Merge tag 'ntb-5.11' of git://github.com/jonmason/ntb
[linux-2.6-microblaze.git] / lib / mpi / mpih-div.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* mpihelp-div.c  -  MPI helper functions
3  *      Copyright (C) 1994, 1996 Free Software Foundation, Inc.
4  *      Copyright (C) 1998, 1999 Free Software Foundation, Inc.
5  *
6  * This file is part of GnuPG.
7  *
8  * Note: This code is heavily based on the GNU MP Library.
9  *       Actually it's the same code with only minor changes in the
10  *       way the data is stored; this is to support the abstraction
11  *       of an optional secure memory allocation which may be used
12  *       to avoid revealing of sensitive data due to paging etc.
13  *       The GNU MP Library itself is published under the LGPL;
14  *       however I decided to publish this code under the plain GPL.
15  */
16
17 #include "mpi-internal.h"
18 #include "longlong.h"
19
20 #ifndef UMUL_TIME
21 #define UMUL_TIME 1
22 #endif
23 #ifndef UDIV_TIME
24 #define UDIV_TIME UMUL_TIME
25 #endif
26
27
28 mpi_limb_t
29 mpihelp_mod_1(mpi_ptr_t dividend_ptr, mpi_size_t dividend_size,
30                         mpi_limb_t divisor_limb)
31 {
32         mpi_size_t i;
33         mpi_limb_t n1, n0, r;
34         mpi_limb_t dummy __maybe_unused;
35
36         /* Botch: Should this be handled at all?  Rely on callers?      */
37         if (!dividend_size)
38                 return 0;
39
40         /* If multiplication is much faster than division, and the
41          * dividend is large, pre-invert the divisor, and use
42          * only multiplications in the inner loop.
43          *
44          * This test should be read:
45          *       Does it ever help to use udiv_qrnnd_preinv?
46          *         && Does what we save compensate for the inversion overhead?
47          */
48         if (UDIV_TIME > (2 * UMUL_TIME + 6)
49                         && (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME) {
50                 int normalization_steps;
51
52                 normalization_steps = count_leading_zeros(divisor_limb);
53                 if (normalization_steps) {
54                         mpi_limb_t divisor_limb_inverted;
55
56                         divisor_limb <<= normalization_steps;
57
58                         /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The
59                          * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
60                          * most significant bit (with weight 2**N) implicit.
61                          *
62                          * Special case for DIVISOR_LIMB == 100...000.
63                          */
64                         if (!(divisor_limb << 1))
65                                 divisor_limb_inverted = ~(mpi_limb_t)0;
66                         else
67                                 udiv_qrnnd(divisor_limb_inverted, dummy,
68                                                 -divisor_limb, 0, divisor_limb);
69
70                         n1 = dividend_ptr[dividend_size - 1];
71                         r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps);
72
73                         /* Possible optimization:
74                          * if (r == 0
75                          * && divisor_limb > ((n1 << normalization_steps)
76                          *                     | (dividend_ptr[dividend_size - 2] >> ...)))
77                          * ...one division less...
78                          */
79                         for (i = dividend_size - 2; i >= 0; i--) {
80                                 n0 = dividend_ptr[i];
81                                 UDIV_QRNND_PREINV(dummy, r, r,
82                                                 ((n1 << normalization_steps)
83                                                  | (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))),
84                                                 divisor_limb, divisor_limb_inverted);
85                                 n1 = n0;
86                         }
87                         UDIV_QRNND_PREINV(dummy, r, r,
88                                         n1 << normalization_steps,
89                                         divisor_limb, divisor_limb_inverted);
90                         return r >> normalization_steps;
91                 } else {
92                         mpi_limb_t divisor_limb_inverted;
93
94                         /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The
95                          * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
96                          * most significant bit (with weight 2**N) implicit.
97                          *
98                          * Special case for DIVISOR_LIMB == 100...000.
99                          */
100                         if (!(divisor_limb << 1))
101                                 divisor_limb_inverted = ~(mpi_limb_t)0;
102                         else
103                                 udiv_qrnnd(divisor_limb_inverted, dummy,
104                                                 -divisor_limb, 0, divisor_limb);
105
106                         i = dividend_size - 1;
107                         r = dividend_ptr[i];
108
109                         if (r >= divisor_limb)
110                                 r = 0;
111                         else
112                                 i--;
113
114                         for ( ; i >= 0; i--) {
115                                 n0 = dividend_ptr[i];
116                                 UDIV_QRNND_PREINV(dummy, r, r,
117                                                 n0, divisor_limb, divisor_limb_inverted);
118                         }
119                         return r;
120                 }
121         } else {
122                 if (UDIV_NEEDS_NORMALIZATION) {
123                         int normalization_steps;
124
125                         normalization_steps = count_leading_zeros(divisor_limb);
126                         if (normalization_steps) {
127                                 divisor_limb <<= normalization_steps;
128
129                                 n1 = dividend_ptr[dividend_size - 1];
130                                 r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps);
131
132                                 /* Possible optimization:
133                                  * if (r == 0
134                                  * && divisor_limb > ((n1 << normalization_steps)
135                                  *                 | (dividend_ptr[dividend_size - 2] >> ...)))
136                                  * ...one division less...
137                                  */
138                                 for (i = dividend_size - 2; i >= 0; i--) {
139                                         n0 = dividend_ptr[i];
140                                         udiv_qrnnd(dummy, r, r,
141                                                 ((n1 << normalization_steps)
142                                                  | (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))),
143                                                 divisor_limb);
144                                         n1 = n0;
145                                 }
146                                 udiv_qrnnd(dummy, r, r,
147                                                 n1 << normalization_steps,
148                                                 divisor_limb);
149                                 return r >> normalization_steps;
150                         }
151                 }
152                 /* No normalization needed, either because udiv_qrnnd doesn't require
153                  * it, or because DIVISOR_LIMB is already normalized.
154                  */
155                 i = dividend_size - 1;
156                 r = dividend_ptr[i];
157
158                 if (r >= divisor_limb)
159                         r = 0;
160                 else
161                         i--;
162
163                 for (; i >= 0; i--) {
164                         n0 = dividend_ptr[i];
165                         udiv_qrnnd(dummy, r, r, n0, divisor_limb);
166                 }
167                 return r;
168         }
169 }
170
171 /* Divide num (NP/NSIZE) by den (DP/DSIZE) and write
172  * the NSIZE-DSIZE least significant quotient limbs at QP
173  * and the DSIZE long remainder at NP.  If QEXTRA_LIMBS is
174  * non-zero, generate that many fraction bits and append them after the
175  * other quotient limbs.
176  * Return the most significant limb of the quotient, this is always 0 or 1.
177  *
178  * Preconditions:
179  * 0. NSIZE >= DSIZE.
180  * 1. The most significant bit of the divisor must be set.
181  * 2. QP must either not overlap with the input operands at all, or
182  *    QP + DSIZE >= NP must hold true.  (This means that it's
183  *    possible to put the quotient in the high part of NUM, right after the
184  *    remainder in NUM.
185  * 3. NSIZE >= DSIZE, even if QEXTRA_LIMBS is non-zero.
186  */
187
188 mpi_limb_t
189 mpihelp_divrem(mpi_ptr_t qp, mpi_size_t qextra_limbs,
190                mpi_ptr_t np, mpi_size_t nsize, mpi_ptr_t dp, mpi_size_t dsize)
191 {
192         mpi_limb_t most_significant_q_limb = 0;
193
194         switch (dsize) {
195         case 0:
196                 /* We are asked to divide by zero, so go ahead and do it!  (To make
197                    the compiler not remove this statement, return the value.)  */
198                 /*
199                  * existing clients of this function have been modified
200                  * not to call it with dsize == 0, so this should not happen
201                  */
202                 return 1 / dsize;
203
204         case 1:
205                 {
206                         mpi_size_t i;
207                         mpi_limb_t n1;
208                         mpi_limb_t d;
209
210                         d = dp[0];
211                         n1 = np[nsize - 1];
212
213                         if (n1 >= d) {
214                                 n1 -= d;
215                                 most_significant_q_limb = 1;
216                         }
217
218                         qp += qextra_limbs;
219                         for (i = nsize - 2; i >= 0; i--)
220                                 udiv_qrnnd(qp[i], n1, n1, np[i], d);
221                         qp -= qextra_limbs;
222
223                         for (i = qextra_limbs - 1; i >= 0; i--)
224                                 udiv_qrnnd(qp[i], n1, n1, 0, d);
225
226                         np[0] = n1;
227                 }
228                 break;
229
230         case 2:
231                 {
232                         mpi_size_t i;
233                         mpi_limb_t n1, n0, n2;
234                         mpi_limb_t d1, d0;
235
236                         np += nsize - 2;
237                         d1 = dp[1];
238                         d0 = dp[0];
239                         n1 = np[1];
240                         n0 = np[0];
241
242                         if (n1 >= d1 && (n1 > d1 || n0 >= d0)) {
243                                 sub_ddmmss(n1, n0, n1, n0, d1, d0);
244                                 most_significant_q_limb = 1;
245                         }
246
247                         for (i = qextra_limbs + nsize - 2 - 1; i >= 0; i--) {
248                                 mpi_limb_t q;
249                                 mpi_limb_t r;
250
251                                 if (i >= qextra_limbs)
252                                         np--;
253                                 else
254                                         np[0] = 0;
255
256                                 if (n1 == d1) {
257                                         /* Q should be either 111..111 or 111..110.  Need special
258                                          * treatment of this rare case as normal division would
259                                          * give overflow.  */
260                                         q = ~(mpi_limb_t) 0;
261
262                                         r = n0 + d1;
263                                         if (r < d1) {   /* Carry in the addition? */
264                                                 add_ssaaaa(n1, n0, r - d0,
265                                                            np[0], 0, d0);
266                                                 qp[i] = q;
267                                                 continue;
268                                         }
269                                         n1 = d0 - (d0 != 0 ? 1 : 0);
270                                         n0 = -d0;
271                                 } else {
272                                         udiv_qrnnd(q, r, n1, n0, d1);
273                                         umul_ppmm(n1, n0, d0, q);
274                                 }
275
276                                 n2 = np[0];
277 q_test:
278                                 if (n1 > r || (n1 == r && n0 > n2)) {
279                                         /* The estimated Q was too large.  */
280                                         q--;
281                                         sub_ddmmss(n1, n0, n1, n0, 0, d0);
282                                         r += d1;
283                                         if (r >= d1)    /* If not carry, test Q again.  */
284                                                 goto q_test;
285                                 }
286
287                                 qp[i] = q;
288                                 sub_ddmmss(n1, n0, r, n2, n1, n0);
289                         }
290                         np[1] = n1;
291                         np[0] = n0;
292                 }
293                 break;
294
295         default:
296                 {
297                         mpi_size_t i;
298                         mpi_limb_t dX, d1, n0;
299
300                         np += nsize - dsize;
301                         dX = dp[dsize - 1];
302                         d1 = dp[dsize - 2];
303                         n0 = np[dsize - 1];
304
305                         if (n0 >= dX) {
306                                 if (n0 > dX
307                                     || mpihelp_cmp(np, dp, dsize - 1) >= 0) {
308                                         mpihelp_sub_n(np, np, dp, dsize);
309                                         n0 = np[dsize - 1];
310                                         most_significant_q_limb = 1;
311                                 }
312                         }
313
314                         for (i = qextra_limbs + nsize - dsize - 1; i >= 0; i--) {
315                                 mpi_limb_t q;
316                                 mpi_limb_t n1, n2;
317                                 mpi_limb_t cy_limb;
318
319                                 if (i >= qextra_limbs) {
320                                         np--;
321                                         n2 = np[dsize];
322                                 } else {
323                                         n2 = np[dsize - 1];
324                                         MPN_COPY_DECR(np + 1, np, dsize - 1);
325                                         np[0] = 0;
326                                 }
327
328                                 if (n0 == dX) {
329                                         /* This might over-estimate q, but it's probably not worth
330                                          * the extra code here to find out.  */
331                                         q = ~(mpi_limb_t) 0;
332                                 } else {
333                                         mpi_limb_t r;
334
335                                         udiv_qrnnd(q, r, n0, np[dsize - 1], dX);
336                                         umul_ppmm(n1, n0, d1, q);
337
338                                         while (n1 > r
339                                                || (n1 == r
340                                                    && n0 > np[dsize - 2])) {
341                                                 q--;
342                                                 r += dX;
343                                                 if (r < dX)     /* I.e. "carry in previous addition?" */
344                                                         break;
345                                                 n1 -= n0 < d1;
346                                                 n0 -= d1;
347                                         }
348                                 }
349
350                                 /* Possible optimization: We already have (q * n0) and (1 * n1)
351                                  * after the calculation of q.  Taking advantage of that, we
352                                  * could make this loop make two iterations less.  */
353                                 cy_limb = mpihelp_submul_1(np, dp, dsize, q);
354
355                                 if (n2 != cy_limb) {
356                                         mpihelp_add_n(np, np, dp, dsize);
357                                         q--;
358                                 }
359
360                                 qp[i] = q;
361                                 n0 = np[dsize - 1];
362                         }
363                 }
364         }
365
366         return most_significant_q_limb;
367 }
368
369 /****************
370  * Divide (DIVIDEND_PTR,,DIVIDEND_SIZE) by DIVISOR_LIMB.
371  * Write DIVIDEND_SIZE limbs of quotient at QUOT_PTR.
372  * Return the single-limb remainder.
373  * There are no constraints on the value of the divisor.
374  *
375  * QUOT_PTR and DIVIDEND_PTR might point to the same limb.
376  */
377
378 mpi_limb_t
379 mpihelp_divmod_1(mpi_ptr_t quot_ptr,
380                 mpi_ptr_t dividend_ptr, mpi_size_t dividend_size,
381                 mpi_limb_t divisor_limb)
382 {
383         mpi_size_t i;
384         mpi_limb_t n1, n0, r;
385         mpi_limb_t dummy __maybe_unused;
386
387         if (!dividend_size)
388                 return 0;
389
390         /* If multiplication is much faster than division, and the
391          * dividend is large, pre-invert the divisor, and use
392          * only multiplications in the inner loop.
393          *
394          * This test should be read:
395          * Does it ever help to use udiv_qrnnd_preinv?
396          * && Does what we save compensate for the inversion overhead?
397          */
398         if (UDIV_TIME > (2 * UMUL_TIME + 6)
399                         && (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME) {
400                 int normalization_steps;
401
402                 normalization_steps = count_leading_zeros(divisor_limb);
403                 if (normalization_steps) {
404                         mpi_limb_t divisor_limb_inverted;
405
406                         divisor_limb <<= normalization_steps;
407
408                         /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The
409                          * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
410                          * most significant bit (with weight 2**N) implicit.
411                          */
412                         /* Special case for DIVISOR_LIMB == 100...000.  */
413                         if (!(divisor_limb << 1))
414                                 divisor_limb_inverted = ~(mpi_limb_t)0;
415                         else
416                                 udiv_qrnnd(divisor_limb_inverted, dummy,
417                                                 -divisor_limb, 0, divisor_limb);
418
419                         n1 = dividend_ptr[dividend_size - 1];
420                         r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps);
421
422                         /* Possible optimization:
423                          * if (r == 0
424                          * && divisor_limb > ((n1 << normalization_steps)
425                          *                     | (dividend_ptr[dividend_size - 2] >> ...)))
426                          * ...one division less...
427                          */
428                         for (i = dividend_size - 2; i >= 0; i--) {
429                                 n0 = dividend_ptr[i];
430                                 UDIV_QRNND_PREINV(quot_ptr[i + 1], r, r,
431                                                 ((n1 << normalization_steps)
432                                                  | (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))),
433                                                 divisor_limb, divisor_limb_inverted);
434                                 n1 = n0;
435                         }
436                         UDIV_QRNND_PREINV(quot_ptr[0], r, r,
437                                         n1 << normalization_steps,
438                                         divisor_limb, divisor_limb_inverted);
439                         return r >> normalization_steps;
440                 } else {
441                         mpi_limb_t divisor_limb_inverted;
442
443                         /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The
444                          * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
445                          * most significant bit (with weight 2**N) implicit.
446                          */
447                         /* Special case for DIVISOR_LIMB == 100...000.  */
448                         if (!(divisor_limb << 1))
449                                 divisor_limb_inverted = ~(mpi_limb_t) 0;
450                         else
451                                 udiv_qrnnd(divisor_limb_inverted, dummy,
452                                                 -divisor_limb, 0, divisor_limb);
453
454                         i = dividend_size - 1;
455                         r = dividend_ptr[i];
456
457                         if (r >= divisor_limb)
458                                 r = 0;
459                         else
460                                 quot_ptr[i--] = 0;
461
462                         for ( ; i >= 0; i--) {
463                                 n0 = dividend_ptr[i];
464                                 UDIV_QRNND_PREINV(quot_ptr[i], r, r,
465                                                 n0, divisor_limb, divisor_limb_inverted);
466                         }
467                         return r;
468                 }
469         } else {
470                 if (UDIV_NEEDS_NORMALIZATION) {
471                         int normalization_steps;
472
473                         normalization_steps = count_leading_zeros(divisor_limb);
474                         if (normalization_steps) {
475                                 divisor_limb <<= normalization_steps;
476
477                                 n1 = dividend_ptr[dividend_size - 1];
478                                 r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps);
479
480                                 /* Possible optimization:
481                                  * if (r == 0
482                                  * && divisor_limb > ((n1 << normalization_steps)
483                                  *                 | (dividend_ptr[dividend_size - 2] >> ...)))
484                                  * ...one division less...
485                                  */
486                                 for (i = dividend_size - 2; i >= 0; i--) {
487                                         n0 = dividend_ptr[i];
488                                         udiv_qrnnd(quot_ptr[i + 1], r, r,
489                                                 ((n1 << normalization_steps)
490                                                  | (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))),
491                                                 divisor_limb);
492                                         n1 = n0;
493                                 }
494                                 udiv_qrnnd(quot_ptr[0], r, r,
495                                                 n1 << normalization_steps,
496                                                 divisor_limb);
497                                 return r >> normalization_steps;
498                         }
499                 }
500                 /* No normalization needed, either because udiv_qrnnd doesn't require
501                  * it, or because DIVISOR_LIMB is already normalized.
502                  */
503                 i = dividend_size - 1;
504                 r = dividend_ptr[i];
505
506                 if (r >= divisor_limb)
507                         r = 0;
508                 else
509                         quot_ptr[i--] = 0;
510
511                 for (; i >= 0; i--) {
512                         n0 = dividend_ptr[i];
513                         udiv_qrnnd(quot_ptr[i], r, r, n0, divisor_limb);
514                 }
515                 return r;
516         }
517 }