Merge tag 'lkdtm-next' of https://git.kernel.org/pub/scm/linux/kernel/git/kees/linux...
[linux-2.6-microblaze.git] / kernel / time / tick-sched.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
6  *
7  *  No idle tick implementation for low and high resolution timers
8  *
9  *  Started by: Thomas Gleixner and Ingo Molnar
10  */
11 #include <linux/cpu.h>
12 #include <linux/err.h>
13 #include <linux/hrtimer.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/percpu.h>
17 #include <linux/nmi.h>
18 #include <linux/profile.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/clock.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/nohz.h>
23 #include <linux/sched/loadavg.h>
24 #include <linux/module.h>
25 #include <linux/irq_work.h>
26 #include <linux/posix-timers.h>
27 #include <linux/context_tracking.h>
28 #include <linux/mm.h>
29
30 #include <asm/irq_regs.h>
31
32 #include "tick-internal.h"
33
34 #include <trace/events/timer.h>
35
36 /*
37  * Per-CPU nohz control structure
38  */
39 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
40
41 struct tick_sched *tick_get_tick_sched(int cpu)
42 {
43         return &per_cpu(tick_cpu_sched, cpu);
44 }
45
46 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
47 /*
48  * The time, when the last jiffy update happened. Write access must hold
49  * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a
50  * consistent view of jiffies and last_jiffies_update.
51  */
52 static ktime_t last_jiffies_update;
53
54 /*
55  * Must be called with interrupts disabled !
56  */
57 static void tick_do_update_jiffies64(ktime_t now)
58 {
59         unsigned long ticks = 1;
60         ktime_t delta, nextp;
61
62         /*
63          * 64bit can do a quick check without holding jiffies lock and
64          * without looking at the sequence count. The smp_load_acquire()
65          * pairs with the update done later in this function.
66          *
67          * 32bit cannot do that because the store of tick_next_period
68          * consists of two 32bit stores and the first store could move it
69          * to a random point in the future.
70          */
71         if (IS_ENABLED(CONFIG_64BIT)) {
72                 if (ktime_before(now, smp_load_acquire(&tick_next_period)))
73                         return;
74         } else {
75                 unsigned int seq;
76
77                 /*
78                  * Avoid contention on jiffies_lock and protect the quick
79                  * check with the sequence count.
80                  */
81                 do {
82                         seq = read_seqcount_begin(&jiffies_seq);
83                         nextp = tick_next_period;
84                 } while (read_seqcount_retry(&jiffies_seq, seq));
85
86                 if (ktime_before(now, nextp))
87                         return;
88         }
89
90         /* Quick check failed, i.e. update is required. */
91         raw_spin_lock(&jiffies_lock);
92         /*
93          * Reevaluate with the lock held. Another CPU might have done the
94          * update already.
95          */
96         if (ktime_before(now, tick_next_period)) {
97                 raw_spin_unlock(&jiffies_lock);
98                 return;
99         }
100
101         write_seqcount_begin(&jiffies_seq);
102
103         delta = ktime_sub(now, tick_next_period);
104         if (unlikely(delta >= TICK_NSEC)) {
105                 /* Slow path for long idle sleep times */
106                 s64 incr = TICK_NSEC;
107
108                 ticks += ktime_divns(delta, incr);
109
110                 last_jiffies_update = ktime_add_ns(last_jiffies_update,
111                                                    incr * ticks);
112         } else {
113                 last_jiffies_update = ktime_add_ns(last_jiffies_update,
114                                                    TICK_NSEC);
115         }
116
117         /* Advance jiffies to complete the jiffies_seq protected job */
118         jiffies_64 += ticks;
119
120         /*
121          * Keep the tick_next_period variable up to date.
122          */
123         nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC);
124
125         if (IS_ENABLED(CONFIG_64BIT)) {
126                 /*
127                  * Pairs with smp_load_acquire() in the lockless quick
128                  * check above and ensures that the update to jiffies_64 is
129                  * not reordered vs. the store to tick_next_period, neither
130                  * by the compiler nor by the CPU.
131                  */
132                 smp_store_release(&tick_next_period, nextp);
133         } else {
134                 /*
135                  * A plain store is good enough on 32bit as the quick check
136                  * above is protected by the sequence count.
137                  */
138                 tick_next_period = nextp;
139         }
140
141         /*
142          * Release the sequence count. calc_global_load() below is not
143          * protected by it, but jiffies_lock needs to be held to prevent
144          * concurrent invocations.
145          */
146         write_seqcount_end(&jiffies_seq);
147
148         calc_global_load();
149
150         raw_spin_unlock(&jiffies_lock);
151         update_wall_time();
152 }
153
154 /*
155  * Initialize and return retrieve the jiffies update.
156  */
157 static ktime_t tick_init_jiffy_update(void)
158 {
159         ktime_t period;
160
161         raw_spin_lock(&jiffies_lock);
162         write_seqcount_begin(&jiffies_seq);
163         /* Did we start the jiffies update yet ? */
164         if (last_jiffies_update == 0)
165                 last_jiffies_update = tick_next_period;
166         period = last_jiffies_update;
167         write_seqcount_end(&jiffies_seq);
168         raw_spin_unlock(&jiffies_lock);
169         return period;
170 }
171
172 #define MAX_STALLED_JIFFIES 5
173
174 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
175 {
176         int cpu = smp_processor_id();
177
178 #ifdef CONFIG_NO_HZ_COMMON
179         /*
180          * Check if the do_timer duty was dropped. We don't care about
181          * concurrency: This happens only when the CPU in charge went
182          * into a long sleep. If two CPUs happen to assign themselves to
183          * this duty, then the jiffies update is still serialized by
184          * jiffies_lock.
185          *
186          * If nohz_full is enabled, this should not happen because the
187          * tick_do_timer_cpu never relinquishes.
