Merge tag 'docs-5.12-2' of git://git.lwn.net/linux
[linux-2.6-microblaze.git] / kernel / sched / debug.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/sched/debug.c
4  *
5  * Print the CFS rbtree and other debugging details
6  *
7  * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
8  */
9 #include "sched.h"
10
11 static DEFINE_SPINLOCK(sched_debug_lock);
12
13 /*
14  * This allows printing both to /proc/sched_debug and
15  * to the console
16  */
17 #define SEQ_printf(m, x...)                     \
18  do {                                           \
19         if (m)                                  \
20                 seq_printf(m, x);               \
21         else                                    \
22                 pr_cont(x);                     \
23  } while (0)
24
25 /*
26  * Ease the printing of nsec fields:
27  */
28 static long long nsec_high(unsigned long long nsec)
29 {
30         if ((long long)nsec < 0) {
31                 nsec = -nsec;
32                 do_div(nsec, 1000000);
33                 return -nsec;
34         }
35         do_div(nsec, 1000000);
36
37         return nsec;
38 }
39
40 static unsigned long nsec_low(unsigned long long nsec)
41 {
42         if ((long long)nsec < 0)
43                 nsec = -nsec;
44
45         return do_div(nsec, 1000000);
46 }
47
48 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
49
50 #define SCHED_FEAT(name, enabled)       \
51         #name ,
52
53 static const char * const sched_feat_names[] = {
54 #include "features.h"
55 };
56
57 #undef SCHED_FEAT
58
59 static int sched_feat_show(struct seq_file *m, void *v)
60 {
61         int i;
62
63         for (i = 0; i < __SCHED_FEAT_NR; i++) {
64                 if (!(sysctl_sched_features & (1UL << i)))
65                         seq_puts(m, "NO_");
66                 seq_printf(m, "%s ", sched_feat_names[i]);
67         }
68         seq_puts(m, "\n");
69
70         return 0;
71 }
72
73 #ifdef CONFIG_JUMP_LABEL
74
75 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
76 #define jump_label_key__false STATIC_KEY_INIT_FALSE
77
78 #define SCHED_FEAT(name, enabled)       \
79         jump_label_key__##enabled ,
80
81 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
82 #include "features.h"
83 };
84
85 #undef SCHED_FEAT
86
87 static void sched_feat_disable(int i)
88 {
89         static_key_disable_cpuslocked(&sched_feat_keys[i]);
90 }
91
92 static void sched_feat_enable(int i)
93 {
94         static_key_enable_cpuslocked(&sched_feat_keys[i]);
95 }
96 #else
97 static void sched_feat_disable(int i) { };
98 static void sched_feat_enable(int i) { };
99 #endif /* CONFIG_JUMP_LABEL */
100
101 static int sched_feat_set(char *cmp)
102 {
103         int i;
104         int neg = 0;
105
106         if (strncmp(cmp, "NO_", 3) == 0) {
107                 neg = 1;
108                 cmp += 3;
109         }
110
111         i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp);
112         if (i < 0)
113                 return i;
114
115         if (neg) {
116                 sysctl_sched_features &= ~(1UL << i);
117                 sched_feat_disable(i);
118         } else {
119                 sysctl_sched_features |= (1UL << i);
120                 sched_feat_enable(i);
121         }
122
123         return 0;
124 }
125
126 static ssize_t
127 sched_feat_write(struct file *filp, const char __user *ubuf,
128                 size_t cnt, loff_t *ppos)
129 {
130         char buf[64];
131         char *cmp;
132         int ret;
133         struct inode *inode;
134
135         if (cnt > 63)
136                 cnt = 63;
137
138         if (copy_from_user(&buf, ubuf, cnt))
139                 return -EFAULT;
140
141         buf[cnt] = 0;
142         cmp = strstrip(buf);
143
144         /* Ensure the static_key remains in a consistent state */
145         inode = file_inode(filp);
146         cpus_read_lock();
147         inode_lock(inode);
148         ret = sched_feat_set(cmp);
149         inode_unlock(inode);
150         cpus_read_unlock();
151         if (ret < 0)
152                 return ret;
153
154         *ppos += cnt;
155
156         return cnt;
157 }
158
159 static int sched_feat_open(struct inode *inode, struct file *filp)
160 {
161         return single_open(filp, sched_feat_show, NULL);
162 }
163
164 static const struct file_operations sched_feat_fops = {
165         .open           = sched_feat_open,
166         .write          = sched_feat_write,
167         .read           = seq_read,
