Merge tag 'pci-v4.18-fixes-1' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaa...
[linux-2.6-microblaze.git] / kernel / time / time.c
1 /*
2  *  linux/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  This file contains the interface functions for the various
7  *  time related system calls: time, stime, gettimeofday, settimeofday,
8  *                             adjtime
9  */
10 /*
11  * Modification history kernel/time.c
12  *
13  * 1993-09-02    Philip Gladstone
14  *      Created file with time related functions from sched/core.c and adjtimex()
15  * 1993-10-08    Torsten Duwe
16  *      adjtime interface update and CMOS clock write code
17  * 1995-08-13    Torsten Duwe
18  *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
19  * 1999-01-16    Ulrich Windl
20  *      Introduced error checking for many cases in adjtimex().
21  *      Updated NTP code according to technical memorandum Jan '96
22  *      "A Kernel Model for Precision Timekeeping" by Dave Mills
23  *      Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24  *      (Even though the technical memorandum forbids it)
25  * 2004-07-14    Christoph Lameter
26  *      Added getnstimeofday to allow the posix timer functions to return
27  *      with nanosecond accuracy
28  */
29
30 #include <linux/export.h>
31 #include <linux/kernel.h>
32 #include <linux/timex.h>
33 #include <linux/capability.h>
34 #include <linux/timekeeper_internal.h>
35 #include <linux/errno.h>
36 #include <linux/syscalls.h>
37 #include <linux/security.h>
38 #include <linux/fs.h>
39 #include <linux/math64.h>
40 #include <linux/ptrace.h>
41
42 #include <linux/uaccess.h>
43 #include <linux/compat.h>
44 #include <asm/unistd.h>
45
46 #include <generated/timeconst.h>
47 #include "timekeeping.h"
48
49 /*
50  * The timezone where the local system is located.  Used as a default by some
51  * programs who obtain this value by using gettimeofday.
52  */
53 struct timezone sys_tz;
54
55 EXPORT_SYMBOL(sys_tz);
56
57 #ifdef __ARCH_WANT_SYS_TIME
58
59 /*
60  * sys_time() can be implemented in user-level using
61  * sys_gettimeofday().  Is this for backwards compatibility?  If so,
62  * why not move it into the appropriate arch directory (for those
63  * architectures that need it).
64  */
65 SYSCALL_DEFINE1(time, time_t __user *, tloc)
66 {
67         time_t i = get_seconds();
68
69         if (tloc) {
70                 if (put_user(i,tloc))
71                         return -EFAULT;
72         }
73         force_successful_syscall_return();
74         return i;
75 }
76
77 /*
78  * sys_stime() can be implemented in user-level using
79  * sys_settimeofday().  Is this for backwards compatibility?  If so,
80  * why not move it into the appropriate arch directory (for those
81  * architectures that need it).
82  */
83
84 SYSCALL_DEFINE1(stime, time_t __user *, tptr)
85 {
86         struct timespec64 tv;
87         int err;
88
89         if (get_user(tv.tv_sec, tptr))
90                 return -EFAULT;
91
92         tv.tv_nsec = 0;
93
94         err = security_settime64(&tv, NULL);
95         if (err)
96                 return err;
97
98         do_settimeofday64(&tv);
99         return 0;
100 }
101
102 #endif /* __ARCH_WANT_SYS_TIME */
103
104 #ifdef CONFIG_COMPAT
105 #ifdef __ARCH_WANT_COMPAT_SYS_TIME
106
107 /* compat_time_t is a 32 bit "long" and needs to get converted. */
108 COMPAT_SYSCALL_DEFINE1(time, compat_time_t __user *, tloc)
109 {
110         struct timeval tv;
111         compat_time_t i;
112
113         do_gettimeofday(&tv);
114         i = tv.tv_sec;
115
116         if (tloc) {
117                 if (put_user(i,tloc))
118                         return -EFAULT;
119         }
120         force_successful_syscall_return();
121         return i;
122 }
123
124 COMPAT_SYSCALL_DEFINE1(stime, compat_time_t __user *, tptr)
125 {
126         struct timespec64 tv;
127         int err;
128
129         if (get_user(tv.tv_sec, tptr))
130                 return -EFAULT;
131
132         tv.tv_nsec = 0;
133
134         err = security_settime64(&tv, NULL);
135         if (err)
136                 return err;
137
138         do_settimeofday64(&tv);
139         return 0;
140 }
141
142 #endif /* __ARCH_WANT_COMPAT_SYS_TIME */
143 #endif
144
145 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
146                 struct timezone __user *, tz)
147 {
148         if (likely(tv != NULL)) {
149                 struct timeval ktv;
150                 do_gettimeofday(&ktv);
151                 if (copy_to_user(tv, &ktv, sizeof(ktv)))
152                         return -EFAULT;
153         }
154         if (unlikely(tz != NULL)) {
155                 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
156                         return -EFAULT;
157         }
158         return 0;
159 }
160
161 /*
162  * In case for some reason the CMOS clock has not already been running
163  * in UTC, but in some local time: The first time we set the timezone,
164  * we will warp the clock so that it is ticking UTC time instead of
165  * local time. Presumably, if someone is setting the timezone then we
166  * are running in an environment where the programs understand about
167  * timezones. This should be done at boot time in the /etc/rc script,
168  * as soon as possible, so that the clock can be set right. Otherwise,
169  * various programs will get confused when the clock gets warped.
170  */
171
172 int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
173 {
174         static int firsttime = 1;
175         int error = 0;
176
177         if (tv && !timespec64_valid(tv))
178                 return -EINVAL;
179
180         error = security_settime64(tv, tz);
181         if (error)
182                 return error;
183
184         if (tz) {
185                 /* Verify we're witin the +-15 hrs range */
186                 if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
187                         return -EINVAL;
188
189                 sys_tz = *tz;
190                 update_vsyscall_tz();
191                 if (firsttime) {
192                         firsttime = 0;
193                         if (!tv)
194                                 timekeeping_warp_clock();
195                 }
196         }
197         if (tv)
198                 return do_settimeofday64(tv);
199         return 0;
200 }
201
202 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
203                 struct timezone __user *, tz)
204 {
205         struct timespec64 new_ts;
206         struct timeval user_tv;
207         struct timezone new_tz;
208
209         if (tv) {
210                 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
211                         return -EFAULT;
212
213                 if (!timeval_valid(&user_tv))
214                         return -EINVAL;
215
216                 new_ts.tv_sec = user_tv.tv_sec;
217                 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
218         }
219         if (tz) {
220                 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
221                         return -EFAULT;
222         }
223
224         return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
225 }
226
227 #ifdef CONFIG_COMPAT
228 COMPAT_SYSCALL_DEFINE2(gettimeofday, struct compat_timeval __user *, tv,
229                        struct timezone __user *, tz)
230 {
231         if (tv) {
232                 struct timeval ktv;
233
234                 do_gettimeofday(&ktv);
235                 if (compat_put_timeval(&ktv, tv))
236                         return -EFAULT;
237         }
238         if (tz) {
239                 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
240                         return -EFAULT;
241         }
242
243         return 0;
244 }
245
246 COMPAT_SYSCALL_DEFINE2(settimeofday, struct compat_timeval __user *, tv,
247                        struct timezone __user *, tz)
248 {
249         struct timespec64 new_ts;
250         struct timeval user_tv;
251         struct timezone new_tz;
252
253         if (tv) {
254                 if (compat_get_timeval(&user_tv, tv))
255                         return -EFAULT;
256                 new_ts.tv_sec = user_tv.tv_sec;
257                 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
258         }
259         if (tz) {
260                 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
261                         return -EFAULT;
262         }
263
264         return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
265 }
266 #endif
267
268 SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
269 {
270         struct timex txc;               /* Local copy of parameter */
271         int ret;
272
273         /* Copy the user data space into the kernel copy
274          * structure. But bear in mind that the structures
275          * may change
276          */
277         if (copy_from_user(&txc, txc_p, sizeof(struct timex)))
278                 return -EFAULT;
279         ret = do_adjtimex(&txc);
280         return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
281 }
282
283 #ifdef CONFIG_COMPAT
284
285 COMPAT_SYSCALL_DEFINE1(adjtimex, struct compat_timex __user *, utp)
286 {
287         struct timex txc;
288         int err, ret;
289
290         err = compat_get_timex(&txc, utp);
291         if (err)
292                 return err;
293
294         ret = do_adjtimex(&txc);
295
296         err = compat_put_timex(utp, &txc);
297         if (err)
298                 return err;
299
300         return ret;
301 }
302 #endif
303
304 /*
305  * Convert jiffies to milliseconds and back.
306  *
307  * Avoid unnecessary multiplications/divisions in the
308  * two most common HZ cases:
309  */
310 unsigned int jiffies_to_msecs(const unsigned long j)
311 {
312 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
313         return (MSEC_PER_SEC / HZ) * j;
314 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
315         return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
316 #else
317 # if BITS_PER_LONG == 32
318         return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >>
319                HZ_TO_MSEC_SHR32;
320 # else
321         return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
322 # endif
323 #endif
324 }
325 EXPORT_SYMBOL(jiffies_to_msecs);
326
327 unsigned int jiffies_to_usecs(const unsigned long j)
328 {
329         /*
330          * Hz usually doesn't go much further MSEC_PER_SEC.
331          * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
332          */
333         BUILD_BUG_ON(HZ > USEC_PER_SEC);
334
335 #if !(USEC_PER_SEC % HZ)
336         return (USEC_PER_SEC / HZ) * j;
337 #else
338 # if BITS_PER_LONG == 32
339         return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
340 # else
341         return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
342 # endif
343 #endif
344 }
345 EXPORT_SYMBOL(jiffies_to_usecs);
346
347 /**
348  * timespec_trunc - Truncate timespec to a granularity
349  * @t: Timespec
350  * @gran: Granularity in ns.
351  *
352  * Truncate a timespec to a granularity. Always rounds down. gran must
353  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
354  */
355 struct timespec timespec_trunc(struct timespec t, unsigned gran)
356 {
357         /* Avoid division in the common cases 1 ns and 1 s. */
358         if (gran == 1) {
359                 /* nothing */
360         } else if (gran == NSEC_PER_SEC) {
361                 t.tv_nsec = 0;
362         } else if (gran > 1 && gran < NSEC_PER_SEC) {
363                 t.tv_nsec -= t.tv_nsec % gran;
364         } else {
365                 WARN(1, "illegal file time granularity: %u", gran);
366         }
367         return t;
368 }
369 EXPORT_SYMBOL(timespec_trunc);
370
371 /*
372  * mktime64 - Converts date to seconds.
373  * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
374  * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
375  * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
376  *
377  * [For the Julian calendar (which was used in Russia before 1917,
378  * Britain & colonies before 1752, anywhere else before 1582,
379  * and is still in use by some communities) leave out the
380  * -year/100+year/400 terms, and add 10.]
381  *
382  * This algorithm was first published by Gauss (I think).
383  *
384  * A leap second can be indicated by calling this function with sec as
385  * 60 (allowable under ISO 8601).  The leap second is treated the same
386  * as the following second since they don't exist in UNIX time.
387  *
388  * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
389  * tomorrow - (allowable under ISO 8601) is supported.
390  */
391 time64_t mktime64(const unsigned int year0, const unsigned int mon0,
392                 const unsigned int day, const unsigned int hour,
393                 const unsigned int min, const unsigned int sec)
394 {
395         unsigned int mon = mon0, year = year0;
396
397         /* 1..12 -> 11,12,1..10 */
398         if (0 >= (int) (mon -= 2)) {
399                 mon += 12;      /* Puts Feb last since it has leap day */
400                 year -= 1;
401         }
402
403         return ((((time64_t)
404                   (year/4 - year/100 + year/400 + 367*mon/12 + day) +
405                   year*365 - 719499
406             )*24 + hour /* now have hours - midnight tomorrow handled here */
407           )*60 + min /* now have minutes */
408         )*60 + sec; /* finally seconds */
409 }
410 EXPORT_SYMBOL(mktime64);
411
412 /**
413  * set_normalized_timespec - set timespec sec and nsec parts and normalize
414  *
415  * @ts:         pointer to timespec variable to be set
416  * @sec:        seconds to set
417  * @nsec:       nanoseconds to set
418  *
419  * Set seconds and nanoseconds field of a timespec variable and
420  * normalize to the timespec storage format
421  *
422  * Note: The tv_nsec part is always in the range of
423  *      0 <= tv_nsec < NSEC_PER_SEC
424  * For negative values only the tv_sec field is negative !
425  */
426 void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
427 {
428         while (nsec >= NSEC_PER_SEC) {
429                 /*
430                  * The following asm() prevents the compiler from
431                  * optimising this loop into a modulo operation. See
432                  * also __iter_div_u64_rem() in include/linux/time.h
433                  */
434                 asm("" : "+rm"(nsec));
435                 nsec -= NSEC_PER_SEC;
436                 ++sec;
437         }
438         while (nsec < 0) {
439                 asm("" : "+rm"(nsec));
440                 nsec += NSEC_PER_SEC;
441                 --sec;
442         }
443         ts->tv_sec = sec;
444         ts->tv_nsec = nsec;
445 }
446 EXPORT_SYMBOL(set_normalized_timespec);
447
448 /**
449  * ns_to_timespec - Convert nanoseconds to timespec
450  * @nsec:       the nanoseconds value to be converted
451  *
452  * Returns the timespec representation of the nsec parameter.
453  */
454 struct timespec ns_to_timespec(const s64 nsec)
455 {
456         struct timespec ts;
457         s32 rem;
458
459         if (!nsec)
460                 return (struct timespec) {0, 0};
461
462         ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
463         if (unlikely(rem < 0)) {
464                 ts.tv_sec--;
465                 rem += NSEC_PER_SEC;
466         }
467         ts.tv_nsec = rem;
468
469         return ts;
470 }
471 EXPORT_SYMBOL(ns_to_timespec);
472
473 /**
474  * ns_to_timeval - Convert nanoseconds to timeval
475  * @nsec:       the nanoseconds value to be converted
476  *
477  * Returns the timeval representation of the nsec parameter.
478  */
479 struct timeval ns_to_timeval(const s64 nsec)
480 {
481         struct timespec ts = ns_to_timespec(nsec);
482         struct timeval tv;
483
484         tv.tv_sec = ts.tv_sec;
485         tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
486
487         return tv;
488 }
489 EXPORT_SYMBOL(ns_to_timeval);
490
491 struct __kernel_old_timeval ns_to_kernel_old_timeval(const s64 nsec)
492 {
493         struct timespec64 ts = ns_to_timespec64(nsec);
494         struct __kernel_old_timeval tv;
495
496         tv.tv_sec = ts.tv_sec;
497         tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000;
498
499         return tv;
500 }
501 EXPORT_SYMBOL(ns_to_kernel_old_timeval);
502
503 /**
504  * set_normalized_timespec - set timespec sec and nsec parts and normalize
505  *
506  * @ts:         pointer to timespec variable to be set
507  * @sec:        seconds to set
508  * @nsec:       nanoseconds to set
509  *
510  * Set seconds and nanoseconds field of a timespec variable and
511  * normalize to the timespec storage format
512  *
513  * Note: The tv_nsec part is always in the range of
514  *      0 <= tv_nsec < NSEC_PER_SEC
515  * For negative values only the tv_sec field is negative !
516  */
517 void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
518 {
519         while (nsec >= NSEC_PER_SEC) {
520                 /*
521                  * The following asm() prevents the compiler from
522                  * optimising this loop into a modulo operation. See
523                  * also __iter_div_u64_rem() in include/linux/time.h
524                  */
525                 asm("" : "+rm"(nsec));
526                 nsec -= NSEC_PER_SEC;
527                 ++sec;
528         }
529         while (nsec < 0) {
530                 asm("" : "+rm"(nsec));
531                 nsec += NSEC_PER_SEC;
532                 --sec;
533         }
534         ts->tv_sec = sec;
535         ts->tv_nsec = nsec;
536 }
537 EXPORT_SYMBOL(set_normalized_timespec64);
538
539 /**
540  * ns_to_timespec64 - Convert nanoseconds to timespec64
541  * @nsec:       the nanoseconds value to be converted
542  *
543  * Returns the timespec64 representation of the nsec parameter.
544  */
545 struct timespec64 ns_to_timespec64(const s64 nsec)
546 {
547         struct timespec64 ts;
548         s32 rem;
549
550         if (!nsec)
551                 return (struct timespec64) {0, 0};
552
553         ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
554         if (unlikely(rem < 0)) {
555                 ts.tv_sec--;
556                 rem += NSEC_PER_SEC;
557         }
558         ts.tv_nsec = rem;
559
560         return ts;
561 }
562 EXPORT_SYMBOL(ns_to_timespec64);
563
564 /**
565  * msecs_to_jiffies: - convert milliseconds to jiffies
566  * @m:  time in milliseconds
567  *
568  * conversion is done as follows:
569  *
570  * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
571  *
572  * - 'too large' values [that would result in larger than
573  *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
574  *
575  * - all other values are converted to jiffies by either multiplying
576  *   the input value by a factor or dividing it with a factor and
577  *   handling any 32-bit overflows.
578  *   for the details see __msecs_to_jiffies()
579  *
580  * msecs_to_jiffies() checks for the passed in value being a constant
581  * via __builtin_constant_p() allowing gcc to eliminate most of the
582  * code, __msecs_to_jiffies() is called if the value passed does not
583  * allow constant folding and the actual conversion must be done at
584  * runtime.
585  * the _msecs_to_jiffies helpers are the HZ dependent conversion
586  * routines found in include/linux/jiffies.h
587  */
588 unsigned long __msecs_to_jiffies(const unsigned int m)
589 {
590         /*
591          * Negative value, means infinite timeout:
592          */
593         if ((int)m < 0)
594                 return MAX_JIFFY_OFFSET;
595         return _msecs_to_jiffies(m);
596 }
597 EXPORT_SYMBOL(__msecs_to_jiffies);
598
599 unsigned long __usecs_to_jiffies(const unsigned int u)
600 {
601         if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
602                 return MAX_JIFFY_OFFSET;
603         return _usecs_to_jiffies(u);
604 }
605 EXPORT_SYMBOL(__usecs_to_jiffies);
606
607 /*
608  * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
609  * that a remainder subtract here would not do the right thing as the
610  * resolution values don't fall on second boundries.  I.e. the line:
611  * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
612  * Note that due to the small error in the multiplier here, this
613  * rounding is incorrect for sufficiently large values of tv_nsec, but
614  * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
615  * OK.
616  *
617  * Rather, we just shift the bits off the right.
618  *
619  * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
620  * value to a scaled second value.
621  */
622 static unsigned long
623 __timespec64_to_jiffies(u64 sec, long nsec)
624 {
625         nsec = nsec + TICK_NSEC - 1;
626
627         if (sec >= MAX_SEC_IN_JIFFIES){
628                 sec = MAX_SEC_IN_JIFFIES;
629                 nsec = 0;
630         }
631         return ((sec * SEC_CONVERSION) +
632                 (((u64)nsec * NSEC_CONVERSION) >>
633                  (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
634
635 }
636
637 static unsigned long
638 __timespec_to_jiffies(unsigned long sec, long nsec)
639 {
640         return __timespec64_to_jiffies((u64)sec, nsec);
641 }
642
643 unsigned long
644 timespec64_to_jiffies(const struct timespec64 *value)
645 {
646         return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
647 }
648 EXPORT_SYMBOL(timespec64_to_jiffies);
649
650 void
651 jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
652 {
653         /*
654          * Convert jiffies to nanoseconds and separate with
655          * one divide.
656          */
657         u32 rem;
658         value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
659                                     NSEC_PER_SEC, &rem);
660         value->tv_nsec = rem;
661 }
662 EXPORT_SYMBOL(jiffies_to_timespec64);
663
664 /*
665  * We could use a similar algorithm to timespec_to_jiffies (with a
666  * different multiplier for usec instead of nsec). But this has a
667  * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
668  * usec value, since it's not necessarily integral.
669  *
670  * We could instead round in the intermediate scaled representation
671  * (i.e. in units of 1/2^(large scale) jiffies) but that's also
672  * perilous: the scaling introduces a small positive error, which
673  * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
674  * units to the intermediate before shifting) leads to accidental
675  * overflow and overestimates.
676  *
677  * At the cost of one additional multiplication by a constant, just
678  * use the timespec implementation.
679  */
680 unsigned long
681 timeval_to_jiffies(const struct timeval *value)
682 {
683         return __timespec_to_jiffies(value->tv_sec,
684                                      value->tv_usec * NSEC_PER_USEC);
685 }
686 EXPORT_SYMBOL(timeval_to_jiffies);
687
688 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
689 {
690         /*
691          * Convert jiffies to nanoseconds and separate with
692          * one divide.
693          */
694         u32 rem;
695
696         value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
697                                     NSEC_PER_SEC, &rem);
698         value->tv_usec = rem / NSEC_PER_USEC;
699 }
700 EXPORT_SYMBOL(jiffies_to_timeval);
701
702 /*
703  * Convert jiffies/jiffies_64 to clock_t and back.
704  */
705 clock_t jiffies_to_clock_t(unsigned long x)
706 {
707 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
708 # if HZ < USER_HZ
709         return x * (USER_HZ / HZ);
710 # else
711         return x / (HZ / USER_HZ);
712 # endif
713 #else
714         return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
715 #endif
716 }
717 EXPORT_SYMBOL(jiffies_to_clock_t);
718
719 unsigned long clock_t_to_jiffies(unsigned long x)
720 {
721 #if (HZ % USER_HZ)==0
722         if (x >= ~0UL / (HZ / USER_HZ))
723                 return ~0UL;
724         return x * (HZ / USER_HZ);
725 #else
726         /* Don't worry about loss of precision here .. */
727         if (x >= ~0UL / HZ * USER_HZ)
728                 return ~0UL;
729
730         /* .. but do try to contain it here */
731         return div_u64((u64)x * HZ, USER_HZ);
732 #endif
733 }
734 EXPORT_SYMBOL(clock_t_to_jiffies);
735
736 u64 jiffies_64_to_clock_t(u64 x)
737 {
738 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
739 # if HZ < USER_HZ
740         x = div_u64(x * USER_HZ, HZ);
741 # elif HZ > USER_HZ
742         x = div_u64(x, HZ / USER_HZ);
743 # else
744         /* Nothing to do */
745 # endif
746 #else
747         /*
748          * There are better ways that don't overflow early,
749          * but even this doesn't overflow in hundreds of years
750          * in 64 bits, so..
751          */
752         x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
753 #endif
754         return x;
755 }
756 EXPORT_SYMBOL(jiffies_64_to_clock_t);
757
758 u64 nsec_to_clock_t(u64 x)
759 {
760 #if (NSEC_PER_SEC % USER_HZ) == 0
761         return div_u64(x, NSEC_PER_SEC / USER_HZ);
762 #elif (USER_HZ % 512) == 0
763         return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
764 #else
765         /*
766          * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
767          * overflow after 64.99 years.
768          * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
769          */
770         return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
771 #endif
772 }
773
774 u64 jiffies64_to_nsecs(u64 j)
775 {
776 #if !(NSEC_PER_SEC % HZ)
777         return (NSEC_PER_SEC / HZ) * j;
778 # else
779         return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
780 #endif
781 }
782 EXPORT_SYMBOL(jiffies64_to_nsecs);
783
784 /**
785  * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
786  *
787  * @n:  nsecs in u64
788  *
789  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
790  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
791  * for scheduler, not for use in device drivers to calculate timeout value.
792  *
793  * note:
794  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
795  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
796  */
797 u64 nsecs_to_jiffies64(u64 n)
798 {
799 #if (NSEC_PER_SEC % HZ) == 0
800         /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
801         return div_u64(n, NSEC_PER_SEC / HZ);
802 #elif (HZ % 512) == 0
803         /* overflow after 292 years if HZ = 1024 */
804         return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
805 #else
806         /*
807          * Generic case - optimized for cases where HZ is a multiple of 3.
808          * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
809          */
810         return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
811 #endif
812 }
813 EXPORT_SYMBOL(nsecs_to_jiffies64);
814
815 /**
816  * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
817  *
818  * @n:  nsecs in u64
819  *
820  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
821  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
822  * for scheduler, not for use in device drivers to calculate timeout value.
823  *
824  * note:
825  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
826  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
827  */
828 unsigned long nsecs_to_jiffies(u64 n)
829 {
830         return (unsigned long)nsecs_to_jiffies64(n);
831 }
832 EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
833
834 /*
835  * Add two timespec64 values and do a safety check for overflow.
836  * It's assumed that both values are valid (>= 0).
837  * And, each timespec64 is in normalized form.
838  */
839 struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
840                                 const struct timespec64 rhs)
841 {
842         struct timespec64 res;
843
844         set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
845                         lhs.tv_nsec + rhs.tv_nsec);
846
847         if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
848                 res.tv_sec = TIME64_MAX;
849                 res.tv_nsec = 0;
850         }
851
852         return res;
853 }
854
855 int get_timespec64(struct timespec64 *ts,
856                    const struct __kernel_timespec __user *uts)
857 {
858         struct __kernel_timespec kts;
859         int ret;
860
861         ret = copy_from_user(&kts, uts, sizeof(kts));
862         if (ret)
863                 return -EFAULT;
864
865         ts->tv_sec = kts.tv_sec;
866
867         /* Zero out the padding for 32 bit systems or in compat mode */
868         if (IS_ENABLED(CONFIG_64BIT_TIME) && (!IS_ENABLED(CONFIG_64BIT) || in_compat_syscall()))
869                 kts.tv_nsec &= 0xFFFFFFFFUL;
870
871         ts->tv_nsec = kts.tv_nsec;
872
873         return 0;
874 }
875 EXPORT_SYMBOL_GPL(get_timespec64);
876
877 int put_timespec64(const struct timespec64 *ts,
878                    struct __kernel_timespec __user *uts)
879 {
880         struct __kernel_timespec kts = {
881                 .tv_sec = ts->tv_sec,
882                 .tv_nsec = ts->tv_nsec
883         };
884
885         return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
886 }
887 EXPORT_SYMBOL_GPL(put_timespec64);
888
889 int __compat_get_timespec64(struct timespec64 *ts64,
890                                    const struct compat_timespec __user *cts)
891 {
892         struct compat_timespec ts;
893         int ret;
894
895         ret = copy_from_user(&ts, cts, sizeof(ts));
896         if (ret)
897                 return -EFAULT;
898
899         ts64->tv_sec = ts.tv_sec;
900         ts64->tv_nsec = ts.tv_nsec;
901
902         return 0;
903 }
904
905 int __compat_put_timespec64(const struct timespec64 *ts64,
906                                    struct compat_timespec __user *cts)
907 {
908         struct compat_timespec ts = {
909                 .tv_sec = ts64->tv_sec,
910                 .tv_nsec = ts64->tv_nsec
911         };
912         return copy_to_user(cts, &ts, sizeof(ts)) ? -EFAULT : 0;
913 }
914
915 int compat_get_timespec64(struct timespec64 *ts, const void __user *uts)
916 {
917         if (COMPAT_USE_64BIT_TIME)
918                 return copy_from_user(ts, uts, sizeof(*ts)) ? -EFAULT : 0;
919         else
920                 return __compat_get_timespec64(ts, uts);
921 }
922 EXPORT_SYMBOL_GPL(compat_get_timespec64);
923
924 int compat_put_timespec64(const struct timespec64 *ts, void __user *uts)
925 {
926         if (COMPAT_USE_64BIT_TIME)
927                 return copy_to_user(uts, ts, sizeof(*ts)) ? -EFAULT : 0;
928         else
929                 return __compat_put_timespec64(ts, uts);
930 }
931 EXPORT_SYMBOL_GPL(compat_put_timespec64);
932
933 int get_itimerspec64(struct itimerspec64 *it,
934                         const struct itimerspec __user *uit)
935 {
936         int ret;
937
938         ret = get_timespec64(&it->it_interval, &uit->it_interval);
939         if (ret)
940                 return ret;
941
942         ret = get_timespec64(&it->it_value, &uit->it_value);
943
944         return ret;
945 }
946 EXPORT_SYMBOL_GPL(get_itimerspec64);
947
948 int put_itimerspec64(const struct itimerspec64 *it,
949                         struct itimerspec __user *uit)
950 {
951         int ret;
952
953         ret = put_timespec64(&it->it_interval, &uit->it_interval);
954         if (ret)
955                 return ret;
956
957         ret = put_timespec64(&it->it_value, &uit->it_value);
958
959         return ret;
960 }
961 EXPORT_SYMBOL_GPL(put_itimerspec64);