct compact_control *cc)
1390 {
1391         unsigned short shift = BITS_PER_LONG - 1;
1392
1393         return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1394 }
1395
1396 /*
1397  * Test whether the free scanner has reached the same or lower pageblock than
1398  * the migration scanner, and compaction should thus terminate.
1399  */
1400 static inline bool compact_scanners_met(struct compact_control *cc)
1401 {
1402         return (cc->free_pfn >> pageblock_order)
1403                 <= (cc->migrate_pfn >> pageblock_order);
1404 }
1405
1406 /*
1407  * Used when scanning for a suitable migration target which scans freelists
1408  * in reverse. Reorders the list such as the unscanned pages are scanned
1409  * first on the next iteration of the free scanner
1410  */
1411 static void
1412 move_freelist_head(struct list_head *freelist, struct page *freepage)
1413 {
1414         LIST_HEAD(sublist);
1415
1416         if (!list_is_first(&freepage->buddy_list, freelist)) {
1417                 list_cut_before(&sublist, freelist, &freepage->buddy_list);
1418                 list_splice_tail(&sublist, freelist);
1419         }
1420 }
1421
1422 /*
1423  * Similar to move_freelist_head except used by the migration scanner
1424  * when scanning forward. It's possible for these list operations to
1425  * move against each other if they search the free list exactly in
1426  * lockstep.
1427  */
1428 static void
1429 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1430 {
1431         LIST_HEAD(sublist);
1432
1433         if (!list_is_last(&freepage->buddy_list, freelist)) {
1434                 list_cut_position(&sublist, freelist, &freepage->buddy_list);
1435                 list_splice_tail(&sublist, freelist);
1436         }
1437 }
1438
1439 static void
1440 fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1441 {
1442         unsigned long start_pfn, end_pfn;
1443         struct page *page;
1444
1445         /* Do not search around if there are enough pages already */
1446         if (cc->nr_freepages >= cc->nr_migratepages)
1447                 return;
1448
1449         /* Minimise scanning during async compaction */
1450         if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1451                 return;
1452
1453         /* Pageblock boundaries */
1454         start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1455         end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1456
1457         page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1458         if (!page)
1459                 return;
1460
1461         isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1462
1463         /* Skip this pageblock in the future as it's full or nearly full */
1464         if (start_pfn == end_pfn && !cc->no_set_skip_hint)
1465                 set_pageblock_skip(page);
1466 }
1467
1468 /* Search orders in round-robin fashion */
1469 static int next_search_order(struct compact_control *cc, int order)
1470 {
1471         order--;
1472         if (order < 0)
1473                 order = cc->order - 1;
1474
1475         /* Search wrapped around? */
1476         if (order == cc->search_order) {
1477                 cc->search_order--;
1478                 if (cc->search_order < 0)
1479                         cc->search_order = cc->order - 1;
1480                 return -1;
1481         }
1482
1483         return order;
1484 }
1485
1486 static void fast_isolate_freepages(struct compact_control *cc)
1487 {
1488         unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1489         unsigned int nr_scanned = 0, total_isolated = 0;
1490         unsigned long low_pfn, min_pfn, highest = 0;
1491         unsigned long nr_isolated = 0;
1492         unsigned long distance;
1493         struct page *page = NULL;
1494         bool scan_start = false;
1495         int order;
1496
1497         /* Full compaction passes in a negative order */
1498         if (cc->order <= 0)
1499                 return;
1500
1501         /*
1502          * If starting the scan, use a deeper search and use the highest
1503          * PFN found if a suitable one is not found.
1504          */
1505         if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1506                 limit = pageblock_nr_pages >> 1;
1507                 scan_start = true;
1508         }
1509
1510         /*
1511          * Preferred point is in the top quarter of the scan space but take
1512          * a pfn from the top half if the search is problematic.
1513          */
1514         distance = (cc->free_pfn - cc->migrate_pfn);
1515         low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1516         min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1517
1518         if (WARN_ON_ONCE(min_pfn > low_pfn))
1519                 low_pfn = min_pfn;
1520
1521         /*
1522          * Search starts from the last successful isolation order or the next
1523          * order to search after a previous failure
1524          */
1525         cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1526
1527         for (order = cc->search_order;
1528              !page && order >= 0;
1529              order = next_search_order(cc, order)) {
1530                 struct free_area *area = &cc->zone->free_area[order];
1531                 struct list_head *freelist;
1532                 struct page *freepage;
1533                 unsigned long flags;
1534                 unsigned int order_scanned = 0;
1535                 unsigned long high_pfn = 0;
1536
1537                 if (!area->nr_free)
1538                         continue;
1539
1540                 spin_lock_irqsave(&cc->zone->lock, flags);
1541                 freelist = &area->free_list[MIGRATE_MOVABLE];
1542                 list_for_each_entry_reverse(freepage, freelist, buddy_list) {
1543                         unsigned long pfn;
1544
1545                         order_scanned++;
1546                         nr_scanned++;
1547                         pfn = page_to_pfn(freepage);
1548
1549                         if (pfn >= highest)
1550                                 highest = max(pageblock_start_pfn(pfn),
1551                                               cc->zone->zone_start_pfn);
1552
1553                         if (pfn >= low_pfn) {
1554                                 cc->fast_search_fail = 0;
1555                                 cc->search_order = order;
1556                                 page = freepage;
1557                                 break;
1558                         }
1559
1560                         if (pfn >= min_pfn && pfn > high_pfn) {
1561                                 high_pfn = pfn;
1562
1563                                 /* Shorten the scan if a candidate is found */
1564                                 limit >>= 1;
1565                         }
1566
1567                         if (order_scanned >= limit)
1568                                 break;
1569                 }
1570
1571                 /* Use a maximum candidate pfn if a preferred one was not found */
1572                 if (!page && high_pfn) {
1573                         page = pfn_to_page(high_pfn);
1574
1575                         /* Update freepage for the list reorder below */
1576                         freepage = page;
1577                 }
1578
1579                 /* Reorder to so a future search skips recent pages */
1580                 move_freelist_head(freelist, freepage);
1581
1582                 /* Isolate the page if available */
1583                 if (page) {
1584                         if (__isolate_free_page(page, order)) {
1585                                 set_page_private(page, order);
1586                                 nr_isolated = 1 << order;
1587                                 nr_scanned += nr_isolated - 1;
1588                                 total_isolated += nr_isolated;
1589                                 cc->nr_freepages += nr_isolated;
1590                                 list_add_tail(&page->lru, &cc->freepages);
1591                                 count_compact_events(COMPACTISOLATED, nr_isolated);
1592                         } else {
1593                                 /* If isolation fails, abort the search */
1594                                 order = cc->search_order + 1;
1595                                 page = NULL;
1596                         }
1597                 }
1598
1599                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1600
1601                 /* Skip fast search if enough freepages isolated */
1602                 if (cc->nr_freepages >= cc->nr_migratepages)
1603                         break;
1604
1605                 /*
1606                  * Smaller scan on next order so the total scan is related
1607                  * to freelist_scan_limit.
1608                  */
1609                 if (order_scanned >= limit)
1610                         limit = max(1U, limit >> 1);
1611         }
1612
1613         trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn,
1614                                                    nr_scanned, total_isolated);
1615
1616         if (!page) {
1617                 cc->fast_search_fail++;
1618                 if (scan_start) {
1619                         /*
1620                          * Use the highest PFN found above min. If one was
1621                          * not found, be pessimistic for direct compaction
1622                          * and use the min mark.
