scsi: hpsa: correct device resets
[linux-2.6-microblaze.git] / lib / sort.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * A fast, small, non-recursive O(n log n) sort for the Linux kernel
4  *
5  * This performs n*log2(n) + 0.37*n + o(n) comparisons on average,
6  * and 1.5*n*log2(n) + O(n) in the (very contrived) worst case.
7  *
8  * Glibc qsort() manages n*log2(n) - 1.26*n for random inputs (1.63*n
9  * better) at the expense of stack usage and much larger code to avoid
10  * quicksort's O(n^2) worst case.
11  */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/types.h>
16 #include <linux/export.h>
17 #include <linux/sort.h>
18
19 /**
20  * is_aligned - is this pointer & size okay for word-wide copying?
21  * @base: pointer to data
22  * @size: size of each element
23  * @align: required alignment (typically 4 or 8)
24  *
25  * Returns true if elements can be copied using word loads and stores.
26  * The size must be a multiple of the alignment, and the base address must
27  * be if we do not have CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS.
28  *
29  * For some reason, gcc doesn't know to optimize "if (a & mask || b & mask)"
30  * to "if ((a | b) & mask)", so we do that by hand.
31  */
32 __attribute_const__ __always_inline
33 static bool is_aligned(const void *base, size_t size, unsigned char align)
34 {
35         unsigned char lsbits = (unsigned char)size;
36
37         (void)base;
38 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
39         lsbits |= (unsigned char)(uintptr_t)base;
40 #endif
41         return (lsbits & (align - 1)) == 0;
42 }
43
44 /**
45  * swap_words_32 - swap two elements in 32-bit chunks
46  * @a, @b: pointers to the elements
47  * @size: element size (must be a multiple of 4)
48  *
49  * Exchange the two objects in memory.  This exploits base+index addressing,
50  * which basically all CPUs have, to minimize loop overhead computations.
51  *
52  * For some reason, on x86 gcc 7.3.0 adds a redundant test of n at the
53  * bottom of the loop, even though the zero flag is stil valid from the
54  * subtract (since the intervening mov instructions don't alter the flags).
55  * Gcc 8.1.0 doesn't have that problem.
56  */
57 static void swap_words_32(void *a, void *b, size_t n)
58 {
59         do {
60                 u32 t = *(u32 *)(a + (n -= 4));
61                 *(u32 *)(a + n) = *(u32 *)(b + n);
62                 *(u32 *)(b + n) = t;
63         } while (n);
64 }
65
66 /**
67  * swap_words_64 - swap two elements in 64-bit chunks
68  * @a, @b: pointers to the elements
69  * @size: element size (must be a multiple of 8)
70  *
71  * Exchange the two objects in memory.  This exploits base+index
72  * addressing, which basically all CPUs have, to minimize loop overhead
73  * computations.
74  *
75  * We'd like to use 64-bit loads if possible.  If they're not, emulating
76  * one requires base+index+4 addressing which x86 has but most other
77  * processors do not.  If CONFIG_64BIT, we definitely have 64-bit loads,
78  * but it's possible to have 64-bit loads without 64-bit pointers (e.g.
79  * x32 ABI).  Are there any cases the kernel needs to worry about?
80  */
81 static void swap_words_64(void *a, void *b, size_t n)
82 {
83         do {
84 #ifdef CONFIG_64BIT
85                 u64 t = *(u64 *)(a + (n -= 8));
86                 *(u64 *)(a + n) = *(u64 *)(b + n);
87                 *(u64 *)(b + n) = t;
88 #else
89                 /* Use two 32-bit transfers to avoid base+index+4 addressing */
90                 u32 t = *(u32 *)(a + (n -= 4));
91                 *(u32 *)(a + n) = *(u32 *)(b + n);
92                 *(u32 *)(b + n) = t;
93
94                 t = *(u32 *)(a + (n -= 4));
95                 *(u32 *)(a + n) = *(u32 *)(b + n);
96                 *(u32 *)(b + n) = t;
97 #endif
98         } while (n);
99 }
100
101 /**
102  * swap_bytes - swap two elements a byte at a time
103  * @a, @b: pointers to the elements
104  * @size: element size
105  *
106  * This is the fallback if alignment doesn't allow using larger chunks.
107  */
108 static void swap_bytes(void *a, void *b, size_t n)
109 {
110         do {
111                 char t = ((char *)a)[--n];
112                 ((char *)a)[n] = ((char *)b)[n];
113                 ((char *)b)[n] = t;
114         } while (n);
115 }
116
117 typedef void (*swap_func_t)(void *a, void *b, int size);
118
119 /*
120  * The values are arbitrary as long as they can't be confused with
121  * a pointer, but small integers make for the smallest compare
122  * instructions.
123  */
124 #define SWAP_WORDS_64 (swap_func_t)0
125 #define SWAP_WORDS_32 (swap_func_t)1
126 #define SWAP_BYTES    (swap_func_t)2
127
128 /*
129  * The function pointer is last to make tail calls most efficient if the
130  * compiler decides not to inline this function.