188          */
189         if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
190 #ifdef CONFIG_NO_HZ_FULL
191                 WARN_ON_ONCE(tick_nohz_full_running);
192 #endif
193                 tick_do_timer_cpu = cpu;
194         }
195 #endif
196
197         /* Check, if the jiffies need an update */
198         if (tick_do_timer_cpu == cpu)
199                 tick_do_update_jiffies64(now);
200
201         /*
202          * If jiffies update stalled for too long (timekeeper in stop_machine()
203          * or VMEXIT'ed for several msecs), force an update.
204          */
205         if (ts->last_tick_jiffies != jiffies) {
206                 ts->stalled_jiffies = 0;
207                 ts->last_tick_jiffies = READ_ONCE(jiffies);
208         } else {
209                 if (++ts->stalled_jiffies == MAX_STALLED_JIFFIES) {
210                         tick_do_update_jiffies64(now);
211                         ts->stalled_jiffies = 0;
212                         ts->last_tick_jiffies = READ_ONCE(jiffies);
213                 }
214         }
215
216         if (ts->inidle)
217                 ts->got_idle_tick = 1;
218 }
219
220 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
221 {
222 #ifdef CONFIG_NO_HZ_COMMON
223         /*
224          * When we are idle and the tick is stopped, we have to touch
225          * the watchdog as we might not schedule for a really long
226          * time. This happens on complete idle SMP systems while
227          * waiting on the login prompt. We also increment the "start of
228          * idle" jiffy stamp so the idle accounting adjustment we do
229          * when we go busy again does not account too much ticks.
230          */
231         if (ts->tick_stopped) {
232                 touch_softlockup_watchdog_sched();
233                 if (is_idle_task(current))
234                         ts->idle_jiffies++;
235                 /*
236                  * In case the current tick fired too early past its expected
237                  * expiration, make sure we don't bypass the next clock reprogramming
238                  * to the same deadline.
239                  */
240                 ts->next_tick = 0;
241         }
242 #endif
243         update_process_times(user_mode(regs));
244         profile_tick(CPU_PROFILING);
245 }
246 #endif
247
248 #ifdef CONFIG_NO_HZ_FULL
249 cpumask_var_t tick_nohz_full_mask;
250 EXPORT_SYMBOL_GPL(tick_nohz_full_mask);
251 bool tick_nohz_full_running;
252 EXPORT_SYMBOL_GPL(tick_nohz_full_running);
253 static atomic_t tick_dep_mask;
254
255 static bool check_tick_dependency(atomic_t *dep)
256 {
257         int val = atomic_read(dep);
258
259         if (val & TICK_DEP_MASK_POSIX_TIMER) {
260                 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
261                 return true;
262         }
263
264         if (val & TICK_DEP_MASK_PERF_EVENTS) {
265                 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
266                 return true;
267         }
268
269         if (val & TICK_DEP_MASK_SCHED) {
270                 trace_tick_stop(0, TICK_DEP_MASK_SCHED);
271                 return true;
272         }
273
274         if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
275                 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
276                 return true;
277         }
278
279         if (val & TICK_DEP_MASK_RCU) {
280                 trace_tick_stop(0, TICK_DEP_MASK_RCU);
281                 return true;
282         }
283
284         return false;
285 }
286
287 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
288 {
289         lockdep_assert_irqs_disabled();
290
291         if (unlikely(!cpu_online(cpu)))
292                 return false;
293
294         if (check_tick_dependency(&tick_dep_mask))
295                 return false;
296
297         if (check_tick_dependency(&ts->tick_dep_mask))
298                 return false;
299
300         if (check_tick_dependency(&current->tick_dep_mask))
301                 return false;
302
303         if (check_tick_dependency(&current->signal->tick_dep_mask))
304                 return false;
305
306         return true;
307 }
308
309 static void nohz_full_kick_func(struct irq_work *work)
310 {
311         /* Empty, the tick restart happens on tick_nohz_irq_exit() */
312 }
313
314 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) =
315         IRQ_WORK_INIT_HARD(nohz_full_kick_func);
316
317 /*
318  * Kick this CPU if it's full dynticks in order to force it to
319  * re-evaluate its dependency on the tick and restart it if necessary.
320  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
321  * is NMI safe.
322  */
323 static void tick_nohz_full_kick(void)
324 {
325         if (!tick_nohz_full_cpu(smp_processor_id()))
326                 return;
327
328         irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
329 }
330
331 /*
332  * Kick the CPU if it's full dynticks in order to force it to
333  * re-evaluate its dependency on the tick and restart it if necessary.
334  */
335 void tick_nohz_full_kick_cpu(int cpu)
336 {
337         if (!tick_nohz_full_cpu(cpu))
338                 return;
339
340         irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
341 }
342
343 static void tick_nohz_kick_task(struct task_struct *tsk)
344 {
345         int cpu;
346
347         /*
348          * If the task is not running, run_posix_cpu_timers()
349          * has nothing to elapse, IPI can then be spared.
350          *
351          * activate_task()                      STORE p->tick_dep_mask
352          *   STORE p->on_rq
353          * __schedule() (switch to task 'p')    smp_mb() (atomic_fetch_or())
354          *   LOCK rq->lock                      LOAD p->on_rq
355          *   smp_mb__after_spin_lock()
356          *   tick_nohz_task_switch()
357          *     LOAD p->tick_dep_mask
358          */
359         if (!sched_task_on_rq(tsk))
360                 return;
361
362         /*
363          * If the task concurrently migrates to another CPU,
364          * we guarantee it sees the new tick dependency upon
365          * schedule.
366          *
367          * set_task_cpu(p, cpu);
368          *   STORE p->cpu = @cpu
369          * __schedule() (switch to task 'p')
370          *   LOCK rq->lock
371          *   smp_mb__after_spin_lock()          STORE p->tick_dep_mask
372          *   tick_nohz_task_switch()            smp_mb() (atomic_fetch_or())
373          *      LOAD p->tick_dep_mask           LOAD p->cpu
374          */
375         cpu = task_cpu(tsk);
376
377         preempt_disable();
378         if (cpu_online(cpu))
379                 tick_nohz_full_kick_cpu(cpu);
380         preempt_enable();
381 }
382
383 /*
384  * Kick all full dynticks CPUs in order to force these to re-evaluate
385  * their dependency on the tick and restart it if necessary.