1623                          */
1624                         if (highest >= min_pfn) {
1625                                 page = pfn_to_page(highest);
1626                                 cc->free_pfn = highest;
1627                         } else {
1628                                 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1629                                         page = pageblock_pfn_to_page(min_pfn,
1630                                                 min(pageblock_end_pfn(min_pfn),
1631                                                     zone_end_pfn(cc->zone)),
1632                                                 cc->zone);
1633                                         if (page && !suitable_migration_target(cc, page))
1634                                                 page = NULL;
1635
1636                                         cc->free_pfn = min_pfn;
1637                                 }
1638                         }
1639                 }
1640         }
1641
1642         if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1643                 highest -= pageblock_nr_pages;
1644                 cc->zone->compact_cached_free_pfn = highest;
1645         }
1646
1647         cc->total_free_scanned += nr_scanned;
1648         if (!page)
1649                 return;
1650
1651         low_pfn = page_to_pfn(page);
1652         fast_isolate_around(cc, low_pfn);
1653 }
1654
1655 /*
1656  * Based on information in the current compact_control, find blocks
1657  * suitable for isolating free pages from and then isolate them.
1658  */
1659 static void isolate_freepages(struct compact_control *cc)
1660 {
1661         struct zone *zone = cc->zone;
1662         struct page *page;
1663         unsigned long block_start_pfn;  /* start of current pageblock */
1664         unsigned long isolate_start_pfn; /* exact pfn we start at */
1665         unsigned long block_end_pfn;    /* end of current pageblock */
1666         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
1667         struct list_head *freelist = &cc->freepages;
1668         unsigned int stride;
1669
1670         /* Try a small search of the free lists for a candidate */
1671         fast_isolate_freepages(cc);
1672         if (cc->nr_freepages)
1673                 goto splitmap;
1674
1675         /*
1676          * Initialise the free scanner. The starting point is where we last
1677          * successfully isolated from, zone-cached value, or the end of the
1678          * zone when isolating for the first time. For looping we also need
1679          * this pfn aligned down to the pageblock boundary, because we do
1680          * block_start_pfn -= pageblock_nr_pages in the for loop.
1681          * For ending point, take care when isolating in last pageblock of a
1682          * zone which ends in the middle of a pageblock.
1683          * The low boundary is the end of the pageblock the migration scanner
1684          * is using.
1685          */
1686         isolate_start_pfn = cc->free_pfn;
1687         block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1688         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1689                                                 zone_end_pfn(zone));
1690         low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1691         stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1692
1693         /*
1694          * Isolate free pages until enough are available to migrate the
1695          * pages on cc->migratepages. We stop searching if the migrate
1696          * and free page scanners meet or enough free pages are isolated.
1697          */
1698         for (; block_start_pfn >= low_pfn;
1699                                 block_end_pfn = block_start_pfn,
1700                                 block_start_pfn -= pageblock_nr_pages,
1701                                 isolate_start_pfn = block_start_pfn) {
1702                 unsigned long nr_isolated;
1703
1704                 /*
1705                  * This can iterate a massively long zone without finding any
1706                  * suitable migration targets, so periodically check resched.
1707                  */
1708                 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1709                         cond_resched();
1710
1711                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1712                                                                         zone);
1713                 if (!page) {
1714                         unsigned long next_pfn;
1715
1716                         next_pfn = skip_offline_sections_reverse(block_start_pfn);
1717                         if (next_pfn)
1718                                 block_start_pfn = max(next_pfn, low_pfn);
1719
1720                         continue;
1721                 }
1722
1723                 /* Check the block is suitable for migration */
1724                 if (!suitable_migration_target(cc, page))
1725                         continue;
1726
1727                 /* If isolation recently failed, do not retry */
1728                 if (!isolation_suitable(cc, page))
1729                         continue;
1730
1731                 /* Found a block suitable for isolating free pages from. */
1732                 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1733                                         block_end_pfn, freelist, stride, false);
1734
1735                 /* Update the skip hint if the full pageblock was scanned */
1736                 if (isolate_start_pfn == block_end_pfn)
1737                         update_pageblock_skip(cc, page, block_start_pfn -
1738                                               pageblock_nr_pages);
1739
1740                 /* Are enough freepages isolated? */
1741                 if (cc->nr_freepages >= cc->nr_migratepages) {
1742                         if (isolate_start_pfn >= block_end_pfn) {
1743                                 /*
1744                                  * Restart at previous pageblock if more
1745                                  * freepages can be isolated next time.
1746                                  */
1747                                 isolate_start_pfn =
1748                                         block_start_pfn - pageblock_nr_pages;
1749                         }
1750                         break;
1751                 } else if (isolate_start_pfn < block_end_pfn) {
1752                         /*
1753                          * If isolation failed early, do not continue
1754                          * needlessly.
1755                          */
1756                         break;
1757                 }
1758
1759                 /* Adjust stride depending on isolation */
1760                 if (nr_isolated) {
1761                         stride = 1;
1762                         continue;
1763                 }
1764                 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1765         }
1766
1767         /*
1768          * Record where the free scanner will restart next time. Either we
1769          * broke from the loop and set isolate_start_pfn based on the last
1770          * call to isolate_freepages_block(), or we met the migration scanner
1771          * and the loop terminated due to isolate_start_pfn < low_pfn
1772          */
1773         cc->free_pfn = isolate_start_pfn;
1774
1775 splitmap:
1776         /* __isolate_free_page() does not map the pages */
1777         split_map_pages(freelist);
1778 }
1779
1780 /*
1781  * This is a migrate-callback that "allocates" freepages by taking pages
1782  * from the isolated freelists in the block we are migrating to.
1783  */
1784 static struct folio *compaction_alloc(struct folio *src, unsigned long data)
1785 {
1786         struct compact_control *cc = (struct compact_control *)data;
1787         struct folio *dst;
1788
1789         if (list_empty(&cc->freepages)) {
1790                 isolate_freepages(cc);
1791
1792                 if (list_empty(&cc->freepages))
1793                         return NULL;
1794         }
1795
1796         dst = list_entry(cc->freepages.next, struct folio, lru);
1797         list_del(&dst->lru);
1798         cc->nr_freepages--;
1799
1800         return dst;
1801 }
1802
1803 /*
1804  * This is a migrate-callback that "frees" freepages back to the isolated
1805  * freelist.  All pages on the freelist are from the same zone, so there is no
1806  * special handling needed for NUMA.
1807  */
1808 static void compaction_free(struct folio *dst, unsigned long data)
1809 {
1810         struct compact_control *cc = (struct compact_control *)data;
1811
1812         list_add(&dst->lru, &cc->freepages);
1813         cc->nr_freepages++;
1814 }
1815
1816 /* possible outcome of isolate_migratepages */
1817 typedef enum {
1818         ISOLATE_ABORT,          /* Abort compaction now */
1819         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1820         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1821 } isolate_migrate_t;
1822
1823 /*
1824  * Allow userspace to control policy on scanning the unevictable LRU for
1825  * compactable pages.
1826  */
1827 static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1828 /*
1829  * Tunable for proactive compaction. It determines how
1830  * aggressively the kernel should compact memory in the
1831  * background. It takes values in the range [0, 100].
1832  */
1833 static unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
1834 static int sysctl_extfrag_threshold = 500;
1835 static int __read_mostly sysctl_compact_memory;
1836
1837 static inline void
1838 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1839 {
1840         if (cc->fast_start_pfn == ULONG_MAX)
1841                 return;
1842
1843         if (!cc->fast_start_pfn)
1844                 cc->fast_start_pfn = pfn;
1845
1846         cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1847 }
1848
1849 static inline unsigned long
1850 reinit_migrate_pfn(struct compact_control *cc)
1851 {
1852         if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1853                 return cc->migrate_pfn;
1854
1855         cc->migrate_pfn = cc->fast_start_pfn;
1856         cc->fast_start_pfn = ULONG_MAX;
1857
1858         return cc->migrate_pfn;
1859 }
1860
1861 /*
1862  * Briefly search the free lists for a migration source that already has
1863  * some free pages to reduce the number of pages that need migration
1864  * before a pageblock is free.
