scsi: cxgb4i: Fix TLS dependency
[linux-2.6-microblaze.git] / mm / compaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
29 static inline void count_compact_event(enum vm_event_item item)
30 {
31         count_vm_event(item);
32 }
33
34 static inline void count_compact_events(enum vm_event_item item, long delta)
35 {
36         count_vm_events(item, delta);
37 }
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
42
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
47
48 #define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
49 #define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
50 #define pageblock_start_pfn(pfn)        block_start_pfn(pfn, pageblock_order)
51 #define pageblock_end_pfn(pfn)          block_end_pfn(pfn, pageblock_order)
52
53 /*
54  * Fragmentation score check interval for proactive compaction purposes.
55  */
56 static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500;
57
58 /*
59  * Page order with-respect-to which proactive compaction
60  * calculates external fragmentation, which is used as
61  * the "fragmentation score" of a node/zone.
62  */
63 #if defined CONFIG_TRANSPARENT_HUGEPAGE
64 #define COMPACTION_HPAGE_ORDER  HPAGE_PMD_ORDER
65 #elif defined CONFIG_HUGETLBFS
66 #define COMPACTION_HPAGE_ORDER  HUGETLB_PAGE_ORDER
67 #else
68 #define COMPACTION_HPAGE_ORDER  (PMD_SHIFT - PAGE_SHIFT)
69 #endif
70
71 static unsigned long release_freepages(struct list_head *freelist)
72 {
73         struct page *page, *next;
74         unsigned long high_pfn = 0;
75
76         list_for_each_entry_safe(page, next, freelist, lru) {
77                 unsigned long pfn = page_to_pfn(page);
78                 list_del(&page->lru);
79                 __free_page(page);
80                 if (pfn > high_pfn)
81                         high_pfn = pfn;
82         }
83
84         return high_pfn;
85 }
86
87 static void split_map_pages(struct list_head *list)
88 {
89         unsigned int i, order, nr_pages;
90         struct page *page, *next;
91         LIST_HEAD(tmp_list);
92
93         list_for_each_entry_safe(page, next, list, lru) {
94                 list_del(&page->lru);
95
96                 order = page_private(page);
97                 nr_pages = 1 << order;
98
99                 post_alloc_hook(page, order, __GFP_MOVABLE);
100                 if (order)
101                         split_page(page, order);
102
103                 for (i = 0; i < nr_pages; i++) {
104                         list_add(&page->lru, &tmp_list);
105                         page++;
106                 }
107         }
108
109         list_splice(&tmp_list, list);
110 }
111
112 #ifdef CONFIG_COMPACTION
113
114 int PageMovable(struct page *page)
115 {
116         struct address_space *mapping;
117
118         VM_BUG_ON_PAGE(!PageLocked(page), page);
119         if (!__PageMovable(page))
120                 return 0;
121
122         mapping = page_mapping(page);
123         if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
124                 return 1;
125
126         return 0;
127 }
128 EXPORT_SYMBOL(PageMovable);
129
130 void __SetPageMovable(struct page *page, struct address_space *mapping)
131 {
132         VM_BUG_ON_PAGE(!PageLocked(page), page);
133         VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
134         page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
135 }
136 EXPORT_SYMBOL(__SetPageMovable);
137
138 void __ClearPageMovable(struct page *page)
139 {
140         VM_BUG_ON_PAGE(!PageLocked(page), page);
141         VM_BUG_ON_PAGE(!PageMovable(page), page);
142         /*
143          * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
144          * flag so that VM can catch up released page by driver after isolation.
145          * With it, VM migration doesn't try to put it back.
146          */
147         page->mapping = (void *)((unsigned long)page->mapping &
148                                 PAGE_MAPPING_MOVABLE);
149 }
150 EXPORT_SYMBOL(__ClearPageMovable);
151
152 /* Do not skip compaction more than 64 times */
153 #define COMPACT_MAX_DEFER_SHIFT 6
154
155 /*
156  * Compaction is deferred when compaction fails to result in a page
157  * allocation success. 1 << compact_defer_shift, compactions are skipped up
158  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
159  */
160 void defer_compaction(struct zone *zone, int order)
161 {
162         zone->compact_considered = 0;
163         zone->compact_defer_shift++;
164
165         if (order < zone->compact_order_failed)
166                 zone->compact_order_failed = order;
167
168         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
169                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
170
171         trace_mm_compaction_defer_compaction(zone, order);
172 }
173
174 /* Returns true if compaction should be skipped this time */
175 bool compaction_deferred(struct zone *zone, int order)
176 {
177         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
178
179         if (order < zone->compact_order_failed)
180                 return false;
181
182         /* Avoid possible overflow */
183         if (++zone->compact_considered >= defer_limit) {
184                 zone->compact_considered = defer_limit;
185                 return false;
186         }
187
188         trace_mm_compaction_deferred(zone, order);
189
190         return true;
191 }
192
193 /*
194  * Update defer tracking counters after successful compaction of given order,
195  * which means an allocation either succeeded (alloc_success == true) or is
196  * expected to succeed.
197  */
198 void compaction_defer_reset(struct zone *zone, int order,
199                 bool alloc_success)
200 {
201         if (alloc_success) {
202                 zone->compact_considered = 0;
203                 zone->compact_defer_shift = 0;
204         }
205         if (order >= zone->compact_order_failed)
206                 zone->compact_order_failed = order + 1;
207
208         trace_mm_compaction_defer_reset(zone, order);
209 }
210
211 /* Returns true if restarting compaction after many failures */
212 bool compaction_restarting(struct zone *zone, int order)
213 {
214         if (order < zone->compact_order_failed)
215                 return false;
216
217         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
218                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
219 }
220
221 /* Returns true if the pageblock should be scanned for pages to isolate. */
222 static inline bool isolation_suitable(struct compact_control *cc,
223                                         struct page *page)
224 {
225         if (cc->ignore_skip_hint)
226                 return true;
227
228         return !get_pageblock_skip(page);
229 }
230
231 static void reset_cached_positions(struct zone *zone)
232 {
233         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
234         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
235         zone->compact_cached_free_pfn =
236                                 pageblock_start_pfn(zone_end_pfn(zone) - 1);
237 }
238
239 /*
240  * Compound pages of >= pageblock_order should consistenly be skipped until
241  * released. It is always pointless to compact pages of such order (if they are
242  * migratable), and the pageblocks they occupy cannot contain any free pages.
243  */
244 static bool pageblock_skip_persistent(struct page *page)
245 {
246         if (!PageCompound(page))
247                 return false;
248
249         page = compound_head(page);
250
251         if (compound_order(page) >= pageblock_order)
252                 return true;
253
254         return false;
255 }
256
257 static bool
258 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
259                                                         bool check_target)
260 {
261         struct page *page = pfn_to_online_page(pfn);
262         struct page *block_page;
263         struct page *end_page;
264         unsigned long block_pfn;
265
266         if (!page)
267                 return false;
268         if (zone != page_zone(page))
269                 return false;
270         if (pageblock_skip_persistent(page))
271                 return false;
272
273         /*
274          * If skip is already cleared do no further checking once the
275          * restart points have been set.
276          */
277         if (check_source && check_target && !get_pageblock_skip(page))
278                 return true;
279
280         /*
281          * If clearing skip for the target scanner, do not select a
282          * non-movable pageblock as the starting point.
283          */
284         if (!check_source && check_target &&
285             get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
286                 return false;
287
288         /* Ensure the start of the pageblock or zone is online and valid */
289         block_pfn = pageblock_start_pfn(pfn);
290         block_pfn = max(block_pfn, zone->zone_start_pfn);
291         block_page = pfn_to_online_page(block_pfn);
292         if (block_page) {
293                 page = block_page;
294                 pfn = block_pfn;
295         }
296
297         /* Ensure the end of the pageblock or zone is online and valid */
298         block_pfn = pageblock_end_pfn(pfn) - 1;
299         block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
300         end_page = pfn_to_online_page(block_pfn);
301         if (!end_page)
302                 return false;
303
304         /*
305          * Only clear the hint if a sample indicates there is either a
306          * free page or an LRU page in the block. One or other condition
307          * is necessary for the block to be a migration source/target.
308          */
309         do {
310                 if (pfn_valid_within(pfn)) {
311                         if (check_source && PageLRU(page)) {
312                                 clear_pageblock_skip(page);
313                                 return true;
314                         }
315
316                         if (check_target && PageBuddy(page)) {
317                                 clear_pageblock_skip(page);
318                                 return true;
319                         }
320                 }
321
322                 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
323                 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
324         } while (page <= end_page);
325
326         return false;
327 }
328
329 /*
330  * This function is called to clear all cached information on pageblocks that
331  * should be skipped for page isolation when the migrate and free page scanner
332  * meet.
333  */
334 static void __reset_isolation_suitable(struct zone *zone)
335 {
336         unsigned long migrate_pfn = zone->zone_start_pfn;
337         unsigned long free_pfn = zone_end_pfn(zone) - 1;
338         unsigned long reset_migrate = free_pfn;
339         unsigned long reset_free = migrate_pfn;
340         bool source_set = false;
341         bool free_set = false;
342
343         if (!zone->compact_blockskip_flush)
344                 return;
345
346         zone->compact_blockskip_flush = false;
347
348         /*
349          * Walk the zone and update pageblock skip information. Source looks
350          * for PageLRU while target looks for PageBuddy. When the scanner
351          * is found, both PageBuddy and PageLRU are checked as the pageblock
352          * is suitable as both source and target.
353          */
354         for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
355                                         free_pfn -= pageblock_nr_pages) {
356                 cond_resched();
357
358                 /* Update the migrate PFN */
359                 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
360                     migrate_pfn < reset_migrate) {
361                         source_set = true;
362                         reset_migrate = migrate_pfn;
363                         zone->compact_init_migrate_pfn = reset_migrate;
364                         zone->compact_cached_migrate_pfn[0] = reset_migrate;
365                         zone->compact_cached_migrate_pfn[1] = reset_migrate;
366                 }
367
368                 /* Update the free PFN */
369                 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
370                     free_pfn > reset_free) {
371                         free_set = true;
372                         reset_free = free_pfn;
373                         zone->compact_init_free_pfn = reset_free;
374                         zone->compact_cached_free_pfn = reset_free;
375                 }
376         }
377
378         /* Leave no distance if no suitable block was reset */
379         if (reset_migrate >= reset_free) {
380                 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
381                 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
382                 zone->compact_cached_free_pfn = free_pfn;
383         }
384 }
385
386 void reset_isolation_suitable(pg_data_t *pgdat)
387 {
388         int zoneid;
389
390         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
391                 struct zone *zone = &pgdat->node_zones[zoneid];
392                 if (!populated_zone(zone))
393                         continue;
394
395                 /* Only flush if a full compaction finished recently */
396                 if (zone->compact_blockskip_flush)
397                         __reset_isolation_suitable(zone);
398         }
399 }
400
401 /*
402  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
403  * locks are not required for read/writers. Returns true if it was already set.
404  */
405 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
406                                                         unsigned long pfn)
407 {
408         bool skip;
409
410         /* Do no update if skip hint is being ignored */
411         if (cc->ignore_skip_hint)
412                 return false;
413
414         if (!IS_ALIGNED(pfn, pageblock_nr_pages))
415                 return false;
416
417         skip = get_pageblock_skip(page);
418         if (!skip && !cc->no_set_skip_hint)
419                 set_pageblock_skip(page);
420
421         return skip;
422 }
423
424 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
425 {
426         struct zone *zone = cc->zone;
427
428         pfn = pageblock_end_pfn(pfn);
429
430         /* Set for isolation rather than compaction */
431         if (cc->no_set_skip_hint)
432                 return;
433
434         if (pfn > zone->compact_cached_migrate_pfn[0])
435                 zone->compact_cached_migrate_pfn[0] = pfn;
436         if (cc->mode != MIGRATE_ASYNC &&
437             pfn > zone->compact_cached_migrate_pfn[1])
438                 zone->compact_cached_migrate_pfn[1] = pfn;
439 }
440
441 /*
442  * If no pages were isolated then mark this pageblock to be skipped in the
443  * future. The information is later cleared by __reset_isolation_suitable().
444  */
445 static void update_pageblock_skip(struct compact_control *cc,
446                         struct page *page, unsigned long pfn)
447 {
448         struct zone *zone = cc->zone;
449
450         if (cc->no_set_skip_hint)
451                 return;
452
453         if (!page)
454                 return;
455
456         set_pageblock_skip(page);
457
458         /* Update where async and sync compaction should restart */
459         if (pfn < zone->compact_cached_free_pfn)
460                 zone->compact_cached_free_pfn = pfn;
461 }
462 #else
463 static inline bool isolation_suitable(struct compact_control *cc,
464                                         struct page *page)
465 {
466         return true;
467 }
468
469 static inline bool pageblock_skip_persistent(struct page *page)
470 {
471         return false;
472 }
473
474 static inline void update_pageblock_skip(struct compact_control *cc,
475                         struct page *page, unsigned long pfn)
476 {
477 }
478
479 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
480 {
481 }
482
483 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
484                                                         unsigned long pfn)
485 {
486         return false;
487 }
488 #endif /* CONFIG_COMPACTION */
489
490 /*
491  * Compaction requires the taking of some coarse locks that are potentially
492  * very heavily contended. For async compaction, trylock and record if the
493  * lock is contended. The lock will still be acquired but compaction will
494  * abort when the current block is finished regardless of success rate.
495  * Sync compaction acquires the lock.
496  *
497  * Always returns true which makes it easier to track lock state in callers.
498  */
499 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
500                                                 struct compact_control *cc)
501         __acquires(lock)
502 {
503         /* Track if the lock is contended in async mode */
504         if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
505                 if (spin_trylock_irqsave(lock, *flags))
506                         return true;
507
508                 cc->contended = true;
509         }
510
511         spin_lock_irqsave(lock, *flags);
512         return true;
513 }
514
515 /*
516  * Compaction requires the taking of some coarse locks that are potentially
517  * very heavily contended. The lock should be periodically unlocked to avoid
518  * having disabled IRQs for a long time, even when there is nobody waiting on
519  * the lock. It might also be that allowing the IRQs will result in
520  * need_resched() becoming true. If scheduling is needed, async compaction
521  * aborts. Sync compaction schedules.
522  * Either compaction type will also abort if a fatal signal is pending.
523  * In either case if the lock was locked, it is dropped and not regained.
524  *
525  * Returns true if compaction should abort due to fatal signal pending, or
526  *              async compaction due to need_resched()
527  * Returns false when compaction can continue (sync compaction might have
528  *              scheduled)
529  */
530 static bool compact_unlock_should_abort(spinlock_t *lock,
531                 unsigned long flags, bool *locked, struct compact_control *cc)
532 {
533         if (*locked) {
534                 spin_unlock_irqrestore(lock, flags);
535                 *locked = false;
536         }
537
538         if (fatal_signal_pending(current)) {
539                 cc->contended = true;
540                 return true;
541         }
542
543         cond_resched();
544
545         return false;
546 }
547
548 /*
549  * Isolate free pages onto a private freelist. If @strict is true, will abort
550  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
551  * (even though it may still end up isolating some pages).
552  */
553 static unsigned long isolate_freepages_block(struct compact_control *cc,
554                                 unsigned long *start_pfn,
555                                 unsigned long end_pfn,
556                                 struct list_head *freelist,
557                                 unsigned int stride,
558                                 bool strict)
559 {
560         int nr_scanned = 0, total_isolated = 0;
561         struct page *cursor;
562         unsigned long flags = 0;
563         bool locked = false;
564         unsigned long blockpfn = *start_pfn;
565         unsigned int order;
566
567         /* Strict mode is for isolation, speed is secondary */
568         if (strict)
569                 stride = 1;
570
571         cursor = pfn_to_page(blockpfn);
572
573         /* Isolate free pages. */
574         for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
575                 int isolated;
576                 struct page *page = cursor;
577
578                 /*
579                  * Periodically drop the lock (if held) regardless of its
580                  * contention, to give chance to IRQs. Abort if fatal signal
581                  * pending or async compaction detects need_resched()
582                  */
583                 if (!(blockpfn % SWAP_CLUSTER_MAX)
584                     && compact_unlock_should_abort(&cc->zone->lock, flags,
585                                                                 &locked, cc))
586                         break;
587
588                 nr_scanned++;
589                 if (!pfn_valid_within(blockpfn))
590                         goto isolate_fail;
591
592                 /*
593                  * For compound pages such as THP and hugetlbfs, we can save
594                  * potentially a lot of iterations if we skip them at once.
595                  * The check is racy, but we can consider only valid values
596                  * and the only danger is skipping too much.
597                  */
598                 if (PageCompound(page)) {
599                         const unsigned int order = compound_order(page);
600
601                         if (likely(order < MAX_ORDER)) {
602                                 blockpfn += (1UL << order) - 1;
603                                 cursor += (1UL << order) - 1;
604                         }
605                         goto isolate_fail;
606                 }
607
608                 if (!PageBuddy(page))
609                         goto isolate_fail;
610
611                 /*
612                  * If we already hold the lock, we can skip some rechecking.
613                  * Note that if we hold the lock now, checked_pageblock was
614                  * already set in some previous iteration (or strict is true),
615                  * so it is correct to skip the suitable migration target
616                  * recheck as well.
617                  */
618                 if (!locked) {
619                         locked = compact_lock_irqsave(&cc->zone->lock,
620                                                                 &flags, cc);
621
622                         /* Recheck this is a buddy page under lock */
623                         if (!PageBuddy(page))
624                                 goto isolate_fail;
625                 }
626
627                 /* Found a free page, will break it into order-0 pages */
628                 order = buddy_order(page);
629                 isolated = __isolate_free_page(page, order);
630                 if (!isolated)
631                         break;
632                 set_page_private(page, order);
633
634                 total_isolated += isolated;
635                 cc->nr_freepages += isolated;
636                 list_add_tail(&page->lru, freelist);
637
638                 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
639                         blockpfn += isolated;
640                         break;
641                 }
642                 /* Advance to the end of split page */
643                 blockpfn += isolated - 1;
644                 cursor += isolated - 1;
645                 continue;
646
647 isolate_fail:
648                 if (strict)
649                         break;
650                 else
651                         continue;
652
653         }
654
655         if (locked)
656                 spin_unlock_irqrestore(&cc->zone->lock, flags);
657
658         /*
659          * There is a tiny chance that we have read bogus compound_order(),
660          * so be careful to not go outside of the pageblock.
661          */
662         if (unlikely(blockpfn > end_pfn))
663                 blockpfn = end_pfn;
664
665         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
666                                         nr_scanned, total_isolated);
667
668         /* Record how far we have got within the block */
669         *start_pfn = blockpfn;
670
671         /*
672          * If strict isolation is requested by CMA then check that all the
673          * pages requested were isolated. If there were any failures, 0 is
674          * returned and CMA will fail.
675          */
676         if (strict && blockpfn < end_pfn)
677                 total_isolated = 0;
678
679         cc->total_free_scanned += nr_scanned;
680         if (total_isolated)
681                 count_compact_events(COMPACTISOLATED, total_isolated);
682         return total_isolated;
683 }
684
685 /**
686  * isolate_freepages_range() - isolate free pages.
687  * @cc:        Compaction control structure.
688  * @start_pfn: The first PFN to start isolating.
689  * @end_pfn:   The one-past-last PFN.
690  *
691  * Non-free pages, invalid PFNs, or zone boundaries within the
692  * [start_pfn, end_pfn) range are considered errors, cause function to
693  * undo its actions and return zero.
694  *
695  * Otherwise, function returns one-past-the-last PFN of isolated page
696  * (which may be greater then end_pfn if end fell in a middle of
697  * a free page).
698  */
699 unsigned long
700 isolate_freepages_range(struct compact_control *cc,
701                         unsigned long start_pfn, unsigned long end_pfn)
702 {
703         unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
704         LIST_HEAD(freelist);
705
706         pfn = start_pfn;
707         block_start_pfn = pageblock_start_pfn(pfn);
708         if (block_start_pfn < cc->zone->zone_start_pfn)
709                 block_start_pfn = cc->zone->zone_start_pfn;
710         block_end_pfn = pageblock_end_pfn(pfn);
711
712         for (; pfn < end_pfn; pfn += isolated,
713                                 block_start_pfn = block_end_pfn,
714                                 block_end_pfn += pageblock_nr_pages) {
715                 /* Protect pfn from changing by isolate_freepages_block */
716                 unsigned long isolate_start_pfn = pfn;
717
718                 block_end_pfn = min(block_end_pfn, end_pfn);
719
720                 /*
721                  * pfn could pass the block_end_pfn if isolated freepage
722                  * is more than pageblock order. In this case, we adjust
723                  * scanning range to right one.
724                  */
725                 if (pfn >= block_end_pfn) {
726                         block_start_pfn = pageblock_start_pfn(pfn);
727                         block_end_pfn = pageblock_end_pfn(pfn);
728                         block_end_pfn = min(block_end_pfn, end_pfn);
729                 }
730
731                 if (!pageblock_pfn_to_page(block_start_pfn,
732                                         block_end_pfn, cc->zone))
733                         break;
734
735                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
736                                         block_end_pfn, &freelist, 0, true);
737
738                 /*
739                  * In strict mode, isolate_freepages_block() returns 0 if
740                  * there are any holes in the block (ie. invalid PFNs or
741                  * non-free pages).
742                  */
743                 if (!isolated)
744                         break;
745
746                 /*
747                  * If we managed to isolate pages, it is always (1 << n) *
748                  * pageblock_nr_pages for some non-negative n.  (Max order
749                  * page may span two pageblocks).
750                  */
751         }
752
753         /* __isolate_free_page() does not map the pages */
754         split_map_pages(&freelist);
755
756         if (pfn < end_pfn) {
757                 /* Loop terminated early, cleanup. */
758                 release_freepages(&freelist);
759                 return 0;
760         }
761
762         /* We don't use freelists for anything. */
763         return pfn;
764 }
765
766 /* Similar to reclaim, but different enough that they don't share logic */
767 static bool too_many_isolated(pg_data_t *pgdat)
768 {
769         unsigned long active, inactive, isolated;
770
771         inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
772                         node_page_state(pgdat, NR_INACTIVE_ANON);
773         active = node_page_state(pgdat, NR_ACTIVE_FILE) +
774                         node_page_state(pgdat, NR_ACTIVE_ANON);
775         isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
776                         node_page_state(pgdat, NR_ISOLATED_ANON);
777
778         return isolated > (inactive + active) / 2;
779 }
780
781 /**
782  * isolate_migratepages_block() - isolate all migrate-able pages within
783  *                                a single pageblock
784  * @cc:         Compaction control structure.
785  * @low_pfn:    The first PFN to isolate
786  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
787  * @isolate_mode: Isolation mode to be used.
788  *
789  * Isolate all pages that can be migrated from the range specified by
790  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
791  * Returns zero if there is a fatal signal pending, otherwise PFN of the
792  * first page that was not scanned (which may be both less, equal to or more
793  * than end_pfn).
