Merge tag 'clang-lto-v5.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / kernel / sched / rt.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4  * policies)
5  */
6 #include "sched.h"
7
8 #include "pelt.h"
9
10 int sched_rr_timeslice = RR_TIMESLICE;
11 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
12 /* More than 4 hours if BW_SHIFT equals 20. */
13 static const u64 max_rt_runtime = MAX_BW;
14
15 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
16
17 struct rt_bandwidth def_rt_bandwidth;
18
19 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
20 {
21         struct rt_bandwidth *rt_b =
22                 container_of(timer, struct rt_bandwidth, rt_period_timer);
23         int idle = 0;
24         int overrun;
25
26         raw_spin_lock(&rt_b->rt_runtime_lock);
27         for (;;) {
28                 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
29                 if (!overrun)
30                         break;
31
32                 raw_spin_unlock(&rt_b->rt_runtime_lock);
33                 idle = do_sched_rt_period_timer(rt_b, overrun);
34                 raw_spin_lock(&rt_b->rt_runtime_lock);
35         }
36         if (idle)
37                 rt_b->rt_period_active = 0;
38         raw_spin_unlock(&rt_b->rt_runtime_lock);
39
40         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
41 }
42
43 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
44 {
45         rt_b->rt_period = ns_to_ktime(period);
46         rt_b->rt_runtime = runtime;
47
48         raw_spin_lock_init(&rt_b->rt_runtime_lock);
49
50         hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
51                      HRTIMER_MODE_REL_HARD);
52         rt_b->rt_period_timer.function = sched_rt_period_timer;
53 }
54
55 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
56 {
57         if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
58                 return;
59
60         raw_spin_lock(&rt_b->rt_runtime_lock);
61         if (!rt_b->rt_period_active) {
62                 rt_b->rt_period_active = 1;
63                 /*
64                  * SCHED_DEADLINE updates the bandwidth, as a run away
65                  * RT task with a DL task could hog a CPU. But DL does
66                  * not reset the period. If a deadline task was running
67                  * without an RT task running, it can cause RT tasks to
68                  * throttle when they start up. Kick the timer right away
69                  * to update the period.
70                  */
71                 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
72                 hrtimer_start_expires(&rt_b->rt_period_timer,
73                                       HRTIMER_MODE_ABS_PINNED_HARD);
74         }
75         raw_spin_unlock(&rt_b->rt_runtime_lock);
76 }
77
78 void init_rt_rq(struct rt_rq *rt_rq)
79 {
80         struct rt_prio_array *array;
81         int i;
82
83         array = &rt_rq->active;
84         for (i = 0; i < MAX_RT_PRIO; i++) {
85                 INIT_LIST_HEAD(array->queue + i);
86                 __clear_bit(i, array->bitmap);
87         }
88         /* delimiter for bitsearch: */
89         __set_bit(MAX_RT_PRIO, array->bitmap);
90
91 #if defined CONFIG_SMP
92         rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
93         rt_rq->highest_prio.next = MAX_RT_PRIO-1;
94         rt_rq->rt_nr_migratory = 0;
95         rt_rq->overloaded = 0;
96         plist_head_init(&rt_rq->pushable_tasks);
97 #endif /* CONFIG_SMP */
98         /* We start is dequeued state, because no RT tasks are queued */
99         rt_rq->rt_queued = 0;
100
101         rt_rq->rt_time = 0;
102         rt_rq->rt_throttled = 0;
103         rt_rq->rt_runtime = 0;
104         raw_spin_lock_init(&rt_rq->rt_runtime_lock);
105 }
106
107 #ifdef CONFIG_RT_GROUP_SCHED
108 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
109 {
110         hrtimer_cancel(&rt_b->rt_period_timer);
111 }
112
113 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
114
115 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
116 {
117 #ifdef CONFIG_SCHED_DEBUG
118         WARN_ON_ONCE(!rt_entity_is_task(rt_se));
119 #endif
120         return container_of(rt_se, struct task_struct, rt);
121 }
122
123 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
124 {
125         return rt_rq->rq;
126 }
127
128 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
129 {
130         return rt_se->rt_rq;
131 }
132
133 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
134 {
135         struct rt_rq *rt_rq = rt_se->rt_rq;
136
137         return rt_rq->rq;
138 }
139
140 void free_rt_sched_group(struct task_group *tg)
141 {
142         int i;
143
144         if (tg->rt_se)
145                 destroy_rt_bandwidth(&tg->rt_bandwidth);
146
147         for_each_possible_cpu(i) {
148                 if (tg->rt_rq)
149                         kfree(tg->rt_rq[i]);
150                 if (tg->rt_se)
151                         kfree(tg->rt_se[i]);
152         }
153
154         kfree(tg->rt_rq);
155         kfree(tg->rt_se);
156 }
157
158 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
159                 struct sched_rt_entity *rt_se, int cpu,
160                 struct sched_rt_entity *parent)
161 {
162         struct rq *rq = cpu_rq(cpu);
163
164         rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
165         rt_rq->rt_nr_boosted = 0;
166         rt_rq->rq = rq;
167         rt_rq->tg = tg;
168
169         tg->rt_rq[cpu] = rt_rq;
170         tg->rt_se[cpu] = rt_se;
171
172         if (!rt_se)
173                 return;
174
175         if (!parent)
176                 rt_se->rt_rq = &rq->rt;
177         else
178                 rt_se->rt_rq = parent->my_q;
179
180         rt_se->my_q = rt_rq;
181         rt_se->parent = parent;
182         INIT_LIST_HEAD(&rt_se->run_list);
183 }
184
185 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
186 {
187         struct rt_rq *rt_rq;
188         struct sched_rt_entity *rt_se;
189         int i;
190
191         tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
192         if (!tg->rt_rq)
193                 goto err;
194         tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
195         if (!tg->rt_se)
196                 goto err;
197
198         init_rt_bandwidth(&tg->rt_bandwidth,
199                         ktime_to_ns(def_rt_bandwidth.rt_period), 0);
200
201         for_each_possible_cpu(i) {
202                 rt_rq = kzalloc_node(sizeof(struct rt_rq),
203                                      GFP_KERNEL, cpu_to_node(i));
204                 if (!rt_rq)
205                         goto err;
206
207                 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
208                                      GFP_KERNEL, cpu_to_node(i));
209                 if (!rt_se)
210                         goto err_free_rq;
211
212                 init_rt_rq(rt_rq);
213                 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
214                 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
215         }
216
217         return 1;
218
219 err_free_rq:
220         kfree(rt_rq);
221 err:
222         return 0;
223 }
224
225 #else /* CONFIG_RT_GROUP_SCHED */
226
227 #define rt_entity_is_task(rt_se) (1)
228
229 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
230 {
231         return container_of(rt_se, struct task_struct, rt);
232 }
233
234 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
235 {
236         return container_of(rt_rq, struct rq, rt);
237 }
238
239 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
240 {
241         struct task_struct *p = rt_task_of(rt_se);
242
243         return task_rq(p);
244 }
245
246 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
247 {
248         struct rq *rq = rq_of_rt_se(rt_se);
249
250         return &rq->rt;
251 }
252
253 void free_rt_sched_group(struct task_group *tg) { }
254
255 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
256 {
257         return 1;
258 }
259 #endif /* CONFIG_RT_GROUP_SCHED */
260
261 #ifdef CONFIG_SMP
262
263 static void pull_rt_task(struct rq *this_rq);
264
265 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
266 {
267         /* Try to pull RT tasks here if we lower this rq's prio */
268         return rq->online && rq->rt.highest_prio.curr > prev->prio;
269 }
270
271 static inline int rt_overloaded(struct rq *rq)
272 {
273         return atomic_read(&rq->rd->rto_count);
274 }
275
276 static inline void rt_set_overload(struct rq *rq)
277 {
278         if (!rq->online)
279                 return;
280
281         cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
282         /*
283          * Make sure the mask is visible before we set
284          * the overload count. That is checked to determine
285          * if we should look at the mask. It would be a shame
286          * if we looked at the mask, but the mask was not
287          * updated yet.
288          *
289          * Matched by the barrier in pull_rt_task().
290          */
291         smp_wmb();
292         atomic_inc(&rq->rd->rto_count);
293 }
294
295 static inline void rt_clear_overload(struct rq *rq)
296 {
297         if (!rq->online)
298                 return;
299
300         /* the order here really doesn't matter */
301         atomic_dec(&rq->rd->rto_count);
302         cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
303 }
304
305 static void update_rt_migration(struct rt_rq *rt_rq)
306 {
307         if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
308                 if (!rt_rq->overloaded) {
309                         rt_set_overload(rq_of_rt_rq(rt_rq));
310                         rt_rq->overloaded = 1;
311                 }
312         } else if (rt_rq->overloaded) {
313                 rt_clear_overload(rq_of_rt_rq(rt_rq));
314                 rt_rq->overloaded = 0;
315         }
316 }
317
318 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
319 {
320         struct task_struct *p;
321
322         if (!rt_entity_is_task(rt_se))
323                 return;
324
325         p = rt_task_of(rt_se);
326         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
327
328         rt_rq->rt_nr_total++;
329         if (p->nr_cpus_allowed > 1)
330                 rt_rq->rt_nr_migratory++;
331
332         update_rt_migration(rt_rq);
333 }
334
335 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
336 {
337         struct task_struct *p;
338
339         if (!rt_entity_is_task(rt_se))
340                 return;
341
342         p = rt_task_of(rt_se);
343         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
344
345         rt_rq->rt_nr_total--;
346         if (p->nr_cpus_allowed > 1)
347                 rt_rq->rt_nr_migratory--;
348
349         update_rt_migration(rt_rq);
350 }
351
352 static inline int has_pushable_tasks(struct rq *rq)
353 {
354         return !plist_head_empty(&rq->rt.pushable_tasks);
355 }
356
357 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
358 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
359
360 static void push_rt_tasks(struct rq *);
361 static void pull_rt_task(struct rq *);
362
363 static inline void rt_queue_push_tasks(struct rq *rq)
364 {
365         if (!has_pushable_tasks(rq))
366                 return;
367
368         queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
369 }
370
371 static inline void rt_queue_pull_task(struct rq *rq)
372 {
373         queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
374 }
375
376 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
377 {
378         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
379         plist_node_init(&p->pushable_tasks, p->prio);
380         plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
381
382         /* Update the highest prio pushable task */
383         if (p->prio < rq->rt.highest_prio.next)
384                 rq->rt.highest_prio.next = p->prio;
385 }
386
387 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
388 {
389         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
390
391         /* Update the new highest prio pushable task */
392         if (has_pushable_tasks(rq)) {
393                 p = plist_first_entry(&rq->rt.pushable_tasks,
394                                       struct task_struct, pushable_tasks);
395                 rq->rt.highest_prio.next = p->prio;
396         } else {
397                 rq->rt.highest_prio.next = MAX_RT_PRIO-1;
398         }
399 }
400
401 #else
402
403 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
404 {
405 }
406
407 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
408 {
409 }
410
411 static inline
412 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
413 {
414 }
415
416 static inline
417 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
418 {
419 }
420
421 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
422 {
423         return false;
424 }
425
426 static inline void pull_rt_task(struct rq *this_rq)
427 {
428 }
429
430 static inline void rt_queue_push_tasks(struct rq *rq)
431 {
432 }
433 #endif /* CONFIG_SMP */
434
435 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
436 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
437
438 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
439 {
440         return rt_se->on_rq;
441 }
442
443 #ifdef CONFIG_UCLAMP_TASK
444 /*
445  * Verify the fitness of task @p to run on @cpu taking into account the uclamp
446  * settings.
447  *
448  * This check is only important for heterogeneous systems where uclamp_min value
449  * is higher than the capacity of a @cpu. For non-heterogeneous system this
450  * function will always return true.
451  *
452  * The function will return true if the capacity of the @cpu is >= the
453  * uclamp_min and false otherwise.
454  *
455  * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
456  * > uclamp_max.
457  */
458 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
459 {
460         unsigned int min_cap;
461         unsigned int max_cap;
462         unsigned int cpu_cap;
463
464         /* Only heterogeneous systems can benefit from this check */
465         if (!static_branch_unlikely(&sched_asym_cpucapacity))
466                 return true;
467
468         min_cap = uclamp_eff_value(p, UCLAMP_MIN);
469         max_cap = uclamp_eff_value(p, UCLAMP_MAX);
470
471         cpu_cap = capacity_orig_of(cpu);
472
473         return cpu_cap >= min(min_cap, max_cap);
474 }
475 #else
476 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
477 {
478         return true;
479 }
480 #endif
481
482 #ifdef CONFIG_RT_GROUP_SCHED
483
484 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
485 {
486         if (!rt_rq->tg)
487                 return RUNTIME_INF;
488
489         return rt_rq->rt_runtime;
490 }
491
492 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
493 {
494         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
495 }
496
497 typedef struct task_group *rt_rq_iter_t;
498
499 static inline struct task_group *next_task_group(struct task_group *tg)
500 {
501         do {
502                 tg = list_entry_rcu(tg->list.next,
503                         typeof(struct task_group), list);
504         } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
505
506         if (&tg->list == &task_groups)
507                 tg = NULL;
508
509         return tg;
510 }
511
512 #define for_each_rt_rq(rt_rq, iter, rq)                                 \
513         for (iter = container_of(&task_groups, typeof(*iter), list);    \
514                 (iter = next_task_group(iter)) &&                       \
515                 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
516
517 #define for_each_sched_rt_entity(rt_se) \
518         for (; rt_se; rt_se = rt_se->parent)
519
520 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
521 {
522         return rt_se->my_q;
523 }
524
525 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
526 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
527
528 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
529 {
530         struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
531         struct rq *rq = rq_of_rt_rq(rt_rq);
532         struct sched_rt_entity *rt_se;
533
534         int cpu = cpu_of(rq);
535
536         rt_se = rt_rq->tg->rt_se[cpu];
537
538         if (rt_rq->rt_nr_running) {
539                 if (!rt_se)
540                         enqueue_top_rt_rq(rt_rq);
541                 else if (!on_rt_rq(rt_se))
542                         enqueue_rt_entity(rt_se, 0);
543
544                 if (rt_rq->highest_prio.curr < curr->prio)
545                         resched_curr(rq);
546         }
547 }
548
549 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
550 {
551         struct sched_rt_entity *rt_se;
552         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
553
554         rt_se = rt_rq->tg->rt_se[cpu];
555
556         if (!rt_se) {
557                 dequeue_top_rt_rq(rt_rq);
558                 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
559                 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
560         }
561         else if (on_rt_rq(rt_se))
562                 dequeue_rt_entity(rt_se, 0);
563 }
564
565 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
566 {
567         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
568 }
569
570 static int rt_se_boosted(struct sched_rt_entity *rt_se)
571 {
572         struct rt_rq *rt_rq = group_rt_rq(rt_se);
573         struct task_struct *p;
574
575         if (rt_rq)
576                 return !!rt_rq->rt_nr_boosted;
577
578         p = rt_task_of(rt_se);
579         return p->prio != p->normal_prio;
580 }
581
582 #ifdef CONFIG_SMP
583 static inline const struct cpumask *sched_rt_period_mask(void)
584 {
585         return this_rq()->rd->span;
586 }
587 #else
588 static inline const struct cpumask *sched_rt_period_mask(void)
589 {
590         return cpu_online_mask;
591 }
592 #endif
593
594 static inline
595 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
596 {
597         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
598 }
599
600 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
601 {
602         return &rt_rq->tg->rt_bandwidth;
603 }
604
605 #else /* !CONFIG_RT_GROUP_SCHED */
606
607 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
608 {
609         return rt_rq->rt_runtime;
610 }
611
612 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
613 {
614         return ktime_to_ns(def_rt_bandwidth.rt_period);
615 }
616
617 typedef struct rt_rq *rt_rq_iter_t;
618
619 #define for_each_rt_rq(rt_rq, iter, rq) \
620         for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
621
622 #define for_each_sched_rt_entity(rt_se) \
623         for (; rt_se; rt_se = NULL)
624
625 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
626 {
627         return NULL;
628 }
629
630 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
631 {
632         struct rq *rq = rq_of_rt_rq(rt_rq);
633
634         if (!rt_rq->rt_nr_running)
635                 return;
636
637         enqueue_top_rt_rq(rt_rq);
638         resched_curr(rq);
639 }
640
641 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
642 {
643         dequeue_top_rt_rq(rt_rq);
644 }
645
646 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
647 {
648         return rt_rq->rt_throttled;
649 }
650
651 static inline const struct cpumask *sched_rt_period_mask(void)
652 {
653         return cpu_online_mask;
654 }
655
656 static inline
657 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
658 {
659         return &cpu_rq(cpu)->rt;
660 }
661
662 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
663 {
664         return &def_rt_bandwidth;
665 }
666
667 #endif /* CONFIG_RT_GROUP_SCHED */
668
669 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
670 {
671         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
672
673         return (hrtimer_active(&rt_b->rt_period_timer) ||
674                 rt_rq->rt_time < rt_b->rt_runtime);
675 }
676
677 #ifdef CONFIG_SMP
678 /*
679  * We ran out of runtime, see if we can borrow some from our neighbours.
680  */
681 static void do_balance_runtime(struct rt_rq *rt_rq)
682 {
683         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
684         struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
685         int i, weight;
686         u64 rt_period;
687
688         weight = cpumask_weight(rd->span);
689
690         raw_spin_lock(&rt_b->rt_runtime_lock);
691         rt_period = ktime_to_ns(rt_b->rt_period);
692         for_each_cpu(i, rd->span) {
693                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
694                 s64 diff;
695
696                 if (iter == rt_rq)
697                         continue;
698
699                 raw_spin_lock(&iter->rt_runtime_lock);
700                 /*
701                  * Either all rqs have inf runtime and there's nothing to steal
702                  * or __disable_runtime() below sets a specific rq to inf to
703                  * indicate its been disabled and disalow stealing.
704                  */
705                 if (iter->rt_runtime == RUNTIME_INF)
706                         goto next;
707
708                 /*
709                  * From runqueues with spare time, take 1/n part of their
710                  * spare time, but no more than our period.
711                  */
712                 diff = iter->rt_runtime - iter->rt_time;
713                 if (diff > 0) {
714                         diff = div_u64((u64)diff, weight);
715                         if (rt_rq->rt_runtime + diff > rt_period)
716                                 diff = rt_period - rt_rq->rt_runtime;
717                         iter->rt_runtime -= diff;
718                         rt_rq->rt_runtime += diff;
719                         if (rt_rq->rt_runtime == rt_period) {
720                                 raw_spin_unlock(&iter->rt_runtime_lock);
721                                 break;
722                         }
723                 }
724 next:
725                 raw_spin_unlock(&iter->rt_runtime_lock);
726         }
727         raw_spin_unlock(&rt_b->rt_runtime_lock);
728 }
729
730 /*
731  * Ensure this RQ takes back all the runtime it lend to its neighbours.
732  */
733 static void __disable_runtime(struct rq *rq)
734 {
735         struct root_domain *rd = rq->rd;
736         rt_rq_iter_t iter;
737         struct rt_rq *rt_rq;
738
739         if (unlikely(!scheduler_running))
740                 return;
741
742         for_each_rt_rq(rt_rq, iter, rq) {
743                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
744                 s64 want;
745                 int i;
746
747                 raw_spin_lock(&rt_b->rt_runtime_lock);
748                 raw_spin_lock(&rt_rq->rt_runtime_lock);
749                 /*
750                  * Either we're all inf and nobody needs to borrow, or we're
751                  * already disabled and thus have nothing to do, or we have
752                  * exactly the right amount of runtime to take out.
753                  */
754                 if (rt_rq->rt_runtime == RUNTIME_INF ||
755                                 rt_rq->rt_runtime == rt_b->rt_runtime)
756                         goto balanced;
757                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
758
759                 /*
760                  * Calculate the difference between what we started out with
761                  * and what we current have, that's the amount of runtime
762                  * we lend and now have to reclaim.
763                  */
764                 want = rt_b->rt_runtime - rt_rq->rt_runtime;
765
766                 /*
767                  * Greedy reclaim, take back as much as we can.
768                  */
769                 for_each_cpu(i, rd->span) {
770                         struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
771                         s64 diff;
772
773                         /*
774                          * Can't reclaim from ourselves or disabled runqueues.
775                          */
776                         if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
777                                 continue;
778
779                         raw_spin_lock(&iter->rt_runtime_lock);
780                         if (want > 0) {
781                                 diff = min_t(s64, iter->rt_runtime, want);
782                                 iter->rt_runtime -= diff;
783                                 want -= diff;
784                         } else {
785                                 iter->rt_runtime -= want;
786                                 want -= want;
787                         }
788                         raw_spin_unlock(&iter->rt_runtime_lock);
789
790                         if (!want)
791                                 break;
792                 }
793
794                 raw_spin_lock(&rt_rq->rt_runtime_lock);
795                 /*
796                  * We cannot be left wanting - that would mean some runtime
797                  * leaked out of the system.
798                  */
799                 BUG_ON(want);
800 balanced:
801                 /*
802                  * Disable all the borrow logic by pretending we have inf
803                  * runtime - in which case borrowing doesn't make sense.
804                  */
805                 rt_rq->rt_runtime = RUNTIME_INF;
806                 rt_rq->rt_throttled = 0;
807                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
808                 raw_spin_unlock(&rt_b->rt_runtime_lock);
809
810                 /* Make rt_rq available for pick_next_task() */
811                 sched_rt_rq_enqueue(rt_rq);
812         }
813 }
814
815 static void __enable_runtime(struct rq *rq)
816 {
817         rt_rq_iter_t iter;
818         struct rt_rq *rt_rq;
819
820         if (unlikely(!scheduler_running))
821                 return;
822
823         /*
824          * Reset each runqueue's bandwidth settings
825          */
826         for_each_rt_rq(rt_rq, iter, rq) {
827                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
828
829                 raw_spin_lock(&rt_b->rt_runtime_lock);
830                 raw_spin_lock(&rt_rq->rt_runtime_lock);
831                 rt_rq->rt_runtime = rt_b->rt_runtime;
832                 rt_rq->rt_time = 0;
833                 rt_rq->rt_throttled = 0;
834                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
835                 raw_spin_unlock(&rt_b->rt_runtime_lock);
836         }
837 }
838
839 static void balance_runtime(struct rt_rq *rt_rq)
840 {
841         if (!sched_feat(RT_RUNTIME_SHARE))
842                 return;
843
844         if (rt_rq->rt_time > rt_rq->rt_runtime) {
845                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
846                 do_balance_runtime(rt_rq);
847                 raw_spin_lock(&rt_rq->rt_runtime_lock);
848         }
849 }
850 #else /* !CONFIG_SMP */
851 static inline void balance_runtime(struct rt_rq *rt_rq) {}
852 #endif /* CONFIG_SMP */
853
854 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
855 {
856         int i, idle = 1, throttled = 0;
857         const struct cpumask *span;
858
859         span = sched_rt_period_mask();
860 #ifdef CONFIG_RT_GROUP_SCHED
861         /*
862          * FIXME: isolated CPUs should really leave the root task group,
863          * whether they are isolcpus or were isolated via cpusets, lest
864          * the timer run on a CPU which does not service all runqueues,
865          * potentially leaving other CPUs indefinitely throttled.  If
866          * isolation is really required, the user will turn the throttle
867          * off to kill the perturbations it causes anyway.  Meanwhile,
868          * this maintains functionality for boot and/or troubleshooting.
869          */
870         if (rt_b == &root_task_group.rt_bandwidth)
871                 span = cpu_online_mask;
872 #endif
873         for_each_cpu(i, span) {
874                 int enqueue = 0;
875                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
876                 struct rq *rq = rq_of_rt_rq(rt_rq);
877                 int skip;
878
879                 /*
880                  * When span == cpu_online_mask, taking each rq->lock
881                  * can be time-consuming. Try to avoid it when possible.
882                  */
883                 raw_spin_lock(&rt_rq->rt_runtime_lock);
884                 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
885                         rt_rq->rt_runtime = rt_b->rt_runtime;
886                 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
887                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
888                 if (skip)
889                         continue;
890
891                 raw_spin_lock(&rq->lock);
892                 update_rq_clock(rq);
893
894                 if (rt_rq->rt_time) {
895                         u64 runtime;
896
897                         raw_spin_lock(&rt_rq->rt_runtime_lock);
898                         if (rt_rq->rt_throttled)
899                                 balance_runtime(rt_rq);
900                         runtime = rt_rq->rt_runtime;
901                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
902                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
903                                 rt_rq->rt_throttled = 0;
904                                 enqueue = 1;
905
906                                 /*
907                                  * When we're idle and a woken (rt) task is
908                                  * throttled check_preempt_curr() will set
909                                  * skip_update and the time between the wakeup
910                                  * and this unthrottle will get accounted as
911                                  * 'runtime'.
912                                  */
913                                 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
914                                         rq_clock_cancel_skipupdate(rq);
915                         }
916                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
917                                 idle = 0;
918                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
919                 } else if (rt_rq->rt_nr_running) {
920                         idle = 0;
921                         if (!rt_rq_throttled(rt_rq))
922                                 enqueue = 1;
923                 }
924                 if (rt_rq->rt_throttled)
925                         throttled = 1;
926
927                 if (enqueue)
928                         sched_rt_rq_enqueue(rt_rq);
929                 raw_spin_unlock(&rq->lock);
930         }
931
932         if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
933                 return 1;
934
935         return idle;
936 }
937
938 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
939 {
940 #ifdef CONFIG_RT_GROUP_SCHED
941         struct rt_rq *rt_rq = group_rt_rq(rt_se);
942
943         if (rt_rq)
944                 return rt_rq->highest_prio.curr;
945 #endif
946
947         return rt_task_of(rt_se)->prio;
948 }
949
950 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
951 {
952         u64 runtime = sched_rt_runtime(rt_rq);
953
954         if (rt_rq->rt_throttled)
955                 return rt_rq_throttled(rt_rq);
956
957         if (runtime >= sched_rt_period(rt_rq))
958                 return 0;
959
960         balance_runtime(rt_rq);
961         runtime = sched_rt_runtime(rt_rq);
962         if (runtime == RUNTIME_INF)
963                 return 0;
964
965         if (rt_rq->rt_time > runtime) {
966                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
967
968                 /*
969                  * Don't actually throttle groups that have no runtime assigned
970                  * but accrue some time due to boosting.
971                  */
972                 if (likely(rt_b->rt_runtime)) {
973                         rt_rq->rt_throttled = 1;
974                         printk_deferred_once("sched: RT throttling activated\n");
975                 } else {
976                         /*
977                          * In case we did anyway, make it go away,
978                          * replenishment is a joke, since it will replenish us
979                          * with exactly 0 ns.
980                          */
981                         rt_rq->rt_time = 0;
982                 }
983
984                 if (rt_rq_throttled(rt_rq)) {
985                         sched_rt_rq_dequeue(rt_rq);
986                         return 1;
987                 }
988         }
989
990         return 0;
991 }
992
993 /*
994  * Update the current task's runtime statistics. Skip current tasks that
995  * are not in our scheduling class.
996  */
997 static void update_curr_rt(struct rq *rq)
998 {
999         struct task_struct *curr = rq->curr;
1000         struct sched_rt_entity *rt_se = &curr->rt;
1001         u64 delta_exec;
1002         u64 now;
1003
1004         if (curr->sched_class != &rt_sched_class)
1005                 return;
1006
1007         now = rq_clock_task(rq);
1008         delta_exec = now - curr->se.exec_start;
1009         if (unlikely((s64)delta_exec <= 0))
1010                 return;
1011
1012         schedstat_set(curr->se.statistics.exec_max,
1013                       max(curr->se.statistics.exec_max, delta_exec));
1014
1015         curr->se.sum_exec_runtime += delta_exec;
1016         account_group_exec_runtime(curr, delta_exec);
1017
1018         curr->se.exec_start = now;
1019         cgroup_account_cputime(curr, delta_exec);
1020
1021         if (!rt_bandwidth_enabled())
1022                 return;
1023
1024         for_each_sched_rt_entity(rt_se) {
1025                 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1026
1027                 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1028                         raw_spin_lock(&rt_rq->rt_runtime_lock);
1029                         rt_rq->rt_time += delta_exec;
1030                         if (sched_rt_runtime_exceeded(rt_rq))
1031                                 resched_curr(rq);
1032                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
1033                 }
1034         }
1035 }
1036
1037 static void
1038 dequeue_top_rt_rq(struct rt_rq *rt_rq)
1039 {
1040         struct rq *rq = rq_of_rt_rq(rt_rq);
1041
1042         BUG_ON(&rq->rt != rt_rq);
1043
1044         if (!rt_rq->rt_queued)
1045                 return;
1046
1047         BUG_ON(!rq->nr_running);
1048
1049         sub_nr_running(rq, rt_rq->rt_nr_running);
1050         rt_rq->rt_queued = 0;
1051
1052 }
1053
1054 static void
1055 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1056 {
1057         struct rq *rq = rq_of_rt_rq(rt_rq);
1058
1059         BUG_ON(&rq->rt != rt_rq);
1060
1061         if (rt_rq->rt_queued)
1062                 return;
1063
1064         if (rt_rq_throttled(rt_rq))
1065                 return;
1066
1067         if (rt_rq->rt_nr_running) {
1068                 add_nr_running(rq, rt_rq->rt_nr_running);
1069                 rt_rq->rt_queued = 1;
1070         }
1071
1072         /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1073         cpufreq_update_util(rq, 0);
1074 }
1075
1076 #if defined CONFIG_SMP
1077
1078 static void
1079 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1080 {
1081         struct rq *rq = rq_of_rt_rq(rt_rq);
1082
1083 #ifdef CONFIG_RT_GROUP_SCHED
1084         /*
1085          * Change rq's cpupri only if rt_rq is the top queue.
1086          */
1087         if (&rq->rt != rt_rq)
1088                 return;
1089 #endif
1090         if (rq->online && prio < prev_prio)
1091                 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1092 }
1093
1094 static void
1095 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1096 {
1097         struct rq *rq = rq_of_rt_rq(rt_rq);
1098
1099 #ifdef CONFIG_RT_GROUP_SCHED
1100         /*
1101          * Change rq's cpupri only if rt_rq is the top queue.
1102          */
1103         if (&rq->rt != rt_rq)
1104                 return;
1105 #endif
1106         if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1107                 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1108 }
1109
1110 #else /* CONFIG_SMP */
1111
1112 static inline
1113 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1114 static inline
1115 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1116
1117 #endif /* CONFIG_SMP */
1118
1119 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1120 static void
1121 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1122 {
1123         int prev_prio = rt_rq->highest_prio.curr;
1124
1125         if (prio < prev_prio)
1126                 rt_rq->highest_prio.curr = prio;
1127
1128         inc_rt_prio_smp(rt_rq, prio, prev_prio);
1129 }
1130
1131 static void
1132 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1133 {
1134         int prev_prio = rt_rq->highest_prio.curr;
1135
1136         if (rt_rq->rt_nr_running) {
1137
1138                 WARN_ON(prio < prev_prio);
1139
1140                 /*
1141                  * This may have been our highest task, and therefore
1142                  * we may have some recomputation to do
1143                  */
1144                 if (prio == prev_prio) {
1145                         struct rt_prio_array *array = &rt_rq->active;
1146
1147                         rt_rq->highest_prio.curr =
1148                                 sched_find_first_bit(array->bitmap);
1149                 }
1150
1151         } else {
1152                 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
1153         }
1154
1155         dec_rt_prio_smp(rt_rq, prio, prev_prio);
1156 }
1157
1158 #else
1159
1160 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1161 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1162
1163 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1164
1165 #ifdef CONFIG_RT_GROUP_SCHED
1166
1167 static void
1168 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1169 {
1170         if (rt_se_boosted(rt_se))
1171                 rt_rq->rt_nr_boosted++;
1172
1173         if (rt_rq->tg)
1174                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1175 }
1176
1177 static void
1178 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1179 {
1180         if (rt_se_boosted(rt_se))
1181                 rt_rq->rt_nr_boosted--;
1182
1183         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1184 }
1185
1186 #else /* CONFIG_RT_GROUP_SCHED */
1187
1188 static void
1189 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1190 {
1191         start_rt_bandwidth(&def_rt_bandwidth);
1192 }
1193
1194 static inline
1195 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1196
1197 #endif /* CONFIG_RT_GROUP_SCHED */
1198
1199 static inline
1200 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1201 {
1202         struct rt_rq *group_rq = group_rt_rq(rt_se);
1203
1204         if (group_rq)
1205                 return group_rq->rt_nr_running;
1206         else
1207                 return 1;
1208 }
1209
1210 static inline
1211 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1212 {
1213         struct rt_rq *group_rq = group_rt_rq(rt_se);
1214         struct task_struct *tsk;
1215
1216         if (group_rq)
1217                 return group_rq->rr_nr_running;
1218
1219         tsk = rt_task_of(rt_se);
1220
1221         return (tsk->policy == SCHED_RR) ? 1 : 0;
1222 }
1223
1224 static inline
1225 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1226 {
1227         int prio = rt_se_prio(rt_se);
1228
1229         WARN_ON(!rt_prio(prio));
1230         rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1231         rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1232
1233         inc_rt_prio(rt_rq, prio);
1234         inc_rt_migration(rt_se, rt_rq);
1235         inc_rt_group(rt_se, rt_rq);
1236 }
1237
1238 static inline
1239 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1240 {
1241         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1242         WARN_ON(!rt_rq->rt_nr_running);
1243         rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1244         rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1245
1246         dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1247         dec_rt_migration(rt_se, rt_rq);
1248         dec_rt_group(rt_se, rt_rq);
1249 }
1250
1251 /*
1252  * Change rt_se->run_list location unless SAVE && !MOVE
1253  *
1254  * assumes ENQUEUE/DEQUEUE flags match
1255  */
1256 static inline bool move_entity(unsigned int flags)
1257 {
1258         if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1259                 return false;
1260
1261         return true;
1262 }
1263
1264 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1265 {
1266         list_del_init(&rt_se->run_list);
1267
1268         if (list_empty(array->queue + rt_se_prio(rt_se)))
1269                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1270
1271         rt_se->on_list = 0;
1272 }
1273
1274 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1275 {
1276         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1277         struct rt_prio_array *array = &rt_rq->active;
1278         struct rt_rq *group_rq = group_rt_rq(rt_se);
1279         struct list_head *queue = array->queue + rt_se_prio(rt_se);
1280
1281         /*
1282          * Don't enqueue the group if its throttled, or when empty.
1283          * The latter is a consequence of the former when a child group
1284          * get throttled and the current group doesn't have any other
1285          * active members.
1286          */
1287         if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1288                 if (rt_se->on_list)
1289                         __delist_rt_entity(rt_se, array);
1290                 return;
1291         }
1292
1293         if (move_entity(flags)) {
1294                 WARN_ON_ONCE(rt_se->on_list);
1295                 if (flags & ENQUEUE_HEAD)
1296                         list_add(&rt_se->run_list, queue);
1297                 else
1298                         list_add_tail(&rt_se->run_list, queue);
1299
1300                 __set_bit(rt_se_prio(rt_se), array->bitmap);
1301                 rt_se->on_list = 1;
1302         }
1303         rt_se->on_rq = 1;
1304
1305         inc_rt_tasks(rt_se, rt_rq);
1306 }
1307
1308 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1309 {
1310         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1311         struct rt_prio_array *array = &rt_rq->active;
1312
1313         if (move_entity(flags)) {
1314                 WARN_ON_ONCE(!rt_se->on_list);
1315                 __delist_rt_entity(rt_se, array);
1316         }
1317         rt_se->on_rq = 0;
1318
1319         dec_rt_tasks(rt_se, rt_rq);
1320 }
1321
1322 /*
1323  * Because the prio of an upper entry depends on the lower
1324  * entries, we must remove entries top - down.
1325  */
1326 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1327 {
1328         struct sched_rt_entity *back = NULL;
1329
1330         for_each_sched_rt_entity(rt_se) {
1331                 rt_se->back = back;
1332                 back = rt_se;
1333         }
1334
1335         dequeue_top_rt_rq(rt_rq_of_se(back));
1336
1337         for (rt_se = back; rt_se; rt_se = rt_se->back) {
1338                 if (on_rt_rq(rt_se))
1339                         __dequeue_rt_entity(rt_se, flags);
1340         }
1341 }
1342
1343 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1344 {
1345         struct rq *rq = rq_of_rt_se(rt_se);
1346
1347         dequeue_rt_stack(rt_se, flags);
1348         for_each_sched_rt_entity(rt_se)
1349                 __enqueue_rt_entity(rt_se, flags);
1350         enqueue_top_rt_rq(&rq->rt);
1351 }
1352
1353 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1354 {
1355         struct rq *rq = rq_of_rt_se(rt_se);
1356
1357         dequeue_rt_stack(rt_se, flags);
1358
1359         for_each_sched_rt_entity(rt_se) {
1360                 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1361
1362                 if (rt_rq && rt_rq->rt_nr_running)
1363                         __enqueue_rt_entity(rt_se, flags);
1364         }
1365         enqueue_top_rt_rq(&rq->rt);
1366 }
1367
1368 /*
1369  * Adding/removing a task to/from a priority array:
1370  */
1371 static void
1372 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1373 {
1374         struct sched_rt_entity *rt_se = &p->rt;
1375
1376         if (flags & ENQUEUE_WAKEUP)
1377                 rt_se->timeout = 0;
1378
1379         enqueue_rt_entity(rt_se, flags);
1380
1381         if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1382                 enqueue_pushable_task(rq, p);
1383 }
1384
1385 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1386 {
1387         struct sched_rt_entity *rt_se = &p->rt;
1388
1389         update_curr_rt(rq);
1390         dequeue_rt_entity(rt_se, flags);
1391
1392         dequeue_pushable_task(rq, p);
1393 }
1394
1395 /*
1396  * Put task to the head or the end of the run list without the overhead of
1397  * dequeue followed by enqueue.
1398  */
1399 static void
1400 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1401 {
1402         if (on_rt_rq(rt_se)) {
1403                 struct rt_prio_array *array = &rt_rq->active;
1404                 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1405
1406                 if (head)
1407                         list_move(&rt_se->run_list, queue);
1408                 else
1409                         list_move_tail(&rt_se->run_list, queue);
1410         }
1411 }
1412
1413 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1414 {
1415         struct sched_rt_entity *rt_se = &p->rt;
1416         struct rt_rq *rt_rq;
1417
1418         for_each_sched_rt_entity(rt_se) {
1419                 rt_rq = rt_rq_of_se(rt_se);
1420                 requeue_rt_entity(rt_rq, rt_se, head);
1421         }
1422 }
1423
1424 static void yield_task_rt(struct rq *rq)
1425 {
1426         requeue_task_rt(rq, rq->curr, 0);
1427 }
1428
1429 #ifdef CONFIG_SMP
1430 static int find_lowest_rq(struct task_struct *task);
1431
1432 static int
1433 select_task_rq_rt(struct task_struct *p, int cpu, int flags)
1434 {
1435         struct task_struct *curr;
1436         struct rq *rq;
1437         bool test;
1438
1439         /* For anything but wake ups, just return the task_cpu */
1440         if (!(flags & (WF_TTWU | WF_FORK)))
1441                 goto out;
1442
1443         rq = cpu_rq(cpu);
1444
1445         rcu_read_lock();
1446         curr = READ_ONCE(rq->curr); /* unlocked access */
1447
1448         /*
1449          * If the current task on @p's runqueue is an RT task, then
1450          * try to see if we can wake this RT task up on another
1451          * runqueue. Otherwise simply start this RT task
1452          * on its current runqueue.
1453          *
1454          * We want to avoid overloading runqueues. If the woken
1455          * task is a higher priority, then it will stay on this CPU
1456          * and the lower prio task should be moved to another CPU.
1457          * Even though this will probably make the lower prio task
1458          * lose its cache, we do not want to bounce a higher task
1459          * around just because it gave up its CPU, perhaps for a
1460          * lock?
1461          *
1462          * For equal prio tasks, we just let the scheduler sort it out.
1463          *
1464          * Otherwise, just let it ride on the affined RQ and the
1465          * post-schedule router will push the preempted task away
1466          *
1467          * This test is optimistic, if we get it wrong the load-balancer
1468          * will have to sort it out.
1469          *
1470          * We take into account the capacity of the CPU to ensure it fits the
1471          * requirement of the task - which is only important on heterogeneous
1472          * systems like big.LITTLE.
1473          */
1474         test = curr &&
1475                unlikely(rt_task(curr)) &&
1476                (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1477
1478         if (test || !rt_task_fits_capacity(p, cpu)) {
1479                 int target = find_lowest_rq(p);
1480
1481                 /*
1482                  * Bail out if we were forcing a migration to find a better
1483                  * fitting CPU but our search failed.
1484                  */
1485                 if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1486                         goto out_unlock;
1487
1488                 /*
1489                  * Don't bother moving it if the destination CPU is
1490                  * not running a lower priority task.
1491                  */
1492                 if (target != -1 &&
1493                     p->prio < cpu_rq(target)->rt.highest_prio.curr)
1494                         cpu = target;
1495         }
1496
1497 out_unlock:
1498         rcu_read_unlock();
1499
1500 out:
1501         return cpu;
1502 }
1503
1504 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1505 {
1506         /*
1507          * Current can't be migrated, useless to reschedule,
1508          * let's hope p can move out.
1509          */
1510         if (rq->curr->nr_cpus_allowed == 1 ||
1511             !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1512                 return;
1513
1514         /*
1515          * p is migratable, so let's not schedule it and
1516          * see if it is pushed or pulled somewhere else.
1517          */
1518         if (p->nr_cpus_allowed != 1 &&
1519             cpupri_find(&rq->rd->cpupri, p, NULL))
1520                 return;
1521
1522         /*
1523          * There appear to be other CPUs that can accept
1524          * the current task but none can run 'p', so lets reschedule
1525          * to try and push the current task away:
1526          */
1527         requeue_task_rt(rq, p, 1);
1528         resched_curr(rq);
1529 }
1530
1531 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1532 {
1533         if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1534                 /*
1535                  * This is OK, because current is on_cpu, which avoids it being
1536                  * picked for load-balance and preemption/IRQs are still
1537                  * disabled avoiding further scheduler activity on it and we've
1538                  * not yet started the picking loop.
1539                  */
1540                 rq_unpin_lock(rq, rf);
1541                 pull_rt_task(rq);
1542                 rq_repin_lock(rq, rf);
1543         }
1544
1545         return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1546 }
1547 #endif /* CONFIG_SMP */
1548
1549 /*
1550  * Preempt the current task with a newly woken task if needed:
1551  */
1552 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1553 {
1554         if (p->prio < rq->curr->prio) {
1555                 resched_curr(rq);
1556                 return;
1557         }
1558
1559 #ifdef CONFIG_SMP
1560         /*
1561          * If:
1562          *
1563          * - the newly woken task is of equal priority to the current task
1564          * - the newly woken task is non-migratable while current is migratable
1565          * - current will be preempted on the next reschedule
1566          *
1567          * we should check to see if current can readily move to a different
1568          * cpu.  If so, we will reschedule to allow the push logic to try
1569          * to move current somewhere else, making room for our non-migratable
1570          * task.
1571          */
1572         if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1573                 check_preempt_equal_prio(rq, p);
1574 #endif
1575 }
1576
1577 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1578 {
1579         p->se.exec_start = rq_clock_task(rq);
1580
1581         /* The running task is never eligible for pushing */
1582         dequeue_pushable_task(rq, p);
1583
1584         if (!first)
1585                 return;
1586
1587         /*
1588          * If prev task was rt, put_prev_task() has already updated the
1589          * utilization. We only care of the case where we start to schedule a
1590          * rt task
1591          */
1592         if (rq->curr->sched_class != &rt_sched_class)
1593                 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1594
1595         rt_queue_push_tasks(rq);
1596 }
1597
1598 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1599                                                    struct rt_rq *rt_rq)
1600 {
1601         struct rt_prio_array *array = &rt_rq->active;
1602         struct sched_rt_entity *next = NULL;
1603         struct list_head *queue;
1604         int idx;
1605
1606         idx = sched_find_first_bit(array->bitmap);
1607         BUG_ON(idx >= MAX_RT_PRIO);
1608
1609         queue = array->queue + idx;
1610         next = list_entry(queue->next, struct sched_rt_entity, run_list);
1611
1612         return next;
1613 }
1614
1615 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1616 {
1617         struct sched_rt_entity *rt_se;
1618         struct rt_rq *rt_rq  = &rq->rt;
1619
1620         do {
1621                 rt_se = pick_next_rt_entity(rq, rt_rq);
1622                 BUG_ON(!rt_se);
1623                 rt_rq = group_rt_rq(rt_se);
1624         } while (rt_rq);
1625
1626         return rt_task_of(rt_se);
1627 }
1628
1629 static struct task_struct *pick_next_task_rt(struct rq *rq)
1630 {
1631         struct task_struct *p;
1632
1633         if (!sched_rt_runnable(rq))
1634                 return NULL;
1635
1636         p = _pick_next_task_rt(rq);
1637         set_next_task_rt(rq, p, true);
1638         return p;
1639 }
1640
1641 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1642 {
1643         update_curr_rt(rq);
1644
1645         update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1646
1647         /*
1648          * The previous task needs to be made eligible for pushing
1649          * if it is still active
1650          */
1651         if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1652                 enqueue_pushable_task(rq, p);
1653 }
1654
1655 #ifdef CONFIG_SMP
1656
1657 /* Only try algorithms three times */
1658 #define RT_MAX_TRIES 3
1659
1660 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1661 {
1662         if (!task_running(rq, p) &&
1663             cpumask_test_cpu(cpu, &p->cpus_mask))
1664                 return 1;
1665
1666         return 0;
1667 }
1668
1669 /*
1670  * Return the highest pushable rq's task, which is suitable to be executed
1671  * on the CPU, NULL otherwise
1672  */
1673 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1674 {
1675         struct plist_head *head = &rq->rt.pushable_tasks;
1676         struct task_struct *p;
1677
1678         if (!has_pushable_tasks(rq))
1679                 return NULL;
1680
1681         plist_for_each_entry(p, head, pushable_tasks) {
1682                 if (pick_rt_task(rq, p, cpu))
1683                         return p;
1684         }
1685
1686         return NULL;
1687 }
1688
1689 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1690
1691 static int find_lowest_rq(struct task_struct *task)
1692 {
1693         struct sched_domain *sd;
1694         struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1695         int this_cpu = smp_processor_id();
1696         int cpu      = task_cpu(task);
1697         int ret;
1698
1699         /* Make sure the mask is initialized first */
1700         if (unlikely(!lowest_mask))
1701                 return -1;
1702
1703         if (task->nr_cpus_allowed == 1)
1704                 return -1; /* No other targets possible */
1705
1706         /*
1707          * If we're on asym system ensure we consider the different capacities
1708          * of the CPUs when searching for the lowest_mask.
1709          */
1710         if (static_branch_unlikely(&sched_asym_cpucapacity)) {
1711
1712                 ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1713                                           task, lowest_mask,
1714                                           rt_task_fits_capacity);
1715         } else {
1716
1717                 ret = cpupri_find(&task_rq(task)->rd->cpupri,
1718                                   task, lowest_mask);
1719         }
1720
1721         if (!ret)
1722                 return -1; /* No targets found */
1723
1724         /*
1725          * At this point we have built a mask of CPUs representing the
1726          * lowest priority tasks in the system.  Now we want to elect
1727          * the best one based on our affinity and topology.
1728          *
1729          * We prioritize the last CPU that the task executed on since
1730          * it is most likely cache-hot in that location.
1731          */
1732         if (cpumask_test_cpu(cpu, lowest_mask))
1733                 return cpu;
1734
1735         /*
1736          * Otherwise, we consult the sched_domains span maps to figure
1737          * out which CPU is logically closest to our hot cache data.
1738          */
1739         if (!cpumask_test_cpu(this_cpu, lowest_mask))
1740                 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1741
1742         rcu_read_lock();
1743         for_each_domain(cpu, sd) {
1744                 if (sd->flags & SD_WAKE_AFFINE) {
1745                         int best_cpu;
1746
1747                         /*
1748                          * "this_cpu" is cheaper to preempt than a
1749                          * remote processor.
1750                          */
1751                         if (this_cpu != -1 &&
1752                             cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1753                                 rcu_read_unlock();
1754                                 return this_cpu;
1755                         }
1756
1757                         best_cpu = cpumask_any_and_distribute(lowest_mask,
1758                                                               sched_domain_span(sd));
1759                         if (best_cpu < nr_cpu_ids) {
1760                                 rcu_read_unlock();
1761                                 return best_cpu;
1762                         }
1763                 }
1764         }
1765         rcu_read_unlock();
1766
1767         /*
1768          * And finally, if there were no matches within the domains
1769          * just give the caller *something* to work with from the compatible
1770          * locations.
1771          */
1772         if (this_cpu != -1)
1773                 return this_cpu;
1774
1775         cpu = cpumask_any_distribute(lowest_mask);
1776         if (cpu < nr_cpu_ids)
1777                 return cpu;
1778
1779         return -1;
1780 }
1781
1782 /* Will lock the rq it finds */
1783 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1784 {
1785         struct rq *lowest_rq = NULL;
1786         int tries;
1787         int cpu;
1788
1789         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1790                 cpu = find_lowest_rq(task);
1791
1792                 if ((cpu == -1) || (cpu == rq->cpu))
1793                         break;
1794
1795                 lowest_rq = cpu_rq(cpu);
1796
1797                 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1798                         /*
1799                          * Target rq has tasks of equal or higher priority,
1800                          * retrying does not release any lock and is unlikely
1801                          * to yield a different result.
1802                          */
1803                         lowest_rq = NULL;
1804                         break;
1805                 }
1806
1807                 /* if the prio of this runqueue changed, try again */
1808                 if (double_lock_balance(rq, lowest_rq)) {
1809                         /*
1810                          * We had to unlock the run queue. In
1811                          * the mean time, task could have
1812                          * migrated already or had its affinity changed.
1813                          * Also make sure that it wasn't scheduled on its rq.
1814                          */
1815                         if (unlikely(task_rq(task) != rq ||
1816                                      !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
1817                                      task_running(rq, task) ||
1818                                      !rt_task(task) ||
1819                                      !task_on_rq_queued(task))) {
1820
1821                                 double_unlock_balance(rq, lowest_rq);
1822                                 lowest_rq = NULL;
1823                                 break;
1824                         }
1825                 }
1826
1827                 /* If this rq is still suitable use it. */
1828                 if (lowest_rq->rt.highest_prio.curr > task->prio)
1829                         break;
1830
1831                 /* try again */
1832                 double_unlock_balance(rq, lowest_rq);
1833                 lowest_rq = NULL;
1834         }
1835
1836         return lowest_rq;
1837 }
1838
1839 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1840 {
1841         struct task_struct *p;
1842
1843         if (!has_pushable_tasks(rq))
1844                 return NULL;
1845
1846         p = plist_first_entry(&rq->rt.pushable_tasks,
1847                               struct task_struct, pushable_tasks);
1848
1849         BUG_ON(rq->cpu != task_cpu(p));
1850         BUG_ON(task_current(rq, p));
1851         BUG_ON(p->nr_cpus_allowed <= 1);
1852
1853         BUG_ON(!task_on_rq_queued(p));
1854         BUG_ON(!rt_task(p));
1855
1856         return p;
1857 }
1858
1859 /*
1860  * If the current CPU has more than one RT task, see if the non
1861  * running task can migrate over to a CPU that is running a task
1862  * of lesser priority.
1863  */
1864 static int push_rt_task(struct rq *rq, bool pull)
1865 {
1866         struct task_struct *next_task;
1867         struct rq *lowest_rq;
1868         int ret = 0;
1869
1870         if (!rq->rt.overloaded)
1871                 return 0;
1872
1873         next_task = pick_next_pushable_task(rq);
1874         if (!next_task)
1875                 return 0;
1876
1877 retry:
1878         if (is_migration_disabled(next_task)) {
1879                 struct task_struct *push_task = NULL;
1880                 int cpu;
1881
1882                 if (!pull || rq->push_busy)
1883                         return 0;
1884
1885                 cpu = find_lowest_rq(rq->curr);
1886                 if (cpu == -1 || cpu == rq->cpu)
1887                         return 0;
1888
1889                 /*
1890                  * Given we found a CPU with lower priority than @next_task,
1891                  * therefore it should be running. However we cannot migrate it
1892                  * to this other CPU, instead attempt to push the current
1893                  * running task on this CPU away.
1894                  */
1895                 push_task = get_push_task(rq);
1896                 if (push_task) {
1897                         raw_spin_unlock(&rq->lock);
1898                         stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
1899                                             push_task, &rq->push_work);
1900                         raw_spin_lock(&rq->lock);
1901                 }
1902
1903                 return 0;
1904         }
1905
1906         if (WARN_ON(next_task == rq->curr))
1907                 return 0;
1908
1909         /*
1910          * It's possible that the next_task slipped in of
1911          * higher priority than current. If that's the case
1912          * just reschedule current.
1913          */
1914         if (unlikely(next_task->prio < rq->curr->prio)) {
1915                 resched_curr(rq);
1916                 return 0;
1917         }
1918
1919         /* We might release rq lock */
1920         get_task_struct(next_task);
1921
1922         /* find_lock_lowest_rq locks the rq if found */
1923         lowest_rq = find_lock_lowest_rq(next_task, rq);
1924         if (!lowest_rq) {
1925                 struct task_struct *task;
1926                 /*
1927                  * find_lock_lowest_rq releases rq->lock
1928                  * so it is possible that next_task has migrated.
1929                  *
1930                  * We need to make sure that the task is still on the same
1931                  * run-queue and is also still the next task eligible for
1932                  * pushing.
1933                  */
1934                 task = pick_next_pushable_task(rq);
1935                 if (task == next_task) {
1936                         /*
1937                          * The task hasn't migrated, and is still the next
1938                          * eligible task, but we failed to find a run-queue
1939                          * to push it to.  Do not retry in this case, since
1940                          * other CPUs will pull from us when ready.
1941                          */
1942                         goto out;
1943                 }
1944
1945                 if (!task)
1946                         /* No more tasks, just exit */
1947                         goto out;
1948
1949                 /*
1950                  * Something has shifted, try again.
1951                  */
1952                 put_task_struct(next_task);
1953                 next_task = task;
1954                 goto retry;
1955         }
1956
1957         deactivate_task(rq, next_task, 0);
1958         set_task_cpu(next_task, lowest_rq->cpu);
1959         activate_task(lowest_rq, next_task, 0);
1960         resched_curr(lowest_rq);
1961         ret = 1;
1962
1963         double_unlock_balance(rq, lowest_rq);
1964 out:
1965         put_task_struct(next_task);
1966
1967         return ret;
1968 }
1969
1970 static void push_rt_tasks(struct rq *rq)
1971 {
1972         /* push_rt_task will return true if it moved an RT */
1973         while (push_rt_task(rq, false))
1974                 ;
1975 }
1976
1977 #ifdef HAVE_RT_PUSH_IPI
1978
1979 /*
1980  * When a high priority task schedules out from a CPU and a lower priority
1981  * task is scheduled in, a check is made to see if there's any RT tasks
1982  * on other CPUs that are waiting to run because a higher priority RT task
1983  * is currently running on its CPU. In this case, the CPU with multiple RT
1984  * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1985  * up that may be able to run one of its non-running queued RT tasks.
1986  *
1987  * All CPUs with overloaded RT tasks need to be notified as there is currently
1988  * no way to know which of these CPUs have the highest priority task waiting
1989  * to run. Instead of trying to take a spinlock on each of these CPUs,
1990  * which has shown to cause large latency when done on machines with many
1991  * CPUs, sending an IPI to the CPUs to have them push off the overloaded
1992  * RT tasks waiting to run.
1993  *
1994  * Just sending an IPI to each of the CPUs is also an issue, as on large
1995  * count CPU machines, this can cause an IPI storm on a CPU, especially
1996  * if its the only CPU with multiple RT tasks queued, and a large number
1997  * of CPUs scheduling a lower priority task at the same time.
1998  *
1999  * Each root domain has its own irq work function that can iterate over
2000  * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2001  * tassk must be checked if there's one or many CPUs that are lowering
2002  * their priority, there's a single irq work iterator that will try to
2003  * push off RT tasks that are waiting to run.
2004  *
2005  * When a CPU schedules a lower priority task, it will kick off the
2006  * irq work iterator that will jump to each CPU with overloaded RT tasks.
2007  * As it only takes the first CPU that schedules a lower priority task
2008  * to start the process, the rto_start variable is incremented and if
2009  * the atomic result is one, then that CPU will try to take the rto_lock.
2010  * This prevents high contention on the lock as the process handles all
2011  * CPUs scheduling lower priority tasks.
2012  *
2013  * All CPUs that are scheduling a lower priority task will increment the
2014  * rt_loop_next variable. This will make sure that the irq work iterator
2015  * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2016  * priority task, even if the iterator is in the middle of a scan. Incrementing
2017  * the rt_loop_next will cause the iterator to perform another scan.
2018  *
2019  */
2020 static int rto_next_cpu(struct root_domain *rd)
2021 {
2022         int next;
2023         int cpu;
2024
2025         /*
2026          * When starting the IPI RT pushing, the rto_cpu is set to -1,
2027          * rt_next_cpu() will simply return the first CPU found in
2028          * the rto_mask.
2029          *
2030          * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2031          * will return the next CPU found in the rto_mask.
2032          *
2033          * If there are no more CPUs left in the rto_mask, then a check is made
2034          * against rto_loop and rto_loop_next. rto_loop is only updated with
2035          * the rto_lock held, but any CPU may increment the rto_loop_next
2036          * without any locking.
2037          */
2038         for (;;) {
2039
2040                 /* When rto_cpu is -1 this acts like cpumask_first() */
2041                 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2042
2043                 rd->rto_cpu = cpu;
2044
2045                 if (cpu < nr_cpu_ids)
2046                         return cpu;
2047
2048                 rd->rto_cpu = -1;
2049
2050                 /*
2051                  * ACQUIRE ensures we see the @rto_mask changes
2052                  * made prior to the @next value observed.
2053                  *
2054                  * Matches WMB in rt_set_overload().
2055                  */
2056                 next = atomic_read_acquire(&rd->rto_loop_next);
2057
2058                 if (rd->rto_loop == next)
2059                         break;
2060
2061                 rd->rto_loop = next;
2062         }
2063
2064         return -1;
2065 }
2066
2067 static inline bool rto_start_trylock(atomic_t *v)
2068 {
2069         return !atomic_cmpxchg_acquire(v, 0, 1);
2070 }
2071
2072 static inline void rto_start_unlock(atomic_t *v)
2073 {
2074         atomic_set_release(v, 0);
2075 }
2076
2077 static void tell_cpu_to_push(struct rq *rq)
2078 {
2079         int cpu = -1;
2080
2081         /* Keep the loop going if the IPI is currently active */
2082         atomic_inc(&rq->rd->rto_loop_next);
2083
2084         /* Only one CPU can initiate a loop at a time */
2085         if (!rto_start_trylock(&rq->rd->rto_loop_start))
2086                 return;
2087
2088         raw_spin_lock(&rq->rd->rto_lock);
2089
2090         /*
2091          * The rto_cpu is updated under the lock, if it has a valid CPU
2092          * then the IPI is still running and will continue due to the
2093          * update to loop_next, and nothing needs to be done here.
2094          * Otherwise it is finishing up and an ipi needs to be sent.
2095          */
2096         if (rq->rd->rto_cpu < 0)
2097                 cpu = rto_next_cpu(rq->rd);
2098
2099         raw_spin_unlock(&rq->rd->rto_lock);
2100
2101         rto_start_unlock(&rq->rd->rto_loop_start);
2102
2103         if (cpu >= 0) {
2104                 /* Make sure the rd does not get freed while pushing */
2105                 sched_get_rd(rq->rd);
2106                 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2107         }
2108 }
2109
2110 /* Called from hardirq context */
2111 void rto_push_irq_work_func(struct irq_work *work)
2112 {
2113         struct root_domain *rd =
2114                 container_of(work, struct root_domain, rto_push_work);
2115         struct rq *rq;
2116         int cpu;
2117
2118         rq = this_rq();
2119
2120         /*
2121          * We do not need to grab the lock to check for has_pushable_tasks.
2122          * When it gets updated, a check is made if a push is possible.
2123          */
2124         if (has_pushable_tasks(rq)) {
2125                 raw_spin_lock(&rq->lock);
2126                 while (push_rt_task(rq, true))
2127                         ;
2128                 raw_spin_unlock(&rq->lock);
2129         }
2130
2131         raw_spin_lock(&rd->rto_lock);
2132
2133         /* Pass the IPI to the next rt overloaded queue */
2134         cpu = rto_next_cpu(rd);
2135
2136         raw_spin_unlock(&rd->rto_lock);
2137
2138         if (cpu < 0) {
2139                 sched_put_rd(rd);
2140                 return;
2141         }
2142
2143         /* Try the next RT overloaded CPU */
2144         irq_work_queue_on(&rd->rto_push_work, cpu);
2145 }
2146 #endif /* HAVE_RT_PUSH_IPI */
2147
2148 static void pull_rt_task(struct rq *this_rq)
2149 {
2150         int this_cpu = this_rq->cpu, cpu;
2151         bool resched = false;
2152         struct task_struct *p, *push_task;
2153         struct rq *src_rq;
2154         int rt_overload_count = rt_overloaded(this_rq);
2155
2156         if (likely(!rt_overload_count))
2157                 return;
2158
2159         /*
2160          * Match the barrier from rt_set_overloaded; this guarantees that if we
2161          * see overloaded we must also see the rto_mask bit.
2162          */
2163         smp_rmb();
2164
2165         /* If we are the only overloaded CPU do nothing */
2166         if (rt_overload_count == 1 &&
2167             cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2168                 return;
2169
2170 #ifdef HAVE_RT_PUSH_IPI
2171         if (sched_feat(RT_PUSH_IPI)) {
2172                 tell_cpu_to_push(this_rq);
2173                 return;
2174         }
2175 #endif
2176
2177         for_each_cpu(cpu, this_rq->rd->rto_mask) {
2178                 if (this_cpu == cpu)
2179                         continue;
2180
2181                 src_rq = cpu_rq(cpu);
2182
2183                 /*
2184                  * Don't bother taking the src_rq->lock if the next highest
2185                  * task is known to be lower-priority than our current task.
2186                  * This may look racy, but if this value is about to go
2187                  * logically higher, the src_rq will push this task away.
2188                  * And if its going logically lower, we do not care
2189                  */
2190                 if (src_rq->rt.highest_prio.next >=
2191                     this_rq->rt.highest_prio.curr)
2192                         continue;
2193
2194                 /*
2195                  * We can potentially drop this_rq's lock in
2196                  * double_lock_balance, and another CPU could
2197                  * alter this_rq
2198                  */
2199                 push_task = NULL;
2200                 double_lock_balance(this_rq, src_rq);
2201
2202                 /*
2203                  * We can pull only a task, which is pushable
2204                  * on its rq, and no others.
2205                  */
2206                 p = pick_highest_pushable_task(src_rq, this_cpu);
2207
2208                 /*
2209                  * Do we have an RT task that preempts
2210                  * the to-be-scheduled task?
2211                  */
2212                 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2213                         WARN_ON(p == src_rq->curr);
2214                         WARN_ON(!task_on_rq_queued(p));
2215
2216                         /*
2217                          * There's a chance that p is higher in priority
2218                          * than what's currently running on its CPU.
2219                          * This is just that p is wakeing up and hasn't
2220                          * had a chance to schedule. We only pull
2221                          * p if it is lower in priority than the
2222                          * current task on the run queue
2223                          */
2224                         if (p->prio < src_rq->curr->prio)
2225                                 goto skip;
2226
2227                         if (is_migration_disabled(p)) {
2228                                 push_task = get_push_task(src_rq);
2229                         } else {
2230                                 deactivate_task(src_rq, p, 0);
2231                                 set_task_cpu(p, this_cpu);
2232                                 activate_task(this_rq, p, 0);
2233                                 resched = true;
2234                         }
2235                         /*
2236                          * We continue with the search, just in
2237                          * case there's an even higher prio task
2238                          * in another runqueue. (low likelihood
2239                          * but possible)
2240                          */
2241                 }
2242 skip:
2243                 double_unlock_balance(this_rq, src_rq);
2244
2245                 if (push_task) {
2246                         raw_spin_unlock(&this_rq->lock);
2247                         stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2248                                             push_task, &src_rq->push_work);
2249                         raw_spin_lock(&this_rq->lock);
2250                 }
2251         }
2252
2253         if (resched)
2254                 resched_curr(this_rq);
2255 }
2256
2257 /*
2258  * If we are not running and we are not going to reschedule soon, we should
2259  * try to push tasks away now
2260  */
2261 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2262 {
2263         bool need_to_push = !task_running(rq, p) &&
2264                             !test_tsk_need_resched(rq->curr) &&
2265                             p->nr_cpus_allowed > 1 &&
2266                             (dl_task(rq->curr) || rt_task(rq->curr)) &&
2267                             (rq->curr->nr_cpus_allowed < 2 ||
2268                              rq->curr->prio <= p->prio);
2269
2270         if (need_to_push)
2271                 push_rt_tasks(rq);
2272 }
2273
2274 /* Assumes rq->lock is held */
2275 static void rq_online_rt(struct rq *rq)
2276 {
2277         if (rq->rt.overloaded)
2278                 rt_set_overload(rq);
2279
2280         __enable_runtime(rq);
2281
2282         cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2283 }
2284
2285 /* Assumes rq->lock is held */
2286 static void rq_offline_rt(struct rq *rq)
2287 {
2288         if (rq->rt.overloaded)
2289                 rt_clear_overload(rq);
2290
2291         __disable_runtime(rq);
2292
2293         cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2294 }
2295
2296 /*
2297  * When switch from the rt queue, we bring ourselves to a position
2298  * that we might want to pull RT tasks from other runqueues.
2299  */
2300 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2301 {
2302         /*
2303          * If there are other RT tasks then we will reschedule
2304          * and the scheduling of the other RT tasks will handle
2305          * the balancing. But if we are the last RT task
2306          * we may need to handle the pulling of RT tasks
2307          * now.
2308          */
2309         if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2310                 return;
2311
2312         rt_queue_pull_task(rq);
2313 }
2314
2315 void __init init_sched_rt_class(void)
2316 {
2317         unsigned int i;
2318
2319         for_each_possible_cpu(i) {
2320                 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2321                                         GFP_KERNEL, cpu_to_node(i));
2322         }
2323 }
2324 #endif /* CONFIG_SMP */
2325
2326 /*
2327  * When switching a task to RT, we may overload the runqueue
2328  * with RT tasks. In this case we try to push them off to
2329  * other runqueues.
2330  */
2331 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2332 {
2333         /*
2334          * If we are already running, then there's nothing
2335          * that needs to be done. But if we are not running
2336          * we may need to preempt the current running task.
2337          * If that current running task is also an RT task
2338          * then see if we can move to another run queue.
2339          */
2340         if (task_on_rq_queued(p) && rq->curr != p) {
2341 #ifdef CONFIG_SMP
2342                 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2343                         rt_queue_push_tasks(rq);
2344 #endif /* CONFIG_SMP */
2345                 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2346                         resched_curr(rq);
2347         }
2348 }
2349
2350 /*
2351  * Priority of the task has changed. This may cause
2352  * us to initiate a push or pull.
2353  */
2354 static void
2355 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2356 {
2357         if (!task_on_rq_queued(p))
2358                 return;
2359
2360         if (task_current(rq, p)) {
2361 #ifdef CONFIG_SMP
2362                 /*
2363                  * If our priority decreases while running, we
2364                  * may need to pull tasks to this runqueue.
2365                  */
2366                 if (oldprio < p->prio)
2367                         rt_queue_pull_task(rq);
2368
2369                 /*
2370                  * If there's a higher priority task waiting to run
2371                  * then reschedule.
2372                  */
2373                 if (p->prio > rq->rt.highest_prio.curr)
2374                         resched_curr(rq);
2375 #else
2376                 /* For UP simply resched on drop of prio */
2377                 if (oldprio < p->prio)
2378                         resched_curr(rq);
2379 #endif /* CONFIG_SMP */
2380         } else {
2381                 /*
2382                  * This task is not running, but if it is
2383                  * greater than the current running task
2384                  * then reschedule.
2385                  */
2386                 if (p->prio < rq->curr->prio)
2387                         resched_curr(rq);
2388         }
2389 }
2390
2391 #ifdef CONFIG_POSIX_TIMERS
2392 static void watchdog(struct rq *rq, struct task_struct *p)
2393 {
2394         unsigned long soft, hard;
2395
2396         /* max may change after cur was read, this will be fixed next tick */
2397         soft = task_rlimit(p, RLIMIT_RTTIME);
2398         hard = task_rlimit_max(p, RLIMIT_RTTIME);
2399
2400         if (soft != RLIM_INFINITY) {
2401                 unsigned long next;
2402
2403                 if (p->rt.watchdog_stamp != jiffies) {
2404                         p->rt.timeout++;
2405                         p->rt.watchdog_stamp = jiffies;
2406                 }
2407
2408                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2409                 if (p->rt.timeout > next) {
2410                         posix_cputimers_rt_watchdog(&p->posix_cputimers,
2411                                                     p->se.sum_exec_runtime);
2412                 }
2413         }
2414 }
2415 #else
2416 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2417 #endif
2418
2419 /*
2420  * scheduler tick hitting a task of our scheduling class.
2421  *
2422  * NOTE: This function can be called remotely by the tick offload that
2423  * goes along full dynticks. Therefore no local assumption can be made
2424  * and everything must be accessed through the @rq and @curr passed in
2425  * parameters.
2426  */
2427 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2428 {
2429         struct sched_rt_entity *rt_se = &p->rt;
2430
2431         update_curr_rt(rq);
2432         update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2433
2434         watchdog(rq, p);
2435
2436         /*
2437          * RR tasks need a special form of timeslice management.
2438          * FIFO tasks have no timeslices.
2439          */
2440         if (p->policy != SCHED_RR)
2441                 return;
2442
2443         if (--p->rt.time_slice)
2444                 return;
2445
2446         p->rt.time_slice = sched_rr_timeslice;
2447
2448         /*
2449          * Requeue to the end of queue if we (and all of our ancestors) are not
2450          * the only element on the queue
2451          */
2452         for_each_sched_rt_entity(rt_se) {
2453                 if (rt_se->run_list.prev != rt_se->run_list.next) {
2454                         requeue_task_rt(rq, p, 0);
2455                         resched_curr(rq);
2456                         return;
2457                 }
2458         }
2459 }
2460
2461 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2462 {
2463         /*
2464          * Time slice is 0 for SCHED_FIFO tasks
2465          */
2466         if (task->policy == SCHED_RR)
2467                 return sched_rr_timeslice;
2468         else
2469                 return 0;
2470 }
2471
2472 DEFINE_SCHED_CLASS(rt) = {
2473
2474         .enqueue_task           = enqueue_task_rt,
2475         .dequeue_task           = dequeue_task_rt,
2476         .yield_task             = yield_task_rt,
2477
2478         .check_preempt_curr     = check_preempt_curr_rt,
2479
2480         .pick_next_task         = pick_next_task_rt,
2481         .put_prev_task          = put_prev_task_rt,
2482         .set_next_task          = set_next_task_rt,
2483
2484 #ifdef CONFIG_SMP
2485         .balance                = balance_rt,
2486         .select_task_rq         = select_task_rq_rt,
2487         .set_cpus_allowed       = set_cpus_allowed_common,
2488         .rq_online              = rq_online_rt,
2489         .rq_offline             = rq_offline_rt,
2490         .task_woken             = task_woken_rt,
2491         .switched_from          = switched_from_rt,
2492         .find_lock_rq           = find_lock_lowest_rq,
2493 #endif
2494
2495         .task_tick              = task_tick_rt,
2496
2497         .get_rr_interval        = get_rr_interval_rt,
2498
2499         .prio_changed           = prio_changed_rt,
2500         .switched_to            = switched_to_rt,
2501
2502         .update_curr            = update_curr_rt,
2503
2504 #ifdef CONFIG_UCLAMP_TASK
2505         .uclamp_enabled         = 1,
2506 #endif
2507 };
2508
2509 #ifdef CONFIG_RT_GROUP_SCHED
2510 /*
2511  * Ensure that the real time constraints are schedulable.
2512  */
2513 static DEFINE_MUTEX(rt_constraints_mutex);
2514
2515 static inline int tg_has_rt_tasks(struct task_group *tg)
2516 {
2517         struct task_struct *task;
2518         struct css_task_iter it;
2519         int ret = 0;
2520
2521         /*
2522          * Autogroups do not have RT tasks; see autogroup_create().
2523          */
2524         if (task_group_is_autogroup(tg))
2525                 return 0;
2526
2527         css_task_iter_start(&tg->css, 0, &it);
2528         while (!ret && (task = css_task_iter_next(&it)))
2529                 ret |= rt_task(task);
2530         css_task_iter_end(&it);
2531
2532         return ret;
2533 }
2534
2535 struct rt_schedulable_data {
2536         struct task_group *tg;
2537         u64 rt_period;
2538         u64 rt_runtime;
2539 };
2540
2541 static int tg_rt_schedulable(struct task_group *tg, void *data)
2542 {
2543         struct rt_schedulable_data *d = data;
2544         struct task_group *child;
2545         unsigned long total, sum = 0;
2546         u64 period, runtime;
2547
2548         period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2549         runtime = tg->rt_bandwidth.rt_runtime;
2550
2551         if (tg == d->tg) {
2552                 period = d->rt_period;
2553                 runtime = d->rt_runtime;
2554         }
2555
2556         /*
2557          * Cannot have more runtime than the period.
2558          */
2559         if (runtime > period && runtime != RUNTIME_INF)
2560                 return -EINVAL;
2561
2562         /*
2563          * Ensure we don't starve existing RT tasks if runtime turns zero.
2564          */
2565         if (rt_bandwidth_enabled() && !runtime &&
2566             tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2567                 return -EBUSY;
2568
2569         total = to_ratio(period, runtime);
2570
2571         /*
2572          * Nobody can have more than the global setting allows.
2573          */
2574         if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2575                 return -EINVAL;
2576
2577         /*
2578          * The sum of our children's runtime should not exceed our own.
2579          */
2580         list_for_each_entry_rcu(child, &tg->children, siblings) {
2581                 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2582                 runtime = child->rt_bandwidth.rt_runtime;
2583
2584                 if (child == d->tg) {
2585                         period = d->rt_period;
2586                         runtime = d->rt_runtime;
2587                 }
2588
2589                 sum += to_ratio(period, runtime);
2590         }
2591
2592         if (sum > total)
2593                 return -EINVAL;
2594
2595         return 0;
2596 }
2597
2598 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2599 {
2600         int ret;
2601
2602         struct rt_schedulable_data data = {
2603                 .tg = tg,
2604                 .rt_period = period,
2605                 .rt_runtime = runtime,
2606         };
2607
2608         rcu_read_lock();
2609         ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2610         rcu_read_unlock();
2611
2612         return ret;
2613 }
2614
2615 static int tg_set_rt_bandwidth(struct task_group *tg,
2616                 u64 rt_period, u64 rt_runtime)
2617 {
2618         int i, err = 0;
2619
2620         /*
2621          * Disallowing the root group RT runtime is BAD, it would disallow the
2622          * kernel creating (and or operating) RT threads.
2623          */
2624         if (tg == &root_task_group && rt_runtime == 0)
2625                 return -EINVAL;
2626
2627         /* No period doesn't make any sense. */
2628         if (rt_period == 0)
2629                 return -EINVAL;
2630
2631         /*
2632          * Bound quota to defend quota against overflow during bandwidth shift.
2633          */
2634         if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2635                 return -EINVAL;
2636
2637         mutex_lock(&rt_constraints_mutex);
2638         err = __rt_schedulable(tg, rt_period, rt_runtime);
2639         if (err)
2640                 goto unlock;
2641
2642         raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2643         tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2644         tg->rt_bandwidth.rt_runtime = rt_runtime;
2645
2646         for_each_possible_cpu(i) {
2647                 struct rt_rq *rt_rq = tg->rt_rq[i];
2648
2649                 raw_spin_lock(&rt_rq->rt_runtime_lock);
2650                 rt_rq->rt_runtime = rt_runtime;
2651                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2652         }
2653         raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2654 unlock:
2655         mutex_unlock(&rt_constraints_mutex);
2656
2657         return err;
2658 }
2659
2660 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2661 {
2662         u64 rt_runtime, rt_period;
2663
2664         rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2665         rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2666         if (rt_runtime_us < 0)
2667                 rt_runtime = RUNTIME_INF;
2668         else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2669                 return -EINVAL;
2670
2671         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2672 }
2673
2674 long sched_group_rt_runtime(struct task_group *tg)
2675 {
2676         u64 rt_runtime_us;
2677
2678         if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2679                 return -1;
2680
2681         rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2682         do_div(rt_runtime_us, NSEC_PER_USEC);
2683         return rt_runtime_us;
2684 }
2685
2686 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2687 {
2688         u64 rt_runtime, rt_period;
2689
2690         if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2691                 return -EINVAL;
2692
2693         rt_period = rt_period_us * NSEC_PER_USEC;
2694         rt_runtime = tg->rt_bandwidth.rt_runtime;
2695
2696         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2697 }
2698
2699 long sched_group_rt_period(struct task_group *tg)
2700 {
2701         u64 rt_period_us;
2702
2703         rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2704         do_div(rt_period_us, NSEC_PER_USEC);
2705         return rt_period_us;
2706 }
2707
2708 static int sched_rt_global_constraints(void)
2709 {
2710         int ret = 0;
2711
2712         mutex_lock(&rt_constraints_mutex);
2713         ret = __rt_schedulable(NULL, 0, 0);
2714         mutex_unlock(&rt_constraints_mutex);
2715
2716         return ret;
2717 }
2718
2719 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2720 {
2721         /* Don't accept realtime tasks when there is no way for them to run */
2722         if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2723                 return 0;
2724
2725         return 1;
2726 }
2727
2728 #else /* !CONFIG_RT_GROUP_SCHED */
2729 static int sched_rt_global_constraints(void)
2730 {
2731         unsigned long flags;
2732         int i;
2733
2734         raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2735         for_each_possible_cpu(i) {
2736                 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2737
2738                 raw_spin_lock(&rt_rq->rt_runtime_lock);
2739                 rt_rq->rt_runtime = global_rt_runtime();
2740                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2741         }
2742         raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2743
2744         return 0;
2745 }
2746 #endif /* CONFIG_RT_GROUP_SCHED */
2747
2748 static int sched_rt_global_validate(void)
2749 {
2750         if (sysctl_sched_rt_period <= 0)
2751                 return -EINVAL;
2752
2753         if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2754                 ((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2755                  ((u64)sysctl_sched_rt_runtime *
2756                         NSEC_PER_USEC > max_rt_runtime)))
2757                 return -EINVAL;
2758
2759         return 0;
2760 }
2761
2762 static void sched_rt_do_global(void)
2763 {
2764         def_rt_bandwidth.rt_runtime = global_rt_runtime();
2765         def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2766 }
2767
2768 int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
2769                 size_t *lenp, loff_t *ppos)
2770 {
2771         int old_period, old_runtime;
2772         static DEFINE_MUTEX(mutex);
2773         int ret;
2774
2775         mutex_lock(&mutex);
2776         old_period = sysctl_sched_rt_period;
2777         old_runtime = sysctl_sched_rt_runtime;
2778
2779         ret = proc_dointvec(table, write, buffer, lenp, ppos);
2780
2781         if (!ret && write) {
2782                 ret = sched_rt_global_validate();
2783                 if (ret)
2784                         goto undo;
2785
2786                 ret = sched_dl_global_validate();
2787                 if (ret)
2788                         goto undo;
2789
2790                 ret = sched_rt_global_constraints();
2791                 if (ret)
2792                         goto undo;
2793
2794                 sched_rt_do_global();
2795                 sched_dl_do_global();
2796         }
2797         if (0) {
2798 undo:
2799                 sysctl_sched_rt_period = old_period;
2800                 sysctl_sched_rt_runtime = old_runtime;
2801         }
2802         mutex_unlock(&mutex);
2803
2804         return ret;
2805 }
2806
2807 int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
2808                 size_t *lenp, loff_t *ppos)
2809 {
2810         int ret;
2811         static DEFINE_MUTEX(mutex);
2812
2813         mutex_lock(&mutex);
2814         ret = proc_dointvec(table, write, buffer, lenp, ppos);
2815         /*
2816          * Make sure that internally we keep jiffies.
2817          * Also, writing zero resets the timeslice to default:
2818          */
2819         if (!ret && write) {
2820                 sched_rr_timeslice =
2821                         sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2822                         msecs_to_jiffies(sysctl_sched_rr_timeslice);
2823         }
2824         mutex_unlock(&mutex);
2825
2826         return ret;
2827 }
2828
2829 #ifdef CONFIG_SCHED_DEBUG
2830 void print_rt_stats(struct seq_file *m, int cpu)
2831 {
2832         rt_rq_iter_t iter;
2833         struct rt_rq *rt_rq;
2834
2835         rcu_read_lock();
2836         for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2837                 print_rt_rq(m, cpu, rt_rq);
2838         rcu_read_unlock();
2839 }
2840 #endif /* CONFIG_SCHED_DEBUG */