Merge tag 'block-5.14-2021-07-24' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / lib / reed_solomon / reed_solomon.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic Reed Solomon encoder / decoder library
4  *
5  * Copyright (C) 2004 Thomas Gleixner (tglx@linutronix.de)
6  *
7  * Reed Solomon code lifted from reed solomon library written by Phil Karn
8  * Copyright 2002 Phil Karn, KA9Q
9  *
10  * Description:
11  *
12  * The generic Reed Solomon library provides runtime configurable
13  * encoding / decoding of RS codes.
14  *
15  * Each user must call init_rs to get a pointer to a rs_control structure
16  * for the given rs parameters. The control struct is unique per instance.
17  * It points to a codec which can be shared by multiple control structures.
18  * If a codec is newly allocated then the polynomial arrays for fast
19  * encoding / decoding are built. This can take some time so make sure not
20  * to call this function from a time critical path.  Usually a module /
21  * driver should initialize the necessary rs_control structure on module /
22  * driver init and release it on exit.
23  *
24  * The encoding puts the calculated syndrome into a given syndrome buffer.
25  *
26  * The decoding is a two step process. The first step calculates the
27  * syndrome over the received (data + syndrome) and calls the second stage,
28  * which does the decoding / error correction itself.  Many hw encoders
29  * provide a syndrome calculation over the received data + syndrome and can
30  * call the second stage directly.
31  */
32 #include <linux/errno.h>
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/module.h>
36 #include <linux/rslib.h>
37 #include <linux/slab.h>
38 #include <linux/mutex.h>
39
40 enum {
41         RS_DECODE_LAMBDA,
42         RS_DECODE_SYN,
43         RS_DECODE_B,
44         RS_DECODE_T,
45         RS_DECODE_OMEGA,
46         RS_DECODE_ROOT,
47         RS_DECODE_REG,
48         RS_DECODE_LOC,
49         RS_DECODE_NUM_BUFFERS
50 };
51
52 /* This list holds all currently allocated rs codec structures */
53 static LIST_HEAD(codec_list);
54 /* Protection for the list */
55 static DEFINE_MUTEX(rslistlock);
56
57 /**
58  * codec_init - Initialize a Reed-Solomon codec
59  * @symsize:    symbol size, bits (1-8)
60  * @gfpoly:     Field generator polynomial coefficients
61  * @gffunc:     Field generator function
62  * @fcr:        first root of RS code generator polynomial, index form
63  * @prim:       primitive element to generate polynomial roots
64  * @nroots:     RS code generator polynomial degree (number of roots)
65  * @gfp:        GFP_ flags for allocations
66  *
67  * Allocate a codec structure and the polynom arrays for faster
68  * en/decoding. Fill the arrays according to the given parameters.
69  */
70 static struct rs_codec *codec_init(int symsize, int gfpoly, int (*gffunc)(int),
71                                    int fcr, int prim, int nroots, gfp_t gfp)
72 {
73         int i, j, sr, root, iprim;
74         struct rs_codec *rs;
75
76         rs = kzalloc(sizeof(*rs), gfp);
77         if (!rs)
78                 return NULL;
79
80         INIT_LIST_HEAD(&rs->list);
81
82         rs->mm = symsize;
83         rs->nn = (1 << symsize) - 1;
84         rs->fcr = fcr;
85         rs->prim = prim;
86         rs->nroots = nroots;
87         rs->gfpoly = gfpoly;
88         rs->gffunc = gffunc;
89
90         /* Allocate the arrays */
91         rs->alpha_to = kmalloc_array(rs->nn + 1, sizeof(uint16_t), gfp);
92         if (rs->alpha_to == NULL)
93                 goto err;
94
95         rs->index_of = kmalloc_array(rs->nn + 1, sizeof(uint16_t), gfp);
96         if (rs->index_of == NULL)
97                 goto err;
98
99         rs->genpoly = kmalloc_array(rs->nroots + 1, sizeof(uint16_t), gfp);
100         if(rs->genpoly == NULL)
101                 goto err;
102
103         /* Generate Galois field lookup tables */
104         rs->index_of[0] = rs->nn;       /* log(zero) = -inf */
105         rs->alpha_to[rs->nn] = 0;       /* alpha**-inf = 0 */
106         if (gfpoly) {
107                 sr = 1;
108                 for (i = 0; i < rs->nn; i++) {
109                         rs->index_of[sr] = i;
110                         rs->alpha_to[i] = sr;
111                         sr <<= 1;
112                         if (sr & (1 << symsize))
113                                 sr ^= gfpoly;
114                         sr &= rs->nn;
115                 }
116         } else {
117                 sr = gffunc(0);
118                 for (i = 0; i < rs->nn; i++) {