794  *
795  * The pages are isolated on cc->migratepages list (not required to be empty),
796  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
797  * is neither read nor updated.
798  */
799 static unsigned long
800 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
801                         unsigned long end_pfn, isolate_mode_t isolate_mode)
802 {
803         pg_data_t *pgdat = cc->zone->zone_pgdat;
804         unsigned long nr_scanned = 0, nr_isolated = 0;
805         struct lruvec *lruvec;
806         unsigned long flags = 0;
807         bool locked = false;
808         struct page *page = NULL, *valid_page = NULL;
809         unsigned long start_pfn = low_pfn;
810         bool skip_on_failure = false;
811         unsigned long next_skip_pfn = 0;
812         bool skip_updated = false;
813
814         /*
815          * Ensure that there are not too many pages isolated from the LRU
816          * list by either parallel reclaimers or compaction. If there are,
817          * delay for some time until fewer pages are isolated
818          */
819         while (unlikely(too_many_isolated(pgdat))) {
820                 /* async migration should just abort */
821                 if (cc->mode == MIGRATE_ASYNC)
822                         return 0;
823
824                 congestion_wait(BLK_RW_ASYNC, HZ/10);
825
826                 if (fatal_signal_pending(current))
827                         return 0;
828         }
829
830         cond_resched();
831
832         if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
833                 skip_on_failure = true;
834                 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
835         }
836
837         /* Time to isolate some pages for migration */
838         for (; low_pfn < end_pfn; low_pfn++) {
839
840                 if (skip_on_failure && low_pfn >= next_skip_pfn) {
841                         /*
842                          * We have isolated all migration candidates in the
843                          * previous order-aligned block, and did not skip it due
844                          * to failure. We should migrate the pages now and
845                          * hopefully succeed compaction.
846                          */
847                         if (nr_isolated)
848                                 break;
849
850                         /*
851                          * We failed to isolate in the previous order-aligned
852                          * block. Set the new boundary to the end of the
853                          * current block. Note we can't simply increase
854                          * next_skip_pfn by 1 << order, as low_pfn might have
855                          * been incremented by a higher number due to skipping
856                          * a compound or a high-order buddy page in the
857                          * previous loop iteration.
858                          */
859                         next_skip_pfn = block_end_pfn(low_pfn, cc->order);
860                 }
861
862                 /*
863                  * Periodically drop the lock (if held) regardless of its
864                  * contention, to give chance to IRQs. Abort completely if
865                  * a fatal signal is pending.
866                  */
867                 if (!(low_pfn % SWAP_CLUSTER_MAX)
868                     && compact_unlock_should_abort(&pgdat->lru_lock,
869                                             flags, &locked, cc)) {
870                         low_pfn = 0;
871                         goto fatal_pending;
872                 }
873
874                 if (!pfn_valid_within(low_pfn))
875                         goto isolate_fail;
876                 nr_scanned++;
877
878                 page = pfn_to_page(low_pfn);
879
880                 /*
881                  * Check if the pageblock has already been marked skipped.
882                  * Only the aligned PFN is checked as the caller isolates
883                  * COMPACT_CLUSTER_MAX at a time so the second call must
884                  * not falsely conclude that the block should be skipped.
885                  */
886                 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
887                         if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
888                                 low_pfn = end_pfn;
889                                 goto isolate_abort;
890                         }
891                         valid_page = page;
892                 }
893
894                 /*
895                  * Skip if free. We read page order here without zone lock
896                  * which is generally unsafe, but the race window is small and
897                  * the worst thing that can happen is that we skip some
898                  * potential isolation targets.
899                  */
900                 if (PageBuddy(page)) {
901                         unsigned long freepage_order = buddy_order_unsafe(page);
902
903                         /*
904                          * Without lock, we cannot be sure that what we got is
905                          * a valid page order. Consider only values in the
906                          * valid order range to prevent low_pfn overflow.
907                          */
908                         if (freepage_order > 0 && freepage_order < MAX_ORDER)
909                                 low_pfn += (1UL << freepage_order) - 1;
910                         continue;
911                 }
912
913                 /*
914                  * Regardless of being on LRU, compound pages such as THP and
915                  * hugetlbfs are not to be compacted unless we are attempting
916                  * an allocation much larger than the huge page size (eg CMA).
917                  * We can potentially save a lot of iterations if we skip them
918                  * at once. The check is racy, but we can consider only valid
919                  * values and the only danger is skipping too much.
920                  */
921                 if (PageCompound(page) && !cc->alloc_contig) {
922                         const unsigned int order = compound_order(page);
923
924                         if (likely(order < MAX_ORDER))
925                                 low_pfn += (1UL << order) - 1;
926                         goto isolate_fail;
927                 }
928
929                 /*
930                  * Check may be lockless but that's ok as we recheck later.
931                  * It's possible to migrate LRU and non-lru movable pages.
932                  * Skip any other type of page
933                  */
934                 if (!PageLRU(page)) {
935                         /*
936                          * __PageMovable can return false positive so we need
937                          * to verify it under page_lock.
938                          */
939                         if (unlikely(__PageMovable(page)) &&
940                                         !PageIsolated(page)) {
941                                 if (locked) {
942                                         spin_unlock_irqrestore(&pgdat->lru_lock,
943                                                                         flags);
944                                         locked = false;
945                                 }
946
947                                 if (!isolate_movable_page(page, isolate_mode))
948                                         goto isolate_success;
949                         }
950
951                         goto isolate_fail;
952                 }
953
954                 /*
955                  * Migration will fail if an anonymous page is pinned in memory,
956                  * so avoid taking lru_lock and isolating it unnecessarily in an
957                  * admittedly racy check.
958                  */
959                 if (!page_mapping(page) &&
960                     page_count(page) > page_mapcount(page))
961                         goto isolate_fail;
962
963                 /*
964                  * Only allow to migrate anonymous pages in GFP_NOFS context
965                  * because those do not depend on fs locks.
966                  */
967                 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
968                         goto isolate_fail;
969
970                 /* If we already hold the lock, we can skip some rechecking */
971                 if (!locked) {
972                         locked = compact_lock_irqsave(&pgdat->lru_lock,
973                                                                 &flags, cc);
974
975                         /* Try get exclusive access under lock */
976                         if (!skip_updated) {
977                                 skip_updated = true;
978                                 if (test_and_set_skip(cc, page, low_pfn))
979                                         goto isolate_abort;
980                         }
981
982                         /* Recheck PageLRU and PageCompound under lock */
983                         if (!PageLRU(page))
984                                 goto isolate_fail;
985
986                         /*
987                          * Page become compound since the non-locked check,
988                          * and it's on LRU. It can only be a THP so the order
989                          * is safe to read and it's 0 for tail pages.
990                          */
991                         if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
992                                 low_pfn += compound_nr(page) - 1;
993                                 goto isolate_fail;
994                         }
995                 }
996
997                 lruvec = mem_cgroup_page_lruvec(page, pgdat);
998
999                 /* Try isolate the page */
1000                 if (__isolate_lru_page(page, isolate_mode) != 0)
1001                         goto isolate_fail;
1002
1003                 /* The whole page is taken off the LRU; skip the tail pages. */
1004                 if (PageCompound(page))
1005                         low_pfn += compound_nr(page) - 1;
1006
1007                 /* Successfully isolated */
1008                 del_page_from_lru_list(page, lruvec, page_lru(page));
1009                 mod_node_page_state(page_pgdat(page),
1010                                 NR_ISOLATED_ANON + page_is_file_lru(page),
1011                                 thp_nr_pages(page));
1012
1013 isolate_success:
1014                 list_add(&page->lru, &cc->migratepages);
1015                 cc->nr_migratepages++;
1016                 nr_isolated++;
1017
1018                 /*
1019                  * Avoid isolating too much unless this block is being
1020                  * rescanned (e.g. dirty/writeback pages, parallel allocation)
1021                  * or a lock is contended. For contention, isolate quickly to
1022                  * potentially remove one source of contention.
1023                  */
1024                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX &&
1025                     !cc->rescan && !cc->contended) {
1026                         ++low_pfn;
1027                         break;
1028                 }
1029
1030                 continue;
1031 isolate_fail:
1032                 if (!skip_on_failure)
1033                         continue;
1034
1035                 /*
1036                  * We have isolated some pages, but then failed. Release them
1037                  * instead of migrating, as we cannot form the cc->order buddy
1038                  * page anyway.
1039                  */
1040                 if (nr_isolated) {
1041                         if (locked) {
1042                                 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1043                                 locked = false;
1044                         }
1045                         putback_movable_pages(&cc->migratepages);
1046                         cc->nr_migratepages = 0;
1047                         nr_isolated = 0;
1048                 }
1049
1050                 if (low_pfn < next_skip_pfn) {
1051                         low_pfn = next_skip_pfn - 1;
1052                         /*
1053                          * The check near the loop beginning would have updated
1054                          * next_skip_pfn too, but this is a bit simpler.
1055                          */
1056                         next_skip_pfn += 1UL << cc->order;
1057                 }
1058         }
1059
1060         /*
1061          * The PageBuddy() check could have potentially brought us outside
1062          * the range to be scanned.
1063          */
1064         if (unlikely(low_pfn > end_pfn))
1065                 low_pfn = end_pfn;
1066
1067 isolate_abort:
1068         if (locked)
1069                 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1070
1071         /*
1072          * Updated the cached scanner pfn once the pageblock has been scanned
1073          * Pages will either be migrated in which case there is no point
1074          * scanning in the near future or migration failed in which case the
1075          * failure reason may persist. The block is marked for skipping if
1076          * there were no pages isolated in the block or if the block is
1077          * rescanned twice in a row.
1078          */
1079         if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1080                 if (valid_page && !skip_updated)
1081                         set_pageblock_skip(valid_page);
1082                 update_cached_migrate(cc, low_pfn);
1083         }
1084
1085         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1086                                                 nr_scanned, nr_isolated);
1087
1088 fatal_pending:
1089         cc->total_migrate_scanned += nr_scanned;
1090         if (nr_isolated)
1091                 count_compact_events(COMPACTISOLATED, nr_isolated);
1092
1093         return low_pfn;
1094 }
1095
1096 /**
1097  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1098  * @cc:        Compaction control structure.
1099  * @start_pfn: The first PFN to start isolating.
1100  * @end_pfn:   The one-past-last PFN.
1101  *
1102  * Returns zero if isolation fails fatally due to e.g. pending signal.
1103  * Otherwise, function returns one-past-the-last PFN of isolated page
1104  * (which may be greater than end_pfn if end fell in a middle of a THP page).
