Merge tag 'ovl-update-6.0' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/vfs
[linux-2.6-microblaze.git] / lib / iov_iter.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <crypto/hash.h>
3 #include <linux/export.h>
4 #include <linux/bvec.h>
5 #include <linux/fault-inject-usercopy.h>
6 #include <linux/uio.h>
7 #include <linux/pagemap.h>
8 #include <linux/highmem.h>
9 #include <linux/slab.h>
10 #include <linux/vmalloc.h>
11 #include <linux/splice.h>
12 #include <linux/compat.h>
13 #include <net/checksum.h>
14 #include <linux/scatterlist.h>
15 #include <linux/instrumented.h>
16
17 #define PIPE_PARANOIA /* for now */
18
19 /* covers iovec and kvec alike */
20 #define iterate_iovec(i, n, base, len, off, __p, STEP) {        \
21         size_t off = 0;                                         \
22         size_t skip = i->iov_offset;                            \
23         do {                                                    \
24                 len = min(n, __p->iov_len - skip);              \
25                 if (likely(len)) {                              \
26                         base = __p->iov_base + skip;            \
27                         len -= (STEP);                          \
28                         off += len;                             \
29                         skip += len;                            \
30                         n -= len;                               \
31                         if (skip < __p->iov_len)                \
32                                 break;                          \
33                 }                                               \
34                 __p++;                                          \
35                 skip = 0;                                       \
36         } while (n);                                            \
37         i->iov_offset = skip;                                   \
38         n = off;                                                \
39 }
40
41 #define iterate_bvec(i, n, base, len, off, p, STEP) {           \
42         size_t off = 0;                                         \
43         unsigned skip = i->iov_offset;                          \
44         while (n) {                                             \
45                 unsigned offset = p->bv_offset + skip;          \
46                 unsigned left;                                  \
47                 void *kaddr = kmap_local_page(p->bv_page +      \
48                                         offset / PAGE_SIZE);    \
49                 base = kaddr + offset % PAGE_SIZE;              \
50                 len = min(min(n, (size_t)(p->bv_len - skip)),   \
51                      (size_t)(PAGE_SIZE - offset % PAGE_SIZE)); \
52                 left = (STEP);                                  \
53                 kunmap_local(kaddr);                            \
54                 len -= left;                                    \
55                 off += len;                                     \
56                 skip += len;                                    \
57                 if (skip == p->bv_len) {                        \
58                         skip = 0;                               \
59                         p++;                                    \
60                 }                                               \
61                 n -= len;                                       \
62                 if (left)                                       \
63                         break;                                  \
64         }                                                       \
65         i->iov_offset = skip;                                   \
66         n = off;                                                \
67 }
68
69 #define iterate_xarray(i, n, base, len, __off, STEP) {          \
70         __label__ __out;                                        \
71         size_t __off = 0;                                       \
72         struct folio *folio;                                    \
73         loff_t start = i->xarray_start + i->iov_offset;         \
74         pgoff_t index = start / PAGE_SIZE;                      \
75         XA_STATE(xas, i->xarray, index);                        \
76                                                                 \
77         len = PAGE_SIZE - offset_in_page(start);                \
78         rcu_read_lock();                                        \
79         xas_for_each(&xas, folio, ULONG_MAX) {                  \
80                 unsigned left;                                  \
81                 size_t offset;                                  \
82                 if (xas_retry(&xas, folio))                     \
83                         continue;                               \
84                 if (WARN_ON(xa_is_value(folio)))                \
85                         break;                                  \
86                 if (WARN_ON(folio_test_hugetlb(folio)))         \
87                         break;                                  \
88                 offset = offset_in_folio(folio, start + __off); \
89                 while (offset < folio_size(folio)) {            \
90                         base = kmap_local_folio(folio, offset); \
91                         len = min(n, len);                      \
92                         left = (STEP);                          \
93                         kunmap_local(base);                     \
94                         len -= left;                            \
95                         __off += len;                           \
96                         n -= len;                               \
97                         if (left || n == 0)                     \
98                                 goto __out;                     \
99                         offset += len;                          \
100                         len = PAGE_SIZE;                        \
101                 }                                               \
102         }                                                       \
103 __out:                                                          \
104         rcu_read_unlock();                                      \
105         i->iov_offset += __off;                                 \
106         n = __off;                                              \
107 }
108
109 #define __iterate_and_advance(i, n, base, len, off, I, K) {     \
110         if (unlikely(i->count < n))                             \
111                 n = i->count;                                   \
112         if (likely(n)) {                                        \
113                 if (likely(iter_is_iovec(i))) {                 \
114                         const struct iovec *iov = i->iov;       \
115                         void __user *base;                      \
116                         size_t len;                             \
117                         iterate_iovec(i, n, base, len, off,     \
118                                                 iov, (I))       \
119                         i->nr_segs -= iov - i->iov;             \
120                         i->iov = iov;                           \
121                 } else if (iov_iter_is_bvec(i)) {               \
122                         const struct bio_vec *bvec = i->bvec;   \
123                         void *base;                             \
124                         size_t len;                             \
125                         iterate_bvec(i, n, base, len, off,      \
126                                                 bvec, (K))      \
127                         i->nr_segs -= bvec - i->bvec;           \
128                         i->bvec = bvec;                         \
129                 } else if (iov_iter_is_kvec(i)) {               \
130                         const struct kvec *kvec = i->kvec;      \
131                         void *base;                             \
132                         size_t len;                             \
133                         iterate_iovec(i, n, base, len, off,     \
134                                                 kvec, (K))      \
135                         i->nr_segs -= kvec - i->kvec;           \
136                         i->kvec = kvec;                         \
137                 } else if (iov_iter_is_xarray(i)) {             \
138                         void *base;                             \
139                         size_t len;                             \
140                         iterate_xarray(i, n, base, len, off,    \
141                                                         (K))    \
142                 }                                               \
143                 i->count -= n;                                  \
144         }                                                       \
145 }
146 #define iterate_and_advance(i, n, base, len, off, I, K) \
147         __iterate_and_advance(i, n, base, len, off, I, ((void)(K),0))
148
149 static int copyout(void __user *to, const void *from, size_t n)
150 {
151         if (should_fail_usercopy())
152                 return n;
153         if (access_ok(to, n)) {
154                 instrument_copy_to_user(to, from, n);
155                 n = raw_copy_to_user(to, from, n);
156         }
157         return n;
158 }
159
160 static int copyin(void *to, const void __user *from, size_t n)
161 {
162         if (should_fail_usercopy())
163                 return n;
164         if (access_ok(from, n)) {
165                 instrument_copy_from_user(to, from, n);
166                 n = raw_copy_from_user(to, from, n);
167         }
168         return n;
169 }
170
171 #ifdef PIPE_PARANOIA
172 static bool sanity(const struct iov_iter *i)
173 {
174         struct pipe_inode_info *pipe = i->pipe;
175         unsigned int p_head = pipe->head;
176         unsigned int p_tail = pipe->tail;
177         unsigned int p_mask = pipe->ring_size - 1;
178         unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
179         unsigned int i_head = i->head;
180         unsigned int idx;
181
182         if (i->iov_offset) {
183                 struct pipe_buffer *p;
184                 if (unlikely(p_occupancy == 0))
185                         goto Bad;       // pipe must be non-empty
186                 if (unlikely(i_head != p_head - 1))
187                         goto Bad;       // must be at the last buffer...
