Merge tag 'for-5.11/block-2020-12-14' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / kernel / trace / ring_buffer.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_events.h>
8 #include <linux/ring_buffer.h>
9 #include <linux/trace_clock.h>
10 #include <linux/sched/clock.h>
11 #include <linux/trace_seq.h>
12 #include <linux/spinlock.h>
13 #include <linux/irq_work.h>
14 #include <linux/security.h>
15 #include <linux/uaccess.h>
16 #include <linux/hardirq.h>
17 #include <linux/kthread.h>      /* for self test */
18 #include <linux/module.h>
19 #include <linux/percpu.h>
20 #include <linux/mutex.h>
21 #include <linux/delay.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/list.h>
26 #include <linux/cpu.h>
27 #include <linux/oom.h>
28
29 #include <asm/local.h>
30
31 static void update_pages_handler(struct work_struct *work);
32
33 /*
34  * The ring buffer header is special. We must manually up keep it.
35  */
36 int ring_buffer_print_entry_header(struct trace_seq *s)
37 {
38         trace_seq_puts(s, "# compressed entry header\n");
39         trace_seq_puts(s, "\ttype_len    :    5 bits\n");
40         trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
41         trace_seq_puts(s, "\tarray       :   32 bits\n");
42         trace_seq_putc(s, '\n');
43         trace_seq_printf(s, "\tpadding     : type == %d\n",
44                          RINGBUF_TYPE_PADDING);
45         trace_seq_printf(s, "\ttime_extend : type == %d\n",
46                          RINGBUF_TYPE_TIME_EXTEND);
47         trace_seq_printf(s, "\ttime_stamp : type == %d\n",
48                          RINGBUF_TYPE_TIME_STAMP);
49         trace_seq_printf(s, "\tdata max type_len  == %d\n",
50                          RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
51
52         return !trace_seq_has_overflowed(s);
53 }
54
55 /*
56  * The ring buffer is made up of a list of pages. A separate list of pages is
57  * allocated for each CPU. A writer may only write to a buffer that is
58  * associated with the CPU it is currently executing on.  A reader may read
59  * from any per cpu buffer.
60  *
61  * The reader is special. For each per cpu buffer, the reader has its own
62  * reader page. When a reader has read the entire reader page, this reader
63  * page is swapped with another page in the ring buffer.
64  *
65  * Now, as long as the writer is off the reader page, the reader can do what
66  * ever it wants with that page. The writer will never write to that page
67  * again (as long as it is out of the ring buffer).
68  *
69  * Here's some silly ASCII art.
70  *
71  *   +------+
72  *   |reader|          RING BUFFER
73  *   |page  |
74  *   +------+        +---+   +---+   +---+
75  *                   |   |-->|   |-->|   |
76  *                   +---+   +---+   +---+
77  *                     ^               |
78  *                     |               |
79  *                     +---------------+
80  *
81  *
82  *   +------+
83  *   |reader|          RING BUFFER
84  *   |page  |------------------v
85  *   +------+        +---+   +---+   +---+
86  *                   |   |-->|   |-->|   |
87  *                   +---+   +---+   +---+
88  *                     ^               |
89  *                     |               |
90  *                     +---------------+
91  *
92  *
93  *   +------+
94  *   |reader|          RING BUFFER
95  *   |page  |------------------v
96  *   +------+        +---+   +---+   +---+
97  *      ^            |   |-->|   |-->|   |
98  *      |            +---+   +---+   +---+
99  *      |                              |
100  *      |                              |
101  *      +------------------------------+
102  *
103  *
104  *   +------+
105  *   |buffer|          RING BUFFER
106  *   |page  |------------------v
107  *   +------+        +---+   +---+   +---+
108  *      ^            |   |   |   |-->|   |
109  *      |   New      +---+   +---+   +---+
110  *      |  Reader------^               |
111  *      |   page                       |
112  *      +------------------------------+
113  *
114  *
115  * After we make this swap, the reader can hand this page off to the splice
116  * code and be done with it. It can even allocate a new page if it needs to
117  * and swap that into the ring buffer.
118  *
119  * We will be using cmpxchg soon to make all this lockless.
120  *
121  */
122
123 /* Used for individual buffers (after the counter) */
124 #define RB_BUFFER_OFF           (1 << 20)
125
126 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
127
128 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
129 #define RB_ALIGNMENT            4U
130 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
131 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
132 #define RB_ALIGN_DATA           __aligned(RB_ALIGNMENT)
133
134 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
135 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
136
137 enum {
138         RB_LEN_TIME_EXTEND = 8,
139         RB_LEN_TIME_STAMP =  8,
140 };
141
142 #define skip_time_extend(event) \
143         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
144
145 #define extended_time(event) \
146         (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
147
148 static inline int rb_null_event(struct ring_buffer_event *event)
149 {
150         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
151 }
152
153 static void rb_event_set_padding(struct ring_buffer_event *event)
154 {
155         /* padding has a NULL time_delta */
156         event->type_len = RINGBUF_TYPE_PADDING;
157         event->time_delta = 0;
158 }
159
160 static unsigned
161 rb_event_data_length(struct ring_buffer_event *event)
162 {
163         unsigned length;
164
165         if (event->type_len)
166                 length = event->type_len * RB_ALIGNMENT;
167         else
168                 length = event->array[0];
169         return length + RB_EVNT_HDR_SIZE;
170 }
171
172 /*
173  * Return the length of the given event. Will return
174  * the length of the time extend if the event is a
175  * time extend.
176  */
177 static inline unsigned
178 rb_event_length(struct ring_buffer_event *event)
179 {
180         switch (event->type_len) {
181         case RINGBUF_TYPE_PADDING:
182                 if (rb_null_event(event))
183                         /* undefined */
184                         return -1;
185                 return  event->array[0] + RB_EVNT_HDR_SIZE;
186
187         case RINGBUF_TYPE_TIME_EXTEND:
188                 return RB_LEN_TIME_EXTEND;
189
190         case RINGBUF_TYPE_TIME_STAMP:
191                 return RB_LEN_TIME_STAMP;
192
193         case RINGBUF_TYPE_DATA:
194                 return rb_event_data_length(event);
195         default:
196                 WARN_ON_ONCE(1);
197         }
198         /* not hit */
199         return 0;
200 }
201
202 /*
203  * Return total length of time extend and data,
204  *   or just the event length for all other events.
205  */
206 static inline unsigned
207 rb_event_ts_length(struct ring_buffer_event *event)
208 {
209         unsigned len = 0;
210
211         if (extended_time(event)) {
212                 /* time extends include the data event after it */
213                 len = RB_LEN_TIME_EXTEND;
214                 event = skip_time_extend(event);
215         }
216         return len + rb_event_length(event);
217 }
218
219 /**
220  * ring_buffer_event_length - return the length of the event
221  * @event: the event to get the length of
222  *
223  * Returns the size of the data load of a data event.
224  * If the event is something other than a data event, it
225  * returns the size of the event itself. With the exception
226  * of a TIME EXTEND, where it still returns the size of the
227  * data load of the data event after it.
228  */
229 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
230 {
231         unsigned length;
232
233         if (extended_time(event))
234                 event = skip_time_extend(event);
235
236         length = rb_event_length(event);
237         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
238                 return length;
239         length -= RB_EVNT_HDR_SIZE;
240         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
241                 length -= sizeof(event->array[0]);
242         return length;
243 }
244 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
245
246 /* inline for ring buffer fast paths */
247 static __always_inline void *
248 rb_event_data(struct ring_buffer_event *event)
249 {
250         if (extended_time(event))
251                 event = skip_time_extend(event);
252         WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
253         /* If length is in len field, then array[0] has the data */
254         if (event->type_len)
255                 return (void *)&event->array[0];
256         /* Otherwise length is in array[0] and array[1] has the data */
257         return (void *)&event->array[1];
258 }
259
260 /**
261  * ring_buffer_event_data - return the data of the event
262  * @event: the event to get the data from
263  */
264 void *ring_buffer_event_data(struct ring_buffer_event *event)
265 {
266         return rb_event_data(event);
267 }
268 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
269
270 #define for_each_buffer_cpu(buffer, cpu)                \
271         for_each_cpu(cpu, buffer->cpumask)
272
273 #define for_each_online_buffer_cpu(buffer, cpu)         \
274         for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
275
276 #define TS_SHIFT        27
277 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
278 #define TS_DELTA_TEST   (~TS_MASK)
279
280 /**
281  * ring_buffer_event_time_stamp - return the event's extended timestamp
282  * @event: the event to get the timestamp of
283  *
284  * Returns the extended timestamp associated with a data event.
285  * An extended time_stamp is a 64-bit timestamp represented
286  * internally in a special way that makes the best use of space
287  * contained within a ring buffer event.  This function decodes
288  * it and maps it to a straight u64 value.
289  */
290 u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
291 {
292         u64 ts;
293
294         ts = event->array[0];
295         ts <<= TS_SHIFT;
296         ts += event->time_delta;
297
298         return ts;
299 }
300
301 /* Flag when events were overwritten */
302 #define RB_MISSED_EVENTS        (1 << 31)
303 /* Missed count stored at end */
304 #define RB_MISSED_STORED        (1 << 30)
305
306 struct buffer_data_page {
307         u64              time_stamp;    /* page time stamp */
308         local_t          commit;        /* write committed index */
309         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
310 };
311
312 /*
313  * Note, the buffer_page list must be first. The buffer pages
314  * are allocated in cache lines, which means that each buffer
315  * page will be at the beginning of a cache line, and thus
316  * the least significant bits will be zero. We use this to
317  * add flags in the list struct pointers, to make the ring buffer
318  * lockless.
319  */
320 struct buffer_page {
321         struct list_head list;          /* list of buffer pages */
322         local_t          write;         /* index for next write */
323         unsigned         read;          /* index for next read */
324         local_t          entries;       /* entries on this page */
325         unsigned long    real_end;      /* real end of data */
326         struct buffer_data_page *page;  /* Actual data page */
327 };
328
329 /*
330  * The buffer page counters, write and entries, must be reset
331  * atomically when crossing page boundaries. To synchronize this
332  * update, two counters are inserted into the number. One is
333  * the actual counter for the write position or count on the page.
334  *
335  * The other is a counter of updaters. Before an update happens
336  * the update partition of the counter is incremented. This will
337  * allow the updater to update the counter atomically.
338  *
339  * The counter is 20 bits, and the state data is 12.
340  */
341 #define RB_WRITE_MASK           0xfffff
342 #define RB_WRITE_INTCNT         (1 << 20)
343
344 static void rb_init_page(struct buffer_data_page *bpage)
345 {
346         local_set(&bpage->commit, 0);
347 }
348
349 /*
350  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
351  * this issue out.
352  */
353 static void free_buffer_page(struct buffer_page *bpage)
354 {
355         free_page((unsigned long)bpage->page);
356         kfree(bpage);
357 }
358
359 /*
360  * We need to fit the time_stamp delta into 27 bits.
361  */
362 static inline int test_time_stamp(u64 delta)
363 {
364         if (delta & TS_DELTA_TEST)
365                 return 1;
366         return 0;
367 }
368
369 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
370
371 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
372 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
373
374 int ring_buffer_print_page_header(struct trace_seq *s)
375 {
376         struct buffer_data_page field;
377
378         trace_seq_printf(s, "\tfield: u64 timestamp;\t"
379                          "offset:0;\tsize:%u;\tsigned:%u;\n",
380                          (unsigned int)sizeof(field.time_stamp),
381                          (unsigned int)is_signed_type(u64));
382
383         trace_seq_printf(s, "\tfield: local_t commit;\t"
384                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
385                          (unsigned int)offsetof(typeof(field), commit),
386                          (unsigned int)sizeof(field.commit),
387                          (unsigned int)is_signed_type(long));
388
389         trace_seq_printf(s, "\tfield: int overwrite;\t"
390                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
391                          (unsigned int)offsetof(typeof(field), commit),
392                          1,
393                          (unsigned int)is_signed_type(long));
394
395         trace_seq_printf(s, "\tfield: char data;\t"
396                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
397                          (unsigned int)offsetof(typeof(field), data),
398                          (unsigned int)BUF_PAGE_SIZE,
399                          (unsigned int)is_signed_type(char));
400
401         return !trace_seq_has_overflowed(s);
402 }
403
404 struct rb_irq_work {
405         struct irq_work                 work;
406         wait_queue_head_t               waiters;
407         wait_queue_head_t               full_waiters;
408         bool                            waiters_pending;
409         bool                            full_waiters_pending;
410         bool                            wakeup_full;
411 };
412
413 /*
414  * Structure to hold event state and handle nested events.
415  */
416 struct rb_event_info {
417         u64                     ts;
418         u64                     delta;
419         u64                     before;
420         u64                     after;
421         unsigned long           length;
422         struct buffer_page      *tail_page;
423         int                     add_timestamp;
424 };
425
426 /*
427  * Used for the add_timestamp
428  *  NONE
429  *  EXTEND - wants a time extend
430  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
431  *  FORCE - force a full time stamp.
432  */
433 enum {
434         RB_ADD_STAMP_NONE               = 0,
435         RB_ADD_STAMP_EXTEND             = BIT(1),
436         RB_ADD_STAMP_ABSOLUTE           = BIT(2),
437         RB_ADD_STAMP_FORCE              = BIT(3)
438 };
439 /*
440  * Used for which event context the event is in.
441  *  TRANSITION = 0
442  *  NMI     = 1
443  *  IRQ     = 2
444  *  SOFTIRQ = 3
445  *  NORMAL  = 4
446  *
447  * See trace_recursive_lock() comment below for more details.
448  */
449 enum {
450         RB_CTX_TRANSITION,
451         RB_CTX_NMI,
452         RB_CTX_IRQ,
453         RB_CTX_SOFTIRQ,
454         RB_CTX_NORMAL,
455         RB_CTX_MAX
456 };
457
458 #if BITS_PER_LONG == 32
459 #define RB_TIME_32
460 #endif
461
462 /* To test on 64 bit machines */
463 //#define RB_TIME_32
464
465 #ifdef RB_TIME_32
466
467 struct rb_time_struct {
468         local_t         cnt;
469         local_t         top;
470         local_t         bottom;
471 };
472 #else
473 #include <asm/local64.h>
474 struct rb_time_struct {
475         local64_t       time;
476 };
477 #endif
478 typedef struct rb_time_struct rb_time_t;
479
480 /*
481  * head_page == tail_page && head == tail then buffer is empty.
482  */
483 struct ring_buffer_per_cpu {
484         int                             cpu;
485         atomic_t                        record_disabled;
486         atomic_t                        resize_disabled;
487         struct trace_buffer     *buffer;
488         raw_spinlock_t                  reader_lock;    /* serialize readers */
489         arch_spinlock_t                 lock;
490         struct lock_class_key           lock_key;
491         struct buffer_data_page         *free_page;
492         unsigned long                   nr_pages;
493         unsigned int                    current_context;
494         struct list_head                *pages;
495         struct buffer_page              *head_page;     /* read from head */
496         struct buffer_page              *tail_page;     /* write to tail */
497         struct buffer_page              *commit_page;   /* committed pages */
498         struct buffer_page              *reader_page;
499         unsigned long                   lost_events;
500         unsigned long                   last_overrun;
501         unsigned long                   nest;
502         local_t                         entries_bytes;
503         local_t                         entries;
504         local_t                         overrun;
505         local_t                         commit_overrun;
506         local_t                         dropped_events;
507         local_t                         committing;
508         local_t                         commits;
509         local_t                         pages_touched;
510         local_t                         pages_read;
511         long                            last_pages_touch;
512         size_t                          shortest_full;
513         unsigned long                   read;
514         unsigned long                   read_bytes;
515         rb_time_t                       write_stamp;
516         rb_time_t                       before_stamp;
517         u64                             read_stamp;
518         /* ring buffer pages to update, > 0 to add, < 0 to remove */
519         long                            nr_pages_to_update;
520         struct list_head                new_pages; /* new pages to add */
521         struct work_struct              update_pages_work;
522         struct completion               update_done;
523
524         struct rb_irq_work              irq_work;
525 };
526
527 struct trace_buffer {
528         unsigned                        flags;
529         int                             cpus;
530         atomic_t                        record_disabled;
531         cpumask_var_t                   cpumask;
532
533         struct lock_class_key           *reader_lock_key;
534
535         struct mutex                    mutex;
536
537         struct ring_buffer_per_cpu      **buffers;
538
539         struct hlist_node               node;
540         u64                             (*clock)(void);
541
542         struct rb_irq_work              irq_work;
543         bool                            time_stamp_abs;
544 };
545
546 struct ring_buffer_iter {
547         struct ring_buffer_per_cpu      *cpu_buffer;
548         unsigned long                   head;
549         unsigned long                   next_event;
550         struct buffer_page              *head_page;
551         struct buffer_page              *cache_reader_page;
552         unsigned long                   cache_read;
553         u64                             read_stamp;
554         u64                             page_stamp;
555         struct ring_buffer_event        *event;
556         int                             missed_events;
557 };
558
559 #ifdef RB_TIME_32
560
561 /*
562  * On 32 bit machines, local64_t is very expensive. As the ring
563  * buffer doesn't need all the features of a true 64 bit atomic,
564  * on 32 bit, it uses these functions (64 still uses local64_t).
565  *
566  * For the ring buffer, 64 bit required operations for the time is
567  * the following:
568  *
569  *  - Only need 59 bits (uses 60 to make it even).
570  *  - Reads may fail if it interrupted a modification of the time stamp.
571  *      It will succeed if it did not interrupt another write even if
572  *      the read itself is interrupted by a write.
573  *      It returns whether it was successful or not.
574  *
575  *  - Writes always succeed and will overwrite other writes and writes
576  *      that were done by events interrupting the current write.
577  *
578  *  - A write followed by a read of the same time stamp will always succeed,
579  *      but may not contain the same value.
580  *
581  *  - A cmpxchg will fail if it interrupted another write or cmpxchg.
582  *      Other than that, it acts like a normal cmpxchg.
583  *
584  * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
585  *  (bottom being the least significant 30 bits of the 60 bit time stamp).
586  *
587  * The two most significant bits of each half holds a 2 bit counter (0-3).
588  * Each update will increment this counter by one.
589  * When reading the top and bottom, if the two counter bits match then the
590  *  top and bottom together make a valid 60 bit number.
591  */
592 #define RB_TIME_SHIFT   30
593 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
594
595 static inline int rb_time_cnt(unsigned long val)
596 {
597         return (val >> RB_TIME_SHIFT) & 3;
598 }
599
600 static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
601 {
602         u64 val;
603
604         val = top & RB_TIME_VAL_MASK;
605         val <<= RB_TIME_SHIFT;
606         val |= bottom & RB_TIME_VAL_MASK;
607
608         return val;
609 }
610
611 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
612 {
613         unsigned long top, bottom;
614         unsigned long c;
615
616         /*
617          * If the read is interrupted by a write, then the cnt will
618          * be different. Loop until both top and bottom have been read
619          * without interruption.
620          */
621         do {
622                 c = local_read(&t->cnt);
623                 top = local_read(&t->top);
624                 bottom = local_read(&t->bottom);
625         } while (c != local_read(&t->cnt));
626
627         *cnt = rb_time_cnt(top);
628
629         /* If top and bottom counts don't match, this interrupted a write */
630         if (*cnt != rb_time_cnt(bottom))
631                 return false;
632
633         *ret = rb_time_val(top, bottom);
634         return true;
635 }
636
637 static bool rb_time_read(rb_time_t *t, u64 *ret)
638 {
639         unsigned long cnt;
640
641         return __rb_time_read(t, ret, &cnt);
642 }
643
644 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
645 {
646         return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
647 }
648
649 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom)
650 {
651         *top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
652         *bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
653 }
654
655 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
656 {
657         val = rb_time_val_cnt(val, cnt);
658         local_set(t, val);
659 }
660
661 static void rb_time_set(rb_time_t *t, u64 val)
662 {
663         unsigned long cnt, top, bottom;
664
665         rb_time_split(val, &top, &bottom);
666
667         /* Writes always succeed with a valid number even if it gets interrupted. */
668         do {
669                 cnt = local_inc_return(&t->cnt);
670                 rb_time_val_set(&t->top, top, cnt);
671                 rb_time_val_set(&t->bottom, bottom, cnt);
672         } while (cnt != local_read(&t->cnt));
673 }
674
675 static inline bool
676 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
677 {
678         unsigned long ret;
679
680         ret = local_cmpxchg(l, expect, set);
681         return ret == expect;
682 }
683
684 static int rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
685 {
686         unsigned long cnt, top, bottom;
687         unsigned long cnt2, top2, bottom2;
688         u64 val;
689
690         /* The cmpxchg always fails if it interrupted an update */
691          if (!__rb_time_read(t, &val, &cnt2))
692                  return false;
693
694          if (val != expect)
695                  return false;
696
697          cnt = local_read(&t->cnt);
698          if ((cnt & 3) != cnt2)
699                  return false;
700
701          cnt2 = cnt + 1;
702
703          rb_time_split(val, &top, &bottom);
704          top = rb_time_val_cnt(top, cnt);
705          bottom = rb_time_val_cnt(bottom, cnt);
706
707          rb_time_split(set, &top2, &bottom2);
708          top2 = rb_time_val_cnt(top2, cnt2);
709          bottom2 = rb_time_val_cnt(bottom2, cnt2);
710
711         if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2))
712                 return false;
713         if (!rb_time_read_cmpxchg(&t->top, top, top2))
714                 return false;
715         if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2))
716                 return false;
717         return true;
718 }
719
720 #else /* 64 bits */
721
722 /* local64_t always succeeds */
723
724 static inline bool rb_time_read(rb_time_t *t, u64 *ret)
725 {
726         *ret = local64_read(&t->time);
727         return true;
728 }
729 static void rb_time_set(rb_time_t *t, u64 val)
730 {
731         local64_set(&t->time, val);
732 }
733
734 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
735 {
736         u64 val;
737         val = local64_cmpxchg(&t->time, expect, set);
738         return val == expect;
739 }
740 #endif
741
742 /**
743  * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
744  * @buffer: The ring_buffer to get the number of pages from
745  * @cpu: The cpu of the ring_buffer to get the number of pages from
746  *
747  * Returns the number of pages used by a per_cpu buffer of the ring buffer.