1105  */
1106 unsigned long
1107 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1108                                                         unsigned long end_pfn)
1109 {
1110         unsigned long pfn, block_start_pfn, block_end_pfn;
1111
1112         /* Scan block by block. First and last block may be incomplete */
1113         pfn = start_pfn;
1114         block_start_pfn = pageblock_start_pfn(pfn);
1115         if (block_start_pfn < cc->zone->zone_start_pfn)
1116                 block_start_pfn = cc->zone->zone_start_pfn;
1117         block_end_pfn = pageblock_end_pfn(pfn);
1118
1119         for (; pfn < end_pfn; pfn = block_end_pfn,
1120                                 block_start_pfn = block_end_pfn,
1121                                 block_end_pfn += pageblock_nr_pages) {
1122
1123                 block_end_pfn = min(block_end_pfn, end_pfn);
1124
1125                 if (!pageblock_pfn_to_page(block_start_pfn,
1126                                         block_end_pfn, cc->zone))
1127                         continue;
1128
1129                 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
1130                                                         ISOLATE_UNEVICTABLE);
1131
1132                 if (!pfn)
1133                         break;
1134
1135                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
1136                         break;
1137         }
1138
1139         return pfn;
1140 }
1141
1142 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1143 #ifdef CONFIG_COMPACTION
1144
1145 static bool suitable_migration_source(struct compact_control *cc,
1146                                                         struct page *page)
1147 {
1148         int block_mt;
1149
1150         if (pageblock_skip_persistent(page))
1151                 return false;
1152
1153         if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1154                 return true;
1155
1156         block_mt = get_pageblock_migratetype(page);
1157
1158         if (cc->migratetype == MIGRATE_MOVABLE)
1159                 return is_migrate_movable(block_mt);
1160         else
1161                 return block_mt == cc->migratetype;
1162 }
1163
1164 /* Returns true if the page is within a block suitable for migration to */
1165 static bool suitable_migration_target(struct compact_control *cc,
1166                                                         struct page *page)
1167 {
1168         /* If the page is a large free page, then disallow migration */
1169         if (PageBuddy(page)) {
1170                 /*
1171                  * We are checking page_order without zone->lock taken. But
1172                  * the only small danger is that we skip a potentially suitable
1173                  * pageblock, so it's not worth to check order for valid range.
1174                  */
1175                 if (buddy_order_unsafe(page) >= pageblock_order)
1176                         return false;
1177         }
1178
1179         if (cc->ignore_block_suitable)
1180                 return true;
1181
1182         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1183         if (is_migrate_movable(get_pageblock_migratetype(page)))
1184                 return true;
1185
1186         /* Otherwise skip the block */
1187         return false;
1188 }
1189
1190 static inline unsigned int
1191 freelist_scan_limit(struct compact_control *cc)
1192 {
1193         unsigned short shift = BITS_PER_LONG - 1;
1194
1195         return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1196 }
1197
1198 /*
1199  * Test whether the free scanner has reached the same or lower pageblock than
1200  * the migration scanner, and compaction should thus terminate.
1201  */
1202 static inline bool compact_scanners_met(struct compact_control *cc)
1203 {
1204         return (cc->free_pfn >> pageblock_order)
1205                 <= (cc->migrate_pfn >> pageblock_order);
1206 }
1207
1208 /*
1209  * Used when scanning for a suitable migration target which scans freelists
1210  * in reverse. Reorders the list such as the unscanned pages are scanned
1211  * first on the next iteration of the free scanner
1212  */
1213 static void
1214 move_freelist_head(struct list_head *freelist, struct page *freepage)
1215 {
1216         LIST_HEAD(sublist);
1217
1218         if (!list_is_last(freelist, &freepage->lru)) {
1219                 list_cut_before(&sublist, freelist, &freepage->lru);
1220                 if (!list_empty(&sublist))
1221                         list_splice_tail(&sublist, freelist);
1222         }
1223 }
1224
1225 /*
1226  * Similar to move_freelist_head except used by the migration scanner
1227  * when scanning forward. It's possible for these list operations to
1228  * move against each other if they search the free list exactly in
1229  * lockstep.
1230  */
1231 static void
1232 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1233 {
1234         LIST_HEAD(sublist);
1235
1236         if (!list_is_first(freelist, &freepage->lru)) {
1237                 list_cut_position(&sublist, freelist, &freepage->lru);
1238                 if (!list_empty(&sublist))
1239                         list_splice_tail(&sublist, freelist);
1240         }
1241 }
1242
1243 static void
1244 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1245 {
1246         unsigned long start_pfn, end_pfn;
1247         struct page *page = pfn_to_page(pfn);
1248
1249         /* Do not search around if there are enough pages already */
1250         if (cc->nr_freepages >= cc->nr_migratepages)
1251                 return;
1252
1253         /* Minimise scanning during async compaction */
1254         if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1255                 return;
1256
1257         /* Pageblock boundaries */
1258         start_pfn = pageblock_start_pfn(pfn);
1259         end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)) - 1;
1260
1261         /* Scan before */
1262         if (start_pfn != pfn) {
1263                 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1264                 if (cc->nr_freepages >= cc->nr_migratepages)
1265                         return;
1266         }
1267
1268         /* Scan after */
1269         start_pfn = pfn + nr_isolated;
1270         if (start_pfn < end_pfn)
1271                 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1272
1273         /* Skip this pageblock in the future as it's full or nearly full */
1274         if (cc->nr_freepages < cc->nr_migratepages)
1275                 set_pageblock_skip(page);
1276 }
1277
1278 /* Search orders in round-robin fashion */
1279 static int next_search_order(struct compact_control *cc, int order)
1280 {
1281         order--;
1282         if (order < 0)
1283                 order = cc->order - 1;
1284
1285         /* Search wrapped around? */
1286         if (order == cc->search_order) {
1287                 cc->search_order--;
1288                 if (cc->search_order < 0)
1289                         cc->search_order = cc->order - 1;
1290                 return -1;
1291         }
1292
1293         return order;
1294 }
1295
1296 static unsigned long
1297 fast_isolate_freepages(struct compact_control *cc)
1298 {
1299         unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
1300         unsigned int nr_scanned = 0;
1301         unsigned long low_pfn, min_pfn, high_pfn = 0, highest = 0;
1302         unsigned long nr_isolated = 0;
1303         unsigned long distance;
1304         struct page *page = NULL;
1305         bool scan_start = false;
1306         int order;
1307
1308         /* Full compaction passes in a negative order */
1309         if (cc->order <= 0)
1310                 return cc->free_pfn;
1311
1312         /*
1313          * If starting the scan, use a deeper search and use the highest
1314          * PFN found if a suitable one is not found.
1315          */
1316         if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1317                 limit = pageblock_nr_pages >> 1;
1318                 scan_start = true;
1319         }
1320
1321         /*
1322          * Preferred point is in the top quarter of the scan space but take
1323          * a pfn from the top half if the search is problematic.
1324          */
1325         distance = (cc->free_pfn - cc->migrate_pfn);
1326         low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1327         min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1328
1329         if (WARN_ON_ONCE(min_pfn > low_pfn))
1330                 low_pfn = min_pfn;
1331
1332         /*
1333          * Search starts from the last successful isolation order or the next
1334          * order to search after a previous failure
1335          */
1336         cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1337
1338         for (order = cc->search_order;
1339              !page && order >= 0;
1340              order = next_search_order(cc, order)) {
1341                 struct free_area *area = &cc->zone->free_area[order];
1342                 struct list_head *freelist;
1343                 struct page *freepage;
1344                 unsigned long flags;
1345                 unsigned int order_scanned = 0;
1346
1347                 if (!area->nr_free)
1348                         continue;
1349
1350                 spin_lock_irqsave(&cc->zone->lock, flags);
1351                 freelist = &area->free_list[MIGRATE_MOVABLE];
1352                 list_for_each_entry_reverse(freepage, freelist, lru) {
1353                         unsigned long pfn;
1354
1355                         order_scanned++;
1356                         nr_scanned++;
1357                         pfn = page_to_pfn(freepage);
1358
1359                         if (pfn >= highest)
1360                                 highest = pageblock_start_pfn(pfn);
1361
1362                         if (pfn >= low_pfn) {
1363                                 cc->fast_search_fail = 0;
1364                                 cc->search_order = order;
1365                                 page = freepage;
1366                                 break;
1367                         }
1368
1369                         if (pfn >= min_pfn && pfn > high_pfn) {
1370                                 high_pfn = pfn;
1371
1372                                 /* Shorten the scan if a candidate is found */
1373                                 limit >>= 1;
1374                         }
1375
1376                         if (order_scanned >= limit)
1377                                 break;
1378                 }
1379
1380                 /* Use a minimum pfn if a preferred one was not found */
1381                 if (!page && high_pfn) {
1382                         page = pfn_to_page(high_pfn);
1383
1384                         /* Update freepage for the list reorder below */
1385                         freepage = page;
1386                 }
1387
1388                 /* Reorder to so a future search skips recent pages */
1389                 move_freelist_head(freelist, freepage);
1390
1391                 /* Isolate the page if available */
1392                 if (page) {
1393                         if (__isolate_free_page(page, order)) {
1394                                 set_page_private(page, order);
1395                                 nr_isolated = 1 << order;
1396                                 cc->nr_freepages += nr_isolated;
1397                                 list_add_tail(&page->lru, &cc->freepages);
1398                                 count_compact_events(COMPACTISOLATED, nr_isolated);
1399                         } else {
1400                                 /* If isolation fails, abort the search */
1401                                 order = cc->search_order + 1;
1402                                 page = NULL;
1403                         }
1404                 }
1405
1406                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1407
1408                 /*
1409                  * Smaller scan on next order so the total scan ig related
1410                  * to freelist_scan_limit.
1411                  */
1412                 if (order_scanned >= limit)
1413                         limit = min(1U, limit >> 1);
1414         }
1415
1416         if (!page) {
1417                 cc->fast_search_fail++;
1418                 if (scan_start) {
1419                         /*
1420                          * Use the highest PFN found above min. If one was
1421                          * not found, be pessimistic for direct compaction
1422                          * and use the min mark.
1423                          */
1424                         if (highest) {
1425                                 page = pfn_to_page(highest);
1426                                 cc->free_pfn = highest;
1427                         } else {
1428                                 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1429                                         page = pageblock_pfn_to_page(min_pfn,
1430                                                 pageblock_end_pfn(min_pfn),
1431                                                 cc->zone);
1432                                         cc->free_pfn = min_pfn;
1433                                 }
1434                         }
1435                 }
1436         }
1437
1438         if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1439                 highest -= pageblock_nr_pages;
1440                 cc->zone->compact_cached_free_pfn = highest;
1441         }
1442
1443         cc->total_free_scanned += nr_scanned;
1444         if (!page)
1445                 return cc->free_pfn;
1446
1447         low_pfn = page_to_pfn(page);
1448         fast_isolate_around(cc, low_pfn, nr_isolated);
1449         return low_pfn;
1450 }
1451
1452 /*
1453  * Based on information in the current compact_control, find blocks
1454  * suitable for isolating free pages from and then isolate them.
1455  */
1456 static void isolate_freepages(struct compact_control *cc)
1457 {
1458         struct zone *zone = cc->zone;
1459         struct page *page;
1460         unsigned long block_start_pfn;  /* start of current pageblock */
1461         unsigned long isolate_start_pfn; /* exact pfn we start at */
1462         unsigned long block_end_pfn;    /* end of current pageblock */
1463         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
1464         struct list_head *freelist = &cc->freepages;
1465         unsigned int stride;
1466
1467         /* Try a small search of the free lists for a candidate */
1468         isolate_start_pfn = fast_isolate_freepages(cc);
1469         if (cc->nr_freepages)
1470                 goto splitmap;
1471
1472         /*
1473          * Initialise the free scanner. The starting point is where we last
1474          * successfully isolated from, zone-cached value, or the end of the
1475          * zone when isolating for the first time. For looping we also need
1476          * this pfn aligned down to the pageblock boundary, because we do
1477          * block_start_pfn -= pageblock_nr_pages in the for loop.
1478          * For ending point, take care when isolating in last pageblock of a
1479          * zone which ends in the middle of a pageblock.
1480          * The low boundary is the end of the pageblock the migration scanner
1481          * is using.
1482          */
1483         isolate_start_pfn = cc->free_pfn;
1484         block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1485         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1486                                                 zone_end_pfn(zone));
1487         low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1488         stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1489
1490         /*
1491          * Isolate free pages until enough are available to migrate the
1492          * pages on cc->migratepages. We stop searching if the migrate
1493          * and free page scanners meet or enough free pages are isolated.