188
189                 p = &pipe->bufs[i_head & p_mask];
190                 if (unlikely(p->offset + p->len != i->iov_offset))
191                         goto Bad;       // ... at the end of segment
192         } else {
193                 if (i_head != p_head)
194                         goto Bad;       // must be right after the last buffer
195         }
196         return true;
197 Bad:
198         printk(KERN_ERR "idx = %d, offset = %zd\n", i_head, i->iov_offset);
199         printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
200                         p_head, p_tail, pipe->ring_size);
201         for (idx = 0; idx < pipe->ring_size; idx++)
202                 printk(KERN_ERR "[%p %p %d %d]\n",
203                         pipe->bufs[idx].ops,
204                         pipe->bufs[idx].page,
205                         pipe->bufs[idx].offset,
206                         pipe->bufs[idx].len);
207         WARN_ON(1);
208         return false;
209 }
210 #else
211 #define sanity(i) true
212 #endif
213
214 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
215                          struct iov_iter *i)
216 {
217         struct pipe_inode_info *pipe = i->pipe;
218         struct pipe_buffer *buf;
219         unsigned int p_tail = pipe->tail;
220         unsigned int p_mask = pipe->ring_size - 1;
221         unsigned int i_head = i->head;
222         size_t off;
223
224         if (unlikely(bytes > i->count))
225                 bytes = i->count;
226
227         if (unlikely(!bytes))
228                 return 0;
229
230         if (!sanity(i))
231                 return 0;
232
233         off = i->iov_offset;
234         buf = &pipe->bufs[i_head & p_mask];
235         if (off) {
236                 if (offset == off && buf->page == page) {
237                         /* merge with the last one */
238                         buf->len += bytes;
239                         i->iov_offset += bytes;
240                         goto out;
241                 }
242                 i_head++;
243                 buf = &pipe->bufs[i_head & p_mask];
244         }
245         if (pipe_full(i_head, p_tail, pipe->max_usage))
246                 return 0;
247
248         buf->ops = &page_cache_pipe_buf_ops;
249         buf->flags = 0;
250         get_page(page);
251         buf->page = page;
252         buf->offset = offset;
253         buf->len = bytes;
254
255         pipe->head = i_head + 1;
256         i->iov_offset = offset + bytes;
257         i->head = i_head;
258 out:
259         i->count -= bytes;
260         return bytes;
261 }
262
263 /*
264  * fault_in_iov_iter_readable - fault in iov iterator for reading
265  * @i: iterator
266  * @size: maximum length
267  *
268  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
269  * @size.  For each iovec, fault in each page that constitutes the iovec.
270  *
271  * Returns the number of bytes not faulted in (like copy_to_user() and
272  * copy_from_user()).
273  *
274  * Always returns 0 for non-userspace iterators.
275  */
276 size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
277 {
278         if (iter_is_iovec(i)) {
279                 size_t count = min(size, iov_iter_count(i));
280                 const struct iovec *p;
281                 size_t skip;
282
283                 size -= count;
284                 for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
285                         size_t len = min(count, p->iov_len - skip);
286                         size_t ret;
287
288                         if (unlikely(!len))
289                                 continue;
290                         ret = fault_in_readable(p->iov_base + skip, len);
291                         count -= len - ret;
292                         if (ret)
293                                 break;
294                 }
295                 return count + size;
296         }
297         return 0;
298 }
299 EXPORT_SYMBOL(fault_in_iov_iter_readable);
300
301 /*
302  * fault_in_iov_iter_writeable - fault in iov iterator for writing
303  * @i: iterator
304  * @size: maximum length
305  *
306  * Faults in the iterator using get_user_pages(), i.e., without triggering
307  * hardware page faults.  This is primarily useful when we already know that
308  * some or all of the pages in @i aren't in memory.
309  *
310  * Returns the number of bytes not faulted in, like copy_to_user() and
311  * copy_from_user().
312  *
313  * Always returns 0 for non-user-space iterators.
314  */
315 size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size)
316 {
317         if (iter_is_iovec(i)) {
318                 size_t count = min(size, iov_iter_count(i));
319                 const struct iovec *p;
320                 size_t skip;
321
322                 size -= count;
323                 for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
324                         size_t len = min(count, p->iov_len - skip);
325                         size_t ret;
326
327                         if (unlikely(!len))
328                                 continue;
329                         ret = fault_in_safe_writeable(p->iov_base + skip, len);
330                         count -= len - ret;
331                         if (ret)
332                                 break;
333                 }
334                 return count + size;
335         }
336         return 0;
337 }
338 EXPORT_SYMBOL(fault_in_iov_iter_writeable);
339
340 void iov_iter_init(struct iov_iter *i, unsigned int direction,
341                         const struct iovec *iov, unsigned long nr_segs,
342                         size_t count)
343 {
344         WARN_ON(direction & ~(READ | WRITE));
345         *i = (struct iov_iter) {
346                 .iter_type = ITER_IOVEC,
347                 .nofault = false,
348                 .data_source = direction,
349                 .iov = iov,
350                 .nr_segs = nr_segs,
351                 .iov_offset = 0,
352                 .count = count
353         };
354 }
355 EXPORT_SYMBOL(iov_iter_init);
356
357 static inline bool allocated(struct pipe_buffer *buf)
358 {
359         return buf->ops == &default_pipe_buf_ops;
360 }
361
362 static inline void data_start(const struct iov_iter *i,
363                               unsigned int *iter_headp, size_t *offp)
364 {
365         unsigned int p_mask = i->pipe->ring_size - 1;
366         unsigned int iter_head = i->head;
367         size_t off = i->iov_offset;
368
369         if (off && (!allocated(&i->pipe->bufs[iter_head & p_mask]) ||
370                     off == PAGE_SIZE)) {
371                 iter_head++;
372                 off = 0;
373         }
374         *iter_headp = iter_head;
375         *offp = off;
376 }
377
378 static size_t push_pipe(struct iov_iter *i, size_t size,
379                         int *iter_headp, size_t *offp)
380 {
381         struct pipe_inode_info *pipe = i->pipe;
382         unsigned int p_tail = pipe->tail;
383         unsigned int p_mask = pipe->ring_size - 1;
384         unsigned int iter_head;
385         size_t off;
386         ssize_t left;
387
388         if (unlikely(size > i->count))
389                 size = i->count;
390         if (unlikely(!size))
391                 return 0;
392
393         left = size;
394         data_start(i, &iter_head, &off);
395         *iter_headp = iter_head;
396         *offp = off;
397         if (off) {
398                 left -= PAGE_SIZE - off;
399                 if (left <= 0) {
400                         pipe->bufs[iter_head & p_mask].len += size;
401                         return size;
402                 }
403                 pipe->bufs[iter_head & p_mask].len = PAGE_SIZE;
404                 iter_head++;
405         }
406         while (!pipe_full(iter_head, p_tail, pipe->max_usage)) {
407                 struct pipe_buffer *buf = &pipe->bufs[iter_head & p_mask];
408                 struct page *page = alloc_page(GFP_USER);
409                 if (!page)
410                         break;
411
412                 buf->ops = &default_pipe_buf_ops;
413                 buf->flags = 0;
414                 buf->page = page;
415                 buf->offset = 0;
416                 buf->len = min_t(ssize_t, left, PAGE_SIZE);
417                 left -= buf->len;
418                 iter_head++;
419                 pipe->head = iter_head;
420
421                 if (left == 0)
422                         return size;
423         }
424         return size - left;
425 }
426
427 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
428                                 struct iov_iter *i)
429 {
430         struct pipe_inode_info *pipe = i->pipe;
431         unsigned int p_mask = pipe->ring_size - 1;
432         unsigned int i_head;
433         size_t n, off;
434
435         if (!sanity(i))
436                 return 0;
437
438         bytes = n = push_pipe(i, bytes, &i_head, &off);
439         if (unlikely(!n))
440                 return 0;
441         do {
442                 size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
443                 memcpy_to_page(pipe->bufs[i_head & p_mask].page, off, addr, chunk);
444                 i->head = i_head;
445                 i->iov_offset = off + chunk;
446                 n -= chunk;
447                 addr += chunk;
448                 off = 0;
449                 i_head++;
450         } while (n);
451         i->count -= bytes;
452         return bytes;
453 }
454
455 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
456                               __wsum sum, size_t off)
457 {
458         __wsum next = csum_partial_copy_nocheck(from, to, len);
459         return csum_block_add(sum, next, off);
460 }
461
462 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
463                                          struct iov_iter *i, __wsum *sump)
464 {
465         struct pipe_inode_info *pipe = i->pipe;
466         unsigned int p_mask = pipe->ring_size - 1;
467         __wsum sum = *sump;
468         size_t off = 0;
469         unsigned int i_head;
470         size_t r;
471
472         if (!sanity(i))
473                 return 0;
474
475         bytes = push_pipe(i, bytes, &i_head, &r);
476         while (bytes) {
477                 size_t chunk = min_t(size_t, bytes, PAGE_SIZE - r);
478                 char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page);
479                 sum = csum_and_memcpy(p + r, addr + off, chunk, sum, off);
480                 kunmap_local(p);
481                 i->head = i_head;
482                 i->iov_offset = r + chunk;
483                 bytes -= chunk;
484                 off += chunk;
485                 r = 0;
486                 i_head++;
487         }
488         *sump = sum;
489         i->count -= off;
490         return off;
491 }
492
493 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
494 {
495         if (unlikely(iov_iter_is_pipe(i)))
496                 return copy_pipe_to_iter(addr, bytes, i);
497         if (iter_is_iovec(i))
498                 might_fault();
499         iterate_and_advance(i, bytes, base, len, off,
500                 copyout(base, addr + off, len),
501                 memcpy(base, addr + off, len)
502         )
503
504         return bytes;
505 }
506 EXPORT_SYMBOL(_copy_to_iter);
507
508 #ifdef CONFIG_ARCH_HAS_COPY_MC
509 static int copyout_mc(void __user *to, const void *from, size_t n)
510 {
511         if (access_ok(to, n)) {
512                 instrument_copy_to_user(to, from, n);
513                 n = copy_mc_to_user((__force void *) to, from, n);
514         }
515         return n;
516 }
517
518 static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
519                                 struct iov_iter *i)
520 {
521         struct pipe_inode_info *pipe = i->pipe;
522         unsigned int p_mask = pipe->ring_size - 1;
523         unsigned int i_head;
524         unsigned int valid = pipe->head;
525         size_t n, off, xfer = 0;
526
527         if (!sanity(i))
528                 return 0;
529
530         n = push_pipe(i, bytes, &i_head, &off);
531         while (n) {
532                 size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
533                 char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page);
534                 unsigned long rem;
535                 rem = copy_mc_to_kernel(p + off, addr + xfer, chunk);
536                 chunk -= rem;
537                 kunmap_local(p);
538                 if (chunk) {
539                         i->head = i_head;
540                         i->iov_offset = off + chunk;
541                         xfer += chunk;
542                         valid = i_head + 1;
543                 }
544                 if (rem) {
545                         pipe->bufs[i_head & p_mask].len -= rem;
546                         pipe_discard_from(pipe, valid);
547                         break;
548                 }
549                 n -= chunk;
550                 off = 0;
551                 i_head++;
552         }
553         i->count -= xfer;
554         return xfer;
555 }
556
557 /**
558  * _copy_mc_to_iter - copy to iter with source memory error exception handling
559  * @addr: source kernel address
560  * @bytes: total transfer length
561  * @i: destination iterator
562  *
563  * The pmem driver deploys this for the dax operation
564  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
565  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
566  * successfully copied.
567  *
568  * The main differences between this and typical _copy_to_iter().
569  *
570  * * Typical tail/residue handling after a fault retries the copy
571  *   byte-by-byte until the fault happens again. Re-triggering machine
572  *   checks is potentially fatal so the implementation uses source
573  *   alignment and poison alignment assumptions to avoid re-triggering
574  *   hardware exceptions.
575  *
576  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
577  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
578  *   a short copy.
579  *
580  * Return: number of bytes copied (may be %0)
581  */
582 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
583 {
584         if (unlikely(iov_iter_is_pipe(i)))
585                 return copy_mc_pipe_to_iter(addr, bytes, i);
586         if (iter_is_iovec(i))
587                 might_fault();
588         __iterate_and_advance(i, bytes, base, len, off,
589                 copyout_mc(base, addr + off, len),
590                 copy_mc_to_kernel(base, addr + off, len)
591         )
592
593         return bytes;
594 }
595 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
596 #endif /* CONFIG_ARCH_HAS_COPY_MC */
597
598 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
599 {
600         if (unlikely(iov_iter_is_pipe(i))) {
601                 WARN_ON(1);
602                 return 0;
603         }
604         if (iter_is_iovec(i))
605                 might_fault();
606         iterate_and_advance(i, bytes, base, len, off,
607                 copyin(addr + off, base, len),
608                 memcpy(addr + off, base, len)
609         )
610
611         return bytes;
612 }
613 EXPORT_SYMBOL(_copy_from_iter);
614
615 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
616 {
617         if (unlikely(iov_iter_is_pipe(i))) {
618                 WARN_ON(1);
619                 return 0;
620         }
621         iterate_and_advance(i, bytes, base, len, off,
622                 __copy_from_user_inatomic_nocache(addr + off, base, len),
623                 memcpy(addr + off, base, len)
624         )
625
626         return bytes;
627 }
628 EXPORT_SYMBOL(_copy_from_iter_nocache);
629
630 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
631 /**
632  * _copy_from_iter_flushcache - write destination through cpu cache
633  * @addr: destination kernel address
634  * @bytes: total transfer length
635  * @i: source iterator
636  *
637  * The pmem driver arranges for filesystem-dax to use this facility via
638  * dax_copy_from_iter() for ensuring that writes to persistent memory
639  * are flushed through the CPU cache. It is differentiated from
640  * _copy_from_iter_nocache() in that guarantees all data is flushed for
641  * all iterator types. The _copy_from_iter_nocache() only attempts to
642  * bypass the cache for the ITER_IOVEC case, and on some archs may use
643  * instructions that strand dirty-data in the cache.
644  *
645  * Return: number of bytes copied (may be %0)
646  */
647 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
648 {
649         if (unlikely(iov_iter_is_pipe(i))) {
650                 WARN_ON(1);
651                 return 0;
652         }
653         iterate_and_advance(i, bytes, base, len, off,
654                 __copy_from_user_flushcache(addr + off, base, len),
655                 memcpy_flushcache(addr + off, base, len)
656         )
657
658         return bytes;
659 }
660 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
661 #endif
662
663 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
664 {
665         struct page *head;
666         size_t v = n + offset;
667
668         /*
669          * The general case needs to access the page order in order
670          * to compute the page size.
671          * However, we mostly deal with order-0 pages and thus can
672          * avoid a possible cache line miss for requests that fit all
673          * page orders.