168         .llseek         = seq_lseek,
169         .release        = single_release,
170 };
171
172 __read_mostly bool sched_debug_enabled;
173
174 static __init int sched_init_debug(void)
175 {
176         debugfs_create_file("sched_features", 0644, NULL, NULL,
177                         &sched_feat_fops);
178
179         debugfs_create_bool("sched_debug", 0644, NULL,
180                         &sched_debug_enabled);
181
182         return 0;
183 }
184 late_initcall(sched_init_debug);
185
186 #ifdef CONFIG_SMP
187
188 #ifdef CONFIG_SYSCTL
189
190 static struct ctl_table sd_ctl_dir[] = {
191         {
192                 .procname       = "sched_domain",
193                 .mode           = 0555,
194         },
195         {}
196 };
197
198 static struct ctl_table sd_ctl_root[] = {
199         {
200                 .procname       = "kernel",
201                 .mode           = 0555,
202                 .child          = sd_ctl_dir,
203         },
204         {}
205 };
206
207 static struct ctl_table *sd_alloc_ctl_entry(int n)
208 {
209         struct ctl_table *entry =
210                 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
211
212         return entry;
213 }
214
215 static void sd_free_ctl_entry(struct ctl_table **tablep)
216 {
217         struct ctl_table *entry;
218
219         /*
220          * In the intermediate directories, both the child directory and
221          * procname are dynamically allocated and could fail but the mode
222          * will always be set. In the lowest directory the names are
223          * static strings and all have proc handlers.
224          */
225         for (entry = *tablep; entry->mode; entry++) {
226                 if (entry->child)
227                         sd_free_ctl_entry(&entry->child);
228                 if (entry->proc_handler == NULL)
229                         kfree(entry->procname);
230         }
231
232         kfree(*tablep);
233         *tablep = NULL;
234 }
235
236 static void
237 set_table_entry(struct ctl_table *entry,
238                 const char *procname, void *data, int maxlen,
239                 umode_t mode, proc_handler *proc_handler)
240 {
241         entry->procname = procname;
242         entry->data = data;
243         entry->maxlen = maxlen;
244         entry->mode = mode;
245         entry->proc_handler = proc_handler;
246 }
247
248 static int sd_ctl_doflags(struct ctl_table *table, int write,
249                           void *buffer, size_t *lenp, loff_t *ppos)
250 {
251         unsigned long flags = *(unsigned long *)table->data;
252         size_t data_size = 0;
253         size_t len = 0;
254         char *tmp, *buf;
255         int idx;
256
257         if (write)
258                 return 0;
259
260         for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
261                 char *name = sd_flag_debug[idx].name;
262
263                 /* Name plus whitespace */
264                 data_size += strlen(name) + 1;
265         }
266
267         if (*ppos > data_size) {
268                 *lenp = 0;
269                 return 0;
270         }
271
272         buf = kcalloc(data_size + 1, sizeof(*buf), GFP_KERNEL);
273         if (!buf)
274                 return -ENOMEM;
275
276         for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
277                 char *name = sd_flag_debug[idx].name;
278
279                 len += snprintf(buf + len, strlen(name) + 2, "%s ", name);
280         }
281
282         tmp = buf + *ppos;
283         len -= *ppos;
284
285         if (len > *lenp)
286                 len = *lenp;
287         if (len)
288                 memcpy(buffer, tmp, len);
289         if (len < *lenp) {
290                 ((char *)buffer)[len] = '\n';
291                 len++;
292         }
293
294         *lenp = len;
295         *ppos += len;
296
297         kfree(buf);
298
299         return 0;
300 }
301
302 static struct ctl_table *
303 sd_alloc_ctl_domain_table(struct sched_domain *sd)
304 {
305         struct ctl_table *table = sd_alloc_ctl_entry(9);
306
307         if (table == NULL)
308                 return NULL;
309
310         set_table_entry(&table[0], "min_interval",        &sd->min_interval,        sizeof(long), 0644, proc_doulongvec_minmax);
311         set_table_entry(&table[1], "max_interval",        &sd->max_interval,        sizeof(long), 0644, proc_doulongvec_minmax);
312         set_table_entry(&table[2], "busy_factor",         &sd->busy_factor,         sizeof(int),  0644, proc_dointvec_minmax);