1494          */
1495         for (; block_start_pfn >= low_pfn;
1496                                 block_end_pfn = block_start_pfn,
1497                                 block_start_pfn -= pageblock_nr_pages,
1498                                 isolate_start_pfn = block_start_pfn) {
1499                 unsigned long nr_isolated;
1500
1501                 /*
1502                  * This can iterate a massively long zone without finding any
1503                  * suitable migration targets, so periodically check resched.
1504                  */
1505                 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1506                         cond_resched();
1507
1508                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1509                                                                         zone);
1510                 if (!page)
1511                         continue;
1512
1513                 /* Check the block is suitable for migration */
1514                 if (!suitable_migration_target(cc, page))
1515                         continue;
1516
1517                 /* If isolation recently failed, do not retry */
1518                 if (!isolation_suitable(cc, page))
1519                         continue;
1520
1521                 /* Found a block suitable for isolating free pages from. */
1522                 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1523                                         block_end_pfn, freelist, stride, false);
1524
1525                 /* Update the skip hint if the full pageblock was scanned */
1526                 if (isolate_start_pfn == block_end_pfn)
1527                         update_pageblock_skip(cc, page, block_start_pfn);
1528
1529                 /* Are enough freepages isolated? */
1530                 if (cc->nr_freepages >= cc->nr_migratepages) {
1531                         if (isolate_start_pfn >= block_end_pfn) {
1532                                 /*
1533                                  * Restart at previous pageblock if more
1534                                  * freepages can be isolated next time.
1535                                  */
1536                                 isolate_start_pfn =
1537                                         block_start_pfn - pageblock_nr_pages;
1538                         }
1539                         break;
1540                 } else if (isolate_start_pfn < block_end_pfn) {
1541                         /*
1542                          * If isolation failed early, do not continue
1543                          * needlessly.
1544                          */
1545                         break;
1546                 }
1547
1548                 /* Adjust stride depending on isolation */
1549                 if (nr_isolated) {
1550                         stride = 1;
1551                         continue;
1552                 }
1553                 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1554         }
1555
1556         /*
1557          * Record where the free scanner will restart next time. Either we
1558          * broke from the loop and set isolate_start_pfn based on the last
1559          * call to isolate_freepages_block(), or we met the migration scanner
1560          * and the loop terminated due to isolate_start_pfn < low_pfn
1561          */
1562         cc->free_pfn = isolate_start_pfn;
1563
1564 splitmap:
1565         /* __isolate_free_page() does not map the pages */
1566         split_map_pages(freelist);
1567 }
1568
1569 /*
1570  * This is a migrate-callback that "allocates" freepages by taking pages
1571  * from the isolated freelists in the block we are migrating to.
1572  */
1573 static struct page *compaction_alloc(struct page *migratepage,
1574                                         unsigned long data)
1575 {
1576         struct compact_control *cc = (struct compact_control *)data;
1577         struct page *freepage;
1578
1579         if (list_empty(&cc->freepages)) {
1580                 isolate_freepages(cc);
1581
1582                 if (list_empty(&cc->freepages))
1583                         return NULL;
1584         }
1585
1586         freepage = list_entry(cc->freepages.next, struct page, lru);
1587         list_del(&freepage->lru);
1588         cc->nr_freepages--;
1589
1590         return freepage;
1591 }
1592
1593 /*
1594  * This is a migrate-callback that "frees" freepages back to the isolated
1595  * freelist.  All pages on the freelist are from the same zone, so there is no
1596  * special handling needed for NUMA.
1597  */
1598 static void compaction_free(struct page *page, unsigned long data)
1599 {
1600         struct compact_control *cc = (struct compact_control *)data;
1601
1602         list_add(&page->lru, &cc->freepages);
1603         cc->nr_freepages++;
1604 }
1605
1606 /* possible outcome of isolate_migratepages */
1607 typedef enum {
1608         ISOLATE_ABORT,          /* Abort compaction now */
1609         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1610         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1611 } isolate_migrate_t;
1612
1613 /*
1614  * Allow userspace to control policy on scanning the unevictable LRU for
1615  * compactable pages.
1616  */
1617 #ifdef CONFIG_PREEMPT_RT
1618 int sysctl_compact_unevictable_allowed __read_mostly = 0;
1619 #else
1620 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1621 #endif
1622
1623 static inline void
1624 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1625 {
1626         if (cc->fast_start_pfn == ULONG_MAX)
1627                 return;
1628
1629         if (!cc->fast_start_pfn)
1630                 cc->fast_start_pfn = pfn;
1631
1632         cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1633 }
1634
1635 static inline unsigned long
1636 reinit_migrate_pfn(struct compact_control *cc)
1637 {
1638         if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1639                 return cc->migrate_pfn;
1640
1641         cc->migrate_pfn = cc->fast_start_pfn;
1642         cc->fast_start_pfn = ULONG_MAX;
1643
1644         return cc->migrate_pfn;
1645 }
1646
1647 /*
1648  * Briefly search the free lists for a migration source that already has
1649  * some free pages to reduce the number of pages that need migration
1650  * before a pageblock is free.
1651  */
1652 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1653 {
1654         unsigned int limit = freelist_scan_limit(cc);
1655         unsigned int nr_scanned = 0;
1656         unsigned long distance;
1657         unsigned long pfn = cc->migrate_pfn;
1658         unsigned long high_pfn;
1659         int order;
1660
1661         /* Skip hints are relied on to avoid repeats on the fast search */
1662         if (cc->ignore_skip_hint)
1663                 return pfn;
1664
1665         /*
1666          * If the migrate_pfn is not at the start of a zone or the start
1667          * of a pageblock then assume this is a continuation of a previous
1668          * scan restarted due to COMPACT_CLUSTER_MAX.
1669          */
1670         if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1671                 return pfn;
1672
1673         /*
1674          * For smaller orders, just linearly scan as the number of pages
1675          * to migrate should be relatively small and does not necessarily
1676          * justify freeing up a large block for a small allocation.
1677          */
1678         if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1679                 return pfn;
1680
1681         /*
1682          * Only allow kcompactd and direct requests for movable pages to
1683          * quickly clear out a MOVABLE pageblock for allocation. This
1684          * reduces the risk that a large movable pageblock is freed for
1685          * an unmovable/reclaimable small allocation.
1686          */
1687         if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1688                 return pfn;
1689
1690         /*
1691          * When starting the migration scanner, pick any pageblock within the
1692          * first half of the search space. Otherwise try and pick a pageblock
1693          * within the first eighth to reduce the chances that a migration
1694          * target later becomes a source.
1695          */
1696         distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1697         if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1698                 distance >>= 2;
1699         high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1700
1701         for (order = cc->order - 1;
1702              order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit;
1703              order--) {
1704                 struct free_area *area = &cc->zone->free_area[order];
1705                 struct list_head *freelist;
1706                 unsigned long flags;
1707                 struct page *freepage;
1708
1709                 if (!area->nr_free)
1710                         continue;
1711
1712                 spin_lock_irqsave(&cc->zone->lock, flags);
1713                 freelist = &area->free_list[MIGRATE_MOVABLE];
1714                 list_for_each_entry(freepage, freelist, lru) {
1715                         unsigned long free_pfn;
1716
1717                         nr_scanned++;
1718                         free_pfn = page_to_pfn(freepage);
1719                         if (free_pfn < high_pfn) {
1720                                 /*
1721                                  * Avoid if skipped recently. Ideally it would
1722                                  * move to the tail but even safe iteration of
1723                                  * the list assumes an entry is deleted, not
1724                                  * reordered.
1725                                  */
1726                                 if (get_pageblock_skip(freepage)) {
1727                                         if (list_is_last(freelist, &freepage->lru))
1728                                                 break;
1729
1730                                         continue;
1731                                 }
1732
1733                                 /* Reorder to so a future search skips recent pages */
1734                                 move_freelist_tail(freelist, freepage);
1735
1736                                 update_fast_start_pfn(cc, free_pfn);
1737                                 pfn = pageblock_start_pfn(free_pfn);
1738                                 cc->fast_search_fail = 0;
1739                                 set_pageblock_skip(freepage);
1740                                 break;
1741                         }
1742
1743                         if (nr_scanned >= limit) {
1744                                 cc->fast_search_fail++;
1745                                 move_freelist_tail(freelist, freepage);
1746                                 break;
1747                         }
1748                 }
1749                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1750         }
1751
1752         cc->total_migrate_scanned += nr_scanned;
1753
1754         /*
1755          * If fast scanning failed then use a cached entry for a page block
1756          * that had free pages as the basis for starting a linear scan.
1757          */
1758         if (pfn == cc->migrate_pfn)
1759                 pfn = reinit_migrate_pfn(cc);
1760
1761         return pfn;
1762 }
1763
1764 /*
1765  * Isolate all pages that can be migrated from the first suitable block,
1766  * starting at the block pointed to by the migrate scanner pfn within
1767  * compact_control.
1768  */
1769 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1770 {
1771         unsigned long block_start_pfn;
1772         unsigned long block_end_pfn;
1773         unsigned long low_pfn;
1774         struct page *page;
1775         const isolate_mode_t isolate_mode =
1776                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1777                 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1778         bool fast_find_block;
1779
1780         /*
1781          * Start at where we last stopped, or beginning of the zone as
1782          * initialized by compact_zone(). The first failure will use
1783          * the lowest PFN as the starting point for linear scanning.
1784          */
1785         low_pfn = fast_find_migrateblock(cc);
1786         block_start_pfn = pageblock_start_pfn(low_pfn);
1787         if (block_start_pfn < cc->zone->zone_start_pfn)
1788                 block_start_pfn = cc->zone->zone_start_pfn;
1789
1790         /*
1791          * fast_find_migrateblock marks a pageblock skipped so to avoid
1792          * the isolation_suitable check below, check whether the fast
1793          * search was successful.
1794          */
1795         fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1796
1797         /* Only scan within a pageblock boundary */
1798         block_end_pfn = pageblock_end_pfn(low_pfn);
1799
1800         /*
1801          * Iterate over whole pageblocks until we find the first suitable.
1802          * Do not cross the free scanner.
1803          */
1804         for (; block_end_pfn <= cc->free_pfn;
1805                         fast_find_block = false,
1806                         low_pfn = block_end_pfn,
1807                         block_start_pfn = block_end_pfn,
1808                         block_end_pfn += pageblock_nr_pages) {
1809
1810                 /*
1811                  * This can potentially iterate a massively long zone with
1812                  * many pageblocks unsuitable, so periodically check if we
1813                  * need to schedule.
1814                  */
1815                 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1816                         cond_resched();
1817
1818                 page = pageblock_pfn_to_page(block_start_pfn,
1819                                                 block_end_pfn, cc->zone);
1820                 if (!page)
1821                         continue;
1822
1823                 /*
1824                  * If isolation recently failed, do not retry. Only check the
1825                  * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1826                  * to be visited multiple times. Assume skip was checked
1827                  * before making it "skip" so other compaction instances do
1828                  * not scan the same block.
1829                  */
1830                 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1831                     !fast_find_block && !isolation_suitable(cc, page))
1832                         continue;
1833
1834                 /*
1835                  * For async compaction, also only scan in MOVABLE blocks
1836                  * without huge pages. Async compaction is optimistic to see
1837                  * if the minimum amount of work satisfies the allocation.
1838                  * The cached PFN is updated as it's possible that all
1839                  * remaining blocks between source and target are unsuitable
1840                  * and the compaction scanners fail to meet.