119                         rs->index_of[sr] = i;
120                         rs->alpha_to[i] = sr;
121                         sr = gffunc(sr);
122                 }
123         }
124         /* If it's not primitive, exit */
125         if(sr != rs->alpha_to[0])
126                 goto err;
127
128         /* Find prim-th root of 1, used in decoding */
129         for(iprim = 1; (iprim % prim) != 0; iprim += rs->nn);
130         /* prim-th root of 1, index form */
131         rs->iprim = iprim / prim;
132
133         /* Form RS code generator polynomial from its roots */
134         rs->genpoly[0] = 1;
135         for (i = 0, root = fcr * prim; i < nroots; i++, root += prim) {
136                 rs->genpoly[i + 1] = 1;
137                 /* Multiply rs->genpoly[] by  @**(root + x) */
138                 for (j = i; j > 0; j--) {
139                         if (rs->genpoly[j] != 0) {
140                                 rs->genpoly[j] = rs->genpoly[j -1] ^
141                                         rs->alpha_to[rs_modnn(rs,
142                                         rs->index_of[rs->genpoly[j]] + root)];
143                         } else
144                                 rs->genpoly[j] = rs->genpoly[j - 1];
145                 }
146                 /* rs->genpoly[0] can never be zero */
147                 rs->genpoly[0] =
148                         rs->alpha_to[rs_modnn(rs,
149                                 rs->index_of[rs->genpoly[0]] + root)];
150         }
151         /* convert rs->genpoly[] to index form for quicker encoding */
152         for (i = 0; i <= nroots; i++)
153                 rs->genpoly[i] = rs->index_of[rs->genpoly[i]];
154
155         rs->users = 1;
156         list_add(&rs->list, &codec_list);
157         return rs;
158
159 err:
160         kfree(rs->genpoly);
161         kfree(rs->index_of);
162         kfree(rs->alpha_to);
163         kfree(rs);
164         return NULL;
165 }
166
167
168 /**
169  *  free_rs - Free the rs control structure
170  *  @rs:        The control structure which is not longer used by the
171  *              caller
172  *
173  * Free the control structure. If @rs is the last user of the associated
174  * codec, free the codec as well.
175  */
176 void free_rs(struct rs_control *rs)
177 {
178         struct rs_codec *cd;
179
180         if (!rs)
181                 return;
182
183         cd = rs->codec;
184         mutex_lock(&rslistlock);
185         cd->users--;
186         if(!cd->users) {
187                 list_del(&cd->list);
188                 kfree(cd->alpha_to);
189                 kfree(cd->index_of);
190                 kfree(cd->genpoly);
191                 kfree(cd);
192         }
193         mutex_unlock(&rslistlock);
194         kfree(rs);
195 }
196 EXPORT_SYMBOL_GPL(free_rs);
197
198 /**
199  * init_rs_internal - Allocate rs control, find a matching codec or allocate a new one
200  *  @symsize:   the symbol size (number of bits)
201  *  @gfpoly:    the extended Galois field generator polynomial coefficients,
202  *              with the 0th coefficient in the low order bit. The polynomial
203  *              must be primitive;
204  *  @gffunc:    pointer to function to generate the next field element,
205  *              or the multiplicative identity element if given 0.  Used
206  *              instead of gfpoly if gfpoly is 0
207  *  @fcr:       the first consecutive root of the rs code generator polynomial
208  *              in index form
209  *  @prim:      primitive element to generate polynomial roots
210  *  @nroots:    RS code generator polynomial degree (number of roots)
211  *  @gfp:       GFP_ flags for allocations
212  */
213 static struct rs_control *init_rs_internal(int symsize, int gfpoly,
214                                            int (*gffunc)(int), int fcr,
215                                            int prim, int nroots, gfp_t gfp)
216 {
217         struct list_head *tmp;
218         struct rs_control *rs;
219         unsigned int bsize;
220
221         /* Sanity checks */
222         if (symsize < 1)
223                 return NULL;
224         if (fcr < 0 || fcr >= (1<<symsize))
225                 return NULL;
226         if (prim <= 0 || prim >= (1<<symsize))
227                 return NULL;
228         if (nroots < 0 || nroots >= (1<<symsize))
229                 return NULL;
230
231         /*
232          * The decoder needs buffers in each control struct instance to
233          * avoid variable size or large fixed size allocations on
234          * stack. Size the buffers to arrays of [nroots + 1].