313         set_table_entry(&table[3], "imbalance_pct",       &sd->imbalance_pct,       sizeof(int),  0644, proc_dointvec_minmax);
314         set_table_entry(&table[4], "cache_nice_tries",    &sd->cache_nice_tries,    sizeof(int),  0644, proc_dointvec_minmax);
315         set_table_entry(&table[5], "flags",               &sd->flags,               sizeof(int),  0444, sd_ctl_doflags);
316         set_table_entry(&table[6], "max_newidle_lb_cost", &sd->max_newidle_lb_cost, sizeof(long), 0644, proc_doulongvec_minmax);
317         set_table_entry(&table[7], "name",                sd->name,            CORENAME_MAX_SIZE, 0444, proc_dostring);
318         /* &table[8] is terminator */
319
320         return table;
321 }
322
323 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
324 {
325         struct ctl_table *entry, *table;
326         struct sched_domain *sd;
327         int domain_num = 0, i;
328         char buf[32];
329
330         for_each_domain(cpu, sd)
331                 domain_num++;
332         entry = table = sd_alloc_ctl_entry(domain_num + 1);
333         if (table == NULL)
334                 return NULL;
335
336         i = 0;
337         for_each_domain(cpu, sd) {
338                 snprintf(buf, 32, "domain%d", i);
339                 entry->procname = kstrdup(buf, GFP_KERNEL);
340                 entry->mode = 0555;
341                 entry->child = sd_alloc_ctl_domain_table(sd);
342                 entry++;
343                 i++;
344         }
345         return table;
346 }
347
348 static cpumask_var_t            sd_sysctl_cpus;
349 static struct ctl_table_header  *sd_sysctl_header;
350
351 void register_sched_domain_sysctl(void)
352 {
353         static struct ctl_table *cpu_entries;
354         static struct ctl_table **cpu_idx;
355         static bool init_done = false;
356         char buf[32];
357         int i;
358
359         if (!cpu_entries) {
360                 cpu_entries = sd_alloc_ctl_entry(num_possible_cpus() + 1);
361                 if (!cpu_entries)
362                         return;
363
364                 WARN_ON(sd_ctl_dir[0].child);
365                 sd_ctl_dir[0].child = cpu_entries;
366         }
367
368         if (!cpu_idx) {
369                 struct ctl_table *e = cpu_entries;
370
371                 cpu_idx = kcalloc(nr_cpu_ids, sizeof(struct ctl_table*), GFP_KERNEL);
372                 if (!cpu_idx)
373                         return;
374
375                 /* deal with sparse possible map */
376                 for_each_possible_cpu(i) {
377                         cpu_idx[i] = e;
378                         e++;
379                 }
380         }
381
382         if (!cpumask_available(sd_sysctl_cpus)) {
383                 if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
384                         return;
385         }
386
387         if (!init_done) {
388                 init_done = true;
389                 /* init to possible to not have holes in @cpu_entries */
390                 cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
391         }
392
393         for_each_cpu(i, sd_sysctl_cpus) {
394                 struct ctl_table *e = cpu_idx[i];
395
396                 if (e->child)
397                         sd_free_ctl_entry(&e->child);
398
399                 if (!e->procname) {
400                         snprintf(buf, 32, "cpu%d", i);
401                         e->procname = kstrdup(buf, GFP_KERNEL);
402                 }
403                 e->mode = 0555;
404                 e->child = sd_alloc_ctl_cpu_table(i);
405
406                 __cpumask_clear_cpu(i, sd_sysctl_cpus);
407         }
408
409         WARN_ON(sd_sysctl_header);
410         sd_sysctl_header = register_sysctl_table(sd_ctl_root);
411 }
412
413 void dirty_sched_domain_sysctl(int cpu)
414 {
415         if (cpumask_available(sd_sysctl_cpus))
416                 __cpumask_set_cpu(cpu, sd_sysctl_cpus);
417 }
418
419 /* may be called multiple times per register */
420 void unregister_sched_domain_sysctl(void)
421 {
422         unregister_sysctl_table(sd_sysctl_header);
423         sd_sysctl_header = NULL;
424 }
425 #endif /* CONFIG_SYSCTL */
426 #endif /* CONFIG_SMP */
427
428 #ifdef CONFIG_FAIR_GROUP_SCHED
429 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
430 {
431         struct sched_entity *se = tg->se[cpu];
432
433 #define P(F)            SEQ_printf(m, "  .%-30s: %lld\n",       #F, (long long)F)
434 #define P_SCHEDSTAT(F)  SEQ_printf(m, "  .%-30s: %lld\n",       #F, (long long)schedstat_val(F))
435 #define PN(F)           SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
436 #define PN_SCHEDSTAT(F) SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F)))
437
438         if (!se)
439                 return;
440
441         PN(se->exec_start);
442         PN(se->vruntime);
443         PN(se->sum_exec_runtime);
444
445         if (schedstat_enabled()) {
446                 PN_SCHEDSTAT(se->statistics.wait_start);
447                 PN_SCHEDSTAT(se->statistics.sleep_start);
448                 PN_SCHEDSTAT(se->statistics.block_start);
449                 PN_SCHEDSTAT(se->statistics.sleep_max);
450                 PN_SCHEDSTAT(se->statistics.block_max);
451                 PN_SCHEDSTAT(se->statistics.exec_max);
452                 PN_SCHEDSTAT(se->statistics.slice_max);
453                 PN_SCHEDSTAT(se->statistics.wait_max);
454                 PN_SCHEDSTAT(se->statistics.wait_sum);
455                 P_SCHEDSTAT(se->statistics.wait_count);
456         }
457
458         P(se->load.weight);
459 #ifdef CONFIG_SMP
460         P(se->avg.load_avg);
461         P(se->avg.util_avg);
462         P(se->avg.runnable_avg);
463 #endif
464
465 #undef PN_SCHEDSTAT
466 #undef PN
467 #undef P_SCHEDSTAT
468 #undef P
469 }
470 #endif
471
472 #ifdef CONFIG_CGROUP_SCHED
473 static char group_path[PATH_MAX];
474
475 static char *task_group_path(struct task_group *tg)
476 {
477         if (autogroup_path(tg, group_path, PATH_MAX))
478                 return group_path;
479
480         cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
481
482         return group_path;
483 }
484 #endif
485
486 static void
487 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
488 {
489         if (task_current(rq, p))
490                 SEQ_printf(m, ">R");
491         else
492                 SEQ_printf(m, " %c", task_state_to_char(p));
493
494         SEQ_printf(m, " %15s %5d %9Ld.%06ld %9Ld %5d ",
495                 p->comm, task_pid_nr(p),
496                 SPLIT_NS(p->se.vruntime),
497                 (long long)(p->nvcsw + p->nivcsw),
498                 p->prio);
499
500         SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
501                 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)),
502                 SPLIT_NS(p->se.sum_exec_runtime),
503                 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime)));
504
505 #ifdef CONFIG_NUMA_BALANCING
506         SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
507 #endif
508 #ifdef CONFIG_CGROUP_SCHED
509         SEQ_printf(m, " %s", task_group_path(task_group(p)));
510 #endif
511
512         SEQ_printf(m, "\n");
513 }
514
515 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
516 {
517         struct task_struct *g, *p;
518
519         SEQ_printf(m, "\n");
520         SEQ_printf(m, "runnable tasks:\n");
521         SEQ_printf(m, " S            task   PID         tree-key  switches  prio"
522                    "     wait-time             sum-exec        sum-sleep\n");
523         SEQ_printf(m, "-------------------------------------------------------"
524                    "------------------------------------------------------\n");
525
526         rcu_read_lock();
527         for_each_process_thread(g, p) {
528                 if (task_cpu(p) != rq_cpu)
529                         continue;
530
531                 print_task(m, rq, p);
532         }
533         rcu_read_unlock();
534 }
535
536 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
537 {
538         s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
539                 spread, rq0_min_vruntime, spread0;
540         struct rq *rq = cpu_rq(cpu);
541         struct sched_entity *last;
542         unsigned long flags;
543
544 #ifdef CONFIG_FAIR_GROUP_SCHED
545         SEQ_printf(m, "\n");
546         SEQ_printf(m, "cfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
547 #else
548         SEQ_printf(m, "\n");
549         SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
550 #endif
551         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "exec_clock",
552                         SPLIT_NS(cfs_rq->exec_clock));
553
554         raw_spin_lock_irqsave(&rq->lock, flags);
555         if (rb_first_cached(&cfs_rq->tasks_timeline))
556                 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
557         last = __pick_last_entity(cfs_rq);
558         if (last)
559                 max_vruntime = last->vruntime;
560         min_vruntime = cfs_rq->min_vruntime;
561         rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
562         raw_spin_unlock_irqrestore(&rq->lock, flags);
563         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "MIN_vruntime",
564                         SPLIT_NS(MIN_vruntime));
565         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "min_vruntime",
566                         SPLIT_NS(min_vruntime));
567         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "max_vruntime",
568                         SPLIT_NS(max_vruntime));
569         spread = max_vruntime - MIN_vruntime;
570         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread",
571                         SPLIT_NS(spread));
572         spread0 = min_vruntime - rq0_min_vruntime;
573         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread0",
574                         SPLIT_NS(spread0));
575         SEQ_printf(m, "  .%-30s: %d\n", "nr_spread_over",
576                         cfs_rq->nr_spread_over);
577         SEQ_printf(m, "  .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
578         SEQ_printf(m, "  .%-30s: %ld\n", "load", cfs_rq->load.weight);
579 #ifdef CONFIG_SMP
580         SEQ_printf(m, "  .%-30s: %lu\n", "load_avg",
581                         cfs_rq->avg.load_avg);
582         SEQ_printf(m, "  .%-30s: %lu\n", "runnable_avg",
583                         cfs_rq->avg.runnable_avg);
584         SEQ_printf(m, "  .%-30s: %lu\n", "util_avg",
585                         cfs_rq->avg.util_avg);
586         SEQ_printf(m, "  .%-30s: %u\n", "util_est_enqueued",
587                         cfs_rq->avg.util_est.enqueued);
588         SEQ_printf(m, "  .%-30s: %ld\n", "removed.load_avg",
589                         cfs_rq->removed.load_avg);
590         SEQ_printf(m, "  .%-30s: %ld\n", "removed.util_avg",
591                         cfs_rq->removed.util_avg);
592         SEQ_printf(m, "  .%-30s: %ld\n", "removed.runnable_avg",
593                         cfs_rq->removed.runnable_avg);
594 #ifdef CONFIG_FAIR_GROUP_SCHED
595         SEQ_printf(m, "  .%-30s: %lu\n", "tg_load_avg_contrib",
596                         cfs_rq->tg_load_avg_contrib);
597         SEQ_printf(m, "  .%-30s: %ld\n", "tg_load_avg",
598                         atomic_long_read(&cfs_rq->tg->load_avg));
599 #endif
600 #endif
601 #ifdef CONFIG_CFS_BANDWIDTH
602         SEQ_printf(m, "  .%-30s: %d\n", "throttled",
603                         cfs_rq->throttled);
604         SEQ_printf(m, "  .%-30s: %d\n", "throttle_count",
605                         cfs_rq->throttle_count);
606 #endif
607
608 #ifdef CONFIG_FAIR_GROUP_SCHED
609         print_cfs_group_stats(m, cpu, cfs_rq->tg);
610 #endif
611 }
612
613 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
614 {
615 #ifdef CONFIG_RT_GROUP_SCHED
616         SEQ_printf(m, "\n");
617         SEQ_printf(m, "rt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
618 #else
619         SEQ_printf(m, "\n");
620         SEQ_printf(m, "rt_rq[%d]:\n", cpu);
621 #endif
622
623 #define P(x) \
624         SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
625 #define PU(x) \
626         SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
627 #define PN(x) \
628         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
629
630         PU(rt_nr_running);
631 #ifdef CONFIG_SMP
632         PU(rt_nr_migratory);
633 #endif
634         P(rt_throttled);
635         PN(rt_time);
636         PN(rt_runtime);
637
638 #undef PN
639 #undef PU
640 #undef P
641 }
642
643 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
644 {
645         struct dl_bw *dl_bw;
646
647         SEQ_printf(m, "\n");
648         SEQ_printf(m, "dl_rq[%d]:\n", cpu);
649
650 #define PU(x) \
651         SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
652
653         PU(dl_nr_running);
654 #ifdef CONFIG_SMP
655         PU(dl_nr_migratory);
656         dl_bw = &cpu_rq(cpu)->rd->dl_bw;
657 #else
658         dl_bw = &dl_rq->dl_bw;
659 #endif
660         SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
661         SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
662
663 #undef PU
664 }
665
666 static void print_cpu(struct seq_file *m, int cpu)
667 {
668         struct rq *rq = cpu_rq(cpu);
669         unsigned long flags;
670
671 #ifdef CONFIG_X86
672         {
673                 unsigned int freq = cpu_khz ? : 1;
674
675                 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
676                            cpu, freq / 1000, (freq % 1000));
677         }
678 #else
679         SEQ_printf(m, "cpu#%d\n", cpu);
680 #endif
681
682 #define P(x)                                                            \
683 do {                                                                    \
684         if (sizeof(rq->x) == 4)                                         \
685                 SEQ_printf(m, "  .%-30s: %ld\n", #x, (long)(rq->x));    \
686         else                                                            \
687                 SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rq->x));\
688 } while (0)
689
690 #define PN(x) \
691         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
692
693         P(nr_running);
694         P(nr_switches);
695         P(nr_uninterruptible);
696         PN(next_balance);
697         SEQ_printf(m, "  .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
698         PN(clock);
699         PN(clock_task);
700 #undef P
701 #undef PN
702
703 #ifdef CONFIG_SMP
704 #define P64(n) SEQ_printf(m, "  .%-30s: %Ld\n", #n, rq->n);
705         P64(avg_idle);
706         P64(max_idle_balance_cost);
707 #undef P64
708 #endif
709
710 #define P(n) SEQ_printf(m, "  .%-30s: %d\n", #n, schedstat_val(rq->n));
711         if (schedstat_enabled()) {
712                 P(yld_count);
713                 P(sched_count);
714                 P(sched_goidle);
715                 P(ttwu_count);
716                 P(ttwu_local);
717         }
718 #undef P
719
720         spin_lock_irqsave(&sched_debug_lock, flags);
721         print_cfs_stats(m, cpu);
722         print_rt_stats(m, cpu);
723         print_dl_stats(m, cpu);
724
725         print_rq(m, rq, cpu);
726         spin_unlock_irqrestore(&sched_debug_lock, flags);
727         SEQ_printf(m, "\n");
728 }
729
730 static const char *sched_tunable_scaling_names[] = {
731         "none",
732         "logarithmic",
733         "linear"
734 };
735
736 static void sched_debug_header(struct seq_file *m)
737 {
738         u64 ktime, sched_clk, cpu_clk;
739         unsigned long flags;
740
741         local_irq_save(flags);
742         ktime = ktime_to_ns(ktime_get());
743         sched_clk = sched_clock();
744         cpu_clk = local_clock();
745         local_irq_restore(flags);
746
747         SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
748                 init_utsname()->release,
749                 (int)strcspn(init_utsname()->version, " "),
750                 init_utsname()->version);
751
752 #define P(x) \
753         SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
754 #define PN(x) \
755         SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
756         PN(ktime);
757         PN(sched_clk);
758         PN(cpu_clk);
759         P(jiffies);
760 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
761         P(sched_clock_stable());
762 #endif
763 #undef PN
764 #undef P
765
766         SEQ_printf(m, "\n");
767         SEQ_printf(m, "sysctl_sched\n");
768
769 #define P(x) \
770         SEQ_printf(m, "  .%-40s: %Ld\n", #x, (long long)(x))
771 #define PN(x) \
772         SEQ_printf(m, "  .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
773         PN(sysctl_sched_latency);
774         PN(sysctl_sched_min_granularity);
775         PN(sysctl_sched_wakeup_granularity);
776         P(sysctl_sched_child_runs_first);
777         P(sysctl_sched_features);
778 #undef PN
779 #undef P
780
781         SEQ_printf(m, "  .%-40s: %d (%s)\n",
782                 "sysctl_sched_tunable_scaling",
783                 sysctl_sched_tunable_scaling,
784                 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
785         SEQ_printf(m, "\n");
786 }
787
788 static int sched_debug_show(struct seq_file *m, void *v)
789 {
790         int cpu = (unsigned long)(v - 2);
791
792         if (cpu != -1)
793                 print_cpu(m, cpu);
794         else
795                 sched_debug_header(m);
796
797         return 0;
798 }
799
800 void sysrq_sched_debug_show(void)
801 {
802         int cpu;
803
804         sched_debug_header(NULL);
805         for_each_online_cpu(cpu) {
806                 /*
807                  * Need to reset softlockup watchdogs on all CPUs, because
808                  * another CPU might be blocked waiting for us to process
809                  * an IPI or stop_machine.
810                  */
811                 touch_nmi_watchdog();
812                 touch_all_softlockup_watchdogs();
813                 print_cpu(NULL, cpu);
814         }
815 }
816
817 /*
818  * This itererator needs some explanation.
819  * It returns 1 for the header position.
820  * This means 2 is CPU 0.
821  * In a hotplugged system some CPUs, including CPU 0, may be missing so we have
822  * to use cpumask_* to iterate over the CPUs.
823  */
824 static void *sched_debug_start(struct seq_file *file, loff_t *offset)
825 {
826         unsigned long n = *offset;
827
828         if (n == 0)
829                 return (void *) 1;
830
831         n--;
832
833         if (n > 0)
834                 n = cpumask_next(n - 1, cpu_online_mask);
835         else
836                 n = cpumask_first(cpu_online_mask);
837
838         *offset = n + 1;
839
840         if (n < nr_cpu_ids)
841                 return (void *)(unsigned long)(n + 2);
842
843         return NULL;
844 }
845
846 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
847 {
848         (*offset)++;
849         return sched_debug_start(file, offset);
850 }
851
852 static void sched_debug_stop(struct seq_file *file, void *data)
853 {
854 }
855
856 static const struct seq_operations sched_debug_sops = {
857         .start          = sched_debug_start,
858         .next           = sched_debug_next,
859         .stop           = sched_debug_stop,
860         .show           = sched_debug_show,
861 };
862
863 static int __init init_sched_debug_procfs(void)
864 {
865         if (!proc_create_seq("sched_debug", 0444, NULL, &sched_debug_sops))
866                 return -ENOMEM;
867         return 0;
868 }
869
870 __initcall(init_sched_debug_procfs);
871
872 #define __PS(S, F) SEQ_printf(m, "%-45s:%21Ld\n", S, (long long)(F))
873 #define __P(F) __PS(#F, F)
874 #define   P(F) __PS(#F, p->F)
875 #define __PSN(S, F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", S, SPLIT_NS((long long)(F)))
876 #define __PN(F) __PSN(#F, F)
877 #define   PN(F) __PSN(#F, p->F)
878
879
880 #ifdef CONFIG_NUMA_BALANCING
881 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
882                 unsigned long tpf, unsigned long gsf, unsigned long gpf)
883 {
884         SEQ_printf(m, "numa_faults node=%d ", node);
885         SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf);
886         SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf);
887 }
888 #endif
889
890
891 static void sched_show_numa(struct task_struct *p, struct seq_file *m)
892 {
893 #ifdef CONFIG_NUMA_BALANCING
894         struct mempolicy *pol;
895
896         if (p->mm)
897                 P(mm->numa_scan_seq);
898
899         task_lock(p);
900         pol = p->mempolicy;
901         if (pol && !(pol->flags & MPOL_F_MORON))
902                 pol = NULL;
903         mpol_get(pol);
904         task_unlock(p);
905
906         P(numa_pages_migrated);
907         P(numa_preferred_nid);
908         P(total_numa_faults);
909         SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
910                         task_node(p), task_numa_group_id(p));
911         show_numa_stats(p, m);
912         mpol_put(pol);
913 #endif
914 }
915
916 void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
917                                                   struct seq_file *m)
918 {
919         unsigned long nr_switches;
920
921         SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
922                                                 get_nr_threads(p));
923         SEQ_printf(m,
924                 "---------------------------------------------------------"
925                 "----------\n");
926
927 #define P_SCHEDSTAT(F)  __PS(#F, schedstat_val(p->F))
928 #define PN_SCHEDSTAT(F) __PSN(#F, schedstat_val(p->F))
929
930         PN(se.exec_start);
931         PN(se.vruntime);
932         PN(se.sum_exec_runtime);
933
934         nr_switches = p->nvcsw + p->nivcsw;
935
936         P(se.nr_migrations);
937
938         if (schedstat_enabled()) {
939                 u64 avg_atom, avg_per_cpu;
940
941                 PN_SCHEDSTAT(se.statistics.sum_sleep_runtime);
942                 PN_SCHEDSTAT(se.statistics.wait_start);
943                 PN_SCHEDSTAT(se.statistics.sleep_start);
944                 PN_SCHEDSTAT(se.statistics.block_start);
945                 PN_SCHEDSTAT(se.statistics.sleep_max);
946                 PN_SCHEDSTAT(se.statistics.block_max);
947                 PN_SCHEDSTAT(se.statistics.exec_max);
948                 PN_SCHEDSTAT(se.statistics.slice_max);
949                 PN_SCHEDSTAT(se.statistics.wait_max);
950                 PN_SCHEDSTAT(se.statistics.wait_sum);
951                 P_SCHEDSTAT(se.statistics.wait_count);
952                 PN_SCHEDSTAT(se.statistics.iowait_sum);
953                 P_SCHEDSTAT(se.statistics.iowait_count);
954                 P_SCHEDSTAT(se.statistics.nr_migrations_cold);
955                 P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine);
956                 P_SCHEDSTAT(se.statistics.nr_failed_migrations_running);
957                 P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot);
958                 P_SCHEDSTAT(se.statistics.nr_forced_migrations);
959                 P_SCHEDSTAT(se.statistics.nr_wakeups);
960                 P_SCHEDSTAT(se.statistics.nr_wakeups_sync);
961                 P_SCHEDSTAT(se.statistics.nr_wakeups_migrate);
962                 P_SCHEDSTAT(se.statistics.nr_wakeups_local);
963                 P_SCHEDSTAT(se.statistics.nr_wakeups_remote);
964                 P_SCHEDSTAT(se.statistics.nr_wakeups_affine);
965                 P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts);
966                 P_SCHEDSTAT(se.statistics.nr_wakeups_passive);
967                 P_SCHEDSTAT(se.statistics.nr_wakeups_idle);
968
969                 avg_atom = p->se.sum_exec_runtime;
970                 if (nr_switches)
971                         avg_atom = div64_ul(avg_atom, nr_switches);
972                 else
973                         avg_atom = -1LL;
974
975                 avg_per_cpu = p->se.sum_exec_runtime;
976                 if (p->se.nr_migrations) {
977                         avg_per_cpu = div64_u64(avg_per_cpu,
978                                                 p->se.nr_migrations);
979                 } else {
980                         avg_per_cpu = -1LL;
981                 }
982
983                 __PN(avg_atom);
984                 __PN(avg_per_cpu);
985         }
986
987         __P(nr_switches);
988         __PS("nr_voluntary_switches", p->nvcsw);
989         __PS("nr_involuntary_switches", p->nivcsw);
990
991         P(se.load.weight);
992 #ifdef CONFIG_SMP
993         P(se.avg.load_sum);
994         P(se.avg.runnable_sum);
995         P(se.avg.util_sum);
996         P(se.avg.load_avg);
997         P(se.avg.runnable_avg);
998         P(se.avg.util_avg);
999         P(se.avg.last_update_time);
1000         P(se.avg.util_est.ewma);
1001         P(se.avg.util_est.enqueued);
1002 #endif
1003 #ifdef CONFIG_UCLAMP_TASK
1004         __PS("uclamp.min", p->uclamp_req[UCLAMP_MIN].value);
1005         __PS("uclamp.max", p->uclamp_req[UCLAMP_MAX].value);
1006         __PS("effective uclamp.min", uclamp_eff_value(p, UCLAMP_MIN));
1007         __PS("effective uclamp.max", uclamp_eff_value(p, UCLAMP_MAX));
1008 #endif
1009         P(policy);
1010         P(prio);
1011         if (task_has_dl_policy(p)) {
1012                 P(dl.runtime);
1013                 P(dl.deadline);
1014         }
1015 #undef PN_SCHEDSTAT
1016 #undef P_SCHEDSTAT
1017
1018         {
1019                 unsigned int this_cpu = raw_smp_processor_id();
1020                 u64 t0, t1;
1021
1022                 t0 = cpu_clock(this_cpu);
1023                 t1 = cpu_clock(this_cpu);
1024                 __PS("clock-delta", t1-t0);
1025         }
1026
1027         sched_show_numa(p, m);
1028 }
1029
1030 void proc_sched_set_task(struct task_struct *p)
1031 {
1032 #ifdef CONFIG_SCHEDSTATS
1033         memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1034 #endif
1035 }