fs/epoll: use a per-cpu counter for user's watches count
[linux-2.6-microblaze.git] / kernel / time / alarmtimer.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Alarmtimer interface
4  *
5  * This interface provides a timer which is similar to hrtimers,
6  * but triggers a RTC alarm if the box is suspend.
7  *
8  * This interface is influenced by the Android RTC Alarm timer
9  * interface.
10  *
11  * Copyright (C) 2010 IBM Corporation
12  *
13  * Author: John Stultz <john.stultz@linaro.org>
14  */
15 #include <linux/time.h>
16 #include <linux/hrtimer.h>
17 #include <linux/timerqueue.h>
18 #include <linux/rtc.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/debug.h>
21 #include <linux/alarmtimer.h>
22 #include <linux/mutex.h>
23 #include <linux/platform_device.h>
24 #include <linux/posix-timers.h>
25 #include <linux/workqueue.h>
26 #include <linux/freezer.h>
27 #include <linux/compat.h>
28 #include <linux/module.h>
29 #include <linux/time_namespace.h>
30
31 #include "posix-timers.h"
32
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/alarmtimer.h>
35
36 /**
37  * struct alarm_base - Alarm timer bases
38  * @lock:               Lock for syncrhonized access to the base
39  * @timerqueue:         Timerqueue head managing the list of events
40  * @get_ktime:          Function to read the time correlating to the base
41  * @get_timespec:       Function to read the namespace time correlating to the base
42  * @base_clockid:       clockid for the base
43  */
44 static struct alarm_base {
45         spinlock_t              lock;
46         struct timerqueue_head  timerqueue;
47         ktime_t                 (*get_ktime)(void);
48         void                    (*get_timespec)(struct timespec64 *tp);
49         clockid_t               base_clockid;
50 } alarm_bases[ALARM_NUMTYPE];
51
52 #if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS)
53 /* freezer information to handle clock_nanosleep triggered wakeups */
54 static enum alarmtimer_type freezer_alarmtype;
55 static ktime_t freezer_expires;
56 static ktime_t freezer_delta;
57 static DEFINE_SPINLOCK(freezer_delta_lock);
58 #endif
59
60 #ifdef CONFIG_RTC_CLASS
61 /* rtc timer and device for setting alarm wakeups at suspend */
62 static struct rtc_timer         rtctimer;
63 static struct rtc_device        *rtcdev;
64 static DEFINE_SPINLOCK(rtcdev_lock);
65
66 /**
67  * alarmtimer_get_rtcdev - Return selected rtcdevice
68  *
69  * This function returns the rtc device to use for wakealarms.
70  */
71 struct rtc_device *alarmtimer_get_rtcdev(void)
72 {
73         unsigned long flags;
74         struct rtc_device *ret;
75
76         spin_lock_irqsave(&rtcdev_lock, flags);
77         ret = rtcdev;
78         spin_unlock_irqrestore(&rtcdev_lock, flags);
79
80         return ret;
81 }
82 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
83
84 static int alarmtimer_rtc_add_device(struct device *dev,
85                                 struct class_interface *class_intf)
86 {
87         unsigned long flags;
88         struct rtc_device *rtc = to_rtc_device(dev);
89         struct platform_device *pdev;
90         int ret = 0;
91
92         if (rtcdev)
93                 return -EBUSY;
94
95         if (!test_bit(RTC_FEATURE_ALARM, rtc->features))
96                 return -1;
97         if (!device_may_wakeup(rtc->dev.parent))
98                 return -1;
99
100         pdev = platform_device_register_data(dev, "alarmtimer",
101                                              PLATFORM_DEVID_AUTO, NULL, 0);
102         if (!IS_ERR(pdev))
103                 device_init_wakeup(&pdev->dev, true);
104
105         spin_lock_irqsave(&rtcdev_lock, flags);
106         if (!IS_ERR(pdev) && !rtcdev) {
107                 if (!try_module_get(rtc->owner)) {
108                         ret = -1;
109                         goto unlock;
110                 }
111
112                 rtcdev = rtc;
113                 /* hold a reference so it doesn't go away */
114                 get_device(dev);
115                 pdev = NULL;
116         } else {
117                 ret = -1;
118         }
119 unlock:
