802bb38d9c81ef294daf5411ba391c1d9d5bff0d
[linux-2.6-microblaze.git] / kernel / trace / ring_buffer.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_events.h>
8 #include <linux/ring_buffer.h>
9 #include <linux/trace_clock.h>
10 #include <linux/sched/clock.h>
11 #include <linux/trace_seq.h>
12 #include <linux/spinlock.h>
13 #include <linux/irq_work.h>
14 #include <linux/security.h>
15 #include <linux/uaccess.h>
16 #include <linux/hardirq.h>
17 #include <linux/kthread.h>      /* for self test */
18 #include <linux/module.h>
19 #include <linux/percpu.h>
20 #include <linux/mutex.h>
21 #include <linux/delay.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/list.h>
26 #include <linux/cpu.h>
27 #include <linux/oom.h>
28
29 #include <asm/local.h>
30
31 static void update_pages_handler(struct work_struct *work);
32
33 /*
34  * The ring buffer header is special. We must manually up keep it.
35  */
36 int ring_buffer_print_entry_header(struct trace_seq *s)
37 {
38         trace_seq_puts(s, "# compressed entry header\n");
39         trace_seq_puts(s, "\ttype_len    :    5 bits\n");
40         trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
41         trace_seq_puts(s, "\tarray       :   32 bits\n");
42         trace_seq_putc(s, '\n');
43         trace_seq_printf(s, "\tpadding     : type == %d\n",
44                          RINGBUF_TYPE_PADDING);
45         trace_seq_printf(s, "\ttime_extend : type == %d\n",
46                          RINGBUF_TYPE_TIME_EXTEND);
47         trace_seq_printf(s, "\ttime_stamp : type == %d\n",
48                          RINGBUF_TYPE_TIME_STAMP);
49         trace_seq_printf(s, "\tdata max type_len  == %d\n",
50                          RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
51
52         return !trace_seq_has_overflowed(s);
53 }
54
55 /*
56  * The ring buffer is made up of a list of pages. A separate list of pages is
57  * allocated for each CPU. A writer may only write to a buffer that is
58  * associated with the CPU it is currently executing on.  A reader may read
59  * from any per cpu buffer.
60  *
61  * The reader is special. For each per cpu buffer, the reader has its own
62  * reader page. When a reader has read the entire reader page, this reader
63  * page is swapped with another page in the ring buffer.
64  *
65  * Now, as long as the writer is off the reader page, the reader can do what
66  * ever it wants with that page. The writer will never write to that page
67  * again (as long as it is out of the ring buffer).
68  *
69  * Here's some silly ASCII art.
70  *
71  *   +------+
72  *   |reader|          RING BUFFER
73  *   |page  |
74  *   +------+        +---+   +---+   +---+
75  *                   |   |-->|   |-->|   |
76  *                   +---+   +---+   +---+
77  *                     ^               |
78  *                     |               |
79  *                     +---------------+
80  *
81  *
82  *   +------+
83  *   |reader|          RING BUFFER
84  *   |page  |------------------v
85  *   +------+        +---+   +---+   +---+
86  *                   |   |-->|   |-->|   |
87  *                   +---+   +---+   +---+
88  *                     ^               |
89  *                     |               |
90  *                     +---------------+
91  *
92  *
93  *   +------+
94  *   |reader|          RING BUFFER
95  *   |page  |------------------v
96  *   +------+        +---+   +---+   +---+
97  *      ^            |   |-->|   |-->|   |
98  *      |            +---+   +---+   +---+
99  *      |                              |
100  *      |                              |
101  *      +------------------------------+
102  *
103  *
104  *   +------+
105  *   |buffer|          RING BUFFER
106  *   |page  |------------------v
107  *   +------+        +---+   +---+   +---+
108  *      ^            |   |   |   |-->|   |
109  *      |   New      +---+   +---+   +---+
110  *      |  Reader------^               |
111  *      |   page                       |
112  *      +------------------------------+
113  *
114  *
115  * After we make this swap, the reader can hand this page off to the splice
116  * code and be done with it. It can even allocate a new page if it needs to
117  * and swap that into the ring buffer.
118  *
119  * We will be using cmpxchg soon to make all this lockless.
120  *
121  */
122
123 /* Used for individual buffers (after the counter) */
124 #define RB_BUFFER_OFF           (1 << 20)
125
126 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
127
128 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
129 #define RB_ALIGNMENT            4U
130 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
131 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
132 #define RB_ALIGN_DATA           __aligned(RB_ALIGNMENT)
133
134 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
135 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
136
137 enum {
138         RB_LEN_TIME_EXTEND = 8,
139         RB_LEN_TIME_STAMP =  8,
140 };
141
142 #define skip_time_extend(event) \
143         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
144
145 #define extended_time(event) \
146         (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
147
148 static inline int rb_null_event(struct ring_buffer_event *event)
149 {
150         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
151 }
152
153 static void rb_event_set_padding(struct ring_buffer_event *event)
154 {
155         /* padding has a NULL time_delta */
156         event->type_len = RINGBUF_TYPE_PADDING;
157         event->time_delta = 0;
158 }
159
160 static unsigned
161 rb_event_data_length(struct ring_buffer_event *event)
162 {
163         unsigned length;
164
165         if (event->type_len)
166                 length = event->type_len * RB_ALIGNMENT;
167         else
168                 length = event->array[0];
169         return length + RB_EVNT_HDR_SIZE;
170 }
171
172 /*
173  * Return the length of the given event. Will return
174  * the length of the time extend if the event is a
175  * time extend.
176  */
177 static inline unsigned
178 rb_event_length(struct ring_buffer_event *event)
179 {
180         switch (event->type_len) {
181         case RINGBUF_TYPE_PADDING:
182                 if (rb_null_event(event))
183                         /* undefined */
184                         return -1;
185                 return  event->array[0] + RB_EVNT_HDR_SIZE;
186
187         case RINGBUF_TYPE_TIME_EXTEND:
188                 return RB_LEN_TIME_EXTEND;
189
190         case RINGBUF_TYPE_TIME_STAMP:
191                 return RB_LEN_TIME_STAMP;
192
193         case RINGBUF_TYPE_DATA:
194                 return rb_event_data_length(event);
195         default:
196                 WARN_ON_ONCE(1);
197         }
198         /* not hit */
199         return 0;
200 }
201
202 /*
203  * Return total length of time extend and data,
204  *   or just the event length for all other events.
205  */
206 static inline unsigned
207 rb_event_ts_length(struct ring_buffer_event *event)
208 {
209         unsigned len = 0;
210
211         if (extended_time(event)) {
212                 /* time extends include the data event after it */
213                 len = RB_LEN_TIME_EXTEND;
214                 event = skip_time_extend(event);
215         }
216         return len + rb_event_length(event);
217 }
218
219 /**
220  * ring_buffer_event_length - return the length of the event
221  * @event: the event to get the length of
222  *
223  * Returns the size of the data load of a data event.
224  * If the event is something other than a data event, it
225  * returns the size of the event itself. With the exception
226  * of a TIME EXTEND, where it still returns the size of the
227  * data load of the data event after it.
228  */
229 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
230 {
231         unsigned length;
232
233         if (extended_time(event))
234                 event = skip_time_extend(event);
235
236         length = rb_event_length(event);
237         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
238                 return length;
239         length -= RB_EVNT_HDR_SIZE;
240         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
241                 length -= sizeof(event->array[0]);
242         return length;
243 }
244 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
245
246 /* inline for ring buffer fast paths */
247 static __always_inline void *
248 rb_event_data(struct ring_buffer_event *event)
249 {
250         if (extended_time(event))
251                 event = skip_time_extend(event);
252         WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
253         /* If length is in len field, then array[0] has the data */
254         if (event->type_len)
255                 return (void *)&event->array[0];
256         /* Otherwise length is in array[0] and array[1] has the data */
257         return (void *)&event->array[1];
258 }
259
260 /**
261  * ring_buffer_event_data - return the data of the event
262  * @event: the event to get the data from
263  */
264 void *ring_buffer_event_data(struct ring_buffer_event *event)
265 {
266         return rb_event_data(event);
267 }
268 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
269
270 #define for_each_buffer_cpu(buffer, cpu)                \
271         for_each_cpu(cpu, buffer->cpumask)
272
273 #define TS_SHIFT        27
274 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
275 #define TS_DELTA_TEST   (~TS_MASK)
276
277 /**
278  * ring_buffer_event_time_stamp - return the event's extended timestamp
279  * @event: the event to get the timestamp of
280  *
281  * Returns the extended timestamp associated with a data event.
282  * An extended time_stamp is a 64-bit timestamp represented
283  * internally in a special way that makes the best use of space
284  * contained within a ring buffer event.  This function decodes
285  * it and maps it to a straight u64 value.
286  */
287 u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
288 {
289         u64 ts;
290
291         ts = event->array[0];
292         ts <<= TS_SHIFT;
293         ts += event->time_delta;
294
295         return ts;
296 }
297
298 /* Flag when events were overwritten */
299 #define RB_MISSED_EVENTS        (1 << 31)
300 /* Missed count stored at end */
301 #define RB_MISSED_STORED        (1 << 30)
302
303 struct buffer_data_page {
304         u64              time_stamp;    /* page time stamp */
305         local_t          commit;        /* write committed index */
306         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
307 };
308
309 /*
310  * Note, the buffer_page list must be first. The buffer pages
311  * are allocated in cache lines, which means that each buffer
312  * page will be at the beginning of a cache line, and thus
313  * the least significant bits will be zero. We use this to
314  * add flags in the list struct pointers, to make the ring buffer
315  * lockless.
316  */
317 struct buffer_page {
318         struct list_head list;          /* list of buffer pages */
319         local_t          write;         /* index for next write */
320         unsigned         read;          /* index for next read */
321         local_t          entries;       /* entries on this page */
322         unsigned long    real_end;      /* real end of data */
323         struct buffer_data_page *page;  /* Actual data page */
324 };
325
326 /*
327  * The buffer page counters, write and entries, must be reset
328  * atomically when crossing page boundaries. To synchronize this
329  * update, two counters are inserted into the number. One is
330  * the actual counter for the write position or count on the page.
331  *
332  * The other is a counter of updaters. Before an update happens
333  * the update partition of the counter is incremented. This will
334  * allow the updater to update the counter atomically.
335  *
336  * The counter is 20 bits, and the state data is 12.
337  */
338 #define RB_WRITE_MASK           0xfffff
339 #define RB_WRITE_INTCNT         (1 << 20)
340
341 static void rb_init_page(struct buffer_data_page *bpage)
342 {
343         local_set(&bpage->commit, 0);
344 }
345
346 /*
347  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
348  * this issue out.
349  */
350 static void free_buffer_page(struct buffer_page *bpage)
351 {
352         free_page((unsigned long)bpage->page);
353         kfree(bpage);
354 }
355
356 /*
357  * We need to fit the time_stamp delta into 27 bits.
358  */
359 static inline int test_time_stamp(u64 delta)
360 {
361         if (delta & TS_DELTA_TEST)
362                 return 1;
363         return 0;
364 }
365
366 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
367
368 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
369 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
370
371 int ring_buffer_print_page_header(struct trace_seq *s)
372 {
373         struct buffer_data_page field;
374
375         trace_seq_printf(s, "\tfield: u64 timestamp;\t"
376                          "offset:0;\tsize:%u;\tsigned:%u;\n",
377                          (unsigned int)sizeof(field.time_stamp),
378                          (unsigned int)is_signed_type(u64));
379
380         trace_seq_printf(s, "\tfield: local_t commit;\t"
381                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
382                          (unsigned int)offsetof(typeof(field), commit),
383                          (unsigned int)sizeof(field.commit),
384                          (unsigned int)is_signed_type(long));
385
386         trace_seq_printf(s, "\tfield: int overwrite;\t"
387                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
388                          (unsigned int)offsetof(typeof(field), commit),
389                          1,
390                          (unsigned int)is_signed_type(long));
391
392         trace_seq_printf(s, "\tfield: char data;\t"
393                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
394                          (unsigned int)offsetof(typeof(field), data),
395                          (unsigned int)BUF_PAGE_SIZE,
396                          (unsigned int)is_signed_type(char));
397
398         return !trace_seq_has_overflowed(s);
399 }
400
401 struct rb_irq_work {
402         struct irq_work                 work;
403         wait_queue_head_t               waiters;
404         wait_queue_head_t               full_waiters;
405         bool                            waiters_pending;
406         bool                            full_waiters_pending;
407         bool                            wakeup_full;
408 };
409
410 /*
411  * Structure to hold event state and handle nested events.
412  */
413 struct rb_event_info {
414         u64                     ts;
415         u64                     delta;
416         unsigned long           length;
417         struct buffer_page      *tail_page;
418         int                     add_timestamp;
419 };
420
421 /*
422  * Used for the add_timestamp
423  *  NONE
424  *  EXTEND - wants a time extend
425  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
426  *  FORCE - force a full time stamp.
427  */
428 enum {
429         RB_ADD_STAMP_NONE               = 0,
430         RB_ADD_STAMP_EXTEND             = BIT(1),
431         RB_ADD_STAMP_ABSOLUTE           = BIT(2),
432         RB_ADD_STAMP_FORCE              = BIT(3)
433 };
434 /*
435  * Used for which event context the event is in.
436  *  NMI     = 0
437  *  IRQ     = 1
438  *  SOFTIRQ = 2
439  *  NORMAL  = 3
440  *
441  * See trace_recursive_lock() comment below for more details.
442  */
443 enum {
444         RB_CTX_NMI,
445         RB_CTX_IRQ,
446         RB_CTX_SOFTIRQ,
447         RB_CTX_NORMAL,
448         RB_CTX_MAX
449 };
450
451 #if BITS_PER_LONG == 32
452 #define RB_TIME_32
453 #endif
454
455 /* To test on 64 bit machines */
456 //#define RB_TIME_32
457
458 #ifdef RB_TIME_32
459
460 struct rb_time_struct {
461         local_t         cnt;
462         local_t         top;
463         local_t         bottom;
464 };
465 #else
466 #include <asm/local64.h>
467 struct rb_time_struct {
468         local64_t       time;
469 };
470 #endif
471 typedef struct rb_time_struct rb_time_t;
472
473 /*
474  * head_page == tail_page && head == tail then buffer is empty.
475  */
476 struct ring_buffer_per_cpu {
477         int                             cpu;
478         atomic_t                        record_disabled;
479         atomic_t                        resize_disabled;
480         struct trace_buffer     *buffer;
481         raw_spinlock_t                  reader_lock;    /* serialize readers */
482         arch_spinlock_t                 lock;
483         struct lock_class_key           lock_key;
484         struct buffer_data_page         *free_page;
485         unsigned long                   nr_pages;
486         unsigned int                    current_context;
487         struct list_head                *pages;
488         struct buffer_page              *head_page;     /* read from head */
489         struct buffer_page              *tail_page;     /* write to tail */
490         struct buffer_page              *commit_page;   /* committed pages */
491         struct buffer_page              *reader_page;
492         unsigned long                   lost_events;
493         unsigned long                   last_overrun;
494         unsigned long                   nest;
495         local_t                         entries_bytes;
496         local_t                         entries;
497         local_t                         overrun;
498         local_t                         commit_overrun;
499         local_t                         dropped_events;
500         local_t                         committing;
501         local_t                         commits;
502         local_t                         pages_touched;
503         local_t                         pages_read;
504         long                            last_pages_touch;
505         size_t                          shortest_full;
506         unsigned long                   read;
507         unsigned long                   read_bytes;
508         rb_time_t                       write_stamp;
509         rb_time_t                       before_stamp;
510         u64                             read_stamp;
511         /* ring buffer pages to update, > 0 to add, < 0 to remove */
512         long                            nr_pages_to_update;
513         struct list_head                new_pages; /* new pages to add */
514         struct work_struct              update_pages_work;
515         struct completion               update_done;
516
517         struct rb_irq_work              irq_work;
518 };
519
520 struct trace_buffer {
521         unsigned                        flags;
522         int                             cpus;
523         atomic_t                        record_disabled;
524         cpumask_var_t                   cpumask;
525
526         struct lock_class_key           *reader_lock_key;
527
528         struct mutex                    mutex;
529
530         struct ring_buffer_per_cpu      **buffers;
531
532         struct hlist_node               node;
533         u64                             (*clock)(void);
534
535         struct rb_irq_work              irq_work;
536         bool                            time_stamp_abs;
537 };
538
539 struct ring_buffer_iter {
540         struct ring_buffer_per_cpu      *cpu_buffer;
541         unsigned long                   head;
542         unsigned long                   next_event;
543         struct buffer_page              *head_page;
544         struct buffer_page              *cache_reader_page;
545         unsigned long                   cache_read;
546         u64                             read_stamp;
547         u64                             page_stamp;
548         struct ring_buffer_event        *event;
549         int                             missed_events;
550 };
551
552 #ifdef RB_TIME_32
553
554 /*
555  * On 32 bit machines, local64_t is very expensive. As the ring
556  * buffer doesn't need all the features of a true 64 bit atomic,
557  * on 32 bit, it uses these functions (64 still uses local64_t).
558  *
559  * For the ring buffer, 64 bit required operations for the time is
560  * the following:
561  *
562  *  - Only need 59 bits (uses 60 to make it even).
563  *  - Reads may fail if it interrupted a modification of the time stamp.
564  *      It will succeed if it did not interrupt another write even if
565  *      the read itself is interrupted by a write.
566  *      It returns whether it was successful or not.
567  *
568  *  - Writes always succeed and will overwrite other writes and writes
569  *      that were done by events interrupting the current write.
570  *
571  *  - A write followed by a read of the same time stamp will always succeed,
572  *      but may not contain the same value.
573  *
574  *  - A cmpxchg will fail if it interrupted another write or cmpxchg.
575  *      Other than that, it acts like a normal cmpxchg.
576  *
577  * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
578  *  (bottom being the least significant 30 bits of the 60 bit time stamp).
579  *
580  * The two most significant bits of each half holds a 2 bit counter (0-3).
581  * Each update will increment this counter by one.
582  * When reading the top and bottom, if the two counter bits match then the
583  *  top and bottom together make a valid 60 bit number.
584  */
585 #define RB_TIME_SHIFT   30
586 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
587
588 static inline int rb_time_cnt(unsigned long val)
589 {
590         return (val >> RB_TIME_SHIFT) & 3;
591 }
592
593 static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
594 {
595         u64 val;
596
597         val = top & RB_TIME_VAL_MASK;
598         val <<= RB_TIME_SHIFT;
599         val |= bottom & RB_TIME_VAL_MASK;
600
601         return val;
602 }
603
604 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
605 {
606         unsigned long top, bottom;
607         unsigned long c;
608
609         /*
610          * If the read is interrupted by a write, then the cnt will
611          * be different. Loop until both top and bottom have been read
612          * without interruption.
613          */
614         do {
615                 c = local_read(&t->cnt);
616                 top = local_read(&t->top);
617                 bottom = local_read(&t->bottom);
618         } while (c != local_read(&t->cnt));
619
620         *cnt = rb_time_cnt(top);
621
622         /* If top and bottom counts don't match, this interrupted a write */
623         if (*cnt != rb_time_cnt(bottom))
624                 return false;
625
626         *ret = rb_time_val(top, bottom);
627         return true;
628 }
629
630 static bool rb_time_read(rb_time_t *t, u64 *ret)
631 {
632         unsigned long cnt;
633
634         return __rb_time_read(t, ret, &cnt);
635 }
636
637 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
638 {
639         return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
640 }
641
642 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom)
643 {
644         *top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
645         *bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
646 }
647
648 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
649 {
650         val = rb_time_val_cnt(val, cnt);
651         local_set(t, val);
652 }
653
654 static void rb_time_set(rb_time_t *t, u64 val)
655 {
656         unsigned long cnt, top, bottom;
657
658         rb_time_split(val, &top, &bottom);
659
660         /* Writes always succeed with a valid number even if it gets interrupted. */
661         do {
662                 cnt = local_inc_return(&t->cnt);
663                 rb_time_val_set(&t->top, top, cnt);
664                 rb_time_val_set(&t->bottom, bottom, cnt);
665         } while (cnt != local_read(&t->cnt));
666 }
667
668 static inline bool
669 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
670 {
671         unsigned long ret;
672
673         ret = local_cmpxchg(l, expect, set);
674         return ret == expect;
675 }
676
677 static int rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
678 {
679         unsigned long cnt, top, bottom;
680         unsigned long cnt2, top2, bottom2;
681         u64 val;
682
683         /* The cmpxchg always fails if it interrupted an update */
684          if (!__rb_time_read(t, &val, &cnt2))
685                  return false;
686
687          if (val != expect)
688                  return false;
689
690          cnt = local_read(&t->cnt);
691          if ((cnt & 3) != cnt2)
692                  return false;
693
694          cnt2 = cnt + 1;
695
696          rb_time_split(val, &top, &bottom);
697          top = rb_time_val_cnt(top, cnt);
698          bottom = rb_time_val_cnt(bottom, cnt);
699
700          rb_time_split(set, &top2, &bottom2);
701          top2 = rb_time_val_cnt(top2, cnt2);
702          bottom2 = rb_time_val_cnt(bottom2, cnt2);
703
704         if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2))
705                 return false;
706         if (!rb_time_read_cmpxchg(&t->top, top, top2))
707                 return false;
708         if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2))
709                 return false;
710         return true;
711 }
712
713 #else /* 64 bits */
714
715 /* local64_t always succeeds */
716
717 static inline bool rb_time_read(rb_time_t *t, u64 *ret)
718 {
719         *ret = local64_read(&t->time);
720         return true;
721 }
722 static void rb_time_set(rb_time_t *t, u64 val)
723 {
724         local64_set(&t->time, val);
725 }
726
727 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
728 {
729         u64 val;
730         val = local64_cmpxchg(&t->time, expect, set);
731         return val == expect;
732 }
733 #endif
734
735 /**
736  * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
737  * @buffer: The ring_buffer to get the number of pages from
738  * @cpu: The cpu of the ring_buffer to get the number of pages from
739  *
740  * Returns the number of pages used by a per_cpu buffer of the ring buffer.