674          */
675         if (n <= v && v <= PAGE_SIZE)
676                 return true;
677
678         head = compound_head(page);
679         v += (page - head) << PAGE_SHIFT;
680
681         if (likely(n <= v && v <= (page_size(head))))
682                 return true;
683         WARN_ON(1);
684         return false;
685 }
686
687 static size_t __copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
688                          struct iov_iter *i)
689 {
690         if (unlikely(iov_iter_is_pipe(i))) {
691                 return copy_page_to_iter_pipe(page, offset, bytes, i);
692         } else {
693                 void *kaddr = kmap_local_page(page);
694                 size_t wanted = _copy_to_iter(kaddr + offset, bytes, i);
695                 kunmap_local(kaddr);
696                 return wanted;
697         }
698 }
699
700 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
701                          struct iov_iter *i)
702 {
703         size_t res = 0;
704         if (unlikely(!page_copy_sane(page, offset, bytes)))
705                 return 0;
706         page += offset / PAGE_SIZE; // first subpage
707         offset %= PAGE_SIZE;
708         while (1) {
709                 size_t n = __copy_page_to_iter(page, offset,
710                                 min(bytes, (size_t)PAGE_SIZE - offset), i);
711                 res += n;
712                 bytes -= n;
713                 if (!bytes || !n)
714                         break;
715                 offset += n;
716                 if (offset == PAGE_SIZE) {
717                         page++;
718                         offset = 0;
719                 }
720         }
721         return res;
722 }
723 EXPORT_SYMBOL(copy_page_to_iter);
724
725 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
726                          struct iov_iter *i)
727 {
728         if (page_copy_sane(page, offset, bytes)) {
729                 void *kaddr = kmap_local_page(page);
730                 size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
731                 kunmap_local(kaddr);
732                 return wanted;
733         }
734         return 0;
735 }
736 EXPORT_SYMBOL(copy_page_from_iter);
737
738 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
739 {
740         struct pipe_inode_info *pipe = i->pipe;
741         unsigned int p_mask = pipe->ring_size - 1;
742         unsigned int i_head;
743         size_t n, off;
744
745         if (!sanity(i))
746                 return 0;
747
748         bytes = n = push_pipe(i, bytes, &i_head, &off);
749         if (unlikely(!n))
750                 return 0;
751
752         do {
753                 size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
754                 char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page);
755                 memset(p + off, 0, chunk);
756                 kunmap_local(p);
757                 i->head = i_head;
758                 i->iov_offset = off + chunk;
759                 n -= chunk;
760                 off = 0;
761                 i_head++;
762         } while (n);
763         i->count -= bytes;
764         return bytes;
765 }
766
767 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
768 {
769         if (unlikely(iov_iter_is_pipe(i)))
770                 return pipe_zero(bytes, i);
771         iterate_and_advance(i, bytes, base, len, count,
772                 clear_user(base, len),
773                 memset(base, 0, len)
774         )
775
776         return bytes;
777 }
778 EXPORT_SYMBOL(iov_iter_zero);
779
780 size_t copy_page_from_iter_atomic(struct page *page, unsigned offset, size_t bytes,
781                                   struct iov_iter *i)
782 {
783         char *kaddr = kmap_atomic(page), *p = kaddr + offset;
784         if (unlikely(!page_copy_sane(page, offset, bytes))) {
785                 kunmap_atomic(kaddr);
786                 return 0;
787         }
788         if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
789                 kunmap_atomic(kaddr);
790                 WARN_ON(1);
791                 return 0;
792         }
793         iterate_and_advance(i, bytes, base, len, off,
794                 copyin(p + off, base, len),
795                 memcpy(p + off, base, len)
796         )
797         kunmap_atomic(kaddr);
798         return bytes;
799 }
800 EXPORT_SYMBOL(copy_page_from_iter_atomic);
801
802 static inline void pipe_truncate(struct iov_iter *i)
803 {
804         struct pipe_inode_info *pipe = i->pipe;
805         unsigned int p_tail = pipe->tail;
806         unsigned int p_head = pipe->head;
807         unsigned int p_mask = pipe->ring_size - 1;
808
809         if (!pipe_empty(p_head, p_tail)) {
810                 struct pipe_buffer *buf;
811                 unsigned int i_head = i->head;
812                 size_t off = i->iov_offset;
813
814                 if (off) {
815                         buf = &pipe->bufs[i_head & p_mask];
816                         buf->len = off - buf->offset;
817                         i_head++;
818                 }
819                 while (p_head != i_head) {
820                         p_head--;
821                         pipe_buf_release(pipe, &pipe->bufs[p_head & p_mask]);
822                 }
823
824                 pipe->head = p_head;
825         }
826 }
827
828 static void pipe_advance(struct iov_iter *i, size_t size)
829 {
830         struct pipe_inode_info *pipe = i->pipe;
831         if (size) {
832                 struct pipe_buffer *buf;
833                 unsigned int p_mask = pipe->ring_size - 1;
834                 unsigned int i_head = i->head;
835                 size_t off = i->iov_offset, left = size;
836
837                 if (off) /* make it relative to the beginning of buffer */
838                         left += off - pipe->bufs[i_head & p_mask].offset;
839                 while (1) {
840                         buf = &pipe->bufs[i_head & p_mask];
841                         if (left <= buf->len)
842                                 break;
843                         left -= buf->len;
844                         i_head++;
845                 }
846                 i->head = i_head;
847                 i->iov_offset = buf->offset + left;
848         }
849         i->count -= size;
850         /* ... and discard everything past that point */
851         pipe_truncate(i);
852 }
853
854 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
855 {
856         const struct bio_vec *bvec, *end;
857
858         if (!i->count)
859                 return;
860         i->count -= size;
861
862         size += i->iov_offset;
863
864         for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) {
865                 if (likely(size < bvec->bv_len))
866                         break;
867                 size -= bvec->bv_len;
868         }
869         i->iov_offset = size;
870         i->nr_segs -= bvec - i->bvec;
871         i->bvec = bvec;
872 }
873
874 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
875 {
876         const struct iovec *iov, *end;
877
878         if (!i->count)
879                 return;
880         i->count -= size;
881
882         size += i->iov_offset; // from beginning of current segment
883         for (iov = i->iov, end = iov + i->nr_segs; iov < end; iov++) {
884                 if (likely(size < iov->iov_len))
885                         break;
886                 size -= iov->iov_len;
887         }
888         i->iov_offset = size;
889         i->nr_segs -= iov - i->iov;
890         i->iov = iov;
891 }
892
893 void iov_iter_advance(struct iov_iter *i, size_t size)
894 {
895         if (unlikely(i->count < size))
896                 size = i->count;
897         if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
898                 /* iovec and kvec have identical layouts */
899                 iov_iter_iovec_advance(i, size);
900         } else if (iov_iter_is_bvec(i)) {
901                 iov_iter_bvec_advance(i, size);
902         } else if (iov_iter_is_pipe(i)) {
903                 pipe_advance(i, size);
904         } else if (unlikely(iov_iter_is_xarray(i))) {
905                 i->iov_offset += size;
906                 i->count -= size;
907         } else if (iov_iter_is_discard(i)) {
908                 i->count -= size;
909         }
910 }
911 EXPORT_SYMBOL(iov_iter_advance);
912
913 void iov_iter_revert(struct iov_iter *i, size_t unroll)
914 {
915         if (!unroll)
916                 return;
917         if (WARN_ON(unroll > MAX_RW_COUNT))
918                 return;
919         i->count += unroll;
920         if (unlikely(iov_iter_is_pipe(i))) {
921                 struct pipe_inode_info *pipe = i->pipe;
922                 unsigned int p_mask = pipe->ring_size - 1;
923                 unsigned int i_head = i->head;
924                 size_t off = i->iov_offset;
925                 while (1) {
926                         struct pipe_buffer *b = &pipe->bufs[i_head & p_mask];
927                         size_t n = off - b->offset;
928                         if (unroll < n) {
929                                 off -= unroll;
930                                 break;
931                         }
932                         unroll -= n;
933                         if (!unroll && i_head == i->start_head) {
934                                 off = 0;
935                                 break;
936                         }
937                         i_head--;
938                         b = &pipe->bufs[i_head & p_mask];
939                         off = b->offset + b->len;
940                 }
941                 i->iov_offset = off;
942                 i->head = i_head;
943                 pipe_truncate(i);
944                 return;
945         }
946         if (unlikely(iov_iter_is_discard(i)))
947                 return;
948         if (unroll <= i->iov_offset) {
949                 i->iov_offset -= unroll;
950                 return;
951         }
952         unroll -= i->iov_offset;
953         if (iov_iter_is_xarray(i)) {
954                 BUG(); /* We should never go beyond the start of the specified
955                         * range since we might then be straying into pages that
956                         * aren't pinned.
957                         */
958         } else if (iov_iter_is_bvec(i)) {
959                 const struct bio_vec *bvec = i->bvec;
960                 while (1) {
961                         size_t n = (--bvec)->bv_len;
962                         i->nr_segs++;
963                         if (unroll <= n) {
964                                 i->bvec = bvec;
965                                 i->iov_offset = n - unroll;
966                                 return;
967                         }
968                         unroll -= n;
969                 }
970         } else { /* same logics for iovec and kvec */
971                 const struct iovec *iov = i->iov;
972                 while (1) {
973                         size_t n = (--iov)->iov_len;
974                         i->nr_segs++;
975                         if (unroll <= n) {
976                                 i->iov = iov;
977                                 i->iov_offset = n - unroll;
978                                 return;
979                         }
980                         unroll -= n;
981                 }
982         }
983 }
984 EXPORT_SYMBOL(iov_iter_revert);
985
986 /*
987  * Return the count of just the current iov_iter segment.
988  */
989 size_t iov_iter_single_seg_count(const struct iov_iter *i)
990 {
991         if (i->nr_segs > 1) {
992                 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
993                         return min(i->count, i->iov->iov_len - i->iov_offset);
994                 if (iov_iter_is_bvec(i))
995                         return min(i->count, i->bvec->bv_len - i->iov_offset);
996         }
997         return i->count;
998 }
999 EXPORT_SYMBOL(iov_iter_single_seg_count);
1000
1001 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
1002                         const struct kvec *kvec, unsigned long nr_segs,
1003                         size_t count)
1004 {
1005         WARN_ON(direction & ~(READ | WRITE));
1006         *i = (struct iov_iter){
1007                 .iter_type = ITER_KVEC,
1008                 .data_source = direction,
1009                 .kvec = kvec,
1010                 .nr_segs = nr_segs,
1011                 .iov_offset = 0,
1012                 .count = count
1013         };
1014 }
1015 EXPORT_SYMBOL(iov_iter_kvec);
1016
1017 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1018                         const struct bio_vec *bvec, unsigned long nr_segs,
1019                         size_t count)
1020 {
1021         WARN_ON(direction & ~(READ | WRITE));
1022         *i = (struct iov_iter){
1023                 .iter_type = ITER_BVEC,
1024                 .data_source = direction,
1025                 .bvec = bvec,
1026                 .nr_segs = nr_segs,
1027                 .iov_offset = 0,
1028                 .count = count
1029         };
1030 }
1031 EXPORT_SYMBOL(iov_iter_bvec);
1032
1033 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1034                         struct pipe_inode_info *pipe,
1035                         size_t count)
1036 {
1037         BUG_ON(direction != READ);
1038         WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1039         *i = (struct iov_iter){
1040                 .iter_type = ITER_PIPE,
1041                 .data_source = false,
1042                 .pipe = pipe,
1043                 .head = pipe->head,
1044                 .start_head = pipe->head,
1045                 .iov_offset = 0,
1046                 .count = count
1047         };
1048 }
1049 EXPORT_SYMBOL(iov_iter_pipe);
1050
1051 /**
1052  * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
1053  * @i: The iterator to initialise.
1054  * @direction: The direction of the transfer.
1055  * @xarray: The xarray to access.
1056  * @start: The start file position.
1057  * @count: The size of the I/O buffer in bytes.
1058  *
1059  * Set up an I/O iterator to either draw data out of the pages attached to an
1060  * inode or to inject data into those pages.  The pages *must* be prevented
1061  * from evaporation, either by taking a ref on them or locking them by the
1062  * caller.
1063  */
1064 void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
1065                      struct xarray *xarray, loff_t start, size_t count)
1066 {
1067         BUG_ON(direction & ~1);
1068         *i = (struct iov_iter) {
1069                 .iter_type = ITER_XARRAY,
1070                 .data_source = direction,
1071                 .xarray = xarray,
1072                 .xarray_start = start,
1073                 .count = count,
1074                 .iov_offset = 0
1075         };
1076 }
1077 EXPORT_SYMBOL(iov_iter_xarray);
1078
1079 /**
1080  * iov_iter_discard - Initialise an I/O iterator that discards data
1081  * @i: The iterator to initialise.
1082  * @direction: The direction of the transfer.
1083  * @count: The size of the I/O buffer in bytes.
1084  *
1085  * Set up an I/O iterator that just discards everything that's written to it.
1086  * It's only available as a READ iterator.
1087  */
1088 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1089 {
1090         BUG_ON(direction != READ);
1091         *i = (struct iov_iter){
1092                 .iter_type = ITER_DISCARD,
1093                 .data_source = false,
1094                 .count = count,
1095                 .iov_offset = 0
1096         };
1097 }
1098 EXPORT_SYMBOL(iov_iter_discard);
1099
1100 static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask,
1101                                    unsigned len_mask)
1102 {
1103         size_t size = i->count;
1104         size_t skip = i->iov_offset;
1105         unsigned k;
1106
1107         for (k = 0; k < i->nr_segs; k++, skip = 0) {
1108                 size_t len = i->iov[k].iov_len - skip;
1109
1110                 if (len > size)
1111                         len = size;
1112                 if (len & len_mask)
1113                         return false;
1114                 if ((unsigned long)(i->iov[k].iov_base + skip) & addr_mask)
1115                         return false;
1116
1117                 size -= len;
1118                 if (!size)
1119                         break;
1120         }
1121         return true;
1122 }
1123
1124 static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask,
1125                                   unsigned len_mask)
1126 {
1127         size_t size = i->count;
1128         unsigned skip = i->iov_offset;
1129         unsigned k;
1130
1131         for (k = 0; k < i->nr_segs; k++, skip = 0) {
1132                 size_t len = i->bvec[k].bv_len - skip;
1133
1134                 if (len > size)
1135                         len = size;
1136                 if (len & len_mask)
1137                         return false;
1138                 if ((unsigned long)(i->bvec[k].bv_offset + skip) & addr_mask)
1139                         return false;
1140
1141                 size -= len;
1142                 if (!size)
1143                         break;
1144         }
1145         return true;
1146 }
1147
1148 /**
1149  * iov_iter_is_aligned() - Check if the addresses and lengths of each segments
1150  *      are aligned to the parameters.
1151  *
1152  * @i: &struct iov_iter to restore
1153  * @addr_mask: bit mask to check against the iov element's addresses
1154  * @len_mask: bit mask to check against the iov element's lengths
1155  *
1156  * Return: false if any addresses or lengths intersect with the provided masks
1157  */
1158 bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask,
1159                          unsigned len_mask)
1160 {
1161         if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1162                 return iov_iter_aligned_iovec(i, addr_mask, len_mask);
1163
1164         if (iov_iter_is_bvec(i))
1165                 return iov_iter_aligned_bvec(i, addr_mask, len_mask);
1166
1167         if (iov_iter_is_pipe(i)) {
1168                 unsigned int p_mask = i->pipe->ring_size - 1;
1169                 size_t size = i->count;
1170
1171                 if (size & len_mask)
1172                         return false;
1173                 if (size && allocated(&i->pipe->bufs[i->head & p_mask])) {
1174                         if (i->iov_offset & addr_mask)
1175                                 return false;
1176                 }
1177
1178                 return true;
1179         }
1180
1181         if (iov_iter_is_xarray(i)) {
1182                 if (i->count & len_mask)
1183                         return false;
1184                 if ((i->xarray_start + i->iov_offset) & addr_mask)
1185                         return false;
1186         }
1187
1188         return true;
1189 }
1190 EXPORT_SYMBOL_GPL(iov_iter_is_aligned);
1191
1192 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
1193 {
1194         unsigned long res = 0;
1195         size_t size = i->count;
1196         size_t skip = i->iov_offset;
1197         unsigned k;
1198
1199         for (k = 0; k < i->nr_segs; k++, skip = 0) {
1200                 size_t len = i->iov[k].iov_len - skip;
1201                 if (len) {
1202                         res |= (unsigned long)i->iov[k].iov_base + skip;
1203                         if (len > size)
1204                                 len = size;
1205                         res |= len;
1206                         size -= len;
1207                         if (!size)
1208                                 break;
1209                 }
1210         }
1211         return res;
1212 }
1213
1214 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
1215 {
1216         unsigned res = 0;
1217         size_t size = i->count;
1218         unsigned skip = i->iov_offset;
1219         unsigned k;
1220
1221         for (k = 0; k < i->nr_segs; k++, skip = 0) {
1222                 size_t len = i->bvec[k].bv_len - skip;
1223                 res |= (unsigned long)i->bvec[k].bv_offset + skip;
1224                 if (len > size)
1225                         len = size;
1226                 res |= len;
1227                 size -= len;
1228                 if (!size)
1229                         break;
1230         }
1231         return res;
1232 }
1233
1234 unsigned long iov_iter_alignment(const struct iov_iter *i)
1235 {
1236         /* iovec and kvec have identical layouts */
1237         if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1238                 return iov_iter_alignment_iovec(i);
1239
1240         if (iov_iter_is_bvec(i))
1241                 return iov_iter_alignment_bvec(i);
1242
1243         if (iov_iter_is_pipe(i)) {
1244                 unsigned int p_mask = i->pipe->ring_size - 1;
1245                 size_t size = i->count;
1246
1247                 if (size && i->iov_offset && allocated(&i->pipe->bufs[i->head & p_mask]))
1248                         return size | i->iov_offset;
1249                 return size;
1250         }
1251
1252         if (iov_iter_is_xarray(i))
1253                 return (i->xarray_start + i->iov_offset) | i->count;
1254
1255         return 0;
1256 }
1257 EXPORT_SYMBOL(iov_iter_alignment);
1258
1259 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1260 {
1261         unsigned long res = 0;
1262         unsigned long v = 0;
1263         size_t size = i->count;
1264         unsigned k;
1265
1266         if (WARN_ON(!iter_is_iovec(i)))
1267                 return ~0U;
1268
1269         for (k = 0; k < i->nr_segs; k++) {
1270                 if (i->iov[k].iov_len) {
1271                         unsigned long base = (unsigned long)i->iov[k].iov_base;
1272                         if (v) // if not the first one
1273                                 res |= base | v; // this start | previous end
1274                         v = base + i->iov[k].iov_len;
1275                         if (size <= i->iov[k].iov_len)
1276                                 break;
1277                         size -= i->iov[k].iov_len;
1278                 }
1279         }
1280         return res;
1281 }
1282 EXPORT_SYMBOL(iov_iter_gap_alignment);
1283
1284 static inline ssize_t __pipe_get_pages(struct iov_iter *i,
1285                                 size_t maxsize,
1286                                 struct page **pages,
1287                                 int iter_head,
1288                                 size_t *start)
1289 {
1290         struct pipe_inode_info *pipe = i->pipe;
1291         unsigned int p_mask = pipe->ring_size - 1;
1292         ssize_t n = push_pipe(i, maxsize, &iter_head, start);
1293         if (!n)
1294                 return -EFAULT;
1295
1296         maxsize = n;
1297         n += *start;
1298         while (n > 0) {
1299                 get_page(*pages++ = pipe->bufs[iter_head & p_mask].page);
1300                 iter_head++;
1301                 n -= PAGE_SIZE;
1302         }
1303
1304         return maxsize;
1305 }
1306
1307 static ssize_t pipe_get_pages(struct iov_iter *i,
1308                    struct page **pages, size_t maxsize, unsigned maxpages,
1309                    size_t *start)
1310 {
1311         unsigned int iter_head, npages;
1312         size_t capacity;
1313
1314         if (!sanity(i))
1315                 return -EFAULT;
1316
1317         data_start(i, &iter_head, start);
1318         /* Amount of free space: some of this one + all after this one */
1319         npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1320         capacity = min(npages, maxpages) * PAGE_SIZE - *start;
1321
1322         return __pipe_get_pages(i, min(maxsize, capacity), pages, iter_head, start);
1323 }
1324
1325 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
1326                                           pgoff_t index, unsigned int nr_pages)
1327 {
1328         XA_STATE(xas, xa, index);
1329         struct page *page;
1330         unsigned int ret = 0;
1331
1332         rcu_read_lock();
1333         for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1334                 if (xas_retry(&xas, page))
1335                         continue;
1336
1337                 /* Has the page moved or been split? */
1338                 if (unlikely(page != xas_reload(&xas))) {
1339                         xas_reset(&xas);
1340                         continue;
1341                 }
1342
1343                 pages[ret] = find_subpage(page, xas.xa_index);
1344                 get_page(pages[ret]);
1345                 if (++ret == nr_pages)
1346                         break;
1347         }
1348         rcu_read_unlock();
1349         return ret;
1350 }
1351
1352 static ssize_t iter_xarray_get_pages(struct iov_iter *i,
1353                                      struct page **pages, size_t maxsize,
1354                                      unsigned maxpages, size_t *_start_offset)
1355 {
1356         unsigned nr, offset;
1357         pgoff_t index, count;
1358         size_t size = maxsize;
1359         loff_t pos;
1360
1361         if (!size || !maxpages)
1362                 return 0;
1363
1364         pos = i->xarray_start + i->iov_offset;
1365         index = pos >> PAGE_SHIFT;
1366         offset = pos & ~PAGE_MASK;
1367         *_start_offset = offset;
1368
1369         count = 1;
1370         if (size > PAGE_SIZE - offset) {
1371                 size -= PAGE_SIZE - offset;
1372                 count += size >> PAGE_SHIFT;
1373                 size &= ~PAGE_MASK;
1374                 if (size)
1375                         count++;
1376         }
1377
1378         if (count > maxpages)
1379                 count = maxpages;
1380
1381         nr = iter_xarray_populate_pages(pages, i->xarray, index, count);
1382         if (nr == 0)
1383                 return 0;
1384
1385         return min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1386 }
1387
1388 /* must be done on non-empty ITER_IOVEC one */
1389 static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size)
1390 {
1391         size_t skip;
1392         long k;
1393
1394         for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
1395                 size_t len = i->iov[k].iov_len - skip;
1396
1397                 if (unlikely(!len))
1398                         continue;
1399                 if (*size > len)
1400                         *size = len;
1401                 return (unsigned long)i->iov[k].iov_base + skip;
1402         }
1403         BUG(); // if it had been empty, we wouldn't get called
1404 }
1405
1406 /* must be done on non-empty ITER_BVEC one */
1407 static struct page *first_bvec_segment(const struct iov_iter *i,
1408                                        size_t *size, size_t *start)
1409 {
1410         struct page *page;
1411         size_t skip = i->iov_offset, len;
1412
1413         len = i->bvec->bv_len - skip;
1414         if (*size > len)
1415                 *size = len;
1416         skip += i->bvec->bv_offset;
1417         page = i->bvec->bv_page + skip / PAGE_SIZE;
1418         *start = skip % PAGE_SIZE;
1419         return page;
1420 }
1421
1422 ssize_t iov_iter_get_pages(struct iov_iter *i,
1423                    struct page **pages, size_t maxsize, unsigned maxpages,
1424                    size_t *start)
1425 {
1426         int n, res;
1427
1428         if (maxsize > i->count)
1429                 maxsize = i->count;
1430         if (!maxsize)
1431                 return 0;
1432         if (maxsize > MAX_RW_COUNT)
1433                 maxsize = MAX_RW_COUNT;
1434
1435         if (likely(iter_is_iovec(i))) {
1436                 unsigned int gup_flags = 0;
1437                 unsigned long addr;
1438
1439                 if (iov_iter_rw(i) != WRITE)
1440                         gup_flags |= FOLL_WRITE;
1441                 if (i->nofault)
1442                         gup_flags |= FOLL_NOFAULT;
1443
1444                 addr = first_iovec_segment(i, &maxsize);
1445                 *start = addr % PAGE_SIZE;
1446                 addr &= PAGE_MASK;
1447                 n = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1448                 if (n > maxpages)
1449                         n = maxpages;
1450                 res = get_user_pages_fast(addr, n, gup_flags, pages);
1451                 if (unlikely(res <= 0))
1452                         return res;
1453                 return min_t(size_t, maxsize, res * PAGE_SIZE - *start);
1454         }
1455         if (iov_iter_is_bvec(i)) {
1456                 struct page *page;
1457
1458                 page = first_bvec_segment(i, &maxsize, start);
1459                 n = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1460                 if (n > maxpages)
1461                         n = maxpages;
1462                 for (int k = 0; k < n; k++)
1463                         get_page(*pages++ = page++);
1464                 return min_t(size_t, maxsize, n * PAGE_SIZE - *start);
1465         }
1466         if (iov_iter_is_pipe(i))
1467                 return pipe_get_pages(i, pages, maxsize, maxpages, start);
1468         if (iov_iter_is_xarray(i))
1469                 return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1470         return -EFAULT;
1471 }
1472 EXPORT_SYMBOL(iov_iter_get_pages);
1473
1474 static struct page **get_pages_array(size_t n)
1475 {
1476         return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
1477 }
1478
1479 static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
1480                    struct page ***pages, size_t maxsize,
1481                    size_t *start)
1482 {
1483         struct page **p;
1484         unsigned int iter_head, npages;
1485         ssize_t n;
1486
1487         if (!sanity(i))
1488                 return -EFAULT;
1489
1490         data_start(i, &iter_head, start);
1491         /* Amount of free space: some of this one + all after this one */
