cpufreq: schedutil: Always call driver if CPUFREQ_NEED_UPDATE_LIMITS is set
[linux-2.6-microblaze.git] / kernel / sched / cpufreq_schedutil.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * CPUFreq governor based on scheduler-provided CPU utilization data.
4  *
5  * Copyright (C) 2016, Intel Corporation
6  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include "sched.h"
12
13 #include <linux/sched/cpufreq.h>
14 #include <trace/events/power.h>
15
16 #define IOWAIT_BOOST_MIN        (SCHED_CAPACITY_SCALE / 8)
17
18 struct sugov_tunables {
19         struct gov_attr_set     attr_set;
20         unsigned int            rate_limit_us;
21 };
22
23 struct sugov_policy {
24         struct cpufreq_policy   *policy;
25
26         struct sugov_tunables   *tunables;
27         struct list_head        tunables_hook;
28
29         raw_spinlock_t          update_lock;    /* For shared policies */
30         u64                     last_freq_update_time;
31         s64                     freq_update_delay_ns;
32         unsigned int            next_freq;
33         unsigned int            cached_raw_freq;
34
35         /* The next fields are only needed if fast switch cannot be used: */
36         struct                  irq_work irq_work;
37         struct                  kthread_work work;
38         struct                  mutex work_lock;
39         struct                  kthread_worker worker;
40         struct task_struct      *thread;
41         bool                    work_in_progress;
42
43         bool                    limits_changed;
44         bool                    need_freq_update;
45 };
46
47 struct sugov_cpu {
48         struct update_util_data update_util;
49         struct sugov_policy     *sg_policy;
50         unsigned int            cpu;
51
52         bool                    iowait_boost_pending;
53         unsigned int            iowait_boost;
54         u64                     last_update;
55
56         unsigned long           bw_dl;
57         unsigned long           max;
58
59         /* The field below is for single-CPU policies only: */
60 #ifdef CONFIG_NO_HZ_COMMON
61         unsigned long           saved_idle_calls;
62 #endif
63 };
64
65 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
66
67 /************************ Governor internals ***********************/
68
69 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
70 {
71         s64 delta_ns;
72
73         /*
74          * Since cpufreq_update_util() is called with rq->lock held for
75          * the @target_cpu, our per-CPU data is fully serialized.
76          *
77          * However, drivers cannot in general deal with cross-CPU
78          * requests, so while get_next_freq() will work, our
79          * sugov_update_commit() call may not for the fast switching platforms.
80          *
81          * Hence stop here for remote requests if they aren't supported
82          * by the hardware, as calculating the frequency is pointless if
83          * we cannot in fact act on it.
84          *
85          * This is needed on the slow switching platforms too to prevent CPUs
86          * going offline from leaving stale IRQ work items behind.
87          */
88         if (!cpufreq_this_cpu_can_update(sg_policy->policy))
89                 return false;
90
91         if (unlikely(sg_policy->limits_changed)) {
92                 sg_policy->limits_changed = false;
93                 sg_policy->need_freq_update = true;
94                 return true;
95         }
96
97         delta_ns = time - sg_policy->last_freq_update_time;
98
99         return delta_ns >= sg_policy->freq_update_delay_ns;
100 }
101
102 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
103                                    unsigned int next_freq)
104 {
105         if (sg_policy->next_freq == next_freq &&
106             !cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS))
107                 return false;
108
109         sg_policy->next_freq = next_freq;
110         sg_policy->last_freq_update_time = time;
111
112         return true;
113 }
114
115 static void sugov_fast_switch(struct sugov_policy *sg_policy, u64 time,
116                               unsigned int next_freq)
117 {
118         if (sugov_update_next_freq(sg_policy, time, next_freq))
119                 cpufreq_driver_fast_switch(sg_policy->policy, next_freq);
120 }
121
122 static void sugov_deferred_update(struct sugov_policy *sg_policy, u64 time,
123                                   unsigned int next_freq)
124 {
125         if (!sugov_update_next_freq(sg_policy, time, next_freq))
126                 return;
127
128         if (!sg_policy->work_in_progress) {
129                 sg_policy->work_in_progress = true;
130                 irq_work_queue(&sg_policy->irq_work);
131         }
132 }
133
134 /**
135  * get_next_freq - Compute a new frequency for a given cpufreq policy.
136  * @sg_policy: schedutil policy object to compute the new frequency for.
137  * @util: Current CPU utilization.
138  * @max: CPU capacity.
139  *
140  * If the utilization is frequency-invariant, choose the new frequency to be
141  * proportional to it, that is
142  *
143  * next_freq = C * max_freq * util / max
144  *
145  * Otherwise, approximate the would-be frequency-invariant utilization by
146  * util_raw * (curr_freq / max_freq) which leads to
147  *
148  * next_freq = C * curr_freq * util_raw / max
149  *
150  * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
151  *
152  * The lowest driver-supported frequency which is equal or greater than the raw
153  * next_freq (as calculated above) is returned, subject to policy min/max and
154  * cpufreq driver limitations.
155  */
156 static unsigned int get_next_freq(struct sugov_policy *sg_policy,
157                                   unsigned long util, unsigned long max)
158 {
159         struct cpufreq_policy *policy = sg_policy->policy;
160         unsigned int freq = arch_scale_freq_invariant() ?
161                                 policy->cpuinfo.max_freq : policy->cur;
162
163         freq = map_util_freq(util, freq, max);
164
165         if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update &&
166             !cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS))
167                 return sg_policy->next_freq;
168
169         sg_policy->need_freq_update = false;
170         sg_policy->cached_raw_freq = freq;
171         return cpufreq_driver_resolve_freq(policy, freq);
172 }
173
174 /*
175  * This function computes an effective utilization for the given CPU, to be
176  * used for frequency selection given the linear relation: f = u * f_max.
177  *
178  * The scheduler tracks the following metrics:
179  *
180  *   cpu_util_{cfs,rt,dl,irq}()
181  *   cpu_bw_dl()
182  *
183  * Where the cfs,rt and dl util numbers are tracked with the same metric and
184  * synchronized windows and are thus directly comparable.
185  *
186  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
187  * which excludes things like IRQ and steal-time. These latter are then accrued
188  * in the irq utilization.
189  *
190  * The DL bandwidth number otoh is not a measured metric but a value computed
191  * based on the task model parameters and gives the minimal utilization
192  * required to meet deadlines.
193  */
194 unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
195                                  unsigned long max, enum schedutil_type type,
196                                  struct task_struct *p)
197 {
198         unsigned long dl_util, util, irq;
199         struct rq *rq = cpu_rq(cpu);
200
201         if (!uclamp_is_used() &&
202             type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
203                 return max;
204         }
205
206         /*
207          * Early check to see if IRQ/steal time saturates the CPU, can be
208          * because of inaccuracies in how we track these -- see
209          * update_irq_load_avg().
210          */
211         irq = cpu_util_irq(rq);
212         if (unlikely(irq >= max))
213                 return max;
214
215         /*
216          * Because the time spend on RT/DL tasks is visible as 'lost' time to
217          * CFS tasks and we use the same metric to track the effective
218          * utilization (PELT windows are synchronized) we can directly add them
219          * to obtain the CPU's actual utilization.
220          *
221          * CFS and RT utilization can be boosted or capped, depending on
222          * utilization clamp constraints requested by currently RUNNABLE
223          * tasks.
224          * When there are no CFS RUNNABLE tasks, clamps are released and
225          * frequency will be gracefully reduced with the utilization decay.
226          */
227         util = util_cfs + cpu_util_rt(rq);
228         if (type == FREQUENCY_UTIL)
229                 util = uclamp_rq_util_with(rq, util, p);
230
231         dl_util = cpu_util_dl(rq);
232
233         /*
234          * For frequency selection we do not make cpu_util_dl() a permanent part
235          * of this sum because we want to use cpu_bw_dl() later on, but we need
236          * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
237          * that we select f_max when there is no idle time.
238          *
239          * NOTE: numerical errors or stop class might cause us to not quite hit
240          * saturation when we should -- something for later.
241          */
242         if (util + dl_util >= max)
243                 return max;
244
245         /*
246          * OTOH, for energy computation we need the estimated running time, so
247          * include util_dl and ignore dl_bw.
248          */
249         if (type == ENERGY_UTIL)
250                 util += dl_util;
251
252         /*
253          * There is still idle time; further improve the number by using the
254          * irq metric. Because IRQ/steal time is hidden from the task clock we
255          * need to scale the task numbers:
256          *
257          *              max - irq
258          *   U' = irq + --------- * U
259          *                 max
260          */
261         util = scale_irq_capacity(util, irq, max);
262         util += irq;
263
264         /*
265          * Bandwidth required by DEADLINE must always be granted while, for
266          * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
267          * to gracefully reduce the frequency when no tasks show up for longer
268          * periods of time.
269          *
270          * Ideally we would like to set bw_dl as min/guaranteed freq and util +
271          * bw_dl as requested freq. However, cpufreq is not yet ready for such
272          * an interface. So, we only do the latter for now.
273          */
274         if (type == FREQUENCY_UTIL)
275                 util += cpu_bw_dl(rq);
276
277         return min(max, util);
278 }
279
280 static unsigned long sugov_get_util(struct sugov_cpu *sg_cpu)
281 {
282         struct rq *rq = cpu_rq(sg_cpu->cpu);
283         unsigned long util = cpu_util_cfs(rq);
284         unsigned long max = arch_scale_cpu_capacity(sg_cpu->cpu);
285
286         sg_cpu->max = max;
287         sg_cpu->bw_dl = cpu_bw_dl(rq);
288
289         return schedutil_cpu_util(sg_cpu->cpu, util, max, FREQUENCY_UTIL, NULL);
290 }
291
292 /**
293  * sugov_iowait_reset() - Reset the IO boost status of a CPU.
294  * @sg_cpu: the sugov data for the CPU to boost
295  * @time: the update time from the caller
296  * @set_iowait_boost: true if an IO boost has been requested
297  *
298  * The IO wait boost of a task is disabled after a tick since the last update
299  * of a CPU. If a new IO wait boost is requested after more then a tick, then
300  * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
301  * efficiency by ignoring sporadic wakeups from IO.
302  */
303 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
304                                bool set_iowait_boost)
305 {
306         s64 delta_ns = time - sg_cpu->last_update;
307
308         /* Reset boost only if a tick has elapsed since last request */
309         if (delta_ns <= TICK_NSEC)
310                 return false;
311
312         sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
313         sg_cpu->iowait_boost_pending = set_iowait_boost;
314
315         return true;
316 }
317
318 /**
319  * sugov_iowait_boost() - Updates the IO boost status of a CPU.
320  * @sg_cpu: the sugov data for the CPU to boost
321  * @time: the update time from the caller
322  * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
323  *
324  * Each time a task wakes up after an IO operation, the CPU utilization can be
325  * boosted to a certain utilization which doubles at each "frequent and
326  * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
327  * of the maximum OPP.
328  *
329  * To keep doubling, an IO boost has to be requested at least once per tick,
330  * otherwise we restart from the utilization of the minimum OPP.
331  */
332 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
333                                unsigned int flags)
334 {
335         bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
336
337         /* Reset boost if the CPU appears to have been idle enough */
338         if (sg_cpu->iowait_boost &&
339             sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
340                 return;
341
342         /* Boost only tasks waking up after IO */
343         if (!set_iowait_boost)
344                 return;
345
346         /* Ensure boost doubles only one time at each request */
347         if (sg_cpu->iowait_boost_pending)
348                 return;
349         sg_cpu->iowait_boost_pending = true;
350
351         /* Double the boost at each request */
352         if (sg_cpu->iowait_boost) {
353                 sg_cpu->iowait_boost =
354                         min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
355                 return;
356         }
357
358         /* First wakeup after IO: start with minimum boost */
359         sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
360 }
361
362 /**
363  * sugov_iowait_apply() - Apply the IO boost to a CPU.
364  * @sg_cpu: the sugov data for the cpu to boost
365  * @time: the update time from the caller
366  * @util: the utilization to (eventually) boost
367  * @max: the maximum value the utilization can be boosted to
368  *
369  * A CPU running a task which woken up after an IO operation can have its
370  * utilization boosted to speed up the completion of those IO operations.
371  * The IO boost value is increased each time a task wakes up from IO, in
372  * sugov_iowait_apply(), and it's instead decreased by this function,
373  * each time an increase has not been requested (!iowait_boost_pending).
374  *
375  * A CPU which also appears to have been idle for at least one tick has also
376  * its IO boost utilization reset.
377  *
378  * This mechanism is designed to boost high frequently IO waiting tasks, while
379  * being more conservative on tasks which does sporadic IO operations.
380  */
381 static unsigned long sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time,
382                                         unsigned long util, unsigned long max)
383 {
384         unsigned long boost;
385
386         /* No boost currently required */
387         if (!sg_cpu->iowait_boost)
388                 return util;
389
390         /* Reset boost if the CPU appears to have been idle enough */
391         if (sugov_iowait_reset(sg_cpu, time, false))
392                 return util;
393
394         if (!sg_cpu->iowait_boost_pending) {
395                 /*
396                  * No boost pending; reduce the boost value.
397                  */
398                 sg_cpu->iowait_boost >>= 1;
399                 if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
400                         sg_cpu->iowait_boost = 0;
401                         return util;
402                 }
403         }
404
405         sg_cpu->iowait_boost_pending = false;
406
407         /*
408          * @util is already in capacity scale; convert iowait_boost
409          * into the same scale so we can compare.
410          */
411         boost = (sg_cpu->iowait_boost * max) >> SCHED_CAPACITY_SHIFT;
412         return max(boost, util);
413 }
414
415 #ifdef CONFIG_NO_HZ_COMMON
416 static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
417 {
418         unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
419         bool ret = idle_calls == sg_cpu->saved_idle_calls;
420
421         sg_cpu->saved_idle_calls = idle_calls;
422         return ret;
423 }
424 #else
425 static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
426 #endif /* CONFIG_NO_HZ_COMMON */
427
428 /*
429  * Make sugov_should_update_freq() ignore the rate limit when DL
430  * has increased the utilization.
431  */
432 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu, struct sugov_policy *sg_policy)
433 {
434         if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl)
435                 sg_policy->limits_changed = true;
436 }
437
438 static void sugov_update_single(struct update_util_data *hook, u64 time,
439                                 unsigned int flags)
440 {
441         struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
442         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
443         unsigned long util, max;
444         unsigned int next_f;
445         bool busy;
446         unsigned int cached_freq = sg_policy->cached_raw_freq;
447
448         sugov_iowait_boost(sg_cpu, time, flags);
449         sg_cpu->last_update = time;
450
451         ignore_dl_rate_limit(sg_cpu, sg_policy);
452
453         if (!sugov_should_update_freq(sg_policy, time))
454                 return;
455
456         /* Limits may have changed, don't skip frequency update */
457         busy = !sg_policy->need_freq_update && sugov_cpu_is_busy(sg_cpu);
458
459         util = sugov_get_util(sg_cpu);
460         max = sg_cpu->max;
461         util = sugov_iowait_apply(sg_cpu, time, util, max);
462         next_f = get_next_freq(sg_policy, util, max);
463         /*
464          * Do not reduce the frequency if the CPU has not been idle
465          * recently, as the reduction is likely to be premature then.
466          */
467         if (busy && next_f < sg_policy->next_freq) {
468                 next_f = sg_policy->next_freq;
469
470                 /* Restore cached freq as next_freq has changed */
471                 sg_policy->cached_raw_freq = cached_freq;
472         }
473
474         /*
475          * This code runs under rq->lock for the target CPU, so it won't run
476          * concurrently on two different CPUs for the same target and it is not
477          * necessary to acquire the lock in the fast switch case.
478          */
479         if (sg_policy->policy->fast_switch_enabled) {
480                 sugov_fast_switch(sg_policy, time, next_f);
481         } else {
482                 raw_spin_lock(&sg_policy->update_lock);
483                 sugov_deferred_update(sg_policy, time, next_f);
484                 raw_spin_unlock(&sg_policy->update_lock);
485         }
486 }
487
488 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
489 {
490         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
491         struct cpufreq_policy *policy = sg_policy->policy;
492         unsigned long util = 0, max = 1;
493         unsigned int j;
494
495         for_each_cpu(j, policy->cpus) {
496                 struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
497                 unsigned long j_util, j_max;
498
499                 j_util = sugov_get_util(j_sg_cpu);
500                 j_max = j_sg_cpu->max;
501                 j_util = sugov_iowait_apply(j_sg_cpu, time, j_util, j_max);
502
503                 if (j_util * max > j_max * util) {
504                         util = j_util;
505                         max = j_max;
506                 }
507         }
508
509         return get_next_freq(sg_policy, util, max);
510 }
511
512 static void
513 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
514 {
515         struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
516         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
517         unsigned int next_f;
518
519         raw_spin_lock(&sg_policy->update_lock);
520
521         sugov_iowait_boost(sg_cpu, time, flags);
522         sg_cpu->last_update = time;
523
524         ignore_dl_rate_limit(sg_cpu, sg_policy);
525
526         if (sugov_should_update_freq(sg_policy, time)) {
527                 next_f = sugov_next_freq_shared(sg_cpu, time);
528
529                 if (sg_policy->policy->fast_switch_enabled)
530                         sugov_fast_switch(sg_policy, time, next_f);
531                 else
532                         sugov_deferred_update(sg_policy, time, next_f);
533         }
534
535         raw_spin_unlock(&sg_policy->update_lock);
536 }
537
538 static void sugov_work(struct kthread_work *work)
539 {
540         struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
541         unsigned int freq;
542         unsigned long flags;
543
544         /*
545          * Hold sg_policy->update_lock shortly to handle the case where:
546          * incase sg_policy->next_freq is read here, and then updated by
547          * sugov_deferred_update() just before work_in_progress is set to false
548          * here, we may miss queueing the new update.
549          *
550          * Note: If a work was queued after the update_lock is released,
551          * sugov_work() will just be called again by kthread_work code; and the
552          * request will be proceed before the sugov thread sleeps.
553          */
554         raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
555         freq = sg_policy->next_freq;
556         sg_policy->work_in_progress = false;
557         raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
558
559         mutex_lock(&sg_policy->work_lock);
560         __cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
561         mutex_unlock(&sg_policy->work_lock);
562 }
563
564 static void sugov_irq_work(struct irq_work *irq_work)
565 {
566         struct sugov_policy *sg_policy;
567
568         sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
569
570         kthread_queue_work(&sg_policy->worker, &sg_policy->work);
571 }
572
573 /************************** sysfs interface ************************/
574
575 static struct sugov_tunables *global_tunables;
576 static DEFINE_MUTEX(global_tunables_lock);
577
578 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
579 {
580         return container_of(attr_set, struct sugov_tunables, attr_set);
581 }
582
583 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
584 {
585         struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
586
587         return sprintf(buf, "%u\n", tunables->rate_limit_us);
588 }
589
590 static ssize_t
591 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
592 {
593         struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
594         struct sugov_policy *sg_policy;
595         unsigned int rate_limit_us;
596
597         if (kstrtouint(buf, 10, &rate_limit_us))
598                 return -EINVAL;
599
600         tunables->rate_limit_us = rate_limit_us;
601
602         list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
603                 sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
604
605         return count;
606 }
607
608 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
609
610 static struct attribute *sugov_attrs[] = {
611         &rate_limit_us.attr,
612         NULL
613 };
614 ATTRIBUTE_GROUPS(sugov);
615
616 static struct kobj_type sugov_tunables_ktype = {
617         .default_groups = sugov_groups,
618         .sysfs_ops = &governor_sysfs_ops,
619 };
620
621 /********************** cpufreq governor interface *********************/
622
623 struct cpufreq_governor schedutil_gov;
624
625 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
626 {
627         struct sugov_policy *sg_policy;
628
629         sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
630         if (!sg_policy)
631                 return NULL;
632
633         sg_policy->policy = policy;
634         raw_spin_lock_init(&sg_policy->update_lock);
635         return sg_policy;
636 }
637
638 static void sugov_policy_free(struct sugov_policy *sg_policy)
639 {
640         kfree(sg_policy);
641 }
642
643 static int sugov_kthread_create(struct sugov_policy *sg_policy)
644 {
645         struct task_struct *thread;
646         struct sched_attr attr = {
647                 .size           = sizeof(struct sched_attr),
648                 .sched_policy   = SCHED_DEADLINE,
649                 .sched_flags    = SCHED_FLAG_SUGOV,
650                 .sched_nice     = 0,
651                 .sched_priority = 0,
652                 /*
653                  * Fake (unused) bandwidth; workaround to "fix"
654                  * priority inheritance.
655                  */
656                 .sched_runtime  =  1000000,
657                 .sched_deadline = 10000000,
658                 .sched_period   = 10000000,
659         };
660         struct cpufreq_policy *policy = sg_policy->policy;
661         int ret;
662
663         /* kthread only required for slow path */
664         if (policy->fast_switch_enabled)
665                 return 0;
666
667         kthread_init_work(&sg_policy->work, sugov_work);
668         kthread_init_worker(&sg_policy->worker);
669         thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
670                                 "sugov:%d",
671                                 cpumask_first(policy->related_cpus));
672         if (IS_ERR(thread)) {
673                 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
674                 return PTR_ERR(thread);
675         }
676
677         ret = sched_setattr_nocheck(thread, &attr);
678         if (ret) {
679                 kthread_stop(thread);
680                 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
681                 return ret;
682         }
683
684         sg_policy->thread = thread;
685         kthread_bind_mask(thread, policy->related_cpus);
686         init_irq_work(&sg_policy->irq_work, sugov_irq_work);
687         mutex_init(&sg_policy->work_lock);
688
689         wake_up_process(thread);
690
691         return 0;
692 }
693
694 static void sugov_kthread_stop(struct sugov_policy *sg_policy)
695 {
696         /* kthread only required for slow path */
697         if (sg_policy->policy->fast_switch_enabled)
698                 return;
699
700         kthread_flush_worker(&sg_policy->worker);
701         kthread_stop(sg_policy->thread);
702         mutex_destroy(&sg_policy->work_lock);
703 }
704
705 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
706 {
707         struct sugov_tunables *tunables;
708
709         tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
710         if (tunables) {
711                 gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
712                 if (!have_governor_per_policy())
713                         global_tunables = tunables;
714         }
715         return tunables;
716 }
717
718 static void sugov_tunables_free(struct sugov_tunables *tunables)
719 {
720         if (!have_governor_per_policy())
721                 global_tunables = NULL;
722
723         kfree(tunables);
724 }
725
726 static int sugov_init(struct cpufreq_policy *policy)
727 {
728         struct sugov_policy *sg_policy;
729         struct sugov_tunables *tunables;
730         int ret = 0;
731
732         /* State should be equivalent to EXIT */
733         if (policy->governor_data)
734                 return -EBUSY;
735
736         cpufreq_enable_fast_switch(policy);
737
738         sg_policy = sugov_policy_alloc(policy);
739         if (!sg_policy) {
740                 ret = -ENOMEM;
741                 goto disable_fast_switch;
742         }
743
744         ret = sugov_kthread_create(sg_policy);
745         if (ret)
746                 goto free_sg_policy;
747
748         mutex_lock(&global_tunables_lock);
749
750         if (global_tunables) {
751                 if (WARN_ON(have_governor_per_policy())) {
752                         ret = -EINVAL;
753                         goto stop_kthread;
754                 }
755                 policy->governor_data = sg_policy;
756                 sg_policy->tunables = global_tunables;
757
758                 gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
759                 goto out;
760         }
761
762         tunables = sugov_tunables_alloc(sg_policy);
763         if (!tunables) {
764                 ret = -ENOMEM;
765                 goto stop_kthread;
766         }
767
768         tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
769
770         policy->governor_data = sg_policy;
771         sg_policy->tunables = tunables;
772
773         ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
774                                    get_governor_parent_kobj(policy), "%s",
775                                    schedutil_gov.name);
776         if (ret)
777                 goto fail;
778
779 out:
780         mutex_unlock(&global_tunables_lock);
781         return 0;
782
783 fail:
784         kobject_put(&tunables->attr_set.kobj);
785         policy->governor_data = NULL;
786         sugov_tunables_free(tunables);
787
788 stop_kthread:
789         sugov_kthread_stop(sg_policy);
790         mutex_unlock(&global_tunables_lock);
791
792 free_sg_policy:
793         sugov_policy_free(sg_policy);
794
795 disable_fast_switch:
796         cpufreq_disable_fast_switch(policy);
797
798         pr_err("initialization failed (error %d)\n", ret);
799         return ret;
800 }
801
802 static void sugov_exit(struct cpufreq_policy *policy)
803 {
804         struct sugov_policy *sg_policy = policy->governor_data;
805         struct sugov_tunables *tunables = sg_policy->tunables;
806         unsigned int count;
807
808         mutex_lock(&global_tunables_lock);
809
810         count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
811         policy->governor_data = NULL;
812         if (!count)
813                 sugov_tunables_free(tunables);
814
815         mutex_unlock(&global_tunables_lock);
816
817         sugov_kthread_stop(sg_policy);
818         sugov_policy_free(sg_policy);
819         cpufreq_disable_fast_switch(policy);
820 }
821
822 static int sugov_start(struct cpufreq_policy *policy)
823 {
824         struct sugov_policy *sg_policy = policy->governor_data;
825         unsigned int cpu;
826
827         sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
828         sg_policy->last_freq_update_time        = 0;
829         sg_policy->next_freq                    = 0;
830         sg_policy->work_in_progress             = false;
831         sg_policy->limits_changed               = false;
832         sg_policy->need_freq_update             = false;
833         sg_policy->cached_raw_freq              = 0;
834
835         for_each_cpu(cpu, policy->cpus) {
836                 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
837
838                 memset(sg_cpu, 0, sizeof(*sg_cpu));
839                 sg_cpu->cpu                     = cpu;
840                 sg_cpu->sg_policy               = sg_policy;
841         }
842
843         for_each_cpu(cpu, policy->cpus) {
844                 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
845
846                 cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util,
847                                              policy_is_shared(policy) ?
848                                                         sugov_update_shared :
849                                                         sugov_update_single);
850         }
851         return 0;
852 }
853
854 static void sugov_stop(struct cpufreq_policy *policy)
855 {
856         struct sugov_policy *sg_policy = policy->governor_data;
857         unsigned int cpu;
858
859         for_each_cpu(cpu, policy->cpus)
860                 cpufreq_remove_update_util_hook(cpu);
861
862         synchronize_rcu();
863
864         if (!policy->fast_switch_enabled) {
865                 irq_work_sync(&sg_policy->irq_work);
866                 kthread_cancel_work_sync(&sg_policy->work);
867         }
868 }
869
870 static void sugov_limits(struct cpufreq_policy *policy)
871 {
872         struct sugov_policy *sg_policy = policy->governor_data;
873
874         if (!policy->fast_switch_enabled) {
875                 mutex_lock(&sg_policy->work_lock);
876                 cpufreq_policy_apply_limits(policy);
877                 mutex_unlock(&sg_policy->work_lock);
878         }
879
880         sg_policy->limits_changed = true;
881 }
882
883 struct cpufreq_governor schedutil_gov = {
884         .name                   = "schedutil",
885         .owner                  = THIS_MODULE,
886         .dynamic_switching      = true,
887         .init                   = sugov_init,
888         .exit                   = sugov_exit,
889         .start                  = sugov_start,
890         .stop                   = sugov_stop,
891         .limits                 = sugov_limits,
892 };
893
894 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
895 struct cpufreq_governor *cpufreq_default_governor(void)
896 {
897         return &schedutil_gov;
898 }
899 #endif
900
901 cpufreq_governor_init(schedutil_gov);
902
903 #ifdef CONFIG_ENERGY_MODEL
904 extern bool sched_energy_update;
905 extern struct mutex sched_energy_mutex;
906
907 static void rebuild_sd_workfn(struct work_struct *work)
908 {
909         mutex_lock(&sched_energy_mutex);
910         sched_energy_update = true;
911         rebuild_sched_domains();
912         sched_energy_update = false;
913         mutex_unlock(&sched_energy_mutex);
914 }
915 static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
916
917 /*
918  * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
919  * on governor changes to make sure the scheduler knows about it.
920  */
921 void sched_cpufreq_governor_change(struct cpufreq_policy *policy,
922                                   struct cpufreq_governor *old_gov)
923 {
924         if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) {
925                 /*
926                  * When called from the cpufreq_register_driver() path, the
927                  * cpu_hotplug_lock is already held, so use a work item to
928                  * avoid nested locking in rebuild_sched_domains().
929                  */
930                 schedule_work(&rebuild_sd_work);
931         }
932
933 }
934 #endif