748  */
749 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
750 {
751         return buffer->buffers[cpu]->nr_pages;
752 }
753
754 /**
755  * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer
756  * @buffer: The ring_buffer to get the number of pages from
757  * @cpu: The cpu of the ring_buffer to get the number of pages from
758  *
759  * Returns the number of pages that have content in the ring buffer.
760  */
761 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
762 {
763         size_t read;
764         size_t cnt;
765
766         read = local_read(&buffer->buffers[cpu]->pages_read);
767         cnt = local_read(&buffer->buffers[cpu]->pages_touched);
768         /* The reader can read an empty page, but not more than that */
769         if (cnt < read) {
770                 WARN_ON_ONCE(read > cnt + 1);
771                 return 0;
772         }
773
774         return cnt - read;
775 }
776
777 /*
778  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
779  *
780  * Schedules a delayed work to wake up any task that is blocked on the
781  * ring buffer waiters queue.
782  */
783 static void rb_wake_up_waiters(struct irq_work *work)
784 {
785         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
786
787         wake_up_all(&rbwork->waiters);
788         if (rbwork->wakeup_full) {
789                 rbwork->wakeup_full = false;
790                 wake_up_all(&rbwork->full_waiters);
791         }
792 }
793
794 /**
795  * ring_buffer_wait - wait for input to the ring buffer
796  * @buffer: buffer to wait on
797  * @cpu: the cpu buffer to wait on
798  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
799  *
800  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
801  * as data is added to any of the @buffer's cpu buffers. Otherwise
802  * it will wait for data to be added to a specific cpu buffer.
803  */
804 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
805 {
806         struct ring_buffer_per_cpu *cpu_buffer;
807         DEFINE_WAIT(wait);
808         struct rb_irq_work *work;
809         int ret = 0;
810
811         /*
812          * Depending on what the caller is waiting for, either any
813          * data in any cpu buffer, or a specific buffer, put the
814          * caller on the appropriate wait queue.
815          */
816         if (cpu == RING_BUFFER_ALL_CPUS) {
817                 work = &buffer->irq_work;
818                 /* Full only makes sense on per cpu reads */
819                 full = 0;
820         } else {
821                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
822                         return -ENODEV;
823                 cpu_buffer = buffer->buffers[cpu];
824                 work = &cpu_buffer->irq_work;
825         }
826
827
828         while (true) {
829                 if (full)
830                         prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
831                 else
832                         prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
833
834                 /*
835                  * The events can happen in critical sections where
836                  * checking a work queue can cause deadlocks.
837                  * After adding a task to the queue, this flag is set
838                  * only to notify events to try to wake up the queue
839                  * using irq_work.
840                  *
841                  * We don't clear it even if the buffer is no longer
842                  * empty. The flag only causes the next event to run
843                  * irq_work to do the work queue wake up. The worse
844                  * that can happen if we race with !trace_empty() is that
845                  * an event will cause an irq_work to try to wake up
846                  * an empty queue.
847                  *
848                  * There's no reason to protect this flag either, as
849                  * the work queue and irq_work logic will do the necessary
850                  * synchronization for the wake ups. The only thing
851                  * that is necessary is that the wake up happens after
852                  * a task has been queued. It's OK for spurious wake ups.
853                  */
854                 if (full)
855                         work->full_waiters_pending = true;
856                 else
857                         work->waiters_pending = true;
858
859                 if (signal_pending(current)) {
860                         ret = -EINTR;
861                         break;
862                 }
863
864                 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
865                         break;
866
867                 if (cpu != RING_BUFFER_ALL_CPUS &&
868                     !ring_buffer_empty_cpu(buffer, cpu)) {
869                         unsigned long flags;
870                         bool pagebusy;
871                         size_t nr_pages;
872                         size_t dirty;
873
874                         if (!full)
875                                 break;
876
877                         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
878                         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
879                         nr_pages = cpu_buffer->nr_pages;
880                         dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
881                         if (!cpu_buffer->shortest_full ||
882                             cpu_buffer->shortest_full < full)
883                                 cpu_buffer->shortest_full = full;
884                         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
885                         if (!pagebusy &&
886                             (!nr_pages || (dirty * 100) > full * nr_pages))
887                                 break;
888                 }
889
890                 schedule();
891         }
892
893         if (full)
894                 finish_wait(&work->full_waiters, &wait);
895         else
896                 finish_wait(&work->waiters, &wait);
897
898         return ret;
899 }
900
901 /**
902  * ring_buffer_poll_wait - poll on buffer input
903  * @buffer: buffer to wait on
904  * @cpu: the cpu buffer to wait on
905  * @filp: the file descriptor
906  * @poll_table: The poll descriptor
907  *
908  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
909  * as data is added to any of the @buffer's cpu buffers. Otherwise
910  * it will wait for data to be added to a specific cpu buffer.
911  *
912  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
913  * zero otherwise.
914  */
915 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
916                           struct file *filp, poll_table *poll_table)
917 {
918         struct ring_buffer_per_cpu *cpu_buffer;
919         struct rb_irq_work *work;
920
921         if (cpu == RING_BUFFER_ALL_CPUS)
922                 work = &buffer->irq_work;
923         else {
924                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
925                         return -EINVAL;
926
927                 cpu_buffer = buffer->buffers[cpu];
928                 work = &cpu_buffer->irq_work;
929         }
930
931         poll_wait(filp, &work->waiters, poll_table);
932         work->waiters_pending = true;
933         /*
934          * There's a tight race between setting the waiters_pending and
935          * checking if the ring buffer is empty.  Once the waiters_pending bit
936          * is set, the next event will wake the task up, but we can get stuck
937          * if there's only a single event in.
938          *
939          * FIXME: Ideally, we need a memory barrier on the writer side as well,
940          * but adding a memory barrier to all events will cause too much of a
941          * performance hit in the fast path.  We only need a memory barrier when
942          * the buffer goes from empty to having content.  But as this race is
943          * extremely small, and it's not a problem if another event comes in, we
944          * will fix it later.
945          */
946         smp_mb();
947
948         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
949             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
950                 return EPOLLIN | EPOLLRDNORM;
951         return 0;
952 }
953
954 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
955 #define RB_WARN_ON(b, cond)                                             \
956         ({                                                              \
957                 int _____ret = unlikely(cond);                          \
958                 if (_____ret) {                                         \
959                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
960                                 struct ring_buffer_per_cpu *__b =       \
961                                         (void *)b;                      \
962                                 atomic_inc(&__b->buffer->record_disabled); \
963                         } else                                          \
964                                 atomic_inc(&b->record_disabled);        \
965                         WARN_ON(1);                                     \
966                 }                                                       \
967                 _____ret;                                               \
968         })
969
970 /* Up this if you want to test the TIME_EXTENTS and normalization */
971 #define DEBUG_SHIFT 0
972
973 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
974 {
975         u64 ts;
976
977         /* Skip retpolines :-( */
978         if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
979                 ts = trace_clock_local();
980         else
981                 ts = buffer->clock();
982
983         /* shift to debug/test normalization and TIME_EXTENTS */
984         return ts << DEBUG_SHIFT;
985 }
986
987 u64 ring_buffer_time_stamp(struct trace_buffer *buffer, int cpu)
988 {
989         u64 time;
990
991         preempt_disable_notrace();
992         time = rb_time_stamp(buffer);
993         preempt_enable_notrace();
994
995         return time;
996 }
997 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
998
999 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1000                                       int cpu, u64 *ts)
1001 {
1002         /* Just stupid testing the normalize function and deltas */
1003         *ts >>= DEBUG_SHIFT;
1004 }
1005 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1006
1007 /*
1008  * Making the ring buffer lockless makes things tricky.
1009  * Although writes only happen on the CPU that they are on,
1010  * and they only need to worry about interrupts. Reads can
1011  * happen on any CPU.
1012  *
1013  * The reader page is always off the ring buffer, but when the
1014  * reader finishes with a page, it needs to swap its page with
1015  * a new one from the buffer. The reader needs to take from
1016  * the head (writes go to the tail). But if a writer is in overwrite
1017  * mode and wraps, it must push the head page forward.
1018  *
1019  * Here lies the problem.
1020  *
1021  * The reader must be careful to replace only the head page, and
1022  * not another one. As described at the top of the file in the
1023  * ASCII art, the reader sets its old page to point to the next
1024  * page after head. It then sets the page after head to point to
1025  * the old reader page. But if the writer moves the head page
1026  * during this operation, the reader could end up with the tail.
1027  *
1028  * We use cmpxchg to help prevent this race. We also do something
1029  * special with the page before head. We set the LSB to 1.
1030  *
1031  * When the writer must push the page forward, it will clear the
1032  * bit that points to the head page, move the head, and then set
1033  * the bit that points to the new head page.
1034  *
1035  * We also don't want an interrupt coming in and moving the head
1036  * page on another writer. Thus we use the second LSB to catch
1037  * that too. Thus:
1038  *
1039  * head->list->prev->next        bit 1          bit 0
1040  *                              -------        -------
1041  * Normal page                     0              0
1042  * Points to head page             0              1
1043  * New head page                   1              0
1044  *
1045  * Note we can not trust the prev pointer of the head page, because:
1046  *
1047  * +----+       +-----+        +-----+
1048  * |    |------>|  T  |---X--->|  N  |
1049  * |    |<------|     |        |     |
1050  * +----+       +-----+        +-----+
1051  *   ^                           ^ |
1052  *   |          +-----+          | |
1053  *   +----------|  R  |----------+ |
1054  *              |     |<-----------+
1055  *              +-----+
1056  *
1057  * Key:  ---X-->  HEAD flag set in pointer
1058  *         T      Tail page
1059  *         R      Reader page
1060  *         N      Next page
1061  *
1062  * (see __rb_reserve_next() to see where this happens)
1063  *
1064  *  What the above shows is that the reader just swapped out
1065  *  the reader page with a page in the buffer, but before it
1066  *  could make the new header point back to the new page added
1067  *  it was preempted by a writer. The writer moved forward onto
1068  *  the new page added by the reader and is about to move forward
1069  *  again.
1070  *
1071  *  You can see, it is legitimate for the previous pointer of
1072  *  the head (or any page) not to point back to itself. But only
1073  *  temporarily.
1074  */
1075
1076 #define RB_PAGE_NORMAL          0UL
1077 #define RB_PAGE_HEAD            1UL
1078 #define RB_PAGE_UPDATE          2UL
1079
1080
1081 #define RB_FLAG_MASK            3UL
1082
1083 /* PAGE_MOVED is not part of the mask */
1084 #define RB_PAGE_MOVED           4UL
1085
1086 /*
1087  * rb_list_head - remove any bit
1088  */
1089 static struct list_head *rb_list_head(struct list_head *list)
1090 {
1091         unsigned long val = (unsigned long)list;
1092
1093         return (struct list_head *)(val & ~RB_FLAG_MASK);
1094 }
1095
1096 /*
1097  * rb_is_head_page - test if the given page is the head page
1098  *
1099  * Because the reader may move the head_page pointer, we can
1100  * not trust what the head page is (it may be pointing to
1101  * the reader page). But if the next page is a header page,
1102  * its flags will be non zero.
1103  */
1104 static inline int
1105 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1106                 struct buffer_page *page, struct list_head *list)
1107 {
1108         unsigned long val;
1109
1110         val = (unsigned long)list->next;
1111
1112         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1113                 return RB_PAGE_MOVED;
1114
1115         return val & RB_FLAG_MASK;
1116 }
1117
1118 /*
1119  * rb_is_reader_page
1120  *
1121  * The unique thing about the reader page, is that, if the
1122  * writer is ever on it, the previous pointer never points
1123  * back to the reader page.
1124  */
1125 static bool rb_is_reader_page(struct buffer_page *page)
1126 {
1127         struct list_head *list = page->list.prev;
1128
1129         return rb_list_head(list->next) != &page->list;
1130 }
1131
1132 /*
1133  * rb_set_list_to_head - set a list_head to be pointing to head.
1134  */
1135 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
1136                                 struct list_head *list)
1137 {
1138         unsigned long *ptr;
1139
1140         ptr = (unsigned long *)&list->next;
1141         *ptr |= RB_PAGE_HEAD;
1142         *ptr &= ~RB_PAGE_UPDATE;
1143 }
1144
1145 /*
1146  * rb_head_page_activate - sets up head page
1147  */
1148 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1149 {
1150         struct buffer_page *head;
1151
1152         head = cpu_buffer->head_page;
1153         if (!head)
1154                 return;
1155
1156         /*
1157          * Set the previous list pointer to have the HEAD flag.
1158          */
1159         rb_set_list_to_head(cpu_buffer, head->list.prev);
1160 }
1161
1162 static void rb_list_head_clear(struct list_head *list)
1163 {
1164         unsigned long *ptr = (unsigned long *)&list->next;
1165
1166         *ptr &= ~RB_FLAG_MASK;
1167 }
1168
1169 /*
1170  * rb_head_page_deactivate - clears head page ptr (for free list)
1171  */
1172 static void
1173 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1174 {
1175         struct list_head *hd;
1176
1177         /* Go through the whole list and clear any pointers found. */
1178         rb_list_head_clear(cpu_buffer->pages);
1179
1180         list_for_each(hd, cpu_buffer->pages)
1181                 rb_list_head_clear(hd);
1182 }
1183
1184 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1185                             struct buffer_page *head,
1186                             struct buffer_page *prev,
1187                             int old_flag, int new_flag)
1188 {
1189         struct list_head *list;
1190         unsigned long val = (unsigned long)&head->list;
1191         unsigned long ret;
1192
1193         list = &prev->list;
1194
1195         val &= ~RB_FLAG_MASK;
1196
1197         ret = cmpxchg((unsigned long *)&list->next,
1198                       val | old_flag, val | new_flag);
1199
1200         /* check if the reader took the page */
1201         if ((ret & ~RB_FLAG_MASK) != val)
1202                 return RB_PAGE_MOVED;
1203
1204         return ret & RB_FLAG_MASK;
1205 }
1206
1207 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1208                                    struct buffer_page *head,
1209                                    struct buffer_page *prev,
1210                                    int old_flag)
1211 {
1212         return rb_head_page_set(cpu_buffer, head, prev,
1213                                 old_flag, RB_PAGE_UPDATE);
1214 }
1215
1216 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1217                                  struct buffer_page *head,
1218                                  struct buffer_page *prev,
1219                                  int old_flag)
1220 {
1221         return rb_head_page_set(cpu_buffer, head, prev,
1222                                 old_flag, RB_PAGE_HEAD);
1223 }
1224
1225 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1226                                    struct buffer_page *head,
1227                                    struct buffer_page *prev,
1228                                    int old_flag)
1229 {
1230         return rb_head_page_set(cpu_buffer, head, prev,
1231                                 old_flag, RB_PAGE_NORMAL);
1232 }
1233
1234 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
1235                                struct buffer_page **bpage)
1236 {
1237         struct list_head *p = rb_list_head((*bpage)->list.next);
1238
1239         *bpage = list_entry(p, struct buffer_page, list);
1240 }
1241
1242 static struct buffer_page *
1243 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1244 {
1245         struct buffer_page *head;
1246         struct buffer_page *page;
1247         struct list_head *list;
1248         int i;
1249
1250         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1251                 return NULL;
1252
1253         /* sanity check */
1254         list = cpu_buffer->pages;
1255         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1256                 return NULL;
1257
1258         page = head = cpu_buffer->head_page;
1259         /*
1260          * It is possible that the writer moves the header behind
1261          * where we started, and we miss in one loop.
1262          * A second loop should grab the header, but we'll do
1263          * three loops just because I'm paranoid.
1264          */
1265         for (i = 0; i < 3; i++) {
1266                 do {
1267                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
1268                                 cpu_buffer->head_page = page;
1269                                 return page;
1270                         }
1271                         rb_inc_page(cpu_buffer, &page);
1272                 } while (page != head);
1273         }
1274
1275         RB_WARN_ON(cpu_buffer, 1);
1276
1277         return NULL;
1278 }
1279
1280 static int rb_head_page_replace(struct buffer_page *old,
1281                                 struct buffer_page *new)
1282 {
1283         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1284         unsigned long val;
1285         unsigned long ret;
1286
1287         val = *ptr & ~RB_FLAG_MASK;
1288         val |= RB_PAGE_HEAD;
1289
1290         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1291
1292         return ret == val;
1293 }
1294
1295 /*
1296  * rb_tail_page_update - move the tail page forward
1297  */
1298 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1299                                struct buffer_page *tail_page,
1300                                struct buffer_page *next_page)
1301 {
1302         unsigned long old_entries;
1303         unsigned long old_write;
1304
1305         /*
1306          * The tail page now needs to be moved forward.
1307          *
1308          * We need to reset the tail page, but without messing
1309          * with possible erasing of data brought in by interrupts
1310          * that have moved the tail page and are currently on it.
1311          *
1312          * We add a counter to the write field to denote this.
1313          */
1314         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1315         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1316
1317         local_inc(&cpu_buffer->pages_touched);
1318         /*
1319          * Just make sure we have seen our old_write and synchronize
1320          * with any interrupts that come in.
1321          */
1322         barrier();
1323
1324         /*
1325          * If the tail page is still the same as what we think
1326          * it is, then it is up to us to update the tail
1327          * pointer.
1328          */
1329         if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1330                 /* Zero the write counter */
1331                 unsigned long val = old_write & ~RB_WRITE_MASK;
1332                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1333
1334                 /*
1335                  * This will only succeed if an interrupt did
1336                  * not come in and change it. In which case, we
1337                  * do not want to modify it.
1338                  *
1339                  * We add (void) to let the compiler know that we do not care
1340                  * about the return value of these functions. We use the
1341                  * cmpxchg to only update if an interrupt did not already
1342                  * do it for us. If the cmpxchg fails, we don't care.
1343                  */
1344                 (void)local_cmpxchg(&next_page->write, old_write, val);
1345                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1346
1347                 /*
1348                  * No need to worry about races with clearing out the commit.
1349                  * it only can increment when a commit takes place. But that
1350                  * only happens in the outer most nested commit.
1351                  */
1352                 local_set(&next_page->page->commit, 0);
1353
1354                 /* Again, either we update tail_page or an interrupt does */
1355                 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1356         }
1357 }
1358
1359 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1360                           struct buffer_page *bpage)
1361 {
1362         unsigned long val = (unsigned long)bpage;
1363
1364         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1365                 return 1;
1366
1367         return 0;
1368 }
1369
1370 /**
1371  * rb_check_list - make sure a pointer to a list has the last bits zero
1372  */
1373 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1374                          struct list_head *list)
1375 {
1376         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1377                 return 1;
1378         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1379                 return 1;
1380         return 0;
1381 }
1382
1383 /**
1384  * rb_check_pages - integrity check of buffer pages
1385  * @cpu_buffer: CPU buffer with pages to test
1386  *
1387  * As a safety measure we check to make sure the data pages have not
1388  * been corrupted.
1389  */
1390 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1391 {
1392         struct list_head *head = cpu_buffer->pages;
1393         struct buffer_page *bpage, *tmp;
1394
1395         /* Reset the head page if it exists */
1396         if (cpu_buffer->head_page)
1397                 rb_set_head_page(cpu_buffer);
1398
1399         rb_head_page_deactivate(cpu_buffer);
1400
1401         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1402                 return -1;
1403         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1404                 return -1;
1405
1406         if (rb_check_list(cpu_buffer, head))
1407                 return -1;
1408
1409         list_for_each_entry_safe(bpage, tmp, head, list) {
1410                 if (RB_WARN_ON(cpu_buffer,
1411                                bpage->list.next->prev != &bpage->list))
1412                         return -1;
1413                 if (RB_WARN_ON(cpu_buffer,
1414                                bpage->list.prev->next != &bpage->list))
1415                         return -1;
1416                 if (rb_check_list(cpu_buffer, &bpage->list))
1417                         return -1;
1418         }
1419
1420         rb_head_page_activate(cpu_buffer);
1421
1422         return 0;
1423 }
1424
1425 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1426 {
1427         struct buffer_page *bpage, *tmp;
1428         bool user_thread = current->mm != NULL;
1429         gfp_t mflags;
1430         long i;
1431
1432         /*
1433          * Check if the available memory is there first.
1434          * Note, si_mem_available() only gives us a rough estimate of available
1435          * memory. It may not be accurate. But we don't care, we just want
1436          * to prevent doing any allocation when it is obvious that it is
1437          * not going to succeed.
1438          */
1439         i = si_mem_available();
1440         if (i < nr_pages)
1441                 return -ENOMEM;
1442
1443         /*
1444          * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1445          * gracefully without invoking oom-killer and the system is not
1446          * destabilized.
1447          */
1448         mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1449
1450         /*
1451          * If a user thread allocates too much, and si_mem_available()
1452          * reports there's enough memory, even though there is not.
1453          * Make sure the OOM killer kills this thread. This can happen
1454          * even with RETRY_MAYFAIL because another task may be doing
1455          * an allocation after this task has taken all memory.
1456          * This is the task the OOM killer needs to take out during this
1457          * loop, even if it was triggered by an allocation somewhere else.
