Linux 6.9-rc1
[linux-2.6-microblaze.git] / lib / bitmap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * lib/bitmap.c
4  * Helper functions for bitmap.h.
5  */
6
7 #include <linux/bitmap.h>
8 #include <linux/bitops.h>
9 #include <linux/ctype.h>
10 #include <linux/device.h>
11 #include <linux/export.h>
12 #include <linux/slab.h>
13
14 /**
15  * DOC: bitmap introduction
16  *
17  * bitmaps provide an array of bits, implemented using an
18  * array of unsigned longs.  The number of valid bits in a
19  * given bitmap does _not_ need to be an exact multiple of
20  * BITS_PER_LONG.
21  *
22  * The possible unused bits in the last, partially used word
23  * of a bitmap are 'don't care'.  The implementation makes
24  * no particular effort to keep them zero.  It ensures that
25  * their value will not affect the results of any operation.
26  * The bitmap operations that return Boolean (bitmap_empty,
27  * for example) or scalar (bitmap_weight, for example) results
28  * carefully filter out these unused bits from impacting their
29  * results.
30  *
31  * The byte ordering of bitmaps is more natural on little
32  * endian architectures.  See the big-endian headers
33  * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
34  * for the best explanations of this ordering.
35  */
36
37 bool __bitmap_equal(const unsigned long *bitmap1,
38                     const unsigned long *bitmap2, unsigned int bits)
39 {
40         unsigned int k, lim = bits/BITS_PER_LONG;
41         for (k = 0; k < lim; ++k)
42                 if (bitmap1[k] != bitmap2[k])
43                         return false;
44
45         if (bits % BITS_PER_LONG)
46                 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
47                         return false;
48
49         return true;
50 }
51 EXPORT_SYMBOL(__bitmap_equal);
52
53 bool __bitmap_or_equal(const unsigned long *bitmap1,
54                        const unsigned long *bitmap2,
55                        const unsigned long *bitmap3,
56                        unsigned int bits)
57 {
58         unsigned int k, lim = bits / BITS_PER_LONG;
59         unsigned long tmp;
60
61         for (k = 0; k < lim; ++k) {
62                 if ((bitmap1[k] | bitmap2[k]) != bitmap3[k])
63                         return false;
64         }
65
66         if (!(bits % BITS_PER_LONG))
67                 return true;
68
69         tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k];
70         return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0;
71 }
72
73 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
74 {
75         unsigned int k, lim = BITS_TO_LONGS(bits);
76         for (k = 0; k < lim; ++k)
77                 dst[k] = ~src[k];
78 }
79 EXPORT_SYMBOL(__bitmap_complement);
80
81 /**
82  * __bitmap_shift_right - logical right shift of the bits in a bitmap
83  *   @dst : destination bitmap
84  *   @src : source bitmap
85  *   @shift : shift by this many bits
86  *   @nbits : bitmap size, in bits
87  *
88  * Shifting right (dividing) means moving bits in the MS -> LS bit
89  * direction.  Zeros are fed into the vacated MS positions and the
90  * LS bits shifted off the bottom are lost.
91  */
92 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
93                         unsigned shift, unsigned nbits)
94 {
95         unsigned k, lim = BITS_TO_LONGS(nbits);
96         unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
97         unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
98         for (k = 0; off + k < lim; ++k) {
99                 unsigned long upper, lower;
100
101                 /*
102                  * If shift is not word aligned, take lower rem bits of
103                  * word above and make them the top rem bits of result.
104                  */
105                 if (!rem || off + k + 1 >= lim)
106                         upper = 0;
107                 else {
108                         upper = src[off + k + 1];
109                         if (off + k + 1 == lim - 1)
110                                 upper &= mask;
111                         upper <<= (BITS_PER_LONG - rem);
112                 }
113                 lower = src[off + k];
114                 if (off + k == lim - 1)
115                         lower &= mask;
116                 lower >>= rem;
117                 dst[k] = lower | upper;
118         }
119         if (off)
120                 memset(&dst[lim - off], 0, off*sizeof(unsigned long));
121 }
122 EXPORT_SYMBOL(__bitmap_shift_right);
123
124
125 /**
126  * __bitmap_shift_left - logical left shift of the bits in a bitmap
127  *   @dst : destination bitmap
128  *   @src : source bitmap
129  *   @shift : shift by this many bits
130  *   @nbits : bitmap size, in bits
131  *
132  * Shifting left (multiplying) means moving bits in the LS -> MS
133  * direction.  Zeros are fed into the vacated LS bit positions
134  * and those MS bits shifted off the top are lost.
135  */
136
137 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
138                         unsigned int shift, unsigned int nbits)
139 {
140         int k;
141         unsigned int lim = BITS_TO_LONGS(nbits);
142         unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
143         for (k = lim - off - 1; k >= 0; --k) {
144                 unsigned long upper, lower;
145
146                 /*
147                  * If shift is not word aligned, take upper rem bits of
148                  * word below and make them the bottom rem bits of result.
149                  */
150                 if (rem && k > 0)
151                         lower = src[k - 1] >> (BITS_PER_LONG - rem);
152                 else
153                         lower = 0;
154                 upper = src[k] << rem;
155                 dst[k + off] = lower | upper;
156         }
157         if (off)
158                 memset(dst, 0, off*sizeof(unsigned long));
159 }
160 EXPORT_SYMBOL(__bitmap_shift_left);
161
162 /**
163  * bitmap_cut() - remove bit region from bitmap and right shift remaining bits
164  * @dst: destination bitmap, might overlap with src
165  * @src: source bitmap
166  * @first: start bit of region to be removed
167  * @cut: number of bits to remove
168  * @nbits: bitmap size, in bits
169  *
170  * Set the n-th bit of @dst iff the n-th bit of @src is set and
171  * n is less than @first, or the m-th bit of @src is set for any
172  * m such that @first <= n < nbits, and m = n + @cut.
173  *
174  * In pictures, example for a big-endian 32-bit architecture:
175  *
176  * The @src bitmap is::
177  *
178  *   31                                   63
179  *   |                                    |
180  *   10000000 11000001 11110010 00010101  10000000 11000001 01110010 00010101
181  *                   |  |              |                                    |
182  *                  16  14             0                                   32
183  *
184  * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is::
185  *
186  *   31                                   63
187  *   |                                    |
188  *   10110000 00011000 00110010 00010101  00010000 00011000 00101110 01000010
189  *                      |              |                                    |
190  *                      14 (bit 17     0                                   32
191  *                          from @src)
192  *
193  * Note that @dst and @src might overlap partially or entirely.
194  *
195  * This is implemented in the obvious way, with a shift and carry
196  * step for each moved bit. Optimisation is left as an exercise
197  * for the compiler.