235          */
236         bsize = sizeof(uint16_t) * RS_DECODE_NUM_BUFFERS * (nroots + 1);
237         rs = kzalloc(sizeof(*rs) + bsize, gfp);
238         if (!rs)
239                 return NULL;
240
241         mutex_lock(&rslistlock);
242
243         /* Walk through the list and look for a matching entry */
244         list_for_each(tmp, &codec_list) {
245                 struct rs_codec *cd = list_entry(tmp, struct rs_codec, list);
246
247                 if (symsize != cd->mm)
248                         continue;
249                 if (gfpoly != cd->gfpoly)
250                         continue;
251                 if (gffunc != cd->gffunc)
252                         continue;
253                 if (fcr != cd->fcr)
254                         continue;
255                 if (prim != cd->prim)
256                         continue;
257                 if (nroots != cd->nroots)
258                         continue;
259                 /* We have a matching one already */
260                 cd->users++;
261                 rs->codec = cd;
262                 goto out;
263         }
264
265         /* Create a new one */
266         rs->codec = codec_init(symsize, gfpoly, gffunc, fcr, prim, nroots, gfp);
267         if (!rs->codec) {
268                 kfree(rs);
269                 rs = NULL;
270         }
271 out:
272         mutex_unlock(&rslistlock);
273         return rs;
274 }
275
276 /**
277  * init_rs_gfp - Create a RS control struct and initialize it
278  *  @symsize:   the symbol size (number of bits)
279  *  @gfpoly:    the extended Galois field generator polynomial coefficients,
280  *              with the 0th coefficient in the low order bit. The polynomial
281  *              must be primitive;
282  *  @fcr:       the first consecutive root of the rs code generator polynomial
283  *              in index form
284  *  @prim:      primitive element to generate polynomial roots
285  *  @nroots:    RS code generator polynomial degree (number of roots)
286  *  @gfp:       Memory allocation flags.
287  */
288 struct rs_control *init_rs_gfp(int symsize, int gfpoly, int fcr, int prim,
289                                int nroots, gfp_t gfp)
290 {
291         return init_rs_internal(symsize, gfpoly, NULL, fcr, prim, nroots, gfp);
292 }
293 EXPORT_SYMBOL_GPL(init_rs_gfp);
294
295 /**
296  * init_rs_non_canonical - Allocate rs control struct for fields with
297  *                         non-canonical representation
298  *  @symsize:   the symbol size (number of bits)
299  *  @gffunc:    pointer to function to generate the next field element,
300  *              or the multiplicative identity element if given 0.  Used
301  *              instead of gfpoly if gfpoly is 0
302  *  @fcr:       the first consecutive root of the rs code generator polynomial
303  *              in index form
304  *  @prim:      primitive element to generate polynomial roots
305  *  @nroots:    RS code generator polynomial degree (number of roots)
306  */
307 struct rs_control *init_rs_non_canonical(int symsize, int (*gffunc)(int),
308                                          int fcr, int prim, int nroots)
309 {
310         return init_rs_internal(symsize, 0, gffunc, fcr, prim, nroots,
311                                 GFP_KERNEL);
312 }
313 EXPORT_SYMBOL_GPL(init_rs_non_canonical);
314
315 #ifdef CONFIG_REED_SOLOMON_ENC8
316 /**
317  *  encode_rs8 - Calculate the parity for data values (8bit data width)
318  *  @rsc:       the rs control structure
319  *  @data:      data field of a given type
320  *  @len:       data length
321  *  @par:       parity data, must be initialized by caller (usually all 0)
322  *  @invmsk:    invert data mask (will be xored on data)
323  *
324  *  The parity uses a uint16_t data type to enable
325  *  symbol size > 8. The calling code must take care of encoding of the
326  *  syndrome result for storage itself.