741  */
742 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
743 {
744         return buffer->buffers[cpu]->nr_pages;
745 }
746
747 /**
748  * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer
749  * @buffer: The ring_buffer to get the number of pages from
750  * @cpu: The cpu of the ring_buffer to get the number of pages from
751  *
752  * Returns the number of pages that have content in the ring buffer.
753  */
754 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
755 {
756         size_t read;
757         size_t cnt;
758
759         read = local_read(&buffer->buffers[cpu]->pages_read);
760         cnt = local_read(&buffer->buffers[cpu]->pages_touched);
761         /* The reader can read an empty page, but not more than that */
762         if (cnt < read) {
763                 WARN_ON_ONCE(read > cnt + 1);
764                 return 0;
765         }
766
767         return cnt - read;
768 }
769
770 /*
771  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
772  *
773  * Schedules a delayed work to wake up any task that is blocked on the
774  * ring buffer waiters queue.
775  */
776 static void rb_wake_up_waiters(struct irq_work *work)
777 {
778         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
779
780         wake_up_all(&rbwork->waiters);
781         if (rbwork->wakeup_full) {
782                 rbwork->wakeup_full = false;
783                 wake_up_all(&rbwork->full_waiters);
784         }
785 }
786
787 /**
788  * ring_buffer_wait - wait for input to the ring buffer
789  * @buffer: buffer to wait on
790  * @cpu: the cpu buffer to wait on
791  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
792  *
793  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
794  * as data is added to any of the @buffer's cpu buffers. Otherwise
795  * it will wait for data to be added to a specific cpu buffer.
796  */
797 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
798 {
799         struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
800         DEFINE_WAIT(wait);
801         struct rb_irq_work *work;
802         int ret = 0;
803
804         /*
805          * Depending on what the caller is waiting for, either any
806          * data in any cpu buffer, or a specific buffer, put the
807          * caller on the appropriate wait queue.
808          */
809         if (cpu == RING_BUFFER_ALL_CPUS) {
810                 work = &buffer->irq_work;
811                 /* Full only makes sense on per cpu reads */
812                 full = 0;
813         } else {
814                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
815                         return -ENODEV;
816                 cpu_buffer = buffer->buffers[cpu];
817                 work = &cpu_buffer->irq_work;
818         }
819
820
821         while (true) {
822                 if (full)
823                         prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
824                 else
825                         prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
826
827                 /*
828                  * The events can happen in critical sections where
829                  * checking a work queue can cause deadlocks.
830                  * After adding a task to the queue, this flag is set
831                  * only to notify events to try to wake up the queue
832                  * using irq_work.
833                  *
834                  * We don't clear it even if the buffer is no longer
835                  * empty. The flag only causes the next event to run
836                  * irq_work to do the work queue wake up. The worse
837                  * that can happen if we race with !trace_empty() is that
838                  * an event will cause an irq_work to try to wake up
839                  * an empty queue.
840                  *
841                  * There's no reason to protect this flag either, as
842                  * the work queue and irq_work logic will do the necessary
843                  * synchronization for the wake ups. The only thing
844                  * that is necessary is that the wake up happens after
845                  * a task has been queued. It's OK for spurious wake ups.
846                  */
847                 if (full)
848                         work->full_waiters_pending = true;
849                 else
850                         work->waiters_pending = true;
851
852                 if (signal_pending(current)) {
853                         ret = -EINTR;
854                         break;
855                 }
856
857                 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
858                         break;
859
860                 if (cpu != RING_BUFFER_ALL_CPUS &&
861                     !ring_buffer_empty_cpu(buffer, cpu)) {
862                         unsigned long flags;
863                         bool pagebusy;
864                         size_t nr_pages;
865                         size_t dirty;
866
867                         if (!full)
868                                 break;
869
870                         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
871                         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
872                         nr_pages = cpu_buffer->nr_pages;
873                         dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
874                         if (!cpu_buffer->shortest_full ||
875                             cpu_buffer->shortest_full < full)
876                                 cpu_buffer->shortest_full = full;
877                         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
878                         if (!pagebusy &&
879                             (!nr_pages || (dirty * 100) > full * nr_pages))
880                                 break;
881                 }
882
883                 schedule();
884         }
885
886         if (full)
887                 finish_wait(&work->full_waiters, &wait);
888         else
889                 finish_wait(&work->waiters, &wait);
890
891         return ret;
892 }
893
894 /**
895  * ring_buffer_poll_wait - poll on buffer input
896  * @buffer: buffer to wait on
897  * @cpu: the cpu buffer to wait on
898  * @filp: the file descriptor
899  * @poll_table: The poll descriptor
900  *
901  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
902  * as data is added to any of the @buffer's cpu buffers. Otherwise
903  * it will wait for data to be added to a specific cpu buffer.
904  *
905  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
906  * zero otherwise.
907  */
908 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
909                           struct file *filp, poll_table *poll_table)
910 {
911         struct ring_buffer_per_cpu *cpu_buffer;
912         struct rb_irq_work *work;
913
914         if (cpu == RING_BUFFER_ALL_CPUS)
915                 work = &buffer->irq_work;
916         else {
917                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
918                         return -EINVAL;
919
920                 cpu_buffer = buffer->buffers[cpu];
921                 work = &cpu_buffer->irq_work;
922         }
923
924         poll_wait(filp, &work->waiters, poll_table);
925         work->waiters_pending = true;
926         /*
927          * There's a tight race between setting the waiters_pending and
928          * checking if the ring buffer is empty.  Once the waiters_pending bit
929          * is set, the next event will wake the task up, but we can get stuck
930          * if there's only a single event in.
931          *
932          * FIXME: Ideally, we need a memory barrier on the writer side as well,
933          * but adding a memory barrier to all events will cause too much of a
934          * performance hit in the fast path.  We only need a memory barrier when
935          * the buffer goes from empty to having content.  But as this race is
936          * extremely small, and it's not a problem if another event comes in, we
937          * will fix it later.
938          */
939         smp_mb();
940
941         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
942             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
943                 return EPOLLIN | EPOLLRDNORM;
944         return 0;
945 }
946
947 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
948 #define RB_WARN_ON(b, cond)                                             \
949         ({                                                              \
950                 int _____ret = unlikely(cond);                          \
951                 if (_____ret) {                                         \
952                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
953                                 struct ring_buffer_per_cpu *__b =       \
954                                         (void *)b;                      \
955                                 atomic_inc(&__b->buffer->record_disabled); \
956                         } else                                          \
957                                 atomic_inc(&b->record_disabled);        \
958                         WARN_ON(1);                                     \
959                 }                                                       \
960                 _____ret;                                               \
961         })
962
963 /* Up this if you want to test the TIME_EXTENTS and normalization */
964 #define DEBUG_SHIFT 0
965
966 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
967 {
968         /* shift to debug/test normalization and TIME_EXTENTS */
969         return buffer->clock() << DEBUG_SHIFT;
970 }
971
972 u64 ring_buffer_time_stamp(struct trace_buffer *buffer, int cpu)
973 {
974         u64 time;
975
976         preempt_disable_notrace();
977         time = rb_time_stamp(buffer);
978         preempt_enable_notrace();
979
980         return time;
981 }
982 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
983
984 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
985                                       int cpu, u64 *ts)
986 {
987         /* Just stupid testing the normalize function and deltas */
988         *ts >>= DEBUG_SHIFT;
989 }
990 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
991
992 /*
993  * Making the ring buffer lockless makes things tricky.
994  * Although writes only happen on the CPU that they are on,
995  * and they only need to worry about interrupts. Reads can
996  * happen on any CPU.
997  *
998  * The reader page is always off the ring buffer, but when the
999  * reader finishes with a page, it needs to swap its page with
1000  * a new one from the buffer. The reader needs to take from
1001  * the head (writes go to the tail). But if a writer is in overwrite
1002  * mode and wraps, it must push the head page forward.
1003  *
1004  * Here lies the problem.
1005  *
1006  * The reader must be careful to replace only the head page, and
1007  * not another one. As described at the top of the file in the
1008  * ASCII art, the reader sets its old page to point to the next
1009  * page after head. It then sets the page after head to point to
1010  * the old reader page. But if the writer moves the head page
1011  * during this operation, the reader could end up with the tail.
1012  *
1013  * We use cmpxchg to help prevent this race. We also do something
1014  * special with the page before head. We set the LSB to 1.
1015  *
1016  * When the writer must push the page forward, it will clear the
1017  * bit that points to the head page, move the head, and then set
1018  * the bit that points to the new head page.
1019  *
1020  * We also don't want an interrupt coming in and moving the head
1021  * page on another writer. Thus we use the second LSB to catch
1022  * that too. Thus:
1023  *
1024  * head->list->prev->next        bit 1          bit 0
1025  *                              -------        -------
1026  * Normal page                     0              0
1027  * Points to head page             0              1
1028  * New head page                   1              0
1029  *
1030  * Note we can not trust the prev pointer of the head page, because:
1031  *
1032  * +----+       +-----+        +-----+
1033  * |    |------>|  T  |---X--->|  N  |
1034  * |    |<------|     |        |     |
1035  * +----+       +-----+        +-----+
1036  *   ^                           ^ |
1037  *   |          +-----+          | |
1038  *   +----------|  R  |----------+ |
1039  *              |     |<-----------+
1040  *              +-----+
1041  *
1042  * Key:  ---X-->  HEAD flag set in pointer
1043  *         T      Tail page
1044  *         R      Reader page
1045  *         N      Next page
1046  *
1047  * (see __rb_reserve_next() to see where this happens)
1048  *
1049  *  What the above shows is that the reader just swapped out
1050  *  the reader page with a page in the buffer, but before it
1051  *  could make the new header point back to the new page added
1052  *  it was preempted by a writer. The writer moved forward onto
1053  *  the new page added by the reader and is about to move forward
1054  *  again.
1055  *
1056  *  You can see, it is legitimate for the previous pointer of
1057  *  the head (or any page) not to point back to itself. But only
1058  *  temporarily.
1059  */
1060
1061 #define RB_PAGE_NORMAL          0UL
1062 #define RB_PAGE_HEAD            1UL
1063 #define RB_PAGE_UPDATE          2UL
1064
1065
1066 #define RB_FLAG_MASK            3UL
1067
1068 /* PAGE_MOVED is not part of the mask */
1069 #define RB_PAGE_MOVED           4UL
1070
1071 /*
1072  * rb_list_head - remove any bit
1073  */
1074 static struct list_head *rb_list_head(struct list_head *list)
1075 {
1076         unsigned long val = (unsigned long)list;
1077
1078         return (struct list_head *)(val & ~RB_FLAG_MASK);
1079 }
1080
1081 /*
1082  * rb_is_head_page - test if the given page is the head page
1083  *
1084  * Because the reader may move the head_page pointer, we can
1085  * not trust what the head page is (it may be pointing to
1086  * the reader page). But if the next page is a header page,
1087  * its flags will be non zero.
1088  */
1089 static inline int
1090 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1091                 struct buffer_page *page, struct list_head *list)
1092 {
1093         unsigned long val;
1094
1095         val = (unsigned long)list->next;
1096
1097         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1098                 return RB_PAGE_MOVED;
1099
1100         return val & RB_FLAG_MASK;
1101 }
1102
1103 /*
1104  * rb_is_reader_page
1105  *
1106  * The unique thing about the reader page, is that, if the
1107  * writer is ever on it, the previous pointer never points
1108  * back to the reader page.
1109  */
1110 static bool rb_is_reader_page(struct buffer_page *page)
1111 {
1112         struct list_head *list = page->list.prev;
1113
1114         return rb_list_head(list->next) != &page->list;
1115 }
1116
1117 /*
1118  * rb_set_list_to_head - set a list_head to be pointing to head.
1119  */
1120 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
1121                                 struct list_head *list)
1122 {
1123         unsigned long *ptr;
1124
1125         ptr = (unsigned long *)&list->next;
1126         *ptr |= RB_PAGE_HEAD;
1127         *ptr &= ~RB_PAGE_UPDATE;
1128 }
1129
1130 /*
1131  * rb_head_page_activate - sets up head page
1132  */
1133 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1134 {
1135         struct buffer_page *head;
1136
1137         head = cpu_buffer->head_page;
1138         if (!head)
1139                 return;
1140
1141         /*
1142          * Set the previous list pointer to have the HEAD flag.
1143          */
1144         rb_set_list_to_head(cpu_buffer, head->list.prev);
1145 }
1146
1147 static void rb_list_head_clear(struct list_head *list)
1148 {
1149         unsigned long *ptr = (unsigned long *)&list->next;
1150
1151         *ptr &= ~RB_FLAG_MASK;
1152 }
1153
1154 /*
1155  * rb_head_page_deactivate - clears head page ptr (for free list)
1156  */
1157 static void
1158 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1159 {
1160         struct list_head *hd;
1161
1162         /* Go through the whole list and clear any pointers found. */
1163         rb_list_head_clear(cpu_buffer->pages);
1164
1165         list_for_each(hd, cpu_buffer->pages)
1166                 rb_list_head_clear(hd);
1167 }
1168
1169 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1170                             struct buffer_page *head,
1171                             struct buffer_page *prev,
1172                             int old_flag, int new_flag)
1173 {
1174         struct list_head *list;
1175         unsigned long val = (unsigned long)&head->list;
1176         unsigned long ret;
1177
1178         list = &prev->list;
1179
1180         val &= ~RB_FLAG_MASK;
1181
1182         ret = cmpxchg((unsigned long *)&list->next,
1183                       val | old_flag, val | new_flag);
1184
1185         /* check if the reader took the page */
1186         if ((ret & ~RB_FLAG_MASK) != val)
1187                 return RB_PAGE_MOVED;
1188
1189         return ret & RB_FLAG_MASK;
1190 }
1191
1192 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1193                                    struct buffer_page *head,
1194                                    struct buffer_page *prev,
1195                                    int old_flag)
1196 {
1197         return rb_head_page_set(cpu_buffer, head, prev,
1198                                 old_flag, RB_PAGE_UPDATE);
1199 }
1200
1201 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1202                                  struct buffer_page *head,
1203                                  struct buffer_page *prev,
1204                                  int old_flag)
1205 {
1206         return rb_head_page_set(cpu_buffer, head, prev,
1207                                 old_flag, RB_PAGE_HEAD);
1208 }
1209
1210 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1211                                    struct buffer_page *head,
1212                                    struct buffer_page *prev,
1213                                    int old_flag)
1214 {
1215         return rb_head_page_set(cpu_buffer, head, prev,
1216                                 old_flag, RB_PAGE_NORMAL);
1217 }
1218
1219 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
1220                                struct buffer_page **bpage)
1221 {
1222         struct list_head *p = rb_list_head((*bpage)->list.next);
1223
1224         *bpage = list_entry(p, struct buffer_page, list);
1225 }
1226
1227 static struct buffer_page *
1228 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1229 {
1230         struct buffer_page *head;
1231         struct buffer_page *page;
1232         struct list_head *list;
1233         int i;
1234
1235         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1236                 return NULL;
1237
1238         /* sanity check */
1239         list = cpu_buffer->pages;
1240         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1241                 return NULL;
1242
1243         page = head = cpu_buffer->head_page;
1244         /*
1245          * It is possible that the writer moves the header behind
1246          * where we started, and we miss in one loop.
1247          * A second loop should grab the header, but we'll do
1248          * three loops just because I'm paranoid.
1249          */
1250         for (i = 0; i < 3; i++) {
1251                 do {
1252                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
1253                                 cpu_buffer->head_page = page;
1254                                 return page;
1255                         }
1256                         rb_inc_page(cpu_buffer, &page);
1257                 } while (page != head);
1258         }
1259
1260         RB_WARN_ON(cpu_buffer, 1);
1261
1262         return NULL;
1263 }
1264
1265 static int rb_head_page_replace(struct buffer_page *old,
1266                                 struct buffer_page *new)
1267 {
1268         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1269         unsigned long val;
1270         unsigned long ret;
1271
1272         val = *ptr & ~RB_FLAG_MASK;
1273         val |= RB_PAGE_HEAD;
1274
1275         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1276
1277         return ret == val;
1278 }
1279
1280 /*
1281  * rb_tail_page_update - move the tail page forward
1282  */
1283 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1284                                struct buffer_page *tail_page,
1285                                struct buffer_page *next_page)
1286 {
1287         unsigned long old_entries;
1288         unsigned long old_write;
1289
1290         /*
1291          * The tail page now needs to be moved forward.
1292          *
1293          * We need to reset the tail page, but without messing
1294          * with possible erasing of data brought in by interrupts
1295          * that have moved the tail page and are currently on it.
1296          *
1297          * We add a counter to the write field to denote this.
1298          */
1299         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1300         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1301
1302         local_inc(&cpu_buffer->pages_touched);
1303         /*
1304          * Just make sure we have seen our old_write and synchronize
1305          * with any interrupts that come in.
1306          */
1307         barrier();
1308
1309         /*
1310          * If the tail page is still the same as what we think
1311          * it is, then it is up to us to update the tail
1312          * pointer.
1313          */
1314         if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1315                 /* Zero the write counter */
1316                 unsigned long val = old_write & ~RB_WRITE_MASK;
1317                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1318
1319                 /*
1320                  * This will only succeed if an interrupt did
1321                  * not come in and change it. In which case, we
1322                  * do not want to modify it.
1323                  *
1324                  * We add (void) to let the compiler know that we do not care
1325                  * about the return value of these functions. We use the
1326                  * cmpxchg to only update if an interrupt did not already
1327                  * do it for us. If the cmpxchg fails, we don't care.
1328                  */
1329                 (void)local_cmpxchg(&next_page->write, old_write, val);
1330                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1331
1332                 /*
1333                  * No need to worry about races with clearing out the commit.
1334                  * it only can increment when a commit takes place. But that
1335                  * only happens in the outer most nested commit.
1336                  */
1337                 local_set(&next_page->page->commit, 0);
1338
1339                 /* Again, either we update tail_page or an interrupt does */
1340                 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1341         }
1342 }
1343
1344 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1345                           struct buffer_page *bpage)
1346 {
1347         unsigned long val = (unsigned long)bpage;
1348
1349         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1350                 return 1;
1351
1352         return 0;
1353 }
1354
1355 /**
1356  * rb_check_list - make sure a pointer to a list has the last bits zero
1357  */
1358 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1359                          struct list_head *list)
1360 {
1361         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1362                 return 1;
1363         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1364                 return 1;
1365         return 0;
1366 }
1367
1368 /**
1369  * rb_check_pages - integrity check of buffer pages
1370  * @cpu_buffer: CPU buffer with pages to test
1371  *
1372  * As a safety measure we check to make sure the data pages have not
1373  * been corrupted.
1374  */
1375 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1376 {
1377         struct list_head *head = cpu_buffer->pages;
1378         struct buffer_page *bpage, *tmp;
1379
1380         /* Reset the head page if it exists */
1381         if (cpu_buffer->head_page)
1382                 rb_set_head_page(cpu_buffer);
1383
1384         rb_head_page_deactivate(cpu_buffer);
1385
1386         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1387                 return -1;
1388         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1389                 return -1;
1390
1391         if (rb_check_list(cpu_buffer, head))
1392                 return -1;
1393
1394         list_for_each_entry_safe(bpage, tmp, head, list) {
1395                 if (RB_WARN_ON(cpu_buffer,
1396                                bpage->list.next->prev != &bpage->list))
1397                         return -1;
1398                 if (RB_WARN_ON(cpu_buffer,
1399                                bpage->list.prev->next != &bpage->list))
1400                         return -1;
1401                 if (rb_check_list(cpu_buffer, &bpage->list))
1402                         return -1;
1403         }
1404
1405         rb_head_page_activate(cpu_buffer);
1406
1407         return 0;
1408 }
1409
1410 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1411 {
1412         struct buffer_page *bpage, *tmp;
1413         bool user_thread = current->mm != NULL;
1414         gfp_t mflags;
1415         long i;
1416
1417         /*
1418          * Check if the available memory is there first.
1419          * Note, si_mem_available() only gives us a rough estimate of available
1420          * memory. It may not be accurate. But we don't care, we just want
1421          * to prevent doing any allocation when it is obvious that it is
1422          * not going to succeed.
1423          */
1424         i = si_mem_available();
1425         if (i < nr_pages)
1426                 return -ENOMEM;
1427
1428         /*
1429          * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1430          * gracefully without invoking oom-killer and the system is not
1431          * destabilized.
1432          */
1433         mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1434
1435         /*
1436          * If a user thread allocates too much, and si_mem_available()
1437          * reports there's enough memory, even though there is not.
1438          * Make sure the OOM killer kills this thread. This can happen
1439          * even with RETRY_MAYFAIL because another task may be doing
1440          * an allocation after this task has taken all memory.
1441          * This is the task the OOM killer needs to take out during this
1442          * loop, even if it was triggered by an allocation somewhere else.
1443          */
1444         if (user_thread)
1445                 set_current_oom_origin();
1446         for (i = 0; i < nr_pages; i++) {
1447                 struct page *page;
1448
1449                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1450                                     mflags, cpu_to_node(cpu));
1451                 if (!bpage)
1452                         goto free_pages;
1453
1454                 list_add(&bpage->list, pages);
1455
1456                 page = alloc_pages_node(cpu_to_node(cpu), mflags, 0);
1457                 if (!page)
1458                         goto free_pages;
1459                 bpage->page = page_address(page);
1460                 rb_init_page(bpage->page);
1461
1462                 if (user_thread && fatal_signal_pending(current))
1463                         goto free_pages;
1464         }
1465         if (user_thread)
1466                 clear_current_oom_origin();
1467
1468         return 0;
1469
1470 free_pages:
1471         list_for_each_entry_safe(bpage, tmp, pages, list) {
1472                 list_del_init(&bpage->list);
1473                 free_buffer_page(bpage);
1474         }
1475         if (user_thread)
1476                 clear_current_oom_origin();
1477
1478         return -ENOMEM;
1479 }
1480
1481 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1482                              unsigned long nr_pages)
1483 {
1484         LIST_HEAD(pages);
1485
1486         WARN_ON(!nr_pages);
1487
1488         if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1489                 return -ENOMEM;
1490
1491         /*
1492          * The ring buffer page list is a circular list that does not
1493          * start and end with a list head. All page list items point to
1494          * other pages.
1495          */
1496         cpu_buffer->pages = pages.next;
1497         list_del(&pages);
1498
1499         cpu_buffer->nr_pages = nr_pages;
1500
1501         rb_check_pages(cpu_buffer);
1502
1503         return 0;
1504 }
1505
1506 static struct ring_buffer_per_cpu *
1507 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1508 {
1509         struct ring_buffer_per_cpu *cpu_buffer;
1510         struct buffer_page *bpage;
1511         struct page *page;
1512         int ret;
1513
1514         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1515                                   GFP_KERNEL, cpu_to_node(cpu));
1516         if (!cpu_buffer)
1517                 return NULL;
1518
1519         cpu_buffer->cpu = cpu;
1520         cpu_buffer->buffer = buffer;
1521         raw_spin_lock_init(&cpu_buffer->reader_lock);
1522         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1523         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1524         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1525         init_completion(&cpu_buffer->update_done);
1526         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1527         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1528         init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1529
1530         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1531                             GFP_KERNEL, cpu_to_node(cpu));
1532         if (!bpage)
1533                 goto fail_free_buffer;
1534
1535         rb_check_bpage(cpu_buffer, bpage);
1536
1537         cpu_buffer->reader_page = bpage;
1538         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1539         if (!page)
1540                 goto fail_free_reader;
1541         bpage->page = page_address(page);
1542         rb_init_page(bpage->page);
1543
1544         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1545         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1546
1547         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1548         if (ret < 0)
1549                 goto fail_free_reader;
1550
1551         cpu_buffer->head_page
1552                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1553         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1554
1555         rb_head_page_activate(cpu_buffer);
1556
1557         return cpu_buffer;
1558
1559  fail_free_reader:
1560         free_buffer_page(cpu_buffer->reader_page);
1561
1562  fail_free_buffer:
1563         kfree(cpu_buffer);
1564         return NULL;
1565 }
1566
1567 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1568 {
1569         struct list_head *head = cpu_buffer->pages;
1570         struct buffer_page *bpage, *tmp;
1571
1572         free_buffer_page(cpu_buffer->reader_page);
1573
1574         rb_head_page_deactivate(cpu_buffer);
1575
1576         if (head) {
1577                 list_for_each_entry_safe(bpage, tmp, head, list) {
1578                         list_del_init(&bpage->list);
1579                         free_buffer_page(bpage);
1580                 }
1581                 bpage = list_entry(head, struct buffer_page, list);
1582                 free_buffer_page(bpage);
1583         }
1584
1585         kfree(cpu_buffer);
1586 }
1587
1588 /**
1589  * __ring_buffer_alloc - allocate a new ring_buffer
1590  * @size: the size in bytes per cpu that is needed.
1591  * @flags: attributes to set for the ring buffer.
1592  * @key: ring buffer reader_lock_key.
1593  *
1594  * Currently the only flag that is available is the RB_FL_OVERWRITE
1595  * flag. This flag means that the buffer will overwrite old data
1596  * when the buffer wraps. If this flag is not set, the buffer will
1597  * drop data when the tail hits the head.
1598  */
1599 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1600                                         struct lock_class_key *key)
1601 {
1602         struct trace_buffer *buffer;
1603         long nr_pages;
1604         int bsize;
1605         int cpu;
1606         int ret;
1607
1608         /* keep it in its own cache line */
1609         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1610                          GFP_KERNEL);
1611         if (!buffer)
1612                 return NULL;
1613
1614         if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1615                 goto fail_free_buffer;
1616
1617         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1618         buffer->flags = flags;
1619         buffer->clock = trace_clock_local;
1620         buffer->reader_lock_key = key;
1621
1622         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1623         init_waitqueue_head(&buffer->irq_work.waiters);
1624
1625         /* need at least two pages */
1626         if (nr_pages < 2)
1627                 nr_pages = 2;
1628
1629         buffer->cpus = nr_cpu_ids;
1630
1631         bsize = sizeof(void *) * nr_cpu_ids;
1632         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1633                                   GFP_KERNEL);
1634         if (!buffer->buffers)
1635                 goto fail_free_cpumask;
1636
1637         cpu = raw_smp_processor_id();
1638         cpumask_set_cpu(cpu, buffer->cpumask);
1639         buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1640         if (!buffer->buffers[cpu])
1641                 goto fail_free_buffers;
1642
1643         ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1644         if (ret < 0)
1645                 goto fail_free_buffers;
1646
1647         mutex_init(&buffer->mutex);
1648
1649         return buffer;
1650
1651  fail_free_buffers:
1652         for_each_buffer_cpu(buffer, cpu) {
1653                 if (buffer->buffers[cpu])
1654                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1655         }
1656         kfree(buffer->buffers);
1657
1658  fail_free_cpumask:
1659         free_cpumask_var(buffer->cpumask);
1660
1661  fail_free_buffer:
1662         kfree(buffer);
1663         return NULL;
1664 }
1665 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1666
1667 /**
1668  * ring_buffer_free - free a ring buffer.
1669  * @buffer: the buffer to free.
1670  */
1671 void
1672 ring_buffer_free(struct trace_buffer *buffer)
1673 {
1674         int cpu;
1675
1676         cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1677
1678         for_each_buffer_cpu(buffer, cpu)
1679                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1680
1681         kfree(buffer->buffers);
1682         free_cpumask_var(buffer->cpumask);
1683
1684         kfree(buffer);
1685 }
1686 EXPORT_SYMBOL_GPL(ring_buffer_free);
1687
1688 void ring_buffer_set_clock(struct trace_buffer *buffer,
1689                            u64 (*clock)(void))
1690 {
1691         buffer->clock = clock;
1692 }
1693
1694 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1695 {
1696         buffer->time_stamp_abs = abs;
1697 }
1698
1699 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1700 {
1701         return buffer->time_stamp_abs;
1702 }
1703
1704 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1705
1706 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1707 {
1708         return local_read(&bpage->entries) & RB_WRITE_MASK;
1709 }
1710
1711 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1712 {
1713         return local_read(&bpage->write) & RB_WRITE_MASK;
1714 }
1715
1716 static int
1717 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1718 {
1719         struct list_head *tail_page, *to_remove, *next_page;
1720         struct buffer_page *to_remove_page, *tmp_iter_page;
1721         struct buffer_page *last_page, *first_page;
1722         unsigned long nr_removed;
1723         unsigned long head_bit;
1724         int page_entries;
1725
1726         head_bit = 0;
1727
1728         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1729         atomic_inc(&cpu_buffer->record_disabled);
1730         /*
1731          * We don't race with the readers since we have acquired the reader
1732          * lock. We also don't race with writers after disabling recording.
1733          * This makes it easy to figure out the first and the last page to be
1734          * removed from the list. We unlink all the pages in between including
1735          * the first and last pages. This is done in a busy loop so that we
1736          * lose the least number of traces.
1737          * The pages are freed after we restart recording and unlock readers.
1738          */
1739         tail_page = &cpu_buffer->tail_page->list;
1740
1741         /*
1742          * tail page might be on reader page, we remove the next page
1743          * from the ring buffer
1744          */
1745         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1746                 tail_page = rb_list_head(tail_page->next);
1747         to_remove = tail_page;
1748
1749         /* start of pages to remove */
1750         first_page = list_entry(rb_list_head(to_remove->next),
1751                                 struct buffer_page, list);
1752
1753         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1754                 to_remove = rb_list_head(to_remove)->next;
1755                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1756         }
1757
1758         next_page = rb_list_head(to_remove)->next;
1759
1760         /*
1761          * Now we remove all pages between tail_page and next_page.
1762          * Make sure that we have head_bit value preserved for the
1763          * next page
1764          */
1765         tail_page->next = (struct list_head *)((unsigned long)next_page |
1766                                                 head_bit);
1767         next_page = rb_list_head(next_page);
1768         next_page->prev = tail_page;
1769
1770         /* make sure pages points to a valid page in the ring buffer */
1771         cpu_buffer->pages = next_page;
1772
1773         /* update head page */
1774         if (head_bit)
1775                 cpu_buffer->head_page = list_entry(next_page,
1776                                                 struct buffer_page, list);
1777
1778         /*
1779          * change read pointer to make sure any read iterators reset
1780          * themselves
1781          */
1782         cpu_buffer->read = 0;
1783
1784         /* pages are removed, resume tracing and then free the pages */
1785         atomic_dec(&cpu_buffer->record_disabled);
1786         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1787
1788         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1789
1790         /* last buffer page to remove */
1791         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1792                                 list);
1793         tmp_iter_page = first_page;
1794
1795         do {
1796                 cond_resched();
1797
1798                 to_remove_page = tmp_iter_page;
1799                 rb_inc_page(cpu_buffer, &tmp_iter_page);
1800
1801                 /* update the counters */
1802                 page_entries = rb_page_entries(to_remove_page);
1803                 if (page_entries) {
1804                         /*
1805                          * If something was added to this page, it was full
1806                          * since it is not the tail page. So we deduct the
1807                          * bytes consumed in ring buffer from here.
1808                          * Increment overrun to account for the lost events.
1809                          */
1810                         local_add(page_entries, &cpu_buffer->overrun);
1811                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1812                 }
1813
1814                 /*
1815                  * We have already removed references to this list item, just
1816                  * free up the buffer_page and its page
1817                  */
1818                 free_buffer_page(to_remove_page);
1819                 nr_removed--;
1820
1821         } while (to_remove_page != last_page);
1822
1823         RB_WARN_ON(cpu_buffer, nr_removed);
1824
1825         return nr_removed == 0;
1826 }
1827
1828 static int
1829 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1830 {
1831         struct list_head *pages = &cpu_buffer->new_pages;
1832         int retries, success;
1833
1834         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1835         /*
1836          * We are holding the reader lock, so the reader page won't be swapped
1837          * in the ring buffer. Now we are racing with the writer trying to
1838          * move head page and the tail page.
1839          * We are going to adapt the reader page update process where:
1840          * 1. We first splice the start and end of list of new pages between
1841          *    the head page and its previous page.
1842          * 2. We cmpxchg the prev_page->next to point from head page to the
1843          *    start of new pages list.
1844          * 3. Finally, we update the head->prev to the end of new list.
1845          *
1846          * We will try this process 10 times, to make sure that we don't keep
1847          * spinning.
1848          */
1849         retries = 10;
1850         success = 0;
1851         while (retries--) {
1852                 struct list_head *head_page, *prev_page, *r;
1853                 struct list_head *last_page, *first_page;
1854                 struct list_head *head_page_with_bit;
1855
1856                 head_page = &rb_set_head_page(cpu_buffer)->list;
1857                 if (!head_page)
1858                         break;
1859                 prev_page = head_page->prev;
1860
1861                 first_page = pages->next;
1862                 last_page  = pages->prev;
1863
1864                 head_page_with_bit = (struct list_head *)
1865                                      ((unsigned long)head_page | RB_PAGE_HEAD);
1866
1867                 last_page->next = head_page_with_bit;
1868                 first_page->prev = prev_page;
1869
1870                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1871
1872                 if (r == head_page_with_bit) {
1873                         /*
1874                          * yay, we replaced the page pointer to our new list,
1875                          * now, we just have to update to head page's prev
1876                          * pointer to point to end of list
1877                          */
1878                         head_page->prev = last_page;
1879                         success = 1;
1880                         break;
1881                 }
1882         }
1883
1884         if (success)
1885                 INIT_LIST_HEAD(pages);
1886         /*
1887          * If we weren't successful in adding in new pages, warn and stop
1888          * tracing
1889          */
1890         RB_WARN_ON(cpu_buffer, !success);
1891         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1892
1893         /* free pages if they weren't inserted */
1894         if (!success) {
1895                 struct buffer_page *bpage, *tmp;
1896                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1897                                          list) {
1898                         list_del_init(&bpage->list);
1899                         free_buffer_page(bpage);
1900                 }
1901         }
1902         return success;
1903 }
1904
1905 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1906 {
1907         int success;
1908
1909         if (cpu_buffer->nr_pages_to_update > 0)
1910                 success = rb_insert_pages(cpu_buffer);
1911         else
1912                 success = rb_remove_pages(cpu_buffer,
1913                                         -cpu_buffer->nr_pages_to_update);
1914
1915         if (success)
1916                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1917 }
1918
1919 static void update_pages_handler(struct work_struct *work)
1920 {
1921         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1922                         struct ring_buffer_per_cpu, update_pages_work);
1923         rb_update_pages(cpu_buffer);
1924         complete(&cpu_buffer->update_done);
1925 }
1926
1927 /**
1928  * ring_buffer_resize - resize the ring buffer
1929  * @buffer: the buffer to resize.
1930  * @size: the new size.
1931  * @cpu_id: the cpu buffer to resize
1932  *
1933  * Minimum size is 2 * BUF_PAGE_SIZE.
1934  *
1935  * Returns 0 on success and < 0 on failure.
1936  */
1937 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
1938                         int cpu_id)
1939 {
1940         struct ring_buffer_per_cpu *cpu_buffer;
1941         unsigned long nr_pages;
1942         int cpu, err = 0;
1943
1944         /*
1945          * Always succeed at resizing a non-existent buffer:
1946          */
1947         if (!buffer)
1948                 return size;
1949
1950         /* Make sure the requested buffer exists */
1951         if (cpu_id != RING_BUFFER_ALL_CPUS &&
1952             !cpumask_test_cpu(cpu_id, buffer->cpumask))
1953                 return size;
1954
1955         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1956
1957         /* we need a minimum of two pages */
1958         if (nr_pages < 2)
1959                 nr_pages = 2;
1960
1961         size = nr_pages * BUF_PAGE_SIZE;
1962
1963         /* prevent another thread from changing buffer sizes */
1964         mutex_lock(&buffer->mutex);
1965
1966
1967         if (cpu_id == RING_BUFFER_ALL_CPUS) {
1968                 /*
1969                  * Don't succeed if resizing is disabled, as a reader might be
1970                  * manipulating the ring buffer and is expecting a sane state while
1971                  * this is true.
1972                  */
1973                 for_each_buffer_cpu(buffer, cpu) {
1974                         cpu_buffer = buffer->buffers[cpu];
1975                         if (atomic_read(&cpu_buffer->resize_disabled)) {
1976                                 err = -EBUSY;
1977                                 goto out_err_unlock;
1978                         }
1979                 }
1980
1981                 /* calculate the pages to update */
1982                 for_each_buffer_cpu(buffer, cpu) {
1983                         cpu_buffer = buffer->buffers[cpu];
1984
1985                         cpu_buffer->nr_pages_to_update = nr_pages -
1986                                                         cpu_buffer->nr_pages;
1987                         /*
1988                          * nothing more to do for removing pages or no update
1989                          */
1990                         if (cpu_buffer->nr_pages_to_update <= 0)
1991                                 continue;
1992                         /*
1993                          * to add pages, make sure all new pages can be
1994                          * allocated without receiving ENOMEM
1995                          */
1996                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1997                         if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1998                                                 &cpu_buffer->new_pages, cpu)) {
1999                                 /* not enough memory for new pages */
2000                                 err = -ENOMEM;
2001                                 goto out_err;
2002                         }
2003                 }
2004
2005                 get_online_cpus();
2006                 /*
2007                  * Fire off all the required work handlers
2008                  * We can't schedule on offline CPUs, but it's not necessary
2009                  * since we can change their buffer sizes without any race.
2010                  */
2011                 for_each_buffer_cpu(buffer, cpu) {
2012                         cpu_buffer = buffer->buffers[cpu];
2013                         if (!cpu_buffer->nr_pages_to_update)
2014                                 continue;
2015
2016                         /* Can't run something on an offline CPU. */
2017                         if (!cpu_online(cpu)) {
2018                                 rb_update_pages(cpu_buffer);
2019                                 cpu_buffer->nr_pages_to_update = 0;
2020                         } else {
2021                                 schedule_work_on(cpu,
2022                                                 &cpu_buffer->update_pages_work);
2023                         }
2024                 }
2025
2026                 /* wait for all the updates to complete */
2027                 for_each_buffer_cpu(buffer, cpu) {
2028                         cpu_buffer = buffer->buffers[cpu];
2029                         if (!cpu_buffer->nr_pages_to_update)
2030                                 continue;
2031
2032                         if (cpu_online(cpu))
2033                                 wait_for_completion(&cpu_buffer->update_done);
2034                         cpu_buffer->nr_pages_to_update = 0;
2035                 }
2036
2037                 put_online_cpus();
2038         } else {
2039                 /* Make sure this CPU has been initialized */
2040                 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
2041                         goto out;
2042
2043                 cpu_buffer = buffer->buffers[cpu_id];
2044
2045                 if (nr_pages == cpu_buffer->nr_pages)
2046                         goto out;
2047
2048                 /*
2049                  * Don't succeed if resizing is disabled, as a reader might be
2050                  * manipulating the ring buffer and is expecting a sane state while
2051                  * this is true.
2052                  */
2053                 if (atomic_read(&cpu_buffer->resize_disabled)) {
2054                         err = -EBUSY;
2055                         goto out_err_unlock;
2056                 }
2057
2058                 cpu_buffer->nr_pages_to_update = nr_pages -
2059                                                 cpu_buffer->nr_pages;
2060
2061                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2062                 if (cpu_buffer->nr_pages_to_update > 0 &&
2063                         __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
2064                                             &cpu_buffer->new_pages, cpu_id)) {
2065                         err = -ENOMEM;
2066                         goto out_err;
2067                 }
2068
2069                 get_online_cpus();
2070
2071                 /* Can't run something on an offline CPU. */
2072                 if (!cpu_online(cpu_id))
2073                         rb_update_pages(cpu_buffer);
2074                 else {
2075                         schedule_work_on(cpu_id,
2076                                          &cpu_buffer->update_pages_work);
2077                         wait_for_completion(&cpu_buffer->update_done);
2078                 }
2079
2080                 cpu_buffer->nr_pages_to_update = 0;
2081                 put_online_cpus();
2082         }
2083
2084  out:
2085         /*
2086          * The ring buffer resize can happen with the ring buffer
2087          * enabled, so that the update disturbs the tracing as little
2088          * as possible. But if the buffer is disabled, we do not need
2089          * to worry about that, and we can take the time to verify
2090          * that the buffer is not corrupt.
2091          */
2092         if (atomic_read(&buffer->record_disabled)) {
2093                 atomic_inc(&buffer->record_disabled);
2094                 /*
2095                  * Even though the buffer was disabled, we must make sure
2096                  * that it is truly disabled before calling rb_check_pages.
2097                  * There could have been a race between checking
2098                  * record_disable and incrementing it.
2099                  */
2100                 synchronize_rcu();
2101                 for_each_buffer_cpu(buffer, cpu) {
2102                         cpu_buffer = buffer->buffers[cpu];
2103                         rb_check_pages(cpu_buffer);
2104                 }
2105                 atomic_dec(&buffer->record_disabled);
2106         }
2107
2108         mutex_unlock(&buffer->mutex);
2109         return size;
2110
2111  out_err:
2112         for_each_buffer_cpu(buffer, cpu) {
2113                 struct buffer_page *bpage, *tmp;
2114
2115                 cpu_buffer = buffer->buffers[cpu];
2116                 cpu_buffer->nr_pages_to_update = 0;
2117
2118                 if (list_empty(&cpu_buffer->new_pages))
2119                         continue;
2120
2121                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2122                                         list) {
2123                         list_del_init(&bpage->list);
2124                         free_buffer_page(bpage);
2125                 }
2126         }
2127  out_err_unlock:
2128         mutex_unlock(&buffer->mutex);
2129         return err;
2130 }
2131 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2132
2133 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2134 {
2135         mutex_lock(&buffer->mutex);
2136         if (val)
2137                 buffer->flags |= RB_FL_OVERWRITE;
2138         else
2139                 buffer->flags &= ~RB_FL_OVERWRITE;
2140         mutex_unlock(&buffer->mutex);
2141 }
2142 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2143
2144 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2145 {
2146         return bpage->page->data + index;
2147 }
2148
2149 static __always_inline struct ring_buffer_event *
2150 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2151 {
2152         return __rb_page_index(cpu_buffer->reader_page,
2153                                cpu_buffer->reader_page->read);
2154 }
2155
2156 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
2157 {
2158         return local_read(&bpage->page->commit);
2159 }
2160
2161 static struct ring_buffer_event *
2162 rb_iter_head_event(struct ring_buffer_iter *iter)
2163 {
2164         struct ring_buffer_event *event;
2165         struct buffer_page *iter_head_page = iter->head_page;
2166         unsigned long commit;
2167         unsigned length;
2168
2169         if (iter->head != iter->next_event)
2170                 return iter->event;
2171
2172         /*
2173          * When the writer goes across pages, it issues a cmpxchg which
2174          * is a mb(), which will synchronize with the rmb here.
2175          * (see rb_tail_page_update() and __rb_reserve_next())
2176          */
2177         commit = rb_page_commit(iter_head_page);
2178         smp_rmb();
2179         event = __rb_page_index(iter_head_page, iter->head);
2180         length = rb_event_length(event);
2181
2182         /*
2183          * READ_ONCE() doesn't work on functions and we don't want the
2184          * compiler doing any crazy optimizations with length.
2185          */
2186         barrier();
2187
2188         if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE)
2189                 /* Writer corrupted the read? */
2190                 goto reset;
2191
2192         memcpy(iter->event, event, length);
2193         /*
2194          * If the page stamp is still the same after this rmb() then the
2195          * event was safely copied without the writer entering the page.
2196          */
2197         smp_rmb();
2198
2199         /* Make sure the page didn't change since we read this */
2200         if (iter->page_stamp != iter_head_page->page->time_stamp ||
2201             commit > rb_page_commit(iter_head_page))
2202                 goto reset;
2203
2204         iter->next_event = iter->head + length;
2205         return iter->event;
2206  reset:
2207         /* Reset to the beginning */
2208         iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2209         iter->head = 0;
2210         iter->next_event = 0;
2211         iter->missed_events = 1;
2212         return NULL;
2213 }
2214
2215 /* Size is determined by what has been committed */
2216 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2217 {
2218         return rb_page_commit(bpage);
2219 }
2220
2221 static __always_inline unsigned
2222 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2223 {
2224         return rb_page_commit(cpu_buffer->commit_page);
2225 }
2226
2227 static __always_inline unsigned
2228 rb_event_index(struct ring_buffer_event *event)
2229 {
2230         unsigned long addr = (unsigned long)event;
2231
2232         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2233 }
2234
2235 static void rb_inc_iter(struct ring_buffer_iter *iter)
2236 {
2237         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2238
2239         /*
2240          * The iterator could be on the reader page (it starts there).
2241          * But the head could have moved, since the reader was
2242          * found. Check for this case and assign the iterator
2243          * to the head page instead of next.
2244          */
2245         if (iter->head_page == cpu_buffer->reader_page)
2246                 iter->head_page = rb_set_head_page(cpu_buffer);
2247         else
2248                 rb_inc_page(cpu_buffer, &iter->head_page);
2249
2250         iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2251         iter->head = 0;
2252         iter->next_event = 0;
2253 }
2254
2255 /*
2256  * rb_handle_head_page - writer hit the head page
2257  *
2258  * Returns: +1 to retry page
2259  *           0 to continue
2260  *          -1 on error
2261  */
2262 static int
2263 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2264                     struct buffer_page *tail_page,
2265                     struct buffer_page *next_page)
2266 {
2267         struct buffer_page *new_head;
2268         int entries;
2269         int type;
2270         int ret;
2271
2272         entries = rb_page_entries(next_page);
2273
2274         /*
2275          * The hard part is here. We need to move the head
2276          * forward, and protect against both readers on
2277          * other CPUs and writers coming in via interrupts.
2278          */
2279         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2280                                        RB_PAGE_HEAD);
2281
2282         /*
2283          * type can be one of four:
2284          *  NORMAL - an interrupt already moved it for us
2285          *  HEAD   - we are the first to get here.
2286          *  UPDATE - we are the interrupt interrupting
2287          *           a current move.
2288          *  MOVED  - a reader on another CPU moved the next
2289          *           pointer to its reader page. Give up
2290          *           and try again.
2291          */
2292
2293         switch (type) {
2294         case RB_PAGE_HEAD:
2295                 /*
2296                  * We changed the head to UPDATE, thus
2297                  * it is our responsibility to update
2298                  * the counters.
2299                  */
2300                 local_add(entries, &cpu_buffer->overrun);
2301                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2302
2303                 /*
2304                  * The entries will be zeroed out when we move the
2305                  * tail page.
2306                  */
2307
2308                 /* still more to do */
2309                 break;
2310
2311         case RB_PAGE_UPDATE:
2312                 /*
2313                  * This is an interrupt that interrupt the
2314                  * previous update. Still more to do.
2315                  */
2316                 break;
2317         case RB_PAGE_NORMAL:
2318                 /*
2319                  * An interrupt came in before the update
2320                  * and processed this for us.
2321                  * Nothing left to do.
2322                  */
2323                 return 1;
2324         case RB_PAGE_MOVED:
2325                 /*
2326                  * The reader is on another CPU and just did
2327                  * a swap with our next_page.
2328                  * Try again.
2329                  */
2330                 return 1;
2331         default:
2332                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2333                 return -1;
2334         }
2335
2336         /*
2337          * Now that we are here, the old head pointer is
2338          * set to UPDATE. This will keep the reader from
2339          * swapping the head page with the reader page.
2340          * The reader (on another CPU) will spin till
2341          * we are finished.
2342          *
2343          * We just need to protect against interrupts
2344          * doing the job. We will set the next pointer
2345          * to HEAD. After that, we set the old pointer
2346          * to NORMAL, but only if it was HEAD before.
2347          * otherwise we are an interrupt, and only
2348          * want the outer most commit to reset it.
2349          */
2350         new_head = next_page;
2351         rb_inc_page(cpu_buffer, &new_head);
2352
2353         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2354                                     RB_PAGE_NORMAL);
2355
2356         /*
2357          * Valid returns are:
2358          *  HEAD   - an interrupt came in and already set it.
2359          *  NORMAL - One of two things:
2360          *            1) We really set it.
2361          *            2) A bunch of interrupts came in and moved
2362          *               the page forward again.
2363          */
2364         switch (ret) {
2365         case RB_PAGE_HEAD:
2366         case RB_PAGE_NORMAL:
2367                 /* OK */
2368                 break;
2369         default:
2370                 RB_WARN_ON(cpu_buffer, 1);
2371                 return -1;
2372         }
2373
2374         /*
2375          * It is possible that an interrupt came in,
2376          * set the head up, then more interrupts came in
2377          * and moved it again. When we get back here,
2378          * the page would have been set to NORMAL but we
2379          * just set it back to HEAD.
2380          *
2381          * How do you detect this? Well, if that happened
2382          * the tail page would have moved.
2383          */
2384         if (ret == RB_PAGE_NORMAL) {
2385                 struct buffer_page *buffer_tail_page;
2386
2387                 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2388                 /*
2389                  * If the tail had moved passed next, then we need
2390                  * to reset the pointer.
2391                  */
2392                 if (buffer_tail_page != tail_page &&
2393                     buffer_tail_page != next_page)
2394                         rb_head_page_set_normal(cpu_buffer, new_head,
2395                                                 next_page,
2396                                                 RB_PAGE_HEAD);
2397         }
2398
2399         /*
2400          * If this was the outer most commit (the one that
2401          * changed the original pointer from HEAD to UPDATE),
2402          * then it is up to us to reset it to NORMAL.
2403          */
2404         if (type == RB_PAGE_HEAD) {
2405                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2406                                               tail_page,
2407                                               RB_PAGE_UPDATE);
2408                 if (RB_WARN_ON(cpu_buffer,
2409                                ret != RB_PAGE_UPDATE))
2410                         return -1;
2411         }
2412
2413         return 0;
2414 }
2415
2416 static inline void
2417 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2418               unsigned long tail, struct rb_event_info *info)
2419 {
2420         struct buffer_page *tail_page = info->tail_page;
2421         struct ring_buffer_event *event;
2422         unsigned long length = info->length;
2423
2424         /*
2425          * Only the event that crossed the page boundary
2426          * must fill the old tail_page with padding.
2427          */
2428         if (tail >= BUF_PAGE_SIZE) {
2429                 /*
2430                  * If the page was filled, then we still need
2431                  * to update the real_end. Reset it to zero
2432                  * and the reader will ignore it.
2433                  */
2434                 if (tail == BUF_PAGE_SIZE)
2435                         tail_page->real_end = 0;
2436
2437                 local_sub(length, &tail_page->write);
2438                 return;
2439         }
2440
2441         event = __rb_page_index(tail_page, tail);
2442
2443         /* account for padding bytes */
2444         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2445
2446         /*
2447          * Save the original length to the meta data.
2448          * This will be used by the reader to add lost event
2449          * counter.
2450          */
2451         tail_page->real_end = tail;
2452
2453         /*
2454          * If this event is bigger than the minimum size, then
2455          * we need to be careful that we don't subtract the
2456          * write counter enough to allow another writer to slip
2457          * in on this page.
2458          * We put in a discarded commit instead, to make sure
2459          * that this space is not used again.
2460          *
2461          * If we are less than the minimum size, we don't need to
2462          * worry about it.
2463          */
2464         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2465                 /* No room for any events */
2466
2467                 /* Mark the rest of the page with padding */
2468                 rb_event_set_padding(event);
2469
2470                 /* Set the write back to the previous setting */
2471                 local_sub(length, &tail_page->write);
2472                 return;
2473         }
2474
2475         /* Put in a discarded event */
2476         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2477         event->type_len = RINGBUF_TYPE_PADDING;
2478         /* time delta must be non zero */
2479         event->time_delta = 1;
2480
2481         /* Set write to end of buffer */
2482         length = (tail + length) - BUF_PAGE_SIZE;
2483         local_sub(length, &tail_page->write);
2484 }
2485
2486 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2487
2488 /*
2489  * This is the slow path, force gcc not to inline it.
2490  */
2491 static noinline struct ring_buffer_event *
2492 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2493              unsigned long tail, struct rb_event_info *info)
2494 {
2495         struct buffer_page *tail_page = info->tail_page;
2496         struct buffer_page *commit_page = cpu_buffer->commit_page;
2497         struct trace_buffer *buffer = cpu_buffer->buffer;
2498         struct buffer_page *next_page;
2499         int ret;
2500
2501         next_page = tail_page;
2502
2503         rb_inc_page(cpu_buffer, &next_page);
2504
2505         /*
2506          * If for some reason, we had an interrupt storm that made
2507          * it all the way around the buffer, bail, and warn
2508          * about it.
2509          */
2510         if (unlikely(next_page == commit_page)) {
2511                 local_inc(&cpu_buffer->commit_overrun);
2512                 goto out_reset;
2513         }
2514
2515         /*
2516          * This is where the fun begins!
2517          *
2518          * We are fighting against races between a reader that
2519          * could be on another CPU trying to swap its reader
2520          * page with the buffer head.
2521          *
2522          * We are also fighting against interrupts coming in and
2523          * moving the head or tail on us as well.
2524          *
2525          * If the next page is the head page then we have filled
2526          * the buffer, unless the commit page is still on the
2527          * reader page.
2528          */
2529         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2530
2531                 /*
2532                  * If the commit is not on the reader page, then
2533                  * move the header page.
2534                  */
2535                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2536                         /*
2537                          * If we are not in overwrite mode,
2538                          * this is easy, just stop here.
2539                          */
2540                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2541                                 local_inc(&cpu_buffer->dropped_events);
2542                                 goto out_reset;
2543                         }
2544
2545                         ret = rb_handle_head_page(cpu_buffer,
2546                                                   tail_page,
2547                                                   next_page);
2548                         if (ret < 0)
2549                                 goto out_reset;
2550                         if (ret)
2551                                 goto out_again;
2552                 } else {
2553                         /*
2554                          * We need to be careful here too. The
2555                          * commit page could still be on the reader
2556                          * page. We could have a small buffer, and
2557                          * have filled up the buffer with events
2558                          * from interrupts and such, and wrapped.
2559                          *
2560                          * Note, if the tail page is also the on the
2561                          * reader_page, we let it move out.
2562                          */
2563                         if (unlikely((cpu_buffer->commit_page !=
2564                                       cpu_buffer->tail_page) &&
2565                                      (cpu_buffer->commit_page ==
2566                                       cpu_buffer->reader_page))) {
2567                                 local_inc(&cpu_buffer->commit_overrun);
2568                                 goto out_reset;
2569                         }
2570                 }
2571         }
2572
2573         rb_tail_page_update(cpu_buffer, tail_page, next_page);
2574
2575  out_again:
2576
2577         rb_reset_tail(cpu_buffer, tail, info);
2578
2579         /* Commit what we have for now. */
2580         rb_end_commit(cpu_buffer);
2581         /* rb_end_commit() decs committing */
2582         local_inc(&cpu_buffer->committing);
2583
2584         /* fail and let the caller try again */
2585         return ERR_PTR(-EAGAIN);
2586
2587  out_reset:
2588         /* reset write */
2589         rb_reset_tail(cpu_buffer, tail, info);
2590
2591         return NULL;
2592 }
2593
2594 /* Slow path, do not inline */
2595 static noinline struct ring_buffer_event *
2596 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2597 {
2598         if (abs)
2599                 event->type_len = RINGBUF_TYPE_TIME_STAMP;
2600         else
2601                 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2602
2603         /* Not the first event on the page, or not delta? */
2604         if (abs || rb_event_index(event)) {
2605                 event->time_delta = delta & TS_MASK;
2606                 event->array[0] = delta >> TS_SHIFT;
2607         } else {
2608                 /* nope, just zero it */
2609                 event->time_delta = 0;
2610                 event->array[0] = 0;
2611         }
2612
2613         return skip_time_extend(event);
2614 }
2615
2616 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2617                                      struct ring_buffer_event *event);
2618
2619 /**
2620  * rb_update_event - update event type and data
2621  * @cpu_buffer: The per cpu buffer of the @event
2622  * @event: the event to update
2623  * @info: The info to update the @event with (contains length and delta)
2624  *
2625  * Update the type and data fields of the @event. The length
2626  * is the actual size that is written to the ring buffer,
2627  * and with this, we can determine what to place into the
2628  * data field.
2629  */
2630 static void
2631 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2632                 struct ring_buffer_event *event,
2633                 struct rb_event_info *info)
2634 {
2635         unsigned length = info->length;
2636         u64 delta = info->delta;
2637
2638         /*
2639          * If we need to add a timestamp, then we
2640          * add it to the start of the reserved space.
2641          */
2642         if (unlikely(info->add_timestamp)) {
2643                 bool abs = info->add_timestamp &
2644                         (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2645
2646                 event = rb_add_time_stamp(event, abs ? info->delta : delta, abs);
2647                 length -= RB_LEN_TIME_EXTEND;
2648                 delta = 0;
2649         }
2650
2651         event->time_delta = delta;
2652         length -= RB_EVNT_HDR_SIZE;
2653         if (length > RB_MAX_SMALL_DATA) {
2654                 event->type_len = 0;
2655                 event->array[0] = length;
2656         } else
2657                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2658 }
2659
2660 static unsigned rb_calculate_event_length(unsigned length)
2661 {
2662         struct ring_buffer_event event; /* Used only for sizeof array */
2663
2664         /* zero length can cause confusions */
2665         if (!length)
2666                 length++;
2667
2668         if (length > RB_MAX_SMALL_DATA)
2669                 length += sizeof(event.array[0]);
2670
2671         length += RB_EVNT_HDR_SIZE;
2672         length = ALIGN(length, RB_ALIGNMENT);
2673
2674         /*
2675          * In case the time delta is larger than the 27 bits for it
2676          * in the header, we need to add a timestamp. If another
2677          * event comes in when trying to discard this one to increase
2678          * the length, then the timestamp will be added in the allocated
2679          * space of this event. If length is bigger than the size needed
2680          * for the TIME_EXTEND, then padding has to be used. The events
2681          * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2682          * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2683          * As length is a multiple of 4, we only need to worry if it
2684          * is 12 (RB_LEN_TIME_EXTEND + 4).
2685          */
2686         if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2687                 length += RB_ALIGNMENT;
2688
2689         return length;
2690 }
2691
2692 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2693 static inline bool sched_clock_stable(void)
2694 {
2695         return true;
2696 }
2697 #endif
2698
2699 static __always_inline bool
2700 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2701                    struct ring_buffer_event *event)
2702 {
2703         unsigned long addr = (unsigned long)event;
2704         unsigned long index;
2705
2706         index = rb_event_index(event);
2707         addr &= PAGE_MASK;
2708
2709         return cpu_buffer->commit_page->page == (void *)addr &&
2710                 rb_commit_index(cpu_buffer) == index;
2711 }
2712
2713 static u64 rb_time_delta(struct ring_buffer_event *event)
2714 {
2715         switch (event->type_len) {
2716         case RINGBUF_TYPE_PADDING:
2717                 return 0;
2718
2719         case RINGBUF_TYPE_TIME_EXTEND:
2720                 return ring_buffer_event_time_stamp(event);
2721
2722         case RINGBUF_TYPE_TIME_STAMP:
2723                 return 0;
2724
2725         case RINGBUF_TYPE_DATA:
2726                 return event->time_delta;
2727         default:
2728                 return 0;
2729         }
2730 }
2731
2732 static inline int
2733 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2734                   struct ring_buffer_event *event)
2735 {
2736         unsigned long new_index, old_index;
2737         struct buffer_page *bpage;
2738         unsigned long index;
2739         unsigned long addr;
2740         u64 write_stamp;
2741         u64 delta;
2742
2743         new_index = rb_event_index(event);
2744         old_index = new_index + rb_event_ts_length(event);
2745         addr = (unsigned long)event;
2746         addr &= PAGE_MASK;
2747
2748         bpage = READ_ONCE(cpu_buffer->tail_page);
2749
2750         delta = rb_time_delta(event);
2751
2752         if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp))
2753                 return 0;
2754
2755         /* Make sure the write stamp is read before testing the location */
2756         barrier();
2757
2758         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2759                 unsigned long write_mask =
2760                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2761                 unsigned long event_length = rb_event_length(event);
2762
2763                 /* Something came in, can't discard */
2764                 if (!rb_time_cmpxchg(&cpu_buffer->write_stamp,
2765                                        write_stamp, write_stamp - delta))
2766                         return 0;
2767
2768                 /*
2769                  * If an event were to come in now, it would see that the
2770                  * write_stamp and the before_stamp are different, and assume
2771                  * that this event just added itself before updating
2772                  * the write stamp. The interrupting event will fix the
2773                  * write stamp for us, and use the before stamp as its delta.
2774                  */
2775
2776                 /*
2777                  * This is on the tail page. It is possible that
2778                  * a write could come in and move the tail page
2779                  * and write to the next page. That is fine
2780                  * because we just shorten what is on this page.
2781                  */
2782                 old_index += write_mask;
2783                 new_index += write_mask;
2784                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2785                 if (index == old_index) {
2786                         /* update counters */
2787                         local_sub(event_length, &cpu_buffer->entries_bytes);
2788                         return 1;
2789                 }
2790         }
2791
2792         /* could not discard */
2793         return 0;
2794 }
2795
2796 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2797 {
2798         local_inc(&cpu_buffer->committing);
2799         local_inc(&cpu_buffer->commits);
2800 }
2801
2802 static __always_inline void
2803 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2804 {
2805         unsigned long max_count;
2806
2807         /*
2808          * We only race with interrupts and NMIs on this CPU.
2809          * If we own the commit event, then we can commit
2810          * all others that interrupted us, since the interruptions
2811          * are in stack format (they finish before they come
2812          * back to us). This allows us to do a simple loop to
2813          * assign the commit to the tail.
2814          */
2815  again:
2816         max_count = cpu_buffer->nr_pages * 100;
2817
2818         while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2819                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2820                         return;
2821                 if (RB_WARN_ON(cpu_buffer,
2822                                rb_is_reader_page(cpu_buffer->tail_page)))
2823                         return;
2824                 local_set(&cpu_buffer->commit_page->page->commit,
2825                           rb_page_write(cpu_buffer->commit_page));
2826                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2827                 /* add barrier to keep gcc from optimizing too much */
2828                 barrier();
2829         }
2830         while (rb_commit_index(cpu_buffer) !=
2831                rb_page_write(cpu_buffer->commit_page)) {
2832
2833                 local_set(&cpu_buffer->commit_page->page->commit,
2834                           rb_page_write(cpu_buffer->commit_page));
2835                 RB_WARN_ON(cpu_buffer,
2836                            local_read(&cpu_buffer->commit_page->page->commit) &
2837                            ~RB_WRITE_MASK);
2838                 barrier();
2839         }
2840
2841         /* again, keep gcc from optimizing */
2842         barrier();
2843
2844         /*
2845          * If an interrupt came in just after the first while loop
2846          * and pushed the tail page forward, we will be left with
2847          * a dangling commit that will never go forward.
2848          */
2849         if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2850                 goto again;
2851 }
2852
2853 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2854 {
2855         unsigned long commits;
2856
2857         if (RB_WARN_ON(cpu_buffer,
2858                        !local_read(&cpu_buffer->committing)))
2859                 return;
2860
2861  again:
2862         commits = local_read(&cpu_buffer->commits);
2863         /* synchronize with interrupts */
2864         barrier();
2865         if (local_read(&cpu_buffer->committing) == 1)
2866                 rb_set_commit_to_write(cpu_buffer);
2867
2868         local_dec(&cpu_buffer->committing);
2869
2870         /* synchronize with interrupts */
2871         barrier();
2872
2873         /*
2874          * Need to account for interrupts coming in between the
2875          * updating of the commit page and the clearing of the
2876          * committing counter.
2877          */
2878         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2879             !local_read(&cpu_buffer->committing)) {
2880                 local_inc(&cpu_buffer->committing);
2881                 goto again;
2882         }
2883 }
2884
2885 static inline void rb_event_discard(struct ring_buffer_event *event)
2886 {
2887         if (extended_time(event))
2888                 event = skip_time_extend(event);
2889
2890         /* array[0] holds the actual length for the discarded event */
2891         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2892         event->type_len = RINGBUF_TYPE_PADDING;
2893         /* time delta must be non zero */
2894         if (!event->time_delta)
2895                 event->time_delta = 1;
2896 }
2897
2898 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2899                       struct ring_buffer_event *event)
2900 {
2901         local_inc(&cpu_buffer->entries);
2902         rb_end_commit(cpu_buffer);
2903 }
2904
2905 static __always_inline void
2906 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2907 {
2908         size_t nr_pages;
2909         size_t dirty;
2910         size_t full;
2911
2912         if (buffer->irq_work.waiters_pending) {
2913                 buffer->irq_work.waiters_pending = false;
2914                 /* irq_work_queue() supplies it's own memory barriers */
2915                 irq_work_queue(&buffer->irq_work.work);
2916         }
2917
2918         if (cpu_buffer->irq_work.waiters_pending) {
2919                 cpu_buffer->irq_work.waiters_pending = false;
2920                 /* irq_work_queue() supplies it's own memory barriers */
2921                 irq_work_queue(&cpu_buffer->irq_work.work);
2922         }
2923
2924         if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
2925                 return;
2926
2927         if (cpu_buffer->reader_page == cpu_buffer->commit_page)
2928                 return;
2929
2930         if (!cpu_buffer->irq_work.full_waiters_pending)
2931                 return;
2932
2933         cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
2934
2935         full = cpu_buffer->shortest_full;
2936         nr_pages = cpu_buffer->nr_pages;
2937         dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu);
2938         if (full && nr_pages && (dirty * 100) <= full * nr_pages)
2939                 return;
2940
2941         cpu_buffer->irq_work.wakeup_full = true;
2942         cpu_buffer->irq_work.full_waiters_pending = false;
2943         /* irq_work_queue() supplies it's own memory barriers */
2944         irq_work_queue(&cpu_buffer->irq_work.work);
2945 }
2946
2947 /*
2948  * The lock and unlock are done within a preempt disable section.
2949  * The current_context per_cpu variable can only be modified
2950  * by the current task between lock and unlock. But it can
2951  * be modified more than once via an interrupt. To pass this
2952  * information from the lock to the unlock without having to
2953  * access the 'in_interrupt()' functions again (which do show
2954  * a bit of overhead in something as critical as function tracing,
2955  * we use a bitmask trick.
2956  *
2957  *  bit 0 =  NMI context
2958  *  bit 1 =  IRQ context
2959  *  bit 2 =  SoftIRQ context
2960  *  bit 3 =  normal context.
2961  *
2962  * This works because this is the order of contexts that can
2963  * preempt other contexts. A SoftIRQ never preempts an IRQ
2964  * context.
2965  *
2966  * When the context is determined, the corresponding bit is
2967  * checked and set (if it was set, then a recursion of that context
2968  * happened).
2969  *
2970  * On unlock, we need to clear this bit. To do so, just subtract
2971  * 1 from the current_context and AND it to itself.
2972  *
2973  * (binary)
2974  *  101 - 1 = 100
2975  *  101 & 100 = 100 (clearing bit zero)
2976  *
2977  *  1010 - 1 = 1001
2978  *  1010 & 1001 = 1000 (clearing bit 1)
2979  *
2980  * The least significant bit can be cleared this way, and it
2981  * just so happens that it is the same bit corresponding to
2982  * the current context.
2983  */
2984
2985 static __always_inline int
2986 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2987 {
2988         unsigned int val = cpu_buffer->current_context;
2989         unsigned long pc = preempt_count();
2990         int bit;
2991
2992         if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
2993                 bit = RB_CTX_NORMAL;
2994         else
2995                 bit = pc & NMI_MASK ? RB_CTX_NMI :
2996                         pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
2997
2998         if (unlikely(val & (1 << (bit + cpu_buffer->nest))))
2999                 return 1;
3000
3001         val |= (1 << (bit + cpu_buffer->nest));
3002         cpu_buffer->current_context = val;
3003
3004         return 0;
3005 }
3006
3007 static __always_inline void
3008 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3009 {
3010         cpu_buffer->current_context &=
3011                 cpu_buffer->current_context - (1 << cpu_buffer->nest);
3012 }
3013
3014 /* The recursive locking above uses 4 bits */
3015 #define NESTED_BITS 4
3016
3017 /**
3018  * ring_buffer_nest_start - Allow to trace while nested
3019  * @buffer: The ring buffer to modify
3020  *
3021  * The ring buffer has a safety mechanism to prevent recursion.
3022  * But there may be a case where a trace needs to be done while
3023  * tracing something else. In this case, calling this function
3024  * will allow this function to nest within a currently active
3025  * ring_buffer_lock_reserve().
3026  *
3027  * Call this function before calling another ring_buffer_lock_reserve() and
3028  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3029  */
3030 void ring_buffer_nest_start(struct trace_buffer *buffer)
3031 {
3032         struct ring_buffer_per_cpu *cpu_buffer;
3033         int cpu;
3034
3035         /* Enabled by ring_buffer_nest_end() */
3036         preempt_disable_notrace();
3037         cpu = raw_smp_processor_id();
3038         cpu_buffer = buffer->buffers[cpu];
3039         /* This is the shift value for the above recursive locking */
3040         cpu_buffer->nest += NESTED_BITS;
3041 }
3042
3043 /**
3044  * ring_buffer_nest_end - Allow to trace while nested
3045  * @buffer: The ring buffer to modify
3046  *
3047  * Must be called after ring_buffer_nest_start() and after the
3048  * ring_buffer_unlock_commit().
3049  */
3050 void ring_buffer_nest_end(struct trace_buffer *buffer)
3051 {
3052         struct ring_buffer_per_cpu *cpu_buffer;
3053         int cpu;
3054
3055         /* disabled by ring_buffer_nest_start() */
3056         cpu = raw_smp_processor_id();
3057         cpu_buffer = buffer->buffers[cpu];
3058         /* This is the shift value for the above recursive locking */
3059         cpu_buffer->nest -= NESTED_BITS;
3060         preempt_enable_notrace();
3061 }
3062
3063 /**
3064  * ring_buffer_unlock_commit - commit a reserved
3065  * @buffer: The buffer to commit to
3066  * @event: The event pointer to commit.
3067  *
3068  * This commits the data to the ring buffer, and releases any locks held.
3069  *
3070  * Must be paired with ring_buffer_lock_reserve.
3071  */
3072 int ring_buffer_unlock_commit(struct trace_buffer *buffer,
3073                               struct ring_buffer_event *event)
3074 {
3075         struct ring_buffer_per_cpu *cpu_buffer;
3076         int cpu = raw_smp_processor_id();
3077
3078         cpu_buffer = buffer->buffers[cpu];
3079
3080         rb_commit(cpu_buffer, event);
3081
3082         rb_wakeups(buffer, cpu_buffer);
3083
3084         trace_recursive_unlock(cpu_buffer);
3085
3086         preempt_enable_notrace();
3087
3088         return 0;
3089 }
3090 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3091
3092 static noinline void
3093 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3094                    struct rb_event_info *info)
3095 {
3096         u64 write_stamp;
3097
3098         WARN_ONCE(info->delta > (1ULL << 59),
3099                   KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
3100                   (unsigned long long)info->delta,
3101                   (unsigned long long)info->ts,
3102                   (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
3103                   sched_clock_stable() ? "" :
3104                   "If you just came from a suspend/resume,\n"
3105                   "please switch to the trace global clock:\n"
3106                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n"
3107                   "or add trace_clock=global to the kernel command line\n");
3108 }
3109
3110 static struct ring_buffer_event *
3111 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3112                   struct rb_event_info *info)
3113 {
3114         struct ring_buffer_event *event;
3115         struct buffer_page *tail_page;
3116         unsigned long tail, write, w;
3117         u64 before, after;
3118         bool a_ok;
3119         bool b_ok;
3120
3121         /* Don't let the compiler play games with cpu_buffer->tail_page */
3122         tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3123
3124  /*A*/  w = local_read(&tail_page->write) & RB_WRITE_MASK;
3125         barrier();
3126         b_ok = rb_time_read(&cpu_buffer->before_stamp, &before);
3127         a_ok = rb_time_read(&cpu_buffer->write_stamp, &after);
3128         barrier();
3129         info->ts = rb_time_stamp(cpu_buffer->buffer);
3130
3131         if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3132                 info->delta = info->ts;
3133                 info->add_timestamp = RB_ADD_STAMP_ABSOLUTE;
3134         } else {
3135                 info->delta = info->ts - after;
3136         }
3137
3138         if (likely(a_ok && b_ok)) {
3139                 if (unlikely(test_time_stamp(info->delta))) {
3140                         rb_check_timestamp(cpu_buffer, info);
3141                         info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3142                 }
3143         }
3144
3145         /*
3146          * If interrupting an event time update, we may need an absolute timestamp.
3147          * Don't bother if this is the start of a new page (w == 0).
3148          */
3149         if (unlikely(!a_ok || !b_ok || (before != after && w)))
3150                 info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3151
3152         /*
3153          * If the time delta since the last event is too big to
3154          * hold in the time field of the event, then we append a
3155          * TIME EXTEND event ahead of the data event.
3156          */
3157         if (unlikely(info->add_timestamp))
3158                 info->length += RB_LEN_TIME_EXTEND;
3159
3160  /*B*/  rb_time_set(&cpu_buffer->before_stamp, info->ts);
3161
3162  /*C*/  write = local_add_return(info->length, &tail_page->write);
3163
3164         /* set write to only the index of the write */
3165         write &= RB_WRITE_MASK;
3166
3167         tail = write - info->length;
3168
3169         /* See if we shot pass the end of this buffer page */
3170         if (unlikely(write > BUF_PAGE_SIZE)) {
3171                 if (tail != w) {
3172                         /* before and after may now different, fix it up*/
3173                         b_ok = rb_time_read(&cpu_buffer->before_stamp, &before);
3174                         a_ok = rb_time_read(&cpu_buffer->write_stamp, &after);
3175                         if (a_ok && b_ok && before != after)
3176                                 (void)rb_time_cmpxchg(&cpu_buffer->before_stamp, before, after);
3177                 }
3178                 return rb_move_tail(cpu_buffer, tail, info);
3179         }
3180
3181         if (likely(tail == w)) {
3182                 u64 save_before;
3183                 bool s_ok;
3184
3185                 /* Nothing interrupted us between A and C */
3186  /*D*/          rb_time_set(&cpu_buffer->write_stamp, info->ts);
3187                 barrier();
3188  /*E*/          s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before);
3189                 RB_WARN_ON(cpu_buffer, !s_ok);
3190                 if (likely(!(info->add_timestamp &
3191                              (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3192                         /* This did not interrupt any time update */
3193                         info->delta = info->ts - after;
3194                 else
3195                         /* Just use full timestamp for inerrupting event */
3196                         info->delta = info->ts;
3197                 barrier();
3198                 if (unlikely(info->ts != save_before)) {
3199                         /* SLOW PATH - Interrupted between C and E */
3200
3201                         a_ok = rb_time_read(&cpu_buffer->write_stamp, &after);
3202                         RB_WARN_ON(cpu_buffer, !a_ok);
3203
3204                         /* Write stamp must only go forward */
3205                         if (save_before > after) {
3206                                 /*
3207                                  * We do not care about the result, only that
3208                                  * it gets updated atomically.
3209                                  */
3210                                 (void)rb_time_cmpxchg(&cpu_buffer->write_stamp, after, save_before);
3211                         }
3212                 }
3213         } else {
3214                 u64 ts;
3215                 /* SLOW PATH - Interrupted between A and C */
3216                 a_ok = rb_time_read(&cpu_buffer->write_stamp, &after);
3217                 /* Was interrupted before here, write_stamp must be valid */
3218                 RB_WARN_ON(cpu_buffer, !a_ok);
3219                 ts = rb_time_stamp(cpu_buffer->buffer);
3220                 barrier();
3221  /*E*/          if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3222                     after < ts) {
3223                         /* Nothing came after this event between C and E */
3224                         info->delta = ts - after;
3225                         (void)rb_time_cmpxchg(&cpu_buffer->write_stamp, after, info->ts);
3226                         info->ts = ts;
3227                 } else {
3228                         /*
3229                          * Interrupted beween C and E:
3230                          * Lost the previous events time stamp. Just set the
3231                          * delta to zero, and this will be the same time as
3232                          * the event this event interrupted. And the events that
3233                          * came after this will still be correct (as they would
3234                          * have built their delta on the previous event.
3235                          */
3236                         info->delta = 0;
3237                 }
3238                 info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3239         }
3240
3241         /*
3242          * If this is the first commit on the page, then it has the same
3243          * timestamp as the page itself.
3244          */
3245         if (unlikely(!tail && !(info->add_timestamp &
3246                                 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3247                 info->delta = 0;
3248
3249         /* We reserved something on the buffer */
3250
3251         event = __rb_page_index(tail_page, tail);
3252         rb_update_event(cpu_buffer, event, info);
3253
3254         local_inc(&tail_page->entries);
3255
3256         /*
3257          * If this is the first commit on the page, then update
3258          * its timestamp.
3259          */
3260         if (!tail)
3261                 tail_page->page->time_stamp = info->ts;
3262
3263         /* account for these added bytes */
3264         local_add(info->length, &cpu_buffer->entries_bytes);
3265
3266         return event;
3267 }
3268
3269 static __always_inline struct ring_buffer_event *
3270 rb_reserve_next_event(struct trace_buffer *buffer,
3271                       struct ring_buffer_per_cpu *cpu_buffer,
3272                       unsigned long length)
3273 {
3274         struct ring_buffer_event *event;
3275         struct rb_event_info info;
3276         int nr_loops = 0;
3277
3278         rb_start_commit(cpu_buffer);
3279         /* The commit page can not change after this */
3280
3281 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3282         /*
3283          * Due to the ability to swap a cpu buffer from a buffer
3284          * it is possible it was swapped before we committed.
3285          * (committing stops a swap). We check for it here and
3286          * if it happened, we have to fail the write.
3287          */
3288         barrier();
3289         if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3290                 local_dec(&cpu_buffer->committing);
3291                 local_dec(&cpu_buffer->commits);
3292                 return NULL;
3293         }
3294 #endif
3295
3296         info.length = rb_calculate_event_length(length);
3297  again:
3298         info.add_timestamp = RB_ADD_STAMP_NONE;
3299         info.delta = 0;
3300
3301         /*
3302          * We allow for interrupts to reenter here and do a trace.
3303          * If one does, it will cause this original code to loop
3304          * back here. Even with heavy interrupts happening, this
3305          * should only happen a few times in a row. If this happens
3306          * 1000 times in a row, there must be either an interrupt
3307          * storm or we have something buggy.
3308          * Bail!
3309          */
3310         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3311                 goto out_fail;
3312
3313         event = __rb_reserve_next(cpu_buffer, &info);
3314
3315         if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3316                 if (info.add_timestamp)
3317                         info.length -= RB_LEN_TIME_EXTEND;
3318                 goto again;
3319         }
3320
3321         if (likely(event))
3322                 return event;
3323  out_fail:
3324         rb_end_commit(cpu_buffer);
3325         return NULL;
3326 }
3327
3328 /**
3329  * ring_buffer_lock_reserve - reserve a part of the buffer
3330  * @buffer: the ring buffer to reserve from
3331  * @length: the length of the data to reserve (excluding event header)
3332  *
3333  * Returns a reserved event on the ring buffer to copy directly to.
3334  * The user of this interface will need to get the body to write into
3335  * and can use the ring_buffer_event_data() interface.
3336  *
3337  * The length is the length of the data needed, not the event length
3338  * which also includes the event header.
3339  *
3340  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3341  * If NULL is returned, then nothing has been allocated or locked.
3342  */
3343 struct ring_buffer_event *
3344 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3345 {
3346         struct ring_buffer_per_cpu *cpu_buffer;
3347         struct ring_buffer_event *event;
3348         int cpu;
3349
3350         /* If we are tracing schedule, we don't want to recurse */
3351         preempt_disable_notrace();
3352
3353         if (unlikely(atomic_read(&buffer->record_disabled)))
3354                 goto out;
3355
3356         cpu = raw_smp_processor_id();
3357
3358         if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3359                 goto out;
3360
3361         cpu_buffer = buffer->buffers[cpu];
3362
3363         if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3364                 goto out;
3365
3366         if (unlikely(length > BUF_MAX_DATA_SIZE))
3367                 goto out;
3368
3369         if (unlikely(trace_recursive_lock(cpu_buffer)))
3370                 goto out;
3371
3372         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3373         if (!event)
3374                 goto out_unlock;
3375
3376         return event;
3377
3378  out_unlock:
3379         trace_recursive_unlock(cpu_buffer);
3380  out:
3381         preempt_enable_notrace();
3382         return NULL;
3383 }
3384 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3385
3386 /*
3387  * Decrement the entries to the page that an event is on.
3388  * The event does not even need to exist, only the pointer
3389  * to the page it is on. This may only be called before the commit
3390  * takes place.
3391  */
3392 static inline void
3393 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3394                    struct ring_buffer_event *event)
3395 {
3396         unsigned long addr = (unsigned long)event;
3397         struct buffer_page *bpage = cpu_buffer->commit_page;
3398         struct buffer_page *start;
3399
3400         addr &= PAGE_MASK;
3401
3402         /* Do the likely case first */
3403         if (likely(bpage->page == (void *)addr)) {
3404                 local_dec(&bpage->entries);
3405                 return;
3406         }
3407
3408         /*
3409          * Because the commit page may be on the reader page we
3410          * start with the next page and check the end loop there.
3411          */
3412         rb_inc_page(cpu_buffer, &bpage);
3413         start = bpage;
3414         do {
3415                 if (bpage->page == (void *)addr) {
3416                         local_dec(&bpage->entries);
3417                         return;
3418                 }
3419                 rb_inc_page(cpu_buffer, &bpage);
3420         } while (bpage != start);
3421
3422         /* commit not part of this buffer?? */
3423         RB_WARN_ON(cpu_buffer, 1);
3424 }
3425
3426 /**
3427  * ring_buffer_commit_discard - discard an event that has not been committed
3428  * @buffer: the ring buffer
3429  * @event: non committed event to discard
3430  *
3431  * Sometimes an event that is in the ring buffer needs to be ignored.
3432  * This function lets the user discard an event in the ring buffer
3433  * and then that event will not be read later.
3434  *
3435  * This function only works if it is called before the item has been
3436  * committed. It will try to free the event from the ring buffer
3437  * if another event has not been added behind it.
3438  *
3439  * If another event has been added behind it, it will set the event
3440  * up as discarded, and perform the commit.
3441  *
3442  * If this function is called, do not call ring_buffer_unlock_commit on
3443  * the event.
3444  */
3445 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3446                                 struct ring_buffer_event *event)
3447 {
3448         struct ring_buffer_per_cpu *cpu_buffer;
3449         int cpu;
3450
3451         /* The event is discarded regardless */
3452         rb_event_discard(event);
3453
3454         cpu = smp_processor_id();
3455         cpu_buffer = buffer->buffers[cpu];
3456
3457         /*
3458          * This must only be called if the event has not been
3459          * committed yet. Thus we can assume that preemption
3460          * is still disabled.
3461          */
3462         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3463
3464         rb_decrement_entry(cpu_buffer, event);
3465         if (rb_try_to_discard(cpu_buffer, event))
3466                 goto out;
3467
3468  out:
3469         rb_end_commit(cpu_buffer);
3470
3471         trace_recursive_unlock(cpu_buffer);
3472
3473         preempt_enable_notrace();
3474
3475 }
3476 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3477
3478 /**
3479  * ring_buffer_write - write data to the buffer without reserving
3480  * @buffer: The ring buffer to write to.
3481  * @length: The length of the data being written (excluding the event header)
3482  * @data: The data to write to the buffer.
3483  *
3484  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3485  * one function. If you already have the data to write to the buffer, it
3486  * may be easier to simply call this function.
3487  *
3488  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3489  * and not the length of the event which would hold the header.
3490  */
3491 int ring_buffer_write(struct trace_buffer *buffer,
3492                       unsigned long length,
3493                       void *data)
3494 {
3495         struct ring_buffer_per_cpu *cpu_buffer;
3496         struct ring_buffer_event *event;
3497         void *body;
3498         int ret = -EBUSY;
3499         int cpu;
3500
3501         preempt_disable_notrace();
3502
3503         if (atomic_read(&buffer->record_disabled))
3504                 goto out;
3505
3506         cpu = raw_smp_processor_id();
3507
3508         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3509                 goto out;
3510
3511         cpu_buffer = buffer->buffers[cpu];
3512
3513         if (atomic_read(&cpu_buffer->record_disabled))
3514                 goto out;
3515
3516         if (length > BUF_MAX_DATA_SIZE)
3517                 goto out;
3518
3519         if (unlikely(trace_recursive_lock(cpu_buffer)))
3520                 goto out;
3521
3522         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3523         if (!event)
3524                 goto out_unlock;
3525
3526         body = rb_event_data(event);
3527
3528         memcpy(body, data, length);
3529
3530         rb_commit(cpu_buffer, event);
3531
3532         rb_wakeups(buffer, cpu_buffer);
3533
3534         ret = 0;
3535
3536  out_unlock:
3537         trace_recursive_unlock(cpu_buffer);
3538
3539  out:
3540         preempt_enable_notrace();
3541
3542         return ret;
3543 }
3544 EXPORT_SYMBOL_GPL(ring_buffer_write);
3545
3546 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3547 {
3548         struct buffer_page *reader = cpu_buffer->reader_page;
3549         struct buffer_page *head = rb_set_head_page(cpu_buffer);
3550         struct buffer_page *commit = cpu_buffer->commit_page;
3551
3552         /* In case of error, head will be NULL */
3553         if (unlikely(!head))
3554                 return true;
3555
3556         return reader->read == rb_page_commit(reader) &&
3557                 (commit == reader ||
3558                  (commit == head &&
3559                   head->read == rb_page_commit(commit)));
3560 }
3561
3562 /**
3563  * ring_buffer_record_disable - stop all writes into the buffer
3564  * @buffer: The ring buffer to stop writes to.
3565  *
3566  * This prevents all writes to the buffer. Any attempt to write
3567  * to the buffer after this will fail and return NULL.
3568  *
3569  * The caller should call synchronize_rcu() after this.
3570  */
3571 void ring_buffer_record_disable(struct trace_buffer *buffer)
3572 {
3573         atomic_inc(&buffer->record_disabled);
3574 }
3575 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3576
3577 /**
3578  * ring_buffer_record_enable - enable writes to the buffer
3579  * @buffer: The ring buffer to enable writes
3580  *
3581  * Note, multiple disables will need the same number of enables
3582  * to truly enable the writing (much like preempt_disable).
3583  */
3584 void ring_buffer_record_enable(struct trace_buffer *buffer)
3585 {
3586         atomic_dec(&buffer->record_disabled);
3587 }
3588 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3589
3590 /**
3591  * ring_buffer_record_off - stop all writes into the buffer
3592  * @buffer: The ring buffer to stop writes to.
3593  *
3594  * This prevents all writes to the buffer. Any attempt to write
3595  * to the buffer after this will fail and return NULL.
3596  *
3597  * This is different than ring_buffer_record_disable() as
3598  * it works like an on/off switch, where as the disable() version
3599  * must be paired with a enable().
3600  */
3601 void ring_buffer_record_off(struct trace_buffer *buffer)
3602 {
3603         unsigned int rd;
3604         unsigned int new_rd;
3605
3606         do {
3607                 rd = atomic_read(&buffer->record_disabled);
3608                 new_rd = rd | RB_BUFFER_OFF;
3609         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3610 }
3611 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3612
3613 /**
3614  * ring_buffer_record_on - restart writes into the buffer
3615  * @buffer: The ring buffer to start writes to.
3616  *
3617  * This enables all writes to the buffer that was disabled by
3618  * ring_buffer_record_off().
3619  *
3620  * This is different than ring_buffer_record_enable() as
3621  * it works like an on/off switch, where as the enable() version
3622  * must be paired with a disable().
3623  */
3624 void ring_buffer_record_on(struct trace_buffer *buffer)
3625 {
3626         unsigned int rd;
3627         unsigned int new_rd;
3628
3629         do {
3630                 rd = atomic_read(&buffer->record_disabled);
3631                 new_rd = rd & ~RB_BUFFER_OFF;
3632         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3633 }
3634 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3635
3636 /**
3637  * ring_buffer_record_is_on - return true if the ring buffer can write
3638  * @buffer: The ring buffer to see if write is enabled
3639  *
3640  * Returns true if the ring buffer is in a state that it accepts writes.
3641  */
3642 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
3643 {
3644         return !atomic_read(&buffer->record_disabled);
3645 }
3646
3647 /**
3648  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3649  * @buffer: The ring buffer to see if write is set enabled
3650  *
3651  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3652  * Note that this does NOT mean it is in a writable state.
3653  *
3654  * It may return true when the ring buffer has been disabled by
3655  * ring_buffer_record_disable(), as that is a temporary disabling of
3656  * the ring buffer.
3657  */
3658 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
3659 {
3660         return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3661 }
3662
3663 /**
3664  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3665  * @buffer: The ring buffer to stop writes to.
3666  * @cpu: The CPU buffer to stop
3667  *
3668  * This prevents all writes to the buffer. Any attempt to write
3669  * to the buffer after this will fail and return NULL.
3670  *
3671  * The caller should call synchronize_rcu() after this.
3672  */
3673 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
3674 {
3675         struct ring_buffer_per_cpu *cpu_buffer;
3676
3677         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3678                 return;
3679
3680         cpu_buffer = buffer->buffers[cpu];
3681         atomic_inc(&cpu_buffer->record_disabled);
3682 }
3683 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3684
3685 /**
3686  * ring_buffer_record_enable_cpu - enable writes to the buffer
3687  * @buffer: The ring buffer to enable writes
3688  * @cpu: The CPU to enable.
3689  *
3690  * Note, multiple disables will need the same number of enables
3691  * to truly enable the writing (much like preempt_disable).
3692  */
3693 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
3694 {
3695         struct ring_buffer_per_cpu *cpu_buffer;
3696
3697         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3698                 return;
3699
3700         cpu_buffer = buffer->buffers[cpu];
3701         atomic_dec(&cpu_buffer->record_disabled);
3702 }
3703 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3704
3705 /*
3706  * The total entries in the ring buffer is the running counter
3707  * of entries entered into the ring buffer, minus the sum of
3708  * the entries read from the ring buffer and the number of
3709  * entries that were overwritten.
3710  */
3711 static inline unsigned long
3712 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3713 {
3714         return local_read(&cpu_buffer->entries) -
3715                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3716 }
3717
3718 /**
3719  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3720  * @buffer: The ring buffer
3721  * @cpu: The per CPU buffer to read from.
3722  */
3723 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
3724 {
3725         unsigned long flags;
3726         struct ring_buffer_per_cpu *cpu_buffer;
3727         struct buffer_page *bpage;
3728         u64 ret = 0;
3729
3730         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3731                 return 0;
3732
3733         cpu_buffer = buffer->buffers[cpu];
3734         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3735         /*
3736          * if the tail is on reader_page, oldest time stamp is on the reader
3737          * page
3738          */
3739         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3740                 bpage = cpu_buffer->reader_page;
3741         else
3742                 bpage = rb_set_head_page(cpu_buffer);
3743         if (bpage)
3744                 ret = bpage->page->time_stamp;
3745         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3746
3747         return ret;
3748 }
3749 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3750
3751 /**
3752  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3753  * @buffer: The ring buffer
3754  * @cpu: The per CPU buffer to read from.
3755  */
3756 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
3757 {
3758         struct ring_buffer_per_cpu *cpu_buffer;
3759         unsigned long ret;
3760
3761         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3762                 return 0;
3763
3764         cpu_buffer = buffer->buffers[cpu];
3765         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3766
3767         return ret;
3768 }
3769 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3770
3771 /**
3772  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3773  * @buffer: The ring buffer
3774  * @cpu: The per CPU buffer to get the entries from.
3775  */
3776 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
3777 {
3778         struct ring_buffer_per_cpu *cpu_buffer;
3779
3780         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3781                 return 0;
3782
3783         cpu_buffer = buffer->buffers[cpu];
3784
3785         return rb_num_of_entries(cpu_buffer);
3786 }
3787 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3788
3789 /**
3790  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3791  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3792  * @buffer: The ring buffer
3793  * @cpu: The per CPU buffer to get the number of overruns from
3794  */
3795 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
3796 {
3797         struct ring_buffer_per_cpu *cpu_buffer;
3798         unsigned long ret;
3799
3800         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3801                 return 0;
3802
3803         cpu_buffer = buffer->buffers[cpu];
3804         ret = local_read(&cpu_buffer->overrun);
3805
3806         return ret;
3807 }
3808 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3809
3810 /**
3811  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3812  * commits failing due to the buffer wrapping around while there are uncommitted
3813  * events, such as during an interrupt storm.
3814  * @buffer: The ring buffer
3815  * @cpu: The per CPU buffer to get the number of overruns from
3816  */
3817 unsigned long
3818 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
3819 {
3820         struct ring_buffer_per_cpu *cpu_buffer;
3821         unsigned long ret;
3822
3823         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3824                 return 0;
3825
3826         cpu_buffer = buffer->buffers[cpu];
3827         ret = local_read(&cpu_buffer->commit_overrun);
3828
3829         return ret;
3830 }
3831 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3832
3833 /**
3834  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3835  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3836  * @buffer: The ring buffer
3837  * @cpu: The per CPU buffer to get the number of overruns from
3838  */
3839 unsigned long
3840 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
3841 {
3842         struct ring_buffer_per_cpu *cpu_buffer;
3843         unsigned long ret;
3844
3845         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3846                 return 0;
3847
3848         cpu_buffer = buffer->buffers[cpu];
3849         ret = local_read(&cpu_buffer->dropped_events);
3850
3851         return ret;
3852 }
3853 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3854
3855 /**
3856  * ring_buffer_read_events_cpu - get the number of events successfully read
3857  * @buffer: The ring buffer
3858  * @cpu: The per CPU buffer to get the number of events read
3859  */
3860 unsigned long
3861 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
3862 {
3863         struct ring_buffer_per_cpu *cpu_buffer;
3864
3865         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3866                 return 0;
3867
3868         cpu_buffer = buffer->buffers[cpu];
3869         return cpu_buffer->read;
3870 }
3871 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3872
3873 /**
3874  * ring_buffer_entries - get the number of entries in a buffer
3875  * @buffer: The ring buffer
3876  *
3877  * Returns the total number of entries in the ring buffer
3878  * (all CPU entries)
3879  */
3880 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
3881 {
3882         struct ring_buffer_per_cpu *cpu_buffer;
3883         unsigned long entries = 0;
3884         int cpu;
3885
3886         /* if you care about this being correct, lock the buffer */
3887         for_each_buffer_cpu(buffer, cpu) {
3888                 cpu_buffer = buffer->buffers[cpu];
3889                 entries += rb_num_of_entries(cpu_buffer);
3890         }
3891
3892         return entries;
3893 }
3894 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3895
3896 /**
3897  * ring_buffer_overruns - get the number of overruns in buffer
3898  * @buffer: The ring buffer
3899  *
3900  * Returns the total number of overruns in the ring buffer
3901  * (all CPU entries)
3902  */
3903 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
3904 {
3905         struct ring_buffer_per_cpu *cpu_buffer;
3906         unsigned long overruns = 0;
3907         int cpu;
3908
3909         /* if you care about this being correct, lock the buffer */
3910         for_each_buffer_cpu(buffer, cpu) {
3911                 cpu_buffer = buffer->buffers[cpu];
3912                 overruns += local_read(&cpu_buffer->overrun);
3913         }
3914
3915         return overruns;
3916 }
3917 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3918
3919 static void rb_iter_reset(struct ring_buffer_iter *iter)
3920 {
3921         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3922
3923         /* Iterator usage is expected to have record disabled */
3924         iter->head_page = cpu_buffer->reader_page;
3925         iter->head = cpu_buffer->reader_page->read;
3926         iter->next_event = iter->head;
3927
3928         iter->cache_reader_page = iter->head_page;
3929         iter->cache_read = cpu_buffer->read;
3930
3931         if (iter->head) {
3932                 iter->read_stamp = cpu_buffer->read_stamp;
3933                 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
3934         } else {
3935                 iter->read_stamp = iter->head_page->page->time_stamp;
3936                 iter->page_stamp = iter->read_stamp;
3937         }
3938 }
3939
3940 /**
3941  * ring_buffer_iter_reset - reset an iterator
3942  * @iter: The iterator to reset
3943  *
3944  * Resets the iterator, so that it will start from the beginning
3945  * again.
3946  */
3947 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3948 {
3949         struct ring_buffer_per_cpu *cpu_buffer;
3950         unsigned long flags;
3951
3952         if (!iter)
3953                 return;
3954
3955         cpu_buffer = iter->cpu_buffer;
3956
3957         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3958         rb_iter_reset(iter);
3959         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3960 }
3961 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3962
3963 /**
3964  * ring_buffer_iter_empty - check if an iterator has no more to read
3965  * @iter: The iterator to check
3966  */
3967 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3968 {
3969         struct ring_buffer_per_cpu *cpu_buffer;
3970         struct buffer_page *reader;
3971         struct buffer_page *head_page;
3972         struct buffer_page *commit_page;
3973         struct buffer_page *curr_commit_page;
3974         unsigned commit;
3975         u64 curr_commit_ts;
3976         u64 commit_ts;
3977
3978         cpu_buffer = iter->cpu_buffer;
3979         reader = cpu_buffer->reader_page;
3980         head_page = cpu_buffer->head_page;
3981         commit_page = cpu_buffer->commit_page;
3982         commit_ts = commit_page->page->time_stamp;
3983
3984         /*
3985          * When the writer goes across pages, it issues a cmpxchg which
3986          * is a mb(), which will synchronize with the rmb here.
3987          * (see rb_tail_page_update())
3988          */
3989         smp_rmb();
3990         commit = rb_page_commit(commit_page);
3991         /* We want to make sure that the commit page doesn't change */
3992         smp_rmb();
3993
3994         /* Make sure commit page didn't change */
3995         curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
3996         curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
3997
3998         /* If the commit page changed, then there's more data */
3999         if (curr_commit_page != commit_page ||
4000             curr_commit_ts != commit_ts)
4001                 return 0;
4002
4003         /* Still racy, as it may return a false positive, but that's OK */
4004         return ((iter->head_page == commit_page && iter->head >= commit) ||
4005                 (iter->head_page == reader && commit_page == head_page &&
4006                  head_page->read == commit &&
4007                  iter->head == rb_page_commit(cpu_buffer->reader_page)));
4008 }
4009 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4010
4011 static void
4012 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4013                      struct ring_buffer_event *event)
4014 {
4015         u64 delta;
4016
4017         switch (event->type_len) {
4018         case RINGBUF_TYPE_PADDING:
4019                 return;
4020
4021         case RINGBUF_TYPE_TIME_EXTEND:
4022                 delta = ring_buffer_event_time_stamp(event);
4023                 cpu_buffer->read_stamp += delta;
4024                 return;
4025
4026         case RINGBUF_TYPE_TIME_STAMP:
4027                 delta = ring_buffer_event_time_stamp(event);
4028                 cpu_buffer->read_stamp = delta;
4029                 return;
4030
4031         case RINGBUF_TYPE_DATA:
4032                 cpu_buffer->read_stamp += event->time_delta;
4033                 return;
4034
4035         default:
4036                 RB_WARN_ON(cpu_buffer, 1);
4037         }
4038         return;
4039 }
4040
4041 static void
4042 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4043                           struct ring_buffer_event *event)
4044 {
4045         u64 delta;
4046
4047         switch (event->type_len) {
4048         case RINGBUF_TYPE_PADDING:
4049                 return;
4050
4051         case RINGBUF_TYPE_TIME_EXTEND:
4052                 delta = ring_buffer_event_time_stamp(event);
4053                 iter->read_stamp += delta;
4054                 return;
4055
4056         case RINGBUF_TYPE_TIME_STAMP:
4057                 delta = ring_buffer_event_time_stamp(event);
4058                 iter->read_stamp = delta;
4059                 return;
4060
4061         case RINGBUF_TYPE_DATA:
4062                 iter->read_stamp += event->time_delta;
4063                 return;
4064
4065         default:
4066                 RB_WARN_ON(iter->cpu_buffer, 1);
4067         }
4068         return;
4069 }
4070
4071 static struct buffer_page *
4072 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4073 {
4074         struct buffer_page *reader = NULL;
4075         unsigned long overwrite;
4076         unsigned long flags;
4077         int nr_loops = 0;
4078         int ret;
4079
4080         local_irq_save(flags);
4081         arch_spin_lock(&cpu_buffer->lock);
4082
4083  again:
4084         /*
4085          * This should normally only loop twice. But because the
4086          * start of the reader inserts an empty page, it causes
4087          * a case where we will loop three times. There should be no
4088          * reason to loop four times (that I know of).
4089          */
4090         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4091                 reader = NULL;
4092                 goto out;
4093         }
4094
4095         reader = cpu_buffer->reader_page;
4096
4097         /* If there's more to read, return this page */
4098         if (cpu_buffer->reader_page->read < rb_page_size(reader))
4099                 goto out;
4100
4101         /* Never should we have an index greater than the size */
4102         if (RB_WARN_ON(cpu_buffer,
4103                        cpu_buffer->reader_page->read > rb_page_size(reader)))
4104                 goto out;
4105
4106         /* check if we caught up to the tail */
4107         reader = NULL;
4108         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4109                 goto out;
4110
4111         /* Don't bother swapping if the ring buffer is empty */
4112         if (rb_num_of_entries(cpu_buffer) == 0)
4113                 goto out;
4114
4115         /*
4116          * Reset the reader page to size zero.
4117          */
4118         local_set(&cpu_buffer->reader_page->write, 0);
4119         local_set(&cpu_buffer->reader_page->entries, 0);
4120         local_set(&cpu_buffer->reader_page->page->commit, 0);
4121         cpu_buffer->reader_page->real_end = 0;
4122
4123  spin:
4124         /*
4125          * Splice the empty reader page into the list around the head.
4126          */
4127         reader = rb_set_head_page(cpu_buffer);
4128         if (!reader)
4129                 goto out;
4130         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4131         cpu_buffer->reader_page->list.prev = reader->list.prev;
4132
4133         /*
4134          * cpu_buffer->pages just needs to point to the buffer, it
4135          *  has no specific buffer page to point to. Lets move it out
4136          *  of our way so we don't accidentally swap it.
4137          */
4138         cpu_buffer->pages = reader->list.prev;
4139
4140         /* The reader page will be pointing to the new head */
4141         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
4142
4143         /*
4144          * We want to make sure we read the overruns after we set up our
4145          * pointers to the next object. The writer side does a
4146          * cmpxchg to cross pages which acts as the mb on the writer
4147          * side. Note, the reader will constantly fail the swap
4148          * while the writer is updating the pointers, so this
4149          * guarantees that the overwrite recorded here is the one we
4150          * want to compare with the last_overrun.
4151          */
4152         smp_mb();
4153         overwrite = local_read(&(cpu_buffer->overrun));
4154
4155         /*
4156          * Here's the tricky part.
4157          *
4158          * We need to move the pointer past the header page.
4159          * But we can only do that if a writer is not currently
4160          * moving it. The page before the header page has the
4161          * flag bit '1' set if it is pointing to the page we want.
4162          * but if the writer is in the process of moving it
4163          * than it will be '2' or already moved '0'.
4164          */
4165
4166         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4167
4168         /*
4169          * If we did not convert it, then we must try again.
4170          */
4171         if (!ret)
4172                 goto spin;
4173
4174         /*
4175          * Yay! We succeeded in replacing the page.
4176          *
4177          * Now make the new head point back to the reader page.
4178          */
4179         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4180         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
4181
4182         local_inc(&cpu_buffer->pages_read);
4183
4184         /* Finally update the reader page to the new head */
4185         cpu_buffer->reader_page = reader;
4186         cpu_buffer->reader_page->read = 0;
4187
4188         if (overwrite != cpu_buffer->last_overrun) {
4189                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4190                 cpu_buffer->last_overrun = overwrite;
4191         }
4192
4193         goto again;
4194
4195  out:
4196         /* Update the read_stamp on the first event */
4197         if (reader && reader->read == 0)
4198                 cpu_buffer->read_stamp = reader->page->time_stamp;
4199
4200         arch_spin_unlock(&cpu_buffer->lock);
4201         local_irq_restore(flags);
4202
4203         return reader;
4204 }
4205
4206 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4207 {
4208         struct ring_buffer_event *event;
4209         struct buffer_page *reader;
4210         unsigned length;
4211
4212         reader = rb_get_reader_page(cpu_buffer);
4213
4214         /* This function should not be called when buffer is empty */
4215         if (RB_WARN_ON(cpu_buffer, !reader))
4216                 return;
4217
4218         event = rb_reader_event(cpu_buffer);
4219
4220         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4221                 cpu_buffer->read++;
4222
4223         rb_update_read_stamp(cpu_buffer, event);
4224
4225         length = rb_event_length(event);
4226         cpu_buffer->reader_page->read += length;
4227 }
4228
4229 static void rb_advance_iter(struct ring_buffer_iter *iter)
4230 {
4231         struct ring_buffer_per_cpu *cpu_buffer;
4232
4233         cpu_buffer = iter->cpu_buffer;
4234
4235         /* If head == next_event then we need to jump to the next event */
4236         if (iter->head == iter->next_event) {
4237                 /* If the event gets overwritten again, there's nothing to do */
4238                 if (rb_iter_head_event(iter) == NULL)
4239                         return;
4240         }
4241
4242         iter->head = iter->next_event;
4243
4244         /*
4245          * Check if we are at the end of the buffer.
4246          */
4247         if (iter->next_event >= rb_page_size(iter->head_page)) {
4248                 /* discarded commits can make the page empty */
4249                 if (iter->head_page == cpu_buffer->commit_page)
4250                         return;
4251                 rb_inc_iter(iter);
4252                 return;
4253         }
4254
4255         rb_update_iter_read_stamp(iter, iter->event);
4256 }
4257
4258 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4259 {
4260         return cpu_buffer->lost_events;
4261 }
4262
4263 static struct ring_buffer_event *
4264 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4265                unsigned long *lost_events)
4266 {
4267         struct ring_buffer_event *event;
4268         struct buffer_page *reader;
4269         int nr_loops = 0;
4270
4271         if (ts)
4272                 *ts = 0;
4273  again:
4274         /*
4275          * We repeat when a time extend is encountered.
4276          * Since the time extend is always attached to a data event,
4277          * we should never loop more than once.
4278          * (We never hit the following condition more than twice).
4279          */
4280         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4281                 return NULL;
4282
4283         reader = rb_get_reader_page(cpu_buffer);
4284         if (!reader)
4285                 return NULL;
4286
4287         event = rb_reader_event(cpu_buffer);
4288
4289         switch (event->type_len) {
4290         case RINGBUF_TYPE_PADDING:
4291                 if (rb_null_event(event))
4292                         RB_WARN_ON(cpu_buffer, 1);
4293                 /*
4294                  * Because the writer could be discarding every
4295                  * event it creates (which would probably be bad)
4296                  * if we were to go back to "again" then we may never
4297                  * catch up, and will trigger the warn on, or lock
4298                  * the box. Return the padding, and we will release
4299                  * the current locks, and try again.
4300                  */
4301                 return event;
4302
4303         case RINGBUF_TYPE_TIME_EXTEND:
4304                 /* Internal data, OK to advance */
4305                 rb_advance_reader(cpu_buffer);
4306                 goto again;
4307
4308         case RINGBUF_TYPE_TIME_STAMP:
4309                 if (ts) {
4310                         *ts = ring_buffer_event_time_stamp(event);
4311                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4312                                                          cpu_buffer->cpu, ts);
4313                 }
4314                 /* Internal data, OK to advance */
4315                 rb_advance_reader(cpu_buffer);
4316                 goto again;
4317
4318         case RINGBUF_TYPE_DATA:
4319                 if (ts && !(*ts)) {
4320                         *ts = cpu_buffer->read_stamp + event->time_delta;
4321                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4322                                                          cpu_buffer->cpu, ts);
4323                 }
4324                 if (lost_events)
4325                         *lost_events = rb_lost_events(cpu_buffer);
4326                 return event;
4327
4328         default:
4329                 RB_WARN_ON(cpu_buffer, 1);
4330         }
4331
4332         return NULL;
4333 }
4334 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4335
4336 static struct ring_buffer_event *
4337 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4338 {
4339         struct trace_buffer *buffer;
4340         struct ring_buffer_per_cpu *cpu_buffer;
4341         struct ring_buffer_event *event;
4342         int nr_loops = 0;
4343
4344         if (ts)
4345                 *ts = 0;
4346
4347         cpu_buffer = iter->cpu_buffer;
4348         buffer = cpu_buffer->buffer;
4349
4350         /*
4351          * Check if someone performed a consuming read to
4352          * the buffer. A consuming read invalidates the iterator
4353          * and we need to reset the iterator in this case.
4354          */
4355         if (unlikely(iter->cache_read != cpu_buffer->read ||
4356                      iter->cache_reader_page != cpu_buffer->reader_page))
4357                 rb_iter_reset(iter);
4358
4359  again:
4360         if (ring_buffer_iter_empty(iter))
4361                 return NULL;
4362
4363         /*
4364          * As the writer can mess with what the iterator is trying
4365          * to read, just give up if we fail to get an event after
4366          * three tries. The iterator is not as reliable when reading
4367          * the ring buffer with an active write as the consumer is.
4368          * Do not warn if the three failures is reached.
4369          */
4370         if (++nr_loops > 3)
4371                 return NULL;
4372
4373         if (rb_per_cpu_empty(cpu_buffer))
4374                 return NULL;
4375
4376         if (iter->head >= rb_page_size(iter->head_page)) {
4377                 rb_inc_iter(iter);
4378                 goto again;
4379         }
4380
4381         event = rb_iter_head_event(iter);
4382         if (!event)
4383                 goto again;
4384
4385         switch (event->type_len) {
4386         case RINGBUF_TYPE_PADDING:
4387                 if (rb_null_event(event)) {
4388                         rb_inc_iter(iter);
4389                         goto again;
4390                 }
4391                 rb_advance_iter(iter);
4392                 return event;
4393
4394         case RINGBUF_TYPE_TIME_EXTEND:
4395                 /* Internal data, OK to advance */
4396                 rb_advance_iter(iter);
4397                 goto again;
4398
4399         case RINGBUF_TYPE_TIME_STAMP:
4400                 if (ts) {
4401                         *ts = ring_buffer_event_time_stamp(event);
4402                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4403                                                          cpu_buffer->cpu, ts);
4404                 }
4405                 /* Internal data, OK to advance */
4406                 rb_advance_iter(iter);
4407                 goto again;
4408
4409         case RINGBUF_TYPE_DATA:
4410                 if (ts && !(*ts)) {
4411                         *ts = iter->read_stamp + event->time_delta;
4412                         ring_buffer_normalize_time_stamp(buffer,
4413                                                          cpu_buffer->cpu, ts);
4414                 }
4415                 return event;
4416
4417         default:
4418                 RB_WARN_ON(cpu_buffer, 1);
4419         }
4420
4421         return NULL;
4422 }
4423 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4424
4425 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4426 {
4427         if (likely(!in_nmi())) {
4428                 raw_spin_lock(&cpu_buffer->reader_lock);
4429                 return true;
4430         }
4431
4432         /*
4433          * If an NMI die dumps out the content of the ring buffer
4434          * trylock must be used to prevent a deadlock if the NMI
4435          * preempted a task that holds the ring buffer locks. If
4436          * we get the lock then all is fine, if not, then continue
4437          * to do the read, but this can corrupt the ring buffer,
4438          * so it must be permanently disabled from future writes.
4439          * Reading from NMI is a oneshot deal.
4440          */
4441         if (raw_spin_trylock(&cpu_buffer->reader_lock))
4442                 return true;
4443
4444         /* Continue without locking, but disable the ring buffer */
4445         atomic_inc(&cpu_buffer->record_disabled);
4446         return false;
4447 }
4448
4449 static inline void
4450 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4451 {
4452         if (likely(locked))
4453                 raw_spin_unlock(&cpu_buffer->reader_lock);
4454         return;
4455 }
4456
4457 /**
4458  * ring_buffer_peek - peek at the next event to be read
4459  * @buffer: The ring buffer to read
4460  * @cpu: The cpu to peak at
4461  * @ts: The timestamp counter of this event.
4462  * @lost_events: a variable to store if events were lost (may be NULL)
4463  *
4464  * This will return the event that will be read next, but does
4465  * not consume the data.
4466  */
4467 struct ring_buffer_event *
4468 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4469                  unsigned long *lost_events)
4470 {
4471         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4472         struct ring_buffer_event *event;
4473         unsigned long flags;
4474         bool dolock;
4475
4476         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4477                 return NULL;
4478
4479  again:
4480         local_irq_save(flags);
4481         dolock = rb_reader_lock(cpu_buffer);
4482         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4483         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4484                 rb_advance_reader(cpu_buffer);
4485         rb_reader_unlock(cpu_buffer, dolock);
4486         local_irq_restore(flags);
4487
4488         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4489                 goto again;
4490
4491         return event;
4492 }
4493
4494 /** ring_buffer_iter_dropped - report if there are dropped events
4495  * @iter: The ring buffer iterator
4496  *
4497  * Returns true if there was dropped events since the last peek.
4498  */
4499 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4500 {
4501         bool ret = iter->missed_events != 0;
4502
4503         iter->missed_events = 0;
4504         return ret;
4505 }
4506 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4507
4508 /**
4509  * ring_buffer_iter_peek - peek at the next event to be read
4510  * @iter: The ring buffer iterator
4511  * @ts: The timestamp counter of this event.
4512  *
4513  * This will return the event that will be read next, but does
4514  * not increment the iterator.
4515  */
4516 struct ring_buffer_event *
4517 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4518 {
4519         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4520         struct ring_buffer_event *event;
4521         unsigned long flags;
4522
4523  again:
4524         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4525         event = rb_iter_peek(iter, ts);
4526         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4527
4528         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4529                 goto again;
4530
4531         return event;
4532 }
4533
4534 /**
4535  * ring_buffer_consume - return an event and consume it
4536  * @buffer: The ring buffer to get the next event from
4537  * @cpu: the cpu to read the buffer from
4538  * @ts: a variable to store the timestamp (may be NULL)
4539  * @lost_events: a variable to store if events were lost (may be NULL)
4540  *
4541  * Returns the next event in the ring buffer, and that event is consumed.
4542  * Meaning, that sequential reads will keep returning a different event,
4543  * and eventually empty the ring buffer if the producer is slower.
4544  */
4545 struct ring_buffer_event *
4546 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
4547                     unsigned long *lost_events)
4548 {
4549         struct ring_buffer_per_cpu *cpu_buffer;
4550         struct ring_buffer_event *event = NULL;
4551         unsigned long flags;
4552         bool dolock;
4553
4554  again:
4555         /* might be called in atomic */
4556         preempt_disable();
4557
4558         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4559                 goto out;
4560
4561         cpu_buffer = buffer->buffers[cpu];
4562         local_irq_save(flags);
4563         dolock = rb_reader_lock(cpu_buffer);
4564
4565         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4566         if (event) {
4567                 cpu_buffer->lost_events = 0;
4568                 rb_advance_reader(cpu_buffer);
4569         }
4570
4571         rb_reader_unlock(cpu_buffer, dolock);
4572         local_irq_restore(flags);
4573
4574  out:
4575         preempt_enable();
4576
4577         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4578                 goto again;
4579
4580         return event;
4581 }
4582 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4583
4584 /**
4585  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4586  * @buffer: The ring buffer to read from
4587  * @cpu: The cpu buffer to iterate over
4588  * @flags: gfp flags to use for memory allocation
4589  *
4590  * This performs the initial preparations necessary to iterate
4591  * through the buffer.  Memory is allocated, buffer recording
4592  * is disabled, and the iterator pointer is returned to the caller.
4593  *
4594  * Disabling buffer recording prevents the reading from being
4595  * corrupted. This is not a consuming read, so a producer is not
4596  * expected.
4597  *
4598  * After a sequence of ring_buffer_read_prepare calls, the user is
4599  * expected to make at least one call to ring_buffer_read_prepare_sync.
4600  * Afterwards, ring_buffer_read_start is invoked to get things going
4601  * for real.
4602  *
4603  * This overall must be paired with ring_buffer_read_finish.
4604  */
4605 struct ring_buffer_iter *
4606 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
4607 {
4608         struct ring_buffer_per_cpu *cpu_buffer;
4609         struct ring_buffer_iter *iter;
4610
4611         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4612                 return NULL;
4613
4614         iter = kzalloc(sizeof(*iter), flags);
4615         if (!iter)
4616                 return NULL;
4617
4618         iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags);
4619         if (!iter->event) {
4620                 kfree(iter);
4621                 return NULL;
4622         }
4623
4624         cpu_buffer = buffer->buffers[cpu];
4625
4626         iter->cpu_buffer = cpu_buffer;
4627
4628         atomic_inc(&cpu_buffer->resize_disabled);
4629
4630         return iter;
4631 }
4632 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4633
4634 /**
4635  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4636  *
4637  * All previously invoked ring_buffer_read_prepare calls to prepare
4638  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4639  * calls on those iterators are allowed.
4640  */
4641 void
4642 ring_buffer_read_prepare_sync(void)
4643 {
4644         synchronize_rcu();
4645 }
4646 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4647
4648 /**
4649  * ring_buffer_read_start - start a non consuming read of the buffer
4650  * @iter: The iterator returned by ring_buffer_read_prepare
4651  *
4652  * This finalizes the startup of an iteration through the buffer.
4653  * The iterator comes from a call to ring_buffer_read_prepare and
4654  * an intervening ring_buffer_read_prepare_sync must have been
4655  * performed.
4656  *
4657  * Must be paired with ring_buffer_read_finish.
4658  */
4659 void
4660 ring_buffer_read_start(struct ring_buffer_iter *iter)
4661 {
4662         struct ring_buffer_per_cpu *cpu_buffer;
4663         unsigned long flags;
4664
4665         if (!iter)
4666                 return;
4667
4668         cpu_buffer = iter->cpu_buffer;
4669
4670         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4671         arch_spin_lock(&cpu_buffer->lock);
4672         rb_iter_reset(iter);
4673         arch_spin_unlock(&cpu_buffer->lock);
4674         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4675 }
4676 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4677
4678 /**
4679  * ring_buffer_read_finish - finish reading the iterator of the buffer
4680  * @iter: The iterator retrieved by ring_buffer_start
4681  *
4682  * This re-enables the recording to the buffer, and frees the
4683  * iterator.
4684  */
4685 void
4686 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4687 {
4688         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4689         unsigned long flags;
4690
4691         /*
4692          * Ring buffer is disabled from recording, here's a good place
4693          * to check the integrity of the ring buffer.
4694          * Must prevent readers from trying to read, as the check
4695          * clears the HEAD page and readers require it.
4696          */
4697         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4698         rb_check_pages(cpu_buffer);
4699         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4700
4701         atomic_dec(&cpu_buffer->resize_disabled);
4702         kfree(iter->event);
4703         kfree(iter);
4704 }
4705 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4706
4707 /**
4708  * ring_buffer_iter_advance - advance the iterator to the next location
4709  * @iter: The ring buffer iterator
4710  *
4711  * Move the location of the iterator such that the next read will
4712  * be the next location of the iterator.
4713  */
4714 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
4715 {
4716         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4717         unsigned long flags;
4718
4719         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4720
4721         rb_advance_iter(iter);
4722
4723         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4724 }
4725 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
4726
4727 /**
4728  * ring_buffer_size - return the size of the ring buffer (in bytes)
4729  * @buffer: The ring buffer.
4730  * @cpu: The CPU to get ring buffer size from.
4731  */
4732 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
4733 {
4734         /*
4735          * Earlier, this method returned
4736          *      BUF_PAGE_SIZE * buffer->nr_pages
4737          * Since the nr_pages field is now removed, we have converted this to
4738          * return the per cpu buffer value.
4739          */
4740         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4741                 return 0;
4742
4743         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4744 }
4745 EXPORT_SYMBOL_GPL(ring_buffer_size);
4746
4747 static void
4748 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4749 {
4750         rb_head_page_deactivate(cpu_buffer);
4751
4752         cpu_buffer->head_page
4753                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4754         local_set(&cpu_buffer->head_page->write, 0);
4755         local_set(&cpu_buffer->head_page->entries, 0);
4756         local_set(&cpu_buffer->head_page->page->commit, 0);
4757
4758         cpu_buffer->head_page->read = 0;
4759
4760         cpu_buffer->tail_page = cpu_buffer->head_page;
4761         cpu_buffer->commit_page = cpu_buffer->head_page;
4762
4763         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4764         INIT_LIST_HEAD(&cpu_buffer->new_pages);
4765         local_set(&cpu_buffer->reader_page->write, 0);
4766         local_set(&cpu_buffer->reader_page->entries, 0);
4767         local_set(&cpu_buffer->reader_page->page->commit, 0);
4768         cpu_buffer->reader_page->read = 0;
4769
4770         local_set(&cpu_buffer->entries_bytes, 0);
4771         local_set(&cpu_buffer->overrun, 0);
4772         local_set(&cpu_buffer->commit_overrun, 0);
4773         local_set(&cpu_buffer->dropped_events, 0);
4774         local_set(&cpu_buffer->entries, 0);
4775         local_set(&cpu_buffer->committing, 0);
4776         local_set(&cpu_buffer->commits, 0);
4777         local_set(&cpu_buffer->pages_touched, 0);
4778         local_set(&cpu_buffer->pages_read, 0);
4779         cpu_buffer->last_pages_touch = 0;
4780         cpu_buffer->shortest_full = 0;
4781         cpu_buffer->read = 0;
4782         cpu_buffer->read_bytes = 0;
4783
4784         rb_time_set(&cpu_buffer->write_stamp, 0);
4785         rb_time_set(&cpu_buffer->before_stamp, 0);
4786
4787         cpu_buffer->lost_events = 0;
4788         cpu_buffer->last_overrun = 0;
4789
4790         rb_head_page_activate(cpu_buffer);
4791 }
4792
4793 /**
4794  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4795  * @buffer: The ring buffer to reset a per cpu buffer of
4796  * @cpu: The CPU buffer to be reset
4797  */
4798 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
4799 {
4800         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4801         unsigned long flags;
4802
4803         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4804                 return;
4805
4806         atomic_inc(&cpu_buffer->resize_disabled);
4807         atomic_inc(&cpu_buffer->record_disabled);
4808
4809         /* Make sure all commits have finished */
4810         synchronize_rcu();
4811
4812         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4813
4814         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4815                 goto out;
4816
4817         arch_spin_lock(&cpu_buffer->lock);
4818
4819         rb_reset_cpu(cpu_buffer);
4820
4821         arch_spin_unlock(&cpu_buffer->lock);
4822
4823  out:
4824         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4825
4826         atomic_dec(&cpu_buffer->record_disabled);
4827         atomic_dec(&cpu_buffer->resize_disabled);
4828 }
4829 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4830
4831 /**
4832  * ring_buffer_reset - reset a ring buffer
4833  * @buffer: The ring buffer to reset all cpu buffers
4834  */
4835 void ring_buffer_reset(struct trace_buffer *buffer)
4836 {
4837         int cpu;
4838
4839         for_each_buffer_cpu(buffer, cpu)
4840                 ring_buffer_reset_cpu(buffer, cpu);
4841 }
4842 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4843
4844 /**
4845  * rind_buffer_empty - is the ring buffer empty?
4846  * @buffer: The ring buffer to test
4847  */
4848 bool ring_buffer_empty(struct trace_buffer *buffer)
4849 {
4850         struct ring_buffer_per_cpu *cpu_buffer;
4851         unsigned long flags;
4852         bool dolock;
4853         int cpu;
4854         int ret;
4855
4856         /* yes this is racy, but if you don't like the race, lock the buffer */
4857         for_each_buffer_cpu(buffer, cpu) {
4858                 cpu_buffer = buffer->buffers[cpu];
4859                 local_irq_save(flags);
4860                 dolock = rb_reader_lock(cpu_buffer);
4861                 ret = rb_per_cpu_empty(cpu_buffer);
4862                 rb_reader_unlock(cpu_buffer, dolock);
4863                 local_irq_restore(flags);
4864
4865                 if (!ret)
4866                         return false;
4867         }
4868
4869         return true;
4870 }
4871 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4872
4873 /**
4874  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4875  * @buffer: The ring buffer
4876  * @cpu: The CPU buffer to test
4877  */
4878 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
4879 {
4880         struct ring_buffer_per_cpu *cpu_buffer;
4881         unsigned long flags;
4882         bool dolock;
4883         int ret;
4884
4885         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4886                 return true;
4887
4888         cpu_buffer = buffer->buffers[cpu];
4889         local_irq_save(flags);
4890         dolock = rb_reader_lock(cpu_buffer);
4891         ret = rb_per_cpu_empty(cpu_buffer);
4892         rb_reader_unlock(cpu_buffer, dolock);
4893         local_irq_restore(flags);
4894
4895         return ret;
4896 }
4897 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4898
4899 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4900 /**
4901  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4902  * @buffer_a: One buffer to swap with
4903  * @buffer_b: The other buffer to swap with
4904  * @cpu: the CPU of the buffers to swap
4905  *
4906  * This function is useful for tracers that want to take a "snapshot"
4907  * of a CPU buffer and has another back up buffer lying around.
4908  * it is expected that the tracer handles the cpu buffer not being
4909  * used at the moment.
4910  */
4911 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
4912                          struct trace_buffer *buffer_b, int cpu)
4913 {
4914         struct ring_buffer_per_cpu *cpu_buffer_a;
4915         struct ring_buffer_per_cpu *cpu_buffer_b;
4916         int ret = -EINVAL;
4917
4918         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4919             !cpumask_test_cpu(cpu, buffer_b->cpumask))
4920                 goto out;
4921
4922         cpu_buffer_a = buffer_a->buffers[cpu];
4923         cpu_buffer_b = buffer_b->buffers[cpu];
4924
4925         /* At least make sure the two buffers are somewhat the same */
4926         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4927                 goto out;
4928
4929         ret = -EAGAIN;
4930
4931         if (atomic_read(&buffer_a->record_disabled))
4932                 goto out;
4933
4934         if (atomic_read(&buffer_b->record_disabled))
4935                 goto out;
4936
4937         if (atomic_read(&cpu_buffer_a->record_disabled))
4938                 goto out;
4939
4940         if (atomic_read(&cpu_buffer_b->record_disabled))
4941                 goto out;
4942
4943         /*
4944          * We can't do a synchronize_rcu here because this
4945          * function can be called in atomic context.
4946          * Normally this will be called from the same CPU as cpu.
4947          * If not it's up to the caller to protect this.
4948          */
4949         atomic_inc(&cpu_buffer_a->record_disabled);
4950         atomic_inc(&cpu_buffer_b->record_disabled);
4951
4952         ret = -EBUSY;
4953         if (local_read(&cpu_buffer_a->committing))
4954                 goto out_dec;
4955         if (local_read(&cpu_buffer_b->committing))
4956                 goto out_dec;
4957
4958         buffer_a->buffers[cpu] = cpu_buffer_b;
4959         buffer_b->buffers[cpu] = cpu_buffer_a;
4960
4961         cpu_buffer_b->buffer = buffer_a;
4962         cpu_buffer_a->buffer = buffer_b;
4963
4964         ret = 0;
4965
4966 out_dec:
4967         atomic_dec(&cpu_buffer_a->record_disabled);
4968         atomic_dec(&cpu_buffer_b->record_disabled);
4969 out:
4970         return ret;
4971 }
4972 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4973 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4974
4975 /**
4976  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4977  * @buffer: the buffer to allocate for.
4978  * @cpu: the cpu buffer to allocate.
4979  *
4980  * This function is used in conjunction with ring_buffer_read_page.
4981  * When reading a full page from the ring buffer, these functions
4982  * can be used to speed up the process. The calling function should
4983  * allocate a few pages first with this function. Then when it
4984  * needs to get pages from the ring buffer, it passes the result
4985  * of this function into ring_buffer_read_page, which will swap
4986  * the page that was allocated, with the read page of the buffer.
4987  *
4988  * Returns:
4989  *  The page allocated, or ERR_PTR
4990  */
4991 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
4992 {
4993         struct ring_buffer_per_cpu *cpu_buffer;
4994         struct buffer_data_page *bpage = NULL;
4995         unsigned long flags;
4996         struct page *page;
4997
4998         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4999                 return ERR_PTR(-ENODEV);
5000
5001         cpu_buffer = buffer->buffers[cpu];
5002         local_irq_save(flags);
5003         arch_spin_lock(&cpu_buffer->lock);
5004
5005         if (cpu_buffer->free_page) {
5006                 bpage = cpu_buffer->free_page;
5007                 cpu_buffer->free_page = NULL;
5008         }
5009
5010         arch_spin_unlock(&cpu_buffer->lock);
5011         local_irq_restore(flags);
5012
5013         if (bpage)
5014                 goto out;
5015
5016         page = alloc_pages_node(cpu_to_node(cpu),
5017                                 GFP_KERNEL | __GFP_NORETRY, 0);
5018         if (!page)
5019                 return ERR_PTR(-ENOMEM);
5020
5021         bpage = page_address(page);
5022
5023  out:
5024         rb_init_page(bpage);
5025
5026         return bpage;
5027 }
5028 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5029
5030 /**
5031  * ring_buffer_free_read_page - free an allocated read page
5032  * @buffer: the buffer the page was allocate for
5033  * @cpu: the cpu buffer the page came from
5034  * @data: the page to free
5035  *
5036  * Free a page allocated from ring_buffer_alloc_read_page.
5037  */
5038 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
5039 {
5040         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5041         struct buffer_data_page *bpage = data;
5042         struct page *page = virt_to_page(bpage);
5043         unsigned long flags;
5044
5045         /* If the page is still in use someplace else, we can't reuse it */
5046         if (page_ref_count(page) > 1)
5047                 goto out;
5048
5049         local_irq_save(flags);
5050         arch_spin_lock(&cpu_buffer->lock);
5051
5052         if (!cpu_buffer->free_page) {
5053                 cpu_buffer->free_page = bpage;
5054                 bpage = NULL;
5055         }
5056
5057         arch_spin_unlock(&cpu_buffer->lock);
5058         local_irq_restore(flags);
5059
5060  out:
5061         free_page((unsigned long)bpage);
5062 }
5063 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5064
5065 /**
5066  * ring_buffer_read_page - extract a page from the ring buffer
5067  * @buffer: buffer to extract from
5068  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5069  * @len: amount to extract
5070  * @cpu: the cpu of the buffer to extract
5071  * @full: should the extraction only happen when the page is full.
5072  *
5073  * This function will pull out a page from the ring buffer and consume it.
5074  * @data_page must be the address of the variable that was returned
5075  * from ring_buffer_alloc_read_page. This is because the page might be used
5076  * to swap with a page in the ring buffer.
5077  *
5078  * for example:
5079  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
5080  *      if (IS_ERR(rpage))
5081  *              return PTR_ERR(rpage);
5082  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
5083  *      if (ret >= 0)
5084  *              process_page(rpage, ret);
5085  *
5086  * When @full is set, the function will not return true unless
5087  * the writer is off the reader page.
5088  *
5089  * Note: it is up to the calling functions to handle sleeps and wakeups.
5090  *  The ring buffer can be used anywhere in the kernel and can not
5091  *  blindly call wake_up. The layer that uses the ring buffer must be
5092  *  responsible for that.
5093  *
5094  * Returns:
5095  *  >=0 if data has been transferred, returns the offset of consumed data.
5096  *  <0 if no data has been transferred.
5097  */
5098 int ring_buffer_read_page(struct trace_buffer *buffer,
5099                           void **data_page, size_t len, int cpu, int full)
5100 {
5101         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5102         struct ring_buffer_event *event;
5103         struct buffer_data_page *bpage;
5104         struct buffer_page *reader;
5105         unsigned long missed_events;
5106         unsigned long flags;
5107         unsigned int commit;
5108         unsigned int read;
5109         u64 save_timestamp;
5110         int ret = -1;
5111
5112         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5113                 goto out;
5114
5115         /*
5116          * If len is not big enough to hold the page header, then
5117          * we can not copy anything.
5118          */
5119         if (len <= BUF_PAGE_HDR_SIZE)
5120                 goto out;
5121
5122         len -= BUF_PAGE_HDR_SIZE;
5123
5124         if (!data_page)
5125                 goto out;
5126
5127         bpage = *data_page;
5128         if (!bpage)
5129                 goto out;
5130
5131         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5132
5133         reader = rb_get_reader_page(cpu_buffer);
5134         if (!reader)
5135                 goto out_unlock;
5136
5137         event = rb_reader_event(cpu_buffer);
5138
5139         read = reader->read;
5140         commit = rb_page_commit(reader);
5141
5142         /* Check if any events were dropped */
5143         missed_events = cpu_buffer->lost_events;
5144
5145         /*
5146          * If this page has been partially read or
5147          * if len is not big enough to read the rest of the page or
5148          * a writer is still on the page, then
5149          * we must copy the data from the page to the buffer.
5150          * Otherwise, we can simply swap the page with the one passed in.
5151          */
5152         if (read || (len < (commit - read)) ||
5153             cpu_buffer->reader_page == cpu_buffer->commit_page) {
5154                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5155                 unsigned int rpos = read;
5156                 unsigned int pos = 0;
5157                 unsigned int size;
5158
5159                 if (full)
5160                         goto out_unlock;
5161
5162                 if (len > (commit - read))
5163                         len = (commit - read);
5164
5165                 /* Always keep the time extend and data together */
5166                 size = rb_event_ts_length(event);
5167
5168                 if (len < size)
5169                         goto out_unlock;
5170
5171                 /* save the current timestamp, since the user will need it */
5172                 save_timestamp = cpu_buffer->read_stamp;
5173
5174                 /* Need to copy one event at a time */
5175                 do {
5176                         /* We need the size of one event, because
5177                          * rb_advance_reader only advances by one event,
5178                          * whereas rb_event_ts_length may include the size of
5179                          * one or two events.
5180                          * We have already ensured there's enough space if this
5181                          * is a time extend. */
5182                         size = rb_event_length(event);
5183                         memcpy(bpage->data + pos, rpage->data + rpos, size);
5184
5185                         len -= size;
5186
5187                         rb_advance_reader(cpu_buffer);
5188                         rpos = reader->read;
5189                         pos += size;
5190
5191                         if (rpos >= commit)
5192                                 break;
5193
5194                         event = rb_reader_event(cpu_buffer);
5195                         /* Always keep the time extend and data together */
5196                         size = rb_event_ts_length(event);
5197                 } while (len >= size);
5198
5199                 /* update bpage */
5200                 local_set(&bpage->commit, pos);
5201                 bpage->time_stamp = save_timestamp;
5202
5203                 /* we copied everything to the beginning */
5204                 read = 0;
5205         } else {
5206                 /* update the entry counter */
5207                 cpu_buffer->read += rb_page_entries(reader);
5208                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
5209
5210                 /* swap the pages */
5211                 rb_init_page(bpage);
5212                 bpage = reader->page;
5213                 reader->page = *data_page;
5214                 local_set(&reader->write, 0);
5215                 local_set(&reader->entries, 0);
5216                 reader->read = 0;
5217                 *data_page = bpage;
5218
5219                 /*
5220                  * Use the real_end for the data size,
5221                  * This gives us a chance to store the lost events
5222                  * on the page.
5223                  */
5224                 if (reader->real_end)
5225                         local_set(&bpage->commit, reader->real_end);
5226         }
5227         ret = read;
5228
5229         cpu_buffer->lost_events = 0;
5230
5231         commit = local_read(&bpage->commit);
5232         /*
5233          * Set a flag in the commit field if we lost events
5234          */
5235         if (missed_events) {
5236                 /* If there is room at the end of the page to save the
5237                  * missed events, then record it there.
5238                  */
5239                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5240                         memcpy(&bpage->data[commit], &missed_events,
5241                                sizeof(missed_events));
5242                         local_add(RB_MISSED_STORED, &bpage->commit);
5243                         commit += sizeof(missed_events);
5244                 }
5245                 local_add(RB_MISSED_EVENTS, &bpage->commit);
5246         }
5247
5248         /*
5249          * This page may be off to user land. Zero it out here.
5250          */
5251         if (commit < BUF_PAGE_SIZE)
5252                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5253
5254  out_unlock:
5255         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5256
5257  out:
5258         return ret;
5259 }
5260 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5261
5262 /*
5263  * We only allocate new buffers, never free them if the CPU goes down.
5264  * If we were to free the buffer, then the user would lose any trace that was in
5265  * the buffer.
5266  */
5267 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5268 {
5269         struct trace_buffer *buffer;
5270         long nr_pages_same;
5271         int cpu_i;
5272         unsigned long nr_pages;
5273
5274         buffer = container_of(node, struct trace_buffer, node);
5275         if (cpumask_test_cpu(cpu, buffer->cpumask))
5276                 return 0;
5277
5278         nr_pages = 0;
5279         nr_pages_same = 1;
5280         /* check if all cpu sizes are same */
5281         for_each_buffer_cpu(buffer, cpu_i) {
5282                 /* fill in the size from first enabled cpu */
5283                 if (nr_pages == 0)
5284                         nr_pages = buffer->buffers[cpu_i]->nr_pages;
5285                 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5286                         nr_pages_same = 0;
5287                         break;
5288                 }
5289         }
5290         /* allocate minimum pages, user can later expand it */
5291         if (!nr_pages_same)
5292                 nr_pages = 2;
5293         buffer->buffers[cpu] =
5294                 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5295         if (!buffer->buffers[cpu]) {
5296                 WARN(1, "failed to allocate ring buffer on CPU %u\n",
5297                      cpu);
5298                 return -ENOMEM;
5299         }
5300         smp_wmb();
5301         cpumask_set_cpu(cpu, buffer->cpumask);
5302         return 0;
5303 }
5304
5305 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5306 /*
5307  * This is a basic integrity check of the ring buffer.
5308  * Late in the boot cycle this test will run when configured in.
5309  * It will kick off a thread per CPU that will go into a loop
5310  * writing to the per cpu ring buffer various sizes of data.
5311  * Some of the data will be large items, some small.
5312  *
5313  * Another thread is created that goes into a spin, sending out
5314  * IPIs to the other CPUs to also write into the ring buffer.
5315  * this is to test the nesting ability of the buffer.
5316  *
5317  * Basic stats are recorded and reported. If something in the
5318  * ring buffer should happen that's not expected, a big warning
5319  * is displayed and all ring buffers are disabled.
5320  */
5321 static struct task_struct *rb_threads[NR_CPUS] __initdata;
5322
5323 struct rb_test_data {
5324         struct trace_buffer *buffer;
5325         unsigned long           events;
5326         unsigned long           bytes_written;
5327         unsigned long           bytes_alloc;
5328         unsigned long           bytes_dropped;
5329         unsigned long           events_nested;
5330         unsigned long           bytes_written_nested;
5331         unsigned long           bytes_alloc_nested;
5332         unsigned long           bytes_dropped_nested;
5333         int                     min_size_nested;
5334         int                     max_size_nested;
5335         int                     max_size;
5336         int                     min_size;
5337         int                     cpu;
5338         int                     cnt;
5339 };
5340
5341 static struct rb_test_data rb_data[NR_CPUS] __initdata;
5342
5343 /* 1 meg per cpu */
5344 #define RB_TEST_BUFFER_SIZE     1048576
5345
5346 static char rb_string[] __initdata =
5347         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5348         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5349         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5350
5351 static bool rb_test_started __initdata;
5352
5353 struct rb_item {
5354         int size;
5355         char str[];
5356 };
5357
5358 static __init int rb_write_something(struct rb_test_data *data, bool nested)
5359 {
5360         struct ring_buffer_event *event;
5361         struct rb_item *item;
5362         bool started;
5363         int event_len;
5364         int size;
5365         int len;
5366         int cnt;
5367
5368         /* Have nested writes different that what is written */
5369         cnt = data->cnt + (nested ? 27 : 0);
5370
5371         /* Multiply cnt by ~e, to make some unique increment */
5372         size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5373
5374         len = size + sizeof(struct rb_item);
5375
5376         started = rb_test_started;
5377         /* read rb_test_started before checking buffer enabled */
5378         smp_rmb();
5379
5380         event = ring_buffer_lock_reserve(data->buffer, len);
5381         if (!event) {
5382                 /* Ignore dropped events before test starts. */
5383                 if (started) {
5384                         if (nested)
5385                                 data->bytes_dropped += len;
5386                         else
5387                                 data->bytes_dropped_nested += len;
5388                 }
5389                 return len;
5390         }
5391
5392         event_len = ring_buffer_event_length(event);
5393
5394         if (RB_WARN_ON(data->buffer, event_len < len))
5395                 goto out;
5396
5397         item = ring_buffer_event_data(event);
5398         item->size = size;
5399         memcpy(item->str, rb_string, size);
5400
5401         if (nested) {
5402                 data->bytes_alloc_nested += event_len;
5403                 data->bytes_written_nested += len;
5404                 data->events_nested++;
5405                 if (!data->min_size_nested || len < data->min_size_nested)
5406                         data->min_size_nested = len;
5407                 if (len > data->max_size_nested)
5408                         data->max_size_nested = len;
5409         } else {
5410                 data->bytes_alloc += event_len;
5411                 data->bytes_written += len;
5412                 data->events++;
5413                 if (!data->min_size || len < data->min_size)
5414                         data->max_size = len;
5415                 if (len > data->max_size)
5416                         data->max_size = len;
5417         }
5418
5419  out:
5420         ring_buffer_unlock_commit(data->buffer, event);
5421
5422         return 0;
5423 }
5424
5425 static __init int rb_test(void *arg)
5426 {
5427         struct rb_test_data *data = arg;
5428
5429         while (!kthread_should_stop()) {
5430                 rb_write_something(data, false);
5431                 data->cnt++;
5432
5433                 set_current_state(TASK_INTERRUPTIBLE);
5434                 /* Now sleep between a min of 100-300us and a max of 1ms */
5435                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5436         }
5437
5438         return 0;
5439 }
5440
5441 static __init void rb_ipi(void *ignore)
5442 {
5443         struct rb_test_data *data;
5444         int cpu = smp_processor_id();
5445
5446         data = &rb_data[cpu];
5447         rb_write_something(data, true);
5448 }
5449
5450 static __init int rb_hammer_test(void *arg)
5451 {
5452         while (!kthread_should_stop()) {
5453
5454                 /* Send an IPI to all cpus to write data! */
5455                 smp_call_function(rb_ipi, NULL, 1);
5456                 /* No sleep, but for non preempt, let others run */
5457                 schedule();
5458         }
5459
5460         return 0;
5461 }
5462
5463 static __init int test_ringbuffer(void)
5464 {
5465         struct task_struct *rb_hammer;
5466         struct trace_buffer *buffer;
5467         int cpu;
5468         int ret = 0;
5469
5470         if (security_locked_down(LOCKDOWN_TRACEFS)) {
5471                 pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
5472                 return 0;
5473         }
5474
5475         pr_info("Running ring buffer tests...\n");
5476
5477         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5478         if (WARN_ON(!buffer))
5479                 return 0;
5480
5481         /* Disable buffer so that threads can't write to it yet */
5482         ring_buffer_record_off(buffer);
5483
5484         for_each_online_cpu(cpu) {
5485                 rb_data[cpu].buffer = buffer;
5486                 rb_data[cpu].cpu = cpu;
5487                 rb_data[cpu].cnt = cpu;
5488                 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5489                                                  "rbtester/%d", cpu);
5490                 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5491                         pr_cont("FAILED\n");
5492                         ret = PTR_ERR(rb_threads[cpu]);
5493                         goto out_free;
5494                 }
5495
5496                 kthread_bind(rb_threads[cpu], cpu);
5497                 wake_up_process(rb_threads[cpu]);
5498         }
5499
5500         /* Now create the rb hammer! */
5501         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5502         if (WARN_ON(IS_ERR(rb_hammer))) {
5503                 pr_cont("FAILED\n");
5504                 ret = PTR_ERR(rb_hammer);
5505                 goto out_free;
5506         }
5507
5508         ring_buffer_record_on(buffer);
5509         /*
5510          * Show buffer is enabled before setting rb_test_started.
5511          * Yes there's a small race window where events could be
5512          * dropped and the thread wont catch it. But when a ring
5513          * buffer gets enabled, there will always be some kind of
5514          * delay before other CPUs see it. Thus, we don't care about
5515          * those dropped events. We care about events dropped after
5516          * the threads see that the buffer is active.
5517          */
5518         smp_wmb();
5519         rb_test_started = true;
5520
5521         set_current_state(TASK_INTERRUPTIBLE);
5522         /* Just run for 10 seconds */;
5523         schedule_timeout(10 * HZ);
5524
5525         kthread_stop(rb_hammer);
5526
5527  out_free:
5528         for_each_online_cpu(cpu) {
5529                 if (!rb_threads[cpu])
5530                         break;
5531                 kthread_stop(rb_threads[cpu]);
5532         }
5533         if (ret) {
5534                 ring_buffer_free(buffer);
5535                 return ret;
5536         }
5537
5538         /* Report! */
5539         pr_info("finished\n");
5540         for_each_online_cpu(cpu) {
5541                 struct ring_buffer_event *event;
5542                 struct rb_test_data *data = &rb_data[cpu];
5543                 struct rb_item *item;
5544                 unsigned long total_events;
5545                 unsigned long total_dropped;
5546                 unsigned long total_written;
5547                 unsigned long total_alloc;
5548                 unsigned long total_read = 0;
5549                 unsigned long total_size = 0;
5550                 unsigned long total_len = 0;
5551                 unsigned long total_lost = 0;
5552                 unsigned long lost;
5553                 int big_event_size;
5554                 int small_event_size;
5555
5556                 ret = -1;
5557
5558                 total_events = data->events + data->events_nested;
5559                 total_written = data->bytes_written + data->bytes_written_nested;
5560                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5561                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5562
5563                 big_event_size = data->max_size + data->max_size_nested;
5564                 small_event_size = data->min_size + data->min_size_nested;
5565
5566                 pr_info("CPU %d:\n", cpu);
5567                 pr_info("              events:    %ld\n", total_events);
5568                 pr_info("       dropped bytes:    %ld\n", total_dropped);
5569                 pr_info("       alloced bytes:    %ld\n", total_alloc);
5570                 pr_info("       written bytes:    %ld\n", total_written);
5571                 pr_info("       biggest event:    %d\n", big_event_size);
5572                 pr_info("      smallest event:    %d\n", small_event_size);
5573
5574                 if (RB_WARN_ON(buffer, total_dropped))
5575                         break;
5576
5577                 ret = 0;
5578
5579                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5580                         total_lost += lost;
5581                         item = ring_buffer_event_data(event);
5582                         total_len += ring_buffer_event_length(event);
5583                         total_size += item->size + sizeof(struct rb_item);
5584                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5585                                 pr_info("FAILED!\n");
5586                                 pr_info("buffer had: %.*s\n", item->size, item->str);
5587                                 pr_info("expected:   %.*s\n", item->size, rb_string);
5588                                 RB_WARN_ON(buffer, 1);
5589                                 ret = -1;
5590                                 break;
5591                         }
5592                         total_read++;
5593                 }
5594                 if (ret)
5595                         break;
5596
5597                 ret = -1;
5598
5599                 pr_info("         read events:   %ld\n", total_read);
5600                 pr_info("         lost events:   %ld\n", total_lost);
5601                 pr_info("        total events:   %ld\n", total_lost + total_read);
5602                 pr_info("  recorded len bytes:   %ld\n", total_len);
5603                 pr_info(" recorded size bytes:   %ld\n", total_size);
5604                 if (total_lost)
5605                         pr_info(" With dropped events, record len and size may not match\n"
5606                                 " alloced and written from above\n");
5607                 if (!total_lost) {
5608                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
5609                                        total_size != total_written))
5610                                 break;
5611                 }
5612                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5613                         break;
5614
5615                 ret = 0;
5616         }
5617         if (!ret)
5618                 pr_info("Ring buffer PASSED!\n");
5619
5620         ring_buffer_free(buffer);
5621         return 0;
5622 }
5623
5624 late_initcall(test_ringbuffer);
5625 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */