Merge tag 'for-5.11/drivers-2020-12-14' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / kernel / time / alarmtimer.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Alarmtimer interface
4  *
5  * This interface provides a timer which is similarto hrtimers,
6  * but triggers a RTC alarm if the box is suspend.
7  *
8  * This interface is influenced by the Android RTC Alarm timer
9  * interface.
10  *
11  * Copyright (C) 2010 IBM Corperation
12  *
13  * Author: John Stultz <john.stultz@linaro.org>
14  */
15 #include <linux/time.h>
16 #include <linux/hrtimer.h>
17 #include <linux/timerqueue.h>
18 #include <linux/rtc.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/debug.h>
21 #include <linux/alarmtimer.h>
22 #include <linux/mutex.h>
23 #include <linux/platform_device.h>
24 #include <linux/posix-timers.h>
25 #include <linux/workqueue.h>
26 #include <linux/freezer.h>
27 #include <linux/compat.h>
28 #include <linux/module.h>
29 #include <linux/time_namespace.h>
30
31 #include "posix-timers.h"
32
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/alarmtimer.h>
35
36 /**
37  * struct alarm_base - Alarm timer bases
38  * @lock:               Lock for syncrhonized access to the base
39  * @timerqueue:         Timerqueue head managing the list of events
40  * @get_ktime:          Function to read the time correlating to the base
41  * @get_timespec:       Function to read the namespace time correlating to the base
42  * @base_clockid:       clockid for the base
43  */
44 static struct alarm_base {
45         spinlock_t              lock;
46         struct timerqueue_head  timerqueue;
47         ktime_t                 (*get_ktime)(void);
48         void                    (*get_timespec)(struct timespec64 *tp);
49         clockid_t               base_clockid;
50 } alarm_bases[ALARM_NUMTYPE];
51
52 #if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS)
53 /* freezer information to handle clock_nanosleep triggered wakeups */
54 static enum alarmtimer_type freezer_alarmtype;
55 static ktime_t freezer_expires;
56 static ktime_t freezer_delta;
57 static DEFINE_SPINLOCK(freezer_delta_lock);
58 #endif
59
60 #ifdef CONFIG_RTC_CLASS
61 /* rtc timer and device for setting alarm wakeups at suspend */
62 static struct rtc_timer         rtctimer;
63 static struct rtc_device        *rtcdev;
64 static DEFINE_SPINLOCK(rtcdev_lock);
65
66 /**
67  * alarmtimer_get_rtcdev - Return selected rtcdevice
68  *
69  * This function returns the rtc device to use for wakealarms.
70  */
71 struct rtc_device *alarmtimer_get_rtcdev(void)
72 {
73         unsigned long flags;
74         struct rtc_device *ret;
75
76         spin_lock_irqsave(&rtcdev_lock, flags);
77         ret = rtcdev;
78         spin_unlock_irqrestore(&rtcdev_lock, flags);
79
80         return ret;
81 }
82 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
83
84 static int alarmtimer_rtc_add_device(struct device *dev,
85                                 struct class_interface *class_intf)
86 {
87         unsigned long flags;
88         struct rtc_device *rtc = to_rtc_device(dev);
89         struct platform_device *pdev;
90         int ret = 0;
91
92         if (rtcdev)
93                 return -EBUSY;
94
95         if (!rtc->ops->set_alarm)
96                 return -1;
97         if (!device_may_wakeup(rtc->dev.parent))
98                 return -1;
99
100         pdev = platform_device_register_data(dev, "alarmtimer",
101                                              PLATFORM_DEVID_AUTO, NULL, 0);
102         if (!IS_ERR(pdev))
103                 device_init_wakeup(&pdev->dev, true);
104
105         spin_lock_irqsave(&rtcdev_lock, flags);
106         if (!IS_ERR(pdev) && !rtcdev) {
107                 if (!try_module_get(rtc->owner)) {
108                         ret = -1;
109                         goto unlock;
110                 }
111
112                 rtcdev = rtc;
113                 /* hold a reference so it doesn't go away */
114                 get_device(dev);
115                 pdev = NULL;
116         } else {
117                 ret = -1;
118         }
119 unlock:
120         spin_unlock_irqrestore(&rtcdev_lock, flags);
121
122         platform_device_unregister(pdev);
123
124         return ret;
125 }
126
127 static inline void alarmtimer_rtc_timer_init(void)
128 {
129         rtc_timer_init(&rtctimer, NULL, NULL);
130 }
131
132 static struct class_interface alarmtimer_rtc_interface = {
133         .add_dev = &alarmtimer_rtc_add_device,
134 };
135
136 static int alarmtimer_rtc_interface_setup(void)
137 {
138         alarmtimer_rtc_interface.class = rtc_class;
139         return class_interface_register(&alarmtimer_rtc_interface);
140 }
141 static void alarmtimer_rtc_interface_remove(void)
142 {
143         class_interface_unregister(&alarmtimer_rtc_interface);
144 }
145 #else
146 static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
147 static inline void alarmtimer_rtc_interface_remove(void) { }
148 static inline void alarmtimer_rtc_timer_init(void) { }
149 #endif
150
151 /**
152  * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
153  * @base: pointer to the base where the timer is being run
154  * @alarm: pointer to alarm being enqueued.
155  *
156  * Adds alarm to a alarm_base timerqueue
157  *
158  * Must hold base->lock when calling.
159  */
160 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
161 {
162         if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
163                 timerqueue_del(&base->timerqueue, &alarm->node);
164
165         timerqueue_add(&base->timerqueue, &alarm->node);
166         alarm->state |= ALARMTIMER_STATE_ENQUEUED;
167 }
168
169 /**
170  * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
171  * @base: pointer to the base where the timer is running
172  * @alarm: pointer to alarm being removed
173  *
174  * Removes alarm to a alarm_base timerqueue
175  *
176  * Must hold base->lock when calling.
177  */
178 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
179 {
180         if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
181                 return;
182
183         timerqueue_del(&base->timerqueue, &alarm->node);
184         alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
185 }
186
187
188 /**
189  * alarmtimer_fired - Handles alarm hrtimer being fired.
190  * @timer: pointer to hrtimer being run
191  *
192  * When a alarm timer fires, this runs through the timerqueue to
193  * see which alarms expired, and runs those. If there are more alarm
194  * timers queued for the future, we set the hrtimer to fire when
195  * the next future alarm timer expires.
196  */
197 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
198 {
199         struct alarm *alarm = container_of(timer, struct alarm, timer);
200         struct alarm_base *base = &alarm_bases[alarm->type];
201         unsigned long flags;
202         int ret = HRTIMER_NORESTART;
203         int restart = ALARMTIMER_NORESTART;
204
205         spin_lock_irqsave(&base->lock, flags);
206         alarmtimer_dequeue(base, alarm);
207         spin_unlock_irqrestore(&base->lock, flags);
208
209         if (alarm->function)
210                 restart = alarm->function(alarm, base->get_ktime());
211
212         spin_lock_irqsave(&base->lock, flags);
213         if (restart != ALARMTIMER_NORESTART) {
214                 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
215                 alarmtimer_enqueue(base, alarm);
216                 ret = HRTIMER_RESTART;
217         }
218         spin_unlock_irqrestore(&base->lock, flags);
219
220         trace_alarmtimer_fired(alarm, base->get_ktime());
221         return ret;
222
223 }
224
225 ktime_t alarm_expires_remaining(const struct alarm *alarm)
226 {
227         struct alarm_base *base = &alarm_bases[alarm->type];
228         return ktime_sub(alarm->node.expires, base->get_ktime());
229 }
230 EXPORT_SYMBOL_GPL(alarm_expires_remaining);
231
232 #ifdef CONFIG_RTC_CLASS
233 /**
234  * alarmtimer_suspend - Suspend time callback
235  * @dev: unused
236  *
237  * When we are going into suspend, we look through the bases
238  * to see which is the soonest timer to expire. We then
239  * set an rtc timer to fire that far into the future, which
240  * will wake us from suspend.
241  */
242 static int alarmtimer_suspend(struct device *dev)
243 {
244         ktime_t min, now, expires;
245         int i, ret, type;
246         struct rtc_device *rtc;
247         unsigned long flags;
248         struct rtc_time tm;
249
250         spin_lock_irqsave(&freezer_delta_lock, flags);
251         min = freezer_delta;
252         expires = freezer_expires;
253         type = freezer_alarmtype;
254         freezer_delta = 0;
255         spin_unlock_irqrestore(&freezer_delta_lock, flags);
256
257         rtc = alarmtimer_get_rtcdev();
258         /* If we have no rtcdev, just return */
259         if (!rtc)
260                 return 0;
261
262         /* Find the soonest timer to expire*/
263         for (i = 0; i < ALARM_NUMTYPE; i++) {
264                 struct alarm_base *base = &alarm_bases[i];
265                 struct timerqueue_node *next;
266                 ktime_t delta;
267
268                 spin_lock_irqsave(&base->lock, flags);
269                 next = timerqueue_getnext(&base->timerqueue);
270                 spin_unlock_irqrestore(&base->lock, flags);
271                 if (!next)
272                         continue;
273                 delta = ktime_sub(next->expires, base->get_ktime());
274                 if (!min || (delta < min)) {
275                         expires = next->expires;
276                         min = delta;
277                         type = i;
278                 }
279         }
280         if (min == 0)
281                 return 0;
282
283         if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
284                 pm_wakeup_event(dev, 2 * MSEC_PER_SEC);
285                 return -EBUSY;
286         }
287
288         trace_alarmtimer_suspend(expires, type);
289
290         /* Setup an rtc timer to fire that far in the future */
291         rtc_timer_cancel(rtc, &rtctimer);
292         rtc_read_time(rtc, &tm);
293         now = rtc_tm_to_ktime(tm);
294         now = ktime_add(now, min);
295
296         /* Set alarm, if in the past reject suspend briefly to handle */
297         ret = rtc_timer_start(rtc, &rtctimer, now, 0);
298         if (ret < 0)
299                 pm_wakeup_event(dev, MSEC_PER_SEC);
300         return ret;
301 }
302
303 static int alarmtimer_resume(struct device *dev)
304 {
305         struct rtc_device *rtc;
306
307         rtc = alarmtimer_get_rtcdev();
308         if (rtc)
309                 rtc_timer_cancel(rtc, &rtctimer);
310         return 0;
311 }
312
313 #else
314 static int alarmtimer_suspend(struct device *dev)
315 {
316         return 0;
317 }
318
319 static int alarmtimer_resume(struct device *dev)
320 {
321         return 0;
322 }
323 #endif
324
325 static void
326 __alarm_init(struct alarm *alarm, enum alarmtimer_type type,
327              enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
328 {
329         timerqueue_init(&alarm->node);
330         alarm->timer.function = alarmtimer_fired;
331         alarm->function = function;
332         alarm->type = type;
333         alarm->state = ALARMTIMER_STATE_INACTIVE;
334 }
335
336 /**
337  * alarm_init - Initialize an alarm structure
338  * @alarm: ptr to alarm to be initialized
339  * @type: the type of the alarm
340  * @function: callback that is run when the alarm fires
341  */
342 void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
343                 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
344 {
345         hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
346                      HRTIMER_MODE_ABS);
347         __alarm_init(alarm, type, function);
348 }
349 EXPORT_SYMBOL_GPL(alarm_init);
350
351 /**
352  * alarm_start - Sets an absolute alarm to fire
353  * @alarm: ptr to alarm to set
354  * @start: time to run the alarm
355  */
356 void alarm_start(struct alarm *alarm, ktime_t start)
357 {
358         struct alarm_base *base = &alarm_bases[alarm->type];
359         unsigned long flags;
360
361         spin_lock_irqsave(&base->lock, flags);
362         alarm->node.expires = start;
363         alarmtimer_enqueue(base, alarm);
364         hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
365         spin_unlock_irqrestore(&base->lock, flags);
366
367         trace_alarmtimer_start(alarm, base->get_ktime());
368 }
369 EXPORT_SYMBOL_GPL(alarm_start);
370
371 /**
372  * alarm_start_relative - Sets a relative alarm to fire
373  * @alarm: ptr to alarm to set
374  * @start: time relative to now to run the alarm
375  */
376 void alarm_start_relative(struct alarm *alarm, ktime_t start)
377 {
378         struct alarm_base *base = &alarm_bases[alarm->type];
379
380         start = ktime_add_safe(start, base->get_ktime());
381         alarm_start(alarm, start);
382 }
383 EXPORT_SYMBOL_GPL(alarm_start_relative);
384
385 void alarm_restart(struct alarm *alarm)
386 {
387         struct alarm_base *base = &alarm_bases[alarm->type];
388         unsigned long flags;
389
390         spin_lock_irqsave(&base->lock, flags);
391         hrtimer_set_expires(&alarm->timer, alarm->node.expires);
392         hrtimer_restart(&alarm->timer);
393         alarmtimer_enqueue(base, alarm);
394         spin_unlock_irqrestore(&base->lock, flags);
395 }
396 EXPORT_SYMBOL_GPL(alarm_restart);
397
398 /**
399  * alarm_try_to_cancel - Tries to cancel an alarm timer
400  * @alarm: ptr to alarm to be canceled
401  *
402  * Returns 1 if the timer was canceled, 0 if it was not running,
403  * and -1 if the callback was running
404  */
405 int alarm_try_to_cancel(struct alarm *alarm)
406 {
407         struct alarm_base *base = &alarm_bases[alarm->type];
408         unsigned long flags;
409         int ret;
410
411         spin_lock_irqsave(&base->lock, flags);
412         ret = hrtimer_try_to_cancel(&alarm->timer);
413         if (ret >= 0)
414                 alarmtimer_dequeue(base, alarm);
415         spin_unlock_irqrestore(&base->lock, flags);
416
417         trace_alarmtimer_cancel(alarm, base->get_ktime());
418         return ret;
419 }
420 EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
421
422
423 /**
424  * alarm_cancel - Spins trying to cancel an alarm timer until it is done
425  * @alarm: ptr to alarm to be canceled
426  *
427  * Returns 1 if the timer was canceled, 0 if it was not active.
428  */
429 int alarm_cancel(struct alarm *alarm)
430 {
431         for (;;) {
432                 int ret = alarm_try_to_cancel(alarm);
433                 if (ret >= 0)
434                         return ret;
435                 hrtimer_cancel_wait_running(&alarm->timer);
436         }
437 }
438 EXPORT_SYMBOL_GPL(alarm_cancel);
439
440
441 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
442 {
443         u64 overrun = 1;
444         ktime_t delta;
445
446         delta = ktime_sub(now, alarm->node.expires);
447
448         if (delta < 0)
449                 return 0;
450
451         if (unlikely(delta >= interval)) {
452                 s64 incr = ktime_to_ns(interval);
453
454                 overrun = ktime_divns(delta, incr);
455
456                 alarm->node.expires = ktime_add_ns(alarm->node.expires,
457                                                         incr*overrun);
458
459                 if (alarm->node.expires > now)
460                         return overrun;
461                 /*
462                  * This (and the ktime_add() below) is the
463                  * correction for exact:
464                  */
465                 overrun++;
466         }
467
468         alarm->node.expires = ktime_add_safe(alarm->node.expires, interval);
469         return overrun;
470 }
471 EXPORT_SYMBOL_GPL(alarm_forward);
472
473 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
474 {
475         struct alarm_base *base = &alarm_bases[alarm->type];
476
477         return alarm_forward(alarm, base->get_ktime(), interval);
478 }
479 EXPORT_SYMBOL_GPL(alarm_forward_now);
480
481 #ifdef CONFIG_POSIX_TIMERS
482
483 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
484 {
485         struct alarm_base *base;
486         unsigned long flags;
487         ktime_t delta;
488
489         switch(type) {
490         case ALARM_REALTIME:
491                 base = &alarm_bases[ALARM_REALTIME];
492                 type = ALARM_REALTIME_FREEZER;
493                 break;
494         case ALARM_BOOTTIME:
495                 base = &alarm_bases[ALARM_BOOTTIME];
496                 type = ALARM_BOOTTIME_FREEZER;
497                 break;
498         default:
499                 WARN_ONCE(1, "Invalid alarm type: %d\n", type);
500                 return;
501         }
502
503         delta = ktime_sub(absexp, base->get_ktime());
504
505         spin_lock_irqsave(&freezer_delta_lock, flags);
506         if (!freezer_delta || (delta < freezer_delta)) {
507                 freezer_delta = delta;
508                 freezer_expires = absexp;
509                 freezer_alarmtype = type;
510         }
511         spin_unlock_irqrestore(&freezer_delta_lock, flags);
512 }
513
514 /**
515  * clock2alarm - helper that converts from clockid to alarmtypes
516  * @clockid: clockid.
517  */
518 static enum alarmtimer_type clock2alarm(clockid_t clockid)
519 {
520         if (clockid == CLOCK_REALTIME_ALARM)
521                 return ALARM_REALTIME;
522         if (clockid == CLOCK_BOOTTIME_ALARM)
523                 return ALARM_BOOTTIME;
524         return -1;
525 }
526
527 /**
528  * alarm_handle_timer - Callback for posix timers
529  * @alarm: alarm that fired
530  *
531  * Posix timer callback for expired alarm timers.
532  */
533 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
534                                                         ktime_t now)
535 {
536         struct k_itimer *ptr = container_of(alarm, struct k_itimer,
537                                             it.alarm.alarmtimer);
538         enum alarmtimer_restart result = ALARMTIMER_NORESTART;
539         unsigned long flags;
540         int si_private = 0;
541
542         spin_lock_irqsave(&ptr->it_lock, flags);
543
544         ptr->it_active = 0;
545         if (ptr->it_interval)
546                 si_private = ++ptr->it_requeue_pending;
547
548         if (posix_timer_event(ptr, si_private) && ptr->it_interval) {
549                 /*
550                  * Handle ignored signals and rearm the timer. This will go
551                  * away once we handle ignored signals proper.
552                  */
553                 ptr->it_overrun += alarm_forward_now(alarm, ptr->it_interval);
554                 ++ptr->it_requeue_pending;
555                 ptr->it_active = 1;
556                 result = ALARMTIMER_RESTART;
557         }
558         spin_unlock_irqrestore(&ptr->it_lock, flags);
559
560         return result;
561 }
562
563 /**
564  * alarm_timer_rearm - Posix timer callback for rearming timer
565  * @timr:       Pointer to the posixtimer data struct
566  */
567 static void alarm_timer_rearm(struct k_itimer *timr)
568 {
569         struct alarm *alarm = &timr->it.alarm.alarmtimer;
570
571         timr->it_overrun += alarm_forward_now(alarm, timr->it_interval);
572         alarm_start(alarm, alarm->node.expires);
573 }
574
575 /**
576  * alarm_timer_forward - Posix timer callback for forwarding timer
577  * @timr:       Pointer to the posixtimer data struct
578  * @now:        Current time to forward the timer against
579  */
580 static s64 alarm_timer_forward(struct k_itimer *timr, ktime_t now)
581 {
582         struct alarm *alarm = &timr->it.alarm.alarmtimer;
583
584         return alarm_forward(alarm, timr->it_interval, now);
585 }
586
587 /**
588  * alarm_timer_remaining - Posix timer callback to retrieve remaining time
589  * @timr:       Pointer to the posixtimer data struct
590  * @now:        Current time to calculate against
591  */
592 static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now)
593 {
594         struct alarm *alarm = &timr->it.alarm.alarmtimer;
595
596         return ktime_sub(alarm->node.expires, now);
597 }
598
599 /**
600  * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer
601  * @timr:       Pointer to the posixtimer data struct
602  */
603 static int alarm_timer_try_to_cancel(struct k_itimer *timr)
604 {
605         return alarm_try_to_cancel(&timr->it.alarm.alarmtimer);
606 }
607
608 /**
609  * alarm_timer_wait_running - Posix timer callback to wait for a timer
610  * @timr:       Pointer to the posixtimer data struct
611  *
612  * Called from the core code when timer cancel detected that the callback
613  * is running. @timr is unlocked and rcu read lock is held to prevent it
614  * from being freed.
615  */
616 static void alarm_timer_wait_running(struct k_itimer *timr)
617 {
618         hrtimer_cancel_wait_running(&timr->it.alarm.alarmtimer.timer);
619 }
620
621 /**
622  * alarm_timer_arm - Posix timer callback to arm a timer
623  * @timr:       Pointer to the posixtimer data struct
624  * @expires:    The new expiry time
625  * @absolute:   Expiry value is absolute time
626  * @sigev_none: Posix timer does not deliver signals
627  */
628 static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires,
629                             bool absolute, bool sigev_none)
630 {
631         struct alarm *alarm = &timr->it.alarm.alarmtimer;
632         struct alarm_base *base = &alarm_bases[alarm->type];
633
634         if (!absolute)
635                 expires = ktime_add_safe(expires, base->get_ktime());
636         if (sigev_none)
637                 alarm->node.expires = expires;
638         else
639                 alarm_start(&timr->it.alarm.alarmtimer, expires);
640 }
641
642 /**
643  * alarm_clock_getres - posix getres interface
644  * @which_clock: clockid
645  * @tp: timespec to fill
646  *
647  * Returns the granularity of underlying alarm base clock
648  */
649 static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
650 {
651         if (!alarmtimer_get_rtcdev())
652                 return -EINVAL;
653
654         tp->tv_sec = 0;
655         tp->tv_nsec = hrtimer_resolution;
656         return 0;
657 }
658
659 /**
660  * alarm_clock_get_timespec - posix clock_get_timespec interface
661  * @which_clock: clockid
662  * @tp: timespec to fill.
663  *
664  * Provides the underlying alarm base time in a tasks time namespace.
665  */
666 static int alarm_clock_get_timespec(clockid_t which_clock, struct timespec64 *tp)
667 {
668         struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
669
670         if (!alarmtimer_get_rtcdev())
671                 return -EINVAL;
672
673         base->get_timespec(tp);
674
675         return 0;
676 }
677
678 /**
679  * alarm_clock_get_ktime - posix clock_get_ktime interface
680  * @which_clock: clockid
681  *
682  * Provides the underlying alarm base time in the root namespace.
683  */
684 static ktime_t alarm_clock_get_ktime(clockid_t which_clock)
685 {
686         struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
687
688         if (!alarmtimer_get_rtcdev())
689                 return -EINVAL;
690
691         return base->get_ktime();
692 }
693
694 /**
695  * alarm_timer_create - posix timer_create interface
696  * @new_timer: k_itimer pointer to manage
697  *
698  * Initializes the k_itimer structure.
699  */
700 static int alarm_timer_create(struct k_itimer *new_timer)
701 {
702         enum  alarmtimer_type type;
703
704         if (!alarmtimer_get_rtcdev())
705                 return -EOPNOTSUPP;
706
707         if (!capable(CAP_WAKE_ALARM))
708                 return -EPERM;
709
710         type = clock2alarm(new_timer->it_clock);
711         alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
712         return 0;
713 }
714
715 /**
716  * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
717  * @alarm: ptr to alarm that fired
718  *
719  * Wakes up the task that set the alarmtimer
720  */
721 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
722                                                                 ktime_t now)
723 {
724         struct task_struct *task = (struct task_struct *)alarm->data;
725
726         alarm->data = NULL;
727         if (task)
728                 wake_up_process(task);
729         return ALARMTIMER_NORESTART;
730 }
731
732 /**
733  * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
734  * @alarm: ptr to alarmtimer
735  * @absexp: absolute expiration time
736  *
737  * Sets the alarm timer and sleeps until it is fired or interrupted.
738  */
739 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
740                                 enum alarmtimer_type type)
741 {
742         struct restart_block *restart;
743         alarm->data = (void *)current;
744         do {
745                 set_current_state(TASK_INTERRUPTIBLE);
746                 alarm_start(alarm, absexp);
747                 if (likely(alarm->data))
748                         schedule();
749
750                 alarm_cancel(alarm);
751         } while (alarm->data && !signal_pending(current));
752
753         __set_current_state(TASK_RUNNING);
754
755         destroy_hrtimer_on_stack(&alarm->timer);
756
757         if (!alarm->data)
758                 return 0;
759
760         if (freezing(current))
761                 alarmtimer_freezerset(absexp, type);
762         restart = &current->restart_block;
763         if (restart->nanosleep.type != TT_NONE) {
764                 struct timespec64 rmt;
765                 ktime_t rem;
766
767                 rem = ktime_sub(absexp, alarm_bases[type].get_ktime());
768
769                 if (rem <= 0)
770                         return 0;
771                 rmt = ktime_to_timespec64(rem);
772
773                 return nanosleep_copyout(restart, &rmt);
774         }
775         return -ERESTART_RESTARTBLOCK;
776 }
777
778 static void
779 alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type,
780                     enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
781 {
782         hrtimer_init_on_stack(&alarm->timer, alarm_bases[type].base_clockid,
783                               HRTIMER_MODE_ABS);
784         __alarm_init(alarm, type, function);
785 }
786
787 /**
788  * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
789  * @restart: ptr to restart block
790  *
791  * Handles restarted clock_nanosleep calls
792  */
793 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
794 {
795         enum  alarmtimer_type type = restart->nanosleep.clockid;
796         ktime_t exp = restart->nanosleep.expires;
797         struct alarm alarm;
798
799         alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
800
801         return alarmtimer_do_nsleep(&alarm, exp, type);
802 }
803
804 /**
805  * alarm_timer_nsleep - alarmtimer nanosleep
806  * @which_clock: clockid
807  * @flags: determins abstime or relative
808  * @tsreq: requested sleep time (abs or rel)
809  * @rmtp: remaining sleep time saved
810  *
811  * Handles clock_nanosleep calls against _ALARM clockids
812  */
813 static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
814                               const struct timespec64 *tsreq)
815 {
816         enum  alarmtimer_type type = clock2alarm(which_clock);
817         struct restart_block *restart = &current->restart_block;
818         struct alarm alarm;
819         ktime_t exp;
820         int ret = 0;
821
822         if (!alarmtimer_get_rtcdev())
823                 return -EOPNOTSUPP;
824
825         if (flags & ~TIMER_ABSTIME)
826                 return -EINVAL;
827
828         if (!capable(CAP_WAKE_ALARM))
829                 return -EPERM;
830
831         alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
832
833         exp = timespec64_to_ktime(*tsreq);
834         /* Convert (if necessary) to absolute time */
835         if (flags != TIMER_ABSTIME) {
836                 ktime_t now = alarm_bases[type].get_ktime();
837
838                 exp = ktime_add_safe(now, exp);
839         } else {
840                 exp = timens_ktime_to_host(which_clock, exp);
841         }
842
843         ret = alarmtimer_do_nsleep(&alarm, exp, type);
844         if (ret != -ERESTART_RESTARTBLOCK)
845                 return ret;
846
847         /* abs timers don't set remaining time or restart */
848         if (flags == TIMER_ABSTIME)
849                 return -ERESTARTNOHAND;
850
851         restart->fn = alarm_timer_nsleep_restart;
852         restart->nanosleep.clockid = type;
853         restart->nanosleep.expires = exp;
854         return ret;
855 }
856
857 const struct k_clock alarm_clock = {
858         .clock_getres           = alarm_clock_getres,
859         .clock_get_ktime        = alarm_clock_get_ktime,
860         .clock_get_timespec     = alarm_clock_get_timespec,
861         .timer_create           = alarm_timer_create,
862         .timer_set              = common_timer_set,
863         .timer_del              = common_timer_del,
864         .timer_get              = common_timer_get,
865         .timer_arm              = alarm_timer_arm,
866         .timer_rearm            = alarm_timer_rearm,
867         .timer_forward          = alarm_timer_forward,
868         .timer_remaining        = alarm_timer_remaining,
869         .timer_try_to_cancel    = alarm_timer_try_to_cancel,
870         .timer_wait_running     = alarm_timer_wait_running,
871         .nsleep                 = alarm_timer_nsleep,
872 };
873 #endif /* CONFIG_POSIX_TIMERS */
874
875
876 /* Suspend hook structures */
877 static const struct dev_pm_ops alarmtimer_pm_ops = {
878         .suspend = alarmtimer_suspend,
879         .resume = alarmtimer_resume,
880 };
881
882 static struct platform_driver alarmtimer_driver = {
883         .driver = {
884                 .name = "alarmtimer",
885                 .pm = &alarmtimer_pm_ops,
886         }
887 };
888
889 static void get_boottime_timespec(struct timespec64 *tp)
890 {
891         ktime_get_boottime_ts64(tp);
892         timens_add_boottime(tp);
893 }
894
895 /**
896  * alarmtimer_init - Initialize alarm timer code
897  *
898  * This function initializes the alarm bases and registers
899  * the posix clock ids.
900  */
901 static int __init alarmtimer_init(void)
902 {
903         int error;
904         int i;
905
906         alarmtimer_rtc_timer_init();
907
908         /* Initialize alarm bases */
909         alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
910         alarm_bases[ALARM_REALTIME].get_ktime = &ktime_get_real;
911         alarm_bases[ALARM_REALTIME].get_timespec = ktime_get_real_ts64;
912         alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
913         alarm_bases[ALARM_BOOTTIME].get_ktime = &ktime_get_boottime;
914         alarm_bases[ALARM_BOOTTIME].get_timespec = get_boottime_timespec;
915         for (i = 0; i < ALARM_NUMTYPE; i++) {
916                 timerqueue_init_head(&alarm_bases[i].timerqueue);
917                 spin_lock_init(&alarm_bases[i].lock);
918         }
919
920         error = alarmtimer_rtc_interface_setup();
921         if (error)
922                 return error;
923
924         error = platform_driver_register(&alarmtimer_driver);
925         if (error)
926                 goto out_if;
927
928         return 0;
929 out_if:
930         alarmtimer_rtc_interface_remove();
931         return error;
932 }
933 device_initcall(alarmtimer_init);