1841                  */
1842                 if (!suitable_migration_source(cc, page)) {
1843                         update_cached_migrate(cc, block_end_pfn);
1844                         continue;
1845                 }
1846
1847                 /* Perform the isolation */
1848                 low_pfn = isolate_migratepages_block(cc, low_pfn,
1849                                                 block_end_pfn, isolate_mode);
1850
1851                 if (!low_pfn)
1852                         return ISOLATE_ABORT;
1853
1854                 /*
1855                  * Either we isolated something and proceed with migration. Or
1856                  * we failed and compact_zone should decide if we should
1857                  * continue or not.
1858                  */
1859                 break;
1860         }
1861
1862         /* Record where migration scanner will be restarted. */
1863         cc->migrate_pfn = low_pfn;
1864
1865         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1866 }
1867
1868 /*
1869  * order == -1 is expected when compacting via
1870  * /proc/sys/vm/compact_memory
1871  */
1872 static inline bool is_via_compact_memory(int order)
1873 {
1874         return order == -1;
1875 }
1876
1877 static bool kswapd_is_running(pg_data_t *pgdat)
1878 {
1879         return pgdat->kswapd && (pgdat->kswapd->state == TASK_RUNNING);
1880 }
1881
1882 /*
1883  * A zone's fragmentation score is the external fragmentation wrt to the
1884  * COMPACTION_HPAGE_ORDER scaled by the zone's size. It returns a value
1885  * in the range [0, 100].
1886  *
1887  * The scaling factor ensures that proactive compaction focuses on larger
1888  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
1889  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
1890  * and thus never exceeds the high threshold for proactive compaction.
1891  */
1892 static unsigned int fragmentation_score_zone(struct zone *zone)
1893 {
1894         unsigned long score;
1895
1896         score = zone->present_pages *
1897                         extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1898         return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
1899 }
1900
1901 /*
1902  * The per-node proactive (background) compaction process is started by its
1903  * corresponding kcompactd thread when the node's fragmentation score
1904  * exceeds the high threshold. The compaction process remains active till
1905  * the node's score falls below the low threshold, or one of the back-off
1906  * conditions is met.
1907  */
1908 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
1909 {
1910         unsigned int score = 0;
1911         int zoneid;
1912
1913         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1914                 struct zone *zone;
1915
1916                 zone = &pgdat->node_zones[zoneid];
1917                 score += fragmentation_score_zone(zone);
1918         }
1919
1920         return score;
1921 }
1922
1923 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
1924 {
1925         unsigned int wmark_low;
1926
1927         /*
1928          * Cap the low watermak to avoid excessive compaction
1929          * activity in case a user sets the proactivess tunable
1930          * close to 100 (maximum).
1931          */
1932         wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
1933         return low ? wmark_low : min(wmark_low + 10, 100U);
1934 }
1935
1936 static bool should_proactive_compact_node(pg_data_t *pgdat)
1937 {
1938         int wmark_high;
1939
1940         if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
1941                 return false;
1942
1943         wmark_high = fragmentation_score_wmark(pgdat, false);
1944         return fragmentation_score_node(pgdat) > wmark_high;
1945 }
1946
1947 static enum compact_result __compact_finished(struct compact_control *cc)
1948 {
1949         unsigned int order;
1950         const int migratetype = cc->migratetype;
1951         int ret;
1952
1953         /* Compaction run completes if the migrate and free scanner meet */
1954         if (compact_scanners_met(cc)) {
1955                 /* Let the next compaction start anew. */
1956                 reset_cached_positions(cc->zone);
1957
1958                 /*
1959                  * Mark that the PG_migrate_skip information should be cleared
1960                  * by kswapd when it goes to sleep. kcompactd does not set the
1961                  * flag itself as the decision to be clear should be directly
1962                  * based on an allocation request.
1963                  */
1964                 if (cc->direct_compaction)
1965                         cc->zone->compact_blockskip_flush = true;
1966
1967                 if (cc->whole_zone)
1968                         return COMPACT_COMPLETE;
1969                 else
1970                         return COMPACT_PARTIAL_SKIPPED;
1971         }
1972
1973         if (cc->proactive_compaction) {
1974                 int score, wmark_low;
1975                 pg_data_t *pgdat;
1976
1977                 pgdat = cc->zone->zone_pgdat;
1978                 if (kswapd_is_running(pgdat))
1979                         return COMPACT_PARTIAL_SKIPPED;
1980
1981                 score = fragmentation_score_zone(cc->zone);
1982                 wmark_low = fragmentation_score_wmark(pgdat, true);
1983
1984                 if (score > wmark_low)
1985                         ret = COMPACT_CONTINUE;
1986                 else
1987                         ret = COMPACT_SUCCESS;
1988
1989                 goto out;
1990         }
1991
1992         if (is_via_compact_memory(cc->order))
1993                 return COMPACT_CONTINUE;
1994
1995         /*
1996          * Always finish scanning a pageblock to reduce the possibility of
1997          * fallbacks in the future. This is particularly important when
1998          * migration source is unmovable/reclaimable but it's not worth
1999          * special casing.
2000          */
2001         if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2002                 return COMPACT_CONTINUE;
2003
2004         /* Direct compactor: Is a suitable page free? */
2005         ret = COMPACT_NO_SUITABLE_PAGE;
2006         for (order = cc->order; order < MAX_ORDER; order++) {
2007                 struct free_area *area = &cc->zone->free_area[order];
2008                 bool can_steal;
2009
2010                 /* Job done if page is free of the right migratetype */
2011                 if (!free_area_empty(area, migratetype))
2012                         return COMPACT_SUCCESS;
2013
2014 #ifdef CONFIG_CMA
2015                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2016                 if (migratetype == MIGRATE_MOVABLE &&
2017                         !free_area_empty(area, MIGRATE_CMA))
2018                         return COMPACT_SUCCESS;
2019 #endif
2020                 /*
2021                  * Job done if allocation would steal freepages from
2022                  * other migratetype buddy lists.
2023                  */
2024                 if (find_suitable_fallback(area, order, migratetype,
2025                                                 true, &can_steal) != -1) {
2026
2027                         /* movable pages are OK in any pageblock */
2028                         if (migratetype == MIGRATE_MOVABLE)
2029                                 return COMPACT_SUCCESS;
2030
2031                         /*
2032                          * We are stealing for a non-movable allocation. Make
2033                          * sure we finish compacting the current pageblock
2034                          * first so it is as free as possible and we won't
2035                          * have to steal another one soon. This only applies
2036                          * to sync compaction, as async compaction operates
2037                          * on pageblocks of the same migratetype.
2038                          */
2039                         if (cc->mode == MIGRATE_ASYNC ||
2040                                         IS_ALIGNED(cc->migrate_pfn,
2041                                                         pageblock_nr_pages)) {
2042                                 return COMPACT_SUCCESS;
2043                         }
2044
2045                         ret = COMPACT_CONTINUE;
2046                         break;
2047                 }
2048         }
2049
2050 out:
2051         if (cc->contended || fatal_signal_pending(current))
2052                 ret = COMPACT_CONTENDED;
2053
2054         return ret;
2055 }
2056
2057 static enum compact_result compact_finished(struct compact_control *cc)
2058 {
2059         int ret;
2060
2061         ret = __compact_finished(cc);
2062         trace_mm_compaction_finished(cc->zone, cc->order, ret);
2063         if (ret == COMPACT_NO_SUITABLE_PAGE)
2064                 ret = COMPACT_CONTINUE;
2065
2066         return ret;
2067 }
2068
2069 /*
2070  * compaction_suitable: Is this suitable to run compaction on this zone now?
2071  * Returns
2072  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
2073  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
2074  *   COMPACT_CONTINUE - If compaction should run now
2075  */
2076 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2077                                         unsigned int alloc_flags,
2078                                         int highest_zoneidx,
2079                                         unsigned long wmark_target)
2080 {
2081         unsigned long watermark;
2082
2083         if (is_via_compact_memory(order))
2084                 return COMPACT_CONTINUE;
2085
2086         watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2087         /*
2088          * If watermarks for high-order allocation are already met, there
2089          * should be no need for compaction at all.
2090          */
2091         if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2092                                                                 alloc_flags))
2093                 return COMPACT_SUCCESS;
2094
2095         /*
2096          * Watermarks for order-0 must be met for compaction to be able to
2097          * isolate free pages for migration targets. This means that the
2098          * watermark and alloc_flags have to match, or be more pessimistic than
2099          * the check in __isolate_free_page(). We don't use the direct
2100          * compactor's alloc_flags, as they are not relevant for freepage
2101          * isolation. We however do use the direct compactor's highest_zoneidx
2102          * to skip over zones where lowmem reserves would prevent allocation
2103          * even if compaction succeeds.
2104          * For costly orders, we require low watermark instead of min for
2105          * compaction to proceed to increase its chances.
2106          * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2107          * suitable migration targets
2108          */
2109         watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2110                                 low_wmark_pages(zone) : min_wmark_pages(zone);
2111         watermark += compact_gap(order);
2112         if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2113                                                 ALLOC_CMA, wmark_target))
2114                 return COMPACT_SKIPPED;
2115
2116         return COMPACT_CONTINUE;
2117 }
2118
2119 enum compact_result compaction_suitable(struct zone *zone, int order,
2120                                         unsigned int alloc_flags,
2121                                         int highest_zoneidx)
2122 {
2123         enum compact_result ret;
2124         int fragindex;
2125
2126         ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2127                                     zone_page_state(zone, NR_FREE_PAGES));
2128         /*
2129          * fragmentation index determines if allocation failures are due to
2130          * low memory or external fragmentation
2131          *
2132          * index of -1000 would imply allocations might succeed depending on
2133          * watermarks, but we already failed the high-order watermark check
2134          * index towards 0 implies failure is due to lack of memory
2135          * index towards 1000 implies failure is due to fragmentation
2136          *
2137          * Only compact if a failure would be due to fragmentation. Also
2138          * ignore fragindex for non-costly orders where the alternative to
2139          * a successful reclaim/compaction is OOM. Fragindex and the
2140          * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2141          * excessive compaction for costly orders, but it should not be at the
2142          * expense of system stability.
2143          */
2144         if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2145                 fragindex = fragmentation_index(zone, order);
2146                 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2147                         ret = COMPACT_NOT_SUITABLE_ZONE;
2148         }
2149
2150         trace_mm_compaction_suitable(zone, order, ret);
2151         if (ret == COMPACT_NOT_SUITABLE_ZONE)
2152                 ret = COMPACT_SKIPPED;
2153
2154         return ret;
2155 }
2156
2157 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2158                 int alloc_flags)
2159 {
2160         struct zone *zone;
2161         struct zoneref *z;
2162
2163         /*
2164          * Make sure at least one zone would pass __compaction_suitable if we continue
2165          * retrying the reclaim.
2166          */
2167         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2168                                 ac->highest_zoneidx, ac->nodemask) {
2169                 unsigned long available;
2170                 enum compact_result compact_result;
2171
2172                 /*
2173                  * Do not consider all the reclaimable memory because we do not
2174                  * want to trash just for a single high order allocation which
2175                  * is even not guaranteed to appear even if __compaction_suitable
2176                  * is happy about the watermark check.
2177                  */
2178                 available = zone_reclaimable_pages(zone) / order;
2179                 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2180                 compact_result = __compaction_suitable(zone, order, alloc_flags,
2181                                 ac->highest_zoneidx, available);
2182                 if (compact_result != COMPACT_SKIPPED)
2183                         return true;
2184         }
2185
2186         return false;
2187 }
2188
2189 static enum compact_result
2190 compact_zone(struct compact_control *cc, struct capture_control *capc)
2191 {
2192         enum compact_result ret;
2193         unsigned long start_pfn = cc->zone->zone_start_pfn;
2194         unsigned long end_pfn = zone_end_pfn(cc->zone);
2195         unsigned long last_migrated_pfn;
2196         const bool sync = cc->mode != MIGRATE_ASYNC;
2197         bool update_cached;
2198
2199         /*
2200          * These counters track activities during zone compaction.  Initialize
2201          * them before compacting a new zone.
2202          */
2203         cc->total_migrate_scanned = 0;
2204         cc->total_free_scanned = 0;
2205         cc->nr_migratepages = 0;
2206         cc->nr_freepages = 0;
2207         INIT_LIST_HEAD(&cc->freepages);
2208         INIT_LIST_HEAD(&cc->migratepages);
2209
2210         cc->migratetype = gfp_migratetype(cc->gfp_mask);
2211         ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2212                                                         cc->highest_zoneidx);
2213         /* Compaction is likely to fail */
2214         if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2215                 return ret;
2216
2217         /* huh, compaction_suitable is returning something unexpected */
2218         VM_BUG_ON(ret != COMPACT_CONTINUE);
2219
2220         /*
2221          * Clear pageblock skip if there were failures recently and compaction
2222          * is about to be retried after being deferred.
2223          */
2224         if (compaction_restarting(cc->zone, cc->order))
2225                 __reset_isolation_suitable(cc->zone);
2226
2227         /*
2228          * Setup to move all movable pages to the end of the zone. Used cached
2229          * information on where the scanners should start (unless we explicitly
2230          * want to compact the whole zone), but check that it is initialised
2231          * by ensuring the values are within zone boundaries.
2232          */
2233         cc->fast_start_pfn = 0;
2234         if (cc->whole_zone) {
2235                 cc->migrate_pfn = start_pfn;
2236                 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2237         } else {
2238                 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2239                 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2240                 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2241                         cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2242                         cc->zone->compact_cached_free_pfn = cc->free_pfn;
2243                 }
2244                 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2245                         cc->migrate_pfn = start_pfn;
2246                         cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2247                         cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2248                 }
2249
2250                 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2251                         cc->whole_zone = true;
2252         }
2253
2254         last_migrated_pfn = 0;
2255
2256         /*
2257          * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2258          * the basis that some migrations will fail in ASYNC mode. However,
2259          * if the cached PFNs match and pageblocks are skipped due to having
2260          * no isolation candidates, then the sync state does not matter.
2261          * Until a pageblock with isolation candidates is found, keep the
2262          * cached PFNs in sync to avoid revisiting the same blocks.
2263          */
2264         update_cached = !sync &&
2265                 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2266
2267         trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2268                                 cc->free_pfn, end_pfn, sync);
2269
2270         migrate_prep_local();
2271
2272         while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2273                 int err;
2274                 unsigned long start_pfn = cc->migrate_pfn;
2275
2276                 /*
2277                  * Avoid multiple rescans which can happen if a page cannot be
2278                  * isolated (dirty/writeback in async mode) or if the migrated
2279                  * pages are being allocated before the pageblock is cleared.
2280                  * The first rescan will capture the entire pageblock for
2281                  * migration. If it fails, it'll be marked skip and scanning
2282                  * will proceed as normal.
2283                  */
2284                 cc->rescan = false;
2285                 if (pageblock_start_pfn(last_migrated_pfn) ==
2286                     pageblock_start_pfn(start_pfn)) {
2287                         cc->rescan = true;
2288                 }
2289
2290                 switch (isolate_migratepages(cc)) {
2291                 case ISOLATE_ABORT:
2292                         ret = COMPACT_CONTENDED;
2293                         putback_movable_pages(&cc->migratepages);
2294                         cc->nr_migratepages = 0;
2295                         goto out;
2296                 case ISOLATE_NONE:
2297                         if (update_cached) {
2298                                 cc->zone->compact_cached_migrate_pfn[1] =
2299                                         cc->zone->compact_cached_migrate_pfn[0];
2300                         }
2301
2302                         /*
2303                          * We haven't isolated and migrated anything, but
2304                          * there might still be unflushed migrations from
2305                          * previous cc->order aligned block.
2306                          */
2307                         goto check_drain;
2308                 case ISOLATE_SUCCESS:
2309                         update_cached = false;
2310                         last_migrated_pfn = start_pfn;
2311                         ;
2312                 }
2313
2314                 err = migrate_pages(&cc->migratepages, compaction_alloc,
2315                                 compaction_free, (unsigned long)cc, cc->mode,
2316                                 MR_COMPACTION);
2317
2318                 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2319                                                         &cc->migratepages);
2320
2321                 /* All pages were either migrated or will be released */
2322                 cc->nr_migratepages = 0;
2323                 if (err) {
2324                         putback_movable_pages(&cc->migratepages);
2325                         /*
2326                          * migrate_pages() may return -ENOMEM when scanners meet
2327                          * and we want compact_finished() to detect it
2328                          */
2329                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
2330                                 ret = COMPACT_CONTENDED;
2331                                 goto out;
2332                         }
2333                         /*
2334                          * We failed to migrate at least one page in the current
2335                          * order-aligned block, so skip the rest of it.
2336                          */
2337                         if (cc->direct_compaction &&
2338                                                 (cc->mode == MIGRATE_ASYNC)) {
2339                                 cc->migrate_pfn = block_end_pfn(
2340                                                 cc->migrate_pfn - 1, cc->order);
2341                                 /* Draining pcplists is useless in this case */
2342                                 last_migrated_pfn = 0;
2343                         }
2344                 }
2345
2346 check_drain:
2347                 /*
2348                  * Has the migration scanner moved away from the previous
2349                  * cc->order aligned block where we migrated from? If yes,
2350                  * flush the pages that were freed, so that they can merge and
2351                  * compact_finished() can detect immediately if allocation
2352                  * would succeed.
2353                  */
2354                 if (cc->order > 0 && last_migrated_pfn) {
2355                         unsigned long current_block_start =
2356                                 block_start_pfn(cc->migrate_pfn, cc->order);
2357
2358                         if (last_migrated_pfn < current_block_start) {
2359                                 lru_add_drain_cpu_zone(cc->zone);
2360                                 /* No more flushing until we migrate again */
2361                                 last_migrated_pfn = 0;
2362                         }
2363                 }
2364
2365                 /* Stop if a page has been captured */
2366                 if (capc && capc->page) {
2367                         ret = COMPACT_SUCCESS;
2368                         break;
2369                 }
2370         }
2371
2372 out:
2373         /*
2374          * Release free pages and update where the free scanner should restart,
2375          * so we don't leave any returned pages behind in the next attempt.
2376          */
2377         if (cc->nr_freepages > 0) {
2378                 unsigned long free_pfn = release_freepages(&cc->freepages);
2379
2380                 cc->nr_freepages = 0;
2381                 VM_BUG_ON(free_pfn == 0);
2382                 /* The cached pfn is always the first in a pageblock */
2383                 free_pfn = pageblock_start_pfn(free_pfn);
2384                 /*
2385                  * Only go back, not forward. The cached pfn might have been
2386                  * already reset to zone end in compact_finished()
2387                  */
2388                 if (free_pfn > cc->zone->compact_cached_free_pfn)
2389                         cc->zone->compact_cached_free_pfn = free_pfn;
2390         }
2391
2392         count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2393         count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2394
2395         trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2396                                 cc->free_pfn, end_pfn, sync, ret);
2397
2398         return ret;
2399 }
2400
2401 static enum compact_result compact_zone_order(struct zone *zone, int order,
2402                 gfp_t gfp_mask, enum compact_priority prio,
2403                 unsigned int alloc_flags, int highest_zoneidx,
2404                 struct page **capture)
2405 {
2406         enum compact_result ret;
2407         struct compact_control cc = {
2408                 .order = order,
2409                 .search_order = order,
2410                 .gfp_mask = gfp_mask,
2411                 .zone = zone,
2412                 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2413                                         MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2414                 .alloc_flags = alloc_flags,
2415                 .highest_zoneidx = highest_zoneidx,
2416                 .direct_compaction = true,
2417                 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2418                 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2419                 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2420         };
2421         struct capture_control capc = {
2422                 .cc = &cc,
2423                 .page = NULL,
2424         };
2425
2426         /*
2427          * Make sure the structs are really initialized before we expose the
2428          * capture control, in case we are interrupted and the interrupt handler
2429          * frees a page.
2430          */
2431         barrier();
2432         WRITE_ONCE(current->capture_control, &capc);
2433
2434         ret = compact_zone(&cc, &capc);
2435
2436         VM_BUG_ON(!list_empty(&cc.freepages));
2437         VM_BUG_ON(!list_empty(&cc.migratepages));
2438
2439         /*
2440          * Make sure we hide capture control first before we read the captured
2441          * page pointer, otherwise an interrupt could free and capture a page
2442          * and we would leak it.
2443          */
2444         WRITE_ONCE(current->capture_control, NULL);
2445         *capture = READ_ONCE(capc.page);
2446
2447         return ret;
2448 }
2449
2450 int sysctl_extfrag_threshold = 500;
2451
2452 /**
2453  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2454  * @gfp_mask: The GFP mask of the current allocation
2455  * @order: The order of the current allocation
2456  * @alloc_flags: The allocation flags of the current allocation
2457  * @ac: The context of current allocation
2458  * @prio: Determines how hard direct compaction should try to succeed
2459  * @capture: Pointer to free page created by compaction will be stored here
2460  *
2461  * This is the main entry point for direct page compaction.
2462  */
2463 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2464                 unsigned int alloc_flags, const struct alloc_context *ac,
2465                 enum compact_priority prio, struct page **capture)
2466 {
2467         int may_perform_io = gfp_mask & __GFP_IO;
2468         struct zoneref *z;
2469         struct zone *zone;
2470         enum compact_result rc = COMPACT_SKIPPED;
2471
2472         /*
2473          * Check if the GFP flags allow compaction - GFP_NOIO is really
2474          * tricky context because the migration might require IO
2475          */
2476         if (!may_perform_io)
2477                 return COMPACT_SKIPPED;
2478
2479         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2480
2481         /* Compact each zone in the list */
2482         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2483                                         ac->highest_zoneidx, ac->nodemask) {
2484                 enum compact_result status;
2485
2486                 if (prio > MIN_COMPACT_PRIORITY
2487                                         && compaction_deferred(zone, order)) {
2488                         rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2489                         continue;
2490                 }
2491
2492                 status = compact_zone_order(zone, order, gfp_mask, prio,
2493                                 alloc_flags, ac->highest_zoneidx, capture);
2494                 rc = max(status, rc);
2495
2496                 /* The allocation should succeed, stop compacting */
2497                 if (status == COMPACT_SUCCESS) {
2498                         /*
2499                          * We think the allocation will succeed in this zone,
2500                          * but it is not certain, hence the false. The caller
2501                          * will repeat this with true if allocation indeed
2502                          * succeeds in this zone.
2503                          */
2504                         compaction_defer_reset(zone, order, false);
2505
2506                         break;
2507                 }
2508
2509                 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2510                                         status == COMPACT_PARTIAL_SKIPPED))
2511                         /*
2512                          * We think that allocation won't succeed in this zone
2513                          * so we defer compaction there. If it ends up
2514                          * succeeding after all, it will be reset.
2515                          */
2516                         defer_compaction(zone, order);
2517
2518                 /*
2519                  * We might have stopped compacting due to need_resched() in
2520                  * async compaction, or due to a fatal signal detected. In that
2521                  * case do not try further zones
2522                  */
2523                 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2524                                         || fatal_signal_pending(current))
2525                         break;
2526         }
2527
2528         return rc;
2529 }
2530
2531 /*
2532  * Compact all zones within a node till each zone's fragmentation score
2533  * reaches within proactive compaction thresholds (as determined by the
2534  * proactiveness tunable).
2535  *
2536  * It is possible that the function returns before reaching score targets
2537  * due to various back-off conditions, such as, contention on per-node or
2538  * per-zone locks.
2539  */
2540 static void proactive_compact_node(pg_data_t *pgdat)
2541 {
2542         int zoneid;
2543         struct zone *zone;
2544         struct compact_control cc = {
2545                 .order = -1,
2546                 .mode = MIGRATE_SYNC_LIGHT,
2547                 .ignore_skip_hint = true,
2548                 .whole_zone = true,
2549                 .gfp_mask = GFP_KERNEL,
2550                 .proactive_compaction = true,
2551         };
2552
2553         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2554                 zone = &pgdat->node_zones[zoneid];
2555                 if (!populated_zone(zone))
2556                         continue;
2557
2558                 cc.zone = zone;
2559
2560                 compact_zone(&cc, NULL);
2561
2562                 VM_BUG_ON(!list_empty(&cc.freepages));
2563                 VM_BUG_ON(!list_empty(&cc.migratepages));
2564         }
2565 }
2566
2567 /* Compact all zones within a node */
2568 static void compact_node(int nid)
2569 {
2570         pg_data_t *pgdat = NODE_DATA(nid);
2571         int zoneid;
2572         struct zone *zone;
2573         struct compact_control cc = {
2574                 .order = -1,
2575                 .mode = MIGRATE_SYNC,
2576                 .ignore_skip_hint = true,
2577                 .whole_zone = true,
2578                 .gfp_mask = GFP_KERNEL,
2579         };
2580
2581
2582         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2583
2584                 zone = &pgdat->node_zones[zoneid];
2585                 if (!populated_zone(zone))
2586                         continue;
2587
2588                 cc.zone = zone;
2589
2590                 compact_zone(&cc, NULL);
2591
2592                 VM_BUG_ON(!list_empty(&cc.freepages));
2593                 VM_BUG_ON(!list_empty(&cc.migratepages));
2594         }
2595 }
2596
2597 /* Compact all nodes in the system */
2598 static void compact_nodes(void)
2599 {
2600         int nid;
2601
2602         /* Flush pending updates to the LRU lists */
2603         lru_add_drain_all();
2604
2605         for_each_online_node(nid)
2606                 compact_node(nid);
2607 }
2608
2609 /* The written value is actually unused, all memory is compacted */
2610 int sysctl_compact_memory;
2611
2612 /*
2613  * Tunable for proactive compaction. It determines how
2614  * aggressively the kernel should compact memory in the
2615  * background. It takes values in the range [0, 100].
2616  */
2617 unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2618
2619 /*
2620  * This is the entry point for compacting all nodes via
2621  * /proc/sys/vm/compact_memory
2622  */
2623 int sysctl_compaction_handler(struct ctl_table *table, int write,
2624                         void *buffer, size_t *length, loff_t *ppos)
2625 {
2626         if (write)
2627                 compact_nodes();
2628
2629         return 0;
2630 }
2631
2632 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2633 static ssize_t sysfs_compact_node(struct device *dev,
2634                         struct device_attribute *attr,
2635                         const char *buf, size_t count)
2636 {
2637         int nid = dev->id;
2638
2639         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2640                 /* Flush pending updates to the LRU lists */
2641                 lru_add_drain_all();
2642
2643                 compact_node(nid);
2644         }
2645
2646         return count;
2647 }
2648 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
2649
2650 int compaction_register_node(struct node *node)
2651 {
2652         return device_create_file(&node->dev, &dev_attr_compact);
2653 }
2654
2655 void compaction_unregister_node(struct node *node)
2656 {
2657         return device_remove_file(&node->dev, &dev_attr_compact);
2658 }
2659 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2660
2661 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2662 {
2663         return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
2664 }
2665
2666 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2667 {
2668         int zoneid;
2669         struct zone *zone;
2670         enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2671
2672         for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2673                 zone = &pgdat->node_zones[zoneid];
2674
2675                 if (!populated_zone(zone))
2676                         continue;
2677
2678                 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2679                                         highest_zoneidx) == COMPACT_CONTINUE)
2680                         return true;
2681         }
2682
2683         return false;
2684 }
2685
2686 static void kcompactd_do_work(pg_data_t *pgdat)
2687 {
2688         /*
2689          * With no special task, compact all zones so that a page of requested
2690          * order is allocatable.
2691          */
2692         int zoneid;
2693         struct zone *zone;
2694         struct compact_control cc = {
2695                 .order = pgdat->kcompactd_max_order,
2696                 .search_order = pgdat->kcompactd_max_order,
2697                 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2698                 .mode = MIGRATE_SYNC_LIGHT,
2699                 .ignore_skip_hint = false,
2700                 .gfp_mask = GFP_KERNEL,
2701         };
2702         trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2703                                                         cc.highest_zoneidx);
2704         count_compact_event(KCOMPACTD_WAKE);
2705
2706         for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2707                 int status;
2708
2709                 zone = &pgdat->node_zones[zoneid];
2710                 if (!populated_zone(zone))
2711                         continue;
2712
2713                 if (compaction_deferred(zone, cc.order))
2714                         continue;
2715
2716                 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2717                                                         COMPACT_CONTINUE)
2718                         continue;
2719
2720                 if (kthread_should_stop())
2721                         return;
2722
2723                 cc.zone = zone;
2724                 status = compact_zone(&cc, NULL);
2725
2726                 if (status == COMPACT_SUCCESS) {
2727                         compaction_defer_reset(zone, cc.order, false);
2728                 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2729                         /*
2730                          * Buddy pages may become stranded on pcps that could
2731                          * otherwise coalesce on the zone's free area for
2732                          * order >= cc.order.  This is ratelimited by the
2733                          * upcoming deferral.
2734                          */
2735                         drain_all_pages(zone);
2736
2737                         /*
2738                          * We use sync migration mode here, so we defer like
2739                          * sync direct compaction does.
2740                          */
2741                         defer_compaction(zone, cc.order);
2742                 }
2743
2744                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2745                                      cc.total_migrate_scanned);
2746                 count_compact_events(KCOMPACTD_FREE_SCANNED,
2747                                      cc.total_free_scanned);
2748
2749                 VM_BUG_ON(!list_empty(&cc.freepages));
2750                 VM_BUG_ON(!list_empty(&cc.migratepages));
2751         }
2752
2753         /*
2754          * Regardless of success, we are done until woken up next. But remember
2755          * the requested order/highest_zoneidx in case it was higher/tighter
2756          * than our current ones
2757          */
2758         if (pgdat->kcompactd_max_order <= cc.order)
2759                 pgdat->kcompactd_max_order = 0;
2760         if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2761                 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2762 }
2763
2764 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2765 {
2766         if (!order)
2767                 return;
2768
2769         if (pgdat->kcompactd_max_order < order)
2770                 pgdat->kcompactd_max_order = order;
2771
2772         if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2773                 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2774
2775         /*
2776          * Pairs with implicit barrier in wait_event_freezable()
2777          * such that wakeups are not missed.
2778          */
2779         if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2780                 return;
2781
2782         if (!kcompactd_node_suitable(pgdat))
2783                 return;
2784
2785         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2786                                                         highest_zoneidx);
2787         wake_up_interruptible(&pgdat->kcompactd_wait);
2788 }
2789
2790 /*
2791  * The background compaction daemon, started as a kernel thread
2792  * from the init process.
2793  */
2794 static int kcompactd(void *p)
2795 {
2796         pg_data_t *pgdat = (pg_data_t*)p;
2797         struct task_struct *tsk = current;
2798         unsigned int proactive_defer = 0;
2799
2800         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2801
2802         if (!cpumask_empty(cpumask))
2803                 set_cpus_allowed_ptr(tsk, cpumask);
2804
2805         set_freezable();
2806
2807         pgdat->kcompactd_max_order = 0;
2808         pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2809
2810         while (!kthread_should_stop()) {
2811                 unsigned long pflags;
2812
2813                 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2814                 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2815                         kcompactd_work_requested(pgdat),
2816                         msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC))) {
2817
2818                         psi_memstall_enter(&pflags);
2819                         kcompactd_do_work(pgdat);
2820                         psi_memstall_leave(&pflags);
2821                         continue;
2822                 }
2823
2824                 /* kcompactd wait timeout */
2825                 if (should_proactive_compact_node(pgdat)) {
2826                         unsigned int prev_score, score;
2827
2828                         if (proactive_defer) {
2829                                 proactive_defer--;
2830                                 continue;
2831                         }
2832                         prev_score = fragmentation_score_node(pgdat);
2833                         proactive_compact_node(pgdat);
2834                         score = fragmentation_score_node(pgdat);
2835                         /*
2836                          * Defer proactive compaction if the fragmentation
2837                          * score did not go down i.e. no progress made.
2838                          */
2839                         proactive_defer = score < prev_score ?
2840                                         0 : 1 << COMPACT_MAX_DEFER_SHIFT;
2841                 }
2842         }
2843
2844         return 0;
2845 }
2846
2847 /*
2848  * This kcompactd start function will be called by init and node-hot-add.
2849  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2850  */
2851 int kcompactd_run(int nid)
2852 {
2853         pg_data_t *pgdat = NODE_DATA(nid);
2854         int ret = 0;
2855
2856         if (pgdat->kcompactd)
2857                 return 0;
2858
2859         pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2860         if (IS_ERR(pgdat->kcompactd)) {
2861                 pr_err("Failed to start kcompactd on node %d\n", nid);
2862                 ret = PTR_ERR(pgdat->kcompactd);
2863                 pgdat->kcompactd = NULL;
2864         }
2865         return ret;
2866 }
2867
2868 /*
2869  * Called by memory hotplug when all memory in a node is offlined. Caller must
2870  * hold mem_hotplug_begin/end().
2871  */
2872 void kcompactd_stop(int nid)
2873 {
2874         struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2875
2876         if (kcompactd) {
2877                 kthread_stop(kcompactd);
2878                 NODE_DATA(nid)->kcompactd = NULL;
2879         }
2880 }
2881
2882 /*
2883  * It's optimal to keep kcompactd on the same CPUs as their memory, but
2884  * not required for correctness. So if the last cpu in a node goes
2885  * away, we get changed to run anywhere: as the first one comes back,
2886  * restore their cpu bindings.
2887  */
2888 static int kcompactd_cpu_online(unsigned int cpu)
2889 {
2890         int nid;
2891
2892         for_each_node_state(nid, N_MEMORY) {
2893                 pg_data_t *pgdat = NODE_DATA(nid);
2894                 const struct cpumask *mask;
2895
2896                 mask = cpumask_of_node(pgdat->node_id);
2897
2898                 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2899                         /* One of our CPUs online: restore mask */
2900                         set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2901         }
2902         return 0;
2903 }
2904
2905 static int __init kcompactd_init(void)
2906 {
2907         int nid;
2908         int ret;
2909
2910         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2911                                         "mm/compaction:online",
2912                                         kcompactd_cpu_online, NULL);
2913         if (ret < 0) {
2914                 pr_err("kcompactd: failed to register hotplug callbacks.\n");
2915                 return ret;
2916         }
2917
2918         for_each_node_state(nid, N_MEMORY)
2919                 kcompactd_run(nid);
2920         return 0;
2921 }
2922 subsys_initcall(kcompactd_init)
2923
2924 #endif /* CONFIG_COMPACTION */