1458          */
1459         if (user_thread)
1460                 set_current_oom_origin();
1461         for (i = 0; i < nr_pages; i++) {
1462                 struct page *page;
1463
1464                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1465                                     mflags, cpu_to_node(cpu));
1466                 if (!bpage)
1467                         goto free_pages;
1468
1469                 list_add(&bpage->list, pages);
1470
1471                 page = alloc_pages_node(cpu_to_node(cpu), mflags, 0);
1472                 if (!page)
1473                         goto free_pages;
1474                 bpage->page = page_address(page);
1475                 rb_init_page(bpage->page);
1476
1477                 if (user_thread && fatal_signal_pending(current))
1478                         goto free_pages;
1479         }
1480         if (user_thread)
1481                 clear_current_oom_origin();
1482
1483         return 0;
1484
1485 free_pages:
1486         list_for_each_entry_safe(bpage, tmp, pages, list) {
1487                 list_del_init(&bpage->list);
1488                 free_buffer_page(bpage);
1489         }
1490         if (user_thread)
1491                 clear_current_oom_origin();
1492
1493         return -ENOMEM;
1494 }
1495
1496 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1497                              unsigned long nr_pages)
1498 {
1499         LIST_HEAD(pages);
1500
1501         WARN_ON(!nr_pages);
1502
1503         if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1504                 return -ENOMEM;
1505
1506         /*
1507          * The ring buffer page list is a circular list that does not
1508          * start and end with a list head. All page list items point to
1509          * other pages.
1510          */
1511         cpu_buffer->pages = pages.next;
1512         list_del(&pages);
1513
1514         cpu_buffer->nr_pages = nr_pages;
1515
1516         rb_check_pages(cpu_buffer);
1517
1518         return 0;
1519 }
1520
1521 static struct ring_buffer_per_cpu *
1522 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1523 {
1524         struct ring_buffer_per_cpu *cpu_buffer;
1525         struct buffer_page *bpage;
1526         struct page *page;
1527         int ret;
1528
1529         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1530                                   GFP_KERNEL, cpu_to_node(cpu));
1531         if (!cpu_buffer)
1532                 return NULL;
1533
1534         cpu_buffer->cpu = cpu;
1535         cpu_buffer->buffer = buffer;
1536         raw_spin_lock_init(&cpu_buffer->reader_lock);
1537         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1538         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1539         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1540         init_completion(&cpu_buffer->update_done);
1541         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1542         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1543         init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1544
1545         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1546                             GFP_KERNEL, cpu_to_node(cpu));
1547         if (!bpage)
1548                 goto fail_free_buffer;
1549
1550         rb_check_bpage(cpu_buffer, bpage);
1551
1552         cpu_buffer->reader_page = bpage;
1553         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1554         if (!page)
1555                 goto fail_free_reader;
1556         bpage->page = page_address(page);
1557         rb_init_page(bpage->page);
1558
1559         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1560         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1561
1562         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1563         if (ret < 0)
1564                 goto fail_free_reader;
1565
1566         cpu_buffer->head_page
1567                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1568         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1569
1570         rb_head_page_activate(cpu_buffer);
1571
1572         return cpu_buffer;
1573
1574  fail_free_reader:
1575         free_buffer_page(cpu_buffer->reader_page);
1576
1577  fail_free_buffer:
1578         kfree(cpu_buffer);
1579         return NULL;
1580 }
1581
1582 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1583 {
1584         struct list_head *head = cpu_buffer->pages;
1585         struct buffer_page *bpage, *tmp;
1586
1587         free_buffer_page(cpu_buffer->reader_page);
1588
1589         rb_head_page_deactivate(cpu_buffer);
1590
1591         if (head) {
1592                 list_for_each_entry_safe(bpage, tmp, head, list) {
1593                         list_del_init(&bpage->list);
1594                         free_buffer_page(bpage);
1595                 }
1596                 bpage = list_entry(head, struct buffer_page, list);
1597                 free_buffer_page(bpage);
1598         }
1599
1600         kfree(cpu_buffer);
1601 }
1602
1603 /**
1604  * __ring_buffer_alloc - allocate a new ring_buffer
1605  * @size: the size in bytes per cpu that is needed.
1606  * @flags: attributes to set for the ring buffer.
1607  * @key: ring buffer reader_lock_key.
1608  *
1609  * Currently the only flag that is available is the RB_FL_OVERWRITE
1610  * flag. This flag means that the buffer will overwrite old data
1611  * when the buffer wraps. If this flag is not set, the buffer will
1612  * drop data when the tail hits the head.
1613  */
1614 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1615                                         struct lock_class_key *key)
1616 {
1617         struct trace_buffer *buffer;
1618         long nr_pages;
1619         int bsize;
1620         int cpu;
1621         int ret;
1622
1623         /* keep it in its own cache line */
1624         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1625                          GFP_KERNEL);
1626         if (!buffer)
1627                 return NULL;
1628
1629         if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1630                 goto fail_free_buffer;
1631
1632         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1633         buffer->flags = flags;
1634         buffer->clock = trace_clock_local;
1635         buffer->reader_lock_key = key;
1636
1637         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1638         init_waitqueue_head(&buffer->irq_work.waiters);
1639
1640         /* need at least two pages */
1641         if (nr_pages < 2)
1642                 nr_pages = 2;
1643
1644         buffer->cpus = nr_cpu_ids;
1645
1646         bsize = sizeof(void *) * nr_cpu_ids;
1647         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1648                                   GFP_KERNEL);
1649         if (!buffer->buffers)
1650                 goto fail_free_cpumask;
1651
1652         cpu = raw_smp_processor_id();
1653         cpumask_set_cpu(cpu, buffer->cpumask);
1654         buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1655         if (!buffer->buffers[cpu])
1656                 goto fail_free_buffers;
1657
1658         ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1659         if (ret < 0)
1660                 goto fail_free_buffers;
1661
1662         mutex_init(&buffer->mutex);
1663
1664         return buffer;
1665
1666  fail_free_buffers:
1667         for_each_buffer_cpu(buffer, cpu) {
1668                 if (buffer->buffers[cpu])
1669                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1670         }
1671         kfree(buffer->buffers);
1672
1673  fail_free_cpumask:
1674         free_cpumask_var(buffer->cpumask);
1675
1676  fail_free_buffer:
1677         kfree(buffer);
1678         return NULL;
1679 }
1680 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1681
1682 /**
1683  * ring_buffer_free - free a ring buffer.
1684  * @buffer: the buffer to free.
1685  */
1686 void
1687 ring_buffer_free(struct trace_buffer *buffer)
1688 {
1689         int cpu;
1690
1691         cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1692
1693         for_each_buffer_cpu(buffer, cpu)
1694                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1695
1696         kfree(buffer->buffers);
1697         free_cpumask_var(buffer->cpumask);
1698
1699         kfree(buffer);
1700 }
1701 EXPORT_SYMBOL_GPL(ring_buffer_free);
1702
1703 void ring_buffer_set_clock(struct trace_buffer *buffer,
1704                            u64 (*clock)(void))
1705 {
1706         buffer->clock = clock;
1707 }
1708
1709 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1710 {
1711         buffer->time_stamp_abs = abs;
1712 }
1713
1714 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1715 {
1716         return buffer->time_stamp_abs;
1717 }
1718
1719 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1720
1721 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1722 {
1723         return local_read(&bpage->entries) & RB_WRITE_MASK;
1724 }
1725
1726 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1727 {
1728         return local_read(&bpage->write) & RB_WRITE_MASK;
1729 }
1730
1731 static int
1732 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1733 {
1734         struct list_head *tail_page, *to_remove, *next_page;
1735         struct buffer_page *to_remove_page, *tmp_iter_page;
1736         struct buffer_page *last_page, *first_page;
1737         unsigned long nr_removed;
1738         unsigned long head_bit;
1739         int page_entries;
1740
1741         head_bit = 0;
1742
1743         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1744         atomic_inc(&cpu_buffer->record_disabled);
1745         /*
1746          * We don't race with the readers since we have acquired the reader
1747          * lock. We also don't race with writers after disabling recording.
1748          * This makes it easy to figure out the first and the last page to be
1749          * removed from the list. We unlink all the pages in between including
1750          * the first and last pages. This is done in a busy loop so that we
1751          * lose the least number of traces.
1752          * The pages are freed after we restart recording and unlock readers.
1753          */
1754         tail_page = &cpu_buffer->tail_page->list;
1755
1756         /*
1757          * tail page might be on reader page, we remove the next page
1758          * from the ring buffer
1759          */
1760         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1761                 tail_page = rb_list_head(tail_page->next);
1762         to_remove = tail_page;
1763
1764         /* start of pages to remove */
1765         first_page = list_entry(rb_list_head(to_remove->next),
1766                                 struct buffer_page, list);
1767
1768         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1769                 to_remove = rb_list_head(to_remove)->next;
1770                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1771         }
1772
1773         next_page = rb_list_head(to_remove)->next;
1774
1775         /*
1776          * Now we remove all pages between tail_page and next_page.
1777          * Make sure that we have head_bit value preserved for the
1778          * next page
1779          */
1780         tail_page->next = (struct list_head *)((unsigned long)next_page |
1781                                                 head_bit);
1782         next_page = rb_list_head(next_page);
1783         next_page->prev = tail_page;
1784
1785         /* make sure pages points to a valid page in the ring buffer */
1786         cpu_buffer->pages = next_page;
1787
1788         /* update head page */
1789         if (head_bit)
1790                 cpu_buffer->head_page = list_entry(next_page,
1791                                                 struct buffer_page, list);
1792
1793         /*
1794          * change read pointer to make sure any read iterators reset
1795          * themselves
1796          */
1797         cpu_buffer->read = 0;
1798
1799         /* pages are removed, resume tracing and then free the pages */
1800         atomic_dec(&cpu_buffer->record_disabled);
1801         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1802
1803         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1804
1805         /* last buffer page to remove */
1806         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1807                                 list);
1808         tmp_iter_page = first_page;
1809
1810         do {
1811                 cond_resched();
1812
1813                 to_remove_page = tmp_iter_page;
1814                 rb_inc_page(cpu_buffer, &tmp_iter_page);
1815
1816                 /* update the counters */
1817                 page_entries = rb_page_entries(to_remove_page);
1818                 if (page_entries) {
1819                         /*
1820                          * If something was added to this page, it was full
1821                          * since it is not the tail page. So we deduct the
1822                          * bytes consumed in ring buffer from here.
1823                          * Increment overrun to account for the lost events.
1824                          */
1825                         local_add(page_entries, &cpu_buffer->overrun);
1826                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1827                 }
1828
1829                 /*
1830                  * We have already removed references to this list item, just
1831                  * free up the buffer_page and its page
1832                  */
1833                 free_buffer_page(to_remove_page);
1834                 nr_removed--;
1835
1836         } while (to_remove_page != last_page);
1837
1838         RB_WARN_ON(cpu_buffer, nr_removed);
1839
1840         return nr_removed == 0;
1841 }
1842
1843 static int
1844 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1845 {
1846         struct list_head *pages = &cpu_buffer->new_pages;
1847         int retries, success;
1848
1849         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1850         /*
1851          * We are holding the reader lock, so the reader page won't be swapped
1852          * in the ring buffer. Now we are racing with the writer trying to
1853          * move head page and the tail page.
1854          * We are going to adapt the reader page update process where:
1855          * 1. We first splice the start and end of list of new pages between
1856          *    the head page and its previous page.
1857          * 2. We cmpxchg the prev_page->next to point from head page to the
1858          *    start of new pages list.
1859          * 3. Finally, we update the head->prev to the end of new list.
1860          *
1861          * We will try this process 10 times, to make sure that we don't keep
1862          * spinning.
1863          */
1864         retries = 10;
1865         success = 0;
1866         while (retries--) {
1867                 struct list_head *head_page, *prev_page, *r;
1868                 struct list_head *last_page, *first_page;
1869                 struct list_head *head_page_with_bit;
1870
1871                 head_page = &rb_set_head_page(cpu_buffer)->list;
1872                 if (!head_page)
1873                         break;
1874                 prev_page = head_page->prev;
1875
1876                 first_page = pages->next;
1877                 last_page  = pages->prev;
1878
1879                 head_page_with_bit = (struct list_head *)
1880                                      ((unsigned long)head_page | RB_PAGE_HEAD);
1881
1882                 last_page->next = head_page_with_bit;
1883                 first_page->prev = prev_page;
1884
1885                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1886
1887                 if (r == head_page_with_bit) {
1888                         /*
1889                          * yay, we replaced the page pointer to our new list,
1890                          * now, we just have to update to head page's prev
1891                          * pointer to point to end of list
1892                          */
1893                         head_page->prev = last_page;
1894                         success = 1;
1895                         break;
1896                 }
1897         }
1898
1899         if (success)
1900                 INIT_LIST_HEAD(pages);
1901         /*
1902          * If we weren't successful in adding in new pages, warn and stop
1903          * tracing
1904          */
1905         RB_WARN_ON(cpu_buffer, !success);
1906         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1907
1908         /* free pages if they weren't inserted */
1909         if (!success) {
1910                 struct buffer_page *bpage, *tmp;
1911                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1912                                          list) {
1913                         list_del_init(&bpage->list);
1914                         free_buffer_page(bpage);
1915                 }
1916         }
1917         return success;
1918 }
1919
1920 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1921 {
1922         int success;
1923
1924         if (cpu_buffer->nr_pages_to_update > 0)
1925                 success = rb_insert_pages(cpu_buffer);
1926         else
1927                 success = rb_remove_pages(cpu_buffer,
1928                                         -cpu_buffer->nr_pages_to_update);
1929
1930         if (success)
1931                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1932 }
1933
1934 static void update_pages_handler(struct work_struct *work)
1935 {
1936         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1937                         struct ring_buffer_per_cpu, update_pages_work);
1938         rb_update_pages(cpu_buffer);
1939         complete(&cpu_buffer->update_done);
1940 }
1941
1942 /**
1943  * ring_buffer_resize - resize the ring buffer
1944  * @buffer: the buffer to resize.
1945  * @size: the new size.
1946  * @cpu_id: the cpu buffer to resize
1947  *
1948  * Minimum size is 2 * BUF_PAGE_SIZE.
1949  *
1950  * Returns 0 on success and < 0 on failure.
1951  */
1952 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
1953                         int cpu_id)
1954 {
1955         struct ring_buffer_per_cpu *cpu_buffer;
1956         unsigned long nr_pages;
1957         int cpu, err;
1958
1959         /*
1960          * Always succeed at resizing a non-existent buffer:
1961          */
1962         if (!buffer)
1963                 return 0;
1964
1965         /* Make sure the requested buffer exists */
1966         if (cpu_id != RING_BUFFER_ALL_CPUS &&
1967             !cpumask_test_cpu(cpu_id, buffer->cpumask))
1968                 return 0;
1969
1970         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1971
1972         /* we need a minimum of two pages */
1973         if (nr_pages < 2)
1974                 nr_pages = 2;
1975
1976         size = nr_pages * BUF_PAGE_SIZE;
1977
1978         /* prevent another thread from changing buffer sizes */
1979         mutex_lock(&buffer->mutex);
1980
1981
1982         if (cpu_id == RING_BUFFER_ALL_CPUS) {
1983                 /*
1984                  * Don't succeed if resizing is disabled, as a reader might be
1985                  * manipulating the ring buffer and is expecting a sane state while
1986                  * this is true.
1987                  */
1988                 for_each_buffer_cpu(buffer, cpu) {
1989                         cpu_buffer = buffer->buffers[cpu];
1990                         if (atomic_read(&cpu_buffer->resize_disabled)) {
1991                                 err = -EBUSY;
1992                                 goto out_err_unlock;
1993                         }
1994                 }
1995
1996                 /* calculate the pages to update */
1997                 for_each_buffer_cpu(buffer, cpu) {
1998                         cpu_buffer = buffer->buffers[cpu];
1999
2000                         cpu_buffer->nr_pages_to_update = nr_pages -
2001                                                         cpu_buffer->nr_pages;
2002                         /*
2003                          * nothing more to do for removing pages or no update
2004                          */
2005                         if (cpu_buffer->nr_pages_to_update <= 0)
2006                                 continue;
2007                         /*
2008                          * to add pages, make sure all new pages can be
2009                          * allocated without receiving ENOMEM
2010                          */
2011                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
2012                         if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
2013                                                 &cpu_buffer->new_pages, cpu)) {
2014                                 /* not enough memory for new pages */
2015                                 err = -ENOMEM;
2016                                 goto out_err;
2017                         }
2018                 }
2019
2020                 get_online_cpus();
2021                 /*
2022                  * Fire off all the required work handlers
2023                  * We can't schedule on offline CPUs, but it's not necessary
2024                  * since we can change their buffer sizes without any race.
2025                  */
2026                 for_each_buffer_cpu(buffer, cpu) {
2027                         cpu_buffer = buffer->buffers[cpu];
2028                         if (!cpu_buffer->nr_pages_to_update)
2029                                 continue;
2030
2031                         /* Can't run something on an offline CPU. */
2032                         if (!cpu_online(cpu)) {
2033                                 rb_update_pages(cpu_buffer);
2034                                 cpu_buffer->nr_pages_to_update = 0;
2035                         } else {
2036                                 schedule_work_on(cpu,
2037                                                 &cpu_buffer->update_pages_work);
2038                         }
2039                 }
2040
2041                 /* wait for all the updates to complete */
2042                 for_each_buffer_cpu(buffer, cpu) {
2043                         cpu_buffer = buffer->buffers[cpu];
2044                         if (!cpu_buffer->nr_pages_to_update)
2045                                 continue;
2046
2047                         if (cpu_online(cpu))
2048                                 wait_for_completion(&cpu_buffer->update_done);
2049                         cpu_buffer->nr_pages_to_update = 0;
2050                 }
2051
2052                 put_online_cpus();
2053         } else {
2054                 /* Make sure this CPU has been initialized */
2055                 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
2056                         goto out;
2057
2058                 cpu_buffer = buffer->buffers[cpu_id];
2059
2060                 if (nr_pages == cpu_buffer->nr_pages)
2061                         goto out;
2062
2063                 /*
2064                  * Don't succeed if resizing is disabled, as a reader might be
2065                  * manipulating the ring buffer and is expecting a sane state while
2066                  * this is true.
2067                  */
2068                 if (atomic_read(&cpu_buffer->resize_disabled)) {
2069                         err = -EBUSY;
2070                         goto out_err_unlock;
2071                 }
2072
2073                 cpu_buffer->nr_pages_to_update = nr_pages -
2074                                                 cpu_buffer->nr_pages;
2075
2076                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2077                 if (cpu_buffer->nr_pages_to_update > 0 &&
2078                         __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
2079                                             &cpu_buffer->new_pages, cpu_id)) {
2080                         err = -ENOMEM;
2081                         goto out_err;
2082                 }
2083
2084                 get_online_cpus();
2085
2086                 /* Can't run something on an offline CPU. */
2087                 if (!cpu_online(cpu_id))
2088                         rb_update_pages(cpu_buffer);
2089                 else {
2090                         schedule_work_on(cpu_id,
2091                                          &cpu_buffer->update_pages_work);
2092                         wait_for_completion(&cpu_buffer->update_done);
2093                 }
2094
2095                 cpu_buffer->nr_pages_to_update = 0;
2096                 put_online_cpus();
2097         }
2098
2099  out:
2100         /*
2101          * The ring buffer resize can happen with the ring buffer
2102          * enabled, so that the update disturbs the tracing as little
2103          * as possible. But if the buffer is disabled, we do not need
2104          * to worry about that, and we can take the time to verify
2105          * that the buffer is not corrupt.
2106          */
2107         if (atomic_read(&buffer->record_disabled)) {
2108                 atomic_inc(&buffer->record_disabled);
2109                 /*
2110                  * Even though the buffer was disabled, we must make sure
2111                  * that it is truly disabled before calling rb_check_pages.
2112                  * There could have been a race between checking
2113                  * record_disable and incrementing it.
2114                  */
2115                 synchronize_rcu();
2116                 for_each_buffer_cpu(buffer, cpu) {
2117                         cpu_buffer = buffer->buffers[cpu];
2118                         rb_check_pages(cpu_buffer);
2119                 }
2120                 atomic_dec(&buffer->record_disabled);
2121         }
2122
2123         mutex_unlock(&buffer->mutex);
2124         return 0;
2125
2126  out_err:
2127         for_each_buffer_cpu(buffer, cpu) {
2128                 struct buffer_page *bpage, *tmp;
2129
2130                 cpu_buffer = buffer->buffers[cpu];
2131                 cpu_buffer->nr_pages_to_update = 0;
2132
2133                 if (list_empty(&cpu_buffer->new_pages))
2134                         continue;
2135
2136                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2137                                         list) {
2138                         list_del_init(&bpage->list);
2139                         free_buffer_page(bpage);
2140                 }
2141         }
2142  out_err_unlock:
2143         mutex_unlock(&buffer->mutex);
2144         return err;
2145 }
2146 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2147
2148 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2149 {
2150         mutex_lock(&buffer->mutex);
2151         if (val)
2152                 buffer->flags |= RB_FL_OVERWRITE;
2153         else
2154                 buffer->flags &= ~RB_FL_OVERWRITE;
2155         mutex_unlock(&buffer->mutex);
2156 }
2157 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2158
2159 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2160 {
2161         return bpage->page->data + index;
2162 }
2163
2164 static __always_inline struct ring_buffer_event *
2165 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2166 {
2167         return __rb_page_index(cpu_buffer->reader_page,
2168                                cpu_buffer->reader_page->read);
2169 }
2170
2171 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
2172 {
2173         return local_read(&bpage->page->commit);
2174 }
2175
2176 static struct ring_buffer_event *
2177 rb_iter_head_event(struct ring_buffer_iter *iter)
2178 {
2179         struct ring_buffer_event *event;
2180         struct buffer_page *iter_head_page = iter->head_page;
2181         unsigned long commit;
2182         unsigned length;
2183
2184         if (iter->head != iter->next_event)
2185                 return iter->event;
2186
2187         /*
2188          * When the writer goes across pages, it issues a cmpxchg which
2189          * is a mb(), which will synchronize with the rmb here.
2190          * (see rb_tail_page_update() and __rb_reserve_next())
2191          */
2192         commit = rb_page_commit(iter_head_page);
2193         smp_rmb();
2194         event = __rb_page_index(iter_head_page, iter->head);
2195         length = rb_event_length(event);
2196
2197         /*
2198          * READ_ONCE() doesn't work on functions and we don't want the
2199          * compiler doing any crazy optimizations with length.