131  */
132 static void do_swap(void *a, void *b, size_t size, swap_func_t swap_func)
133 {
134         if (swap_func == SWAP_WORDS_64)
135                 swap_words_64(a, b, size);
136         else if (swap_func == SWAP_WORDS_32)
137                 swap_words_32(a, b, size);
138         else if (swap_func == SWAP_BYTES)
139                 swap_bytes(a, b, size);
140         else
141                 swap_func(a, b, (int)size);
142 }
143
144 /**
145  * parent - given the offset of the child, find the offset of the parent.
146  * @i: the offset of the heap element whose parent is sought.  Non-zero.
147  * @lsbit: a precomputed 1-bit mask, equal to "size & -size"
148  * @size: size of each element
149  *
150  * In terms of array indexes, the parent of element j = @i/@size is simply
151  * (j-1)/2.  But when working in byte offsets, we can't use implicit
152  * truncation of integer divides.
153  *
154  * Fortunately, we only need one bit of the quotient, not the full divide.
155  * @size has a least significant bit.  That bit will be clear if @i is
156  * an even multiple of @size, and set if it's an odd multiple.
157  *
158  * Logically, we're doing "if (i & lsbit) i -= size;", but since the
159  * branch is unpredictable, it's done with a bit of clever branch-free
160  * code instead.
161  */
162 __attribute_const__ __always_inline
163 static size_t parent(size_t i, unsigned int lsbit, size_t size)
164 {
165         i -= size;
166         i -= size & -(i & lsbit);
167         return i / 2;
168 }
169
170 /**
171  * sort - sort an array of elements
172  * @base: pointer to data to sort
173  * @num: number of elements
174  * @size: size of each element
175  * @cmp_func: pointer to comparison function
176  * @swap_func: pointer to swap function or NULL
177  *
178  * This function does a heapsort on the given array.  You may provide
179  * a swap_func function if you need to do something more than a memory
180  * copy (e.g. fix up pointers or auxiliary data), but the built-in swap
181  * avoids a slow retpoline and so is significantly faster.
182  *
183  * Sorting time is O(n log n) both on average and worst-case. While
184  * quicksort is slightly faster on average, it suffers from exploitable
185  * O(n*n) worst-case behavior and extra memory requirements that make
186  * it less suitable for kernel use.
187  */
188 void sort(void *base, size_t num, size_t size,
189           int (*cmp_func)(const void *, const void *),
190           void (*swap_func)(void *, void *, int size))
191 {
192         /* pre-scale counters for performance */
193         size_t n = num * size, a = (num/2) * size;
194         const unsigned int lsbit = size & -size;  /* Used to find parent */
195
196         if (!a)         /* num < 2 || size == 0 */
197                 return;
198
199         if (!swap_func) {
200                 if (is_aligned(base, size, 8))
201                         swap_func = SWAP_WORDS_64;
202                 else if (is_aligned(base, size, 4))
203                         swap_func = SWAP_WORDS_32;
204                 else
205                         swap_func = SWAP_BYTES;
206         }
207
208         /*
209          * Loop invariants:
210          * 1. elements [a,n) satisfy the heap property (compare greater than
211          *    all of their children),
212          * 2. elements [n,num*size) are sorted, and
213          * 3. a <= b <= c <= d <= n (whenever they are valid).
214          */
215         for (;;) {
216                 size_t b, c, d;
217
218                 if (a)                  /* Building heap: sift down --a */
219                         a -= size;
220                 else if (n -= size)     /* Sorting: Extract root to --n */
221                         do_swap(base, base + n, size, swap_func);
222                 else                    /* Sort complete */
223                         break;
224
225                 /*
226                  * Sift element at "a" down into heap.  This is the
227                  * "bottom-up" variant, which significantly reduces
228                  * calls to cmp_func(): we find the sift-down path all
229                  * the way to the leaves (one compare per level), then
230                  * backtrack to find where to insert the target element.
231                  *
232                  * Because elements tend to sift down close to the leaves,
233                  * this uses fewer compares than doing two per level
234                  * on the way down.  (A bit more than half as many on
235                  * average, 3/4 worst-case.)
236                  */
237                 for (b = a; c = 2*b + size, (d = c + size) < n;)
238                         b = cmp_func(base + c, base + d) >= 0 ? c : d;
239                 if (d == n)     /* Special case last leaf with no sibling */
240                         b = c;
241
242                 /* Now backtrack from "b" to the correct location for "a" */
243                 while (b != a && cmp_func(base + a, base + b) >= 0)
244                         b = parent(b, lsbit, size);
245                 c = b;                  /* Where "a" belongs */
246                 while (b != a) {        /* Shift it into place */
247                         b = parent(b, lsbit, size);
248                         do_swap(base + b, base + c, size, swap_func);
249                 }
250         }
251 }
252 EXPORT_SYMBOL(sort);