Merge tag 'meminit-v5.3-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/kees...
[linux-2.6-microblaze.git] / kernel / sched / cpufreq_schedutil.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * CPUFreq governor based on scheduler-provided CPU utilization data.
4  *
5  * Copyright (C) 2016, Intel Corporation
6  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include "sched.h"
12
13 #include <linux/sched/cpufreq.h>
14 #include <trace/events/power.h>
15
16 #define IOWAIT_BOOST_MIN        (SCHED_CAPACITY_SCALE / 8)
17
18 struct sugov_tunables {
19         struct gov_attr_set     attr_set;
20         unsigned int            rate_limit_us;
21 };
22
23 struct sugov_policy {
24         struct cpufreq_policy   *policy;
25
26         struct sugov_tunables   *tunables;
27         struct list_head        tunables_hook;
28
29         raw_spinlock_t          update_lock;    /* For shared policies */
30         u64                     last_freq_update_time;
31         s64                     freq_update_delay_ns;
32         unsigned int            next_freq;
33         unsigned int            cached_raw_freq;
34
35         /* The next fields are only needed if fast switch cannot be used: */
36         struct                  irq_work irq_work;
37         struct                  kthread_work work;
38         struct                  mutex work_lock;
39         struct                  kthread_worker worker;
40         struct task_struct      *thread;
41         bool                    work_in_progress;
42
43         bool                    need_freq_update;
44 };
45
46 struct sugov_cpu {
47         struct update_util_data update_util;
48         struct sugov_policy     *sg_policy;
49         unsigned int            cpu;
50
51         bool                    iowait_boost_pending;
52         unsigned int            iowait_boost;
53         u64                     last_update;
54
55         unsigned long           bw_dl;
56         unsigned long           max;
57
58         /* The field below is for single-CPU policies only: */
59 #ifdef CONFIG_NO_HZ_COMMON
60         unsigned long           saved_idle_calls;
61 #endif
62 };
63
64 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
65
66 /************************ Governor internals ***********************/
67
68 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
69 {
70         s64 delta_ns;
71
72         /*
73          * Since cpufreq_update_util() is called with rq->lock held for
74          * the @target_cpu, our per-CPU data is fully serialized.
75          *
76          * However, drivers cannot in general deal with cross-CPU
77          * requests, so while get_next_freq() will work, our
78          * sugov_update_commit() call may not for the fast switching platforms.
79          *
80          * Hence stop here for remote requests if they aren't supported
81          * by the hardware, as calculating the frequency is pointless if
82          * we cannot in fact act on it.
83          *
84          * For the slow switching platforms, the kthread is always scheduled on
85          * the right set of CPUs and any CPU can find the next frequency and
86          * schedule the kthread.
87          */
88         if (sg_policy->policy->fast_switch_enabled &&
89             !cpufreq_this_cpu_can_update(sg_policy->policy))
90                 return false;
91
92         if (unlikely(sg_policy->need_freq_update))
93                 return true;
94
95         delta_ns = time - sg_policy->last_freq_update_time;
96
97         return delta_ns >= sg_policy->freq_update_delay_ns;
98 }
99
100 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
101                                    unsigned int next_freq)
102 {
103         if (sg_policy->next_freq == next_freq)
104                 return false;
105
106         sg_policy->next_freq = next_freq;
107         sg_policy->last_freq_update_time = time;
108
109         return true;
110 }
111
112 static void sugov_fast_switch(struct sugov_policy *sg_policy, u64 time,
113                               unsigned int next_freq)
114 {
115         struct cpufreq_policy *policy = sg_policy->policy;
116
117         if (!sugov_update_next_freq(sg_policy, time, next_freq))
118                 return;
119
120         next_freq = cpufreq_driver_fast_switch(policy, next_freq);
121         if (!next_freq)
122                 return;
123
124         policy->cur = next_freq;
125         trace_cpu_frequency(next_freq, smp_processor_id());
126 }
127
128 static void sugov_deferred_update(struct sugov_policy *sg_policy, u64 time,
129                                   unsigned int next_freq)
130 {
131         if (!sugov_update_next_freq(sg_policy, time, next_freq))
132                 return;
133
134         if (!sg_policy->work_in_progress) {
135                 sg_policy->work_in_progress = true;
136                 irq_work_queue(&sg_policy->irq_work);
137         }
138 }
139
140 /**
141  * get_next_freq - Compute a new frequency for a given cpufreq policy.
142  * @sg_policy: schedutil policy object to compute the new frequency for.
143  * @util: Current CPU utilization.
144  * @max: CPU capacity.
145  *
146  * If the utilization is frequency-invariant, choose the new frequency to be
147  * proportional to it, that is
148  *
149  * next_freq = C * max_freq * util / max
150  *
151  * Otherwise, approximate the would-be frequency-invariant utilization by
152  * util_raw * (curr_freq / max_freq) which leads to
153  *
154  * next_freq = C * curr_freq * util_raw / max
155  *
156  * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
157  *
158  * The lowest driver-supported frequency which is equal or greater than the raw
159  * next_freq (as calculated above) is returned, subject to policy min/max and
160  * cpufreq driver limitations.
161  */
162 static unsigned int get_next_freq(struct sugov_policy *sg_policy,
163                                   unsigned long util, unsigned long max)
164 {
165         struct cpufreq_policy *policy = sg_policy->policy;
166         unsigned int freq = arch_scale_freq_invariant() ?
167                                 policy->cpuinfo.max_freq : policy->cur;
168
169         freq = map_util_freq(util, freq, max);
170
171         if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
172                 return sg_policy->next_freq;
173
174         sg_policy->need_freq_update = false;
175         sg_policy->cached_raw_freq = freq;
176         return cpufreq_driver_resolve_freq(policy, freq);
177 }
178
179 /*
180  * This function computes an effective utilization for the given CPU, to be
181  * used for frequency selection given the linear relation: f = u * f_max.
182  *
183  * The scheduler tracks the following metrics:
184  *
185  *   cpu_util_{cfs,rt,dl,irq}()
186  *   cpu_bw_dl()
187  *
188  * Where the cfs,rt and dl util numbers are tracked with the same metric and
189  * synchronized windows and are thus directly comparable.
190  *
191  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
192  * which excludes things like IRQ and steal-time. These latter are then accrued
193  * in the irq utilization.
194  *
195  * The DL bandwidth number otoh is not a measured metric but a value computed
196  * based on the task model parameters and gives the minimal utilization
197  * required to meet deadlines.
198  */
199 unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
200                                  unsigned long max, enum schedutil_type type,
201                                  struct task_struct *p)
202 {
203         unsigned long dl_util, util, irq;
204         struct rq *rq = cpu_rq(cpu);
205
206         if (!IS_BUILTIN(CONFIG_UCLAMP_TASK) &&
207             type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
208                 return max;
209         }
210
211         /*
212          * Early check to see if IRQ/steal time saturates the CPU, can be
213          * because of inaccuracies in how we track these -- see
214          * update_irq_load_avg().
215          */
216         irq = cpu_util_irq(rq);
217         if (unlikely(irq >= max))
218                 return max;
219
220         /*
221          * Because the time spend on RT/DL tasks is visible as 'lost' time to
222          * CFS tasks and we use the same metric to track the effective
223          * utilization (PELT windows are synchronized) we can directly add them
224          * to obtain the CPU's actual utilization.
225          *
226          * CFS and RT utilization can be boosted or capped, depending on
227          * utilization clamp constraints requested by currently RUNNABLE
228          * tasks.
229          * When there are no CFS RUNNABLE tasks, clamps are released and
230          * frequency will be gracefully reduced with the utilization decay.
231          */
232         util = util_cfs + cpu_util_rt(rq);
233         if (type == FREQUENCY_UTIL)
234                 util = uclamp_util_with(rq, util, p);
235
236         dl_util = cpu_util_dl(rq);
237
238         /*
239          * For frequency selection we do not make cpu_util_dl() a permanent part
240          * of this sum because we want to use cpu_bw_dl() later on, but we need
241          * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
242          * that we select f_max when there is no idle time.
243          *
244          * NOTE: numerical errors or stop class might cause us to not quite hit
245          * saturation when we should -- something for later.
246          */
247         if (util + dl_util >= max)
248                 return max;
249
250         /*
251          * OTOH, for energy computation we need the estimated running time, so
252          * include util_dl and ignore dl_bw.
253          */
254         if (type == ENERGY_UTIL)
255                 util += dl_util;
256
257         /*
258          * There is still idle time; further improve the number by using the
259          * irq metric. Because IRQ/steal time is hidden from the task clock we
260          * need to scale the task numbers:
261          *
262          *              1 - irq
263          *   U' = irq + ------- * U
264          *                max
265          */
266         util = scale_irq_capacity(util, irq, max);
267         util += irq;
268
269         /*
270          * Bandwidth required by DEADLINE must always be granted while, for
271          * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
272          * to gracefully reduce the frequency when no tasks show up for longer
273          * periods of time.
274          *
275          * Ideally we would like to set bw_dl as min/guaranteed freq and util +
276          * bw_dl as requested freq. However, cpufreq is not yet ready for such
277          * an interface. So, we only do the latter for now.
278          */
279         if (type == FREQUENCY_UTIL)
280                 util += cpu_bw_dl(rq);
281
282         return min(max, util);
283 }
284
285 static unsigned long sugov_get_util(struct sugov_cpu *sg_cpu)
286 {
287         struct rq *rq = cpu_rq(sg_cpu->cpu);
288         unsigned long util = cpu_util_cfs(rq);
289         unsigned long max = arch_scale_cpu_capacity(sg_cpu->cpu);
290
291         sg_cpu->max = max;
292         sg_cpu->bw_dl = cpu_bw_dl(rq);
293
294         return schedutil_cpu_util(sg_cpu->cpu, util, max, FREQUENCY_UTIL, NULL);
295 }
296
297 /**
298  * sugov_iowait_reset() - Reset the IO boost status of a CPU.
299  * @sg_cpu: the sugov data for the CPU to boost
300  * @time: the update time from the caller
301  * @set_iowait_boost: true if an IO boost has been requested
302  *
303  * The IO wait boost of a task is disabled after a tick since the last update
304  * of a CPU. If a new IO wait boost is requested after more then a tick, then
305  * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
306  * efficiency by ignoring sporadic wakeups from IO.
307  */
308 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
309                                bool set_iowait_boost)
310 {
311         s64 delta_ns = time - sg_cpu->last_update;
312
313         /* Reset boost only if a tick has elapsed since last request */
314         if (delta_ns <= TICK_NSEC)
315                 return false;
316
317         sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
318         sg_cpu->iowait_boost_pending = set_iowait_boost;
319
320         return true;
321 }
322
323 /**
324  * sugov_iowait_boost() - Updates the IO boost status of a CPU.
325  * @sg_cpu: the sugov data for the CPU to boost
326  * @time: the update time from the caller
327  * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
328  *
329  * Each time a task wakes up after an IO operation, the CPU utilization can be
330  * boosted to a certain utilization which doubles at each "frequent and
331  * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
332  * of the maximum OPP.
333  *
334  * To keep doubling, an IO boost has to be requested at least once per tick,
335  * otherwise we restart from the utilization of the minimum OPP.
336  */
337 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
338                                unsigned int flags)
339 {
340         bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
341
342         /* Reset boost if the CPU appears to have been idle enough */
343         if (sg_cpu->iowait_boost &&
344             sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
345                 return;
346
347         /* Boost only tasks waking up after IO */
348         if (!set_iowait_boost)
349                 return;
350
351         /* Ensure boost doubles only one time at each request */
352         if (sg_cpu->iowait_boost_pending)
353                 return;
354         sg_cpu->iowait_boost_pending = true;
355
356         /* Double the boost at each request */
357         if (sg_cpu->iowait_boost) {
358                 sg_cpu->iowait_boost =
359                         min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
360                 return;
361         }
362
363         /* First wakeup after IO: start with minimum boost */
364         sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
365 }
366
367 /**
368  * sugov_iowait_apply() - Apply the IO boost to a CPU.
369  * @sg_cpu: the sugov data for the cpu to boost
370  * @time: the update time from the caller
371  * @util: the utilization to (eventually) boost
372  * @max: the maximum value the utilization can be boosted to
373  *
374  * A CPU running a task which woken up after an IO operation can have its
375  * utilization boosted to speed up the completion of those IO operations.
376  * The IO boost value is increased each time a task wakes up from IO, in
377  * sugov_iowait_apply(), and it's instead decreased by this function,
378  * each time an increase has not been requested (!iowait_boost_pending).
379  *
380  * A CPU which also appears to have been idle for at least one tick has also
381  * its IO boost utilization reset.
382  *
383  * This mechanism is designed to boost high frequently IO waiting tasks, while
384  * being more conservative on tasks which does sporadic IO operations.
385  */
386 static unsigned long sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time,
387                                         unsigned long util, unsigned long max)
388 {
389         unsigned long boost;
390
391         /* No boost currently required */
392         if (!sg_cpu->iowait_boost)
393                 return util;
394
395         /* Reset boost if the CPU appears to have been idle enough */
396         if (sugov_iowait_reset(sg_cpu, time, false))
397                 return util;
398
399         if (!sg_cpu->iowait_boost_pending) {
400                 /*
401                  * No boost pending; reduce the boost value.
402                  */
403                 sg_cpu->iowait_boost >>= 1;
404                 if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
405                         sg_cpu->iowait_boost = 0;
406                         return util;
407                 }
408         }
409
410         sg_cpu->iowait_boost_pending = false;
411
412         /*
413          * @util is already in capacity scale; convert iowait_boost
414          * into the same scale so we can compare.
415          */
416         boost = (sg_cpu->iowait_boost * max) >> SCHED_CAPACITY_SHIFT;
417         return max(boost, util);
418 }
419
420 #ifdef CONFIG_NO_HZ_COMMON
421 static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
422 {
423         unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
424         bool ret = idle_calls == sg_cpu->saved_idle_calls;
425
426         sg_cpu->saved_idle_calls = idle_calls;
427         return ret;
428 }
429 #else
430 static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
431 #endif /* CONFIG_NO_HZ_COMMON */
432
433 /*
434  * Make sugov_should_update_freq() ignore the rate limit when DL
435  * has increased the utilization.
436  */
437 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu, struct sugov_policy *sg_policy)
438 {
439         if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl)
440                 sg_policy->need_freq_update = true;
441 }
442
443 static void sugov_update_single(struct update_util_data *hook, u64 time,
444                                 unsigned int flags)
445 {
446         struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
447         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
448         unsigned long util, max;
449         unsigned int next_f;
450         bool busy;
451
452         sugov_iowait_boost(sg_cpu, time, flags);
453         sg_cpu->last_update = time;
454
455         ignore_dl_rate_limit(sg_cpu, sg_policy);
456
457         if (!sugov_should_update_freq(sg_policy, time))
458                 return;
459
460         busy = sugov_cpu_is_busy(sg_cpu);
461
462         util = sugov_get_util(sg_cpu);
463         max = sg_cpu->max;
464         util = sugov_iowait_apply(sg_cpu, time, util, max);
465         next_f = get_next_freq(sg_policy, util, max);
466         /*
467          * Do not reduce the frequency if the CPU has not been idle
468          * recently, as the reduction is likely to be premature then.
469          */
470         if (busy && next_f < sg_policy->next_freq) {
471                 next_f = sg_policy->next_freq;
472
473                 /* Reset cached freq as next_freq has changed */
474                 sg_policy->cached_raw_freq = 0;
475         }
476
477         /*
478          * This code runs under rq->lock for the target CPU, so it won't run
479          * concurrently on two different CPUs for the same target and it is not
480          * necessary to acquire the lock in the fast switch case.
481          */
482         if (sg_policy->policy->fast_switch_enabled) {
483                 sugov_fast_switch(sg_policy, time, next_f);
484         } else {
485                 raw_spin_lock(&sg_policy->update_lock);
486                 sugov_deferred_update(sg_policy, time, next_f);
487                 raw_spin_unlock(&sg_policy->update_lock);
488         }
489 }
490
491 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
492 {
493         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
494         struct cpufreq_policy *policy = sg_policy->policy;
495         unsigned long util = 0, max = 1;
496         unsigned int j;
497
498         for_each_cpu(j, policy->cpus) {
499                 struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
500                 unsigned long j_util, j_max;
501
502                 j_util = sugov_get_util(j_sg_cpu);
503                 j_max = j_sg_cpu->max;
504                 j_util = sugov_iowait_apply(j_sg_cpu, time, j_util, j_max);
505
506                 if (j_util * max > j_max * util) {
507                         util = j_util;
508                         max = j_max;
509                 }
510         }
511
512         return get_next_freq(sg_policy, util, max);
513 }
514
515 static void
516 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
517 {
518         struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
519         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
520         unsigned int next_f;
521
522         raw_spin_lock(&sg_policy->update_lock);
523
524         sugov_iowait_boost(sg_cpu, time, flags);
525         sg_cpu->last_update = time;
526
527         ignore_dl_rate_limit(sg_cpu, sg_policy);
528
529         if (sugov_should_update_freq(sg_policy, time)) {
530                 next_f = sugov_next_freq_shared(sg_cpu, time);
531
532                 if (sg_policy->policy->fast_switch_enabled)
533                         sugov_fast_switch(sg_policy, time, next_f);
534                 else
535                         sugov_deferred_update(sg_policy, time, next_f);
536         }
537
538         raw_spin_unlock(&sg_policy->update_lock);
539 }
540
541 static void sugov_work(struct kthread_work *work)
542 {
543         struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
544         unsigned int freq;
545         unsigned long flags;
546
547         /*
548          * Hold sg_policy->update_lock shortly to handle the case where:
549          * incase sg_policy->next_freq is read here, and then updated by
550          * sugov_deferred_update() just before work_in_progress is set to false
551          * here, we may miss queueing the new update.
552          *
553          * Note: If a work was queued after the update_lock is released,
554          * sugov_work() will just be called again by kthread_work code; and the
555          * request will be proceed before the sugov thread sleeps.
556          */
557         raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
558         freq = sg_policy->next_freq;
559         sg_policy->work_in_progress = false;
560         raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
561
562         mutex_lock(&sg_policy->work_lock);
563         __cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
564         mutex_unlock(&sg_policy->work_lock);
565 }
566
567 static void sugov_irq_work(struct irq_work *irq_work)
568 {
569         struct sugov_policy *sg_policy;
570
571         sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
572
573         kthread_queue_work(&sg_policy->worker, &sg_policy->work);
574 }
575
576 /************************** sysfs interface ************************/
577
578 static struct sugov_tunables *global_tunables;
579 static DEFINE_MUTEX(global_tunables_lock);
580
581 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
582 {
583         return container_of(attr_set, struct sugov_tunables, attr_set);
584 }
585
586 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
587 {
588         struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
589
590         return sprintf(buf, "%u\n", tunables->rate_limit_us);
591 }
592
593 static ssize_t
594 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
595 {
596         struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
597         struct sugov_policy *sg_policy;
598         unsigned int rate_limit_us;
599
600         if (kstrtouint(buf, 10, &rate_limit_us))
601                 return -EINVAL;
602
603         tunables->rate_limit_us = rate_limit_us;
604
605         list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
606                 sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
607
608         return count;
609 }
610
611 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
612
613 static struct attribute *sugov_attrs[] = {
614         &rate_limit_us.attr,
615         NULL
616 };
617 ATTRIBUTE_GROUPS(sugov);
618
619 static struct kobj_type sugov_tunables_ktype = {
620         .default_groups = sugov_groups,
621         .sysfs_ops = &governor_sysfs_ops,
622 };
623
624 /********************** cpufreq governor interface *********************/
625
626 struct cpufreq_governor schedutil_gov;
627
628 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
629 {
630         struct sugov_policy *sg_policy;
631
632         sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
633         if (!sg_policy)
634                 return NULL;
635
636         sg_policy->policy = policy;
637         raw_spin_lock_init(&sg_policy->update_lock);
638         return sg_policy;
639 }
640
641 static void sugov_policy_free(struct sugov_policy *sg_policy)
642 {
643         kfree(sg_policy);
644 }
645
646 static int sugov_kthread_create(struct sugov_policy *sg_policy)
647 {
648         struct task_struct *thread;
649         struct sched_attr attr = {
650                 .size           = sizeof(struct sched_attr),
651                 .sched_policy   = SCHED_DEADLINE,
652                 .sched_flags    = SCHED_FLAG_SUGOV,
653                 .sched_nice     = 0,
654                 .sched_priority = 0,
655                 /*
656                  * Fake (unused) bandwidth; workaround to "fix"
657                  * priority inheritance.
658                  */
659                 .sched_runtime  =  1000000,
660                 .sched_deadline = 10000000,
661                 .sched_period   = 10000000,
662         };
663         struct cpufreq_policy *policy = sg_policy->policy;
664         int ret;
665
666         /* kthread only required for slow path */
667         if (policy->fast_switch_enabled)
668                 return 0;
669
670         kthread_init_work(&sg_policy->work, sugov_work);
671         kthread_init_worker(&sg_policy->worker);
672         thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
673                                 "sugov:%d",
674                                 cpumask_first(policy->related_cpus));
675         if (IS_ERR(thread)) {
676                 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
677                 return PTR_ERR(thread);
678         }
679
680         ret = sched_setattr_nocheck(thread, &attr);
681         if (ret) {
682                 kthread_stop(thread);
683                 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
684                 return ret;
685         }
686
687         sg_policy->thread = thread;
688         kthread_bind_mask(thread, policy->related_cpus);
689         init_irq_work(&sg_policy->irq_work, sugov_irq_work);
690         mutex_init(&sg_policy->work_lock);
691
692         wake_up_process(thread);
693
694         return 0;
695 }
696
697 static void sugov_kthread_stop(struct sugov_policy *sg_policy)
698 {
699         /* kthread only required for slow path */
700         if (sg_policy->policy->fast_switch_enabled)
701                 return;
702
703         kthread_flush_worker(&sg_policy->worker);
704         kthread_stop(sg_policy->thread);
705         mutex_destroy(&sg_policy->work_lock);
706 }
707
708 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
709 {
710         struct sugov_tunables *tunables;
711
712         tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
713         if (tunables) {
714                 gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
715                 if (!have_governor_per_policy())
716                         global_tunables = tunables;
717         }
718         return tunables;
719 }
720
721 static void sugov_tunables_free(struct sugov_tunables *tunables)
722 {
723         if (!have_governor_per_policy())
724                 global_tunables = NULL;
725
726         kfree(tunables);
727 }
728
729 static int sugov_init(struct cpufreq_policy *policy)
730 {
731         struct sugov_policy *sg_policy;
732         struct sugov_tunables *tunables;
733         int ret = 0;
734
735         /* State should be equivalent to EXIT */
736         if (policy->governor_data)
737                 return -EBUSY;
738
739         cpufreq_enable_fast_switch(policy);
740
741         sg_policy = sugov_policy_alloc(policy);
742         if (!sg_policy) {
743                 ret = -ENOMEM;
744                 goto disable_fast_switch;
745         }
746
747         ret = sugov_kthread_create(sg_policy);
748         if (ret)
749                 goto free_sg_policy;
750
751         mutex_lock(&global_tunables_lock);
752
753         if (global_tunables) {
754                 if (WARN_ON(have_governor_per_policy())) {
755                         ret = -EINVAL;
756                         goto stop_kthread;
757                 }
758                 policy->governor_data = sg_policy;
759                 sg_policy->tunables = global_tunables;
760
761                 gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
762                 goto out;
763         }
764
765         tunables = sugov_tunables_alloc(sg_policy);
766         if (!tunables) {
767                 ret = -ENOMEM;
768                 goto stop_kthread;
769         }
770
771         tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
772
773         policy->governor_data = sg_policy;
774         sg_policy->tunables = tunables;
775
776         ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
777                                    get_governor_parent_kobj(policy), "%s",
778                                    schedutil_gov.name);
779         if (ret)
780                 goto fail;
781
782 out:
783         mutex_unlock(&global_tunables_lock);
784         return 0;
785
786 fail:
787         kobject_put(&tunables->attr_set.kobj);
788         policy->governor_data = NULL;
789         sugov_tunables_free(tunables);
790
791 stop_kthread:
792         sugov_kthread_stop(sg_policy);
793         mutex_unlock(&global_tunables_lock);
794
795 free_sg_policy:
796         sugov_policy_free(sg_policy);
797
798 disable_fast_switch:
799         cpufreq_disable_fast_switch(policy);
800
801         pr_err("initialization failed (error %d)\n", ret);
802         return ret;
803 }
804
805 static void sugov_exit(struct cpufreq_policy *policy)
806 {
807         struct sugov_policy *sg_policy = policy->governor_data;
808         struct sugov_tunables *tunables = sg_policy->tunables;
809         unsigned int count;
810
811         mutex_lock(&global_tunables_lock);
812
813         count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
814         policy->governor_data = NULL;
815         if (!count)
816                 sugov_tunables_free(tunables);
817
818         mutex_unlock(&global_tunables_lock);
819
820         sugov_kthread_stop(sg_policy);
821         sugov_policy_free(sg_policy);
822         cpufreq_disable_fast_switch(policy);
823 }
824
825 static int sugov_start(struct cpufreq_policy *policy)
826 {
827         struct sugov_policy *sg_policy = policy->governor_data;
828         unsigned int cpu;
829
830         sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
831         sg_policy->last_freq_update_time        = 0;
832         sg_policy->next_freq                    = 0;
833         sg_policy->work_in_progress             = false;
834         sg_policy->need_freq_update             = false;
835         sg_policy->cached_raw_freq              = 0;
836
837         for_each_cpu(cpu, policy->cpus) {
838                 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
839
840                 memset(sg_cpu, 0, sizeof(*sg_cpu));
841                 sg_cpu->cpu                     = cpu;
842                 sg_cpu->sg_policy               = sg_policy;
843         }
844
845         for_each_cpu(cpu, policy->cpus) {
846                 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
847
848                 cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util,
849                                              policy_is_shared(policy) ?
850                                                         sugov_update_shared :
851                                                         sugov_update_single);
852         }
853         return 0;
854 }
855
856 static void sugov_stop(struct cpufreq_policy *policy)
857 {
858         struct sugov_policy *sg_policy = policy->governor_data;
859         unsigned int cpu;
860
861         for_each_cpu(cpu, policy->cpus)
862                 cpufreq_remove_update_util_hook(cpu);
863
864         synchronize_rcu();
865
866         if (!policy->fast_switch_enabled) {
867                 irq_work_sync(&sg_policy->irq_work);
868                 kthread_cancel_work_sync(&sg_policy->work);
869         }
870 }
871
872 static void sugov_limits(struct cpufreq_policy *policy)
873 {
874         struct sugov_policy *sg_policy = policy->governor_data;
875
876         if (!policy->fast_switch_enabled) {
877                 mutex_lock(&sg_policy->work_lock);
878                 cpufreq_policy_apply_limits(policy);
879                 mutex_unlock(&sg_policy->work_lock);
880         }
881
882         sg_policy->need_freq_update = true;
883 }
884
885 struct cpufreq_governor schedutil_gov = {
886         .name                   = "schedutil",
887         .owner                  = THIS_MODULE,
888         .dynamic_switching      = true,
889         .init                   = sugov_init,
890         .exit                   = sugov_exit,
891         .start                  = sugov_start,
892         .stop                   = sugov_stop,
893         .limits                 = sugov_limits,
894 };
895
896 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
897 struct cpufreq_governor *cpufreq_default_governor(void)
898 {
899         return &schedutil_gov;
900 }
901 #endif
902
903 static int __init sugov_register(void)
904 {
905         return cpufreq_register_governor(&schedutil_gov);
906 }
907 fs_initcall(sugov_register);
908
909 #ifdef CONFIG_ENERGY_MODEL
910 extern bool sched_energy_update;
911 extern struct mutex sched_energy_mutex;
912
913 static void rebuild_sd_workfn(struct work_struct *work)
914 {
915         mutex_lock(&sched_energy_mutex);
916         sched_energy_update = true;
917         rebuild_sched_domains();
918         sched_energy_update = false;
919         mutex_unlock(&sched_energy_mutex);
920 }
921 static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
922
923 /*
924  * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
925  * on governor changes to make sure the scheduler knows about it.
926  */
927 void sched_cpufreq_governor_change(struct cpufreq_policy *policy,
928                                   struct cpufreq_governor *old_gov)
929 {
930         if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) {
931                 /*
932                  * When called from the cpufreq_register_driver() path, the
933                  * cpu_hotplug_lock is already held, so use a work item to
934                  * avoid nested locking in rebuild_sched_domains().
935                  */
936                 schedule_work(&rebuild_sd_work);
937         }
938
939 }
940 #endif