2200          */
2201         barrier();
2202
2203         if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE)
2204                 /* Writer corrupted the read? */
2205                 goto reset;
2206
2207         memcpy(iter->event, event, length);
2208         /*
2209          * If the page stamp is still the same after this rmb() then the
2210          * event was safely copied without the writer entering the page.
2211          */
2212         smp_rmb();
2213
2214         /* Make sure the page didn't change since we read this */
2215         if (iter->page_stamp != iter_head_page->page->time_stamp ||
2216             commit > rb_page_commit(iter_head_page))
2217                 goto reset;
2218
2219         iter->next_event = iter->head + length;
2220         return iter->event;
2221  reset:
2222         /* Reset to the beginning */
2223         iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2224         iter->head = 0;
2225         iter->next_event = 0;
2226         iter->missed_events = 1;
2227         return NULL;
2228 }
2229
2230 /* Size is determined by what has been committed */
2231 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2232 {
2233         return rb_page_commit(bpage);
2234 }
2235
2236 static __always_inline unsigned
2237 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2238 {
2239         return rb_page_commit(cpu_buffer->commit_page);
2240 }
2241
2242 static __always_inline unsigned
2243 rb_event_index(struct ring_buffer_event *event)
2244 {
2245         unsigned long addr = (unsigned long)event;
2246
2247         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2248 }
2249
2250 static void rb_inc_iter(struct ring_buffer_iter *iter)
2251 {
2252         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2253
2254         /*
2255          * The iterator could be on the reader page (it starts there).
2256          * But the head could have moved, since the reader was
2257          * found. Check for this case and assign the iterator
2258          * to the head page instead of next.
2259          */
2260         if (iter->head_page == cpu_buffer->reader_page)
2261                 iter->head_page = rb_set_head_page(cpu_buffer);
2262         else
2263                 rb_inc_page(cpu_buffer, &iter->head_page);
2264
2265         iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2266         iter->head = 0;
2267         iter->next_event = 0;
2268 }
2269
2270 /*
2271  * rb_handle_head_page - writer hit the head page
2272  *
2273  * Returns: +1 to retry page
2274  *           0 to continue
2275  *          -1 on error
2276  */
2277 static int
2278 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2279                     struct buffer_page *tail_page,
2280                     struct buffer_page *next_page)
2281 {
2282         struct buffer_page *new_head;
2283         int entries;
2284         int type;
2285         int ret;
2286
2287         entries = rb_page_entries(next_page);
2288
2289         /*
2290          * The hard part is here. We need to move the head
2291          * forward, and protect against both readers on
2292          * other CPUs and writers coming in via interrupts.
2293          */
2294         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2295                                        RB_PAGE_HEAD);
2296
2297         /*
2298          * type can be one of four:
2299          *  NORMAL - an interrupt already moved it for us
2300          *  HEAD   - we are the first to get here.
2301          *  UPDATE - we are the interrupt interrupting
2302          *           a current move.
2303          *  MOVED  - a reader on another CPU moved the next
2304          *           pointer to its reader page. Give up
2305          *           and try again.
2306          */
2307
2308         switch (type) {
2309         case RB_PAGE_HEAD:
2310                 /*
2311                  * We changed the head to UPDATE, thus
2312                  * it is our responsibility to update
2313                  * the counters.
2314                  */
2315                 local_add(entries, &cpu_buffer->overrun);
2316                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2317
2318                 /*
2319                  * The entries will be zeroed out when we move the
2320                  * tail page.
2321                  */
2322
2323                 /* still more to do */
2324                 break;
2325
2326         case RB_PAGE_UPDATE:
2327                 /*
2328                  * This is an interrupt that interrupt the
2329                  * previous update. Still more to do.
2330                  */
2331                 break;
2332         case RB_PAGE_NORMAL:
2333                 /*
2334                  * An interrupt came in before the update
2335                  * and processed this for us.
2336                  * Nothing left to do.
2337                  */
2338                 return 1;
2339         case RB_PAGE_MOVED:
2340                 /*
2341                  * The reader is on another CPU and just did
2342                  * a swap with our next_page.
2343                  * Try again.
2344                  */
2345                 return 1;
2346         default:
2347                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2348                 return -1;
2349         }
2350
2351         /*
2352          * Now that we are here, the old head pointer is
2353          * set to UPDATE. This will keep the reader from
2354          * swapping the head page with the reader page.
2355          * The reader (on another CPU) will spin till
2356          * we are finished.
2357          *
2358          * We just need to protect against interrupts
2359          * doing the job. We will set the next pointer
2360          * to HEAD. After that, we set the old pointer
2361          * to NORMAL, but only if it was HEAD before.
2362          * otherwise we are an interrupt, and only
2363          * want the outer most commit to reset it.
2364          */
2365         new_head = next_page;
2366         rb_inc_page(cpu_buffer, &new_head);
2367
2368         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2369                                     RB_PAGE_NORMAL);
2370
2371         /*
2372          * Valid returns are:
2373          *  HEAD   - an interrupt came in and already set it.
2374          *  NORMAL - One of two things:
2375          *            1) We really set it.
2376          *            2) A bunch of interrupts came in and moved
2377          *               the page forward again.
2378          */
2379         switch (ret) {
2380         case RB_PAGE_HEAD:
2381         case RB_PAGE_NORMAL:
2382                 /* OK */
2383                 break;
2384         default:
2385                 RB_WARN_ON(cpu_buffer, 1);
2386                 return -1;
2387         }
2388
2389         /*
2390          * It is possible that an interrupt came in,
2391          * set the head up, then more interrupts came in
2392          * and moved it again. When we get back here,
2393          * the page would have been set to NORMAL but we
2394          * just set it back to HEAD.
2395          *
2396          * How do you detect this? Well, if that happened
2397          * the tail page would have moved.
2398          */
2399         if (ret == RB_PAGE_NORMAL) {
2400                 struct buffer_page *buffer_tail_page;
2401
2402                 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2403                 /*
2404                  * If the tail had moved passed next, then we need
2405                  * to reset the pointer.
2406                  */
2407                 if (buffer_tail_page != tail_page &&
2408                     buffer_tail_page != next_page)
2409                         rb_head_page_set_normal(cpu_buffer, new_head,
2410                                                 next_page,
2411                                                 RB_PAGE_HEAD);
2412         }
2413
2414         /*
2415          * If this was the outer most commit (the one that
2416          * changed the original pointer from HEAD to UPDATE),
2417          * then it is up to us to reset it to NORMAL.
2418          */
2419         if (type == RB_PAGE_HEAD) {
2420                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2421                                               tail_page,
2422                                               RB_PAGE_UPDATE);
2423                 if (RB_WARN_ON(cpu_buffer,
2424                                ret != RB_PAGE_UPDATE))
2425                         return -1;
2426         }
2427
2428         return 0;
2429 }
2430
2431 static inline void
2432 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2433               unsigned long tail, struct rb_event_info *info)
2434 {
2435         struct buffer_page *tail_page = info->tail_page;
2436         struct ring_buffer_event *event;
2437         unsigned long length = info->length;
2438
2439         /*
2440          * Only the event that crossed the page boundary
2441          * must fill the old tail_page with padding.
2442          */
2443         if (tail >= BUF_PAGE_SIZE) {
2444                 /*
2445                  * If the page was filled, then we still need
2446                  * to update the real_end. Reset it to zero
2447                  * and the reader will ignore it.
2448                  */
2449                 if (tail == BUF_PAGE_SIZE)
2450                         tail_page->real_end = 0;
2451
2452                 local_sub(length, &tail_page->write);
2453                 return;
2454         }
2455
2456         event = __rb_page_index(tail_page, tail);
2457
2458         /* account for padding bytes */
2459         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2460
2461         /*
2462          * Save the original length to the meta data.
2463          * This will be used by the reader to add lost event
2464          * counter.
2465          */
2466         tail_page->real_end = tail;
2467
2468         /*
2469          * If this event is bigger than the minimum size, then
2470          * we need to be careful that we don't subtract the
2471          * write counter enough to allow another writer to slip
2472          * in on this page.
2473          * We put in a discarded commit instead, to make sure
2474          * that this space is not used again.
2475          *
2476          * If we are less than the minimum size, we don't need to
2477          * worry about it.
2478          */
2479         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2480                 /* No room for any events */
2481
2482                 /* Mark the rest of the page with padding */
2483                 rb_event_set_padding(event);
2484
2485                 /* Set the write back to the previous setting */
2486                 local_sub(length, &tail_page->write);
2487                 return;
2488         }
2489
2490         /* Put in a discarded event */
2491         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2492         event->type_len = RINGBUF_TYPE_PADDING;
2493         /* time delta must be non zero */
2494         event->time_delta = 1;
2495
2496         /* Set write to end of buffer */
2497         length = (tail + length) - BUF_PAGE_SIZE;
2498         local_sub(length, &tail_page->write);
2499 }
2500
2501 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2502
2503 /*
2504  * This is the slow path, force gcc not to inline it.
2505  */
2506 static noinline struct ring_buffer_event *
2507 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2508              unsigned long tail, struct rb_event_info *info)
2509 {
2510         struct buffer_page *tail_page = info->tail_page;
2511         struct buffer_page *commit_page = cpu_buffer->commit_page;
2512         struct trace_buffer *buffer = cpu_buffer->buffer;
2513         struct buffer_page *next_page;
2514         int ret;
2515
2516         next_page = tail_page;
2517
2518         rb_inc_page(cpu_buffer, &next_page);
2519
2520         /*
2521          * If for some reason, we had an interrupt storm that made
2522          * it all the way around the buffer, bail, and warn
2523          * about it.
2524          */
2525         if (unlikely(next_page == commit_page)) {
2526                 local_inc(&cpu_buffer->commit_overrun);
2527                 goto out_reset;
2528         }
2529
2530         /*
2531          * This is where the fun begins!
2532          *
2533          * We are fighting against races between a reader that
2534          * could be on another CPU trying to swap its reader
2535          * page with the buffer head.
2536          *
2537          * We are also fighting against interrupts coming in and
2538          * moving the head or tail on us as well.
2539          *
2540          * If the next page is the head page then we have filled
2541          * the buffer, unless the commit page is still on the
2542          * reader page.
2543          */
2544         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2545
2546                 /*
2547                  * If the commit is not on the reader page, then
2548                  * move the header page.
2549                  */
2550                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2551                         /*
2552                          * If we are not in overwrite mode,
2553                          * this is easy, just stop here.
2554                          */
2555                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2556                                 local_inc(&cpu_buffer->dropped_events);
2557                                 goto out_reset;
2558                         }
2559
2560                         ret = rb_handle_head_page(cpu_buffer,
2561                                                   tail_page,
2562                                                   next_page);
2563                         if (ret < 0)
2564                                 goto out_reset;
2565                         if (ret)
2566                                 goto out_again;
2567                 } else {
2568                         /*
2569                          * We need to be careful here too. The
2570                          * commit page could still be on the reader
2571                          * page. We could have a small buffer, and
2572                          * have filled up the buffer with events
2573                          * from interrupts and such, and wrapped.
2574                          *
2575                          * Note, if the tail page is also the on the
2576                          * reader_page, we let it move out.
2577                          */
2578                         if (unlikely((cpu_buffer->commit_page !=
2579                                       cpu_buffer->tail_page) &&
2580                                      (cpu_buffer->commit_page ==
2581                                       cpu_buffer->reader_page))) {
2582                                 local_inc(&cpu_buffer->commit_overrun);
2583                                 goto out_reset;
2584                         }
2585                 }
2586         }
2587
2588         rb_tail_page_update(cpu_buffer, tail_page, next_page);
2589
2590  out_again:
2591
2592         rb_reset_tail(cpu_buffer, tail, info);
2593
2594         /* Commit what we have for now. */
2595         rb_end_commit(cpu_buffer);
2596         /* rb_end_commit() decs committing */
2597         local_inc(&cpu_buffer->committing);
2598
2599         /* fail and let the caller try again */
2600         return ERR_PTR(-EAGAIN);
2601
2602  out_reset:
2603         /* reset write */
2604         rb_reset_tail(cpu_buffer, tail, info);
2605
2606         return NULL;
2607 }
2608
2609 /* Slow path */
2610 static struct ring_buffer_event *
2611 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2612 {
2613         if (abs)
2614                 event->type_len = RINGBUF_TYPE_TIME_STAMP;
2615         else
2616                 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2617
2618         /* Not the first event on the page, or not delta? */
2619         if (abs || rb_event_index(event)) {
2620                 event->time_delta = delta & TS_MASK;
2621                 event->array[0] = delta >> TS_SHIFT;
2622         } else {
2623                 /* nope, just zero it */
2624                 event->time_delta = 0;
2625                 event->array[0] = 0;
2626         }
2627
2628         return skip_time_extend(event);
2629 }
2630
2631 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2632                                      struct ring_buffer_event *event);
2633
2634 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2635 static inline bool sched_clock_stable(void)
2636 {
2637         return true;
2638 }
2639 #endif
2640
2641 static void
2642 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2643                    struct rb_event_info *info)
2644 {
2645         u64 write_stamp;
2646
2647         WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2648                   (unsigned long long)info->delta,
2649                   (unsigned long long)info->ts,
2650                   (unsigned long long)info->before,
2651                   (unsigned long long)info->after,
2652                   (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2653                   sched_clock_stable() ? "" :
2654                   "If you just came from a suspend/resume,\n"
2655                   "please switch to the trace global clock:\n"
2656                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n"
2657                   "or add trace_clock=global to the kernel command line\n");
2658 }
2659
2660 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2661                                       struct ring_buffer_event **event,
2662                                       struct rb_event_info *info,
2663                                       u64 *delta,
2664                                       unsigned int *length)
2665 {
2666         bool abs = info->add_timestamp &
2667                 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2668
2669         if (unlikely(info->delta > (1ULL << 59))) {
2670                 /* did the clock go backwards */
2671                 if (info->before == info->after && info->before > info->ts) {
2672                         /* not interrupted */
2673                         static int once;
2674
2675                         /*
2676                          * This is possible with a recalibrating of the TSC.
2677                          * Do not produce a call stack, but just report it.
2678                          */
2679                         if (!once) {
2680                                 once++;
2681                                 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2682                                         info->before, info->ts);
2683                         }
2684                 } else
2685                         rb_check_timestamp(cpu_buffer, info);
2686                 if (!abs)
2687                         info->delta = 0;
2688         }
2689         *event = rb_add_time_stamp(*event, info->delta, abs);
2690         *length -= RB_LEN_TIME_EXTEND;
2691         *delta = 0;
2692 }
2693
2694 /**
2695  * rb_update_event - update event type and data
2696  * @cpu_buffer: The per cpu buffer of the @event
2697  * @event: the event to update
2698  * @info: The info to update the @event with (contains length and delta)
2699  *
2700  * Update the type and data fields of the @event. The length
2701  * is the actual size that is written to the ring buffer,
2702  * and with this, we can determine what to place into the
2703  * data field.
2704  */
2705 static void
2706 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2707                 struct ring_buffer_event *event,
2708                 struct rb_event_info *info)
2709 {
2710         unsigned length = info->length;
2711         u64 delta = info->delta;
2712
2713         /*
2714          * If we need to add a timestamp, then we
2715          * add it to the start of the reserved space.
2716          */
2717         if (unlikely(info->add_timestamp))
2718                 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2719
2720         event->time_delta = delta;
2721         length -= RB_EVNT_HDR_SIZE;
2722         if (length > RB_MAX_SMALL_DATA) {
2723                 event->type_len = 0;
2724                 event->array[0] = length;
2725         } else
2726                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2727 }
2728
2729 static unsigned rb_calculate_event_length(unsigned length)
2730 {
2731         struct ring_buffer_event event; /* Used only for sizeof array */
2732
2733         /* zero length can cause confusions */
2734         if (!length)
2735                 length++;
2736
2737         if (length > RB_MAX_SMALL_DATA)
2738                 length += sizeof(event.array[0]);
2739
2740         length += RB_EVNT_HDR_SIZE;
2741         length = ALIGN(length, RB_ALIGNMENT);
2742
2743         /*
2744          * In case the time delta is larger than the 27 bits for it
2745          * in the header, we need to add a timestamp. If another
2746          * event comes in when trying to discard this one to increase
2747          * the length, then the timestamp will be added in the allocated
2748          * space of this event. If length is bigger than the size needed
2749          * for the TIME_EXTEND, then padding has to be used. The events
2750          * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2751          * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2752          * As length is a multiple of 4, we only need to worry if it
2753          * is 12 (RB_LEN_TIME_EXTEND + 4).
2754          */
2755         if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2756                 length += RB_ALIGNMENT;
2757
2758         return length;
2759 }
2760
2761 static __always_inline bool
2762 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2763                    struct ring_buffer_event *event)
2764 {
2765         unsigned long addr = (unsigned long)event;
2766         unsigned long index;
2767
2768         index = rb_event_index(event);
2769         addr &= PAGE_MASK;
2770
2771         return cpu_buffer->commit_page->page == (void *)addr &&
2772                 rb_commit_index(cpu_buffer) == index;
2773 }
2774
2775 static u64 rb_time_delta(struct ring_buffer_event *event)
2776 {
2777         switch (event->type_len) {
2778         case RINGBUF_TYPE_PADDING:
2779                 return 0;
2780
2781         case RINGBUF_TYPE_TIME_EXTEND:
2782                 return ring_buffer_event_time_stamp(event);
2783
2784         case RINGBUF_TYPE_TIME_STAMP:
2785                 return 0;
2786
2787         case RINGBUF_TYPE_DATA:
2788                 return event->time_delta;
2789         default:
2790                 return 0;
2791         }
2792 }
2793
2794 static inline int
2795 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2796                   struct ring_buffer_event *event)
2797 {
2798         unsigned long new_index, old_index;
2799         struct buffer_page *bpage;
2800         unsigned long index;
2801         unsigned long addr;
2802         u64 write_stamp;
2803         u64 delta;
2804
2805         new_index = rb_event_index(event);
2806         old_index = new_index + rb_event_ts_length(event);
2807         addr = (unsigned long)event;
2808         addr &= PAGE_MASK;
2809
2810         bpage = READ_ONCE(cpu_buffer->tail_page);
2811
2812         delta = rb_time_delta(event);
2813
2814         if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp))
2815                 return 0;
2816
2817         /* Make sure the write stamp is read before testing the location */
2818         barrier();
2819
2820         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2821                 unsigned long write_mask =
2822                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2823                 unsigned long event_length = rb_event_length(event);
2824
2825                 /* Something came in, can't discard */
2826                 if (!rb_time_cmpxchg(&cpu_buffer->write_stamp,
2827                                        write_stamp, write_stamp - delta))
2828                         return 0;
2829
2830                 /*
2831                  * If an event were to come in now, it would see that the
2832                  * write_stamp and the before_stamp are different, and assume
2833                  * that this event just added itself before updating
2834                  * the write stamp. The interrupting event will fix the
2835                  * write stamp for us, and use the before stamp as its delta.
2836                  */
2837
2838                 /*
2839                  * This is on the tail page. It is possible that
2840                  * a write could come in and move the tail page
2841                  * and write to the next page. That is fine
2842                  * because we just shorten what is on this page.
2843                  */
2844                 old_index += write_mask;
2845                 new_index += write_mask;
2846                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2847                 if (index == old_index) {
2848                         /* update counters */
2849                         local_sub(event_length, &cpu_buffer->entries_bytes);
2850                         return 1;
2851                 }
2852         }
2853
2854         /* could not discard */
2855         return 0;
2856 }
2857
2858 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2859 {
2860         local_inc(&cpu_buffer->committing);
2861         local_inc(&cpu_buffer->commits);
2862 }
2863
2864 static __always_inline void
2865 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2866 {
2867         unsigned long max_count;
2868
2869         /*
2870          * We only race with interrupts and NMIs on this CPU.
2871          * If we own the commit event, then we can commit
2872          * all others that interrupted us, since the interruptions
2873          * are in stack format (they finish before they come
2874          * back to us). This allows us to do a simple loop to
2875          * assign the commit to the tail.
2876          */
2877  again:
2878         max_count = cpu_buffer->nr_pages * 100;
2879
2880         while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2881                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2882                         return;
2883                 if (RB_WARN_ON(cpu_buffer,
2884                                rb_is_reader_page(cpu_buffer->tail_page)))
2885                         return;
2886                 local_set(&cpu_buffer->commit_page->page->commit,
2887                           rb_page_write(cpu_buffer->commit_page));
2888                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2889                 /* add barrier to keep gcc from optimizing too much */
2890                 barrier();
2891         }
2892         while (rb_commit_index(cpu_buffer) !=
2893                rb_page_write(cpu_buffer->commit_page)) {
2894
2895                 local_set(&cpu_buffer->commit_page->page->commit,
2896                           rb_page_write(cpu_buffer->commit_page));
2897                 RB_WARN_ON(cpu_buffer,
2898                            local_read(&cpu_buffer->commit_page->page->commit) &
2899                            ~RB_WRITE_MASK);
2900                 barrier();
2901         }
2902
2903         /* again, keep gcc from optimizing */
2904         barrier();
2905
2906         /*
2907          * If an interrupt came in just after the first while loop
2908          * and pushed the tail page forward, we will be left with
2909          * a dangling commit that will never go forward.
2910          */
2911         if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2912                 goto again;
2913 }
2914
2915 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2916 {
2917         unsigned long commits;
2918
2919         if (RB_WARN_ON(cpu_buffer,
2920                        !local_read(&cpu_buffer->committing)))
2921                 return;
2922
2923  again:
2924         commits = local_read(&cpu_buffer->commits);
2925         /* synchronize with interrupts */
2926         barrier();
2927         if (local_read(&cpu_buffer->committing) == 1)
2928                 rb_set_commit_to_write(cpu_buffer);
2929
2930         local_dec(&cpu_buffer->committing);
2931
2932         /* synchronize with interrupts */
2933         barrier();
2934
2935         /*
2936          * Need to account for interrupts coming in between the
2937          * updating of the commit page and the clearing of the
2938          * committing counter.