327  */
328 int encode_rs8(struct rs_control *rsc, uint8_t *data, int len, uint16_t *par,
329                uint16_t invmsk)
330 {
331 #include "encode_rs.c"
332 }
333 EXPORT_SYMBOL_GPL(encode_rs8);
334 #endif
335
336 #ifdef CONFIG_REED_SOLOMON_DEC8
337 /**
338  *  decode_rs8 - Decode codeword (8bit data width)
339  *  @rsc:       the rs control structure
340  *  @data:      data field of a given type
341  *  @par:       received parity data field
342  *  @len:       data length
343  *  @s:         syndrome data field, must be in index form
344  *              (if NULL, syndrome is calculated)
345  *  @no_eras:   number of erasures
346  *  @eras_pos:  position of erasures, can be NULL
347  *  @invmsk:    invert data mask (will be xored on data, not on parity!)
348  *  @corr:      buffer to store correction bitmask on eras_pos
349  *
350  *  The syndrome and parity uses a uint16_t data type to enable
351  *  symbol size > 8. The calling code must take care of decoding of the
352  *  syndrome result and the received parity before calling this code.
353  *
354  *  Note: The rs_control struct @rsc contains buffers which are used for
355  *  decoding, so the caller has to ensure that decoder invocations are
356  *  serialized.
357  *
358  *  Returns the number of corrected symbols or -EBADMSG for uncorrectable
359  *  errors. The count includes errors in the parity.
360  */
361 int decode_rs8(struct rs_control *rsc, uint8_t *data, uint16_t *par, int len,
362                uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk,
363                uint16_t *corr)
364 {
365 #include "decode_rs.c"
366 }
367 EXPORT_SYMBOL_GPL(decode_rs8);
368 #endif
369
370 #ifdef CONFIG_REED_SOLOMON_ENC16
371 /**
372  *  encode_rs16 - Calculate the parity for data values (16bit data width)
373  *  @rsc:       the rs control structure
374  *  @data:      data field of a given type
375  *  @len:       data length
376  *  @par:       parity data, must be initialized by caller (usually all 0)
377  *  @invmsk:    invert data mask (will be xored on data, not on parity!)
378  *
379  *  Each field in the data array contains up to symbol size bits of valid data.
380  */
381 int encode_rs16(struct rs_control *rsc, uint16_t *data, int len, uint16_t *par,
382         uint16_t invmsk)
383 {
384 #include "encode_rs.c"
385 }
386 EXPORT_SYMBOL_GPL(encode_rs16);
387 #endif
388
389 #ifdef CONFIG_REED_SOLOMON_DEC16
390 /**
391  *  decode_rs16 - Decode codeword (16bit data width)
392  *  @rsc:       the rs control structure
393  *  @data:      data field of a given type
394  *  @par:       received parity data field
395  *  @len:       data length
396  *  @s:         syndrome data field, must be in index form
397  *              (if NULL, syndrome is calculated)
398  *  @no_eras:   number of erasures
399  *  @eras_pos:  position of erasures, can be NULL
400  *  @invmsk:    invert data mask (will be xored on data, not on parity!)
401  *  @corr:      buffer to store correction bitmask on eras_pos
402  *
403  *  Each field in the data array contains up to symbol size bits of valid data.
404  *
405  *  Note: The rc_control struct @rsc contains buffers which are used for
406  *  decoding, so the caller has to ensure that decoder invocations are
407  *  serialized.
408  *
409  *  Returns the number of corrected symbols or -EBADMSG for uncorrectable
410  *  errors. The count includes errors in the parity.
411  */
412 int decode_rs16(struct rs_control *rsc, uint16_t *data, uint16_t *par, int len,
413                 uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk,
414                 uint16_t *corr)
415 {
416 #include "decode_rs.c"
417 }
418 EXPORT_SYMBOL_GPL(decode_rs16);
419 #endif
420
421 MODULE_LICENSE("GPL");
422 MODULE_DESCRIPTION("Reed Solomon encoder/decoder");
423 MODULE_AUTHOR("Phil Karn, Thomas Gleixner");
424