386  */
387 static void tick_nohz_full_kick_all(void)
388 {
389         int cpu;
390
391         if (!tick_nohz_full_running)
392                 return;
393
394         preempt_disable();
395         for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
396                 tick_nohz_full_kick_cpu(cpu);
397         preempt_enable();
398 }
399
400 static void tick_nohz_dep_set_all(atomic_t *dep,
401                                   enum tick_dep_bits bit)
402 {
403         int prev;
404
405         prev = atomic_fetch_or(BIT(bit), dep);
406         if (!prev)
407                 tick_nohz_full_kick_all();
408 }
409
410 /*
411  * Set a global tick dependency. Used by perf events that rely on freq and
412  * by unstable clock.
413  */
414 void tick_nohz_dep_set(enum tick_dep_bits bit)
415 {
416         tick_nohz_dep_set_all(&tick_dep_mask, bit);
417 }
418
419 void tick_nohz_dep_clear(enum tick_dep_bits bit)
420 {
421         atomic_andnot(BIT(bit), &tick_dep_mask);
422 }
423
424 /*
425  * Set per-CPU tick dependency. Used by scheduler and perf events in order to
426  * manage events throttling.
427  */
428 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
429 {
430         int prev;
431         struct tick_sched *ts;
432
433         ts = per_cpu_ptr(&tick_cpu_sched, cpu);
434
435         prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
436         if (!prev) {
437                 preempt_disable();
438                 /* Perf needs local kick that is NMI safe */
439                 if (cpu == smp_processor_id()) {
440                         tick_nohz_full_kick();
441                 } else {
442                         /* Remote irq work not NMI-safe */
443                         if (!WARN_ON_ONCE(in_nmi()))
444                                 tick_nohz_full_kick_cpu(cpu);
445                 }
446                 preempt_enable();
447         }
448 }
449 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
450
451 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
452 {
453         struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
454
455         atomic_andnot(BIT(bit), &ts->tick_dep_mask);
456 }
457 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
458
459 /*
460  * Set a per-task tick dependency. RCU need this. Also posix CPU timers
461  * in order to elapse per task timers.
462  */
463 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
464 {
465         if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask))
466                 tick_nohz_kick_task(tsk);
467 }
468 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
469
470 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
471 {
472         atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
473 }
474 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
475
476 /*
477  * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
478  * per process timers.
479  */
480 void tick_nohz_dep_set_signal(struct task_struct *tsk,
481                               enum tick_dep_bits bit)
482 {
483         int prev;
484         struct signal_struct *sig = tsk->signal;
485
486         prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask);
487         if (!prev) {
488                 struct task_struct *t;
489
490                 lockdep_assert_held(&tsk->sighand->siglock);
491                 __for_each_thread(sig, t)
492                         tick_nohz_kick_task(t);
493         }
494 }
495
496 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
497 {
498         atomic_andnot(BIT(bit), &sig->tick_dep_mask);
499 }
500
501 /*
502  * Re-evaluate the need for the tick as we switch the current task.
503  * It might need the tick due to per task/process properties:
504  * perf events, posix CPU timers, ...
505  */
506 void __tick_nohz_task_switch(void)
507 {
508         struct tick_sched *ts;
509
510         if (!tick_nohz_full_cpu(smp_processor_id()))
511                 return;
512
513         ts = this_cpu_ptr(&tick_cpu_sched);
514
515         if (ts->tick_stopped) {
516                 if (atomic_read(&current->tick_dep_mask) ||
517                     atomic_read(&current->signal->tick_dep_mask))
518                         tick_nohz_full_kick();
519         }
520 }
521
522 /* Get the boot-time nohz CPU list from the kernel parameters. */
523 void __init tick_nohz_full_setup(cpumask_var_t cpumask)
524 {
525         alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
526         cpumask_copy(tick_nohz_full_mask, cpumask);
527         tick_nohz_full_running = true;
528 }
529 EXPORT_SYMBOL_GPL(tick_nohz_full_setup);
530
531 static int tick_nohz_cpu_down(unsigned int cpu)
532 {
533         /*
534          * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
535          * timers, workqueues, timekeeping, ...) on behalf of full dynticks
536          * CPUs. It must remain online when nohz full is enabled.
537          */
538         if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
539                 return -EBUSY;
540         return 0;
541 }
542
543 void __init tick_nohz_init(void)
544 {
545         int cpu, ret;
546
547         if (!tick_nohz_full_running)
548                 return;
549
550         /*
551          * Full dynticks uses irq work to drive the tick rescheduling on safe
552          * locking contexts. But then we need irq work to raise its own
553          * interrupts to avoid circular dependency on the tick
554          */
555         if (!arch_irq_work_has_interrupt()) {
556                 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
557                 cpumask_clear(tick_nohz_full_mask);
558                 tick_nohz_full_running = false;
559                 return;
560         }
561
562         if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
563                         !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
564                 cpu = smp_processor_id();
565
566                 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
567                         pr_warn("NO_HZ: Clearing %d from nohz_full range "
568                                 "for timekeeping\n", cpu);
569                         cpumask_clear_cpu(cpu, tick_nohz_full_mask);
570                 }
571         }
572
573         for_each_cpu(cpu, tick_nohz_full_mask)
574                 context_tracking_cpu_set(cpu);
575
576         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
577                                         "kernel/nohz:predown", NULL,
578                                         tick_nohz_cpu_down);
579         WARN_ON(ret < 0);
580         pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
581                 cpumask_pr_args(tick_nohz_full_mask));
582 }
583 #endif
584
585 /*
586  * NOHZ - aka dynamic tick functionality
587  */
588 #ifdef CONFIG_NO_HZ_COMMON
589 /*
590  * NO HZ enabled ?
591  */
592 bool tick_nohz_enabled __read_mostly  = true;
593 unsigned long tick_nohz_active  __read_mostly;
594 /*
595  * Enable / Disable tickless mode
596  */
597 static int __init setup_tick_nohz(char *str)
598 {
599         return (kstrtobool(str, &tick_nohz_enabled) == 0);
600 }
601
602 __setup("nohz=", setup_tick_nohz);
603
604 bool tick_nohz_tick_stopped(void)
605 {
606         struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
607
608         return ts->tick_stopped;
609 }
610
611 bool tick_nohz_tick_stopped_cpu(int cpu)
612 {
613         struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
614
615         return ts->tick_stopped;
616 }
617
618 /**
619  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
620  *
621  * Called from interrupt entry when the CPU was idle
622  *
623  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
624  * must be updated. Otherwise an interrupt handler could use a stale jiffy
625  * value. We do this unconditionally on any CPU, as we don't know whether the
626  * CPU, which has the update task assigned is in a long sleep.
627  */
628 static void tick_nohz_update_jiffies(ktime_t now)
629 {
630         unsigned long flags;
631
632         __this_cpu_write(tick_cpu_sched.idle_waketime, now);
633
634         local_irq_save(flags);
635         tick_do_update_jiffies64(now);
636         local_irq_restore(flags);
637
638         touch_softlockup_watchdog_sched();
639 }
640
641 /*
642  * Updates the per-CPU time idle statistics counters
643  */
644 static void
645 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
646 {
647         ktime_t delta;
648
649         if (ts->idle_active) {
650                 delta = ktime_sub(now, ts->idle_entrytime);
651                 if (nr_iowait_cpu(cpu) > 0)
652                         ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
653                 else
654                         ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
655                 ts->idle_entrytime = now;
656         }
657
658         if (last_update_time)
659                 *last_update_time = ktime_to_us(now);
660
661 }
662
663 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
664 {
665         update_ts_time_stats(smp_processor_id(), ts, now, NULL);
666         ts->idle_active = 0;
667
668         sched_clock_idle_wakeup_event();
669 }
670
671 static void tick_nohz_start_idle(struct tick_sched *ts)
672 {
673         ts->idle_entrytime = ktime_get();
674         ts->idle_active = 1;
675         sched_clock_idle_sleep_event();
676 }
677
678 /**
679  * get_cpu_idle_time_us - get the total idle time of a CPU
680  * @cpu: CPU number to query
681  * @last_update_time: variable to store update time in. Do not update
682  * counters if NULL.
683  *
684  * Return the cumulative idle time (since boot) for a given
685  * CPU, in microseconds.
686  *
687  * This time is measured via accounting rather than sampling,
688  * and is as accurate as ktime_get() is.
689  *
690  * This function returns -1 if NOHZ is not enabled.
691  */
692 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
693 {
694         struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
695         ktime_t now, idle;
696
697         if (!tick_nohz_active)
698                 return -1;
699
700         now = ktime_get();
701         if (last_update_time) {
702                 update_ts_time_stats(cpu, ts, now, last_update_time);
703                 idle = ts->idle_sleeptime;
704         } else {
705                 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
706                         ktime_t delta = ktime_sub(now, ts->idle_entrytime);
707
708                         idle = ktime_add(ts->idle_sleeptime, delta);
709                 } else {
710                         idle = ts->idle_sleeptime;
711                 }
712         }
713
714         return ktime_to_us(idle);
715
716 }
717 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
718
719 /**
720  * get_cpu_iowait_time_us - get the total iowait time of a CPU
721  * @cpu: CPU number to query
722  * @last_update_time: variable to store update time in. Do not update
723  * counters if NULL.
724  *
725  * Return the cumulative iowait time (since boot) for a given
726  * CPU, in microseconds.
727  *
728  * This time is measured via accounting rather than sampling,
729  * and is as accurate as ktime_get() is.
730  *
731  * This function returns -1 if NOHZ is not enabled.
732  */
733 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
734 {
735         struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
736         ktime_t now, iowait;
737
738         if (!tick_nohz_active)
739                 return -1;
740
741         now = ktime_get();
742         if (last_update_time) {
743                 update_ts_time_stats(cpu, ts, now, last_update_time);
744                 iowait = ts->iowait_sleeptime;
745         } else {
746                 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
747                         ktime_t delta = ktime_sub(now, ts->idle_entrytime);
748
749                         iowait = ktime_add(ts->iowait_sleeptime, delta);
750                 } else {
751                         iowait = ts->iowait_sleeptime;
752                 }
753         }
754
755         return ktime_to_us(iowait);
756 }
757 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
758
759 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
760 {
761         hrtimer_cancel(&ts->sched_timer);
762         hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
763
764         /* Forward the time to expire in the future */
765         hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
766
767         if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
768                 hrtimer_start_expires(&ts->sched_timer,
769                                       HRTIMER_MODE_ABS_PINNED_HARD);
770         } else {
771                 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
772         }
773
774         /*
775          * Reset to make sure next tick stop doesn't get fooled by past
776          * cached clock deadline.
777          */
778         ts->next_tick = 0;
779 }
780
781 static inline bool local_timer_softirq_pending(void)
782 {
783         return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
784 }
785
786 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
787 {
788         u64 basemono, next_tick, delta, expires;
789         unsigned long basejiff;
790         unsigned int seq;
791
792         /* Read jiffies and the time when jiffies were updated last */
793         do {
794                 seq = read_seqcount_begin(&jiffies_seq);
795                 basemono = last_jiffies_update;
796                 basejiff = jiffies;
797         } while (read_seqcount_retry(&jiffies_seq, seq));
798         ts->last_jiffies = basejiff;
799         ts->timer_expires_base = basemono;
800
801         /*
802          * Keep the periodic tick, when RCU, architecture or irq_work
803          * requests it.
804          * Aside of that check whether the local timer softirq is
805          * pending. If so its a bad idea to call get_next_timer_interrupt()
806          * because there is an already expired timer, so it will request
807          * immediate expiry, which rearms the hardware timer with a
808          * minimal delta which brings us back to this place
809          * immediately. Lather, rinse and repeat...
810          */
811         if (rcu_needs_cpu() || arch_needs_cpu() ||
812             irq_work_needs_cpu() || local_timer_softirq_pending()) {
813                 next_tick = basemono + TICK_NSEC;
814         } else {
815                 /*
816                  * Get the next pending timer. If high resolution
817                  * timers are enabled this only takes the timer wheel
818                  * timers into account. If high resolution timers are
819                  * disabled this also looks at the next expiring
820                  * hrtimer.
821                  */
822                 next_tick = get_next_timer_interrupt(basejiff, basemono);
823                 ts->next_timer = next_tick;
824         }
825
826         /*
827          * If the tick is due in the next period, keep it ticking or
828          * force prod the timer.
829          */
830         delta = next_tick - basemono;
831         if (delta <= (u64)TICK_NSEC) {
832                 /*
833                  * Tell the timer code that the base is not idle, i.e. undo
834                  * the effect of get_next_timer_interrupt():
835                  */
836                 timer_clear_idle();
837                 /*
838                  * We've not stopped the tick yet, and there's a timer in the
839                  * next period, so no point in stopping it either, bail.
840                  */
841                 if (!ts->tick_stopped) {
842                         ts->timer_expires = 0;
843                         goto out;
844                 }
845         }
846
847         /*
848          * If this CPU is the one which had the do_timer() duty last, we limit
849          * the sleep time to the timekeeping max_deferment value.
850          * Otherwise we can sleep as long as we want.
851          */
852         delta = timekeeping_max_deferment();
853         if (cpu != tick_do_timer_cpu &&
854             (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
855                 delta = KTIME_MAX;
856
857         /* Calculate the next expiry time */
858         if (delta < (KTIME_MAX - basemono))
859                 expires = basemono + delta;
860         else
861                 expires = KTIME_MAX;
862
863         ts->timer_expires = min_t(u64, expires, next_tick);
864
865 out:
866         return ts->timer_expires;
867 }
868
869 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
870 {
871         struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
872         u64 basemono = ts->timer_expires_base;
873         u64 expires = ts->timer_expires;
874         ktime_t tick = expires;
875
876         /* Make sure we won't be trying to stop it twice in a row. */
877         ts->timer_expires_base = 0;
878
879         /*
880          * If this CPU is the one which updates jiffies, then give up
881          * the assignment and let it be taken by the CPU which runs
882          * the tick timer next, which might be this CPU as well. If we
883          * don't drop this here the jiffies might be stale and
884          * do_timer() never invoked. Keep track of the fact that it
885          * was the one which had the do_timer() duty last.
886          */
887         if (cpu == tick_do_timer_cpu) {
888                 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
889                 ts->do_timer_last = 1;
890         } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
891                 ts->do_timer_last = 0;
892         }
893
894         /* Skip reprogram of event if its not changed */
895         if (ts->tick_stopped && (expires == ts->next_tick)) {
896                 /* Sanity check: make sure clockevent is actually programmed */
897                 if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
898                         return;
899
900                 WARN_ON_ONCE(1);
901                 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
902                             basemono, ts->next_tick, dev->next_event,
903                             hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
904         }
905
906         /*
907          * nohz_stop_sched_tick can be called several times before
908          * the nohz_restart_sched_tick is called. This happens when
909          * interrupts arrive which do not cause a reschedule. In the
910          * first call we save the current tick time, so we can restart
911          * the scheduler tick in nohz_restart_sched_tick.
912          */
913         if (!ts->tick_stopped) {
914                 calc_load_nohz_start();
915                 quiet_vmstat();
916
917                 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
918                 ts->tick_stopped = 1;
919                 trace_tick_stop(1, TICK_DEP_MASK_NONE);
920         }
921
922         ts->next_tick = tick;
923
924         /*
925          * If the expiration time == KTIME_MAX, then we simply stop
926          * the tick timer.
927          */
928         if (unlikely(expires == KTIME_MAX)) {
929                 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
930                         hrtimer_cancel(&ts->sched_timer);
931                 return;
932         }
933
934         if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
935                 hrtimer_start(&ts->sched_timer, tick,
936                               HRTIMER_MODE_ABS_PINNED_HARD);
937         } else {
938                 hrtimer_set_expires(&ts->sched_timer, tick);
939                 tick_program_event(tick, 1);
940         }
941 }
942
943 static void tick_nohz_retain_tick(struct tick_sched *ts)
944 {
945         ts->timer_expires_base = 0;
946 }
947
948 #ifdef CONFIG_NO_HZ_FULL
949 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
950 {
951         if (tick_nohz_next_event(ts, cpu))
952                 tick_nohz_stop_tick(ts, cpu);
953         else
954                 tick_nohz_retain_tick(ts);
955 }
956 #endif /* CONFIG_NO_HZ_FULL */
957
958 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
959 {
960         /* Update jiffies first */
961         tick_do_update_jiffies64(now);
962
963         /*
964          * Clear the timer idle flag, so we avoid IPIs on remote queueing and
965          * the clock forward checks in the enqueue path:
966          */
967         timer_clear_idle();
968
969         calc_load_nohz_stop();
970         touch_softlockup_watchdog_sched();
971         /*
972          * Cancel the scheduled timer and restore the tick
973          */
974         ts->tick_stopped  = 0;
975         tick_nohz_restart(ts, now);
976 }
977
978 static void __tick_nohz_full_update_tick(struct tick_sched *ts,
979                                          ktime_t now)
980 {
981 #ifdef CONFIG_NO_HZ_FULL
982         int cpu = smp_processor_id();
983
984         if (can_stop_full_tick(cpu, ts))
985                 tick_nohz_stop_sched_tick(ts, cpu);
986         else if (ts->tick_stopped)
987                 tick_nohz_restart_sched_tick(ts, now);
988 #endif
989 }
990
991 static void tick_nohz_full_update_tick(struct tick_sched *ts)
992 {
993         if (!tick_nohz_full_cpu(smp_processor_id()))
994                 return;
995
996         if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
997                 return;
998
999         __tick_nohz_full_update_tick(ts, ktime_get());
1000 }
1001
1002 /*
1003  * A pending softirq outside an IRQ (or softirq disabled section) context
1004  * should be waiting for ksoftirqd to handle it. Therefore we shouldn't
1005  * reach here due to the need_resched() early check in can_stop_idle_tick().
1006  *
1007  * However if we are between CPUHP_AP_SMPBOOT_THREADS and CPU_TEARDOWN_CPU on the
1008  * cpu_down() process, softirqs can still be raised while ksoftirqd is parked,
1009  * triggering the below since wakep_softirqd() is ignored.
1010  *
1011  */
1012 static bool report_idle_softirq(void)
1013 {
1014         static int ratelimit;
1015         unsigned int pending = local_softirq_pending();
1016
1017         if (likely(!pending))
1018                 return false;
1019
1020         /* Some softirqs claim to be safe against hotplug and ksoftirqd parking */
1021         if (!cpu_active(smp_processor_id())) {
1022                 pending &= ~SOFTIRQ_HOTPLUG_SAFE_MASK;
1023                 if (!pending)
1024                         return false;
1025         }
1026
1027         if (ratelimit < 10)
1028                 return false;
1029
1030         /* On RT, softirqs handling may be waiting on some lock */
1031         if (!local_bh_blocked())
1032                 return false;
1033
1034         pr_warn("NOHZ tick-stop error: local softirq work is pending, handler #%02x!!!\n",
1035                 pending);
1036         ratelimit++;
1037
1038         return true;
1039 }
1040
1041 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
1042 {
1043         /*
1044          * If this CPU is offline and it is the one which updates
1045          * jiffies, then give up the assignment and let it be taken by
1046          * the CPU which runs the tick timer next. If we don't drop
1047          * this here the jiffies might be stale and do_timer() never
1048          * invoked.
1049          */
1050         if (unlikely(!cpu_online(cpu))) {
1051                 if (cpu == tick_do_timer_cpu)
1052                         tick_do_timer_cpu = TICK_DO_TIMER_NONE;
1053                 /*
1054                  * Make sure the CPU doesn't get fooled by obsolete tick
1055                  * deadline if it comes back online later.
1056                  */
1057                 ts->next_tick = 0;
1058                 return false;
1059         }
1060
1061         if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
1062                 return false;
1063
1064         if (need_resched())
1065                 return false;
1066
1067         if (unlikely(report_idle_softirq()))
1068                 return false;
1069
1070         if (tick_nohz_full_enabled()) {
1071                 /*
1072                  * Keep the tick alive to guarantee timekeeping progression
1073                  * if there are full dynticks CPUs around
1074                  */
1075                 if (tick_do_timer_cpu == cpu)
1076                         return false;
1077
1078                 /* Should not happen for nohz-full */
1079                 if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
1080                         return false;
1081         }
1082
1083         return true;
1084 }
1085
1086 static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
1087 {
1088         ktime_t expires;
1089         int cpu = smp_processor_id();
1090
1091         /*
1092          * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
1093          * tick timer expiration time is known already.
1094          */
1095         if (ts->timer_expires_base)
1096                 expires = ts->timer_expires;
1097         else if (can_stop_idle_tick(cpu, ts))
1098                 expires = tick_nohz_next_event(ts, cpu);
1099         else
1100                 return;
1101
1102         ts->idle_calls++;
1103
1104         if (expires > 0LL) {
1105                 int was_stopped = ts->tick_stopped;
1106
1107                 tick_nohz_stop_tick(ts, cpu);
1108
1109                 ts->idle_sleeps++;
1110                 ts->idle_expires = expires;
1111
1112                 if (!was_stopped && ts->tick_stopped) {
1113                         ts->idle_jiffies = ts->last_jiffies;
1114                         nohz_balance_enter_idle(cpu);
1115                 }
1116         } else {
1117                 tick_nohz_retain_tick(ts);
1118         }
1119 }
1120
1121 /**
1122  * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
1123  *
1124  * When the next event is more than a tick into the future, stop the idle tick
1125  */
1126 void tick_nohz_idle_stop_tick(void)
1127 {
1128         __tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
1129 }
1130
1131 void tick_nohz_idle_retain_tick(void)
1132 {
1133         tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
1134         /*
1135          * Undo the effect of get_next_timer_interrupt() called from
1136          * tick_nohz_next_event().
1137          */
1138         timer_clear_idle();
1139 }
1140
1141 /**
1142  * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1143  *
1144  * Called when we start the idle loop.
1145  */
1146 void tick_nohz_idle_enter(void)
1147 {
1148         struct tick_sched *ts;
1149
1150         lockdep_assert_irqs_enabled();
1151
1152         local_irq_disable();
1153
1154         ts = this_cpu_ptr(&tick_cpu_sched);
1155
1156         WARN_ON_ONCE(ts->timer_expires_base);
1157
1158         ts->inidle = 1;
1159         tick_nohz_start_idle(ts);
1160
1161         local_irq_enable();
1162 }
1163
1164 /**
1165  * tick_nohz_irq_exit - update next tick event from interrupt exit
1166  *
1167  * When an interrupt fires while we are idle and it doesn't cause
1168  * a reschedule, it may still add, modify or delete a timer, enqueue
1169  * an RCU callback, etc...
1170  * So we need to re-calculate and reprogram the next tick event.
1171  */
1172 void tick_nohz_irq_exit(void)
1173 {
1174         struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1175
1176         if (ts->inidle)
1177                 tick_nohz_start_idle(ts);
1178         else
1179                 tick_nohz_full_update_tick(ts);
1180 }
1181
1182 /**
1183  * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1184  */
1185 bool tick_nohz_idle_got_tick(void)
1186 {
1187         struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1188
1189         if (ts->got_idle_tick) {
1190                 ts->got_idle_tick = 0;
1191                 return true;
1192         }
1193         return false;
1194 }
1195
1196 /**
1197  * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1198  * or the tick, whatever that expires first. Note that, if the tick has been
1199  * stopped, it returns the next hrtimer.
1200  *
1201  * Called from power state control code with interrupts disabled
1202  */
1203 ktime_t tick_nohz_get_next_hrtimer(void)
1204 {
1205         return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1206 }
1207
1208 /**
1209  * tick_nohz_get_sleep_length - return the expected length of the current sleep
1210  * @delta_next: duration until the next event if the tick cannot be stopped
1211  *
1212  * Called from power state control code with interrupts disabled.
1213  *
1214  * The return value of this function and/or the value returned by it through the
1215  * @delta_next pointer can be negative which must be taken into account by its
1216  * callers.
1217  */
1218 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1219 {
1220         struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1221         struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1222         int cpu = smp_processor_id();
1223         /*
1224          * The idle entry time is expected to be a sufficient approximation of
1225          * the current time at this point.
1226          */
1227         ktime_t now = ts->idle_entrytime;
1228         ktime_t next_event;
1229
1230         WARN_ON_ONCE(!ts->inidle);
1231
1232         *delta_next = ktime_sub(dev->next_event, now);
1233
1234         if (!can_stop_idle_tick(cpu, ts))
1235                 return *delta_next;
1236
1237         next_event = tick_nohz_next_event(ts, cpu);
1238         if (!next_event)
1239                 return *delta_next;
1240
1241         /*
1242          * If the next highres timer to expire is earlier than next_event, the
1243          * idle governor needs to know that.
1244          */
1245         next_event = min_t(u64, next_event,
1246                            hrtimer_next_event_without(&ts->sched_timer));
1247
1248         return ktime_sub(next_event, now);
1249 }
1250
1251 /**
1252  * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1253  * for a particular CPU.
1254  *
1255  * Called from the schedutil frequency scaling governor in scheduler context.
1256  */
1257 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1258 {
1259         struct tick_sched *ts = tick_get_tick_sched(cpu);
1260
1261         return ts->idle_calls;
1262 }
1263
1264 /**
1265  * tick_nohz_get_idle_calls - return the current idle calls counter value
1266  *
1267  * Called from the schedutil frequency scaling governor in scheduler context.
1268  */
1269 unsigned long tick_nohz_get_idle_calls(void)
1270 {
1271         struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1272
1273         return ts->idle_calls;
1274 }
1275
1276 static void tick_nohz_account_idle_time(struct tick_sched *ts,
1277                                         ktime_t now)
1278 {
1279         unsigned long ticks;
1280
1281         ts->idle_exittime = now;
1282
1283         if (vtime_accounting_enabled_this_cpu())
1284                 return;
1285         /*
1286          * We stopped the tick in idle. Update process times would miss the
1287          * time we slept as update_process_times does only a 1 tick
1288          * accounting. Enforce that this is accounted to idle !
1289          */
1290         ticks = jiffies - ts->idle_jiffies;
1291         /*
1292          * We might be one off. Do not randomly account a huge number of ticks!
1293          */
1294         if (ticks && ticks < LONG_MAX)
1295                 account_idle_ticks(ticks);
1296 }
1297
1298 void tick_nohz_idle_restart_tick(void)
1299 {
1300         struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1301
1302         if (ts->tick_stopped) {
1303                 ktime_t now = ktime_get();
1304                 tick_nohz_restart_sched_tick(ts, now);
1305                 tick_nohz_account_idle_time(ts, now);
1306         }
1307 }
1308
1309 static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now)
1310 {
1311         if (tick_nohz_full_cpu(smp_processor_id()))
1312                 __tick_nohz_full_update_tick(ts, now);
1313         else
1314                 tick_nohz_restart_sched_tick(ts, now);
1315
1316         tick_nohz_account_idle_time(ts, now);
1317 }
1318
1319 /**
1320  * tick_nohz_idle_exit - restart the idle tick from the idle task
1321  *
1322  * Restart the idle tick when the CPU is woken up from idle
1323  * This also exit the RCU extended quiescent state. The CPU
1324  * can use RCU again after this function is called.
1325  */
1326 void tick_nohz_idle_exit(void)
1327 {
1328         struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1329         bool idle_active, tick_stopped;
1330         ktime_t now;
1331
1332         local_irq_disable();
1333
1334         WARN_ON_ONCE(!ts->inidle);
1335         WARN_ON_ONCE(ts->timer_expires_base);
1336
1337         ts->inidle = 0;
1338         idle_active = ts->idle_active;
1339         tick_stopped = ts->tick_stopped;
1340
1341         if (idle_active || tick_stopped)
1342                 now = ktime_get();
1343
1344         if (idle_active)
1345                 tick_nohz_stop_idle(ts, now);
1346
1347         if (tick_stopped)
1348                 tick_nohz_idle_update_tick(ts, now);
1349
1350         local_irq_enable();
1351 }
1352
1353 /*
1354  * The nohz low res interrupt handler
1355  */
1356 static void tick_nohz_handler(struct clock_event_device *dev)
1357 {
1358         struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1359         struct pt_regs *regs = get_irq_regs();
1360         ktime_t now = ktime_get();
1361
1362         dev->next_event = KTIME_MAX;
1363
1364         tick_sched_do_timer(ts, now);
1365         tick_sched_handle(ts, regs);
1366
1367         /* No need to reprogram if we are running tickless  */
1368         if (unlikely(ts->tick_stopped))
1369                 return;
1370
1371         hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1372         tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1373 }
1374
1375 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1376 {
1377         if (!tick_nohz_enabled)
1378                 return;
1379         ts->nohz_mode = mode;
1380         /* One update is enough */
1381         if (!test_and_set_bit(0, &tick_nohz_active))
1382                 timers_update_nohz();
1383 }
1384
1385 /**
1386  * tick_nohz_switch_to_nohz - switch to nohz mode
1387  */
1388 static void tick_nohz_switch_to_nohz(void)
1389 {
1390         struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1391         ktime_t next;
1392
1393         if (!tick_nohz_enabled)
1394                 return;
1395
1396         if (tick_switch_to_oneshot(tick_nohz_handler))
1397                 return;
1398
1399         /*
1400          * Recycle the hrtimer in ts, so we can share the
1401          * hrtimer_forward with the highres code.
1402          */
1403         hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1404         /* Get the next period */
1405         next = tick_init_jiffy_update();
1406
1407         hrtimer_set_expires(&ts->sched_timer, next);
1408         hrtimer_forward_now(&ts->sched_timer, TICK_NSEC);
1409         tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1410         tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1411 }
1412
1413 static inline void tick_nohz_irq_enter(void)
1414 {
1415         struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1416         ktime_t now;
1417
1418         if (!ts->idle_active && !ts->tick_stopped)
1419                 return;
1420         now = ktime_get();
1421         if (ts->idle_active)
1422                 tick_nohz_stop_idle(ts, now);
1423         /*
1424          * If all CPUs are idle. We may need to update a stale jiffies value.
1425          * Note nohz_full is a special case: a timekeeper is guaranteed to stay
1426          * alive but it might be busy looping with interrupts disabled in some
1427          * rare case (typically stop machine). So we must make sure we have a
1428          * last resort.
1429          */
1430         if (ts->tick_stopped)
1431                 tick_nohz_update_jiffies(now);
1432 }
1433
1434 #else
1435
1436 static inline void tick_nohz_switch_to_nohz(void) { }
1437 static inline void tick_nohz_irq_enter(void) { }
1438 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1439
1440 #endif /* CONFIG_NO_HZ_COMMON */
1441
1442 /*
1443  * Called from irq_enter to notify about the possible interruption of idle()
1444  */
1445 void tick_irq_enter(void)
1446 {
1447         tick_check_oneshot_broadcast_this_cpu();
1448         tick_nohz_irq_enter();
1449 }
1450
1451 /*
1452  * High resolution timer specific code
1453  */
1454 #ifdef CONFIG_HIGH_RES_TIMERS
1455 /*
1456  * We rearm the timer until we get disabled by the idle code.
1457  * Called with interrupts disabled.
1458  */
1459 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1460 {
1461         struct tick_sched *ts =
1462                 container_of(timer, struct tick_sched, sched_timer);
1463         struct pt_regs *regs = get_irq_regs();
1464         ktime_t now = ktime_get();
1465
1466         tick_sched_do_timer(ts, now);
1467
1468         /*
1469          * Do not call, when we are not in irq context and have
1470          * no valid regs pointer
1471          */
1472         if (regs)
1473                 tick_sched_handle(ts, regs);
1474         else
1475                 ts->next_tick = 0;
1476
1477         /* No need to reprogram if we are in idle or full dynticks mode */
1478         if (unlikely(ts->tick_stopped))
1479                 return HRTIMER_NORESTART;
1480
1481         hrtimer_forward(timer, now, TICK_NSEC);
1482
1483         return HRTIMER_RESTART;
1484 }
1485
1486 static int sched_skew_tick;
1487
1488 static int __init skew_tick(char *str)
1489 {
1490         get_option(&str, &sched_skew_tick);
1491
1492         return 0;
1493 }
1494 early_param("skew_tick", skew_tick);
1495
1496 /**
1497  * tick_setup_sched_timer - setup the tick emulation timer
1498  */
1499 void tick_setup_sched_timer(void)
1500 {
1501         struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1502         ktime_t now = ktime_get();
1503
1504         /*
1505          * Emulate tick processing via per-CPU hrtimers:
1506          */
1507         hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1508         ts->sched_timer.function = tick_sched_timer;
1509
1510         /* Get the next period (per-CPU) */
1511         hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1512
1513         /* Offset the tick to avert jiffies_lock contention. */
1514         if (sched_skew_tick) {
1515                 u64 offset = TICK_NSEC >> 1;
1516                 do_div(offset, num_possible_cpus());
1517                 offset *= smp_processor_id();
1518                 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1519         }
1520
1521         hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1522         hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1523         tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1524 }
1525 #endif /* HIGH_RES_TIMERS */
1526
1527 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1528 void tick_cancel_sched_timer(int cpu)
1529 {
1530         struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1531
1532 # ifdef CONFIG_HIGH_RES_TIMERS
1533         if (ts->sched_timer.base)
1534                 hrtimer_cancel(&ts->sched_timer);
1535 # endif
1536
1537         memset(ts, 0, sizeof(*ts));
1538 }
1539 #endif
1540
1541 /*
1542  * Async notification about clocksource changes
1543  */
1544 void tick_clock_notify(void)
1545 {
1546         int cpu;
1547
1548         for_each_possible_cpu(cpu)
1549                 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1550 }
1551
1552 /*
1553  * Async notification about clock event changes
1554  */
1555 void tick_oneshot_notify(void)
1556 {
1557         struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1558
1559         set_bit(0, &ts->check_clocks);
1560 }
1561
1562 /*
1563  * Check, if a change happened, which makes oneshot possible.
1564  *
1565  * Called cyclic from the hrtimer softirq (driven by the timer
1566  * softirq) allow_nohz signals, that we can switch into low-res nohz
1567  * mode, because high resolution timers are disabled (either compile
1568  * or runtime). Called with interrupts disabled.
1569  */
1570 int tick_check_oneshot_change(int allow_nohz)
1571 {
1572         struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1573
1574         if (!test_and_clear_bit(0, &ts->check_clocks))
1575                 return 0;
1576
1577         if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1578                 return 0;
1579
1580         if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1581                 return 0;
1582
1583         if (!allow_nohz)
1584                 return 1;
1585
1586         tick_nohz_switch_to_nohz();
1587         return 0;
1588 }