198  */
199 void bitmap_cut(unsigned long *dst, const unsigned long *src,
200                 unsigned int first, unsigned int cut, unsigned int nbits)
201 {
202         unsigned int len = BITS_TO_LONGS(nbits);
203         unsigned long keep = 0, carry;
204         int i;
205
206         if (first % BITS_PER_LONG) {
207                 keep = src[first / BITS_PER_LONG] &
208                        (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG));
209         }
210
211         memmove(dst, src, len * sizeof(*dst));
212
213         while (cut--) {
214                 for (i = first / BITS_PER_LONG; i < len; i++) {
215                         if (i < len - 1)
216                                 carry = dst[i + 1] & 1UL;
217                         else
218                                 carry = 0;
219
220                         dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1));
221                 }
222         }
223
224         dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG);
225         dst[first / BITS_PER_LONG] |= keep;
226 }
227 EXPORT_SYMBOL(bitmap_cut);
228
229 bool __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
230                                 const unsigned long *bitmap2, unsigned int bits)
231 {
232         unsigned int k;
233         unsigned int lim = bits/BITS_PER_LONG;
234         unsigned long result = 0;
235
236         for (k = 0; k < lim; k++)
237                 result |= (dst[k] = bitmap1[k] & bitmap2[k]);
238         if (bits % BITS_PER_LONG)
239                 result |= (dst[k] = bitmap1[k] & bitmap2[k] &
240                            BITMAP_LAST_WORD_MASK(bits));
241         return result != 0;
242 }
243 EXPORT_SYMBOL(__bitmap_and);
244
245 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
246                                 const unsigned long *bitmap2, unsigned int bits)
247 {
248         unsigned int k;
249         unsigned int nr = BITS_TO_LONGS(bits);
250
251         for (k = 0; k < nr; k++)
252                 dst[k] = bitmap1[k] | bitmap2[k];
253 }
254 EXPORT_SYMBOL(__bitmap_or);
255
256 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
257                                 const unsigned long *bitmap2, unsigned int bits)
258 {
259         unsigned int k;
260         unsigned int nr = BITS_TO_LONGS(bits);
261
262         for (k = 0; k < nr; k++)
263                 dst[k] = bitmap1[k] ^ bitmap2[k];
264 }
265 EXPORT_SYMBOL(__bitmap_xor);
266
267 bool __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
268                                 const unsigned long *bitmap2, unsigned int bits)
269 {
270         unsigned int k;
271         unsigned int lim = bits/BITS_PER_LONG;
272         unsigned long result = 0;
273
274         for (k = 0; k < lim; k++)
275                 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
276         if (bits % BITS_PER_LONG)
277                 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
278                            BITMAP_LAST_WORD_MASK(bits));
279         return result != 0;
280 }
281 EXPORT_SYMBOL(__bitmap_andnot);
282
283 void __bitmap_replace(unsigned long *dst,
284                       const unsigned long *old, const unsigned long *new,
285                       const unsigned long *mask, unsigned int nbits)
286 {
287         unsigned int k;
288         unsigned int nr = BITS_TO_LONGS(nbits);
289
290         for (k = 0; k < nr; k++)
291                 dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]);
292 }
293 EXPORT_SYMBOL(__bitmap_replace);
294
295 bool __bitmap_intersects(const unsigned long *bitmap1,
296                          const unsigned long *bitmap2, unsigned int bits)
297 {
298         unsigned int k, lim = bits/BITS_PER_LONG;
299         for (k = 0; k < lim; ++k)
300                 if (bitmap1[k] & bitmap2[k])
301                         return true;
302
303         if (bits % BITS_PER_LONG)
304                 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
305                         return true;
306         return false;
307 }
308 EXPORT_SYMBOL(__bitmap_intersects);
309
310 bool __bitmap_subset(const unsigned long *bitmap1,
311                      const unsigned long *bitmap2, unsigned int bits)
312 {
313         unsigned int k, lim = bits/BITS_PER_LONG;
314         for (k = 0; k < lim; ++k)
315                 if (bitmap1[k] & ~bitmap2[k])
316                         return false;
317
318         if (bits % BITS_PER_LONG)
319                 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
320                         return false;
321         return true;
322 }
323 EXPORT_SYMBOL(__bitmap_subset);
324
325 #define BITMAP_WEIGHT(FETCH, bits)      \
326 ({                                                                              \
327         unsigned int __bits = (bits), idx, w = 0;                               \
328                                                                                 \
329         for (idx = 0; idx < __bits / BITS_PER_LONG; idx++)                      \
330                 w += hweight_long(FETCH);                                       \
331                                                                                 \
332         if (__bits % BITS_PER_LONG)                                             \
333                 w += hweight_long((FETCH) & BITMAP_LAST_WORD_MASK(__bits));     \
334                                                                                 \
335         w;                                                                      \
336 })
337
338 unsigned int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
339 {
340         return BITMAP_WEIGHT(bitmap[idx], bits);
341 }
342 EXPORT_SYMBOL(__bitmap_weight);
343
344 unsigned int __bitmap_weight_and(const unsigned long *bitmap1,
345                                 const unsigned long *bitmap2, unsigned int bits)
346 {
347         return BITMAP_WEIGHT(bitmap1[idx] & bitmap2[idx], bits);
348 }
349 EXPORT_SYMBOL(__bitmap_weight_and);
350
351 unsigned int __bitmap_weight_andnot(const unsigned long *bitmap1,
352                                 const unsigned long *bitmap2, unsigned int bits)
353 {
354         return BITMAP_WEIGHT(bitmap1[idx] & ~bitmap2[idx], bits);
355 }
356 EXPORT_SYMBOL(__bitmap_weight_andnot);
357
358 void __bitmap_set(unsigned long *map, unsigned int start, int len)
359 {
360         unsigned long *p = map + BIT_WORD(start);
361         const unsigned int size = start + len;
362         int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
363         unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
364
365         while (len - bits_to_set >= 0) {
366                 *p |= mask_to_set;
367                 len -= bits_to_set;
368                 bits_to_set = BITS_PER_LONG;
369                 mask_to_set = ~0UL;
370                 p++;
371         }
372         if (len) {
373                 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
374                 *p |= mask_to_set;
375         }
376 }
377 EXPORT_SYMBOL(__bitmap_set);
378
379 void __bitmap_clear(unsigned long *map, unsigned int start, int len)
380 {
381         unsigned long *p = map + BIT_WORD(start);
382         const unsigned int size = start + len;
383         int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
384         unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
385
386         while (len - bits_to_clear >= 0) {
387                 *p &= ~mask_to_clear;
388                 len -= bits_to_clear;
389                 bits_to_clear = BITS_PER_LONG;
390                 mask_to_clear = ~0UL;
391                 p++;
392         }
393         if (len) {
394                 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
395                 *p &= ~mask_to_clear;
396         }
397 }
398 EXPORT_SYMBOL(__bitmap_clear);
399
400 /**
401  * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
402  * @map: The address to base the search on
403  * @size: The bitmap size in bits
404  * @start: The bitnumber to start searching at
405  * @nr: The number of zeroed bits we're looking for
406  * @align_mask: Alignment mask for zero area
407  * @align_offset: Alignment offset for zero area.
408  *
409  * The @align_mask should be one less than a power of 2; the effect is that
410  * the bit offset of all zero areas this function finds plus @align_offset
411  * is multiple of that power of 2.
412  */
413 unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
414                                              unsigned long size,
415                                              unsigned long start,
416                                              unsigned int nr,
417                                              unsigned long align_mask,
418                                              unsigned long align_offset)
419 {
420         unsigned long index, end, i;
421 again:
422         index = find_next_zero_bit(map, size, start);
423
424         /* Align allocation */
425         index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
426
427         end = index + nr;
428         if (end > size)
429                 return end;
430         i = find_next_bit(map, end, index);
431         if (i < end) {
432                 start = i + 1;
433                 goto again;
434         }
435         return index;
436 }
437 EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
438
439 /**
440  * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
441  *      @buf: pointer to a bitmap
442  *      @pos: a bit position in @buf (0 <= @pos < @nbits)
443  *      @nbits: number of valid bit positions in @buf
444  *
445  * Map the bit at position @pos in @buf (of length @nbits) to the
446  * ordinal of which set bit it is.  If it is not set or if @pos
447  * is not a valid bit position, map to -1.
448  *
449  * If for example, just bits 4 through 7 are set in @buf, then @pos
450  * values 4 through 7 will get mapped to 0 through 3, respectively,
451  * and other @pos values will get mapped to -1.  When @pos value 7
452  * gets mapped to (returns) @ord value 3 in this example, that means
453  * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
454  *
455  * The bit positions 0 through @bits are valid positions in @buf.
456  */
457 static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
458 {
459         if (pos >= nbits || !test_bit(pos, buf))
460                 return -1;
461
462         return bitmap_weight(buf, pos);
463 }
464
465 /**
466  * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
467  *      @dst: remapped result
468  *      @src: subset to be remapped
469  *      @old: defines domain of map
470  *      @new: defines range of map
471  *      @nbits: number of bits in each of these bitmaps
472  *
473  * Let @old and @new define a mapping of bit positions, such that
474  * whatever position is held by the n-th set bit in @old is mapped
475  * to the n-th set bit in @new.  In the more general case, allowing
476  * for the possibility that the weight 'w' of @new is less than the
477  * weight of @old, map the position of the n-th set bit in @old to
478  * the position of the m-th set bit in @new, where m == n % w.
479  *
480  * If either of the @old and @new bitmaps are empty, or if @src and
481  * @dst point to the same location, then this routine copies @src
482  * to @dst.
483  *
484  * The positions of unset bits in @old are mapped to themselves
485  * (the identity map).
486  *
487  * Apply the above specified mapping to @src, placing the result in
488  * @dst, clearing any bits previously set in @dst.
489  *
490  * For example, lets say that @old has bits 4 through 7 set, and
491  * @new has bits 12 through 15 set.  This defines the mapping of bit
492  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
493  * bit positions unchanged.  So if say @src comes into this routine
494  * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
495  * 13 and 15 set.
496  */
497 void bitmap_remap(unsigned long *dst, const unsigned long *src,
498                 const unsigned long *old, const unsigned long *new,
499                 unsigned int nbits)
500 {
501         unsigned int oldbit, w;
502
503         if (dst == src)         /* following doesn't handle inplace remaps */
504                 return;
505         bitmap_zero(dst, nbits);
506
507         w = bitmap_weight(new, nbits);
508         for_each_set_bit(oldbit, src, nbits) {
509                 int n = bitmap_pos_to_ord(old, oldbit, nbits);
510
511                 if (n < 0 || w == 0)
512                         set_bit(oldbit, dst);   /* identity map */
513                 else
514                         set_bit(find_nth_bit(new, nbits, n % w), dst);
515         }
516 }
517 EXPORT_SYMBOL(bitmap_remap);
518
519 /**
520  * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
521  *      @oldbit: bit position to be mapped
522  *      @old: defines domain of map
523  *      @new: defines range of map
524  *      @bits: number of bits in each of these bitmaps
525  *
526  * Let @old and @new define a mapping of bit positions, such that
527  * whatever position is held by the n-th set bit in @old is mapped
528  * to the n-th set bit in @new.  In the more general case, allowing
529  * for the possibility that the weight 'w' of @new is less than the
530  * weight of @old, map the position of the n-th set bit in @old to
531  * the position of the m-th set bit in @new, where m == n % w.
532  *
533  * The positions of unset bits in @old are mapped to themselves
534  * (the identity map).
535  *
536  * Apply the above specified mapping to bit position @oldbit, returning
537  * the new bit position.
538  *
539  * For example, lets say that @old has bits 4 through 7 set, and
540  * @new has bits 12 through 15 set.  This defines the mapping of bit
541  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
542  * bit positions unchanged.  So if say @oldbit is 5, then this routine
543  * returns 13.
544  */
545 int bitmap_bitremap(int oldbit, const unsigned long *old,
546                                 const unsigned long *new, int bits)
547 {
548         int w = bitmap_weight(new, bits);
549         int n = bitmap_pos_to_ord(old, oldbit, bits);
550         if (n < 0 || w == 0)
551                 return oldbit;
552         else
553                 return find_nth_bit(new, bits, n % w);
554 }
555 EXPORT_SYMBOL(bitmap_bitremap);
556
557 #ifdef CONFIG_NUMA
558 /**
559  * bitmap_onto - translate one bitmap relative to another
560  *      @dst: resulting translated bitmap
561  *      @orig: original untranslated bitmap
562  *      @relmap: bitmap relative to which translated
563  *      @bits: number of bits in each of these bitmaps
564  *
565  * Set the n-th bit of @dst iff there exists some m such that the
566  * n-th bit of @relmap is set, the m-th bit of @orig is set, and
567  * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
568  * (If you understood the previous sentence the first time your
569  * read it, you're overqualified for your current job.)