1865  */
1866 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1867 {
1868         unsigned int limit = freelist_scan_limit(cc);
1869         unsigned int nr_scanned = 0;
1870         unsigned long distance;
1871         unsigned long pfn = cc->migrate_pfn;
1872         unsigned long high_pfn;
1873         int order;
1874         bool found_block = false;
1875
1876         /* Skip hints are relied on to avoid repeats on the fast search */
1877         if (cc->ignore_skip_hint)
1878                 return pfn;
1879
1880         /*
1881          * If the pageblock should be finished then do not select a different
1882          * pageblock.
1883          */
1884         if (cc->finish_pageblock)
1885                 return pfn;
1886
1887         /*
1888          * If the migrate_pfn is not at the start of a zone or the start
1889          * of a pageblock then assume this is a continuation of a previous
1890          * scan restarted due to COMPACT_CLUSTER_MAX.
1891          */
1892         if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1893                 return pfn;
1894
1895         /*
1896          * For smaller orders, just linearly scan as the number of pages
1897          * to migrate should be relatively small and does not necessarily
1898          * justify freeing up a large block for a small allocation.
1899          */
1900         if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1901                 return pfn;
1902
1903         /*
1904          * Only allow kcompactd and direct requests for movable pages to
1905          * quickly clear out a MOVABLE pageblock for allocation. This
1906          * reduces the risk that a large movable pageblock is freed for
1907          * an unmovable/reclaimable small allocation.
1908          */
1909         if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1910                 return pfn;
1911
1912         /*
1913          * When starting the migration scanner, pick any pageblock within the
1914          * first half of the search space. Otherwise try and pick a pageblock
1915          * within the first eighth to reduce the chances that a migration
1916          * target later becomes a source.
1917          */
1918         distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1919         if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1920                 distance >>= 2;
1921         high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1922
1923         for (order = cc->order - 1;
1924              order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1925              order--) {
1926                 struct free_area *area = &cc->zone->free_area[order];
1927                 struct list_head *freelist;
1928                 unsigned long flags;
1929                 struct page *freepage;
1930
1931                 if (!area->nr_free)
1932                         continue;
1933
1934                 spin_lock_irqsave(&cc->zone->lock, flags);
1935                 freelist = &area->free_list[MIGRATE_MOVABLE];
1936                 list_for_each_entry(freepage, freelist, buddy_list) {
1937                         unsigned long free_pfn;
1938
1939                         if (nr_scanned++ >= limit) {
1940                                 move_freelist_tail(freelist, freepage);
1941                                 break;
1942                         }
1943
1944                         free_pfn = page_to_pfn(freepage);
1945                         if (free_pfn < high_pfn) {
1946                                 /*
1947                                  * Avoid if skipped recently. Ideally it would
1948                                  * move to the tail but even safe iteration of
1949                                  * the list assumes an entry is deleted, not
1950                                  * reordered.
1951                                  */
1952                                 if (get_pageblock_skip(freepage))
1953                                         continue;
1954
1955                                 /* Reorder to so a future search skips recent pages */
1956                                 move_freelist_tail(freelist, freepage);
1957
1958                                 update_fast_start_pfn(cc, free_pfn);
1959                                 pfn = pageblock_start_pfn(free_pfn);
1960                                 if (pfn < cc->zone->zone_start_pfn)
1961                                         pfn = cc->zone->zone_start_pfn;
1962                                 cc->fast_search_fail = 0;
1963                                 found_block = true;
1964                                 break;
1965                         }
1966                 }
1967                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1968         }
1969
1970         cc->total_migrate_scanned += nr_scanned;
1971
1972         /*
1973          * If fast scanning failed then use a cached entry for a page block
1974          * that had free pages as the basis for starting a linear scan.
1975          */
1976         if (!found_block) {
1977                 cc->fast_search_fail++;
1978                 pfn = reinit_migrate_pfn(cc);
1979         }
1980         return pfn;
1981 }
1982
1983 /*
1984  * Isolate all pages that can be migrated from the first suitable block,
1985  * starting at the block pointed to by the migrate scanner pfn within
1986  * compact_control.
1987  */
1988 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1989 {
1990         unsigned long block_start_pfn;
1991         unsigned long block_end_pfn;
1992         unsigned long low_pfn;
1993         struct page *page;
1994         const isolate_mode_t isolate_mode =
1995                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1996                 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1997         bool fast_find_block;
1998
1999         /*
2000          * Start at where we last stopped, or beginning of the zone as
2001          * initialized by compact_zone(). The first failure will use
2002          * the lowest PFN as the starting point for linear scanning.
2003          */
2004         low_pfn = fast_find_migrateblock(cc);
2005         block_start_pfn = pageblock_start_pfn(low_pfn);
2006         if (block_start_pfn < cc->zone->zone_start_pfn)
2007                 block_start_pfn = cc->zone->zone_start_pfn;
2008
2009         /*
2010          * fast_find_migrateblock() has already ensured the pageblock is not
2011          * set with a skipped flag, so to avoid the isolation_suitable check
2012          * below again, check whether the fast search was successful.
2013          */
2014         fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
2015
2016         /* Only scan within a pageblock boundary */
2017         block_end_pfn = pageblock_end_pfn(low_pfn);
2018
2019         /*
2020          * Iterate over whole pageblocks until we find the first suitable.
2021          * Do not cross the free scanner.
2022          */
2023         for (; block_end_pfn <= cc->free_pfn;
2024                         fast_find_block = false,
2025                         cc->migrate_pfn = low_pfn = block_end_pfn,
2026                         block_start_pfn = block_end_pfn,
2027                         block_end_pfn += pageblock_nr_pages) {
2028
2029                 /*
2030                  * This can potentially iterate a massively long zone with
2031                  * many pageblocks unsuitable, so periodically check if we
2032                  * need to schedule.
2033                  */
2034                 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
2035                         cond_resched();
2036
2037                 page = pageblock_pfn_to_page(block_start_pfn,
2038                                                 block_end_pfn, cc->zone);
2039                 if (!page) {
2040                         unsigned long next_pfn;
2041
2042                         next_pfn = skip_offline_sections(block_start_pfn);
2043                         if (next_pfn)
2044                                 block_end_pfn = min(next_pfn, cc->free_pfn);
2045                         continue;
2046                 }
2047
2048                 /*
2049                  * If isolation recently failed, do not retry. Only check the
2050                  * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
2051                  * to be visited multiple times. Assume skip was checked
2052                  * before making it "skip" so other compaction instances do
2053                  * not scan the same block.
2054                  */
2055                 if ((pageblock_aligned(low_pfn) ||
2056                      low_pfn == cc->zone->zone_start_pfn) &&
2057                     !fast_find_block && !isolation_suitable(cc, page))
2058                         continue;
2059
2060                 /*
2061                  * For async direct compaction, only scan the pageblocks of the
2062                  * same migratetype without huge pages. Async direct compaction
2063                  * is optimistic to see if the minimum amount of work satisfies
2064                  * the allocation. The cached PFN is updated as it's possible
2065                  * that all remaining blocks between source and target are
2066                  * unsuitable and the compaction scanners fail to meet.
2067                  */
2068                 if (!suitable_migration_source(cc, page)) {
2069                         update_cached_migrate(cc, block_end_pfn);
2070                         continue;
2071                 }
2072
2073                 /* Perform the isolation */
2074                 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
2075                                                 isolate_mode))
2076                         return ISOLATE_ABORT;
2077
2078                 /*
2079                  * Either we isolated something and proceed with migration. Or
2080                  * we failed and compact_zone should decide if we should
2081                  * continue or not.
2082                  */
2083                 break;
2084         }
2085
2086         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
2087 }
2088
2089 /*
2090  * order == -1 is expected when compacting proactively via
2091  * 1. /proc/sys/vm/compact_memory
2092  * 2. /sys/devices/system/node/nodex/compact
2093  * 3. /proc/sys/vm/compaction_proactiveness
2094  */
2095 static inline bool is_via_compact_memory(int order)
2096 {
2097         return order == -1;
2098 }
2099
2100 /*
2101  * Determine whether kswapd is (or recently was!) running on this node.
2102  *
2103  * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
2104  * zero it.
2105  */
2106 static bool kswapd_is_running(pg_data_t *pgdat)
2107 {
2108         bool running;
2109
2110         pgdat_kswapd_lock(pgdat);
2111         running = pgdat->kswapd && task_is_running(pgdat->kswapd);
2112         pgdat_kswapd_unlock(pgdat);
2113
2114         return running;
2115 }
2116
2117 /*
2118  * A zone's fragmentation score is the external fragmentation wrt to the
2119  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2120  */
2121 static unsigned int fragmentation_score_zone(struct zone *zone)
2122 {
2123         return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2124 }
2125
2126 /*
2127  * A weighted zone's fragmentation score is the external fragmentation
2128  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2129  * returns a value in the range [0, 100].
2130  *
2131  * The scaling factor ensures that proactive compaction focuses on larger
2132  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2133  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2134  * and thus never exceeds the high threshold for proactive compaction.
2135  */
2136 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2137 {
2138         unsigned long score;
2139
2140         score = zone->present_pages * fragmentation_score_zone(zone);
2141         return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2142 }
2143
2144 /*
2145  * The per-node proactive (background) compaction process is started by its
2146  * corresponding kcompactd thread when the node's fragmentation score
2147  * exceeds the high threshold. The compaction process remains active till
2148  * the node's score falls below the low threshold, or one of the back-off
2149  * conditions is met.
2150  */
2151 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2152 {
2153         unsigned int score = 0;
2154         int zoneid;
2155
2156         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2157                 struct zone *zone;
2158
2159                 zone = &pgdat->node_zones[zoneid];
2160                 if (!populated_zone(zone))
2161                         continue;
2162                 score += fragmentation_score_zone_weighted(zone);
2163         }
2164
2165         return score;
2166 }
2167
2168 static unsigned int fragmentation_score_wmark(bool low)
2169 {
2170         unsigned int wmark_low;
2171
2172         /*
2173          * Cap the low watermark to avoid excessive compaction
2174          * activity in case a user sets the proactiveness tunable
2175          * close to 100 (maximum).
2176          */
2177         wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2178         return low ? wmark_low : min(wmark_low + 10, 100U);
2179 }
2180
2181 static bool should_proactive_compact_node(pg_data_t *pgdat)
2182 {
2183         int wmark_high;
2184
2185         if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2186                 return false;
2187
2188         wmark_high = fragmentation_score_wmark(false);
2189         return fragmentation_score_node(pgdat) > wmark_high;
2190 }
2191
2192 static enum compact_result __compact_finished(struct compact_control *cc)
2193 {
2194         unsigned int order;
2195         const int migratetype = cc->migratetype;
2196         int ret;
2197
2198         /* Compaction run completes if the migrate and free scanner meet */
2199         if (compact_scanners_met(cc)) {
2200                 /* Let the next compaction start anew. */
2201                 reset_cached_positions(cc->zone);
2202
2203                 /*
2204                  * Mark that the PG_migrate_skip information should be cleared
2205                  * by kswapd when it goes to sleep. kcompactd does not set the
2206                  * flag itself as the decision to be clear should be directly
2207                  * based on an allocation request.
2208                  */
2209                 if (cc->direct_compaction)
2210                         cc->zone->compact_blockskip_flush = true;
2211
2212                 if (cc->whole_zone)
2213                         return COMPACT_COMPLETE;
2214                 else
2215                         return COMPACT_PARTIAL_SKIPPED;
2216         }
2217
2218         if (cc->proactive_compaction) {
2219                 int score, wmark_low;
2220                 pg_data_t *pgdat;
2221
2222                 pgdat = cc->zone->zone_pgdat;
2223                 if (kswapd_is_running(pgdat))
2224                         return COMPACT_PARTIAL_SKIPPED;
2225
2226                 score = fragmentation_score_zone(cc->zone);
2227                 wmark_low = fragmentation_score_wmark(true);
2228
2229                 if (score > wmark_low)
2230                         ret = COMPACT_CONTINUE;
2231                 else
2232                         ret = COMPACT_SUCCESS;
2233
2234                 goto out;
2235         }
2236
2237         if (is_via_compact_memory(cc->order))
2238                 return COMPACT_CONTINUE;
2239
2240         /*
2241          * Always finish scanning a pageblock to reduce the possibility of
2242          * fallbacks in the future. This is particularly important when
2243          * migration source is unmovable/reclaimable but it's not worth
2244          * special casing.
2245          */
2246         if (!pageblock_aligned(cc->migrate_pfn))
2247                 return COMPACT_CONTINUE;
2248
2249         /* Direct compactor: Is a suitable page free? */
2250         ret = COMPACT_NO_SUITABLE_PAGE;
2251         for (order = cc->order; order < NR_PAGE_ORDERS; order++) {
2252                 struct free_area *area = &cc->zone->free_area[order];
2253                 bool can_steal;
2254
2255                 /* Job done if page is free of the right migratetype */
2256                 if (!free_area_empty(area, migratetype))
2257                         return COMPACT_SUCCESS;
2258
2259 #ifdef CONFIG_CMA
2260                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2261                 if (migratetype == MIGRATE_MOVABLE &&
2262                         !free_area_empty(area, MIGRATE_CMA))
2263                         return COMPACT_SUCCESS;
2264 #endif
2265                 /*
2266                  * Job done if allocation would steal freepages from
2267                  * other migratetype buddy lists.
2268                  */
2269                 if (find_suitable_fallback(area, order, migratetype,
2270                                                 true, &can_steal) != -1)
2271                         /*
2272                          * Movable pages are OK in any pageblock. If we are
2273                          * stealing for a non-movable allocation, make sure
2274                          * we finish compacting the current pageblock first
2275                          * (which is assured by the above migrate_pfn align
2276                          * check) so it is as free as possible and we won't
2277                          * have to steal another one soon.
2278                          */
2279                         return COMPACT_SUCCESS;
2280         }
2281
2282 out:
2283         if (cc->contended || fatal_signal_pending(current))
2284                 ret = COMPACT_CONTENDED;
2285
2286         return ret;
2287 }
2288
2289 static enum compact_result compact_finished(struct compact_control *cc)
2290 {
2291         int ret;
2292
2293         ret = __compact_finished(cc);
2294         trace_mm_compaction_finished(cc->zone, cc->order, ret);
2295         if (ret == COMPACT_NO_SUITABLE_PAGE)
2296                 ret = COMPACT_CONTINUE;
2297
2298         return ret;
2299 }
2300
2301 static bool __compaction_suitable(struct zone *zone, int order,
2302                                   int highest_zoneidx,
2303                                   unsigned long wmark_target)
2304 {
2305         unsigned long watermark;
2306         /*
2307          * Watermarks for order-0 must be met for compaction to be able to
2308          * isolate free pages for migration targets. This means that the
2309          * watermark and alloc_flags have to match, or be more pessimistic than
2310          * the check in __isolate_free_page(). We don't use the direct
2311          * compactor's alloc_flags, as they are not relevant for freepage
2312          * isolation. We however do use the direct compactor's highest_zoneidx
2313          * to skip over zones where lowmem reserves would prevent allocation
2314          * even if compaction succeeds.
2315          * For costly orders, we require low watermark instead of min for
2316          * compaction to proceed to increase its chances.
2317          * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2318          * suitable migration targets
2319          */
2320         watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2321                                 low_wmark_pages(zone) : min_wmark_pages(zone);
2322         watermark += compact_gap(order);
2323         return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2324                                    ALLOC_CMA, wmark_target);
2325 }
2326
2327 /*
2328  * compaction_suitable: Is this suitable to run compaction on this zone now?