2939          */
2940         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2941             !local_read(&cpu_buffer->committing)) {
2942                 local_inc(&cpu_buffer->committing);
2943                 goto again;
2944         }
2945 }
2946
2947 static inline void rb_event_discard(struct ring_buffer_event *event)
2948 {
2949         if (extended_time(event))
2950                 event = skip_time_extend(event);
2951
2952         /* array[0] holds the actual length for the discarded event */
2953         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2954         event->type_len = RINGBUF_TYPE_PADDING;
2955         /* time delta must be non zero */
2956         if (!event->time_delta)
2957                 event->time_delta = 1;
2958 }
2959
2960 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2961                       struct ring_buffer_event *event)
2962 {
2963         local_inc(&cpu_buffer->entries);
2964         rb_end_commit(cpu_buffer);
2965 }
2966
2967 static __always_inline void
2968 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2969 {
2970         size_t nr_pages;
2971         size_t dirty;
2972         size_t full;
2973
2974         if (buffer->irq_work.waiters_pending) {
2975                 buffer->irq_work.waiters_pending = false;
2976                 /* irq_work_queue() supplies it's own memory barriers */
2977                 irq_work_queue(&buffer->irq_work.work);
2978         }
2979
2980         if (cpu_buffer->irq_work.waiters_pending) {
2981                 cpu_buffer->irq_work.waiters_pending = false;
2982                 /* irq_work_queue() supplies it's own memory barriers */
2983                 irq_work_queue(&cpu_buffer->irq_work.work);
2984         }
2985
2986         if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
2987                 return;
2988
2989         if (cpu_buffer->reader_page == cpu_buffer->commit_page)
2990                 return;
2991
2992         if (!cpu_buffer->irq_work.full_waiters_pending)
2993                 return;
2994
2995         cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
2996
2997         full = cpu_buffer->shortest_full;
2998         nr_pages = cpu_buffer->nr_pages;
2999         dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu);
3000         if (full && nr_pages && (dirty * 100) <= full * nr_pages)
3001                 return;
3002
3003         cpu_buffer->irq_work.wakeup_full = true;
3004         cpu_buffer->irq_work.full_waiters_pending = false;
3005         /* irq_work_queue() supplies it's own memory barriers */
3006         irq_work_queue(&cpu_buffer->irq_work.work);
3007 }
3008
3009 /*
3010  * The lock and unlock are done within a preempt disable section.
3011  * The current_context per_cpu variable can only be modified
3012  * by the current task between lock and unlock. But it can
3013  * be modified more than once via an interrupt. To pass this
3014  * information from the lock to the unlock without having to
3015  * access the 'in_interrupt()' functions again (which do show
3016  * a bit of overhead in something as critical as function tracing,
3017  * we use a bitmask trick.
3018  *
3019  *  bit 1 =  NMI context
3020  *  bit 2 =  IRQ context
3021  *  bit 3 =  SoftIRQ context
3022  *  bit 4 =  normal context.
3023  *
3024  * This works because this is the order of contexts that can
3025  * preempt other contexts. A SoftIRQ never preempts an IRQ
3026  * context.
3027  *
3028  * When the context is determined, the corresponding bit is
3029  * checked and set (if it was set, then a recursion of that context
3030  * happened).
3031  *
3032  * On unlock, we need to clear this bit. To do so, just subtract
3033  * 1 from the current_context and AND it to itself.
3034  *
3035  * (binary)
3036  *  101 - 1 = 100
3037  *  101 & 100 = 100 (clearing bit zero)
3038  *
3039  *  1010 - 1 = 1001
3040  *  1010 & 1001 = 1000 (clearing bit 1)
3041  *
3042  * The least significant bit can be cleared this way, and it
3043  * just so happens that it is the same bit corresponding to
3044  * the current context.
3045  *
3046  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3047  * is set when a recursion is detected at the current context, and if
3048  * the TRANSITION bit is already set, it will fail the recursion.
3049  * This is needed because there's a lag between the changing of
3050  * interrupt context and updating the preempt count. In this case,
3051  * a false positive will be found. To handle this, one extra recursion
3052  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3053  * bit is already set, then it is considered a recursion and the function
3054  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3055  *
3056  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3057  * to be cleared. Even if it wasn't the context that set it. That is,
3058  * if an interrupt comes in while NORMAL bit is set and the ring buffer
3059  * is called before preempt_count() is updated, since the check will
3060  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3061  * NMI then comes in, it will set the NMI bit, but when the NMI code
3062  * does the trace_recursive_unlock() it will clear the TRANSTION bit
3063  * and leave the NMI bit set. But this is fine, because the interrupt
3064  * code that set the TRANSITION bit will then clear the NMI bit when it
3065  * calls trace_recursive_unlock(). If another NMI comes in, it will
3066  * set the TRANSITION bit and continue.
3067  *
3068  * Note: The TRANSITION bit only handles a single transition between context.
3069  */
3070
3071 static __always_inline int
3072 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3073 {
3074         unsigned int val = cpu_buffer->current_context;
3075         unsigned long pc = preempt_count();
3076         int bit;
3077
3078         if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
3079                 bit = RB_CTX_NORMAL;
3080         else
3081                 bit = pc & NMI_MASK ? RB_CTX_NMI :
3082                         pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
3083
3084         if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3085                 /*
3086                  * It is possible that this was called by transitioning
3087                  * between interrupt context, and preempt_count() has not
3088                  * been updated yet. In this case, use the TRANSITION bit.
3089                  */
3090                 bit = RB_CTX_TRANSITION;
3091                 if (val & (1 << (bit + cpu_buffer->nest)))
3092                         return 1;
3093         }
3094
3095         val |= (1 << (bit + cpu_buffer->nest));
3096         cpu_buffer->current_context = val;
3097
3098         return 0;
3099 }
3100
3101 static __always_inline void
3102 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3103 {
3104         cpu_buffer->current_context &=
3105                 cpu_buffer->current_context - (1 << cpu_buffer->nest);
3106 }
3107
3108 /* The recursive locking above uses 5 bits */
3109 #define NESTED_BITS 5
3110
3111 /**
3112  * ring_buffer_nest_start - Allow to trace while nested
3113  * @buffer: The ring buffer to modify
3114  *
3115  * The ring buffer has a safety mechanism to prevent recursion.
3116  * But there may be a case where a trace needs to be done while
3117  * tracing something else. In this case, calling this function
3118  * will allow this function to nest within a currently active
3119  * ring_buffer_lock_reserve().
3120  *
3121  * Call this function before calling another ring_buffer_lock_reserve() and
3122  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3123  */
3124 void ring_buffer_nest_start(struct trace_buffer *buffer)
3125 {
3126         struct ring_buffer_per_cpu *cpu_buffer;
3127         int cpu;
3128
3129         /* Enabled by ring_buffer_nest_end() */
3130         preempt_disable_notrace();
3131         cpu = raw_smp_processor_id();
3132         cpu_buffer = buffer->buffers[cpu];
3133         /* This is the shift value for the above recursive locking */
3134         cpu_buffer->nest += NESTED_BITS;
3135 }
3136
3137 /**
3138  * ring_buffer_nest_end - Allow to trace while nested
3139  * @buffer: The ring buffer to modify
3140  *
3141  * Must be called after ring_buffer_nest_start() and after the
3142  * ring_buffer_unlock_commit().
3143  */
3144 void ring_buffer_nest_end(struct trace_buffer *buffer)
3145 {
3146         struct ring_buffer_per_cpu *cpu_buffer;
3147         int cpu;
3148
3149         /* disabled by ring_buffer_nest_start() */
3150         cpu = raw_smp_processor_id();
3151         cpu_buffer = buffer->buffers[cpu];
3152         /* This is the shift value for the above recursive locking */
3153         cpu_buffer->nest -= NESTED_BITS;
3154         preempt_enable_notrace();
3155 }
3156
3157 /**
3158  * ring_buffer_unlock_commit - commit a reserved
3159  * @buffer: The buffer to commit to
3160  * @event: The event pointer to commit.
3161  *
3162  * This commits the data to the ring buffer, and releases any locks held.
3163  *
3164  * Must be paired with ring_buffer_lock_reserve.
3165  */
3166 int ring_buffer_unlock_commit(struct trace_buffer *buffer,
3167                               struct ring_buffer_event *event)
3168 {
3169         struct ring_buffer_per_cpu *cpu_buffer;
3170         int cpu = raw_smp_processor_id();
3171
3172         cpu_buffer = buffer->buffers[cpu];
3173
3174         rb_commit(cpu_buffer, event);
3175
3176         rb_wakeups(buffer, cpu_buffer);
3177
3178         trace_recursive_unlock(cpu_buffer);
3179
3180         preempt_enable_notrace();
3181
3182         return 0;
3183 }
3184 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3185
3186 static struct ring_buffer_event *
3187 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3188                   struct rb_event_info *info)
3189 {
3190         struct ring_buffer_event *event;
3191         struct buffer_page *tail_page;
3192         unsigned long tail, write, w;
3193         bool a_ok;
3194         bool b_ok;
3195
3196         /* Don't let the compiler play games with cpu_buffer->tail_page */
3197         tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3198
3199  /*A*/  w = local_read(&tail_page->write) & RB_WRITE_MASK;
3200         barrier();
3201         b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3202         a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3203         barrier();
3204         info->ts = rb_time_stamp(cpu_buffer->buffer);
3205
3206         if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3207                 info->delta = info->ts;
3208         } else {
3209                 /*
3210                  * If interrupting an event time update, we may need an
3211                  * absolute timestamp.
3212                  * Don't bother if this is the start of a new page (w == 0).
3213                  */
3214                 if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) {
3215                         info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3216                         info->length += RB_LEN_TIME_EXTEND;
3217                 } else {
3218                         info->delta = info->ts - info->after;
3219                         if (unlikely(test_time_stamp(info->delta))) {
3220                                 info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3221                                 info->length += RB_LEN_TIME_EXTEND;
3222                         }
3223                 }
3224         }
3225
3226  /*B*/  rb_time_set(&cpu_buffer->before_stamp, info->ts);
3227
3228  /*C*/  write = local_add_return(info->length, &tail_page->write);
3229
3230         /* set write to only the index of the write */
3231         write &= RB_WRITE_MASK;
3232
3233         tail = write - info->length;
3234
3235         /* See if we shot pass the end of this buffer page */
3236         if (unlikely(write > BUF_PAGE_SIZE)) {
3237                 /* before and after may now different, fix it up*/
3238                 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3239                 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3240                 if (a_ok && b_ok && info->before != info->after)
3241                         (void)rb_time_cmpxchg(&cpu_buffer->before_stamp,
3242                                               info->before, info->after);
3243                 return rb_move_tail(cpu_buffer, tail, info);
3244         }
3245
3246         if (likely(tail == w)) {
3247                 u64 save_before;
3248                 bool s_ok;
3249
3250                 /* Nothing interrupted us between A and C */
3251  /*D*/          rb_time_set(&cpu_buffer->write_stamp, info->ts);
3252                 barrier();
3253  /*E*/          s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before);
3254                 RB_WARN_ON(cpu_buffer, !s_ok);
3255                 if (likely(!(info->add_timestamp &
3256                              (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3257                         /* This did not interrupt any time update */
3258                         info->delta = info->ts - info->after;
3259                 else
3260                         /* Just use full timestamp for inerrupting event */
3261                         info->delta = info->ts;
3262                 barrier();
3263                 if (unlikely(info->ts != save_before)) {
3264                         /* SLOW PATH - Interrupted between C and E */
3265
3266                         a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3267                         RB_WARN_ON(cpu_buffer, !a_ok);
3268
3269                         /* Write stamp must only go forward */
3270                         if (save_before > info->after) {
3271                                 /*
3272                                  * We do not care about the result, only that
3273                                  * it gets updated atomically.
3274                                  */
3275                                 (void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3276                                                       info->after, save_before);
3277                         }
3278                 }
3279         } else {
3280                 u64 ts;
3281                 /* SLOW PATH - Interrupted between A and C */
3282                 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3283                 /* Was interrupted before here, write_stamp must be valid */
3284                 RB_WARN_ON(cpu_buffer, !a_ok);
3285                 ts = rb_time_stamp(cpu_buffer->buffer);
3286                 barrier();
3287  /*E*/          if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3288                     info->after < ts &&
3289                     rb_time_cmpxchg(&cpu_buffer->write_stamp,
3290                                     info->after, ts)) {
3291                         /* Nothing came after this event between C and E */
3292                         info->delta = ts - info->after;
3293                         info->ts = ts;
3294                 } else {
3295                         /*
3296                          * Interrupted beween C and E:
3297                          * Lost the previous events time stamp. Just set the
3298                          * delta to zero, and this will be the same time as
3299                          * the event this event interrupted. And the events that
3300                          * came after this will still be correct (as they would
3301                          * have built their delta on the previous event.
3302                          */
3303                         info->delta = 0;
3304                 }
3305                 info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3306         }
3307
3308         /*
3309          * If this is the first commit on the page, then it has the same
3310          * timestamp as the page itself.
3311          */
3312         if (unlikely(!tail && !(info->add_timestamp &
3313                                 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3314                 info->delta = 0;
3315
3316         /* We reserved something on the buffer */
3317
3318         event = __rb_page_index(tail_page, tail);
3319         rb_update_event(cpu_buffer, event, info);
3320
3321         local_inc(&tail_page->entries);
3322
3323         /*
3324          * If this is the first commit on the page, then update
3325          * its timestamp.
3326          */
3327         if (unlikely(!tail))
3328                 tail_page->page->time_stamp = info->ts;
3329
3330         /* account for these added bytes */
3331         local_add(info->length, &cpu_buffer->entries_bytes);
3332
3333         return event;
3334 }
3335
3336 static __always_inline struct ring_buffer_event *
3337 rb_reserve_next_event(struct trace_buffer *buffer,
3338                       struct ring_buffer_per_cpu *cpu_buffer,
3339                       unsigned long length)
3340 {
3341         struct ring_buffer_event *event;
3342         struct rb_event_info info;
3343         int nr_loops = 0;
3344         int add_ts_default;
3345
3346         rb_start_commit(cpu_buffer);
3347         /* The commit page can not change after this */
3348
3349 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3350         /*
3351          * Due to the ability to swap a cpu buffer from a buffer
3352          * it is possible it was swapped before we committed.
3353          * (committing stops a swap). We check for it here and
3354          * if it happened, we have to fail the write.
3355          */
3356         barrier();
3357         if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3358                 local_dec(&cpu_buffer->committing);
3359                 local_dec(&cpu_buffer->commits);
3360                 return NULL;
3361         }
3362 #endif
3363
3364         info.length = rb_calculate_event_length(length);
3365
3366         if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3367                 add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3368                 info.length += RB_LEN_TIME_EXTEND;
3369         } else {
3370                 add_ts_default = RB_ADD_STAMP_NONE;
3371         }
3372
3373  again:
3374         info.add_timestamp = add_ts_default;
3375         info.delta = 0;
3376
3377         /*
3378          * We allow for interrupts to reenter here and do a trace.
3379          * If one does, it will cause this original code to loop
3380          * back here. Even with heavy interrupts happening, this
3381          * should only happen a few times in a row. If this happens
3382          * 1000 times in a row, there must be either an interrupt
3383          * storm or we have something buggy.
3384          * Bail!
3385          */
3386         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3387                 goto out_fail;
3388
3389         event = __rb_reserve_next(cpu_buffer, &info);
3390
3391         if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3392                 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3393                         info.length -= RB_LEN_TIME_EXTEND;
3394                 goto again;
3395         }
3396
3397         if (likely(event))
3398                 return event;
3399  out_fail:
3400         rb_end_commit(cpu_buffer);
3401         return NULL;
3402 }
3403
3404 /**
3405  * ring_buffer_lock_reserve - reserve a part of the buffer
3406  * @buffer: the ring buffer to reserve from
3407  * @length: the length of the data to reserve (excluding event header)
3408  *
3409  * Returns a reserved event on the ring buffer to copy directly to.
3410  * The user of this interface will need to get the body to write into
3411  * and can use the ring_buffer_event_data() interface.
3412  *
3413  * The length is the length of the data needed, not the event length
3414  * which also includes the event header.
3415  *
3416  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3417  * If NULL is returned, then nothing has been allocated or locked.
3418  */
3419 struct ring_buffer_event *
3420 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3421 {
3422         struct ring_buffer_per_cpu *cpu_buffer;
3423         struct ring_buffer_event *event;
3424         int cpu;
3425
3426         /* If we are tracing schedule, we don't want to recurse */
3427         preempt_disable_notrace();
3428
3429         if (unlikely(atomic_read(&buffer->record_disabled)))
3430                 goto out;
3431
3432         cpu = raw_smp_processor_id();
3433
3434         if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3435                 goto out;
3436
3437         cpu_buffer = buffer->buffers[cpu];
3438
3439         if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3440                 goto out;
3441
3442         if (unlikely(length > BUF_MAX_DATA_SIZE))
3443                 goto out;
3444
3445         if (unlikely(trace_recursive_lock(cpu_buffer)))
3446                 goto out;
3447
3448         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3449         if (!event)
3450                 goto out_unlock;
3451
3452         return event;
3453
3454  out_unlock:
3455         trace_recursive_unlock(cpu_buffer);
3456  out:
3457         preempt_enable_notrace();
3458         return NULL;
3459 }
3460 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3461
3462 /*
3463  * Decrement the entries to the page that an event is on.
3464  * The event does not even need to exist, only the pointer
3465  * to the page it is on. This may only be called before the commit
3466  * takes place.
3467  */
3468 static inline void
3469 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3470                    struct ring_buffer_event *event)
3471 {
3472         unsigned long addr = (unsigned long)event;
3473         struct buffer_page *bpage = cpu_buffer->commit_page;
3474         struct buffer_page *start;
3475
3476         addr &= PAGE_MASK;
3477
3478         /* Do the likely case first */
3479         if (likely(bpage->page == (void *)addr)) {
3480                 local_dec(&bpage->entries);
3481                 return;
3482         }
3483
3484         /*
3485          * Because the commit page may be on the reader page we
3486          * start with the next page and check the end loop there.
3487          */
3488         rb_inc_page(cpu_buffer, &bpage);
3489         start = bpage;
3490         do {
3491                 if (bpage->page == (void *)addr) {
3492                         local_dec(&bpage->entries);
3493                         return;
3494                 }
3495                 rb_inc_page(cpu_buffer, &bpage);
3496         } while (bpage != start);
3497
3498         /* commit not part of this buffer?? */
3499         RB_WARN_ON(cpu_buffer, 1);
3500 }
3501
3502 /**
3503  * ring_buffer_commit_discard - discard an event that has not been committed
3504  * @buffer: the ring buffer
3505  * @event: non committed event to discard
3506  *
3507  * Sometimes an event that is in the ring buffer needs to be ignored.
3508  * This function lets the user discard an event in the ring buffer
3509  * and then that event will not be read later.
3510  *
3511  * This function only works if it is called before the item has been
3512  * committed. It will try to free the event from the ring buffer
3513  * if another event has not been added behind it.
3514  *
3515  * If another event has been added behind it, it will set the event
3516  * up as discarded, and perform the commit.
3517  *
3518  * If this function is called, do not call ring_buffer_unlock_commit on
3519  * the event.
3520  */
3521 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3522                                 struct ring_buffer_event *event)
3523 {
3524         struct ring_buffer_per_cpu *cpu_buffer;
3525         int cpu;
3526
3527         /* The event is discarded regardless */
3528         rb_event_discard(event);
3529
3530         cpu = smp_processor_id();
3531         cpu_buffer = buffer->buffers[cpu];
3532
3533         /*
3534          * This must only be called if the event has not been
3535          * committed yet. Thus we can assume that preemption
3536          * is still disabled.
3537          */
3538         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3539
3540         rb_decrement_entry(cpu_buffer, event);
3541         if (rb_try_to_discard(cpu_buffer, event))
3542                 goto out;
3543
3544  out:
3545         rb_end_commit(cpu_buffer);
3546
3547         trace_recursive_unlock(cpu_buffer);
3548
3549         preempt_enable_notrace();
3550
3551 }
3552 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3553
3554 /**
3555  * ring_buffer_write - write data to the buffer without reserving
3556  * @buffer: The ring buffer to write to.
3557  * @length: The length of the data being written (excluding the event header)
3558  * @data: The data to write to the buffer.
3559  *
3560  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3561  * one function. If you already have the data to write to the buffer, it
3562  * may be easier to simply call this function.
3563  *
3564  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3565  * and not the length of the event which would hold the header.
3566  */
3567 int ring_buffer_write(struct trace_buffer *buffer,
3568                       unsigned long length,
3569                       void *data)
3570 {
3571         struct ring_buffer_per_cpu *cpu_buffer;
3572         struct ring_buffer_event *event;
3573         void *body;
3574         int ret = -EBUSY;
3575         int cpu;
3576
3577         preempt_disable_notrace();
3578
3579         if (atomic_read(&buffer->record_disabled))
3580                 goto out;
3581
3582         cpu = raw_smp_processor_id();
3583
3584         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3585                 goto out;
3586
3587         cpu_buffer = buffer->buffers[cpu];
3588
3589         if (atomic_read(&cpu_buffer->record_disabled))
3590                 goto out;
3591
3592         if (length > BUF_MAX_DATA_SIZE)
3593                 goto out;
3594
3595         if (unlikely(trace_recursive_lock(cpu_buffer)))
3596                 goto out;
3597
3598         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3599         if (!event)
3600                 goto out_unlock;
3601
3602         body = rb_event_data(event);
3603
3604         memcpy(body, data, length);
3605
3606         rb_commit(cpu_buffer, event);
3607
3608         rb_wakeups(buffer, cpu_buffer);
3609
3610         ret = 0;
3611
3612  out_unlock:
3613         trace_recursive_unlock(cpu_buffer);
3614
3615  out:
3616         preempt_enable_notrace();
3617
3618         return ret;
3619 }
3620 EXPORT_SYMBOL_GPL(ring_buffer_write);
3621
3622 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3623 {
3624         struct buffer_page *reader = cpu_buffer->reader_page;
3625         struct buffer_page *head = rb_set_head_page(cpu_buffer);
3626         struct buffer_page *commit = cpu_buffer->commit_page;
3627
3628         /* In case of error, head will be NULL */
3629         if (unlikely(!head))
3630                 return true;
3631
3632         return reader->read == rb_page_commit(reader) &&
3633                 (commit == reader ||
3634                  (commit == head &&
3635                   head->read == rb_page_commit(commit)));
3636 }
3637
3638 /**
3639  * ring_buffer_record_disable - stop all writes into the buffer
3640  * @buffer: The ring buffer to stop writes to.