1492         npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1493         n = npages * PAGE_SIZE - *start;
1494         if (maxsize > n)
1495                 maxsize = n;
1496         else
1497                 npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1498         p = get_pages_array(npages);
1499         if (!p)
1500                 return -ENOMEM;
1501         n = __pipe_get_pages(i, maxsize, p, iter_head, start);
1502         if (n > 0)
1503                 *pages = p;
1504         else
1505                 kvfree(p);
1506         return n;
1507 }
1508
1509 static ssize_t iter_xarray_get_pages_alloc(struct iov_iter *i,
1510                                            struct page ***pages, size_t maxsize,
1511                                            size_t *_start_offset)
1512 {
1513         struct page **p;
1514         unsigned nr, offset;
1515         pgoff_t index, count;
1516         size_t size = maxsize;
1517         loff_t pos;
1518
1519         if (!size)
1520                 return 0;
1521
1522         pos = i->xarray_start + i->iov_offset;
1523         index = pos >> PAGE_SHIFT;
1524         offset = pos & ~PAGE_MASK;
1525         *_start_offset = offset;
1526
1527         count = 1;
1528         if (size > PAGE_SIZE - offset) {
1529                 size -= PAGE_SIZE - offset;
1530                 count += size >> PAGE_SHIFT;
1531                 size &= ~PAGE_MASK;
1532                 if (size)
1533                         count++;
1534         }
1535
1536         p = get_pages_array(count);
1537         if (!p)
1538                 return -ENOMEM;
1539         *pages = p;
1540
1541         nr = iter_xarray_populate_pages(p, i->xarray, index, count);
1542         if (nr == 0)
1543                 return 0;
1544
1545         return min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1546 }
1547
1548 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1549                    struct page ***pages, size_t maxsize,
1550                    size_t *start)
1551 {
1552         struct page **p;
1553         int n, res;
1554
1555         if (maxsize > i->count)
1556                 maxsize = i->count;
1557         if (!maxsize)
1558                 return 0;
1559         if (maxsize > MAX_RW_COUNT)
1560                 maxsize = MAX_RW_COUNT;
1561
1562         if (likely(iter_is_iovec(i))) {
1563                 unsigned int gup_flags = 0;
1564                 unsigned long addr;
1565
1566                 if (iov_iter_rw(i) != WRITE)
1567                         gup_flags |= FOLL_WRITE;
1568                 if (i->nofault)
1569                         gup_flags |= FOLL_NOFAULT;
1570
1571                 addr = first_iovec_segment(i, &maxsize);
1572                 *start = addr % PAGE_SIZE;
1573                 addr &= PAGE_MASK;
1574                 n = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1575                 p = get_pages_array(n);
1576                 if (!p)
1577                         return -ENOMEM;
1578                 res = get_user_pages_fast(addr, n, gup_flags, p);
1579                 if (unlikely(res <= 0)) {
1580                         kvfree(p);
1581                         *pages = NULL;
1582                         return res;
1583                 }
1584                 *pages = p;
1585                 return min_t(size_t, maxsize, res * PAGE_SIZE - *start);
1586         }
1587         if (iov_iter_is_bvec(i)) {
1588                 struct page *page;
1589
1590                 page = first_bvec_segment(i, &maxsize, start);
1591                 n = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1592                 *pages = p = get_pages_array(n);
1593                 if (!p)
1594                         return -ENOMEM;
1595                 for (int k = 0; k < n; k++)
1596                         get_page(*p++ = page++);
1597                 return min_t(size_t, maxsize, n * PAGE_SIZE - *start);
1598         }
1599         if (iov_iter_is_pipe(i))
1600                 return pipe_get_pages_alloc(i, pages, maxsize, start);
1601         if (iov_iter_is_xarray(i))
1602                 return iter_xarray_get_pages_alloc(i, pages, maxsize, start);
1603         return -EFAULT;
1604 }
1605 EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1606
1607 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1608                                struct iov_iter *i)
1609 {
1610         __wsum sum, next;
1611         sum = *csum;
1612         if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1613                 WARN_ON(1);
1614                 return 0;
1615         }
1616         iterate_and_advance(i, bytes, base, len, off, ({
1617                 next = csum_and_copy_from_user(base, addr + off, len);
1618                 sum = csum_block_add(sum, next, off);
1619                 next ? 0 : len;
1620         }), ({
1621                 sum = csum_and_memcpy(addr + off, base, len, sum, off);
1622         })
1623         )
1624         *csum = sum;
1625         return bytes;
1626 }
1627 EXPORT_SYMBOL(csum_and_copy_from_iter);
1628
1629 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
1630                              struct iov_iter *i)
1631 {
1632         struct csum_state *csstate = _csstate;
1633         __wsum sum, next;
1634
1635         if (unlikely(iov_iter_is_discard(i))) {
1636                 WARN_ON(1);     /* for now */
1637                 return 0;
1638         }
1639
1640         sum = csum_shift(csstate->csum, csstate->off);
1641         if (unlikely(iov_iter_is_pipe(i)))
1642                 bytes = csum_and_copy_to_pipe_iter(addr, bytes, i, &sum);
1643         else iterate_and_advance(i, bytes, base, len, off, ({
1644                 next = csum_and_copy_to_user(addr + off, base, len);
1645                 sum = csum_block_add(sum, next, off);
1646                 next ? 0 : len;
1647         }), ({
1648                 sum = csum_and_memcpy(base, addr + off, len, sum, off);
1649         })
1650         )
1651         csstate->csum = csum_shift(sum, csstate->off);
1652         csstate->off += bytes;
1653         return bytes;
1654 }
1655 EXPORT_SYMBOL(csum_and_copy_to_iter);
1656
1657 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1658                 struct iov_iter *i)
1659 {
1660 #ifdef CONFIG_CRYPTO_HASH
1661         struct ahash_request *hash = hashp;
1662         struct scatterlist sg;
1663         size_t copied;
1664
1665         copied = copy_to_iter(addr, bytes, i);
1666         sg_init_one(&sg, addr, copied);
1667         ahash_request_set_crypt(hash, &sg, NULL, copied);
1668         crypto_ahash_update(hash);
1669         return copied;
1670 #else
1671         return 0;
1672 #endif
1673 }
1674 EXPORT_SYMBOL(hash_and_copy_to_iter);
1675
1676 static int iov_npages(const struct iov_iter *i, int maxpages)
1677 {
1678         size_t skip = i->iov_offset, size = i->count;
1679         const struct iovec *p;
1680         int npages = 0;
1681
1682         for (p = i->iov; size; skip = 0, p++) {
1683                 unsigned offs = offset_in_page(p->iov_base + skip);
1684                 size_t len = min(p->iov_len - skip, size);
1685
1686                 if (len) {
1687                         size -= len;
1688                         npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1689                         if (unlikely(npages > maxpages))
1690                                 return maxpages;
1691                 }
1692         }
1693         return npages;
1694 }
1695
1696 static int bvec_npages(const struct iov_iter *i, int maxpages)
1697 {
1698         size_t skip = i->iov_offset, size = i->count;
1699         const struct bio_vec *p;
1700         int npages = 0;
1701
1702         for (p = i->bvec; size; skip = 0, p++) {
1703                 unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1704                 size_t len = min(p->bv_len - skip, size);
1705
1706                 size -= len;
1707                 npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1708                 if (unlikely(npages > maxpages))
1709                         return maxpages;
1710         }
1711         return npages;
1712 }
1713
1714 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1715 {
1716         if (unlikely(!i->count))
1717                 return 0;
1718         /* iovec and kvec have identical layouts */
1719         if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1720                 return iov_npages(i, maxpages);
1721         if (iov_iter_is_bvec(i))
1722                 return bvec_npages(i, maxpages);
1723         if (iov_iter_is_pipe(i)) {
1724                 unsigned int iter_head;
1725                 int npages;
1726                 size_t off;
1727
1728                 if (!sanity(i))
1729                         return 0;
1730
1731                 data_start(i, &iter_head, &off);
1732                 /* some of this one + all after this one */
1733                 npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1734                 return min(npages, maxpages);
1735         }
1736         if (iov_iter_is_xarray(i)) {
1737                 unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1738                 int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1739                 return min(npages, maxpages);
1740         }
1741         return 0;
1742 }
1743 EXPORT_SYMBOL(iov_iter_npages);
1744
1745 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1746 {
1747         *new = *old;
1748         if (unlikely(iov_iter_is_pipe(new))) {
1749                 WARN_ON(1);
1750                 return NULL;
1751         }
1752         if (unlikely(iov_iter_is_discard(new) || iov_iter_is_xarray(new)))
1753                 return NULL;
1754         if (iov_iter_is_bvec(new))
1755                 return new->bvec = kmemdup(new->bvec,
1756                                     new->nr_segs * sizeof(struct bio_vec),
1757                                     flags);
1758         else
1759                 /* iovec and kvec have identical layout */
1760                 return new->iov = kmemdup(new->iov,
1761                                    new->nr_segs * sizeof(struct iovec),
1762                                    flags);
1763 }
1764 EXPORT_SYMBOL(dup_iter);
1765
1766 static int copy_compat_iovec_from_user(struct iovec *iov,
1767                 const struct iovec __user *uvec, unsigned long nr_segs)
1768 {
1769         const struct compat_iovec __user *uiov =
1770                 (const struct compat_iovec __user *)uvec;
1771         int ret = -EFAULT, i;
1772
1773         if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1774                 return -EFAULT;
1775
1776         for (i = 0; i < nr_segs; i++) {
1777                 compat_uptr_t buf;
1778                 compat_ssize_t len;
1779
1780                 unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1781                 unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1782
1783                 /* check for compat_size_t not fitting in compat_ssize_t .. */
1784                 if (len < 0) {
1785                         ret = -EINVAL;
1786                         goto uaccess_end;
1787                 }
1788                 iov[i].iov_base = compat_ptr(buf);
1789                 iov[i].iov_len = len;
1790         }
1791
1792         ret = 0;
1793 uaccess_end:
1794         user_access_end();
1795         return ret;
1796 }
1797
1798 static int copy_iovec_from_user(struct iovec *iov,
1799                 const struct iovec __user *uvec, unsigned long nr_segs)
1800 {
1801         unsigned long seg;
1802
1803         if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec)))
1804                 return -EFAULT;
1805         for (seg = 0; seg < nr_segs; seg++) {
1806                 if ((ssize_t)iov[seg].iov_len < 0)
1807                         return -EINVAL;
1808         }
1809
1810         return 0;
1811 }
1812
1813 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1814                 unsigned long nr_segs, unsigned long fast_segs,
1815                 struct iovec *fast_iov, bool compat)
1816 {
1817         struct iovec *iov = fast_iov;
1818         int ret;
1819
1820         /*
1821          * SuS says "The readv() function *may* fail if the iovcnt argument was
1822          * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1823          * traditionally returned zero for zero segments, so...
1824          */
1825         if (nr_segs == 0)
1826                 return iov;
1827         if (nr_segs > UIO_MAXIOV)
1828                 return ERR_PTR(-EINVAL);
1829         if (nr_segs > fast_segs) {
1830                 iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1831                 if (!iov)
1832                         return ERR_PTR(-ENOMEM);
1833         }
1834
1835         if (compat)
1836                 ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1837         else
1838                 ret = copy_iovec_from_user(iov, uvec, nr_segs);
1839         if (ret) {
1840                 if (iov != fast_iov)
1841                         kfree(iov);
1842                 return ERR_PTR(ret);
1843         }
1844
1845         return iov;
1846 }
1847
1848 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1849                  unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1850                  struct iov_iter *i, bool compat)
1851 {
1852         ssize_t total_len = 0;
1853         unsigned long seg;
1854         struct iovec *iov;
1855
1856         iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1857         if (IS_ERR(iov)) {
1858                 *iovp = NULL;
1859                 return PTR_ERR(iov);
1860         }
1861
1862         /*
1863          * According to the Single Unix Specification we should return EINVAL if
1864          * an element length is < 0 when cast to ssize_t or if the total length
1865          * would overflow the ssize_t return value of the system call.
1866          *
1867          * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1868          * overflow case.
1869          */
1870         for (seg = 0; seg < nr_segs; seg++) {
1871                 ssize_t len = (ssize_t)iov[seg].iov_len;
1872
1873                 if (!access_ok(iov[seg].iov_base, len)) {
1874                         if (iov != *iovp)
1875                                 kfree(iov);
1876                         *iovp = NULL;
1877                         return -EFAULT;
1878                 }
1879
1880                 if (len > MAX_RW_COUNT - total_len) {
1881                         len = MAX_RW_COUNT - total_len;
1882                         iov[seg].iov_len = len;
1883                 }
1884                 total_len += len;
1885         }
1886
1887         iov_iter_init(i, type, iov, nr_segs, total_len);
1888         if (iov == *iovp)
1889                 *iovp = NULL;
1890         else
1891                 *iovp = iov;
1892         return total_len;
1893 }
1894
1895 /**
1896  * import_iovec() - Copy an array of &struct iovec from userspace
1897  *     into the kernel, check that it is valid, and initialize a new
1898  *     &struct iov_iter iterator to access it.
1899  *
1900  * @type: One of %READ or %WRITE.
1901  * @uvec: Pointer to the userspace array.
1902  * @nr_segs: Number of elements in userspace array.
1903  * @fast_segs: Number of elements in @iov.
1904  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1905  *     on-stack) kernel array.
1906  * @i: Pointer to iterator that will be initialized on success.
1907  *
1908  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1909  * then this function places %NULL in *@iov on return. Otherwise, a new
1910  * array will be allocated and the result placed in *@iov. This means that
1911  * the caller may call kfree() on *@iov regardless of whether the small
1912  * on-stack array was used or not (and regardless of whether this function
1913  * returns an error or not).
1914  *
1915  * Return: Negative error code on error, bytes imported on success
1916  */
1917 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1918                  unsigned nr_segs, unsigned fast_segs,
1919                  struct iovec **iovp, struct iov_iter *i)
1920 {
1921         return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1922                               in_compat_syscall());
1923 }
1924 EXPORT_SYMBOL(import_iovec);
1925
1926 int import_single_range(int rw, void __user *buf, size_t len,
1927                  struct iovec *iov, struct iov_iter *i)
1928 {
1929         if (len > MAX_RW_COUNT)
1930                 len = MAX_RW_COUNT;
1931         if (unlikely(!access_ok(buf, len)))
1932                 return -EFAULT;
1933
1934         iov->iov_base = buf;
1935         iov->iov_len = len;
1936         iov_iter_init(i, rw, iov, 1, len);
1937         return 0;
1938 }
1939 EXPORT_SYMBOL(import_single_range);
1940
1941 /**
1942  * iov_iter_restore() - Restore a &struct iov_iter to the same state as when
1943  *     iov_iter_save_state() was called.
1944  *
1945  * @i: &struct iov_iter to restore
1946  * @state: state to restore from
1947  *
1948  * Used after iov_iter_save_state() to bring restore @i, if operations may
1949  * have advanced it.
1950  *
1951  * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
1952  */
1953 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
1954 {
1955         if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i)) &&
1956                          !iov_iter_is_kvec(i))
1957                 return;
1958         i->iov_offset = state->iov_offset;
1959         i->count = state->count;
1960         /*
1961          * For the *vec iters, nr_segs + iov is constant - if we increment
1962          * the vec, then we also decrement the nr_segs count. Hence we don't
1963          * need to track both of these, just one is enough and we can deduct
1964          * the other from that. ITER_KVEC and ITER_IOVEC are the same struct
1965          * size, so we can just increment the iov pointer as they are unionzed.
1966          * ITER_BVEC _may_ be the same size on some archs, but on others it is
1967          * not. Be safe and handle it separately.
1968          */
1969         BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
1970         if (iov_iter_is_bvec(i))
1971                 i->bvec -= state->nr_segs - i->nr_segs;
1972         else
1973                 i->iov -= state->nr_segs - i->nr_segs;
1974         i->nr_segs = state->nr_segs;
1975 }