570  *
571  * In other words, @orig is mapped onto (surjectively) @dst,
572  * using the map { <n, m> | the n-th bit of @relmap is the
573  * m-th set bit of @relmap }.
574  *
575  * Any set bits in @orig above bit number W, where W is the
576  * weight of (number of set bits in) @relmap are mapped nowhere.
577  * In particular, if for all bits m set in @orig, m >= W, then
578  * @dst will end up empty.  In situations where the possibility
579  * of such an empty result is not desired, one way to avoid it is
580  * to use the bitmap_fold() operator, below, to first fold the
581  * @orig bitmap over itself so that all its set bits x are in the
582  * range 0 <= x < W.  The bitmap_fold() operator does this by
583  * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
584  *
585  * Example [1] for bitmap_onto():
586  *  Let's say @relmap has bits 30-39 set, and @orig has bits
587  *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
588  *  @dst will have bits 31, 33, 35, 37 and 39 set.
589  *
590  *  When bit 0 is set in @orig, it means turn on the bit in
591  *  @dst corresponding to whatever is the first bit (if any)
592  *  that is turned on in @relmap.  Since bit 0 was off in the
593  *  above example, we leave off that bit (bit 30) in @dst.
594  *
595  *  When bit 1 is set in @orig (as in the above example), it
596  *  means turn on the bit in @dst corresponding to whatever
597  *  is the second bit that is turned on in @relmap.  The second
598  *  bit in @relmap that was turned on in the above example was
599  *  bit 31, so we turned on bit 31 in @dst.
600  *
601  *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
602  *  because they were the 4th, 6th, 8th and 10th set bits
603  *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
604  *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
605  *
606  *  When bit 11 is set in @orig, it means turn on the bit in
607  *  @dst corresponding to whatever is the twelfth bit that is
608  *  turned on in @relmap.  In the above example, there were
609  *  only ten bits turned on in @relmap (30..39), so that bit
610  *  11 was set in @orig had no affect on @dst.
611  *
612  * Example [2] for bitmap_fold() + bitmap_onto():
613  *  Let's say @relmap has these ten bits set::
614  *
615  *              40 41 42 43 45 48 53 61 74 95
616  *
617  *  (for the curious, that's 40 plus the first ten terms of the
618  *  Fibonacci sequence.)
619  *
620  *  Further lets say we use the following code, invoking
621  *  bitmap_fold() then bitmap_onto, as suggested above to
622  *  avoid the possibility of an empty @dst result::
623  *
624  *      unsigned long *tmp;     // a temporary bitmap's bits
625  *
626  *      bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
627  *      bitmap_onto(dst, tmp, relmap, bits);
628  *
629  *  Then this table shows what various values of @dst would be, for
630  *  various @orig's.  I list the zero-based positions of each set bit.
631  *  The tmp column shows the intermediate result, as computed by
632  *  using bitmap_fold() to fold the @orig bitmap modulo ten
633  *  (the weight of @relmap):
634  *
635  *      =============== ============== =================
636  *      @orig           tmp            @dst
637  *      0                0             40
638  *      1                1             41
639  *      9                9             95
640  *      10               0             40 [#f1]_
641  *      1 3 5 7          1 3 5 7       41 43 48 61
642  *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
643  *      0 9 18 27        0 9 8 7       40 61 74 95
644  *      0 10 20 30       0             40
645  *      0 11 22 33       0 1 2 3       40 41 42 43
646  *      0 12 24 36       0 2 4 6       40 42 45 53
647  *      78 102 211       1 2 8         41 42 74 [#f1]_
648  *      =============== ============== =================
649  *
650  * .. [#f1]
651  *
652  *     For these marked lines, if we hadn't first done bitmap_fold()
653  *     into tmp, then the @dst result would have been empty.
654  *
655  * If either of @orig or @relmap is empty (no set bits), then @dst
656  * will be returned empty.
657  *
658  * If (as explained above) the only set bits in @orig are in positions
659  * m where m >= W, (where W is the weight of @relmap) then @dst will
660  * once again be returned empty.
661  *
662  * All bits in @dst not set by the above rule are cleared.
663  */
664 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
665                         const unsigned long *relmap, unsigned int bits)
666 {
667         unsigned int n, m;      /* same meaning as in above comment */
668
669         if (dst == orig)        /* following doesn't handle inplace mappings */
670                 return;
671         bitmap_zero(dst, bits);
672
673         /*
674          * The following code is a more efficient, but less
675          * obvious, equivalent to the loop:
676          *      for (m = 0; m < bitmap_weight(relmap, bits); m++) {
677          *              n = find_nth_bit(orig, bits, m);
678          *              if (test_bit(m, orig))
679          *                      set_bit(n, dst);
680          *      }
681          */
682
683         m = 0;
684         for_each_set_bit(n, relmap, bits) {
685                 /* m == bitmap_pos_to_ord(relmap, n, bits) */
686                 if (test_bit(m, orig))
687                         set_bit(n, dst);
688                 m++;
689         }
690 }
691
692 /**
693  * bitmap_fold - fold larger bitmap into smaller, modulo specified size
694  *      @dst: resulting smaller bitmap
695  *      @orig: original larger bitmap
696  *      @sz: specified size
697  *      @nbits: number of bits in each of these bitmaps
698  *
699  * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
700  * Clear all other bits in @dst.  See further the comment and
701  * Example [2] for bitmap_onto() for why and how to use this.
702  */
703 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
704                         unsigned int sz, unsigned int nbits)
705 {
706         unsigned int oldbit;
707
708         if (dst == orig)        /* following doesn't handle inplace mappings */
709                 return;
710         bitmap_zero(dst, nbits);
711
712         for_each_set_bit(oldbit, orig, nbits)
713                 set_bit(oldbit % sz, dst);
714 }
715 #endif /* CONFIG_NUMA */
716
717 unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
718 {
719         return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
720                              flags);
721 }
722 EXPORT_SYMBOL(bitmap_alloc);
723
724 unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
725 {
726         return bitmap_alloc(nbits, flags | __GFP_ZERO);
727 }
728 EXPORT_SYMBOL(bitmap_zalloc);
729
730 unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node)
731 {
732         return kmalloc_array_node(BITS_TO_LONGS(nbits), sizeof(unsigned long),
733                                   flags, node);
734 }
735 EXPORT_SYMBOL(bitmap_alloc_node);
736
737 unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node)
738 {
739         return bitmap_alloc_node(nbits, flags | __GFP_ZERO, node);
740 }
741 EXPORT_SYMBOL(bitmap_zalloc_node);
742
743 void bitmap_free(const unsigned long *bitmap)
744 {
745         kfree(bitmap);
746 }
747 EXPORT_SYMBOL(bitmap_free);
748
749 static void devm_bitmap_free(void *data)
750 {
751         unsigned long *bitmap = data;
752
753         bitmap_free(bitmap);
754 }
755
756 unsigned long *devm_bitmap_alloc(struct device *dev,
757                                  unsigned int nbits, gfp_t flags)
758 {
759         unsigned long *bitmap;
760         int ret;
761
762         bitmap = bitmap_alloc(nbits, flags);
763         if (!bitmap)
764                 return NULL;
765
766         ret = devm_add_action_or_reset(dev, devm_bitmap_free, bitmap);
767         if (ret)
768                 return NULL;
769
770         return bitmap;
771 }
772 EXPORT_SYMBOL_GPL(devm_bitmap_alloc);
773
774 unsigned long *devm_bitmap_zalloc(struct device *dev,
775                                   unsigned int nbits, gfp_t flags)
776 {
777         return devm_bitmap_alloc(dev, nbits, flags | __GFP_ZERO);
778 }
779 EXPORT_SYMBOL_GPL(devm_bitmap_zalloc);
780
781 #if BITS_PER_LONG == 64
782 /**
783  * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
784  *      @bitmap: array of unsigned longs, the destination bitmap
785  *      @buf: array of u32 (in host byte order), the source bitmap
786  *      @nbits: number of bits in @bitmap
787  */
788 void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
789 {
790         unsigned int i, halfwords;
791
792         halfwords = DIV_ROUND_UP(nbits, 32);
793         for (i = 0; i < halfwords; i++) {
794                 bitmap[i/2] = (unsigned long) buf[i];
795                 if (++i < halfwords)
796                         bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
797         }
798
799         /* Clear tail bits in last word beyond nbits. */
800         if (nbits % BITS_PER_LONG)
801                 bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
802 }
803 EXPORT_SYMBOL(bitmap_from_arr32);
804
805 /**
806  * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
807  *      @buf: array of u32 (in host byte order), the dest bitmap
808  *      @bitmap: array of unsigned longs, the source bitmap
809  *      @nbits: number of bits in @bitmap
810  */
811 void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
812 {
813         unsigned int i, halfwords;
814
815         halfwords = DIV_ROUND_UP(nbits, 32);
816         for (i = 0; i < halfwords; i++) {
817                 buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
818                 if (++i < halfwords)
819                         buf[i] = (u32) (bitmap[i/2] >> 32);
820         }
821
822         /* Clear tail bits in last element of array beyond nbits. */
823         if (nbits % BITS_PER_LONG)
824                 buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
825 }
826 EXPORT_SYMBOL(bitmap_to_arr32);
827 #endif
828
829 #if BITS_PER_LONG == 32
830 /**
831  * bitmap_from_arr64 - copy the contents of u64 array of bits to bitmap
832  *      @bitmap: array of unsigned longs, the destination bitmap
833  *      @buf: array of u64 (in host byte order), the source bitmap
834  *      @nbits: number of bits in @bitmap
835  */
836 void bitmap_from_arr64(unsigned long *bitmap, const u64 *buf, unsigned int nbits)
837 {
838         int n;
839
840         for (n = nbits; n > 0; n -= 64) {
841                 u64 val = *buf++;
842
843                 *bitmap++ = val;
844                 if (n > 32)
845                         *bitmap++ = val >> 32;
846         }
847
848         /*
849          * Clear tail bits in the last word beyond nbits.
850          *
851          * Negative index is OK because here we point to the word next
852          * to the last word of the bitmap, except for nbits == 0, which
853          * is tested implicitly.
854          */
855         if (nbits % BITS_PER_LONG)
856                 bitmap[-1] &= BITMAP_LAST_WORD_MASK(nbits);
857 }
858 EXPORT_SYMBOL(bitmap_from_arr64);
859
860 /**
861  * bitmap_to_arr64 - copy the contents of bitmap to a u64 array of bits
862  *      @buf: array of u64 (in host byte order), the dest bitmap
863  *      @bitmap: array of unsigned longs, the source bitmap
864  *      @nbits: number of bits in @bitmap
865  */
866 void bitmap_to_arr64(u64 *buf, const unsigned long *bitmap, unsigned int nbits)
867 {
868         const unsigned long *end = bitmap + BITS_TO_LONGS(nbits);
869
870         while (bitmap < end) {
871                 *buf = *bitmap++;
872                 if (bitmap < end)
873                         *buf |= (u64)(*bitmap++) << 32;
874                 buf++;
875         }
876
877         /* Clear tail bits in the last element of array beyond nbits. */
878         if (nbits % 64)
879                 buf[-1] &= GENMASK_ULL((nbits - 1) % 64, 0);
880 }
881 EXPORT_SYMBOL(bitmap_to_arr64);
882 #endif