3641  *
3642  * This prevents all writes to the buffer. Any attempt to write
3643  * to the buffer after this will fail and return NULL.
3644  *
3645  * The caller should call synchronize_rcu() after this.
3646  */
3647 void ring_buffer_record_disable(struct trace_buffer *buffer)
3648 {
3649         atomic_inc(&buffer->record_disabled);
3650 }
3651 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3652
3653 /**
3654  * ring_buffer_record_enable - enable writes to the buffer
3655  * @buffer: The ring buffer to enable writes
3656  *
3657  * Note, multiple disables will need the same number of enables
3658  * to truly enable the writing (much like preempt_disable).
3659  */
3660 void ring_buffer_record_enable(struct trace_buffer *buffer)
3661 {
3662         atomic_dec(&buffer->record_disabled);
3663 }
3664 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3665
3666 /**
3667  * ring_buffer_record_off - stop all writes into the buffer
3668  * @buffer: The ring buffer to stop writes to.
3669  *
3670  * This prevents all writes to the buffer. Any attempt to write
3671  * to the buffer after this will fail and return NULL.
3672  *
3673  * This is different than ring_buffer_record_disable() as
3674  * it works like an on/off switch, where as the disable() version
3675  * must be paired with a enable().
3676  */
3677 void ring_buffer_record_off(struct trace_buffer *buffer)
3678 {
3679         unsigned int rd;
3680         unsigned int new_rd;
3681
3682         do {
3683                 rd = atomic_read(&buffer->record_disabled);
3684                 new_rd = rd | RB_BUFFER_OFF;
3685         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3686 }
3687 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3688
3689 /**
3690  * ring_buffer_record_on - restart writes into the buffer
3691  * @buffer: The ring buffer to start writes to.
3692  *
3693  * This enables all writes to the buffer that was disabled by
3694  * ring_buffer_record_off().
3695  *
3696  * This is different than ring_buffer_record_enable() as
3697  * it works like an on/off switch, where as the enable() version
3698  * must be paired with a disable().
3699  */
3700 void ring_buffer_record_on(struct trace_buffer *buffer)
3701 {
3702         unsigned int rd;
3703         unsigned int new_rd;
3704
3705         do {
3706                 rd = atomic_read(&buffer->record_disabled);
3707                 new_rd = rd & ~RB_BUFFER_OFF;
3708         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3709 }
3710 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3711
3712 /**
3713  * ring_buffer_record_is_on - return true if the ring buffer can write
3714  * @buffer: The ring buffer to see if write is enabled
3715  *
3716  * Returns true if the ring buffer is in a state that it accepts writes.
3717  */
3718 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
3719 {
3720         return !atomic_read(&buffer->record_disabled);
3721 }
3722
3723 /**
3724  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3725  * @buffer: The ring buffer to see if write is set enabled
3726  *
3727  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3728  * Note that this does NOT mean it is in a writable state.
3729  *
3730  * It may return true when the ring buffer has been disabled by
3731  * ring_buffer_record_disable(), as that is a temporary disabling of
3732  * the ring buffer.
3733  */
3734 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
3735 {
3736         return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3737 }
3738
3739 /**
3740  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3741  * @buffer: The ring buffer to stop writes to.
3742  * @cpu: The CPU buffer to stop
3743  *
3744  * This prevents all writes to the buffer. Any attempt to write
3745  * to the buffer after this will fail and return NULL.
3746  *
3747  * The caller should call synchronize_rcu() after this.
3748  */
3749 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
3750 {
3751         struct ring_buffer_per_cpu *cpu_buffer;
3752
3753         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3754                 return;
3755
3756         cpu_buffer = buffer->buffers[cpu];
3757         atomic_inc(&cpu_buffer->record_disabled);
3758 }
3759 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3760
3761 /**
3762  * ring_buffer_record_enable_cpu - enable writes to the buffer
3763  * @buffer: The ring buffer to enable writes
3764  * @cpu: The CPU to enable.
3765  *
3766  * Note, multiple disables will need the same number of enables
3767  * to truly enable the writing (much like preempt_disable).
3768  */
3769 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
3770 {
3771         struct ring_buffer_per_cpu *cpu_buffer;
3772
3773         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3774                 return;
3775
3776         cpu_buffer = buffer->buffers[cpu];
3777         atomic_dec(&cpu_buffer->record_disabled);
3778 }
3779 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3780
3781 /*
3782  * The total entries in the ring buffer is the running counter
3783  * of entries entered into the ring buffer, minus the sum of
3784  * the entries read from the ring buffer and the number of
3785  * entries that were overwritten.
3786  */
3787 static inline unsigned long
3788 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3789 {
3790         return local_read(&cpu_buffer->entries) -
3791                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3792 }
3793
3794 /**
3795  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3796  * @buffer: The ring buffer
3797  * @cpu: The per CPU buffer to read from.
3798  */
3799 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
3800 {
3801         unsigned long flags;
3802         struct ring_buffer_per_cpu *cpu_buffer;
3803         struct buffer_page *bpage;
3804         u64 ret = 0;
3805
3806         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3807                 return 0;
3808
3809         cpu_buffer = buffer->buffers[cpu];
3810         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3811         /*
3812          * if the tail is on reader_page, oldest time stamp is on the reader
3813          * page
3814          */
3815         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3816                 bpage = cpu_buffer->reader_page;
3817         else
3818                 bpage = rb_set_head_page(cpu_buffer);
3819         if (bpage)
3820                 ret = bpage->page->time_stamp;
3821         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3822
3823         return ret;
3824 }
3825 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3826
3827 /**
3828  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3829  * @buffer: The ring buffer
3830  * @cpu: The per CPU buffer to read from.
3831  */
3832 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
3833 {
3834         struct ring_buffer_per_cpu *cpu_buffer;
3835         unsigned long ret;
3836
3837         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3838                 return 0;
3839
3840         cpu_buffer = buffer->buffers[cpu];
3841         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3842
3843         return ret;
3844 }
3845 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3846
3847 /**
3848  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3849  * @buffer: The ring buffer
3850  * @cpu: The per CPU buffer to get the entries from.
3851  */
3852 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
3853 {
3854         struct ring_buffer_per_cpu *cpu_buffer;
3855
3856         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3857                 return 0;
3858
3859         cpu_buffer = buffer->buffers[cpu];
3860
3861         return rb_num_of_entries(cpu_buffer);
3862 }
3863 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3864
3865 /**
3866  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3867  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3868  * @buffer: The ring buffer
3869  * @cpu: The per CPU buffer to get the number of overruns from
3870  */
3871 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
3872 {
3873         struct ring_buffer_per_cpu *cpu_buffer;
3874         unsigned long ret;
3875
3876         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3877                 return 0;
3878
3879         cpu_buffer = buffer->buffers[cpu];
3880         ret = local_read(&cpu_buffer->overrun);
3881
3882         return ret;
3883 }
3884 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3885
3886 /**
3887  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3888  * commits failing due to the buffer wrapping around while there are uncommitted
3889  * events, such as during an interrupt storm.
3890  * @buffer: The ring buffer
3891  * @cpu: The per CPU buffer to get the number of overruns from
3892  */
3893 unsigned long
3894 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
3895 {
3896         struct ring_buffer_per_cpu *cpu_buffer;
3897         unsigned long ret;
3898
3899         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3900                 return 0;
3901
3902         cpu_buffer = buffer->buffers[cpu];
3903         ret = local_read(&cpu_buffer->commit_overrun);
3904
3905         return ret;
3906 }
3907 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3908
3909 /**
3910  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3911  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3912  * @buffer: The ring buffer
3913  * @cpu: The per CPU buffer to get the number of overruns from
3914  */
3915 unsigned long
3916 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
3917 {
3918         struct ring_buffer_per_cpu *cpu_buffer;
3919         unsigned long ret;
3920
3921         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3922                 return 0;
3923
3924         cpu_buffer = buffer->buffers[cpu];
3925         ret = local_read(&cpu_buffer->dropped_events);
3926
3927         return ret;
3928 }
3929 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3930
3931 /**
3932  * ring_buffer_read_events_cpu - get the number of events successfully read
3933  * @buffer: The ring buffer
3934  * @cpu: The per CPU buffer to get the number of events read
3935  */
3936 unsigned long
3937 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
3938 {
3939         struct ring_buffer_per_cpu *cpu_buffer;
3940
3941         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3942                 return 0;
3943
3944         cpu_buffer = buffer->buffers[cpu];
3945         return cpu_buffer->read;
3946 }
3947 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3948
3949 /**
3950  * ring_buffer_entries - get the number of entries in a buffer
3951  * @buffer: The ring buffer
3952  *
3953  * Returns the total number of entries in the ring buffer
3954  * (all CPU entries)
3955  */
3956 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
3957 {
3958         struct ring_buffer_per_cpu *cpu_buffer;
3959         unsigned long entries = 0;
3960         int cpu;
3961
3962         /* if you care about this being correct, lock the buffer */
3963         for_each_buffer_cpu(buffer, cpu) {
3964                 cpu_buffer = buffer->buffers[cpu];
3965                 entries += rb_num_of_entries(cpu_buffer);
3966         }
3967
3968         return entries;
3969 }
3970 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3971
3972 /**
3973  * ring_buffer_overruns - get the number of overruns in buffer
3974  * @buffer: The ring buffer
3975  *
3976  * Returns the total number of overruns in the ring buffer
3977  * (all CPU entries)
3978  */
3979 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
3980 {
3981         struct ring_buffer_per_cpu *cpu_buffer;
3982         unsigned long overruns = 0;
3983         int cpu;
3984
3985         /* if you care about this being correct, lock the buffer */
3986         for_each_buffer_cpu(buffer, cpu) {
3987                 cpu_buffer = buffer->buffers[cpu];
3988                 overruns += local_read(&cpu_buffer->overrun);
3989         }
3990
3991         return overruns;
3992 }
3993 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3994
3995 static void rb_iter_reset(struct ring_buffer_iter *iter)
3996 {
3997         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3998
3999         /* Iterator usage is expected to have record disabled */
4000         iter->head_page = cpu_buffer->reader_page;
4001         iter->head = cpu_buffer->reader_page->read;
4002         iter->next_event = iter->head;
4003
4004         iter->cache_reader_page = iter->head_page;
4005         iter->cache_read = cpu_buffer->read;
4006
4007         if (iter->head) {
4008                 iter->read_stamp = cpu_buffer->read_stamp;
4009                 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4010         } else {
4011                 iter->read_stamp = iter->head_page->page->time_stamp;
4012                 iter->page_stamp = iter->read_stamp;
4013         }
4014 }
4015
4016 /**
4017  * ring_buffer_iter_reset - reset an iterator
4018  * @iter: The iterator to reset
4019  *
4020  * Resets the iterator, so that it will start from the beginning
4021  * again.
4022  */
4023 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4024 {
4025         struct ring_buffer_per_cpu *cpu_buffer;
4026         unsigned long flags;
4027
4028         if (!iter)
4029                 return;
4030
4031         cpu_buffer = iter->cpu_buffer;
4032
4033         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4034         rb_iter_reset(iter);
4035         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4036 }
4037 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4038
4039 /**
4040  * ring_buffer_iter_empty - check if an iterator has no more to read
4041  * @iter: The iterator to check
4042  */
4043 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4044 {
4045         struct ring_buffer_per_cpu *cpu_buffer;
4046         struct buffer_page *reader;
4047         struct buffer_page *head_page;
4048         struct buffer_page *commit_page;
4049         struct buffer_page *curr_commit_page;
4050         unsigned commit;
4051         u64 curr_commit_ts;
4052         u64 commit_ts;
4053
4054         cpu_buffer = iter->cpu_buffer;
4055         reader = cpu_buffer->reader_page;
4056         head_page = cpu_buffer->head_page;
4057         commit_page = cpu_buffer->commit_page;
4058         commit_ts = commit_page->page->time_stamp;
4059
4060         /*
4061          * When the writer goes across pages, it issues a cmpxchg which
4062          * is a mb(), which will synchronize with the rmb here.
4063          * (see rb_tail_page_update())
4064          */
4065         smp_rmb();
4066         commit = rb_page_commit(commit_page);
4067         /* We want to make sure that the commit page doesn't change */
4068         smp_rmb();
4069
4070         /* Make sure commit page didn't change */
4071         curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4072         curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4073
4074         /* If the commit page changed, then there's more data */
4075         if (curr_commit_page != commit_page ||
4076             curr_commit_ts != commit_ts)
4077                 return 0;
4078
4079         /* Still racy, as it may return a false positive, but that's OK */
4080         return ((iter->head_page == commit_page && iter->head >= commit) ||
4081                 (iter->head_page == reader && commit_page == head_page &&
4082                  head_page->read == commit &&
4083                  iter->head == rb_page_commit(cpu_buffer->reader_page)));
4084 }
4085 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4086
4087 static void
4088 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4089                      struct ring_buffer_event *event)
4090 {
4091         u64 delta;
4092
4093         switch (event->type_len) {
4094         case RINGBUF_TYPE_PADDING:
4095                 return;
4096
4097         case RINGBUF_TYPE_TIME_EXTEND:
4098                 delta = ring_buffer_event_time_stamp(event);
4099                 cpu_buffer->read_stamp += delta;
4100                 return;
4101
4102         case RINGBUF_TYPE_TIME_STAMP:
4103                 delta = ring_buffer_event_time_stamp(event);
4104                 cpu_buffer->read_stamp = delta;
4105                 return;
4106
4107         case RINGBUF_TYPE_DATA:
4108                 cpu_buffer->read_stamp += event->time_delta;
4109                 return;
4110
4111         default:
4112                 RB_WARN_ON(cpu_buffer, 1);
4113         }
4114         return;
4115 }
4116
4117 static void
4118 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4119                           struct ring_buffer_event *event)
4120 {
4121         u64 delta;
4122
4123         switch (event->type_len) {
4124         case RINGBUF_TYPE_PADDING:
4125                 return;
4126
4127         case RINGBUF_TYPE_TIME_EXTEND:
4128                 delta = ring_buffer_event_time_stamp(event);
4129                 iter->read_stamp += delta;
4130                 return;
4131
4132         case RINGBUF_TYPE_TIME_STAMP:
4133                 delta = ring_buffer_event_time_stamp(event);
4134                 iter->read_stamp = delta;
4135                 return;
4136
4137         case RINGBUF_TYPE_DATA:
4138                 iter->read_stamp += event->time_delta;
4139                 return;
4140
4141         default:
4142                 RB_WARN_ON(iter->cpu_buffer, 1);
4143         }
4144         return;
4145 }
4146
4147 static struct buffer_page *
4148 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4149 {
4150         struct buffer_page *reader = NULL;
4151         unsigned long overwrite;
4152         unsigned long flags;
4153         int nr_loops = 0;
4154         int ret;
4155
4156         local_irq_save(flags);
4157         arch_spin_lock(&cpu_buffer->lock);
4158
4159  again:
4160         /*
4161          * This should normally only loop twice. But because the
4162          * start of the reader inserts an empty page, it causes
4163          * a case where we will loop three times. There should be no
4164          * reason to loop four times (that I know of).
4165          */
4166         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4167                 reader = NULL;
4168                 goto out;
4169         }
4170
4171         reader = cpu_buffer->reader_page;
4172
4173         /* If there's more to read, return this page */
4174         if (cpu_buffer->reader_page->read < rb_page_size(reader))
4175                 goto out;
4176
4177         /* Never should we have an index greater than the size */
4178         if (RB_WARN_ON(cpu_buffer,
4179                        cpu_buffer->reader_page->read > rb_page_size(reader)))
4180                 goto out;
4181
4182         /* check if we caught up to the tail */
4183         reader = NULL;
4184         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4185                 goto out;
4186
4187         /* Don't bother swapping if the ring buffer is empty */
4188         if (rb_num_of_entries(cpu_buffer) == 0)
4189                 goto out;
4190
4191         /*
4192          * Reset the reader page to size zero.
4193          */
4194         local_set(&cpu_buffer->reader_page->write, 0);
4195         local_set(&cpu_buffer->reader_page->entries, 0);
4196         local_set(&cpu_buffer->reader_page->page->commit, 0);
4197         cpu_buffer->reader_page->real_end = 0;
4198
4199  spin:
4200         /*
4201          * Splice the empty reader page into the list around the head.
4202          */
4203         reader = rb_set_head_page(cpu_buffer);
4204         if (!reader)
4205                 goto out;
4206         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4207         cpu_buffer->reader_page->list.prev = reader->list.prev;
4208
4209         /*
4210          * cpu_buffer->pages just needs to point to the buffer, it
4211          *  has no specific buffer page to point to. Lets move it out
4212          *  of our way so we don't accidentally swap it.
4213          */
4214         cpu_buffer->pages = reader->list.prev;
4215
4216         /* The reader page will be pointing to the new head */
4217         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
4218
4219         /*
4220          * We want to make sure we read the overruns after we set up our
4221          * pointers to the next object. The writer side does a
4222          * cmpxchg to cross pages which acts as the mb on the writer
4223          * side. Note, the reader will constantly fail the swap
4224          * while the writer is updating the pointers, so this
4225          * guarantees that the overwrite recorded here is the one we
4226          * want to compare with the last_overrun.
4227          */
4228         smp_mb();
4229         overwrite = local_read(&(cpu_buffer->overrun));
4230
4231         /*
4232          * Here's the tricky part.
4233          *
4234          * We need to move the pointer past the header page.
4235          * But we can only do that if a writer is not currently
4236          * moving it. The page before the header page has the
4237          * flag bit '1' set if it is pointing to the page we want.
4238          * but if the writer is in the process of moving it
4239          * than it will be '2' or already moved '0'.
4240          */
4241
4242         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4243
4244         /*
4245          * If we did not convert it, then we must try again.
4246          */
4247         if (!ret)
4248                 goto spin;
4249
4250         /*
4251          * Yay! We succeeded in replacing the page.
4252          *
4253          * Now make the new head point back to the reader page.
4254          */
4255         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4256         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
4257
4258         local_inc(&cpu_buffer->pages_read);
4259
4260         /* Finally update the reader page to the new head */
4261         cpu_buffer->reader_page = reader;
4262         cpu_buffer->reader_page->read = 0;
4263
4264         if (overwrite != cpu_buffer->last_overrun) {
4265                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4266                 cpu_buffer->last_overrun = overwrite;
4267         }
4268
4269         goto again;
4270
4271  out:
4272         /* Update the read_stamp on the first event */
4273         if (reader && reader->read == 0)
4274                 cpu_buffer->read_stamp = reader->page->time_stamp;
4275
4276         arch_spin_unlock(&cpu_buffer->lock);
4277         local_irq_restore(flags);
4278
4279         return reader;
4280 }
4281
4282 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4283 {
4284         struct ring_buffer_event *event;
4285         struct buffer_page *reader;
4286         unsigned length;
4287
4288         reader = rb_get_reader_page(cpu_buffer);
4289
4290         /* This function should not be called when buffer is empty */
4291         if (RB_WARN_ON(cpu_buffer, !reader))
4292                 return;
4293
4294         event = rb_reader_event(cpu_buffer);
4295
4296         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4297                 cpu_buffer->read++;
4298
4299         rb_update_read_stamp(cpu_buffer, event);
4300
4301         length = rb_event_length(event);
4302         cpu_buffer->reader_page->read += length;
4303 }
4304
4305 static void rb_advance_iter(struct ring_buffer_iter *iter)
4306 {
4307         struct ring_buffer_per_cpu *cpu_buffer;
4308
4309         cpu_buffer = iter->cpu_buffer;
4310
4311         /* If head == next_event then we need to jump to the next event */
4312         if (iter->head == iter->next_event) {
4313                 /* If the event gets overwritten again, there's nothing to do */
4314                 if (rb_iter_head_event(iter) == NULL)
4315                         return;
4316         }
4317
4318         iter->head = iter->next_event;
4319
4320         /*
4321          * Check if we are at the end of the buffer.
4322          */
4323         if (iter->next_event >= rb_page_size(iter->head_page)) {
4324                 /* discarded commits can make the page empty */
4325                 if (iter->head_page == cpu_buffer->commit_page)
4326                         return;
4327                 rb_inc_iter(iter);
4328                 return;
4329         }
4330
4331         rb_update_iter_read_stamp(iter, iter->event);
4332 }
4333
4334 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4335 {
4336         return cpu_buffer->lost_events;
4337 }
4338
4339 static struct ring_buffer_event *
4340 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4341                unsigned long *lost_events)
4342 {
4343         struct ring_buffer_event *event;
4344         struct buffer_page *reader;
4345         int nr_loops = 0;
4346
4347         if (ts)
4348                 *ts = 0;
4349  again:
4350         /*
4351          * We repeat when a time extend is encountered.
4352          * Since the time extend is always attached to a data event,
4353          * we should never loop more than once.
4354          * (We never hit the following condition more than twice).
4355          */
4356         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4357                 return NULL;
4358
4359         reader = rb_get_reader_page(cpu_buffer);
4360         if (!reader)
4361                 return NULL;
4362
4363         event = rb_reader_event(cpu_buffer);
4364
4365         switch (event->type_len) {
4366         case RINGBUF_TYPE_PADDING:
4367                 if (rb_null_event(event))
4368                         RB_WARN_ON(cpu_buffer, 1);
4369                 /*
4370                  * Because the writer could be discarding every
4371                  * event it creates (which would probably be bad)
4372                  * if we were to go back to "again" then we may never
4373                  * catch up, and will trigger the warn on, or lock
4374                  * the box. Return the padding, and we will release
4375                  * the current locks, and try again.
4376                  */
4377                 return event;
4378
4379         case RINGBUF_TYPE_TIME_EXTEND:
4380                 /* Internal data, OK to advance */
4381                 rb_advance_reader(cpu_buffer);
4382                 goto again;
4383
4384         case RINGBUF_TYPE_TIME_STAMP:
4385                 if (ts) {
4386                         *ts = ring_buffer_event_time_stamp(event);
4387                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4388                                                          cpu_buffer->cpu, ts);
4389                 }
4390                 /* Internal data, OK to advance */
4391                 rb_advance_reader(cpu_buffer);
4392                 goto again;
4393
4394         case RINGBUF_TYPE_DATA:
4395                 if (ts && !(*ts)) {
4396                         *ts = cpu_buffer->read_stamp + event->time_delta;
4397                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4398                                                          cpu_buffer->cpu, ts);
4399                 }
4400                 if (lost_events)
4401                         *lost_events = rb_lost_events(cpu_buffer);
4402                 return event;
4403
4404         default:
4405                 RB_WARN_ON(cpu_buffer, 1);
4406         }
4407
4408         return NULL;
4409 }
4410 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4411
4412 static struct ring_buffer_event *
4413 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4414 {
4415         struct trace_buffer *buffer;
4416         struct ring_buffer_per_cpu *cpu_buffer;
4417         struct ring_buffer_event *event;
4418         int nr_loops = 0;
4419
4420         if (ts)
4421                 *ts = 0;
4422
4423         cpu_buffer = iter->cpu_buffer;
4424         buffer = cpu_buffer->buffer;
4425
4426         /*
4427          * Check if someone performed a consuming read to
4428          * the buffer. A consuming read invalidates the iterator
4429          * and we need to reset the iterator in this case.
4430          */
4431         if (unlikely(iter->cache_read != cpu_buffer->read ||
4432                      iter->cache_reader_page != cpu_buffer->reader_page))
4433                 rb_iter_reset(iter);
4434
4435  again:
4436         if (ring_buffer_iter_empty(iter))
4437                 return NULL;
4438
4439         /*
4440          * As the writer can mess with what the iterator is trying
4441          * to read, just give up if we fail to get an event after
4442          * three tries. The iterator is not as reliable when reading
4443          * the ring buffer with an active write as the consumer is.
4444          * Do not warn if the three failures is reached.
4445          */
4446         if (++nr_loops > 3)
4447                 return NULL;
4448
4449         if (rb_per_cpu_empty(cpu_buffer))
4450                 return NULL;
4451
4452         if (iter->head >= rb_page_size(iter->head_page)) {
4453                 rb_inc_iter(iter);
4454                 goto again;
4455         }
4456
4457         event = rb_iter_head_event(iter);
4458         if (!event)
4459                 goto again;
4460
4461         switch (event->type_len) {
4462         case RINGBUF_TYPE_PADDING:
4463                 if (rb_null_event(event)) {
4464                         rb_inc_iter(iter);
4465                         goto again;
4466                 }
4467                 rb_advance_iter(iter);
4468                 return event;
4469
4470         case RINGBUF_TYPE_TIME_EXTEND:
4471                 /* Internal data, OK to advance */
4472                 rb_advance_iter(iter);
4473                 goto again;
4474
4475         case RINGBUF_TYPE_TIME_STAMP:
4476                 if (ts) {
4477                         *ts = ring_buffer_event_time_stamp(event);
4478                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4479                                                          cpu_buffer->cpu, ts);
4480                 }
4481                 /* Internal data, OK to advance */
4482                 rb_advance_iter(iter);
4483                 goto again;
4484
4485         case RINGBUF_TYPE_DATA:
4486                 if (ts && !(*ts)) {
4487                         *ts = iter->read_stamp + event->time_delta;
4488                         ring_buffer_normalize_time_stamp(buffer,
4489                                                          cpu_buffer->cpu, ts);
4490                 }
4491                 return event;
4492
4493         default:
4494                 RB_WARN_ON(cpu_buffer, 1);
4495         }
4496
4497         return NULL;
4498 }
4499 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4500
4501 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4502 {
4503         if (likely(!in_nmi())) {
4504                 raw_spin_lock(&cpu_buffer->reader_lock);
4505                 return true;
4506         }
4507
4508         /*
4509          * If an NMI die dumps out the content of the ring buffer
4510          * trylock must be used to prevent a deadlock if the NMI
4511          * preempted a task that holds the ring buffer locks. If
4512          * we get the lock then all is fine, if not, then continue
4513          * to do the read, but this can corrupt the ring buffer,
4514          * so it must be permanently disabled from future writes.
4515          * Reading from NMI is a oneshot deal.
4516          */
4517         if (raw_spin_trylock(&cpu_buffer->reader_lock))
4518                 return true;
4519
4520         /* Continue without locking, but disable the ring buffer */
4521         atomic_inc(&cpu_buffer->record_disabled);
4522         return false;
4523 }
4524
4525 static inline void
4526 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4527 {
4528         if (likely(locked))
4529                 raw_spin_unlock(&cpu_buffer->reader_lock);
4530         return;
4531 }
4532
4533 /**
4534  * ring_buffer_peek - peek at the next event to be read
4535  * @buffer: The ring buffer to read
4536  * @cpu: The cpu to peak at
4537  * @ts: The timestamp counter of this event.
4538  * @lost_events: a variable to store if events were lost (may be NULL)
4539  *
4540  * This will return the event that will be read next, but does
4541  * not consume the data.
4542  */
4543 struct ring_buffer_event *
4544 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4545                  unsigned long *lost_events)
4546 {
4547         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4548         struct ring_buffer_event *event;
4549         unsigned long flags;
4550         bool dolock;
4551
4552         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4553                 return NULL;
4554
4555  again:
4556         local_irq_save(flags);
4557         dolock = rb_reader_lock(cpu_buffer);
4558         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4559         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4560                 rb_advance_reader(cpu_buffer);
4561         rb_reader_unlock(cpu_buffer, dolock);
4562         local_irq_restore(flags);
4563
4564         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4565                 goto again;
4566
4567         return event;
4568 }
4569
4570 /** ring_buffer_iter_dropped - report if there are dropped events
4571  * @iter: The ring buffer iterator
4572  *
4573  * Returns true if there was dropped events since the last peek.
4574  */
4575 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4576 {
4577         bool ret = iter->missed_events != 0;
4578
4579         iter->missed_events = 0;
4580         return ret;
4581 }
4582 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4583
4584 /**
4585  * ring_buffer_iter_peek - peek at the next event to be read
4586  * @iter: The ring buffer iterator
4587  * @ts: The timestamp counter of this event.
4588  *
4589  * This will return the event that will be read next, but does
4590  * not increment the iterator.
4591  */
4592 struct ring_buffer_event *
4593 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4594 {
4595         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4596         struct ring_buffer_event *event;
4597         unsigned long flags;
4598
4599  again:
4600         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4601         event = rb_iter_peek(iter, ts);
4602         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4603
4604         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4605                 goto again;
4606
4607         return event;
4608 }
4609
4610 /**
4611  * ring_buffer_consume - return an event and consume it
4612  * @buffer: The ring buffer to get the next event from
4613  * @cpu: the cpu to read the buffer from
4614  * @ts: a variable to store the timestamp (may be NULL)
4615  * @lost_events: a variable to store if events were lost (may be NULL)
4616  *
4617  * Returns the next event in the ring buffer, and that event is consumed.
4618  * Meaning, that sequential reads will keep returning a different event,
4619  * and eventually empty the ring buffer if the producer is slower.
4620  */
4621 struct ring_buffer_event *
4622 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
4623                     unsigned long *lost_events)
4624 {
4625         struct ring_buffer_per_cpu *cpu_buffer;
4626         struct ring_buffer_event *event = NULL;
4627         unsigned long flags;
4628         bool dolock;
4629
4630  again:
4631         /* might be called in atomic */
4632         preempt_disable();
4633
4634         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4635                 goto out;
4636
4637         cpu_buffer = buffer->buffers[cpu];
4638         local_irq_save(flags);
4639         dolock = rb_reader_lock(cpu_buffer);
4640
4641         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4642         if (event) {
4643                 cpu_buffer->lost_events = 0;
4644                 rb_advance_reader(cpu_buffer);
4645         }
4646
4647         rb_reader_unlock(cpu_buffer, dolock);
4648         local_irq_restore(flags);
4649
4650  out:
4651         preempt_enable();
4652
4653         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4654                 goto again;
4655
4656         return event;
4657 }
4658 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4659
4660 /**
4661  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4662  * @buffer: The ring buffer to read from
4663  * @cpu: The cpu buffer to iterate over
4664  * @flags: gfp flags to use for memory allocation
4665  *
4666  * This performs the initial preparations necessary to iterate
4667  * through the buffer.  Memory is allocated, buffer recording
4668  * is disabled, and the iterator pointer is returned to the caller.
4669  *
4670  * Disabling buffer recording prevents the reading from being
4671  * corrupted. This is not a consuming read, so a producer is not
4672  * expected.
4673  *
4674  * After a sequence of ring_buffer_read_prepare calls, the user is
4675  * expected to make at least one call to ring_buffer_read_prepare_sync.
4676  * Afterwards, ring_buffer_read_start is invoked to get things going
4677  * for real.
4678  *
4679  * This overall must be paired with ring_buffer_read_finish.
4680  */
4681 struct ring_buffer_iter *
4682 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
4683 {
4684         struct ring_buffer_per_cpu *cpu_buffer;
4685         struct ring_buffer_iter *iter;
4686
4687         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4688                 return NULL;
4689
4690         iter = kzalloc(sizeof(*iter), flags);
4691         if (!iter)
4692                 return NULL;
4693
4694         iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags);
4695         if (!iter->event) {
4696                 kfree(iter);
4697                 return NULL;
4698         }
4699
4700         cpu_buffer = buffer->buffers[cpu];
4701
4702         iter->cpu_buffer = cpu_buffer;
4703
4704         atomic_inc(&cpu_buffer->resize_disabled);
4705
4706         return iter;
4707 }
4708 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4709
4710 /**
4711  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4712  *
4713  * All previously invoked ring_buffer_read_prepare calls to prepare
4714  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4715  * calls on those iterators are allowed.
4716  */
4717 void
4718 ring_buffer_read_prepare_sync(void)
4719 {
4720         synchronize_rcu();
4721 }
4722 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4723
4724 /**
4725  * ring_buffer_read_start - start a non consuming read of the buffer
4726  * @iter: The iterator returned by ring_buffer_read_prepare
4727  *
4728  * This finalizes the startup of an iteration through the buffer.
4729  * The iterator comes from a call to ring_buffer_read_prepare and
4730  * an intervening ring_buffer_read_prepare_sync must have been
4731  * performed.
4732  *
4733  * Must be paired with ring_buffer_read_finish.
4734  */
4735 void
4736 ring_buffer_read_start(struct ring_buffer_iter *iter)
4737 {
4738         struct ring_buffer_per_cpu *cpu_buffer;
4739         unsigned long flags;
4740
4741         if (!iter)
4742                 return;
4743
4744         cpu_buffer = iter->cpu_buffer;
4745
4746         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4747         arch_spin_lock(&cpu_buffer->lock);
4748         rb_iter_reset(iter);
4749         arch_spin_unlock(&cpu_buffer->lock);
4750         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4751 }
4752 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4753
4754 /**
4755  * ring_buffer_read_finish - finish reading the iterator of the buffer
4756  * @iter: The iterator retrieved by ring_buffer_start
4757  *
4758  * This re-enables the recording to the buffer, and frees the
4759  * iterator.
4760  */
4761 void
4762 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4763 {
4764         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4765         unsigned long flags;
4766
4767         /*
4768          * Ring buffer is disabled from recording, here's a good place
4769          * to check the integrity of the ring buffer.
4770          * Must prevent readers from trying to read, as the check
4771          * clears the HEAD page and readers require it.
4772          */
4773         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4774         rb_check_pages(cpu_buffer);
4775         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4776
4777         atomic_dec(&cpu_buffer->resize_disabled);
4778         kfree(iter->event);
4779         kfree(iter);
4780 }
4781 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4782
4783 /**
4784  * ring_buffer_iter_advance - advance the iterator to the next location
4785  * @iter: The ring buffer iterator
4786  *
4787  * Move the location of the iterator such that the next read will
4788  * be the next location of the iterator.
4789  */
4790 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
4791 {
4792         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4793         unsigned long flags;
4794
4795         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4796
4797         rb_advance_iter(iter);
4798
4799         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4800 }
4801 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
4802
4803 /**
4804  * ring_buffer_size - return the size of the ring buffer (in bytes)
4805  * @buffer: The ring buffer.
4806  * @cpu: The CPU to get ring buffer size from.
4807  */
4808 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
4809 {
4810         /*
4811          * Earlier, this method returned
4812          *      BUF_PAGE_SIZE * buffer->nr_pages
4813          * Since the nr_pages field is now removed, we have converted this to
4814          * return the per cpu buffer value.
4815          */
4816         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4817                 return 0;
4818
4819         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4820 }
4821 EXPORT_SYMBOL_GPL(ring_buffer_size);
4822
4823 static void
4824 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4825 {
4826         rb_head_page_deactivate(cpu_buffer);
4827
4828         cpu_buffer->head_page
4829                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4830         local_set(&cpu_buffer->head_page->write, 0);
4831         local_set(&cpu_buffer->head_page->entries, 0);
4832         local_set(&cpu_buffer->head_page->page->commit, 0);
4833
4834         cpu_buffer->head_page->read = 0;
4835
4836         cpu_buffer->tail_page = cpu_buffer->head_page;
4837         cpu_buffer->commit_page = cpu_buffer->head_page;
4838
4839         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4840         INIT_LIST_HEAD(&cpu_buffer->new_pages);
4841         local_set(&cpu_buffer->reader_page->write, 0);
4842         local_set(&cpu_buffer->reader_page->entries, 0);
4843         local_set(&cpu_buffer->reader_page->page->commit, 0);
4844         cpu_buffer->reader_page->read = 0;
4845
4846         local_set(&cpu_buffer->entries_bytes, 0);
4847         local_set(&cpu_buffer->overrun, 0);
4848         local_set(&cpu_buffer->commit_overrun, 0);
4849         local_set(&cpu_buffer->dropped_events, 0);
4850         local_set(&cpu_buffer->entries, 0);
4851         local_set(&cpu_buffer->committing, 0);
4852         local_set(&cpu_buffer->commits, 0);
4853         local_set(&cpu_buffer->pages_touched, 0);
4854         local_set(&cpu_buffer->pages_read, 0);
4855         cpu_buffer->last_pages_touch = 0;
4856         cpu_buffer->shortest_full = 0;
4857         cpu_buffer->read = 0;
4858         cpu_buffer->read_bytes = 0;
4859
4860         rb_time_set(&cpu_buffer->write_stamp, 0);
4861         rb_time_set(&cpu_buffer->before_stamp, 0);
4862
4863         cpu_buffer->lost_events = 0;
4864         cpu_buffer->last_overrun = 0;
4865
4866         rb_head_page_activate(cpu_buffer);
4867 }
4868
4869 /* Must have disabled the cpu buffer then done a synchronize_rcu */
4870 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
4871 {
4872         unsigned long flags;
4873
4874         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4875
4876         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4877                 goto out;
4878
4879         arch_spin_lock(&cpu_buffer->lock);
4880
4881         rb_reset_cpu(cpu_buffer);
4882
4883         arch_spin_unlock(&cpu_buffer->lock);
4884
4885  out:
4886         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4887 }
4888
4889 /**
4890  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4891  * @buffer: The ring buffer to reset a per cpu buffer of
4892  * @cpu: The CPU buffer to be reset
4893  */
4894 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
4895 {
4896         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4897
4898         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4899                 return;
4900
4901         /* prevent another thread from changing buffer sizes */
4902         mutex_lock(&buffer->mutex);
4903
4904         atomic_inc(&cpu_buffer->resize_disabled);
4905         atomic_inc(&cpu_buffer->record_disabled);
4906
4907         /* Make sure all commits have finished */
4908         synchronize_rcu();
4909
4910         reset_disabled_cpu_buffer(cpu_buffer);
4911
4912         atomic_dec(&cpu_buffer->record_disabled);
4913         atomic_dec(&cpu_buffer->resize_disabled);
4914
4915         mutex_unlock(&buffer->mutex);
4916 }
4917 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4918
4919 /**
4920  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4921  * @buffer: The ring buffer to reset a per cpu buffer of
4922  * @cpu: The CPU buffer to be reset
4923  */
4924 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
4925 {
4926         struct ring_buffer_per_cpu *cpu_buffer;
4927         int cpu;
4928
4929         /* prevent another thread from changing buffer sizes */
4930         mutex_lock(&buffer->mutex);
4931
4932         for_each_online_buffer_cpu(buffer, cpu) {
4933                 cpu_buffer = buffer->buffers[cpu];
4934
4935                 atomic_inc(&cpu_buffer->resize_disabled);
4936                 atomic_inc(&cpu_buffer->record_disabled);
4937         }
4938
4939         /* Make sure all commits have finished */
4940         synchronize_rcu();
4941
4942         for_each_online_buffer_cpu(buffer, cpu) {
4943                 cpu_buffer = buffer->buffers[cpu];
4944
4945                 reset_disabled_cpu_buffer(cpu_buffer);
4946
4947                 atomic_dec(&cpu_buffer->record_disabled);
4948                 atomic_dec(&cpu_buffer->resize_disabled);
4949         }
4950
4951         mutex_unlock(&buffer->mutex);
4952 }
4953
4954 /**
4955  * ring_buffer_reset - reset a ring buffer
4956  * @buffer: The ring buffer to reset all cpu buffers
4957  */
4958 void ring_buffer_reset(struct trace_buffer *buffer)
4959 {
4960         struct ring_buffer_per_cpu *cpu_buffer;
4961         int cpu;
4962
4963         for_each_buffer_cpu(buffer, cpu) {
4964                 cpu_buffer = buffer->buffers[cpu];
4965
4966                 atomic_inc(&cpu_buffer->resize_disabled);
4967                 atomic_inc(&cpu_buffer->record_disabled);
4968         }
4969
4970         /* Make sure all commits have finished */
4971         synchronize_rcu();
4972
4973         for_each_buffer_cpu(buffer, cpu) {
4974                 cpu_buffer = buffer->buffers[cpu];
4975
4976                 reset_disabled_cpu_buffer(cpu_buffer);
4977
4978                 atomic_dec(&cpu_buffer->record_disabled);
4979                 atomic_dec(&cpu_buffer->resize_disabled);
4980         }
4981 }
4982 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4983
4984 /**
4985  * rind_buffer_empty - is the ring buffer empty?
4986  * @buffer: The ring buffer to test
4987  */
4988 bool ring_buffer_empty(struct trace_buffer *buffer)
4989 {
4990         struct ring_buffer_per_cpu *cpu_buffer;
4991         unsigned long flags;
4992         bool dolock;
4993         int cpu;
4994         int ret;
4995
4996         /* yes this is racy, but if you don't like the race, lock the buffer */
4997         for_each_buffer_cpu(buffer, cpu) {
4998                 cpu_buffer = buffer->buffers[cpu];
4999                 local_irq_save(flags);
5000                 dolock = rb_reader_lock(cpu_buffer);
5001                 ret = rb_per_cpu_empty(cpu_buffer);
5002                 rb_reader_unlock(cpu_buffer, dolock);
5003                 local_irq_restore(flags);
5004
5005                 if (!ret)
5006                         return false;
5007         }
5008
5009         return true;
5010 }
5011 EXPORT_SYMBOL_GPL(ring_buffer_empty);
5012
5013 /**
5014  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5015  * @buffer: The ring buffer
5016  * @cpu: The CPU buffer to test
5017  */
5018 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5019 {
5020         struct ring_buffer_per_cpu *cpu_buffer;
5021         unsigned long flags;
5022         bool dolock;
5023         int ret;
5024
5025         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5026                 return true;
5027
5028         cpu_buffer = buffer->buffers[cpu];
5029         local_irq_save(flags);
5030         dolock = rb_reader_lock(cpu_buffer);
5031         ret = rb_per_cpu_empty(cpu_buffer);
5032         rb_reader_unlock(cpu_buffer, dolock);
5033         local_irq_restore(flags);
5034
5035         return ret;
5036 }
5037 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5038
5039 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5040 /**
5041  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5042  * @buffer_a: One buffer to swap with
5043  * @buffer_b: The other buffer to swap with
5044  * @cpu: the CPU of the buffers to swap
5045  *
5046  * This function is useful for tracers that want to take a "snapshot"
5047  * of a CPU buffer and has another back up buffer lying around.
5048  * it is expected that the tracer handles the cpu buffer not being
5049  * used at the moment.
5050  */
5051 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5052                          struct trace_buffer *buffer_b, int cpu)
5053 {
5054         struct ring_buffer_per_cpu *cpu_buffer_a;
5055         struct ring_buffer_per_cpu *cpu_buffer_b;
5056         int ret = -EINVAL;
5057
5058         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5059             !cpumask_test_cpu(cpu, buffer_b->cpumask))
5060                 goto out;
5061
5062         cpu_buffer_a = buffer_a->buffers[cpu];
5063         cpu_buffer_b = buffer_b->buffers[cpu];
5064
5065         /* At least make sure the two buffers are somewhat the same */
5066         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5067                 goto out;
5068
5069         ret = -EAGAIN;
5070
5071         if (atomic_read(&buffer_a->record_disabled))
5072                 goto out;
5073
5074         if (atomic_read(&buffer_b->record_disabled))
5075                 goto out;
5076
5077         if (atomic_read(&cpu_buffer_a->record_disabled))
5078                 goto out;
5079
5080         if (atomic_read(&cpu_buffer_b->record_disabled))
5081                 goto out;
5082
5083         /*
5084          * We can't do a synchronize_rcu here because this
5085          * function can be called in atomic context.