2329  */
2330 bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx)
2331 {
2332         enum compact_result compact_result;
2333         bool suitable;
2334
2335         suitable = __compaction_suitable(zone, order, highest_zoneidx,
2336                                          zone_page_state(zone, NR_FREE_PAGES));
2337         /*
2338          * fragmentation index determines if allocation failures are due to
2339          * low memory or external fragmentation
2340          *
2341          * index of -1000 would imply allocations might succeed depending on
2342          * watermarks, but we already failed the high-order watermark check
2343          * index towards 0 implies failure is due to lack of memory
2344          * index towards 1000 implies failure is due to fragmentation
2345          *
2346          * Only compact if a failure would be due to fragmentation. Also
2347          * ignore fragindex for non-costly orders where the alternative to
2348          * a successful reclaim/compaction is OOM. Fragindex and the
2349          * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2350          * excessive compaction for costly orders, but it should not be at the
2351          * expense of system stability.
2352          */
2353         if (suitable) {
2354                 compact_result = COMPACT_CONTINUE;
2355                 if (order > PAGE_ALLOC_COSTLY_ORDER) {
2356                         int fragindex = fragmentation_index(zone, order);
2357
2358                         if (fragindex >= 0 &&
2359                             fragindex <= sysctl_extfrag_threshold) {
2360                                 suitable = false;
2361                                 compact_result = COMPACT_NOT_SUITABLE_ZONE;
2362                         }
2363                 }
2364         } else {
2365                 compact_result = COMPACT_SKIPPED;
2366         }
2367
2368         trace_mm_compaction_suitable(zone, order, compact_result);
2369
2370         return suitable;
2371 }
2372
2373 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2374                 int alloc_flags)
2375 {
2376         struct zone *zone;
2377         struct zoneref *z;
2378
2379         /*
2380          * Make sure at least one zone would pass __compaction_suitable if we continue
2381          * retrying the reclaim.
2382          */
2383         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2384                                 ac->highest_zoneidx, ac->nodemask) {
2385                 unsigned long available;
2386
2387                 /*
2388                  * Do not consider all the reclaimable memory because we do not
2389                  * want to trash just for a single high order allocation which
2390                  * is even not guaranteed to appear even if __compaction_suitable
2391                  * is happy about the watermark check.
2392                  */
2393                 available = zone_reclaimable_pages(zone) / order;
2394                 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2395                 if (__compaction_suitable(zone, order, ac->highest_zoneidx,
2396                                           available))
2397                         return true;
2398         }
2399
2400         return false;
2401 }
2402
2403 /*
2404  * Should we do compaction for target allocation order.
2405  * Return COMPACT_SUCCESS if allocation for target order can be already
2406  * satisfied
2407  * Return COMPACT_SKIPPED if compaction for target order is likely to fail
2408  * Return COMPACT_CONTINUE if compaction for target order should be ran
2409  */
2410 static enum compact_result
2411 compaction_suit_allocation_order(struct zone *zone, unsigned int order,
2412                                  int highest_zoneidx, unsigned int alloc_flags)
2413 {
2414         unsigned long watermark;
2415
2416         watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2417         if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2418                               alloc_flags))
2419                 return COMPACT_SUCCESS;
2420
2421         if (!compaction_suitable(zone, order, highest_zoneidx))
2422                 return COMPACT_SKIPPED;
2423
2424         return COMPACT_CONTINUE;
2425 }
2426
2427 static enum compact_result
2428 compact_zone(struct compact_control *cc, struct capture_control *capc)
2429 {
2430         enum compact_result ret;
2431         unsigned long start_pfn = cc->zone->zone_start_pfn;
2432         unsigned long end_pfn = zone_end_pfn(cc->zone);
2433         unsigned long last_migrated_pfn;
2434         const bool sync = cc->mode != MIGRATE_ASYNC;
2435         bool update_cached;
2436         unsigned int nr_succeeded = 0;
2437
2438         /*
2439          * These counters track activities during zone compaction.  Initialize
2440          * them before compacting a new zone.
2441          */
2442         cc->total_migrate_scanned = 0;
2443         cc->total_free_scanned = 0;
2444         cc->nr_migratepages = 0;
2445         cc->nr_freepages = 0;
2446         INIT_LIST_HEAD(&cc->freepages);
2447         INIT_LIST_HEAD(&cc->migratepages);
2448
2449         cc->migratetype = gfp_migratetype(cc->gfp_mask);
2450
2451         if (!is_via_compact_memory(cc->order)) {
2452                 ret = compaction_suit_allocation_order(cc->zone, cc->order,
2453                                                        cc->highest_zoneidx,
2454                                                        cc->alloc_flags);
2455                 if (ret != COMPACT_CONTINUE)
2456                         return ret;
2457         }
2458
2459         /*
2460          * Clear pageblock skip if there were failures recently and compaction
2461          * is about to be retried after being deferred.
2462          */
2463         if (compaction_restarting(cc->zone, cc->order))
2464                 __reset_isolation_suitable(cc->zone);
2465
2466         /*
2467          * Setup to move all movable pages to the end of the zone. Used cached
2468          * information on where the scanners should start (unless we explicitly
2469          * want to compact the whole zone), but check that it is initialised
2470          * by ensuring the values are within zone boundaries.
2471          */
2472         cc->fast_start_pfn = 0;
2473         if (cc->whole_zone) {
2474                 cc->migrate_pfn = start_pfn;
2475                 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2476         } else {
2477                 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2478                 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2479                 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2480                         cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2481                         cc->zone->compact_cached_free_pfn = cc->free_pfn;
2482                 }
2483                 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2484                         cc->migrate_pfn = start_pfn;
2485                         cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2486                         cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2487                 }
2488
2489                 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2490                         cc->whole_zone = true;
2491         }
2492
2493         last_migrated_pfn = 0;
2494
2495         /*
2496          * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2497          * the basis that some migrations will fail in ASYNC mode. However,
2498          * if the cached PFNs match and pageblocks are skipped due to having
2499          * no isolation candidates, then the sync state does not matter.
2500          * Until a pageblock with isolation candidates is found, keep the
2501          * cached PFNs in sync to avoid revisiting the same blocks.
2502          */
2503         update_cached = !sync &&
2504                 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2505
2506         trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2507
2508         /* lru_add_drain_all could be expensive with involving other CPUs */
2509         lru_add_drain();
2510
2511         while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2512                 int err;
2513                 unsigned long iteration_start_pfn = cc->migrate_pfn;
2514
2515                 /*
2516                  * Avoid multiple rescans of the same pageblock which can
2517                  * happen if a page cannot be isolated (dirty/writeback in
2518                  * async mode) or if the migrated pages are being allocated
2519                  * before the pageblock is cleared.  The first rescan will
2520                  * capture the entire pageblock for migration. If it fails,
2521                  * it'll be marked skip and scanning will proceed as normal.
2522                  */
2523                 cc->finish_pageblock = false;
2524                 if (pageblock_start_pfn(last_migrated_pfn) ==
2525                     pageblock_start_pfn(iteration_start_pfn)) {
2526                         cc->finish_pageblock = true;
2527                 }
2528
2529 rescan:
2530                 switch (isolate_migratepages(cc)) {
2531                 case ISOLATE_ABORT:
2532                         ret = COMPACT_CONTENDED;
2533                         putback_movable_pages(&cc->migratepages);
2534                         cc->nr_migratepages = 0;
2535                         goto out;
2536                 case ISOLATE_NONE:
2537                         if (update_cached) {
2538                                 cc->zone->compact_cached_migrate_pfn[1] =
2539                                         cc->zone->compact_cached_migrate_pfn[0];
2540                         }
2541
2542                         /*
2543                          * We haven't isolated and migrated anything, but
2544                          * there might still be unflushed migrations from
2545                          * previous cc->order aligned block.
2546                          */
2547                         goto check_drain;
2548                 case ISOLATE_SUCCESS:
2549                         update_cached = false;
2550                         last_migrated_pfn = max(cc->zone->zone_start_pfn,
2551                                 pageblock_start_pfn(cc->migrate_pfn - 1));
2552                 }
2553
2554                 err = migrate_pages(&cc->migratepages, compaction_alloc,
2555                                 compaction_free, (unsigned long)cc, cc->mode,
2556                                 MR_COMPACTION, &nr_succeeded);
2557
2558                 trace_mm_compaction_migratepages(cc, nr_succeeded);
2559
2560                 /* All pages were either migrated or will be released */
2561                 cc->nr_migratepages = 0;
2562                 if (err) {
2563                         putback_movable_pages(&cc->migratepages);
2564                         /*
2565                          * migrate_pages() may return -ENOMEM when scanners meet
2566                          * and we want compact_finished() to detect it
2567                          */
2568                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
2569                                 ret = COMPACT_CONTENDED;
2570                                 goto out;
2571                         }
2572                         /*
2573                          * If an ASYNC or SYNC_LIGHT fails to migrate a page
2574                          * within the pageblock_order-aligned block and
2575                          * fast_find_migrateblock may be used then scan the
2576                          * remainder of the pageblock. This will mark the
2577                          * pageblock "skip" to avoid rescanning in the near
2578                          * future. This will isolate more pages than necessary
2579                          * for the request but avoid loops due to
2580                          * fast_find_migrateblock revisiting blocks that were
2581                          * recently partially scanned.
2582                          */
2583                         if (!pageblock_aligned(cc->migrate_pfn) &&
2584                             !cc->ignore_skip_hint && !cc->finish_pageblock &&
2585                             (cc->mode < MIGRATE_SYNC)) {
2586                                 cc->finish_pageblock = true;
2587
2588                                 /*
2589                                  * Draining pcplists does not help THP if
2590                                  * any page failed to migrate. Even after
2591                                  * drain, the pageblock will not be free.
2592                                  */
2593                                 if (cc->order == COMPACTION_HPAGE_ORDER)
2594                                         last_migrated_pfn = 0;
2595
2596                                 goto rescan;
2597                         }
2598                 }
2599
2600                 /* Stop if a page has been captured */
2601                 if (capc && capc->page) {
2602                         ret = COMPACT_SUCCESS;
2603                         break;
2604                 }
2605
2606 check_drain:
2607                 /*
2608                  * Has the migration scanner moved away from the previous
2609                  * cc->order aligned block where we migrated from? If yes,
2610                  * flush the pages that were freed, so that they can merge and
2611                  * compact_finished() can detect immediately if allocation
2612                  * would succeed.
2613                  */
2614                 if (cc->order > 0 && last_migrated_pfn) {
2615                         unsigned long current_block_start =
2616                                 block_start_pfn(cc->migrate_pfn, cc->order);
2617
2618                         if (last_migrated_pfn < current_block_start) {
2619                                 lru_add_drain_cpu_zone(cc->zone);
2620                                 /* No more flushing until we migrate again */
2621                                 last_migrated_pfn = 0;
2622                         }
2623                 }
2624         }
2625
2626 out:
2627         /*
2628          * Release free pages and update where the free scanner should restart,
2629          * so we don't leave any returned pages behind in the next attempt.
2630          */
2631         if (cc->nr_freepages > 0) {
2632                 unsigned long free_pfn = release_freepages(&cc->freepages);
2633
2634                 cc->nr_freepages = 0;
2635                 VM_BUG_ON(free_pfn == 0);
2636                 /* The cached pfn is always the first in a pageblock */
2637                 free_pfn = pageblock_start_pfn(free_pfn);
2638                 /*
2639                  * Only go back, not forward. The cached pfn might have been
2640                  * already reset to zone end in compact_finished()
2641                  */
2642                 if (free_pfn > cc->zone->compact_cached_free_pfn)
2643                         cc->zone->compact_cached_free_pfn = free_pfn;
2644         }
2645
2646         count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2647         count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2648
2649         trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2650
2651         VM_BUG_ON(!list_empty(&cc->freepages));
2652         VM_BUG_ON(!list_empty(&cc->migratepages));
2653
2654         return ret;
2655 }
2656
2657 static enum compact_result compact_zone_order(struct zone *zone, int order,
2658                 gfp_t gfp_mask, enum compact_priority prio,
2659                 unsigned int alloc_flags, int highest_zoneidx,
2660                 struct page **capture)
2661 {
2662         enum compact_result ret;
2663         struct compact_control cc = {
2664                 .order = order,
2665                 .search_order = order,
2666                 .gfp_mask = gfp_mask,
2667                 .zone = zone,
2668                 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2669                                         MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2670                 .alloc_flags = alloc_flags,
2671                 .highest_zoneidx = highest_zoneidx,
2672                 .direct_compaction = true,
2673                 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2674                 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2675                 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2676         };
2677         struct capture_control capc = {
2678                 .cc = &cc,
2679                 .page = NULL,
2680         };
2681
2682         /*
2683          * Make sure the structs are really initialized before we expose the
2684          * capture control, in case we are interrupted and the interrupt handler
2685          * frees a page.
2686          */
2687         barrier();
2688         WRITE_ONCE(current->capture_control, &capc);
2689
2690         ret = compact_zone(&cc, &capc);
2691
2692         /*
2693          * Make sure we hide capture control first before we read the captured
2694          * page pointer, otherwise an interrupt could free and capture a page
2695          * and we would leak it.
2696          */
2697         WRITE_ONCE(current->capture_control, NULL);
2698         *capture = READ_ONCE(capc.page);
2699         /*
2700          * Technically, it is also possible that compaction is skipped but
2701          * the page is still captured out of luck(IRQ came and freed the page).
2702          * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2703          * the COMPACT[STALL|FAIL] when compaction is skipped.
2704          */
2705         if (*capture)
2706                 ret = COMPACT_SUCCESS;
2707
2708         return ret;
2709 }
2710
2711 /**
2712  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2713  * @gfp_mask: The GFP mask of the current allocation
2714  * @order: The order of the current allocation
2715  * @alloc_flags: The allocation flags of the current allocation
2716  * @ac: The context of current allocation
2717  * @prio: Determines how hard direct compaction should try to succeed
2718  * @capture: Pointer to free page created by compaction will be stored here
2719  *
2720  * This is the main entry point for direct page compaction.
2721  */
2722 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2723                 unsigned int alloc_flags, const struct alloc_context *ac,
2724                 enum compact_priority prio, struct page **capture)
2725 {
2726         struct zoneref *z;
2727         struct zone *zone;
2728         enum compact_result rc = COMPACT_SKIPPED;
2729
2730         if (!gfp_compaction_allowed(gfp_mask))
2731                 return COMPACT_SKIPPED;
2732
2733         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2734
2735         /* Compact each zone in the list */
2736         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2737                                         ac->highest_zoneidx, ac->nodemask) {
2738                 enum compact_result status;
2739
2740                 if (prio > MIN_COMPACT_PRIORITY
2741                                         && compaction_deferred(zone, order)) {
2742                         rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2743                         continue;
2744                 }
2745
2746                 status = compact_zone_order(zone, order, gfp_mask, prio,
2747                                 alloc_flags, ac->highest_zoneidx, capture);
2748                 rc = max(status, rc);
2749
2750                 /* The allocation should succeed, stop compacting */
2751                 if (status == COMPACT_SUCCESS) {
2752                         /*
2753                          * We think the allocation will succeed in this zone,
2754                          * but it is not certain, hence the false. The caller
2755                          * will repeat this with true if allocation indeed
2756                          * succeeds in this zone.
2757                          */
2758                         compaction_defer_reset(zone, order, false);
2759
2760                         break;
2761                 }
2762
2763                 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2764                                         status == COMPACT_PARTIAL_SKIPPED))
2765                         /*
2766                          * We think that allocation won't succeed in this zone
2767                          * so we defer compaction there. If it ends up
2768                          * succeeding after all, it will be reset.
2769                          */
2770                         defer_compaction(zone, order);
2771
2772                 /*
2773                  * We might have stopped compacting due to need_resched() in
2774                  * async compaction, or due to a fatal signal detected. In that
2775                  * case do not try further zones
2776                  */
2777                 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2778                                         || fatal_signal_pending(current))
2779                         break;
2780         }
2781
2782         return rc;
2783 }
2784
2785 /*
2786  * Compact all zones within a node till each zone's fragmentation score
2787  * reaches within proactive compaction thresholds (as determined by the
2788  * proactiveness tunable).
2789  *
2790  * It is possible that the function returns before reaching score targets
2791  * due to various back-off conditions, such as, contention on per-node or
2792  * per-zone locks.
2793  */
2794 static void proactive_compact_node(pg_data_t *pgdat)
2795 {
2796         int zoneid;
2797         struct zone *zone;
2798         struct compact_control cc = {
2799                 .order = -1,
2800                 .mode = MIGRATE_SYNC_LIGHT,
2801                 .ignore_skip_hint = true,
2802                 .whole_zone = true,
2803                 .gfp_mask = GFP_KERNEL,
2804                 .proactive_compaction = true,
2805         };
2806
2807         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2808                 zone = &pgdat->node_zones[zoneid];
2809                 if (!populated_zone(zone))
2810                         continue;
2811
2812                 cc.zone = zone;
2813
2814                 compact_zone(&cc, NULL);
2815
2816                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2817                                      cc.total_migrate_scanned);
2818                 count_compact_events(KCOMPACTD_FREE_SCANNED,
2819                                      cc.total_free_scanned);
2820         }
2821 }
2822
2823 /* Compact all zones within a node */
2824 static void compact_node(int nid)
2825 {
2826         pg_data_t *pgdat = NODE_DATA(nid);
2827         int zoneid;
2828         struct zone *zone;
2829         struct compact_control cc = {
2830                 .order = -1,
2831                 .mode = MIGRATE_SYNC,
2832                 .ignore_skip_hint = true,
2833                 .whole_zone = true,
2834                 .gfp_mask = GFP_KERNEL,
2835         };
2836
2837
2838         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2839
2840                 zone = &pgdat->node_zones[zoneid];
2841                 if (!populated_zone(zone))
2842                         continue;
2843
2844                 cc.zone = zone;
2845
2846                 compact_zone(&cc, NULL);
2847         }
2848 }
2849
2850 /* Compact all nodes in the system */
2851 static void compact_nodes(void)
2852 {
2853         int nid;
2854
2855         /* Flush pending updates to the LRU lists */
2856         lru_add_drain_all();
2857
2858         for_each_online_node(nid)
2859                 compact_node(nid);
2860 }
2861
2862 static int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2863                 void *buffer, size_t *length, loff_t *ppos)
2864 {
2865         int rc, nid;
2866
2867         rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2868         if (rc)
2869                 return rc;
2870
2871         if (write && sysctl_compaction_proactiveness) {
2872                 for_each_online_node(nid) {
2873                         pg_data_t *pgdat = NODE_DATA(nid);
2874
2875                         if (pgdat->proactive_compact_trigger)
2876                                 continue;
2877
2878                         pgdat->proactive_compact_trigger = true;
2879                         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
2880                                                              pgdat->nr_zones - 1);
2881                         wake_up_interruptible(&pgdat->kcompactd_wait);
2882                 }
2883         }
2884
2885         return 0;
2886 }
2887
2888 /*
2889  * This is the entry point for compacting all nodes via
2890  * /proc/sys/vm/compact_memory
2891  */
2892 static int sysctl_compaction_handler(struct ctl_table *table, int write,
2893                         void *buffer, size_t *length, loff_t *ppos)
2894 {
2895         int ret;
2896
2897         ret = proc_dointvec(table, write, buffer, length, ppos);
2898         if (ret)
2899                 return ret;
2900
2901         if (sysctl_compact_memory != 1)
2902                 return -EINVAL;
2903
2904         if (write)
2905                 compact_nodes();
2906
2907         return 0;
2908 }
2909
2910 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2911 static ssize_t compact_store(struct device *dev,
2912                              struct device_attribute *attr,
2913                              const char *buf, size_t count)
2914 {
2915         int nid = dev->id;
2916
2917         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2918                 /* Flush pending updates to the LRU lists */
2919                 lru_add_drain_all();
2920
2921                 compact_node(nid);
2922         }
2923
2924         return count;
2925 }
2926 static DEVICE_ATTR_WO(compact);
2927
2928 int compaction_register_node(struct node *node)
2929 {
2930         return device_create_file(&node->dev, &dev_attr_compact);
2931 }
2932
2933 void compaction_unregister_node(struct node *node)
2934 {
2935         device_remove_file(&node->dev, &dev_attr_compact);
2936 }
2937 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2938
2939 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2940 {
2941         return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2942                 pgdat->proactive_compact_trigger;
2943 }
2944
2945 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2946 {
2947         int zoneid;
2948         struct zone *zone;
2949         enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2950         enum compact_result ret;
2951
2952         for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2953                 zone = &pgdat->node_zones[zoneid];
2954
2955                 if (!populated_zone(zone))
2956                         continue;
2957
2958                 ret = compaction_suit_allocation_order(zone,
2959                                 pgdat->kcompactd_max_order,
2960                                 highest_zoneidx, ALLOC_WMARK_MIN);
2961                 if (ret == COMPACT_CONTINUE)
2962                         return true;
2963         }
2964
2965         return false;
2966 }
2967
2968 static void kcompactd_do_work(pg_data_t *pgdat)
2969 {
2970         /*
2971          * With no special task, compact all zones so that a page of requested
2972          * order is allocatable.
2973          */
2974         int zoneid;
2975         struct zone *zone;
2976         struct compact_control cc = {
2977                 .order = pgdat->kcompactd_max_order,
2978                 .search_order = pgdat->kcompactd_max_order,
2979                 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2980                 .mode = MIGRATE_SYNC_LIGHT,
2981                 .ignore_skip_hint = false,
2982                 .gfp_mask = GFP_KERNEL,
2983         };
2984         enum compact_result ret;
2985
2986         trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2987                                                         cc.highest_zoneidx);
2988         count_compact_event(KCOMPACTD_WAKE);
2989
2990         for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2991                 int status;
2992
2993                 zone = &pgdat->node_zones[zoneid];
2994                 if (!populated_zone(zone))
2995                         continue;
2996
2997                 if (compaction_deferred(zone, cc.order))
2998                         continue;
2999
3000                 ret = compaction_suit_allocation_order(zone,
3001                                 cc.order, zoneid, ALLOC_WMARK_MIN);
3002                 if (ret != COMPACT_CONTINUE)
3003                         continue;
3004
3005                 if (kthread_should_stop())
3006                         return;
3007
3008                 cc.zone = zone;
3009                 status = compact_zone(&cc, NULL);
3010
3011                 if (status == COMPACT_SUCCESS) {
3012                         compaction_defer_reset(zone, cc.order, false);
3013                 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
3014                         /*
3015                          * Buddy pages may become stranded on pcps that could
3016                          * otherwise coalesce on the zone's free area for
3017                          * order >= cc.order.  This is ratelimited by the
3018                          * upcoming deferral.
3019                          */
3020                         drain_all_pages(zone);
3021
3022                         /*
3023                          * We use sync migration mode here, so we defer like
3024                          * sync direct compaction does.
3025                          */
3026                         defer_compaction(zone, cc.order);
3027                 }
3028
3029                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
3030                                      cc.total_migrate_scanned);
3031                 count_compact_events(KCOMPACTD_FREE_SCANNED,
3032                                      cc.total_free_scanned);
3033         }
3034
3035         /*
3036          * Regardless of success, we are done until woken up next. But remember
3037          * the requested order/highest_zoneidx in case it was higher/tighter
3038          * than our current ones
3039          */
3040         if (pgdat->kcompactd_max_order <= cc.order)
3041                 pgdat->kcompactd_max_order = 0;
3042         if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
3043                 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3044 }
3045
3046 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
3047 {
3048         if (!order)
3049                 return;
3050
3051         if (pgdat->kcompactd_max_order < order)
3052                 pgdat->kcompactd_max_order = order;
3053
3054         if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
3055                 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
3056
3057         /*
3058          * Pairs with implicit barrier in wait_event_freezable()
3059          * such that wakeups are not missed.
3060          */
3061         if (!wq_has_sleeper(&pgdat->kcompactd_wait))
3062                 return;
3063
3064         if (!kcompactd_node_suitable(pgdat))
3065                 return;
3066
3067         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
3068                                                         highest_zoneidx);
3069         wake_up_interruptible(&pgdat->kcompactd_wait);
3070 }
3071
3072 /*
3073  * The background compaction daemon, started as a kernel thread
3074  * from the init process.
3075  */
3076 static int kcompactd(void *p)
3077 {
3078         pg_data_t *pgdat = (pg_data_t *)p;
3079         struct task_struct *tsk = current;
3080         long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
3081         long timeout = default_timeout;
3082
3083         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3084
3085         if (!cpumask_empty(cpumask))
3086                 set_cpus_allowed_ptr(tsk, cpumask);
3087
3088         set_freezable();
3089
3090         pgdat->kcompactd_max_order = 0;
3091         pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3092
3093         while (!kthread_should_stop()) {
3094                 unsigned long pflags;
3095
3096                 /*
3097                  * Avoid the unnecessary wakeup for proactive compaction
3098                  * when it is disabled.
3099                  */
3100                 if (!sysctl_compaction_proactiveness)
3101                         timeout = MAX_SCHEDULE_TIMEOUT;
3102                 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
3103                 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
3104                         kcompactd_work_requested(pgdat), timeout) &&
3105                         !pgdat->proactive_compact_trigger) {
3106
3107                         psi_memstall_enter(&pflags);
3108                         kcompactd_do_work(pgdat);
3109                         psi_memstall_leave(&pflags);
3110                         /*
3111                          * Reset the timeout value. The defer timeout from
3112                          * proactive compaction is lost here but that is fine
3113                          * as the condition of the zone changing substantionally
3114                          * then carrying on with the previous defer interval is
3115                          * not useful.
3116                          */
3117                         timeout = default_timeout;
3118                         continue;
3119                 }
3120
3121                 /*
3122                  * Start the proactive work with default timeout. Based
3123                  * on the fragmentation score, this timeout is updated.
3124                  */
3125                 timeout = default_timeout;
3126                 if (should_proactive_compact_node(pgdat)) {
3127                         unsigned int prev_score, score;
3128
3129                         prev_score = fragmentation_score_node(pgdat);
3130                         proactive_compact_node(pgdat);
3131                         score = fragmentation_score_node(pgdat);
3132                         /*
3133                          * Defer proactive compaction if the fragmentation
3134                          * score did not go down i.e. no progress made.
3135                          */
3136                         if (unlikely(score >= prev_score))
3137                                 timeout =
3138                                    default_timeout << COMPACT_MAX_DEFER_SHIFT;
3139                 }
3140                 if (unlikely(pgdat->proactive_compact_trigger))
3141                         pgdat->proactive_compact_trigger = false;
3142         }
3143
3144         return 0;
3145 }
3146
3147 /*
3148  * This kcompactd start function will be called by init and node-hot-add.
3149  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3150  */
3151 void __meminit kcompactd_run(int nid)
3152 {
3153         pg_data_t *pgdat = NODE_DATA(nid);
3154
3155         if (pgdat->kcompactd)
3156                 return;
3157
3158         pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3159         if (IS_ERR(pgdat->kcompactd)) {
3160                 pr_err("Failed to start kcompactd on node %d\n", nid);
3161                 pgdat->kcompactd = NULL;
3162         }
3163 }
3164
3165 /*
3166  * Called by memory hotplug when all memory in a node is offlined. Caller must
3167  * be holding mem_hotplug_begin/done().
3168  */
3169 void __meminit kcompactd_stop(int nid)
3170 {
3171         struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3172
3173         if (kcompactd) {
3174                 kthread_stop(kcompactd);
3175                 NODE_DATA(nid)->kcompactd = NULL;
3176         }
3177 }
3178
3179 /*
3180  * It's optimal to keep kcompactd on the same CPUs as their memory, but
3181  * not required for correctness. So if the last cpu in a node goes
3182  * away, we get changed to run anywhere: as the first one comes back,
3183  * restore their cpu bindings.
3184  */
3185 static int kcompactd_cpu_online(unsigned int cpu)
3186 {
3187         int nid;
3188
3189         for_each_node_state(nid, N_MEMORY) {
3190                 pg_data_t *pgdat = NODE_DATA(nid);
3191                 const struct cpumask *mask;
3192
3193                 mask = cpumask_of_node(pgdat->node_id);
3194
3195                 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3196                         /* One of our CPUs online: restore mask */
3197                         if (pgdat->kcompactd)
3198                                 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3199         }
3200         return 0;
3201 }
3202
3203 static int proc_dointvec_minmax_warn_RT_change(struct ctl_table *table,
3204                 int write, void *buffer, size_t *lenp, loff_t *ppos)
3205 {
3206         int ret, old;
3207
3208         if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write)
3209                 return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3210
3211         old = *(int *)table->data;
3212         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3213         if (ret)
3214                 return ret;
3215         if (old != *(int *)table->data)
3216                 pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
3217                              table->procname, current->comm,
3218                              task_pid_nr(current));
3219         return ret;
3220 }
3221
3222 static struct ctl_table vm_compaction[] = {
3223         {
3224                 .procname       = "compact_memory",
3225                 .data           = &sysctl_compact_memory,
3226                 .maxlen         = sizeof(int),
3227                 .mode           = 0200,
3228                 .proc_handler   = sysctl_compaction_handler,
3229         },
3230         {
3231                 .procname       = "compaction_proactiveness",
3232                 .data           = &sysctl_compaction_proactiveness,
3233                 .maxlen         = sizeof(sysctl_compaction_proactiveness),
3234                 .mode           = 0644,
3235                 .proc_handler   = compaction_proactiveness_sysctl_handler,
3236                 .extra1         = SYSCTL_ZERO,
3237                 .extra2         = SYSCTL_ONE_HUNDRED,
3238         },
3239         {
3240                 .procname       = "extfrag_threshold",
3241                 .data           = &sysctl_extfrag_threshold,
3242                 .maxlen         = sizeof(int),
3243                 .mode           = 0644,
3244                 .proc_handler   = proc_dointvec_minmax,
3245                 .extra1         = SYSCTL_ZERO,
3246                 .extra2         = SYSCTL_ONE_THOUSAND,
3247         },
3248         {
3249                 .procname       = "compact_unevictable_allowed",
3250                 .data           = &sysctl_compact_unevictable_allowed,
3251                 .maxlen         = sizeof(int),
3252                 .mode           = 0644,
3253                 .proc_handler   = proc_dointvec_minmax_warn_RT_change,
3254                 .extra1         = SYSCTL_ZERO,
3255                 .extra2         = SYSCTL_ONE,
3256         },
3257         { }
3258 };
3259
3260 static int __init kcompactd_init(void)
3261 {
3262         int nid;
3263         int ret;
3264
3265         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3266                                         "mm/compaction:online",
3267                                         kcompactd_cpu_online, NULL);
3268         if (ret < 0) {
3269                 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3270                 return ret;
3271         }
3272
3273         for_each_node_state(nid, N_MEMORY)
3274                 kcompactd_run(nid);
3275         register_sysctl_init("vm", vm_compaction);
3276         return 0;
3277 }
3278 subsys_initcall(kcompactd_init)
3279
3280 #endif /* CONFIG_COMPACTION */