120         spin_unlock_irqrestore(&rtcdev_lock, flags);
121
122         platform_device_unregister(pdev);
123
124         return ret;
125 }
126
127 static inline void alarmtimer_rtc_timer_init(void)
128 {
129         rtc_timer_init(&rtctimer, NULL, NULL);
130 }
131
132 static struct class_interface alarmtimer_rtc_interface = {
133         .add_dev = &alarmtimer_rtc_add_device,
134 };
135
136 static int alarmtimer_rtc_interface_setup(void)
137 {
138         alarmtimer_rtc_interface.class = rtc_class;
139         return class_interface_register(&alarmtimer_rtc_interface);
140 }
141 static void alarmtimer_rtc_interface_remove(void)
142 {
143         class_interface_unregister(&alarmtimer_rtc_interface);
144 }
145 #else
146 static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
147 static inline void alarmtimer_rtc_interface_remove(void) { }
148 static inline void alarmtimer_rtc_timer_init(void) { }
149 #endif
150
151 /**
152  * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
153  * @base: pointer to the base where the timer is being run
154  * @alarm: pointer to alarm being enqueued.
155  *
156  * Adds alarm to a alarm_base timerqueue
157  *
158  * Must hold base->lock when calling.
159  */
160 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
161 {
162         if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
163                 timerqueue_del(&base->timerqueue, &alarm->node);
164
165         timerqueue_add(&base->timerqueue, &alarm->node);
166         alarm->state |= ALARMTIMER_STATE_ENQUEUED;
167 }
168
169 /**
170  * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
171  * @base: pointer to the base where the timer is running
172  * @alarm: pointer to alarm being removed
173  *
174  * Removes alarm to a alarm_base timerqueue
175  *
176  * Must hold base->lock when calling.
177  */
178 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
179 {
180         if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
181                 return;
182
183         timerqueue_del(&base->timerqueue, &alarm->node);
184         alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
185 }
186
187
188 /**
189  * alarmtimer_fired - Handles alarm hrtimer being fired.
190  * @timer: pointer to hrtimer being run
191  *
192  * When a alarm timer fires, this runs through the timerqueue to
193  * see which alarms expired, and runs those. If there are more alarm
194  * timers queued for the future, we set the hrtimer to fire when
195  * the next future alarm timer expires.
196  */
197 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
198 {
199         struct alarm *alarm = container_of(timer, struct alarm, timer);
200         struct alarm_base *base = &alarm_bases[alarm->type];
201         unsigned long flags;
202         int ret = HRTIMER_NORESTART;
203         int restart = ALARMTIMER_NORESTART;
204
205         spin_lock_irqsave(&base->lock, flags);
206         alarmtimer_dequeue(base, alarm);
207         spin_unlock_irqrestore(&base->lock, flags);
208
209         if (alarm->function)
210                 restart = alarm->function(alarm, base->get_ktime());
211
212         spin_lock_irqsave(&base->lock, flags);
213         if (restart != ALARMTIMER_NORESTART) {
214                 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
215                 alarmtimer_enqueue(base, alarm);
216                 ret = HRTIMER_RESTART;
217         }
218         spin_unlock_irqrestore(&base->lock, flags);
219
220         trace_alarmtimer_fired(alarm, base->get_ktime());
221         return ret;
222
223 }
224
225 ktime_t alarm_expires_remaining(const struct alarm *alarm)
226 {
227         struct alarm_base *base = &alarm_bases[alarm->type];
228         return ktime_sub(alarm->node.expires, base->get_ktime());
229 }
230 EXPORT_SYMBOL_GPL(alarm_expires_remaining);
231
232 #ifdef CONFIG_RTC_CLASS
233 /**
234  * alarmtimer_suspend - Suspend time callback
235  * @dev: unused
236  *
237  * When we are going into suspend, we look through the bases
238  * to see which is the soonest timer to expire. We then
239  * set an rtc timer to fire that far into the future, which
240  * will wake us from suspend.
241  */
242 static int alarmtimer_suspend(struct device *dev)
243 {
244         ktime_t min, now, expires;
245         int i, ret, type;
246         struct rtc_device *rtc;
247         unsigned long flags;
248         struct rtc_time tm;
249
250         spin_lock_irqsave(&freezer_delta_lock, flags);
251         min = freezer_delta;
252         expires = freezer_expires;
253         type = freezer_alarmtype;
254         freezer_delta = 0;
255         spin_unlock_irqrestore(&freezer_delta_lock, flags);
256
257         rtc = alarmtimer_get_rtcdev();
258         /* If we have no rtcdev, just return */
259         if (!rtc)
260                 return 0;
261
262         /* Find the soonest timer to expire*/
263         for (i = 0; i < ALARM_NUMTYPE; i++) {
264                 struct alarm_base *base = &alarm_bases[i];
265                 struct timerqueue_node *next;
266                 ktime_t delta;
267
268                 spin_lock_irqsave(&base->lock, flags);
269                 next = timerqueue_getnext(&base->timerqueue);
270                 spin_unlock_irqrestore(&base->lock, flags);
271                 if (!next)
272                         continue;
273                 delta = ktime_sub(next->expires, base->get_ktime());
274                 if (!min || (delta < min)) {
275                         expires = next->expires;
276                         min = delta;
277                         type = i;
278                 }
279         }
280         if (min == 0)
281                 return 0;
282
283         if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
284                 pm_wakeup_event(dev, 2 * MSEC_PER_SEC);
285                 return -EBUSY;
286         }
287
288         trace_alarmtimer_suspend(expires, type);
289
290         /* Setup an rtc timer to fire that far in the future */
291         rtc_timer_cancel(rtc, &rtctimer);
292         rtc_read_time(rtc, &tm);
293         now = rtc_tm_to_ktime(tm);
294         now = ktime_add(now, min);
295
296         /* Set alarm, if in the past reject suspend briefly to handle */
297         ret = rtc_timer_start(rtc, &rtctimer, now, 0);
298         if (ret < 0)
299                 pm_wakeup_event(dev, MSEC_PER_SEC);
300         return ret;
301 }
302
303 static int alarmtimer_resume(struct device *dev)
304 {
305         struct rtc_device *rtc;
306
307         rtc = alarmtimer_get_rtcdev();
308         if (rtc)
309                 rtc_timer_cancel(rtc, &rtctimer);
310         return 0;
311 }
312
313 #else
314 static int alarmtimer_suspend(struct device *dev)
315 {
316         return 0;
317 }
318
319 static int alarmtimer_resume(struct device *dev)
320 {
321         return 0;
322 }
323 #endif
324
325 static void
326 __alarm_init(struct alarm *alarm, enum alarmtimer_type type,
327              enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
328 {
329         timerqueue_init(&alarm->node);
330         alarm->timer.function = alarmtimer_fired;
331         alarm->function = function;
332         alarm->type = type;
333         alarm->state = ALARMTIMER_STATE_INACTIVE;
334 }
335
336 /**
337  * alarm_init - Initialize an alarm structure
338  * @alarm: ptr to alarm to be initialized
339  * @type: the type of the alarm
340  * @function: callback that is run when the alarm fires
341  */
342 void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
343                 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
344 {
345         hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
346                      HRTIMER_MODE_ABS);
347         __alarm_init(alarm, type, function);
348 }
349 EXPORT_SYMBOL_GPL(alarm_init);
350
351 /**
352  * alarm_start - Sets an absolute alarm to fire
353  * @alarm: ptr to alarm to set
354  * @start: time to run the alarm
355  */
356 void alarm_start(struct alarm *alarm, ktime_t start)
357 {
358         struct alarm_base *base = &alarm_bases[alarm->type];
359         unsigned long flags;
360
361         spin_lock_irqsave(&base->lock, flags);
362         alarm->node.expires = start;
363         alarmtimer_enqueue(base, alarm);
364         hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
365         spin_unlock_irqrestore(&base->lock, flags);
366
367         trace_alarmtimer_start(alarm, base->get_ktime());
368 }
369 EXPORT_SYMBOL_GPL(alarm_start);
370
371 /**
372  * alarm_start_relative - Sets a relative alarm to fire
373  * @alarm: ptr to alarm to set
374  * @start: time relative to now to run the alarm
375  */
376 void alarm_start_relative(struct alarm *alarm, ktime_t start)
377 {
378         struct alarm_base *base = &alarm_bases[alarm->type];
379
380         start = ktime_add_safe(start, base->get_ktime());
381         alarm_start(alarm, start);
382 }
383 EXPORT_SYMBOL_GPL(alarm_start_relative);
384
385 void alarm_restart(struct alarm *alarm)
386 {
387         struct alarm_base *base = &alarm_bases[alarm->type];
388         unsigned long flags;
389
390         spin_lock_irqsave(&base->lock, flags);
391         hrtimer_set_expires(&alarm->timer, alarm->node.expires);
392         hrtimer_restart(&alarm->timer);
393         alarmtimer_enqueue(base, alarm);
394         spin_unlock_irqrestore(&base->lock, flags);
395 }
396 EXPORT_SYMBOL_GPL(alarm_restart);
397
398 /**
399  * alarm_try_to_cancel - Tries to cancel an alarm timer
400  * @alarm: ptr to alarm to be canceled
401  *
402  * Returns 1 if the timer was canceled, 0 if it was not running,
403  * and -1 if the callback was running
404  */
405 int alarm_try_to_cancel(struct alarm *alarm)
406 {
407         struct alarm_base *base = &alarm_bases[alarm->type];
408         unsigned long flags;
409         int ret;
410
411         spin_lock_irqsave(&base->lock, flags);
412         ret = hrtimer_try_to_cancel(&alarm->timer);
413         if (ret >= 0)
414                 alarmtimer_dequeue(base, alarm);
415         spin_unlock_irqrestore(&base->lock, flags);
416
417         trace_alarmtimer_cancel(alarm, base->get_ktime());
418         return ret;
419 }
420 EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
421
422
423 /**
424  * alarm_cancel - Spins trying to cancel an alarm timer until it is done
425  * @alarm: ptr to alarm to be canceled
426  *
427  * Returns 1 if the timer was canceled, 0 if it was not active.
428  */
429 int alarm_cancel(struct alarm *alarm)
430 {
431         for (;;) {
432                 int ret = alarm_try_to_cancel(alarm);
433                 if (ret >= 0)
434                         return ret;
435                 hrtimer_cancel_wait_running(&alarm->timer);
436         }
437 }
438 EXPORT_SYMBOL_GPL(alarm_cancel);
439
440
441 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
442 {
443         u64 overrun = 1;
444         ktime_t delta;
445
446         delta = ktime_sub(now, alarm->node.expires);
447
448         if (delta < 0)
449                 return 0;
450
451         if (unlikely(delta >= interval)) {
452                 s64 incr = ktime_to_ns(interval);
453
454                 overrun = ktime_divns(delta, incr);
455
456                 alarm->node.expires = ktime_add_ns(alarm->node.expires,
457                                                         incr*overrun);
458
459                 if (alarm->node.expires > now)
460                         return overrun;
461                 /*
462                  * This (and the ktime_add() below) is the
463                  * correction for exact:
464                  */
465                 overrun++;
466         }
467
468         alarm->node.expires = ktime_add_safe(alarm->node.expires, interval);
469         return overrun;
470 }
471 EXPORT_SYMBOL_GPL(alarm_forward);
472
473 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
474 {
475         struct alarm_base *base = &alarm_bases[alarm->type];
476
477         return alarm_forward(alarm, base->get_ktime(), interval);
478 }
479 EXPORT_SYMBOL_GPL(alarm_forward_now);
480
481 #ifdef CONFIG_POSIX_TIMERS
482
483 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
484 {
485         struct alarm_base *base;
486         unsigned long flags;
487         ktime_t delta;
488
489         switch(type) {
490         case ALARM_REALTIME:
491                 base = &alarm_bases[ALARM_REALTIME];
492                 type = ALARM_REALTIME_FREEZER;
493                 break;
494         case ALARM_BOOTTIME:
495                 base = &alarm_bases[ALARM_BOOTTIME];
496                 type = ALARM_BOOTTIME_FREEZER;
497                 break;
498         default:
499                 WARN_ONCE(1, "Invalid alarm type: %d\n", type);
500                 return;
501         }
502
503         delta = ktime_sub(absexp, base->get_ktime());
504
505         spin_lock_irqsave(&freezer_delta_lock, flags);
506         if (!freezer_delta || (delta < freezer_delta)) {
507                 freezer_delta = delta;
508                 freezer_expires = absexp;
509                 freezer_alarmtype = type;
510         }
511         spin_unlock_irqrestore(&freezer_delta_lock, flags);
512 }
513
514 /**
515  * clock2alarm - helper that converts from clockid to alarmtypes
516  * @clockid: clockid.
517  */
518 static enum alarmtimer_type clock2alarm(clockid_t clockid)
519 {
520         if (clockid == CLOCK_REALTIME_ALARM)
521                 return ALARM_REALTIME;
522         if (clockid == CLOCK_BOOTTIME_ALARM)
523                 return ALARM_BOOTTIME;
524         return -1;
525 }
526
527 /**
528  * alarm_handle_timer - Callback for posix timers
529  * @alarm: alarm that fired
530  * @now: time at the timer expiration
531  *
532  * Posix timer callback for expired alarm timers.
533  *
534  * Return: whether the timer is to be restarted
535  */
536 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
537                                                         ktime_t now)
538 {
539         struct k_itimer *ptr = container_of(alarm, struct k_itimer,
540                                             it.alarm.alarmtimer);
541         enum alarmtimer_restart result = ALARMTIMER_NORESTART;
542         unsigned long flags;
543         int si_private = 0;
544
545         spin_lock_irqsave(&ptr->it_lock, flags);
546
547         ptr->it_active = 0;
548         if (ptr->it_interval)
549                 si_private = ++ptr->it_requeue_pending;
550
551         if (posix_timer_event(ptr, si_private) && ptr->it_interval) {
552                 /*
553                  * Handle ignored signals and rearm the timer. This will go
554                  * away once we handle ignored signals proper.
555                  */
556                 ptr->it_overrun += alarm_forward_now(alarm, ptr->it_interval);
557                 ++ptr->it_requeue_pending;
558                 ptr->it_active = 1;
559                 result = ALARMTIMER_RESTART;
560         }
561         spin_unlock_irqrestore(&ptr->it_lock, flags);
562
563         return result;
564 }
565
566 /**
567  * alarm_timer_rearm - Posix timer callback for rearming timer
568  * @timr:       Pointer to the posixtimer data struct
569  */
570 static void alarm_timer_rearm(struct k_itimer *timr)
571 {
572         struct alarm *alarm = &timr->it.alarm.alarmtimer;
573
574         timr->it_overrun += alarm_forward_now(alarm, timr->it_interval);
575         alarm_start(alarm, alarm->node.expires);
576 }
577
578 /**
579  * alarm_timer_forward - Posix timer callback for forwarding timer
580  * @timr:       Pointer to the posixtimer data struct
581  * @now:        Current time to forward the timer against
582  */
583 static s64 alarm_timer_forward(struct k_itimer *timr, ktime_t now)
584 {
585         struct alarm *alarm = &timr->it.alarm.alarmtimer;
586
587         return alarm_forward(alarm, timr->it_interval, now);
588 }
589
590 /**
591  * alarm_timer_remaining - Posix timer callback to retrieve remaining time
592  * @timr:       Pointer to the posixtimer data struct
593  * @now:        Current time to calculate against
594  */
595 static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now)
596 {
597         struct alarm *alarm = &timr->it.alarm.alarmtimer;
598
599         return ktime_sub(alarm->node.expires, now);
600 }
601
602 /**
603  * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer
604  * @timr:       Pointer to the posixtimer data struct
605  */
606 static int alarm_timer_try_to_cancel(struct k_itimer *timr)
607 {
608         return alarm_try_to_cancel(&timr->it.alarm.alarmtimer);
609 }
610
611 /**
612  * alarm_timer_wait_running - Posix timer callback to wait for a timer
613  * @timr:       Pointer to the posixtimer data struct
614  *
615  * Called from the core code when timer cancel detected that the callback
616  * is running. @timr is unlocked and rcu read lock is held to prevent it
617  * from being freed.
618  */
619 static void alarm_timer_wait_running(struct k_itimer *timr)
620 {
621         hrtimer_cancel_wait_running(&timr->it.alarm.alarmtimer.timer);
622 }
623
624 /**
625  * alarm_timer_arm - Posix timer callback to arm a timer
626  * @timr:       Pointer to the posixtimer data struct
627  * @expires:    The new expiry time
628  * @absolute:   Expiry value is absolute time
629  * @sigev_none: Posix timer does not deliver signals
630  */
631 static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires,
632                             bool absolute, bool sigev_none)
633 {
634         struct alarm *alarm = &timr->it.alarm.alarmtimer;
635         struct alarm_base *base = &alarm_bases[alarm->type];
636
637         if (!absolute)
638                 expires = ktime_add_safe(expires, base->get_ktime());
639         if (sigev_none)
640                 alarm->node.expires = expires;
641         else
642                 alarm_start(&timr->it.alarm.alarmtimer, expires);
643 }
644
645 /**
646  * alarm_clock_getres - posix getres interface
647  * @which_clock: clockid
648  * @tp: timespec to fill
649  *
650  * Returns the granularity of underlying alarm base clock
651  */
652 static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
653 {
654         if (!alarmtimer_get_rtcdev())
655                 return -EINVAL;
656
657         tp->tv_sec = 0;
658         tp->tv_nsec = hrtimer_resolution;
659         return 0;
660 }
661
662 /**
663  * alarm_clock_get_timespec - posix clock_get_timespec interface
664  * @which_clock: clockid
665  * @tp: timespec to fill.
666  *
667  * Provides the underlying alarm base time in a tasks time namespace.
668  */
669 static int alarm_clock_get_timespec(clockid_t which_clock, struct timespec64 *tp)
670 {
671         struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
672
673         if (!alarmtimer_get_rtcdev())
674                 return -EINVAL;
675
676         base->get_timespec(tp);
677
678         return 0;
679 }
680
681 /**
682  * alarm_clock_get_ktime - posix clock_get_ktime interface
683  * @which_clock: clockid
684  *
685  * Provides the underlying alarm base time in the root namespace.
686  */
687 static ktime_t alarm_clock_get_ktime(clockid_t which_clock)
688 {
689         struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
690
691         if (!alarmtimer_get_rtcdev())
692                 return -EINVAL;
693
694         return base->get_ktime();
695 }
696
697 /**
698  * alarm_timer_create - posix timer_create interface
699  * @new_timer: k_itimer pointer to manage
700  *
701  * Initializes the k_itimer structure.
702  */
703 static int alarm_timer_create(struct k_itimer *new_timer)
704 {
705         enum  alarmtimer_type type;
706
707         if (!alarmtimer_get_rtcdev())
708                 return -EOPNOTSUPP;
709
710         if (!capable(CAP_WAKE_ALARM))
711                 return -EPERM;
712
713         type = clock2alarm(new_timer->it_clock);
714         alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
715         return 0;
716 }
717
718 /**
719  * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
720  * @alarm: ptr to alarm that fired
721  * @now: time at the timer expiration
722  *
723  * Wakes up the task that set the alarmtimer
724  *
725  * Return: ALARMTIMER_NORESTART
726  */
727 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
728                                                                 ktime_t now)
729 {
730         struct task_struct *task = (struct task_struct *)alarm->data;
731
732         alarm->data = NULL;
733         if (task)
734                 wake_up_process(task);
735         return ALARMTIMER_NORESTART;
736 }
737
738 /**
739  * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
740  * @alarm: ptr to alarmtimer
741  * @absexp: absolute expiration time
742  * @type: alarm type (BOOTTIME/REALTIME).
743  *
744  * Sets the alarm timer and sleeps until it is fired or interrupted.
745  */
746 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
747                                 enum alarmtimer_type type)
748 {
749         struct restart_block *restart;
750         alarm->data = (void *)current;
751         do {
752                 set_current_state(TASK_INTERRUPTIBLE);
753                 alarm_start(alarm, absexp);
754                 if (likely(alarm->data))
755                         schedule();
756
757                 alarm_cancel(alarm);
758         } while (alarm->data && !signal_pending(current));
759
760         __set_current_state(TASK_RUNNING);
761
762         destroy_hrtimer_on_stack(&alarm->timer);
763
764         if (!alarm->data)
765                 return 0;
766
767         if (freezing(current))
768                 alarmtimer_freezerset(absexp, type);
769         restart = &current->restart_block;
770         if (restart->nanosleep.type != TT_NONE) {
771                 struct timespec64 rmt;
772                 ktime_t rem;
773
774                 rem = ktime_sub(absexp, alarm_bases[type].get_ktime());
775
776                 if (rem <= 0)
777                         return 0;
778                 rmt = ktime_to_timespec64(rem);
779
780                 return nanosleep_copyout(restart, &rmt);
781         }
782         return -ERESTART_RESTARTBLOCK;
783 }
784
785 static void
786 alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type,
787                     enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
788 {
789         hrtimer_init_on_stack(&alarm->timer, alarm_bases[type].base_clockid,
790                               HRTIMER_MODE_ABS);
791         __alarm_init(alarm, type, function);
792 }
793
794 /**
795  * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
796  * @restart: ptr to restart block
797  *
798  * Handles restarted clock_nanosleep calls
799  */
800 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
801 {
802         enum  alarmtimer_type type = restart->nanosleep.clockid;
803         ktime_t exp = restart->nanosleep.expires;
804         struct alarm alarm;
805
806         alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
807
808         return alarmtimer_do_nsleep(&alarm, exp, type);
809 }
810
811 /**
812  * alarm_timer_nsleep - alarmtimer nanosleep
813  * @which_clock: clockid
814  * @flags: determines abstime or relative
815  * @tsreq: requested sleep time (abs or rel)
816  *
817  * Handles clock_nanosleep calls against _ALARM clockids
818  */
819 static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
820                               const struct timespec64 *tsreq)
821 {
822         enum  alarmtimer_type type = clock2alarm(which_clock);
823         struct restart_block *restart = &current->restart_block;
824         struct alarm alarm;
825         ktime_t exp;
826         int ret = 0;
827
828         if (!alarmtimer_get_rtcdev())
829                 return -EOPNOTSUPP;
830
831         if (flags & ~TIMER_ABSTIME)
832                 return -EINVAL;
833
834         if (!capable(CAP_WAKE_ALARM))
835                 return -EPERM;
836
837         alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
838
839         exp = timespec64_to_ktime(*tsreq);
840         /* Convert (if necessary) to absolute time */
841         if (flags != TIMER_ABSTIME) {
842                 ktime_t now = alarm_bases[type].get_ktime();
843
844                 exp = ktime_add_safe(now, exp);
845         } else {
846                 exp = timens_ktime_to_host(which_clock, exp);
847         }
848
849         ret = alarmtimer_do_nsleep(&alarm, exp, type);
850         if (ret != -ERESTART_RESTARTBLOCK)
851                 return ret;
852
853         /* abs timers don't set remaining time or restart */
854         if (flags == TIMER_ABSTIME)
855                 return -ERESTARTNOHAND;
856
857         restart->nanosleep.clockid = type;
858         restart->nanosleep.expires = exp;
859         set_restart_fn(restart, alarm_timer_nsleep_restart);
860         return ret;
861 }
862
863 const struct k_clock alarm_clock = {
864         .clock_getres           = alarm_clock_getres,
865         .clock_get_ktime        = alarm_clock_get_ktime,
866         .clock_get_timespec     = alarm_clock_get_timespec,
867         .timer_create           = alarm_timer_create,
868         .timer_set              = common_timer_set,
869         .timer_del              = common_timer_del,
870         .timer_get              = common_timer_get,
871         .timer_arm              = alarm_timer_arm,
872         .timer_rearm            = alarm_timer_rearm,
873         .timer_forward          = alarm_timer_forward,
874         .timer_remaining        = alarm_timer_remaining,
875         .timer_try_to_cancel    = alarm_timer_try_to_cancel,
876         .timer_wait_running     = alarm_timer_wait_running,
877         .nsleep                 = alarm_timer_nsleep,
878 };
879 #endif /* CONFIG_POSIX_TIMERS */
880
881
882 /* Suspend hook structures */
883 static const struct dev_pm_ops alarmtimer_pm_ops = {
884         .suspend = alarmtimer_suspend,
885         .resume = alarmtimer_resume,
886 };
887
888 static struct platform_driver alarmtimer_driver = {
889         .driver = {
890                 .name = "alarmtimer",
891                 .pm = &alarmtimer_pm_ops,
892         }
893 };
894
895 static void get_boottime_timespec(struct timespec64 *tp)
896 {
897         ktime_get_boottime_ts64(tp);
898         timens_add_boottime(tp);
899 }
900
901 /**
902  * alarmtimer_init - Initialize alarm timer code
903  *
904  * This function initializes the alarm bases and registers
905  * the posix clock ids.
906  */
907 static int __init alarmtimer_init(void)
908 {
909         int error;
910         int i;
911
912         alarmtimer_rtc_timer_init();
913
914         /* Initialize alarm bases */
915         alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
916         alarm_bases[ALARM_REALTIME].get_ktime = &ktime_get_real;
917         alarm_bases[ALARM_REALTIME].get_timespec = ktime_get_real_ts64;
918         alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
919         alarm_bases[ALARM_BOOTTIME].get_ktime = &ktime_get_boottime;
920         alarm_bases[ALARM_BOOTTIME].get_timespec = get_boottime_timespec;
921         for (i = 0; i < ALARM_NUMTYPE; i++) {
922                 timerqueue_init_head(&alarm_bases[i].timerqueue);
923                 spin_lock_init(&alarm_bases[i].lock);
924         }
925
926         error = alarmtimer_rtc_interface_setup();
927         if (error)
928                 return error;
929
930         error = platform_driver_register(&alarmtimer_driver);
931         if (error)
932                 goto out_if;
933
934         return 0;
935 out_if:
936         alarmtimer_rtc_interface_remove();
937         return error;
938 }
939 device_initcall(alarmtimer_init);