5086          * Normally this will be called from the same CPU as cpu.
5087          * If not it's up to the caller to protect this.
5088          */
5089         atomic_inc(&cpu_buffer_a->record_disabled);
5090         atomic_inc(&cpu_buffer_b->record_disabled);
5091
5092         ret = -EBUSY;
5093         if (local_read(&cpu_buffer_a->committing))
5094                 goto out_dec;
5095         if (local_read(&cpu_buffer_b->committing))
5096                 goto out_dec;
5097
5098         buffer_a->buffers[cpu] = cpu_buffer_b;
5099         buffer_b->buffers[cpu] = cpu_buffer_a;
5100
5101         cpu_buffer_b->buffer = buffer_a;
5102         cpu_buffer_a->buffer = buffer_b;
5103
5104         ret = 0;
5105
5106 out_dec:
5107         atomic_dec(&cpu_buffer_a->record_disabled);
5108         atomic_dec(&cpu_buffer_b->record_disabled);
5109 out:
5110         return ret;
5111 }
5112 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5113 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5114
5115 /**
5116  * ring_buffer_alloc_read_page - allocate a page to read from buffer
5117  * @buffer: the buffer to allocate for.
5118  * @cpu: the cpu buffer to allocate.
5119  *
5120  * This function is used in conjunction with ring_buffer_read_page.
5121  * When reading a full page from the ring buffer, these functions
5122  * can be used to speed up the process. The calling function should
5123  * allocate a few pages first with this function. Then when it
5124  * needs to get pages from the ring buffer, it passes the result
5125  * of this function into ring_buffer_read_page, which will swap
5126  * the page that was allocated, with the read page of the buffer.
5127  *
5128  * Returns:
5129  *  The page allocated, or ERR_PTR
5130  */
5131 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5132 {
5133         struct ring_buffer_per_cpu *cpu_buffer;
5134         struct buffer_data_page *bpage = NULL;
5135         unsigned long flags;
5136         struct page *page;
5137
5138         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5139                 return ERR_PTR(-ENODEV);
5140
5141         cpu_buffer = buffer->buffers[cpu];
5142         local_irq_save(flags);
5143         arch_spin_lock(&cpu_buffer->lock);
5144
5145         if (cpu_buffer->free_page) {
5146                 bpage = cpu_buffer->free_page;
5147                 cpu_buffer->free_page = NULL;
5148         }
5149
5150         arch_spin_unlock(&cpu_buffer->lock);
5151         local_irq_restore(flags);
5152
5153         if (bpage)
5154                 goto out;
5155
5156         page = alloc_pages_node(cpu_to_node(cpu),
5157                                 GFP_KERNEL | __GFP_NORETRY, 0);
5158         if (!page)
5159                 return ERR_PTR(-ENOMEM);
5160
5161         bpage = page_address(page);
5162
5163  out:
5164         rb_init_page(bpage);
5165
5166         return bpage;
5167 }
5168 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5169
5170 /**
5171  * ring_buffer_free_read_page - free an allocated read page
5172  * @buffer: the buffer the page was allocate for
5173  * @cpu: the cpu buffer the page came from
5174  * @data: the page to free
5175  *
5176  * Free a page allocated from ring_buffer_alloc_read_page.
5177  */
5178 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
5179 {
5180         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5181         struct buffer_data_page *bpage = data;
5182         struct page *page = virt_to_page(bpage);
5183         unsigned long flags;
5184
5185         /* If the page is still in use someplace else, we can't reuse it */
5186         if (page_ref_count(page) > 1)
5187                 goto out;
5188
5189         local_irq_save(flags);
5190         arch_spin_lock(&cpu_buffer->lock);
5191
5192         if (!cpu_buffer->free_page) {
5193                 cpu_buffer->free_page = bpage;
5194                 bpage = NULL;
5195         }
5196
5197         arch_spin_unlock(&cpu_buffer->lock);
5198         local_irq_restore(flags);
5199
5200  out:
5201         free_page((unsigned long)bpage);
5202 }
5203 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5204
5205 /**
5206  * ring_buffer_read_page - extract a page from the ring buffer
5207  * @buffer: buffer to extract from
5208  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5209  * @len: amount to extract
5210  * @cpu: the cpu of the buffer to extract
5211  * @full: should the extraction only happen when the page is full.
5212  *
5213  * This function will pull out a page from the ring buffer and consume it.
5214  * @data_page must be the address of the variable that was returned
5215  * from ring_buffer_alloc_read_page. This is because the page might be used
5216  * to swap with a page in the ring buffer.
5217  *
5218  * for example:
5219  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
5220  *      if (IS_ERR(rpage))
5221  *              return PTR_ERR(rpage);
5222  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
5223  *      if (ret >= 0)
5224  *              process_page(rpage, ret);
5225  *
5226  * When @full is set, the function will not return true unless
5227  * the writer is off the reader page.
5228  *
5229  * Note: it is up to the calling functions to handle sleeps and wakeups.
5230  *  The ring buffer can be used anywhere in the kernel and can not
5231  *  blindly call wake_up. The layer that uses the ring buffer must be
5232  *  responsible for that.
5233  *
5234  * Returns:
5235  *  >=0 if data has been transferred, returns the offset of consumed data.
5236  *  <0 if no data has been transferred.
5237  */
5238 int ring_buffer_read_page(struct trace_buffer *buffer,
5239                           void **data_page, size_t len, int cpu, int full)
5240 {
5241         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5242         struct ring_buffer_event *event;
5243         struct buffer_data_page *bpage;
5244         struct buffer_page *reader;
5245         unsigned long missed_events;
5246         unsigned long flags;
5247         unsigned int commit;
5248         unsigned int read;
5249         u64 save_timestamp;
5250         int ret = -1;
5251
5252         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5253                 goto out;
5254
5255         /*
5256          * If len is not big enough to hold the page header, then
5257          * we can not copy anything.
5258          */
5259         if (len <= BUF_PAGE_HDR_SIZE)
5260                 goto out;
5261
5262         len -= BUF_PAGE_HDR_SIZE;
5263
5264         if (!data_page)
5265                 goto out;
5266
5267         bpage = *data_page;
5268         if (!bpage)
5269                 goto out;
5270
5271         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5272
5273         reader = rb_get_reader_page(cpu_buffer);
5274         if (!reader)
5275                 goto out_unlock;
5276
5277         event = rb_reader_event(cpu_buffer);
5278
5279         read = reader->read;
5280         commit = rb_page_commit(reader);
5281
5282         /* Check if any events were dropped */
5283         missed_events = cpu_buffer->lost_events;
5284
5285         /*
5286          * If this page has been partially read or
5287          * if len is not big enough to read the rest of the page or
5288          * a writer is still on the page, then
5289          * we must copy the data from the page to the buffer.
5290          * Otherwise, we can simply swap the page with the one passed in.
5291          */
5292         if (read || (len < (commit - read)) ||
5293             cpu_buffer->reader_page == cpu_buffer->commit_page) {
5294                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5295                 unsigned int rpos = read;
5296                 unsigned int pos = 0;
5297                 unsigned int size;
5298
5299                 if (full)
5300                         goto out_unlock;
5301
5302                 if (len > (commit - read))
5303                         len = (commit - read);
5304
5305                 /* Always keep the time extend and data together */
5306                 size = rb_event_ts_length(event);
5307
5308                 if (len < size)
5309                         goto out_unlock;
5310
5311                 /* save the current timestamp, since the user will need it */
5312                 save_timestamp = cpu_buffer->read_stamp;
5313
5314                 /* Need to copy one event at a time */
5315                 do {
5316                         /* We need the size of one event, because
5317                          * rb_advance_reader only advances by one event,
5318                          * whereas rb_event_ts_length may include the size of
5319                          * one or two events.
5320                          * We have already ensured there's enough space if this
5321                          * is a time extend. */
5322                         size = rb_event_length(event);
5323                         memcpy(bpage->data + pos, rpage->data + rpos, size);
5324
5325                         len -= size;
5326
5327                         rb_advance_reader(cpu_buffer);
5328                         rpos = reader->read;
5329                         pos += size;
5330
5331                         if (rpos >= commit)
5332                                 break;
5333
5334                         event = rb_reader_event(cpu_buffer);
5335                         /* Always keep the time extend and data together */
5336                         size = rb_event_ts_length(event);
5337                 } while (len >= size);
5338
5339                 /* update bpage */
5340                 local_set(&bpage->commit, pos);
5341                 bpage->time_stamp = save_timestamp;
5342
5343                 /* we copied everything to the beginning */
5344                 read = 0;
5345         } else {
5346                 /* update the entry counter */
5347                 cpu_buffer->read += rb_page_entries(reader);
5348                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
5349
5350                 /* swap the pages */
5351                 rb_init_page(bpage);
5352                 bpage = reader->page;
5353                 reader->page = *data_page;
5354                 local_set(&reader->write, 0);
5355                 local_set(&reader->entries, 0);
5356                 reader->read = 0;
5357                 *data_page = bpage;
5358
5359                 /*
5360                  * Use the real_end for the data size,
5361                  * This gives us a chance to store the lost events
5362                  * on the page.
5363                  */
5364                 if (reader->real_end)
5365                         local_set(&bpage->commit, reader->real_end);
5366         }
5367         ret = read;
5368
5369         cpu_buffer->lost_events = 0;
5370
5371         commit = local_read(&bpage->commit);
5372         /*
5373          * Set a flag in the commit field if we lost events
5374          */
5375         if (missed_events) {
5376                 /* If there is room at the end of the page to save the
5377                  * missed events, then record it there.
5378                  */
5379                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5380                         memcpy(&bpage->data[commit], &missed_events,
5381                                sizeof(missed_events));
5382                         local_add(RB_MISSED_STORED, &bpage->commit);
5383                         commit += sizeof(missed_events);
5384                 }
5385                 local_add(RB_MISSED_EVENTS, &bpage->commit);
5386         }
5387
5388         /*
5389          * This page may be off to user land. Zero it out here.
5390          */
5391         if (commit < BUF_PAGE_SIZE)
5392                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5393
5394  out_unlock:
5395         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5396
5397  out:
5398         return ret;
5399 }
5400 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5401
5402 /*
5403  * We only allocate new buffers, never free them if the CPU goes down.
5404  * If we were to free the buffer, then the user would lose any trace that was in
5405  * the buffer.
5406  */
5407 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5408 {
5409         struct trace_buffer *buffer;
5410         long nr_pages_same;
5411         int cpu_i;
5412         unsigned long nr_pages;
5413
5414         buffer = container_of(node, struct trace_buffer, node);
5415         if (cpumask_test_cpu(cpu, buffer->cpumask))
5416                 return 0;
5417
5418         nr_pages = 0;
5419         nr_pages_same = 1;
5420         /* check if all cpu sizes are same */
5421         for_each_buffer_cpu(buffer, cpu_i) {
5422                 /* fill in the size from first enabled cpu */
5423                 if (nr_pages == 0)
5424                         nr_pages = buffer->buffers[cpu_i]->nr_pages;
5425                 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5426                         nr_pages_same = 0;
5427                         break;
5428                 }
5429         }
5430         /* allocate minimum pages, user can later expand it */
5431         if (!nr_pages_same)
5432                 nr_pages = 2;
5433         buffer->buffers[cpu] =
5434                 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5435         if (!buffer->buffers[cpu]) {
5436                 WARN(1, "failed to allocate ring buffer on CPU %u\n",
5437                      cpu);
5438                 return -ENOMEM;
5439         }
5440         smp_wmb();
5441         cpumask_set_cpu(cpu, buffer->cpumask);
5442         return 0;
5443 }
5444
5445 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5446 /*
5447  * This is a basic integrity check of the ring buffer.
5448  * Late in the boot cycle this test will run when configured in.
5449  * It will kick off a thread per CPU that will go into a loop
5450  * writing to the per cpu ring buffer various sizes of data.
5451  * Some of the data will be large items, some small.
5452  *
5453  * Another thread is created that goes into a spin, sending out
5454  * IPIs to the other CPUs to also write into the ring buffer.
5455  * this is to test the nesting ability of the buffer.
5456  *
5457  * Basic stats are recorded and reported. If something in the
5458  * ring buffer should happen that's not expected, a big warning
5459  * is displayed and all ring buffers are disabled.
5460  */
5461 static struct task_struct *rb_threads[NR_CPUS] __initdata;
5462
5463 struct rb_test_data {
5464         struct trace_buffer *buffer;
5465         unsigned long           events;
5466         unsigned long           bytes_written;
5467         unsigned long           bytes_alloc;
5468         unsigned long           bytes_dropped;
5469         unsigned long           events_nested;
5470         unsigned long           bytes_written_nested;
5471         unsigned long           bytes_alloc_nested;
5472         unsigned long           bytes_dropped_nested;
5473         int                     min_size_nested;
5474         int                     max_size_nested;
5475         int                     max_size;
5476         int                     min_size;
5477         int                     cpu;
5478         int                     cnt;
5479 };
5480
5481 static struct rb_test_data rb_data[NR_CPUS] __initdata;
5482
5483 /* 1 meg per cpu */
5484 #define RB_TEST_BUFFER_SIZE     1048576
5485
5486 static char rb_string[] __initdata =
5487         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5488         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5489         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5490
5491 static bool rb_test_started __initdata;
5492
5493 struct rb_item {
5494         int size;
5495         char str[];
5496 };
5497
5498 static __init int rb_write_something(struct rb_test_data *data, bool nested)
5499 {
5500         struct ring_buffer_event *event;
5501         struct rb_item *item;
5502         bool started;
5503         int event_len;
5504         int size;
5505         int len;
5506         int cnt;
5507
5508         /* Have nested writes different that what is written */
5509         cnt = data->cnt + (nested ? 27 : 0);
5510
5511         /* Multiply cnt by ~e, to make some unique increment */
5512         size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5513
5514         len = size + sizeof(struct rb_item);
5515
5516         started = rb_test_started;
5517         /* read rb_test_started before checking buffer enabled */
5518         smp_rmb();
5519
5520         event = ring_buffer_lock_reserve(data->buffer, len);
5521         if (!event) {
5522                 /* Ignore dropped events before test starts. */
5523                 if (started) {
5524                         if (nested)
5525                                 data->bytes_dropped += len;
5526                         else
5527                                 data->bytes_dropped_nested += len;
5528                 }
5529                 return len;
5530         }
5531
5532         event_len = ring_buffer_event_length(event);
5533
5534         if (RB_WARN_ON(data->buffer, event_len < len))
5535                 goto out;
5536
5537         item = ring_buffer_event_data(event);
5538         item->size = size;
5539         memcpy(item->str, rb_string, size);
5540
5541         if (nested) {
5542                 data->bytes_alloc_nested += event_len;
5543                 data->bytes_written_nested += len;
5544                 data->events_nested++;
5545                 if (!data->min_size_nested || len < data->min_size_nested)
5546                         data->min_size_nested = len;
5547                 if (len > data->max_size_nested)
5548                         data->max_size_nested = len;
5549         } else {
5550                 data->bytes_alloc += event_len;
5551                 data->bytes_written += len;
5552                 data->events++;
5553                 if (!data->min_size || len < data->min_size)
5554                         data->max_size = len;
5555                 if (len > data->max_size)
5556                         data->max_size = len;
5557         }
5558
5559  out:
5560         ring_buffer_unlock_commit(data->buffer, event);
5561
5562         return 0;
5563 }
5564
5565 static __init int rb_test(void *arg)
5566 {
5567         struct rb_test_data *data = arg;
5568
5569         while (!kthread_should_stop()) {
5570                 rb_write_something(data, false);
5571                 data->cnt++;
5572
5573                 set_current_state(TASK_INTERRUPTIBLE);
5574                 /* Now sleep between a min of 100-300us and a max of 1ms */
5575                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5576         }
5577
5578         return 0;
5579 }
5580
5581 static __init void rb_ipi(void *ignore)
5582 {
5583         struct rb_test_data *data;
5584         int cpu = smp_processor_id();
5585
5586         data = &rb_data[cpu];
5587         rb_write_something(data, true);
5588 }
5589
5590 static __init int rb_hammer_test(void *arg)
5591 {
5592         while (!kthread_should_stop()) {
5593
5594                 /* Send an IPI to all cpus to write data! */
5595                 smp_call_function(rb_ipi, NULL, 1);
5596                 /* No sleep, but for non preempt, let others run */
5597                 schedule();
5598         }
5599
5600         return 0;
5601 }
5602
5603 static __init int test_ringbuffer(void)
5604 {
5605         struct task_struct *rb_hammer;
5606         struct trace_buffer *buffer;
5607         int cpu;
5608         int ret = 0;
5609
5610         if (security_locked_down(LOCKDOWN_TRACEFS)) {
5611                 pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
5612                 return 0;
5613         }
5614
5615         pr_info("Running ring buffer tests...\n");
5616
5617         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5618         if (WARN_ON(!buffer))
5619                 return 0;
5620
5621         /* Disable buffer so that threads can't write to it yet */
5622         ring_buffer_record_off(buffer);
5623
5624         for_each_online_cpu(cpu) {
5625                 rb_data[cpu].buffer = buffer;
5626                 rb_data[cpu].cpu = cpu;
5627                 rb_data[cpu].cnt = cpu;
5628                 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5629                                                  "rbtester/%d", cpu);
5630                 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5631                         pr_cont("FAILED\n");
5632                         ret = PTR_ERR(rb_threads[cpu]);
5633                         goto out_free;
5634                 }
5635
5636                 kthread_bind(rb_threads[cpu], cpu);
5637                 wake_up_process(rb_threads[cpu]);
5638         }
5639
5640         /* Now create the rb hammer! */
5641         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5642         if (WARN_ON(IS_ERR(rb_hammer))) {
5643                 pr_cont("FAILED\n");
5644                 ret = PTR_ERR(rb_hammer);
5645                 goto out_free;
5646         }
5647
5648         ring_buffer_record_on(buffer);
5649         /*
5650          * Show buffer is enabled before setting rb_test_started.
5651          * Yes there's a small race window where events could be
5652          * dropped and the thread wont catch it. But when a ring
5653          * buffer gets enabled, there will always be some kind of
5654          * delay before other CPUs see it. Thus, we don't care about
5655          * those dropped events. We care about events dropped after
5656          * the threads see that the buffer is active.
5657          */
5658         smp_wmb();
5659         rb_test_started = true;
5660
5661         set_current_state(TASK_INTERRUPTIBLE);
5662         /* Just run for 10 seconds */;
5663         schedule_timeout(10 * HZ);
5664
5665         kthread_stop(rb_hammer);
5666
5667  out_free:
5668         for_each_online_cpu(cpu) {
5669                 if (!rb_threads[cpu])
5670                         break;
5671                 kthread_stop(rb_threads[cpu]);
5672         }
5673         if (ret) {
5674                 ring_buffer_free(buffer);
5675                 return ret;
5676         }
5677
5678         /* Report! */
5679         pr_info("finished\n");
5680         for_each_online_cpu(cpu) {
5681                 struct ring_buffer_event *event;
5682                 struct rb_test_data *data = &rb_data[cpu];
5683                 struct rb_item *item;
5684                 unsigned long total_events;
5685                 unsigned long total_dropped;
5686                 unsigned long total_written;
5687                 unsigned long total_alloc;
5688                 unsigned long total_read = 0;
5689                 unsigned long total_size = 0;
5690                 unsigned long total_len = 0;
5691                 unsigned long total_lost = 0;
5692                 unsigned long lost;
5693                 int big_event_size;
5694                 int small_event_size;
5695
5696                 ret = -1;
5697
5698                 total_events = data->events + data->events_nested;
5699                 total_written = data->bytes_written + data->bytes_written_nested;
5700                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5701                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5702
5703                 big_event_size = data->max_size + data->max_size_nested;
5704                 small_event_size = data->min_size + data->min_size_nested;
5705
5706                 pr_info("CPU %d:\n", cpu);
5707                 pr_info("              events:    %ld\n", total_events);
5708                 pr_info("       dropped bytes:    %ld\n", total_dropped);
5709                 pr_info("       alloced bytes:    %ld\n", total_alloc);
5710                 pr_info("       written bytes:    %ld\n", total_written);
5711                 pr_info("       biggest event:    %d\n", big_event_size);
5712                 pr_info("      smallest event:    %d\n", small_event_size);
5713
5714                 if (RB_WARN_ON(buffer, total_dropped))
5715                         break;
5716
5717                 ret = 0;
5718
5719                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5720                         total_lost += lost;
5721                         item = ring_buffer_event_data(event);
5722                         total_len += ring_buffer_event_length(event);
5723                         total_size += item->size + sizeof(struct rb_item);
5724                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5725                                 pr_info("FAILED!\n");
5726                                 pr_info("buffer had: %.*s\n", item->size, item->str);
5727                                 pr_info("expected:   %.*s\n", item->size, rb_string);
5728                                 RB_WARN_ON(buffer, 1);
5729                                 ret = -1;
5730                                 break;
5731                         }
5732                         total_read++;
5733                 }
5734                 if (ret)
5735                         break;
5736
5737                 ret = -1;
5738
5739                 pr_info("         read events:   %ld\n", total_read);
5740                 pr_info("         lost events:   %ld\n", total_lost);
5741                 pr_info("        total events:   %ld\n", total_lost + total_read);
5742                 pr_info("  recorded len bytes:   %ld\n", total_len);
5743                 pr_info(" recorded size bytes:   %ld\n", total_size);
5744                 if (total_lost)
5745                         pr_info(" With dropped events, record len and size may not match\n"
5746                                 " alloced and written from above\n");
5747                 if (!total_lost) {
5748                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
5749                                        total_size != total_written))
5750                                 break;
5751                 }
5752                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5753                         break;
5754
5755                 ret = 0;
5756         }
5757         if (!ret)
5758                 pr_info("Ring buffer PASSED!\n");
5759
5760         ring_buffer_free(buffer);
5761         return 0;
5762 }
5763
5764 late_initcall(test_ringbuffer);
5765 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */