[PATCH] sched: remove degenerate domains
[linux-2.6-microblaze.git] / kernel / sched.c
1 /*
2  *  kernel/sched.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *              make semaphores SMP safe
10  *  1998-11-19  Implemented schedule_timeout() and related stuff
11  *              by Andrea Arcangeli
12  *  2002-01-04  New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *              hybrid priority-list and round-robin design with
14  *              an array-switch method of distributing timeslices
15  *              and per-CPU runqueues.  Cleanups and useful suggestions
16  *              by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03  Interactivity tuning by Con Kolivas.
18  *  2004-04-02  Scheduler domains code by Nick Piggin
19  */
20
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/completion.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/security.h>
33 #include <linux/notifier.h>
34 #include <linux/profile.h>
35 #include <linux/suspend.h>
36 #include <linux/blkdev.h>
37 #include <linux/delay.h>
38 #include <linux/smp.h>
39 #include <linux/threads.h>
40 #include <linux/timer.h>
41 #include <linux/rcupdate.h>
42 #include <linux/cpu.h>
43 #include <linux/cpuset.h>
44 #include <linux/percpu.h>
45 #include <linux/kthread.h>
46 #include <linux/seq_file.h>
47 #include <linux/syscalls.h>
48 #include <linux/times.h>
49 #include <linux/acct.h>
50 #include <asm/tlb.h>
51
52 #include <asm/unistd.h>
53
54 /*
55  * Convert user-nice values [ -20 ... 0 ... 19 ]
56  * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
57  * and back.
58  */
59 #define NICE_TO_PRIO(nice)      (MAX_RT_PRIO + (nice) + 20)
60 #define PRIO_TO_NICE(prio)      ((prio) - MAX_RT_PRIO - 20)
61 #define TASK_NICE(p)            PRIO_TO_NICE((p)->static_prio)
62
63 /*
64  * 'User priority' is the nice value converted to something we
65  * can work with better when scaling various scheduler parameters,
66  * it's a [ 0 ... 39 ] range.
67  */
68 #define USER_PRIO(p)            ((p)-MAX_RT_PRIO)
69 #define TASK_USER_PRIO(p)       USER_PRIO((p)->static_prio)
70 #define MAX_USER_PRIO           (USER_PRIO(MAX_PRIO))
71
72 /*
73  * Some helpers for converting nanosecond timing to jiffy resolution
74  */
75 #define NS_TO_JIFFIES(TIME)     ((TIME) / (1000000000 / HZ))
76 #define JIFFIES_TO_NS(TIME)     ((TIME) * (1000000000 / HZ))
77
78 /*
79  * These are the 'tuning knobs' of the scheduler:
80  *
81  * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
82  * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
83  * Timeslices get refilled after they expire.
84  */
85 #define MIN_TIMESLICE           max(5 * HZ / 1000, 1)
86 #define DEF_TIMESLICE           (100 * HZ / 1000)
87 #define ON_RUNQUEUE_WEIGHT       30
88 #define CHILD_PENALTY            95
89 #define PARENT_PENALTY          100
90 #define EXIT_WEIGHT               3
91 #define PRIO_BONUS_RATIO         25
92 #define MAX_BONUS               (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
93 #define INTERACTIVE_DELTA         2
94 #define MAX_SLEEP_AVG           (DEF_TIMESLICE * MAX_BONUS)
95 #define STARVATION_LIMIT        (MAX_SLEEP_AVG)
96 #define NS_MAX_SLEEP_AVG        (JIFFIES_TO_NS(MAX_SLEEP_AVG))
97
98 /*
99  * If a task is 'interactive' then we reinsert it in the active
100  * array after it has expired its current timeslice. (it will not
101  * continue to run immediately, it will still roundrobin with
102  * other interactive tasks.)
103  *
104  * This part scales the interactivity limit depending on niceness.
105  *
106  * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
107  * Here are a few examples of different nice levels:
108  *
109  *  TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
110  *  TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
111  *  TASK_INTERACTIVE(  0): [1,1,1,1,0,0,0,0,0,0,0]
112  *  TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
113  *  TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
114  *
115  * (the X axis represents the possible -5 ... 0 ... +5 dynamic
116  *  priority range a task can explore, a value of '1' means the
117  *  task is rated interactive.)
118  *
119  * Ie. nice +19 tasks can never get 'interactive' enough to be
120  * reinserted into the active array. And only heavily CPU-hog nice -20
121  * tasks will be expired. Default nice 0 tasks are somewhere between,
122  * it takes some effort for them to get interactive, but it's not
123  * too hard.
124  */
125
126 #define CURRENT_BONUS(p) \
127         (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
128                 MAX_SLEEP_AVG)
129
130 #define GRANULARITY     (10 * HZ / 1000 ? : 1)
131
132 #ifdef CONFIG_SMP
133 #define TIMESLICE_GRANULARITY(p)        (GRANULARITY * \
134                 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
135                         num_online_cpus())
136 #else
137 #define TIMESLICE_GRANULARITY(p)        (GRANULARITY * \
138                 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
139 #endif
140
141 #define SCALE(v1,v1_max,v2_max) \
142         (v1) * (v2_max) / (v1_max)
143
144 #define DELTA(p) \
145         (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
146
147 #define TASK_INTERACTIVE(p) \
148         ((p)->prio <= (p)->static_prio - DELTA(p))
149
150 #define INTERACTIVE_SLEEP(p) \
151         (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
152                 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
153
154 #define TASK_PREEMPTS_CURR(p, rq) \
155         ((p)->prio < (rq)->curr->prio)
156
157 /*
158  * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
159  * to time slice values: [800ms ... 100ms ... 5ms]
160  *
161  * The higher a thread's priority, the bigger timeslices
162  * it gets during one round of execution. But even the lowest
163  * priority thread gets MIN_TIMESLICE worth of execution time.
164  */
165
166 #define SCALE_PRIO(x, prio) \
167         max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
168
169 static unsigned int task_timeslice(task_t *p)
170 {
171         if (p->static_prio < NICE_TO_PRIO(0))
172                 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
173         else
174                 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
175 }
176 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran)       \
177                                 < (long long) (sd)->cache_hot_time)
178
179 /*
180  * These are the runqueue data structures:
181  */
182
183 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
184
185 typedef struct runqueue runqueue_t;
186
187 struct prio_array {
188         unsigned int nr_active;
189         unsigned long bitmap[BITMAP_SIZE];
190         struct list_head queue[MAX_PRIO];
191 };
192
193 /*
194  * This is the main, per-CPU runqueue data structure.
195  *
196  * Locking rule: those places that want to lock multiple runqueues
197  * (such as the load balancing or the thread migration code), lock
198  * acquire operations must be ordered by ascending &runqueue.
199  */
200 struct runqueue {
201         spinlock_t lock;
202
203         /*
204          * nr_running and cpu_load should be in the same cacheline because
205          * remote CPUs use both these fields when doing load calculation.
206          */
207         unsigned long nr_running;
208 #ifdef CONFIG_SMP
209         unsigned long cpu_load[3];
210 #endif
211         unsigned long long nr_switches;
212
213         /*
214          * This is part of a global counter where only the total sum
215          * over all CPUs matters. A task can increase this counter on
216          * one CPU and if it got migrated afterwards it may decrease
217          * it on another CPU. Always updated under the runqueue lock:
218          */
219         unsigned long nr_uninterruptible;
220
221         unsigned long expired_timestamp;
222         unsigned long long timestamp_last_tick;
223         task_t *curr, *idle;
224         struct mm_struct *prev_mm;
225         prio_array_t *active, *expired, arrays[2];
226         int best_expired_prio;
227         atomic_t nr_iowait;
228
229 #ifdef CONFIG_SMP
230         struct sched_domain *sd;
231
232         /* For active balancing */
233         int active_balance;
234         int push_cpu;
235
236         task_t *migration_thread;
237         struct list_head migration_queue;
238 #endif
239
240 #ifdef CONFIG_SCHEDSTATS
241         /* latency stats */
242         struct sched_info rq_sched_info;
243
244         /* sys_sched_yield() stats */
245         unsigned long yld_exp_empty;
246         unsigned long yld_act_empty;
247         unsigned long yld_both_empty;
248         unsigned long yld_cnt;
249
250         /* schedule() stats */
251         unsigned long sched_switch;
252         unsigned long sched_cnt;
253         unsigned long sched_goidle;
254
255         /* try_to_wake_up() stats */
256         unsigned long ttwu_cnt;
257         unsigned long ttwu_local;
258 #endif
259 };
260
261 static DEFINE_PER_CPU(struct runqueue, runqueues);
262
263 #define for_each_domain(cpu, domain) \
264         for (domain = cpu_rq(cpu)->sd; domain; domain = domain->parent)
265
266 #define cpu_rq(cpu)             (&per_cpu(runqueues, (cpu)))
267 #define this_rq()               (&__get_cpu_var(runqueues))
268 #define task_rq(p)              cpu_rq(task_cpu(p))
269 #define cpu_curr(cpu)           (cpu_rq(cpu)->curr)
270
271 #ifndef prepare_arch_switch
272 # define prepare_arch_switch(next)      do { } while (0)
273 #endif
274 #ifndef finish_arch_switch
275 # define finish_arch_switch(prev)       do { } while (0)
276 #endif
277
278 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
279 static inline int task_running(runqueue_t *rq, task_t *p)
280 {
281         return rq->curr == p;
282 }
283
284 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
285 {
286 }
287
288 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
289 {
290         spin_unlock_irq(&rq->lock);
291 }
292
293 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
294 static inline int task_running(runqueue_t *rq, task_t *p)
295 {
296 #ifdef CONFIG_SMP
297         return p->oncpu;
298 #else
299         return rq->curr == p;
300 #endif
301 }
302
303 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
304 {
305 #ifdef CONFIG_SMP
306         /*
307          * We can optimise this out completely for !SMP, because the
308          * SMP rebalancing from interrupt is the only thing that cares
309          * here.
310          */
311         next->oncpu = 1;
312 #endif
313 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
314         spin_unlock_irq(&rq->lock);
315 #else
316         spin_unlock(&rq->lock);
317 #endif
318 }
319
320 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
321 {
322 #ifdef CONFIG_SMP
323         /*
324          * After ->oncpu is cleared, the task can be moved to a different CPU.
325          * We must ensure this doesn't happen until the switch is completely
326          * finished.
327          */
328         smp_wmb();
329         prev->oncpu = 0;
330 #endif
331 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
332         local_irq_enable();
333 #endif
334 }
335 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
336
337 /*
338  * task_rq_lock - lock the runqueue a given task resides on and disable
339  * interrupts.  Note the ordering: we can safely lookup the task_rq without
340  * explicitly disabling preemption.
341  */
342 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
343         __acquires(rq->lock)
344 {
345         struct runqueue *rq;
346
347 repeat_lock_task:
348         local_irq_save(*flags);
349         rq = task_rq(p);
350         spin_lock(&rq->lock);
351         if (unlikely(rq != task_rq(p))) {
352                 spin_unlock_irqrestore(&rq->lock, *flags);
353                 goto repeat_lock_task;
354         }
355         return rq;
356 }
357
358 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
359         __releases(rq->lock)
360 {
361         spin_unlock_irqrestore(&rq->lock, *flags);
362 }
363
364 #ifdef CONFIG_SCHEDSTATS
365 /*
366  * bump this up when changing the output format or the meaning of an existing
367  * format, so that tools can adapt (or abort)
368  */
369 #define SCHEDSTAT_VERSION 12
370
371 static int show_schedstat(struct seq_file *seq, void *v)
372 {
373         int cpu;
374
375         seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
376         seq_printf(seq, "timestamp %lu\n", jiffies);
377         for_each_online_cpu(cpu) {
378                 runqueue_t *rq = cpu_rq(cpu);
379 #ifdef CONFIG_SMP
380                 struct sched_domain *sd;
381                 int dcnt = 0;
382 #endif
383
384                 /* runqueue-specific stats */
385                 seq_printf(seq,
386                     "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
387                     cpu, rq->yld_both_empty,
388                     rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
389                     rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
390                     rq->ttwu_cnt, rq->ttwu_local,
391                     rq->rq_sched_info.cpu_time,
392                     rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
393
394                 seq_printf(seq, "\n");
395
396 #ifdef CONFIG_SMP
397                 /* domain-specific stats */
398                 for_each_domain(cpu, sd) {
399                         enum idle_type itype;
400                         char mask_str[NR_CPUS];
401
402                         cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
403                         seq_printf(seq, "domain%d %s", dcnt++, mask_str);
404                         for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
405                                         itype++) {
406                                 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
407                                     sd->lb_cnt[itype],
408                                     sd->lb_balanced[itype],
409                                     sd->lb_failed[itype],
410                                     sd->lb_imbalance[itype],
411                                     sd->lb_gained[itype],
412                                     sd->lb_hot_gained[itype],
413                                     sd->lb_nobusyq[itype],
414                                     sd->lb_nobusyg[itype]);
415                         }
416                         seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
417                             sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
418                             sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
419                             sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
420                             sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
421                 }
422 #endif
423         }
424         return 0;
425 }
426
427 static int schedstat_open(struct inode *inode, struct file *file)
428 {
429         unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
430         char *buf = kmalloc(size, GFP_KERNEL);
431         struct seq_file *m;
432         int res;
433
434         if (!buf)
435                 return -ENOMEM;
436         res = single_open(file, show_schedstat, NULL);
437         if (!res) {
438                 m = file->private_data;
439                 m->buf = buf;
440                 m->size = size;
441         } else
442                 kfree(buf);
443         return res;
444 }
445
446 struct file_operations proc_schedstat_operations = {
447         .open    = schedstat_open,
448         .read    = seq_read,
449         .llseek  = seq_lseek,
450         .release = single_release,
451 };
452
453 # define schedstat_inc(rq, field)       do { (rq)->field++; } while (0)
454 # define schedstat_add(rq, field, amt)  do { (rq)->field += (amt); } while (0)
455 #else /* !CONFIG_SCHEDSTATS */
456 # define schedstat_inc(rq, field)       do { } while (0)
457 # define schedstat_add(rq, field, amt)  do { } while (0)
458 #endif
459
460 /*
461  * rq_lock - lock a given runqueue and disable interrupts.
462  */
463 static inline runqueue_t *this_rq_lock(void)
464         __acquires(rq->lock)
465 {
466         runqueue_t *rq;
467
468         local_irq_disable();
469         rq = this_rq();
470         spin_lock(&rq->lock);
471
472         return rq;
473 }
474
475 #ifdef CONFIG_SCHEDSTATS
476 /*
477  * Called when a process is dequeued from the active array and given
478  * the cpu.  We should note that with the exception of interactive
479  * tasks, the expired queue will become the active queue after the active
480  * queue is empty, without explicitly dequeuing and requeuing tasks in the
481  * expired queue.  (Interactive tasks may be requeued directly to the
482  * active queue, thus delaying tasks in the expired queue from running;
483  * see scheduler_tick()).
484  *
485  * This function is only called from sched_info_arrive(), rather than
486  * dequeue_task(). Even though a task may be queued and dequeued multiple
487  * times as it is shuffled about, we're really interested in knowing how
488  * long it was from the *first* time it was queued to the time that it
489  * finally hit a cpu.
490  */
491 static inline void sched_info_dequeued(task_t *t)
492 {
493         t->sched_info.last_queued = 0;
494 }
495
496 /*
497  * Called when a task finally hits the cpu.  We can now calculate how
498  * long it was waiting to run.  We also note when it began so that we
499  * can keep stats on how long its timeslice is.
500  */
501 static inline void sched_info_arrive(task_t *t)
502 {
503         unsigned long now = jiffies, diff = 0;
504         struct runqueue *rq = task_rq(t);
505
506         if (t->sched_info.last_queued)
507                 diff = now - t->sched_info.last_queued;
508         sched_info_dequeued(t);
509         t->sched_info.run_delay += diff;
510         t->sched_info.last_arrival = now;
511         t->sched_info.pcnt++;
512
513         if (!rq)
514                 return;
515
516         rq->rq_sched_info.run_delay += diff;
517         rq->rq_sched_info.pcnt++;
518 }
519
520 /*
521  * Called when a process is queued into either the active or expired
522  * array.  The time is noted and later used to determine how long we
523  * had to wait for us to reach the cpu.  Since the expired queue will
524  * become the active queue after active queue is empty, without dequeuing
525  * and requeuing any tasks, we are interested in queuing to either. It
526  * is unusual but not impossible for tasks to be dequeued and immediately
527  * requeued in the same or another array: this can happen in sched_yield(),
528  * set_user_nice(), and even load_balance() as it moves tasks from runqueue
529  * to runqueue.
530  *
531  * This function is only called from enqueue_task(), but also only updates
532  * the timestamp if it is already not set.  It's assumed that
533  * sched_info_dequeued() will clear that stamp when appropriate.
534  */
535 static inline void sched_info_queued(task_t *t)
536 {
537         if (!t->sched_info.last_queued)
538                 t->sched_info.last_queued = jiffies;
539 }
540
541 /*
542  * Called when a process ceases being the active-running process, either
543  * voluntarily or involuntarily.  Now we can calculate how long we ran.
544  */
545 static inline void sched_info_depart(task_t *t)
546 {
547         struct runqueue *rq = task_rq(t);
548         unsigned long diff = jiffies - t->sched_info.last_arrival;
549
550         t->sched_info.cpu_time += diff;
551
552         if (rq)
553                 rq->rq_sched_info.cpu_time += diff;
554 }
555
556 /*
557  * Called when tasks are switched involuntarily due, typically, to expiring
558  * their time slice.  (This may also be called when switching to or from
559  * the idle task.)  We are only called when prev != next.
560  */
561 static inline void sched_info_switch(task_t *prev, task_t *next)
562 {
563         struct runqueue *rq = task_rq(prev);
564
565         /*
566          * prev now departs the cpu.  It's not interesting to record
567          * stats about how efficient we were at scheduling the idle
568          * process, however.
569          */
570         if (prev != rq->idle)
571                 sched_info_depart(prev);
572
573         if (next != rq->idle)
574                 sched_info_arrive(next);
575 }
576 #else
577 #define sched_info_queued(t)            do { } while (0)
578 #define sched_info_switch(t, next)      do { } while (0)
579 #endif /* CONFIG_SCHEDSTATS */
580
581 /*
582  * Adding/removing a task to/from a priority array:
583  */
584 static void dequeue_task(struct task_struct *p, prio_array_t *array)
585 {
586         array->nr_active--;
587         list_del(&p->run_list);
588         if (list_empty(array->queue + p->prio))
589                 __clear_bit(p->prio, array->bitmap);
590 }
591
592 static void enqueue_task(struct task_struct *p, prio_array_t *array)
593 {
594         sched_info_queued(p);
595         list_add_tail(&p->run_list, array->queue + p->prio);
596         __set_bit(p->prio, array->bitmap);
597         array->nr_active++;
598         p->array = array;
599 }
600
601 /*
602  * Put task to the end of the run list without the overhead of dequeue
603  * followed by enqueue.
604  */
605 static void requeue_task(struct task_struct *p, prio_array_t *array)
606 {
607         list_move_tail(&p->run_list, array->queue + p->prio);
608 }
609
610 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
611 {
612         list_add(&p->run_list, array->queue + p->prio);
613         __set_bit(p->prio, array->bitmap);
614         array->nr_active++;
615         p->array = array;
616 }
617
618 /*
619  * effective_prio - return the priority that is based on the static
620  * priority but is modified by bonuses/penalties.
621  *
622  * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
623  * into the -5 ... 0 ... +5 bonus/penalty range.
624  *
625  * We use 25% of the full 0...39 priority range so that:
626  *
627  * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
628  * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
629  *
630  * Both properties are important to certain workloads.
631  */
632 static int effective_prio(task_t *p)
633 {
634         int bonus, prio;
635
636         if (rt_task(p))
637                 return p->prio;
638
639         bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
640
641         prio = p->static_prio - bonus;
642         if (prio < MAX_RT_PRIO)
643                 prio = MAX_RT_PRIO;
644         if (prio > MAX_PRIO-1)
645                 prio = MAX_PRIO-1;
646         return prio;
647 }
648
649 /*
650  * __activate_task - move a task to the runqueue.
651  */
652 static inline void __activate_task(task_t *p, runqueue_t *rq)
653 {
654         enqueue_task(p, rq->active);
655         rq->nr_running++;
656 }
657
658 /*
659  * __activate_idle_task - move idle task to the _front_ of runqueue.
660  */
661 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
662 {
663         enqueue_task_head(p, rq->active);
664         rq->nr_running++;
665 }
666
667 static void recalc_task_prio(task_t *p, unsigned long long now)
668 {
669         /* Caller must always ensure 'now >= p->timestamp' */
670         unsigned long long __sleep_time = now - p->timestamp;
671         unsigned long sleep_time;
672
673         if (__sleep_time > NS_MAX_SLEEP_AVG)
674                 sleep_time = NS_MAX_SLEEP_AVG;
675         else
676                 sleep_time = (unsigned long)__sleep_time;
677
678         if (likely(sleep_time > 0)) {
679                 /*
680                  * User tasks that sleep a long time are categorised as
681                  * idle and will get just interactive status to stay active &
682                  * prevent them suddenly becoming cpu hogs and starving
683                  * other processes.
684                  */
685                 if (p->mm && p->activated != -1 &&
686                         sleep_time > INTERACTIVE_SLEEP(p)) {
687                                 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
688                                                 DEF_TIMESLICE);
689                 } else {
690                         /*
691                          * The lower the sleep avg a task has the more
692                          * rapidly it will rise with sleep time.
693                          */
694                         sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
695
696                         /*
697                          * Tasks waking from uninterruptible sleep are
698                          * limited in their sleep_avg rise as they
699                          * are likely to be waiting on I/O
700                          */
701                         if (p->activated == -1 && p->mm) {
702                                 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
703                                         sleep_time = 0;
704                                 else if (p->sleep_avg + sleep_time >=
705                                                 INTERACTIVE_SLEEP(p)) {
706                                         p->sleep_avg = INTERACTIVE_SLEEP(p);
707                                         sleep_time = 0;
708                                 }
709                         }
710
711                         /*
712                          * This code gives a bonus to interactive tasks.
713                          *
714                          * The boost works by updating the 'average sleep time'
715                          * value here, based on ->timestamp. The more time a
716                          * task spends sleeping, the higher the average gets -
717                          * and the higher the priority boost gets as well.
718                          */
719                         p->sleep_avg += sleep_time;
720
721                         if (p->sleep_avg > NS_MAX_SLEEP_AVG)
722                                 p->sleep_avg = NS_MAX_SLEEP_AVG;
723                 }
724         }
725
726         p->prio = effective_prio(p);
727 }
728
729 /*
730  * activate_task - move a task to the runqueue and do priority recalculation
731  *
732  * Update all the scheduling statistics stuff. (sleep average
733  * calculation, priority modifiers, etc.)
734  */
735 static void activate_task(task_t *p, runqueue_t *rq, int local)
736 {
737         unsigned long long now;
738
739         now = sched_clock();
740 #ifdef CONFIG_SMP
741         if (!local) {
742                 /* Compensate for drifting sched_clock */
743                 runqueue_t *this_rq = this_rq();
744                 now = (now - this_rq->timestamp_last_tick)
745                         + rq->timestamp_last_tick;
746         }
747 #endif
748
749         recalc_task_prio(p, now);
750
751         /*
752          * This checks to make sure it's not an uninterruptible task
753          * that is now waking up.
754          */
755         if (!p->activated) {
756                 /*
757                  * Tasks which were woken up by interrupts (ie. hw events)
758                  * are most likely of interactive nature. So we give them
759                  * the credit of extending their sleep time to the period
760                  * of time they spend on the runqueue, waiting for execution
761                  * on a CPU, first time around:
762                  */
763                 if (in_interrupt())
764                         p->activated = 2;
765                 else {
766                         /*
767                          * Normal first-time wakeups get a credit too for
768                          * on-runqueue time, but it will be weighted down:
769                          */
770                         p->activated = 1;
771                 }
772         }
773         p->timestamp = now;
774
775         __activate_task(p, rq);
776 }
777
778 /*
779  * deactivate_task - remove a task from the runqueue.
780  */
781 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
782 {
783         rq->nr_running--;
784         dequeue_task(p, p->array);
785         p->array = NULL;
786 }
787
788 /*
789  * resched_task - mark a task 'to be rescheduled now'.
790  *
791  * On UP this means the setting of the need_resched flag, on SMP it
792  * might also involve a cross-CPU call to trigger the scheduler on
793  * the target CPU.
794  */
795 #ifdef CONFIG_SMP
796 static void resched_task(task_t *p)
797 {
798         int need_resched, nrpolling;
799
800         assert_spin_locked(&task_rq(p)->lock);
801
802         /* minimise the chance of sending an interrupt to poll_idle() */
803         nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
804         need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
805         nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
806
807         if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
808                 smp_send_reschedule(task_cpu(p));
809 }
810 #else
811 static inline void resched_task(task_t *p)
812 {
813         set_tsk_need_resched(p);
814 }
815 #endif
816
817 /**
818  * task_curr - is this task currently executing on a CPU?
819  * @p: the task in question.
820  */
821 inline int task_curr(const task_t *p)
822 {
823         return cpu_curr(task_cpu(p)) == p;
824 }
825
826 #ifdef CONFIG_SMP
827 enum request_type {
828         REQ_MOVE_TASK,
829         REQ_SET_DOMAIN,
830 };
831
832 typedef struct {
833         struct list_head list;
834         enum request_type type;
835
836         /* For REQ_MOVE_TASK */
837         task_t *task;
838         int dest_cpu;
839
840         /* For REQ_SET_DOMAIN */
841         struct sched_domain *sd;
842
843         struct completion done;
844 } migration_req_t;
845
846 /*
847  * The task's runqueue lock must be held.
848  * Returns true if you have to wait for migration thread.
849  */
850 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
851 {
852         runqueue_t *rq = task_rq(p);
853
854         /*
855          * If the task is not on a runqueue (and not running), then
856          * it is sufficient to simply update the task's cpu field.
857          */
858         if (!p->array && !task_running(rq, p)) {
859                 set_task_cpu(p, dest_cpu);
860                 return 0;
861         }
862
863         init_completion(&req->done);
864         req->type = REQ_MOVE_TASK;
865         req->task = p;
866         req->dest_cpu = dest_cpu;
867         list_add(&req->list, &rq->migration_queue);
868         return 1;
869 }
870
871 /*
872  * wait_task_inactive - wait for a thread to unschedule.
873  *
874  * The caller must ensure that the task *will* unschedule sometime soon,
875  * else this function might spin for a *long* time. This function can't
876  * be called with interrupts off, or it may introduce deadlock with
877  * smp_call_function() if an IPI is sent by the same process we are
878  * waiting to become inactive.
879  */
880 void wait_task_inactive(task_t * p)
881 {
882         unsigned long flags;
883         runqueue_t *rq;
884         int preempted;
885
886 repeat:
887         rq = task_rq_lock(p, &flags);
888         /* Must be off runqueue entirely, not preempted. */
889         if (unlikely(p->array || task_running(rq, p))) {
890                 /* If it's preempted, we yield.  It could be a while. */
891                 preempted = !task_running(rq, p);
892                 task_rq_unlock(rq, &flags);
893                 cpu_relax();
894                 if (preempted)
895                         yield();
896                 goto repeat;
897         }
898         task_rq_unlock(rq, &flags);
899 }
900
901 /***
902  * kick_process - kick a running thread to enter/exit the kernel
903  * @p: the to-be-kicked thread
904  *
905  * Cause a process which is running on another CPU to enter
906  * kernel-mode, without any delay. (to get signals handled.)
907  *
908  * NOTE: this function doesnt have to take the runqueue lock,
909  * because all it wants to ensure is that the remote task enters
910  * the kernel. If the IPI races and the task has been migrated
911  * to another CPU then no harm is done and the purpose has been
912  * achieved as well.
913  */
914 void kick_process(task_t *p)
915 {
916         int cpu;
917
918         preempt_disable();
919         cpu = task_cpu(p);
920         if ((cpu != smp_processor_id()) && task_curr(p))
921                 smp_send_reschedule(cpu);
922         preempt_enable();
923 }
924
925 /*
926  * Return a low guess at the load of a migration-source cpu.
927  *
928  * We want to under-estimate the load of migration sources, to
929  * balance conservatively.
930  */
931 static inline unsigned long source_load(int cpu, int type)
932 {
933         runqueue_t *rq = cpu_rq(cpu);
934         unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
935         if (type == 0)
936                 return load_now;
937
938         return min(rq->cpu_load[type-1], load_now);
939 }
940
941 /*
942  * Return a high guess at the load of a migration-target cpu
943  */
944 static inline unsigned long target_load(int cpu, int type)
945 {
946         runqueue_t *rq = cpu_rq(cpu);
947         unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
948         if (type == 0)
949                 return load_now;
950
951         return max(rq->cpu_load[type-1], load_now);
952 }
953
954 /*
955  * find_idlest_group finds and returns the least busy CPU group within the
956  * domain.
957  */
958 static struct sched_group *
959 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
960 {
961         struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
962         unsigned long min_load = ULONG_MAX, this_load = 0;
963         int load_idx = sd->forkexec_idx;
964         int imbalance = 100 + (sd->imbalance_pct-100)/2;
965
966         do {
967                 unsigned long load, avg_load;
968                 int local_group;
969                 int i;
970
971                 local_group = cpu_isset(this_cpu, group->cpumask);
972                 /* XXX: put a cpus allowed check */
973
974                 /* Tally up the load of all CPUs in the group */
975                 avg_load = 0;
976
977                 for_each_cpu_mask(i, group->cpumask) {
978                         /* Bias balancing toward cpus of our domain */
979                         if (local_group)
980                                 load = source_load(i, load_idx);
981                         else
982                                 load = target_load(i, load_idx);
983
984                         avg_load += load;
985                 }
986
987                 /* Adjust by relative CPU power of the group */
988                 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
989
990                 if (local_group) {
991                         this_load = avg_load;
992                         this = group;
993                 } else if (avg_load < min_load) {
994                         min_load = avg_load;
995                         idlest = group;
996                 }
997                 group = group->next;
998         } while (group != sd->groups);
999
1000         if (!idlest || 100*this_load < imbalance*min_load)
1001                 return NULL;
1002         return idlest;
1003 }
1004
1005 /*
1006  * find_idlest_queue - find the idlest runqueue among the cpus in group.
1007  */
1008 static int find_idlest_cpu(struct sched_group *group, int this_cpu)
1009 {
1010         unsigned long load, min_load = ULONG_MAX;
1011         int idlest = -1;
1012         int i;
1013
1014         for_each_cpu_mask(i, group->cpumask) {
1015                 load = source_load(i, 0);
1016
1017                 if (load < min_load || (load == min_load && i == this_cpu)) {
1018                         min_load = load;
1019                         idlest = i;
1020                 }
1021         }
1022
1023         return idlest;
1024 }
1025
1026
1027 #endif
1028
1029 /*
1030  * wake_idle() will wake a task on an idle cpu if task->cpu is
1031  * not idle and an idle cpu is available.  The span of cpus to
1032  * search starts with cpus closest then further out as needed,
1033  * so we always favor a closer, idle cpu.
1034  *
1035  * Returns the CPU we should wake onto.
1036  */
1037 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1038 static int wake_idle(int cpu, task_t *p)
1039 {
1040         cpumask_t tmp;
1041         struct sched_domain *sd;
1042         int i;
1043
1044         if (idle_cpu(cpu))
1045                 return cpu;
1046
1047         for_each_domain(cpu, sd) {
1048                 if (sd->flags & SD_WAKE_IDLE) {
1049                         cpus_and(tmp, sd->span, p->cpus_allowed);
1050                         for_each_cpu_mask(i, tmp) {
1051                                 if (idle_cpu(i))
1052                                         return i;
1053                         }
1054                 }
1055                 else
1056                         break;
1057         }
1058         return cpu;
1059 }
1060 #else
1061 static inline int wake_idle(int cpu, task_t *p)
1062 {
1063         return cpu;
1064 }
1065 #endif
1066
1067 /***
1068  * try_to_wake_up - wake up a thread
1069  * @p: the to-be-woken-up thread
1070  * @state: the mask of task states that can be woken
1071  * @sync: do a synchronous wakeup?
1072  *
1073  * Put it on the run-queue if it's not already there. The "current"
1074  * thread is always on the run-queue (except when the actual
1075  * re-schedule is in progress), and as such you're allowed to do
1076  * the simpler "current->state = TASK_RUNNING" to mark yourself
1077  * runnable without the overhead of this.
1078  *
1079  * returns failure only if the task is already active.
1080  */
1081 static int try_to_wake_up(task_t * p, unsigned int state, int sync)
1082 {
1083         int cpu, this_cpu, success = 0;
1084         unsigned long flags;
1085         long old_state;
1086         runqueue_t *rq;
1087 #ifdef CONFIG_SMP
1088         unsigned long load, this_load;
1089         struct sched_domain *sd, *this_sd = NULL;
1090         int new_cpu;
1091 #endif
1092
1093         rq = task_rq_lock(p, &flags);
1094         old_state = p->state;
1095         if (!(old_state & state))
1096                 goto out;
1097
1098         if (p->array)
1099                 goto out_running;
1100
1101         cpu = task_cpu(p);
1102         this_cpu = smp_processor_id();
1103
1104 #ifdef CONFIG_SMP
1105         if (unlikely(task_running(rq, p)))
1106                 goto out_activate;
1107
1108         new_cpu = cpu;
1109
1110         schedstat_inc(rq, ttwu_cnt);
1111         if (cpu == this_cpu) {
1112                 schedstat_inc(rq, ttwu_local);
1113                 goto out_set_cpu;
1114         }
1115
1116         for_each_domain(this_cpu, sd) {
1117                 if (cpu_isset(cpu, sd->span)) {
1118                         schedstat_inc(sd, ttwu_wake_remote);
1119                         this_sd = sd;
1120                         break;
1121                 }
1122         }
1123
1124         if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1125                 goto out_set_cpu;
1126
1127         /*
1128          * Check for affine wakeup and passive balancing possibilities.
1129          */
1130         if (this_sd) {
1131                 int idx = this_sd->wake_idx;
1132                 unsigned int imbalance;
1133
1134                 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1135
1136                 load = source_load(cpu, idx);
1137                 this_load = target_load(this_cpu, idx);
1138
1139                 new_cpu = this_cpu; /* Wake to this CPU if we can */
1140
1141                 if (this_sd->flags & SD_WAKE_AFFINE) {
1142                         unsigned long tl = this_load;
1143                         /*
1144                          * If sync wakeup then subtract the (maximum possible)
1145                          * effect of the currently running task from the load
1146                          * of the current CPU:
1147                          */
1148                         if (sync)
1149                                 tl -= SCHED_LOAD_SCALE;
1150
1151                         if ((tl <= load &&
1152                                 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1153                                 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1154                                 /*
1155                                  * This domain has SD_WAKE_AFFINE and
1156                                  * p is cache cold in this domain, and
1157                                  * there is no bad imbalance.
1158                                  */
1159                                 schedstat_inc(this_sd, ttwu_move_affine);
1160                                 goto out_set_cpu;
1161                         }
1162                 }
1163
1164                 /*
1165                  * Start passive balancing when half the imbalance_pct
1166                  * limit is reached.
1167                  */
1168                 if (this_sd->flags & SD_WAKE_BALANCE) {
1169                         if (imbalance*this_load <= 100*load) {
1170                                 schedstat_inc(this_sd, ttwu_move_balance);
1171                                 goto out_set_cpu;
1172                         }
1173                 }
1174         }
1175
1176         new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1177 out_set_cpu:
1178         new_cpu = wake_idle(new_cpu, p);
1179         if (new_cpu != cpu) {
1180                 set_task_cpu(p, new_cpu);
1181                 task_rq_unlock(rq, &flags);
1182                 /* might preempt at this point */
1183                 rq = task_rq_lock(p, &flags);
1184                 old_state = p->state;
1185                 if (!(old_state & state))
1186                         goto out;
1187                 if (p->array)
1188                         goto out_running;
1189
1190                 this_cpu = smp_processor_id();
1191                 cpu = task_cpu(p);
1192         }
1193
1194 out_activate:
1195 #endif /* CONFIG_SMP */
1196         if (old_state == TASK_UNINTERRUPTIBLE) {
1197                 rq->nr_uninterruptible--;
1198                 /*
1199                  * Tasks on involuntary sleep don't earn
1200                  * sleep_avg beyond just interactive state.
1201                  */
1202                 p->activated = -1;
1203         }
1204
1205         /*
1206          * Sync wakeups (i.e. those types of wakeups where the waker
1207          * has indicated that it will leave the CPU in short order)
1208          * don't trigger a preemption, if the woken up task will run on
1209          * this cpu. (in this case the 'I will reschedule' promise of
1210          * the waker guarantees that the freshly woken up task is going
1211          * to be considered on this CPU.)
1212          */
1213         activate_task(p, rq, cpu == this_cpu);
1214         if (!sync || cpu != this_cpu) {
1215                 if (TASK_PREEMPTS_CURR(p, rq))
1216                         resched_task(rq->curr);
1217         }
1218         success = 1;
1219
1220 out_running:
1221         p->state = TASK_RUNNING;
1222 out:
1223         task_rq_unlock(rq, &flags);
1224
1225         return success;
1226 }
1227
1228 int fastcall wake_up_process(task_t * p)
1229 {
1230         return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1231                                  TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1232 }
1233
1234 EXPORT_SYMBOL(wake_up_process);
1235
1236 int fastcall wake_up_state(task_t *p, unsigned int state)
1237 {
1238         return try_to_wake_up(p, state, 0);
1239 }
1240
1241 /*
1242  * Perform scheduler related setup for a newly forked process p.
1243  * p is forked by current.
1244  */
1245 void fastcall sched_fork(task_t *p)
1246 {
1247         /*
1248          * We mark the process as running here, but have not actually
1249          * inserted it onto the runqueue yet. This guarantees that
1250          * nobody will actually run it, and a signal or other external
1251          * event cannot wake it up and insert it on the runqueue either.
1252          */
1253         p->state = TASK_RUNNING;
1254         INIT_LIST_HEAD(&p->run_list);
1255         p->array = NULL;
1256 #ifdef CONFIG_SCHEDSTATS
1257         memset(&p->sched_info, 0, sizeof(p->sched_info));
1258 #endif
1259 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1260         p->oncpu = 0;
1261 #endif
1262 #ifdef CONFIG_PREEMPT
1263         /* Want to start with kernel preemption disabled. */
1264         p->thread_info->preempt_count = 1;
1265 #endif
1266         /*
1267          * Share the timeslice between parent and child, thus the
1268          * total amount of pending timeslices in the system doesn't change,
1269          * resulting in more scheduling fairness.
1270          */
1271         local_irq_disable();
1272         p->time_slice = (current->time_slice + 1) >> 1;
1273         /*
1274          * The remainder of the first timeslice might be recovered by
1275          * the parent if the child exits early enough.
1276          */
1277         p->first_time_slice = 1;
1278         current->time_slice >>= 1;
1279         p->timestamp = sched_clock();
1280         if (unlikely(!current->time_slice)) {
1281                 /*
1282                  * This case is rare, it happens when the parent has only
1283                  * a single jiffy left from its timeslice. Taking the
1284                  * runqueue lock is not a problem.
1285                  */
1286                 current->time_slice = 1;
1287                 preempt_disable();
1288                 scheduler_tick();
1289                 local_irq_enable();
1290                 preempt_enable();
1291         } else
1292                 local_irq_enable();
1293 }
1294
1295 /*
1296  * wake_up_new_task - wake up a newly created task for the first time.
1297  *
1298  * This function will do some initial scheduler statistics housekeeping
1299  * that must be done for every newly created context, then puts the task
1300  * on the runqueue and wakes it.
1301  */
1302 void fastcall wake_up_new_task(task_t * p, unsigned long clone_flags)
1303 {
1304         unsigned long flags;
1305         int this_cpu, cpu;
1306         runqueue_t *rq, *this_rq;
1307 #ifdef CONFIG_SMP
1308         struct sched_domain *tmp, *sd = NULL;
1309 #endif
1310
1311         rq = task_rq_lock(p, &flags);
1312         BUG_ON(p->state != TASK_RUNNING);
1313         this_cpu = smp_processor_id();
1314         cpu = task_cpu(p);
1315
1316 #ifdef CONFIG_SMP
1317         for_each_domain(cpu, tmp)
1318                 if (tmp->flags & SD_BALANCE_FORK)
1319                         sd = tmp;
1320
1321         if (sd) {
1322                 int new_cpu;
1323                 struct sched_group *group;
1324
1325                 schedstat_inc(sd, sbf_cnt);
1326                 cpu = task_cpu(p);
1327                 group = find_idlest_group(sd, p, cpu);
1328                 if (!group) {
1329                         schedstat_inc(sd, sbf_balanced);
1330                         goto no_forkbalance;
1331                 }
1332
1333                 new_cpu = find_idlest_cpu(group, cpu);
1334                 if (new_cpu == -1 || new_cpu == cpu) {
1335                         schedstat_inc(sd, sbf_balanced);
1336                         goto no_forkbalance;
1337                 }
1338
1339                 if (cpu_isset(new_cpu, p->cpus_allowed)) {
1340                         schedstat_inc(sd, sbf_pushed);
1341                         set_task_cpu(p, new_cpu);
1342                         task_rq_unlock(rq, &flags);
1343                         rq = task_rq_lock(p, &flags);
1344                         cpu = task_cpu(p);
1345                 }
1346         }
1347
1348 no_forkbalance:
1349 #endif
1350         /*
1351          * We decrease the sleep average of forking parents
1352          * and children as well, to keep max-interactive tasks
1353          * from forking tasks that are max-interactive. The parent
1354          * (current) is done further down, under its lock.
1355          */
1356         p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1357                 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1358
1359         p->prio = effective_prio(p);
1360
1361         if (likely(cpu == this_cpu)) {
1362                 if (!(clone_flags & CLONE_VM)) {
1363                         /*
1364                          * The VM isn't cloned, so we're in a good position to
1365                          * do child-runs-first in anticipation of an exec. This
1366                          * usually avoids a lot of COW overhead.
1367                          */
1368                         if (unlikely(!current->array))
1369                                 __activate_task(p, rq);
1370                         else {
1371                                 p->prio = current->prio;
1372                                 list_add_tail(&p->run_list, &current->run_list);
1373                                 p->array = current->array;
1374                                 p->array->nr_active++;
1375                                 rq->nr_running++;
1376                         }
1377                         set_need_resched();
1378                 } else
1379                         /* Run child last */
1380                         __activate_task(p, rq);
1381                 /*
1382                  * We skip the following code due to cpu == this_cpu
1383                  *
1384                  *   task_rq_unlock(rq, &flags);
1385                  *   this_rq = task_rq_lock(current, &flags);
1386                  */
1387                 this_rq = rq;
1388         } else {
1389                 this_rq = cpu_rq(this_cpu);
1390
1391                 /*
1392                  * Not the local CPU - must adjust timestamp. This should
1393                  * get optimised away in the !CONFIG_SMP case.
1394                  */
1395                 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1396                                         + rq->timestamp_last_tick;
1397                 __activate_task(p, rq);
1398                 if (TASK_PREEMPTS_CURR(p, rq))
1399                         resched_task(rq->curr);
1400
1401                 /*
1402                  * Parent and child are on different CPUs, now get the
1403                  * parent runqueue to update the parent's ->sleep_avg:
1404                  */
1405                 task_rq_unlock(rq, &flags);
1406                 this_rq = task_rq_lock(current, &flags);
1407         }
1408         current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1409                 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1410         task_rq_unlock(this_rq, &flags);
1411 }
1412
1413 /*
1414  * Potentially available exiting-child timeslices are
1415  * retrieved here - this way the parent does not get
1416  * penalized for creating too many threads.
1417  *
1418  * (this cannot be used to 'generate' timeslices
1419  * artificially, because any timeslice recovered here
1420  * was given away by the parent in the first place.)
1421  */
1422 void fastcall sched_exit(task_t * p)
1423 {
1424         unsigned long flags;
1425         runqueue_t *rq;
1426
1427         /*
1428          * If the child was a (relative-) CPU hog then decrease
1429          * the sleep_avg of the parent as well.
1430          */
1431         rq = task_rq_lock(p->parent, &flags);
1432         if (p->first_time_slice) {
1433                 p->parent->time_slice += p->time_slice;
1434                 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1435                         p->parent->time_slice = task_timeslice(p);
1436         }
1437         if (p->sleep_avg < p->parent->sleep_avg)
1438                 p->parent->sleep_avg = p->parent->sleep_avg /
1439                 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1440                 (EXIT_WEIGHT + 1);
1441         task_rq_unlock(rq, &flags);
1442 }
1443
1444 /**
1445  * prepare_task_switch - prepare to switch tasks
1446  * @rq: the runqueue preparing to switch
1447  * @next: the task we are going to switch to.
1448  *
1449  * This is called with the rq lock held and interrupts off. It must
1450  * be paired with a subsequent finish_task_switch after the context
1451  * switch.
1452  *
1453  * prepare_task_switch sets up locking and calls architecture specific
1454  * hooks.
1455  */
1456 static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1457 {
1458         prepare_lock_switch(rq, next);
1459         prepare_arch_switch(next);
1460 }
1461
1462 /**
1463  * finish_task_switch - clean up after a task-switch
1464  * @prev: the thread we just switched away from.
1465  *
1466  * finish_task_switch must be called after the context switch, paired
1467  * with a prepare_task_switch call before the context switch.
1468  * finish_task_switch will reconcile locking set up by prepare_task_switch,
1469  * and do any other architecture-specific cleanup actions.
1470  *
1471  * Note that we may have delayed dropping an mm in context_switch(). If
1472  * so, we finish that here outside of the runqueue lock.  (Doing it
1473  * with the lock held can cause deadlocks; see schedule() for
1474  * details.)
1475  */
1476 static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1477         __releases(rq->lock)
1478 {
1479         struct mm_struct *mm = rq->prev_mm;
1480         unsigned long prev_task_flags;
1481
1482         rq->prev_mm = NULL;
1483
1484         /*
1485          * A task struct has one reference for the use as "current".
1486          * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1487          * calls schedule one last time. The schedule call will never return,
1488          * and the scheduled task must drop that reference.
1489          * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1490          * still held, otherwise prev could be scheduled on another cpu, die
1491          * there before we look at prev->state, and then the reference would
1492          * be dropped twice.
1493          *              Manfred Spraul <manfred@colorfullife.com>
1494          */
1495         prev_task_flags = prev->flags;
1496         finish_arch_switch(prev);
1497         finish_lock_switch(rq, prev);
1498         if (mm)
1499                 mmdrop(mm);
1500         if (unlikely(prev_task_flags & PF_DEAD))
1501                 put_task_struct(prev);
1502 }
1503
1504 /**
1505  * schedule_tail - first thing a freshly forked thread must call.
1506  * @prev: the thread we just switched away from.
1507  */
1508 asmlinkage void schedule_tail(task_t *prev)
1509         __releases(rq->lock)
1510 {
1511         runqueue_t *rq = this_rq();
1512         finish_task_switch(rq, prev);
1513 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1514         /* In this case, finish_task_switch does not reenable preemption */
1515         preempt_enable();
1516 #endif
1517         if (current->set_child_tid)
1518                 put_user(current->pid, current->set_child_tid);
1519 }
1520
1521 /*
1522  * context_switch - switch to the new MM and the new
1523  * thread's register state.
1524  */
1525 static inline
1526 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1527 {
1528         struct mm_struct *mm = next->mm;
1529         struct mm_struct *oldmm = prev->active_mm;
1530
1531         if (unlikely(!mm)) {
1532                 next->active_mm = oldmm;
1533                 atomic_inc(&oldmm->mm_count);
1534                 enter_lazy_tlb(oldmm, next);
1535         } else
1536                 switch_mm(oldmm, mm, next);
1537
1538         if (unlikely(!prev->mm)) {
1539                 prev->active_mm = NULL;
1540                 WARN_ON(rq->prev_mm);
1541                 rq->prev_mm = oldmm;
1542         }
1543
1544         /* Here we just switch the register state and the stack. */
1545         switch_to(prev, next, prev);
1546
1547         return prev;
1548 }
1549
1550 /*
1551  * nr_running, nr_uninterruptible and nr_context_switches:
1552  *
1553  * externally visible scheduler statistics: current number of runnable
1554  * threads, current number of uninterruptible-sleeping threads, total
1555  * number of context switches performed since bootup.
1556  */
1557 unsigned long nr_running(void)
1558 {
1559         unsigned long i, sum = 0;
1560
1561         for_each_online_cpu(i)
1562                 sum += cpu_rq(i)->nr_running;
1563
1564         return sum;
1565 }
1566
1567 unsigned long nr_uninterruptible(void)
1568 {
1569         unsigned long i, sum = 0;
1570
1571         for_each_cpu(i)
1572                 sum += cpu_rq(i)->nr_uninterruptible;
1573
1574         /*
1575          * Since we read the counters lockless, it might be slightly
1576          * inaccurate. Do not allow it to go below zero though:
1577          */
1578         if (unlikely((long)sum < 0))
1579                 sum = 0;
1580
1581         return sum;
1582 }
1583
1584 unsigned long long nr_context_switches(void)
1585 {
1586         unsigned long long i, sum = 0;
1587
1588         for_each_cpu(i)
1589                 sum += cpu_rq(i)->nr_switches;
1590
1591         return sum;
1592 }
1593
1594 unsigned long nr_iowait(void)
1595 {
1596         unsigned long i, sum = 0;
1597
1598         for_each_cpu(i)
1599                 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1600
1601         return sum;
1602 }
1603
1604 #ifdef CONFIG_SMP
1605
1606 /*
1607  * double_rq_lock - safely lock two runqueues
1608  *
1609  * Note this does not disable interrupts like task_rq_lock,
1610  * you need to do so manually before calling.
1611  */
1612 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1613         __acquires(rq1->lock)
1614         __acquires(rq2->lock)
1615 {
1616         if (rq1 == rq2) {
1617                 spin_lock(&rq1->lock);
1618                 __acquire(rq2->lock);   /* Fake it out ;) */
1619         } else {
1620                 if (rq1 < rq2) {
1621                         spin_lock(&rq1->lock);
1622                         spin_lock(&rq2->lock);
1623                 } else {
1624                         spin_lock(&rq2->lock);
1625                         spin_lock(&rq1->lock);
1626                 }
1627         }
1628 }
1629
1630 /*
1631  * double_rq_unlock - safely unlock two runqueues
1632  *
1633  * Note this does not restore interrupts like task_rq_unlock,
1634  * you need to do so manually after calling.
1635  */
1636 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1637         __releases(rq1->lock)
1638         __releases(rq2->lock)
1639 {
1640         spin_unlock(&rq1->lock);
1641         if (rq1 != rq2)
1642                 spin_unlock(&rq2->lock);
1643         else
1644                 __release(rq2->lock);
1645 }
1646
1647 /*
1648  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1649  */
1650 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1651         __releases(this_rq->lock)
1652         __acquires(busiest->lock)
1653         __acquires(this_rq->lock)
1654 {
1655         if (unlikely(!spin_trylock(&busiest->lock))) {
1656                 if (busiest < this_rq) {
1657                         spin_unlock(&this_rq->lock);
1658                         spin_lock(&busiest->lock);
1659                         spin_lock(&this_rq->lock);
1660                 } else
1661                         spin_lock(&busiest->lock);
1662         }
1663 }
1664
1665 /*
1666  * If dest_cpu is allowed for this process, migrate the task to it.
1667  * This is accomplished by forcing the cpu_allowed mask to only
1668  * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
1669  * the cpu_allowed mask is restored.
1670  */
1671 static void sched_migrate_task(task_t *p, int dest_cpu)
1672 {
1673         migration_req_t req;
1674         runqueue_t *rq;
1675         unsigned long flags;
1676
1677         rq = task_rq_lock(p, &flags);
1678         if (!cpu_isset(dest_cpu, p->cpus_allowed)
1679             || unlikely(cpu_is_offline(dest_cpu)))
1680                 goto out;
1681
1682         /* force the process onto the specified CPU */
1683         if (migrate_task(p, dest_cpu, &req)) {
1684                 /* Need to wait for migration thread (might exit: take ref). */
1685                 struct task_struct *mt = rq->migration_thread;
1686                 get_task_struct(mt);
1687                 task_rq_unlock(rq, &flags);
1688                 wake_up_process(mt);
1689                 put_task_struct(mt);
1690                 wait_for_completion(&req.done);
1691                 return;
1692         }
1693 out:
1694         task_rq_unlock(rq, &flags);
1695 }
1696
1697 /*
1698  * sched_exec(): find the highest-level, exec-balance-capable
1699  * domain and try to migrate the task to the least loaded CPU.
1700  *
1701  * execve() is a valuable balancing opportunity, because at this point
1702  * the task has the smallest effective memory and cache footprint.
1703  */
1704 void sched_exec(void)
1705 {
1706         struct sched_domain *tmp, *sd = NULL;
1707         int new_cpu, this_cpu = get_cpu();
1708
1709         for_each_domain(this_cpu, tmp)
1710                 if (tmp->flags & SD_BALANCE_EXEC)
1711                         sd = tmp;
1712
1713         if (sd) {
1714                 struct sched_group *group;
1715                 schedstat_inc(sd, sbe_cnt);
1716                 group = find_idlest_group(sd, current, this_cpu);
1717                 if (!group) {
1718                         schedstat_inc(sd, sbe_balanced);
1719                         goto out;
1720                 }
1721                 new_cpu = find_idlest_cpu(group, this_cpu);
1722                 if (new_cpu == -1 || new_cpu == this_cpu) {
1723                         schedstat_inc(sd, sbe_balanced);
1724                         goto out;
1725                 }
1726
1727                 schedstat_inc(sd, sbe_pushed);
1728                 put_cpu();
1729                 sched_migrate_task(current, new_cpu);
1730                 return;
1731         }
1732 out:
1733         put_cpu();
1734 }
1735
1736 /*
1737  * pull_task - move a task from a remote runqueue to the local runqueue.
1738  * Both runqueues must be locked.
1739  */
1740 static inline
1741 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1742                runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1743 {
1744         dequeue_task(p, src_array);
1745         src_rq->nr_running--;
1746         set_task_cpu(p, this_cpu);
1747         this_rq->nr_running++;
1748         enqueue_task(p, this_array);
1749         p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1750                                 + this_rq->timestamp_last_tick;
1751         /*
1752          * Note that idle threads have a prio of MAX_PRIO, for this test
1753          * to be always true for them.
1754          */
1755         if (TASK_PREEMPTS_CURR(p, this_rq))
1756                 resched_task(this_rq->curr);
1757 }
1758
1759 /*
1760  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1761  */
1762 static inline
1763 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1764              struct sched_domain *sd, enum idle_type idle, int *all_pinned)
1765 {
1766         /*
1767          * We do not migrate tasks that are:
1768          * 1) running (obviously), or
1769          * 2) cannot be migrated to this CPU due to cpus_allowed, or
1770          * 3) are cache-hot on their current CPU.
1771          */
1772         if (!cpu_isset(this_cpu, p->cpus_allowed))
1773                 return 0;
1774         *all_pinned = 0;
1775
1776         if (task_running(rq, p))
1777                 return 0;
1778
1779         /*
1780          * Aggressive migration if:
1781          * 1) task is cache cold, or
1782          * 2) too many balance attempts have failed.
1783          */
1784
1785         if (sd->nr_balance_failed > sd->cache_nice_tries)
1786                 return 1;
1787
1788         if (task_hot(p, rq->timestamp_last_tick, sd))
1789                 return 0;
1790         return 1;
1791 }
1792
1793 /*
1794  * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1795  * as part of a balancing operation within "domain". Returns the number of
1796  * tasks moved.
1797  *
1798  * Called with both runqueues locked.
1799  */
1800 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1801                       unsigned long max_nr_move, struct sched_domain *sd,
1802                       enum idle_type idle, int *all_pinned)
1803 {
1804         prio_array_t *array, *dst_array;
1805         struct list_head *head, *curr;
1806         int idx, pulled = 0, pinned = 0;
1807         task_t *tmp;
1808
1809         if (max_nr_move == 0)
1810                 goto out;
1811
1812         pinned = 1;
1813
1814         /*
1815          * We first consider expired tasks. Those will likely not be
1816          * executed in the near future, and they are most likely to
1817          * be cache-cold, thus switching CPUs has the least effect
1818          * on them.
1819          */
1820         if (busiest->expired->nr_active) {
1821                 array = busiest->expired;
1822                 dst_array = this_rq->expired;
1823         } else {
1824                 array = busiest->active;
1825                 dst_array = this_rq->active;
1826         }
1827
1828 new_array:
1829         /* Start searching at priority 0: */
1830         idx = 0;
1831 skip_bitmap:
1832         if (!idx)
1833                 idx = sched_find_first_bit(array->bitmap);
1834         else
1835                 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1836         if (idx >= MAX_PRIO) {
1837                 if (array == busiest->expired && busiest->active->nr_active) {
1838                         array = busiest->active;
1839                         dst_array = this_rq->active;
1840                         goto new_array;
1841                 }
1842                 goto out;
1843         }
1844
1845         head = array->queue + idx;
1846         curr = head->prev;
1847 skip_queue:
1848         tmp = list_entry(curr, task_t, run_list);
1849
1850         curr = curr->prev;
1851
1852         if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1853                 if (curr != head)
1854                         goto skip_queue;
1855                 idx++;
1856                 goto skip_bitmap;
1857         }
1858
1859 #ifdef CONFIG_SCHEDSTATS
1860         if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1861                 schedstat_inc(sd, lb_hot_gained[idle]);
1862 #endif
1863
1864         pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1865         pulled++;
1866
1867         /* We only want to steal up to the prescribed number of tasks. */
1868         if (pulled < max_nr_move) {
1869                 if (curr != head)
1870                         goto skip_queue;
1871                 idx++;
1872                 goto skip_bitmap;
1873         }
1874 out:
1875         /*
1876          * Right now, this is the only place pull_task() is called,
1877          * so we can safely collect pull_task() stats here rather than
1878          * inside pull_task().
1879          */
1880         schedstat_add(sd, lb_gained[idle], pulled);
1881
1882         if (all_pinned)
1883                 *all_pinned = pinned;
1884         return pulled;
1885 }
1886
1887 /*
1888  * find_busiest_group finds and returns the busiest CPU group within the
1889  * domain. It calculates and returns the number of tasks which should be
1890  * moved to restore balance via the imbalance parameter.
1891  */
1892 static struct sched_group *
1893 find_busiest_group(struct sched_domain *sd, int this_cpu,
1894                    unsigned long *imbalance, enum idle_type idle)
1895 {
1896         struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1897         unsigned long max_load, avg_load, total_load, this_load, total_pwr;
1898         int load_idx;
1899
1900         max_load = this_load = total_load = total_pwr = 0;
1901         if (idle == NOT_IDLE)
1902                 load_idx = sd->busy_idx;
1903         else if (idle == NEWLY_IDLE)
1904                 load_idx = sd->newidle_idx;
1905         else
1906                 load_idx = sd->idle_idx;
1907
1908         do {
1909                 unsigned long load;
1910                 int local_group;
1911                 int i;
1912
1913                 local_group = cpu_isset(this_cpu, group->cpumask);
1914
1915                 /* Tally up the load of all CPUs in the group */
1916                 avg_load = 0;
1917
1918                 for_each_cpu_mask(i, group->cpumask) {
1919                         /* Bias balancing toward cpus of our domain */
1920                         if (local_group)
1921                                 load = target_load(i, load_idx);
1922                         else
1923                                 load = source_load(i, load_idx);
1924
1925                         avg_load += load;
1926                 }
1927
1928                 total_load += avg_load;
1929                 total_pwr += group->cpu_power;
1930
1931                 /* Adjust by relative CPU power of the group */
1932                 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1933
1934                 if (local_group) {
1935                         this_load = avg_load;
1936                         this = group;
1937                 } else if (avg_load > max_load) {
1938                         max_load = avg_load;
1939                         busiest = group;
1940                 }
1941                 group = group->next;
1942         } while (group != sd->groups);
1943
1944         if (!busiest || this_load >= max_load)
1945                 goto out_balanced;
1946
1947         avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
1948
1949         if (this_load >= avg_load ||
1950                         100*max_load <= sd->imbalance_pct*this_load)
1951                 goto out_balanced;
1952
1953         /*
1954          * We're trying to get all the cpus to the average_load, so we don't
1955          * want to push ourselves above the average load, nor do we wish to
1956          * reduce the max loaded cpu below the average load, as either of these
1957          * actions would just result in more rebalancing later, and ping-pong
1958          * tasks around. Thus we look for the minimum possible imbalance.
1959          * Negative imbalances (*we* are more loaded than anyone else) will
1960          * be counted as no imbalance for these purposes -- we can't fix that
1961          * by pulling tasks to us.  Be careful of negative numbers as they'll
1962          * appear as very large values with unsigned longs.
1963          */
1964         /* How much load to actually move to equalise the imbalance */
1965         *imbalance = min((max_load - avg_load) * busiest->cpu_power,
1966                                 (avg_load - this_load) * this->cpu_power)
1967                         / SCHED_LOAD_SCALE;
1968
1969         if (*imbalance < SCHED_LOAD_SCALE) {
1970                 unsigned long pwr_now = 0, pwr_move = 0;
1971                 unsigned long tmp;
1972
1973                 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
1974                         *imbalance = 1;
1975                         return busiest;
1976                 }
1977
1978                 /*
1979                  * OK, we don't have enough imbalance to justify moving tasks,
1980                  * however we may be able to increase total CPU power used by
1981                  * moving them.
1982                  */
1983
1984                 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
1985                 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
1986                 pwr_now /= SCHED_LOAD_SCALE;
1987
1988                 /* Amount of load we'd subtract */
1989                 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
1990                 if (max_load > tmp)
1991                         pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
1992                                                         max_load - tmp);
1993
1994                 /* Amount of load we'd add */
1995                 if (max_load*busiest->cpu_power <
1996                                 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
1997                         tmp = max_load*busiest->cpu_power/this->cpu_power;
1998                 else
1999                         tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2000                 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2001                 pwr_move /= SCHED_LOAD_SCALE;
2002
2003                 /* Move if we gain throughput */
2004                 if (pwr_move <= pwr_now)
2005                         goto out_balanced;
2006
2007                 *imbalance = 1;
2008                 return busiest;
2009         }
2010
2011         /* Get rid of the scaling factor, rounding down as we divide */
2012         *imbalance = *imbalance / SCHED_LOAD_SCALE;
2013         return busiest;
2014
2015 out_balanced:
2016
2017         *imbalance = 0;
2018         return NULL;
2019 }
2020
2021 /*
2022  * find_busiest_queue - find the busiest runqueue among the cpus in group.
2023  */
2024 static runqueue_t *find_busiest_queue(struct sched_group *group)
2025 {
2026         unsigned long load, max_load = 0;
2027         runqueue_t *busiest = NULL;
2028         int i;
2029
2030         for_each_cpu_mask(i, group->cpumask) {
2031                 load = source_load(i, 0);
2032
2033                 if (load > max_load) {
2034                         max_load = load;
2035                         busiest = cpu_rq(i);
2036                 }
2037         }
2038
2039         return busiest;
2040 }
2041
2042 /*
2043  * Check this_cpu to ensure it is balanced within domain. Attempt to move
2044  * tasks if there is an imbalance.
2045  *
2046  * Called with this_rq unlocked.
2047  */
2048 static int load_balance(int this_cpu, runqueue_t *this_rq,
2049                         struct sched_domain *sd, enum idle_type idle)
2050 {
2051         struct sched_group *group;
2052         runqueue_t *busiest;
2053         unsigned long imbalance;
2054         int nr_moved, all_pinned;
2055         int active_balance = 0;
2056
2057         spin_lock(&this_rq->lock);
2058         schedstat_inc(sd, lb_cnt[idle]);
2059
2060         group = find_busiest_group(sd, this_cpu, &imbalance, idle);
2061         if (!group) {
2062                 schedstat_inc(sd, lb_nobusyg[idle]);
2063                 goto out_balanced;
2064         }
2065
2066         busiest = find_busiest_queue(group);
2067         if (!busiest) {
2068                 schedstat_inc(sd, lb_nobusyq[idle]);
2069                 goto out_balanced;
2070         }
2071
2072         BUG_ON(busiest == this_rq);
2073
2074         schedstat_add(sd, lb_imbalance[idle], imbalance);
2075
2076         nr_moved = 0;
2077         if (busiest->nr_running > 1) {
2078                 /*
2079                  * Attempt to move tasks. If find_busiest_group has found
2080                  * an imbalance but busiest->nr_running <= 1, the group is
2081                  * still unbalanced. nr_moved simply stays zero, so it is
2082                  * correctly treated as an imbalance.
2083                  */
2084                 double_lock_balance(this_rq, busiest);
2085                 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2086                                                 imbalance, sd, idle,
2087                                                 &all_pinned);
2088                 spin_unlock(&busiest->lock);
2089
2090                 /* All tasks on this runqueue were pinned by CPU affinity */
2091                 if (unlikely(all_pinned))
2092                         goto out_balanced;
2093         }
2094
2095         spin_unlock(&this_rq->lock);
2096
2097         if (!nr_moved) {
2098                 schedstat_inc(sd, lb_failed[idle]);
2099                 sd->nr_balance_failed++;
2100
2101                 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2102
2103                         spin_lock(&busiest->lock);
2104                         if (!busiest->active_balance) {
2105                                 busiest->active_balance = 1;
2106                                 busiest->push_cpu = this_cpu;
2107                                 active_balance = 1;
2108                         }
2109                         spin_unlock(&busiest->lock);
2110                         if (active_balance)
2111                                 wake_up_process(busiest->migration_thread);
2112
2113                         /*
2114                          * We've kicked active balancing, reset the failure
2115                          * counter.
2116                          */
2117                         sd->nr_balance_failed = sd->cache_nice_tries+1;
2118                 }
2119         } else
2120                 sd->nr_balance_failed = 0;
2121
2122         if (likely(!active_balance)) {
2123                 /* We were unbalanced, so reset the balancing interval */
2124                 sd->balance_interval = sd->min_interval;
2125         } else {
2126                 /*
2127                  * If we've begun active balancing, start to back off. This
2128                  * case may not be covered by the all_pinned logic if there
2129                  * is only 1 task on the busy runqueue (because we don't call
2130                  * move_tasks).
2131                  */
2132                 if (sd->balance_interval < sd->max_interval)
2133                         sd->balance_interval *= 2;
2134         }
2135
2136         return nr_moved;
2137
2138 out_balanced:
2139         spin_unlock(&this_rq->lock);
2140
2141         schedstat_inc(sd, lb_balanced[idle]);
2142
2143         sd->nr_balance_failed = 0;
2144         /* tune up the balancing interval */
2145         if (sd->balance_interval < sd->max_interval)
2146                 sd->balance_interval *= 2;
2147
2148         return 0;
2149 }
2150
2151 /*
2152  * Check this_cpu to ensure it is balanced within domain. Attempt to move
2153  * tasks if there is an imbalance.
2154  *
2155  * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2156  * this_rq is locked.
2157  */
2158 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2159                                 struct sched_domain *sd)
2160 {
2161         struct sched_group *group;
2162         runqueue_t *busiest = NULL;
2163         unsigned long imbalance;
2164         int nr_moved = 0;
2165
2166         schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2167         group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE);
2168         if (!group) {
2169                 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2170                 goto out_balanced;
2171         }
2172
2173         busiest = find_busiest_queue(group);
2174         if (!busiest) {
2175                 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2176                 goto out_balanced;
2177         }
2178
2179         BUG_ON(busiest == this_rq);
2180
2181         /* Attempt to move tasks */
2182         double_lock_balance(this_rq, busiest);
2183
2184         schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2185         nr_moved = move_tasks(this_rq, this_cpu, busiest,
2186                                         imbalance, sd, NEWLY_IDLE, NULL);
2187         if (!nr_moved)
2188                 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2189         else
2190                 sd->nr_balance_failed = 0;
2191
2192         spin_unlock(&busiest->lock);
2193         return nr_moved;
2194
2195 out_balanced:
2196         schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2197         sd->nr_balance_failed = 0;
2198         return 0;
2199 }
2200
2201 /*
2202  * idle_balance is called by schedule() if this_cpu is about to become
2203  * idle. Attempts to pull tasks from other CPUs.
2204  */
2205 static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
2206 {
2207         struct sched_domain *sd;
2208
2209         for_each_domain(this_cpu, sd) {
2210                 if (sd->flags & SD_BALANCE_NEWIDLE) {
2211                         if (load_balance_newidle(this_cpu, this_rq, sd)) {
2212                                 /* We've pulled tasks over so stop searching */
2213                                 break;
2214                         }
2215                 }
2216         }
2217 }
2218
2219 /*
2220  * active_load_balance is run by migration threads. It pushes running tasks
2221  * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2222  * running on each physical CPU where possible, and avoids physical /
2223  * logical imbalances.
2224  *
2225  * Called with busiest_rq locked.
2226  */
2227 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2228 {
2229         struct sched_domain *sd;
2230         runqueue_t *target_rq;
2231         int target_cpu = busiest_rq->push_cpu;
2232
2233         if (busiest_rq->nr_running <= 1)
2234                 /* no task to move */
2235                 return;
2236
2237         target_rq = cpu_rq(target_cpu);
2238
2239         /*
2240          * This condition is "impossible", if it occurs
2241          * we need to fix it.  Originally reported by
2242          * Bjorn Helgaas on a 128-cpu setup.
2243          */
2244         BUG_ON(busiest_rq == target_rq);
2245
2246         /* move a task from busiest_rq to target_rq */
2247         double_lock_balance(busiest_rq, target_rq);
2248
2249         /* Search for an sd spanning us and the target CPU. */
2250         for_each_domain(target_cpu, sd)
2251                 if ((sd->flags & SD_LOAD_BALANCE) &&
2252                         cpu_isset(busiest_cpu, sd->span))
2253                                 break;
2254
2255         if (unlikely(sd == NULL))
2256                 goto out;
2257
2258         schedstat_inc(sd, alb_cnt);
2259
2260         if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2261                 schedstat_inc(sd, alb_pushed);
2262         else
2263                 schedstat_inc(sd, alb_failed);
2264 out:
2265         spin_unlock(&target_rq->lock);
2266 }
2267
2268 /*
2269  * rebalance_tick will get called every timer tick, on every CPU.
2270  *
2271  * It checks each scheduling domain to see if it is due to be balanced,
2272  * and initiates a balancing operation if so.
2273  *
2274  * Balancing parameters are set up in arch_init_sched_domains.
2275  */
2276
2277 /* Don't have all balancing operations going off at once */
2278 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2279
2280 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2281                            enum idle_type idle)
2282 {
2283         unsigned long old_load, this_load;
2284         unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2285         struct sched_domain *sd;
2286         int i;
2287
2288         this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2289         /* Update our load */
2290         for (i = 0; i < 3; i++) {
2291                 unsigned long new_load = this_load;
2292                 int scale = 1 << i;
2293                 old_load = this_rq->cpu_load[i];
2294                 /*
2295                  * Round up the averaging division if load is increasing. This
2296                  * prevents us from getting stuck on 9 if the load is 10, for
2297                  * example.
2298                  */
2299                 if (new_load > old_load)
2300                         new_load += scale-1;
2301                 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2302         }
2303
2304         for_each_domain(this_cpu, sd) {
2305                 unsigned long interval;
2306
2307                 if (!(sd->flags & SD_LOAD_BALANCE))
2308                         continue;
2309
2310                 interval = sd->balance_interval;
2311                 if (idle != SCHED_IDLE)
2312                         interval *= sd->busy_factor;
2313
2314                 /* scale ms to jiffies */
2315                 interval = msecs_to_jiffies(interval);
2316                 if (unlikely(!interval))
2317                         interval = 1;
2318
2319                 if (j - sd->last_balance >= interval) {
2320                         if (load_balance(this_cpu, this_rq, sd, idle)) {
2321                                 /* We've pulled tasks over so no longer idle */
2322                                 idle = NOT_IDLE;
2323                         }
2324                         sd->last_balance += interval;
2325                 }
2326         }
2327 }
2328 #else
2329 /*
2330  * on UP we do not need to balance between CPUs:
2331  */
2332 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2333 {
2334 }
2335 static inline void idle_balance(int cpu, runqueue_t *rq)
2336 {
2337 }
2338 #endif
2339
2340 static inline int wake_priority_sleeper(runqueue_t *rq)
2341 {
2342         int ret = 0;
2343 #ifdef CONFIG_SCHED_SMT
2344         spin_lock(&rq->lock);
2345         /*
2346          * If an SMT sibling task has been put to sleep for priority
2347          * reasons reschedule the idle task to see if it can now run.
2348          */
2349         if (rq->nr_running) {
2350                 resched_task(rq->idle);
2351                 ret = 1;
2352         }
2353         spin_unlock(&rq->lock);
2354 #endif
2355         return ret;
2356 }
2357
2358 DEFINE_PER_CPU(struct kernel_stat, kstat);
2359
2360 EXPORT_PER_CPU_SYMBOL(kstat);
2361
2362 /*
2363  * This is called on clock ticks and on context switches.
2364  * Bank in p->sched_time the ns elapsed since the last tick or switch.
2365  */
2366 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2367                                     unsigned long long now)
2368 {
2369         unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2370         p->sched_time += now - last;
2371 }
2372
2373 /*
2374  * Return current->sched_time plus any more ns on the sched_clock
2375  * that have not yet been banked.
2376  */
2377 unsigned long long current_sched_time(const task_t *tsk)
2378 {
2379         unsigned long long ns;
2380         unsigned long flags;
2381         local_irq_save(flags);
2382         ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2383         ns = tsk->sched_time + (sched_clock() - ns);
2384         local_irq_restore(flags);
2385         return ns;
2386 }
2387
2388 /*
2389  * We place interactive tasks back into the active array, if possible.
2390  *
2391  * To guarantee that this does not starve expired tasks we ignore the
2392  * interactivity of a task if the first expired task had to wait more
2393  * than a 'reasonable' amount of time. This deadline timeout is
2394  * load-dependent, as the frequency of array switched decreases with
2395  * increasing number of running tasks. We also ignore the interactivity
2396  * if a better static_prio task has expired:
2397  */
2398 #define EXPIRED_STARVING(rq) \
2399         ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2400                 (jiffies - (rq)->expired_timestamp >= \
2401                         STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2402                         ((rq)->curr->static_prio > (rq)->best_expired_prio))
2403
2404 /*
2405  * Account user cpu time to a process.
2406  * @p: the process that the cpu time gets accounted to
2407  * @hardirq_offset: the offset to subtract from hardirq_count()
2408  * @cputime: the cpu time spent in user space since the last update
2409  */
2410 void account_user_time(struct task_struct *p, cputime_t cputime)
2411 {
2412         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2413         cputime64_t tmp;
2414
2415         p->utime = cputime_add(p->utime, cputime);
2416
2417         /* Add user time to cpustat. */
2418         tmp = cputime_to_cputime64(cputime);
2419         if (TASK_NICE(p) > 0)
2420                 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2421         else
2422                 cpustat->user = cputime64_add(cpustat->user, tmp);
2423 }
2424
2425 /*
2426  * Account system cpu time to a process.
2427  * @p: the process that the cpu time gets accounted to
2428  * @hardirq_offset: the offset to subtract from hardirq_count()
2429  * @cputime: the cpu time spent in kernel space since the last update
2430  */
2431 void account_system_time(struct task_struct *p, int hardirq_offset,
2432                          cputime_t cputime)
2433 {
2434         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2435         runqueue_t *rq = this_rq();
2436         cputime64_t tmp;
2437
2438         p->stime = cputime_add(p->stime, cputime);
2439
2440         /* Add system time to cpustat. */
2441         tmp = cputime_to_cputime64(cputime);
2442         if (hardirq_count() - hardirq_offset)
2443                 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2444         else if (softirq_count())
2445                 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2446         else if (p != rq->idle)
2447                 cpustat->system = cputime64_add(cpustat->system, tmp);
2448         else if (atomic_read(&rq->nr_iowait) > 0)
2449                 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2450         else
2451                 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2452         /* Account for system time used */
2453         acct_update_integrals(p);
2454         /* Update rss highwater mark */
2455         update_mem_hiwater(p);
2456 }
2457
2458 /*
2459  * Account for involuntary wait time.
2460  * @p: the process from which the cpu time has been stolen
2461  * @steal: the cpu time spent in involuntary wait
2462  */
2463 void account_steal_time(struct task_struct *p, cputime_t steal)
2464 {
2465         struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2466         cputime64_t tmp = cputime_to_cputime64(steal);
2467         runqueue_t *rq = this_rq();
2468
2469         if (p == rq->idle) {
2470                 p->stime = cputime_add(p->stime, steal);
2471                 if (atomic_read(&rq->nr_iowait) > 0)
2472                         cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2473                 else
2474                         cpustat->idle = cputime64_add(cpustat->idle, tmp);
2475         } else
2476                 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2477 }
2478
2479 /*
2480  * This function gets called by the timer code, with HZ frequency.
2481  * We call it with interrupts disabled.
2482  *
2483  * It also gets called by the fork code, when changing the parent's
2484  * timeslices.
2485  */
2486 void scheduler_tick(void)
2487 {
2488         int cpu = smp_processor_id();
2489         runqueue_t *rq = this_rq();
2490         task_t *p = current;
2491         unsigned long long now = sched_clock();
2492
2493         update_cpu_clock(p, rq, now);
2494
2495         rq->timestamp_last_tick = now;
2496
2497         if (p == rq->idle) {
2498                 if (wake_priority_sleeper(rq))
2499                         goto out;
2500                 rebalance_tick(cpu, rq, SCHED_IDLE);
2501                 return;
2502         }
2503
2504         /* Task might have expired already, but not scheduled off yet */
2505         if (p->array != rq->active) {
2506                 set_tsk_need_resched(p);
2507                 goto out;
2508         }
2509         spin_lock(&rq->lock);
2510         /*
2511          * The task was running during this tick - update the
2512          * time slice counter. Note: we do not update a thread's
2513          * priority until it either goes to sleep or uses up its
2514          * timeslice. This makes it possible for interactive tasks
2515          * to use up their timeslices at their highest priority levels.
2516          */
2517         if (rt_task(p)) {
2518                 /*
2519                  * RR tasks need a special form of timeslice management.
2520                  * FIFO tasks have no timeslices.
2521                  */
2522                 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2523                         p->time_slice = task_timeslice(p);
2524                         p->first_time_slice = 0;
2525                         set_tsk_need_resched(p);
2526
2527                         /* put it at the end of the queue: */
2528                         requeue_task(p, rq->active);
2529                 }
2530                 goto out_unlock;
2531         }
2532         if (!--p->time_slice) {
2533                 dequeue_task(p, rq->active);
2534                 set_tsk_need_resched(p);
2535                 p->prio = effective_prio(p);
2536                 p->time_slice = task_timeslice(p);
2537                 p->first_time_slice = 0;
2538
2539                 if (!rq->expired_timestamp)
2540                         rq->expired_timestamp = jiffies;
2541                 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2542                         enqueue_task(p, rq->expired);
2543                         if (p->static_prio < rq->best_expired_prio)
2544                                 rq->best_expired_prio = p->static_prio;
2545                 } else
2546                         enqueue_task(p, rq->active);
2547         } else {
2548                 /*
2549                  * Prevent a too long timeslice allowing a task to monopolize
2550                  * the CPU. We do this by splitting up the timeslice into
2551                  * smaller pieces.
2552                  *
2553                  * Note: this does not mean the task's timeslices expire or
2554                  * get lost in any way, they just might be preempted by
2555                  * another task of equal priority. (one with higher
2556                  * priority would have preempted this task already.) We
2557                  * requeue this task to the end of the list on this priority
2558                  * level, which is in essence a round-robin of tasks with
2559                  * equal priority.
2560                  *
2561                  * This only applies to tasks in the interactive
2562                  * delta range with at least TIMESLICE_GRANULARITY to requeue.
2563                  */
2564                 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2565                         p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2566                         (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2567                         (p->array == rq->active)) {
2568
2569                         requeue_task(p, rq->active);
2570                         set_tsk_need_resched(p);
2571                 }
2572         }
2573 out_unlock:
2574         spin_unlock(&rq->lock);
2575 out:
2576         rebalance_tick(cpu, rq, NOT_IDLE);
2577 }
2578
2579 #ifdef CONFIG_SCHED_SMT
2580 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2581 {
2582         struct sched_domain *tmp, *sd = NULL;
2583         cpumask_t sibling_map;
2584         int i;
2585
2586         for_each_domain(this_cpu, tmp)
2587                 if (tmp->flags & SD_SHARE_CPUPOWER)
2588                         sd = tmp;
2589
2590         if (!sd)
2591                 return;
2592
2593         /*
2594          * Unlock the current runqueue because we have to lock in
2595          * CPU order to avoid deadlocks. Caller knows that we might
2596          * unlock. We keep IRQs disabled.
2597          */
2598         spin_unlock(&this_rq->lock);
2599
2600         sibling_map = sd->span;
2601
2602         for_each_cpu_mask(i, sibling_map)
2603                 spin_lock(&cpu_rq(i)->lock);
2604         /*
2605          * We clear this CPU from the mask. This both simplifies the
2606          * inner loop and keps this_rq locked when we exit:
2607          */
2608         cpu_clear(this_cpu, sibling_map);
2609
2610         for_each_cpu_mask(i, sibling_map) {
2611                 runqueue_t *smt_rq = cpu_rq(i);
2612
2613                 /*
2614                  * If an SMT sibling task is sleeping due to priority
2615                  * reasons wake it up now.
2616                  */
2617                 if (smt_rq->curr == smt_rq->idle && smt_rq->nr_running)
2618                         resched_task(smt_rq->idle);
2619         }
2620
2621         for_each_cpu_mask(i, sibling_map)
2622                 spin_unlock(&cpu_rq(i)->lock);
2623         /*
2624          * We exit with this_cpu's rq still held and IRQs
2625          * still disabled:
2626          */
2627 }
2628
2629 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2630 {
2631         struct sched_domain *tmp, *sd = NULL;
2632         cpumask_t sibling_map;
2633         prio_array_t *array;
2634         int ret = 0, i;
2635         task_t *p;
2636
2637         for_each_domain(this_cpu, tmp)
2638                 if (tmp->flags & SD_SHARE_CPUPOWER)
2639                         sd = tmp;
2640
2641         if (!sd)
2642                 return 0;
2643
2644         /*
2645          * The same locking rules and details apply as for
2646          * wake_sleeping_dependent():
2647          */
2648         spin_unlock(&this_rq->lock);
2649         sibling_map = sd->span;
2650         for_each_cpu_mask(i, sibling_map)
2651                 spin_lock(&cpu_rq(i)->lock);
2652         cpu_clear(this_cpu, sibling_map);
2653
2654         /*
2655          * Establish next task to be run - it might have gone away because
2656          * we released the runqueue lock above:
2657          */
2658         if (!this_rq->nr_running)
2659                 goto out_unlock;
2660         array = this_rq->active;
2661         if (!array->nr_active)
2662                 array = this_rq->expired;
2663         BUG_ON(!array->nr_active);
2664
2665         p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2666                 task_t, run_list);
2667
2668         for_each_cpu_mask(i, sibling_map) {
2669                 runqueue_t *smt_rq = cpu_rq(i);
2670                 task_t *smt_curr = smt_rq->curr;
2671
2672                 /*
2673                  * If a user task with lower static priority than the
2674                  * running task on the SMT sibling is trying to schedule,
2675                  * delay it till there is proportionately less timeslice
2676                  * left of the sibling task to prevent a lower priority
2677                  * task from using an unfair proportion of the
2678                  * physical cpu's resources. -ck
2679                  */
2680                 if (((smt_curr->time_slice * (100 - sd->per_cpu_gain) / 100) >
2681                         task_timeslice(p) || rt_task(smt_curr)) &&
2682                         p->mm && smt_curr->mm && !rt_task(p))
2683                                 ret = 1;
2684
2685                 /*
2686                  * Reschedule a lower priority task on the SMT sibling,
2687                  * or wake it up if it has been put to sleep for priority
2688                  * reasons.
2689                  */
2690                 if ((((p->time_slice * (100 - sd->per_cpu_gain) / 100) >
2691                         task_timeslice(smt_curr) || rt_task(p)) &&
2692                         smt_curr->mm && p->mm && !rt_task(smt_curr)) ||
2693                         (smt_curr == smt_rq->idle && smt_rq->nr_running))
2694                                 resched_task(smt_curr);
2695         }
2696 out_unlock:
2697         for_each_cpu_mask(i, sibling_map)
2698                 spin_unlock(&cpu_rq(i)->lock);
2699         return ret;
2700 }
2701 #else
2702 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2703 {
2704 }
2705
2706 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2707 {
2708         return 0;
2709 }
2710 #endif
2711
2712 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2713
2714 void fastcall add_preempt_count(int val)
2715 {
2716         /*
2717          * Underflow?
2718          */
2719         BUG_ON((preempt_count() < 0));
2720         preempt_count() += val;
2721         /*
2722          * Spinlock count overflowing soon?
2723          */
2724         BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2725 }
2726 EXPORT_SYMBOL(add_preempt_count);
2727
2728 void fastcall sub_preempt_count(int val)
2729 {
2730         /*
2731          * Underflow?
2732          */
2733         BUG_ON(val > preempt_count());
2734         /*
2735          * Is the spinlock portion underflowing?
2736          */
2737         BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2738         preempt_count() -= val;
2739 }
2740 EXPORT_SYMBOL(sub_preempt_count);
2741
2742 #endif
2743
2744 /*
2745  * schedule() is the main scheduler function.
2746  */
2747 asmlinkage void __sched schedule(void)
2748 {
2749         long *switch_count;
2750         task_t *prev, *next;
2751         runqueue_t *rq;
2752         prio_array_t *array;
2753         struct list_head *queue;
2754         unsigned long long now;
2755         unsigned long run_time;
2756         int cpu, idx;
2757
2758         /*
2759          * Test if we are atomic.  Since do_exit() needs to call into
2760          * schedule() atomically, we ignore that path for now.
2761          * Otherwise, whine if we are scheduling when we should not be.
2762          */
2763         if (likely(!current->exit_state)) {
2764                 if (unlikely(in_atomic())) {
2765                         printk(KERN_ERR "scheduling while atomic: "
2766                                 "%s/0x%08x/%d\n",
2767                                 current->comm, preempt_count(), current->pid);
2768                         dump_stack();
2769                 }
2770         }
2771         profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2772
2773 need_resched:
2774         preempt_disable();
2775         prev = current;
2776         release_kernel_lock(prev);
2777 need_resched_nonpreemptible:
2778         rq = this_rq();
2779
2780         /*
2781          * The idle thread is not allowed to schedule!
2782          * Remove this check after it has been exercised a bit.
2783          */
2784         if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2785                 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2786                 dump_stack();
2787         }
2788
2789         schedstat_inc(rq, sched_cnt);
2790         now = sched_clock();
2791         if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
2792                 run_time = now - prev->timestamp;
2793                 if (unlikely((long long)(now - prev->timestamp) < 0))
2794                         run_time = 0;
2795         } else
2796                 run_time = NS_MAX_SLEEP_AVG;
2797
2798         /*
2799          * Tasks charged proportionately less run_time at high sleep_avg to
2800          * delay them losing their interactive status
2801          */
2802         run_time /= (CURRENT_BONUS(prev) ? : 1);
2803
2804         spin_lock_irq(&rq->lock);
2805
2806         if (unlikely(prev->flags & PF_DEAD))
2807                 prev->state = EXIT_DEAD;
2808
2809         switch_count = &prev->nivcsw;
2810         if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2811                 switch_count = &prev->nvcsw;
2812                 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2813                                 unlikely(signal_pending(prev))))
2814                         prev->state = TASK_RUNNING;
2815                 else {
2816                         if (prev->state == TASK_UNINTERRUPTIBLE)
2817                                 rq->nr_uninterruptible++;
2818                         deactivate_task(prev, rq);
2819                 }
2820         }
2821
2822         cpu = smp_processor_id();
2823         if (unlikely(!rq->nr_running)) {
2824 go_idle:
2825                 idle_balance(cpu, rq);
2826                 if (!rq->nr_running) {
2827                         next = rq->idle;
2828                         rq->expired_timestamp = 0;
2829                         wake_sleeping_dependent(cpu, rq);
2830                         /*
2831                          * wake_sleeping_dependent() might have released
2832                          * the runqueue, so break out if we got new
2833                          * tasks meanwhile:
2834                          */
2835                         if (!rq->nr_running)
2836                                 goto switch_tasks;
2837                 }
2838         } else {
2839                 if (dependent_sleeper(cpu, rq)) {
2840                         next = rq->idle;
2841                         goto switch_tasks;
2842                 }
2843                 /*
2844                  * dependent_sleeper() releases and reacquires the runqueue
2845                  * lock, hence go into the idle loop if the rq went
2846                  * empty meanwhile:
2847                  */
2848                 if (unlikely(!rq->nr_running))
2849                         goto go_idle;
2850         }
2851
2852         array = rq->active;
2853         if (unlikely(!array->nr_active)) {
2854                 /*
2855                  * Switch the active and expired arrays.
2856                  */
2857                 schedstat_inc(rq, sched_switch);
2858                 rq->active = rq->expired;
2859                 rq->expired = array;
2860                 array = rq->active;
2861                 rq->expired_timestamp = 0;
2862                 rq->best_expired_prio = MAX_PRIO;
2863         }
2864
2865         idx = sched_find_first_bit(array->bitmap);
2866         queue = array->queue + idx;
2867         next = list_entry(queue->next, task_t, run_list);
2868
2869         if (!rt_task(next) && next->activated > 0) {
2870                 unsigned long long delta = now - next->timestamp;
2871                 if (unlikely((long long)(now - next->timestamp) < 0))
2872                         delta = 0;
2873
2874                 if (next->activated == 1)
2875                         delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
2876
2877                 array = next->array;
2878                 dequeue_task(next, array);
2879                 recalc_task_prio(next, next->timestamp + delta);
2880                 enqueue_task(next, array);
2881         }
2882         next->activated = 0;
2883 switch_tasks:
2884         if (next == rq->idle)
2885                 schedstat_inc(rq, sched_goidle);
2886         prefetch(next);
2887         clear_tsk_need_resched(prev);
2888         rcu_qsctr_inc(task_cpu(prev));
2889
2890         update_cpu_clock(prev, rq, now);
2891
2892         prev->sleep_avg -= run_time;
2893         if ((long)prev->sleep_avg <= 0)
2894                 prev->sleep_avg = 0;
2895         prev->timestamp = prev->last_ran = now;
2896
2897         sched_info_switch(prev, next);
2898         if (likely(prev != next)) {
2899                 next->timestamp = now;
2900                 rq->nr_switches++;
2901                 rq->curr = next;
2902                 ++*switch_count;
2903
2904                 prepare_task_switch(rq, next);
2905                 prev = context_switch(rq, prev, next);
2906                 barrier();
2907                 /*
2908                  * this_rq must be evaluated again because prev may have moved
2909                  * CPUs since it called schedule(), thus the 'rq' on its stack
2910                  * frame will be invalid.
2911                  */
2912                 finish_task_switch(this_rq(), prev);
2913         } else
2914                 spin_unlock_irq(&rq->lock);
2915
2916         prev = current;
2917         if (unlikely(reacquire_kernel_lock(prev) < 0))
2918                 goto need_resched_nonpreemptible;
2919         preempt_enable_no_resched();
2920         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2921                 goto need_resched;
2922 }
2923
2924 EXPORT_SYMBOL(schedule);
2925
2926 #ifdef CONFIG_PREEMPT
2927 /*
2928  * this is is the entry point to schedule() from in-kernel preemption
2929  * off of preempt_enable.  Kernel preemptions off return from interrupt
2930  * occur there and call schedule directly.
2931  */
2932 asmlinkage void __sched preempt_schedule(void)
2933 {
2934         struct thread_info *ti = current_thread_info();
2935 #ifdef CONFIG_PREEMPT_BKL
2936         struct task_struct *task = current;
2937         int saved_lock_depth;
2938 #endif
2939         /*
2940          * If there is a non-zero preempt_count or interrupts are disabled,
2941          * we do not want to preempt the current task.  Just return..
2942          */
2943         if (unlikely(ti->preempt_count || irqs_disabled()))
2944                 return;
2945
2946 need_resched:
2947         add_preempt_count(PREEMPT_ACTIVE);
2948         /*
2949          * We keep the big kernel semaphore locked, but we
2950          * clear ->lock_depth so that schedule() doesnt
2951          * auto-release the semaphore:
2952          */
2953 #ifdef CONFIG_PREEMPT_BKL
2954         saved_lock_depth = task->lock_depth;
2955         task->lock_depth = -1;
2956 #endif
2957         schedule();
2958 #ifdef CONFIG_PREEMPT_BKL
2959         task->lock_depth = saved_lock_depth;
2960 #endif
2961         sub_preempt_count(PREEMPT_ACTIVE);
2962
2963         /* we could miss a preemption opportunity between schedule and now */
2964         barrier();
2965         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2966                 goto need_resched;
2967 }
2968
2969 EXPORT_SYMBOL(preempt_schedule);
2970
2971 /*
2972  * this is is the entry point to schedule() from kernel preemption
2973  * off of irq context.
2974  * Note, that this is called and return with irqs disabled. This will
2975  * protect us against recursive calling from irq.
2976  */
2977 asmlinkage void __sched preempt_schedule_irq(void)
2978 {
2979         struct thread_info *ti = current_thread_info();
2980 #ifdef CONFIG_PREEMPT_BKL
2981         struct task_struct *task = current;
2982         int saved_lock_depth;
2983 #endif
2984         /* Catch callers which need to be fixed*/
2985         BUG_ON(ti->preempt_count || !irqs_disabled());
2986
2987 need_resched:
2988         add_preempt_count(PREEMPT_ACTIVE);
2989         /*
2990          * We keep the big kernel semaphore locked, but we
2991          * clear ->lock_depth so that schedule() doesnt
2992          * auto-release the semaphore:
2993          */
2994 #ifdef CONFIG_PREEMPT_BKL
2995         saved_lock_depth = task->lock_depth;
2996         task->lock_depth = -1;
2997 #endif
2998         local_irq_enable();
2999         schedule();
3000         local_irq_disable();
3001 #ifdef CONFIG_PREEMPT_BKL
3002         task->lock_depth = saved_lock_depth;
3003 #endif
3004         sub_preempt_count(PREEMPT_ACTIVE);
3005
3006         /* we could miss a preemption opportunity between schedule and now */
3007         barrier();
3008         if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3009                 goto need_resched;
3010 }
3011
3012 #endif /* CONFIG_PREEMPT */
3013
3014 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, void *key)
3015 {
3016         task_t *p = curr->private;
3017         return try_to_wake_up(p, mode, sync);
3018 }
3019
3020 EXPORT_SYMBOL(default_wake_function);
3021
3022 /*
3023  * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
3024  * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
3025  * number) then we wake all the non-exclusive tasks and one exclusive task.
3026  *
3027  * There are circumstances in which we can try to wake a task which has already
3028  * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
3029  * zero in this (rare) case, and we handle it by continuing to scan the queue.
3030  */
3031 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3032                              int nr_exclusive, int sync, void *key)
3033 {
3034         struct list_head *tmp, *next;
3035
3036         list_for_each_safe(tmp, next, &q->task_list) {
3037                 wait_queue_t *curr;
3038                 unsigned flags;
3039                 curr = list_entry(tmp, wait_queue_t, task_list);
3040                 flags = curr->flags;
3041                 if (curr->func(curr, mode, sync, key) &&
3042                     (flags & WQ_FLAG_EXCLUSIVE) &&
3043                     !--nr_exclusive)
3044                         break;
3045         }
3046 }
3047
3048 /**
3049  * __wake_up - wake up threads blocked on a waitqueue.
3050  * @q: the waitqueue
3051  * @mode: which threads
3052  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3053  * @key: is directly passed to the wakeup function
3054  */
3055 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3056                                 int nr_exclusive, void *key)
3057 {
3058         unsigned long flags;
3059
3060         spin_lock_irqsave(&q->lock, flags);
3061         __wake_up_common(q, mode, nr_exclusive, 0, key);
3062         spin_unlock_irqrestore(&q->lock, flags);
3063 }
3064
3065 EXPORT_SYMBOL(__wake_up);
3066
3067 /*
3068  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3069  */
3070 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3071 {
3072         __wake_up_common(q, mode, 1, 0, NULL);
3073 }
3074
3075 /**
3076  * __wake_up_sync - wake up threads blocked on a waitqueue.
3077  * @q: the waitqueue
3078  * @mode: which threads
3079  * @nr_exclusive: how many wake-one or wake-many threads to wake up
3080  *
3081  * The sync wakeup differs that the waker knows that it will schedule
3082  * away soon, so while the target thread will be woken up, it will not
3083  * be migrated to another CPU - ie. the two threads are 'synchronized'
3084  * with each other. This can prevent needless bouncing between CPUs.
3085  *
3086  * On UP it can prevent extra preemption.
3087  */
3088 void fastcall __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3089 {
3090         unsigned long flags;
3091         int sync = 1;
3092
3093         if (unlikely(!q))
3094                 return;
3095
3096         if (unlikely(!nr_exclusive))
3097                 sync = 0;
3098
3099         spin_lock_irqsave(&q->lock, flags);
3100         __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3101         spin_unlock_irqrestore(&q->lock, flags);
3102 }
3103 EXPORT_SYMBOL_GPL(__wake_up_sync);      /* For internal use only */
3104
3105 void fastcall complete(struct completion *x)
3106 {
3107         unsigned long flags;
3108
3109         spin_lock_irqsave(&x->wait.lock, flags);
3110         x->done++;
3111         __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3112                          1, 0, NULL);
3113         spin_unlock_irqrestore(&x->wait.lock, flags);
3114 }
3115 EXPORT_SYMBOL(complete);
3116
3117 void fastcall complete_all(struct completion *x)
3118 {
3119         unsigned long flags;
3120
3121         spin_lock_irqsave(&x->wait.lock, flags);
3122         x->done += UINT_MAX/2;
3123         __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3124                          0, 0, NULL);
3125         spin_unlock_irqrestore(&x->wait.lock, flags);
3126 }
3127 EXPORT_SYMBOL(complete_all);
3128
3129 void fastcall __sched wait_for_completion(struct completion *x)
3130 {
3131         might_sleep();
3132         spin_lock_irq(&x->wait.lock);
3133         if (!x->done) {
3134                 DECLARE_WAITQUEUE(wait, current);
3135
3136                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3137                 __add_wait_queue_tail(&x->wait, &wait);
3138                 do {
3139                         __set_current_state(TASK_UNINTERRUPTIBLE);
3140                         spin_unlock_irq(&x->wait.lock);
3141                         schedule();
3142                         spin_lock_irq(&x->wait.lock);
3143                 } while (!x->done);
3144                 __remove_wait_queue(&x->wait, &wait);
3145         }
3146         x->done--;
3147         spin_unlock_irq(&x->wait.lock);
3148 }
3149 EXPORT_SYMBOL(wait_for_completion);
3150
3151 unsigned long fastcall __sched
3152 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3153 {
3154         might_sleep();
3155
3156         spin_lock_irq(&x->wait.lock);
3157         if (!x->done) {
3158                 DECLARE_WAITQUEUE(wait, current);
3159
3160                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3161                 __add_wait_queue_tail(&x->wait, &wait);
3162                 do {
3163                         __set_current_state(TASK_UNINTERRUPTIBLE);
3164                         spin_unlock_irq(&x->wait.lock);
3165                         timeout = schedule_timeout(timeout);
3166                         spin_lock_irq(&x->wait.lock);
3167                         if (!timeout) {
3168                                 __remove_wait_queue(&x->wait, &wait);
3169                                 goto out;
3170                         }
3171                 } while (!x->done);
3172                 __remove_wait_queue(&x->wait, &wait);
3173         }
3174         x->done--;
3175 out:
3176         spin_unlock_irq(&x->wait.lock);
3177         return timeout;
3178 }
3179 EXPORT_SYMBOL(wait_for_completion_timeout);
3180
3181 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3182 {
3183         int ret = 0;
3184
3185         might_sleep();
3186
3187         spin_lock_irq(&x->wait.lock);
3188         if (!x->done) {
3189                 DECLARE_WAITQUEUE(wait, current);
3190
3191                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3192                 __add_wait_queue_tail(&x->wait, &wait);
3193                 do {
3194                         if (signal_pending(current)) {
3195                                 ret = -ERESTARTSYS;
3196                                 __remove_wait_queue(&x->wait, &wait);
3197                                 goto out;
3198                         }
3199                         __set_current_state(TASK_INTERRUPTIBLE);
3200                         spin_unlock_irq(&x->wait.lock);
3201                         schedule();
3202                         spin_lock_irq(&x->wait.lock);
3203                 } while (!x->done);
3204                 __remove_wait_queue(&x->wait, &wait);
3205         }
3206         x->done--;
3207 out:
3208         spin_unlock_irq(&x->wait.lock);
3209
3210         return ret;
3211 }
3212 EXPORT_SYMBOL(wait_for_completion_interruptible);
3213
3214 unsigned long fastcall __sched
3215 wait_for_completion_interruptible_timeout(struct completion *x,
3216                                           unsigned long timeout)
3217 {
3218         might_sleep();
3219
3220         spin_lock_irq(&x->wait.lock);
3221         if (!x->done) {
3222                 DECLARE_WAITQUEUE(wait, current);
3223
3224                 wait.flags |= WQ_FLAG_EXCLUSIVE;
3225                 __add_wait_queue_tail(&x->wait, &wait);
3226                 do {
3227                         if (signal_pending(current)) {
3228                                 timeout = -ERESTARTSYS;
3229                                 __remove_wait_queue(&x->wait, &wait);
3230                                 goto out;
3231                         }
3232                         __set_current_state(TASK_INTERRUPTIBLE);
3233                         spin_unlock_irq(&x->wait.lock);
3234                         timeout = schedule_timeout(timeout);
3235                         spin_lock_irq(&x->wait.lock);
3236                         if (!timeout) {
3237                                 __remove_wait_queue(&x->wait, &wait);
3238                                 goto out;
3239                         }
3240                 } while (!x->done);
3241                 __remove_wait_queue(&x->wait, &wait);
3242         }
3243         x->done--;
3244 out:
3245         spin_unlock_irq(&x->wait.lock);
3246         return timeout;
3247 }
3248 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3249
3250
3251 #define SLEEP_ON_VAR                                    \
3252         unsigned long flags;                            \
3253         wait_queue_t wait;                              \
3254         init_waitqueue_entry(&wait, current);
3255
3256 #define SLEEP_ON_HEAD                                   \
3257         spin_lock_irqsave(&q->lock,flags);              \
3258         __add_wait_queue(q, &wait);                     \
3259         spin_unlock(&q->lock);
3260
3261 #define SLEEP_ON_TAIL                                   \
3262         spin_lock_irq(&q->lock);                        \
3263         __remove_wait_queue(q, &wait);                  \
3264         spin_unlock_irqrestore(&q->lock, flags);
3265
3266 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3267 {
3268         SLEEP_ON_VAR
3269
3270         current->state = TASK_INTERRUPTIBLE;
3271
3272         SLEEP_ON_HEAD
3273         schedule();
3274         SLEEP_ON_TAIL
3275 }
3276
3277 EXPORT_SYMBOL(interruptible_sleep_on);
3278
3279 long fastcall __sched interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3280 {
3281         SLEEP_ON_VAR
3282
3283         current->state = TASK_INTERRUPTIBLE;
3284
3285         SLEEP_ON_HEAD
3286         timeout = schedule_timeout(timeout);
3287         SLEEP_ON_TAIL
3288
3289         return timeout;
3290 }
3291
3292 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3293
3294 void fastcall __sched sleep_on(wait_queue_head_t *q)
3295 {
3296         SLEEP_ON_VAR
3297
3298         current->state = TASK_UNINTERRUPTIBLE;
3299
3300         SLEEP_ON_HEAD
3301         schedule();
3302         SLEEP_ON_TAIL
3303 }
3304
3305 EXPORT_SYMBOL(sleep_on);
3306
3307 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3308 {
3309         SLEEP_ON_VAR
3310
3311         current->state = TASK_UNINTERRUPTIBLE;
3312
3313         SLEEP_ON_HEAD
3314         timeout = schedule_timeout(timeout);
3315         SLEEP_ON_TAIL
3316
3317         return timeout;
3318 }
3319
3320 EXPORT_SYMBOL(sleep_on_timeout);
3321
3322 void set_user_nice(task_t *p, long nice)
3323 {
3324         unsigned long flags;
3325         prio_array_t *array;
3326         runqueue_t *rq;
3327         int old_prio, new_prio, delta;
3328
3329         if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3330                 return;
3331         /*
3332          * We have to be careful, if called from sys_setpriority(),
3333          * the task might be in the middle of scheduling on another CPU.
3334          */
3335         rq = task_rq_lock(p, &flags);
3336         /*
3337          * The RT priorities are set via sched_setscheduler(), but we still
3338          * allow the 'normal' nice value to be set - but as expected
3339          * it wont have any effect on scheduling until the task is
3340          * not SCHED_NORMAL:
3341          */
3342         if (rt_task(p)) {
3343                 p->static_prio = NICE_TO_PRIO(nice);
3344                 goto out_unlock;
3345         }
3346         array = p->array;
3347         if (array)
3348                 dequeue_task(p, array);
3349
3350         old_prio = p->prio;
3351         new_prio = NICE_TO_PRIO(nice);
3352         delta = new_prio - old_prio;
3353         p->static_prio = NICE_TO_PRIO(nice);
3354         p->prio += delta;
3355
3356         if (array) {
3357                 enqueue_task(p, array);
3358                 /*
3359                  * If the task increased its priority or is running and
3360                  * lowered its priority, then reschedule its CPU:
3361                  */
3362                 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3363                         resched_task(rq->curr);
3364         }
3365 out_unlock:
3366         task_rq_unlock(rq, &flags);
3367 }
3368
3369 EXPORT_SYMBOL(set_user_nice);
3370
3371 /*
3372  * can_nice - check if a task can reduce its nice value
3373  * @p: task
3374  * @nice: nice value
3375  */
3376 int can_nice(const task_t *p, const int nice)
3377 {
3378         /* convert nice value [19,-20] to rlimit style value [0,39] */
3379         int nice_rlim = 19 - nice;
3380         return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3381                 capable(CAP_SYS_NICE));
3382 }
3383
3384 #ifdef __ARCH_WANT_SYS_NICE
3385
3386 /*
3387  * sys_nice - change the priority of the current process.
3388  * @increment: priority increment
3389  *
3390  * sys_setpriority is a more generic, but much slower function that
3391  * does similar things.
3392  */
3393 asmlinkage long sys_nice(int increment)
3394 {
3395         int retval;
3396         long nice;
3397
3398         /*
3399          * Setpriority might change our priority at the same moment.
3400          * We don't have to worry. Conceptually one call occurs first
3401          * and we have a single winner.
3402          */
3403         if (increment < -40)
3404                 increment = -40;
3405         if (increment > 40)
3406                 increment = 40;
3407
3408         nice = PRIO_TO_NICE(current->static_prio) + increment;
3409         if (nice < -20)
3410                 nice = -20;
3411         if (nice > 19)
3412                 nice = 19;
3413
3414         if (increment < 0 && !can_nice(current, nice))
3415                 return -EPERM;
3416
3417         retval = security_task_setnice(current, nice);
3418         if (retval)
3419                 return retval;
3420
3421         set_user_nice(current, nice);
3422         return 0;
3423 }
3424
3425 #endif
3426
3427 /**
3428  * task_prio - return the priority value of a given task.
3429  * @p: the task in question.
3430  *
3431  * This is the priority value as seen by users in /proc.
3432  * RT tasks are offset by -200. Normal tasks are centered
3433  * around 0, value goes from -16 to +15.
3434  */
3435 int task_prio(const task_t *p)
3436 {
3437         return p->prio - MAX_RT_PRIO;
3438 }
3439
3440 /**
3441  * task_nice - return the nice value of a given task.
3442  * @p: the task in question.
3443  */
3444 int task_nice(const task_t *p)
3445 {
3446         return TASK_NICE(p);
3447 }
3448
3449 /*
3450  * The only users of task_nice are binfmt_elf and binfmt_elf32.
3451  * binfmt_elf is no longer modular, but binfmt_elf32 still is.
3452  * Therefore, task_nice is needed if there is a compat_mode.
3453  */
3454 #ifdef CONFIG_COMPAT
3455 EXPORT_SYMBOL_GPL(task_nice);
3456 #endif
3457
3458 /**
3459  * idle_cpu - is a given cpu idle currently?
3460  * @cpu: the processor in question.
3461  */
3462 int idle_cpu(int cpu)
3463 {
3464         return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3465 }
3466
3467 EXPORT_SYMBOL_GPL(idle_cpu);
3468
3469 /**
3470  * idle_task - return the idle task for a given cpu.
3471  * @cpu: the processor in question.
3472  */
3473 task_t *idle_task(int cpu)
3474 {
3475         return cpu_rq(cpu)->idle;
3476 }
3477
3478 /**
3479  * find_process_by_pid - find a process with a matching PID value.
3480  * @pid: the pid in question.
3481  */
3482 static inline task_t *find_process_by_pid(pid_t pid)
3483 {
3484         return pid ? find_task_by_pid(pid) : current;
3485 }
3486
3487 /* Actually do priority change: must hold rq lock. */
3488 static void __setscheduler(struct task_struct *p, int policy, int prio)
3489 {
3490         BUG_ON(p->array);
3491         p->policy = policy;
3492         p->rt_priority = prio;
3493         if (policy != SCHED_NORMAL)
3494                 p->prio = MAX_USER_RT_PRIO-1 - p->rt_priority;
3495         else
3496                 p->prio = p->static_prio;
3497 }
3498
3499 /**
3500  * sched_setscheduler - change the scheduling policy and/or RT priority of
3501  * a thread.
3502  * @p: the task in question.
3503  * @policy: new policy.
3504  * @param: structure containing the new RT priority.
3505  */
3506 int sched_setscheduler(struct task_struct *p, int policy, struct sched_param *param)
3507 {
3508         int retval;
3509         int oldprio, oldpolicy = -1;
3510         prio_array_t *array;
3511         unsigned long flags;
3512         runqueue_t *rq;
3513
3514 recheck:
3515         /* double check policy once rq lock held */
3516         if (policy < 0)
3517                 policy = oldpolicy = p->policy;
3518         else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3519                                 policy != SCHED_NORMAL)
3520                         return -EINVAL;
3521         /*
3522          * Valid priorities for SCHED_FIFO and SCHED_RR are
3523          * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
3524          */
3525         if (param->sched_priority < 0 ||
3526             param->sched_priority > MAX_USER_RT_PRIO-1)
3527                 return -EINVAL;
3528         if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
3529                 return -EINVAL;
3530
3531         if ((policy == SCHED_FIFO || policy == SCHED_RR) &&
3532             param->sched_priority > p->signal->rlim[RLIMIT_RTPRIO].rlim_cur &&
3533             !capable(CAP_SYS_NICE))
3534                 return -EPERM;
3535         if ((current->euid != p->euid) && (current->euid != p->uid) &&
3536             !capable(CAP_SYS_NICE))
3537                 return -EPERM;
3538
3539         retval = security_task_setscheduler(p, policy, param);
3540         if (retval)
3541                 return retval;
3542         /*
3543          * To be able to change p->policy safely, the apropriate
3544          * runqueue lock must be held.
3545          */
3546         rq = task_rq_lock(p, &flags);
3547         /* recheck policy now with rq lock held */
3548         if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3549                 policy = oldpolicy = -1;
3550                 task_rq_unlock(rq, &flags);
3551                 goto recheck;
3552         }
3553         array = p->array;
3554         if (array)
3555                 deactivate_task(p, rq);
3556         oldprio = p->prio;
3557         __setscheduler(p, policy, param->sched_priority);
3558         if (array) {
3559                 __activate_task(p, rq);
3560                 /*
3561                  * Reschedule if we are currently running on this runqueue and
3562                  * our priority decreased, or if we are not currently running on
3563                  * this runqueue and our priority is higher than the current's
3564                  */
3565                 if (task_running(rq, p)) {
3566                         if (p->prio > oldprio)
3567                                 resched_task(rq->curr);
3568                 } else if (TASK_PREEMPTS_CURR(p, rq))
3569                         resched_task(rq->curr);
3570         }
3571         task_rq_unlock(rq, &flags);
3572         return 0;
3573 }
3574 EXPORT_SYMBOL_GPL(sched_setscheduler);
3575
3576 static int do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3577 {
3578         int retval;
3579         struct sched_param lparam;
3580         struct task_struct *p;
3581
3582         if (!param || pid < 0)
3583                 return -EINVAL;
3584         if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3585                 return -EFAULT;
3586         read_lock_irq(&tasklist_lock);
3587         p = find_process_by_pid(pid);
3588         if (!p) {
3589                 read_unlock_irq(&tasklist_lock);
3590                 return -ESRCH;
3591         }
3592         retval = sched_setscheduler(p, policy, &lparam);
3593         read_unlock_irq(&tasklist_lock);
3594         return retval;
3595 }
3596
3597 /**
3598  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3599  * @pid: the pid in question.
3600  * @policy: new policy.
3601  * @param: structure containing the new RT priority.
3602  */
3603 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3604                                        struct sched_param __user *param)
3605 {
3606         return do_sched_setscheduler(pid, policy, param);
3607 }
3608
3609 /**
3610  * sys_sched_setparam - set/change the RT priority of a thread
3611  * @pid: the pid in question.
3612  * @param: structure containing the new RT priority.
3613  */
3614 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3615 {
3616         return do_sched_setscheduler(pid, -1, param);
3617 }
3618
3619 /**
3620  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3621  * @pid: the pid in question.
3622  */
3623 asmlinkage long sys_sched_getscheduler(pid_t pid)
3624 {
3625         int retval = -EINVAL;
3626         task_t *p;
3627
3628         if (pid < 0)
3629                 goto out_nounlock;
3630
3631         retval = -ESRCH;
3632         read_lock(&tasklist_lock);
3633         p = find_process_by_pid(pid);
3634         if (p) {
3635                 retval = security_task_getscheduler(p);
3636                 if (!retval)
3637                         retval = p->policy;
3638         }
3639         read_unlock(&tasklist_lock);
3640
3641 out_nounlock:
3642         return retval;
3643 }
3644
3645 /**
3646  * sys_sched_getscheduler - get the RT priority of a thread
3647  * @pid: the pid in question.
3648  * @param: structure containing the RT priority.
3649  */
3650 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3651 {
3652         struct sched_param lp;
3653         int retval = -EINVAL;
3654         task_t *p;
3655
3656         if (!param || pid < 0)
3657                 goto out_nounlock;
3658
3659         read_lock(&tasklist_lock);
3660         p = find_process_by_pid(pid);
3661         retval = -ESRCH;
3662         if (!p)
3663                 goto out_unlock;
3664
3665         retval = security_task_getscheduler(p);
3666         if (retval)
3667                 goto out_unlock;
3668
3669         lp.sched_priority = p->rt_priority;
3670         read_unlock(&tasklist_lock);
3671
3672         /*
3673          * This one might sleep, we cannot do it with a spinlock held ...
3674          */
3675         retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3676
3677 out_nounlock:
3678         return retval;
3679
3680 out_unlock:
3681         read_unlock(&tasklist_lock);
3682         return retval;
3683 }
3684
3685 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3686 {
3687         task_t *p;
3688         int retval;
3689         cpumask_t cpus_allowed;
3690
3691         lock_cpu_hotplug();
3692         read_lock(&tasklist_lock);
3693
3694         p = find_process_by_pid(pid);
3695         if (!p) {
3696                 read_unlock(&tasklist_lock);
3697                 unlock_cpu_hotplug();
3698                 return -ESRCH;
3699         }
3700
3701         /*
3702          * It is not safe to call set_cpus_allowed with the
3703          * tasklist_lock held.  We will bump the task_struct's
3704          * usage count and then drop tasklist_lock.
3705          */
3706         get_task_struct(p);
3707         read_unlock(&tasklist_lock);
3708
3709         retval = -EPERM;
3710         if ((current->euid != p->euid) && (current->euid != p->uid) &&
3711                         !capable(CAP_SYS_NICE))
3712                 goto out_unlock;
3713
3714         cpus_allowed = cpuset_cpus_allowed(p);
3715         cpus_and(new_mask, new_mask, cpus_allowed);
3716         retval = set_cpus_allowed(p, new_mask);
3717
3718 out_unlock:
3719         put_task_struct(p);
3720         unlock_cpu_hotplug();
3721         return retval;
3722 }
3723
3724 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3725                              cpumask_t *new_mask)
3726 {
3727         if (len < sizeof(cpumask_t)) {
3728                 memset(new_mask, 0, sizeof(cpumask_t));
3729         } else if (len > sizeof(cpumask_t)) {
3730                 len = sizeof(cpumask_t);
3731         }
3732         return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3733 }
3734
3735 /**
3736  * sys_sched_setaffinity - set the cpu affinity of a process
3737  * @pid: pid of the process
3738  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3739  * @user_mask_ptr: user-space pointer to the new cpu mask
3740  */
3741 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3742                                       unsigned long __user *user_mask_ptr)
3743 {
3744         cpumask_t new_mask;
3745         int retval;
3746
3747         retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3748         if (retval)
3749                 return retval;
3750
3751         return sched_setaffinity(pid, new_mask);
3752 }
3753
3754 /*
3755  * Represents all cpu's present in the system
3756  * In systems capable of hotplug, this map could dynamically grow
3757  * as new cpu's are detected in the system via any platform specific
3758  * method, such as ACPI for e.g.
3759  */
3760
3761 cpumask_t cpu_present_map;
3762 EXPORT_SYMBOL(cpu_present_map);
3763
3764 #ifndef CONFIG_SMP
3765 cpumask_t cpu_online_map = CPU_MASK_ALL;
3766 cpumask_t cpu_possible_map = CPU_MASK_ALL;
3767 #endif
3768
3769 long sched_getaffinity(pid_t pid, cpumask_t *mask)
3770 {
3771         int retval;
3772         task_t *p;
3773
3774         lock_cpu_hotplug();
3775         read_lock(&tasklist_lock);
3776
3777         retval = -ESRCH;
3778         p = find_process_by_pid(pid);
3779         if (!p)
3780                 goto out_unlock;
3781
3782         retval = 0;
3783         cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
3784
3785 out_unlock:
3786         read_unlock(&tasklist_lock);
3787         unlock_cpu_hotplug();
3788         if (retval)
3789                 return retval;
3790
3791         return 0;
3792 }
3793
3794 /**
3795  * sys_sched_getaffinity - get the cpu affinity of a process
3796  * @pid: pid of the process
3797  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3798  * @user_mask_ptr: user-space pointer to hold the current cpu mask
3799  */
3800 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3801                                       unsigned long __user *user_mask_ptr)
3802 {
3803         int ret;
3804         cpumask_t mask;
3805
3806         if (len < sizeof(cpumask_t))
3807                 return -EINVAL;
3808
3809         ret = sched_getaffinity(pid, &mask);
3810         if (ret < 0)
3811                 return ret;
3812
3813         if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
3814                 return -EFAULT;
3815
3816         return sizeof(cpumask_t);
3817 }
3818
3819 /**
3820  * sys_sched_yield - yield the current processor to other threads.
3821  *
3822  * this function yields the current CPU by moving the calling thread
3823  * to the expired array. If there are no other threads running on this
3824  * CPU then this function will return.
3825  */
3826 asmlinkage long sys_sched_yield(void)
3827 {
3828         runqueue_t *rq = this_rq_lock();
3829         prio_array_t *array = current->array;
3830         prio_array_t *target = rq->expired;
3831
3832         schedstat_inc(rq, yld_cnt);
3833         /*
3834          * We implement yielding by moving the task into the expired
3835          * queue.
3836          *
3837          * (special rule: RT tasks will just roundrobin in the active
3838          *  array.)
3839          */
3840         if (rt_task(current))
3841                 target = rq->active;
3842
3843         if (current->array->nr_active == 1) {
3844                 schedstat_inc(rq, yld_act_empty);
3845                 if (!rq->expired->nr_active)
3846                         schedstat_inc(rq, yld_both_empty);
3847         } else if (!rq->expired->nr_active)
3848                 schedstat_inc(rq, yld_exp_empty);
3849
3850         if (array != target) {
3851                 dequeue_task(current, array);
3852                 enqueue_task(current, target);
3853         } else
3854                 /*
3855                  * requeue_task is cheaper so perform that if possible.
3856                  */
3857                 requeue_task(current, array);
3858
3859         /*
3860          * Since we are going to call schedule() anyway, there's
3861          * no need to preempt or enable interrupts:
3862          */
3863         __release(rq->lock);
3864         _raw_spin_unlock(&rq->lock);
3865         preempt_enable_no_resched();
3866
3867         schedule();
3868
3869         return 0;
3870 }
3871
3872 static inline void __cond_resched(void)
3873 {
3874         do {
3875                 add_preempt_count(PREEMPT_ACTIVE);
3876                 schedule();
3877                 sub_preempt_count(PREEMPT_ACTIVE);
3878         } while (need_resched());
3879 }
3880
3881 int __sched cond_resched(void)
3882 {
3883         if (need_resched()) {
3884                 __cond_resched();
3885                 return 1;
3886         }
3887         return 0;
3888 }
3889
3890 EXPORT_SYMBOL(cond_resched);
3891
3892 /*
3893  * cond_resched_lock() - if a reschedule is pending, drop the given lock,
3894  * call schedule, and on return reacquire the lock.
3895  *
3896  * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
3897  * operations here to prevent schedule() from being called twice (once via
3898  * spin_unlock(), once by hand).
3899  */
3900 int cond_resched_lock(spinlock_t * lock)
3901 {
3902         int ret = 0;
3903
3904         if (need_lockbreak(lock)) {
3905                 spin_unlock(lock);
3906                 cpu_relax();
3907                 ret = 1;
3908                 spin_lock(lock);
3909         }
3910         if (need_resched()) {
3911                 _raw_spin_unlock(lock);
3912                 preempt_enable_no_resched();
3913                 __cond_resched();
3914                 ret = 1;
3915                 spin_lock(lock);
3916         }
3917         return ret;
3918 }
3919
3920 EXPORT_SYMBOL(cond_resched_lock);
3921
3922 int __sched cond_resched_softirq(void)
3923 {
3924         BUG_ON(!in_softirq());
3925
3926         if (need_resched()) {
3927                 __local_bh_enable();
3928                 __cond_resched();
3929                 local_bh_disable();
3930                 return 1;
3931         }
3932         return 0;
3933 }
3934
3935 EXPORT_SYMBOL(cond_resched_softirq);
3936
3937
3938 /**
3939  * yield - yield the current processor to other threads.
3940  *
3941  * this is a shortcut for kernel-space yielding - it marks the
3942  * thread runnable and calls sys_sched_yield().
3943  */
3944 void __sched yield(void)
3945 {
3946         set_current_state(TASK_RUNNING);
3947         sys_sched_yield();
3948 }
3949
3950 EXPORT_SYMBOL(yield);
3951
3952 /*
3953  * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
3954  * that process accounting knows that this is a task in IO wait state.
3955  *
3956  * But don't do that if it is a deliberate, throttling IO wait (this task
3957  * has set its backing_dev_info: the queue against which it should throttle)
3958  */
3959 void __sched io_schedule(void)
3960 {
3961         struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
3962
3963         atomic_inc(&rq->nr_iowait);
3964         schedule();
3965         atomic_dec(&rq->nr_iowait);
3966 }
3967
3968 EXPORT_SYMBOL(io_schedule);
3969
3970 long __sched io_schedule_timeout(long timeout)
3971 {
3972         struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
3973         long ret;
3974
3975         atomic_inc(&rq->nr_iowait);
3976         ret = schedule_timeout(timeout);
3977         atomic_dec(&rq->nr_iowait);
3978         return ret;
3979 }
3980
3981 /**
3982  * sys_sched_get_priority_max - return maximum RT priority.
3983  * @policy: scheduling class.
3984  *
3985  * this syscall returns the maximum rt_priority that can be used
3986  * by a given scheduling class.
3987  */
3988 asmlinkage long sys_sched_get_priority_max(int policy)
3989 {
3990         int ret = -EINVAL;
3991
3992         switch (policy) {
3993         case SCHED_FIFO:
3994         case SCHED_RR:
3995                 ret = MAX_USER_RT_PRIO-1;
3996                 break;
3997         case SCHED_NORMAL:
3998                 ret = 0;
3999                 break;
4000         }
4001         return ret;
4002 }
4003
4004 /**
4005  * sys_sched_get_priority_min - return minimum RT priority.
4006  * @policy: scheduling class.
4007  *
4008  * this syscall returns the minimum rt_priority that can be used
4009  * by a given scheduling class.
4010  */
4011 asmlinkage long sys_sched_get_priority_min(int policy)
4012 {
4013         int ret = -EINVAL;
4014
4015         switch (policy) {
4016         case SCHED_FIFO:
4017         case SCHED_RR:
4018                 ret = 1;
4019                 break;
4020         case SCHED_NORMAL:
4021                 ret = 0;
4022         }
4023         return ret;
4024 }
4025
4026 /**
4027  * sys_sched_rr_get_interval - return the default timeslice of a process.
4028  * @pid: pid of the process.
4029  * @interval: userspace pointer to the timeslice value.
4030  *
4031  * this syscall writes the default timeslice value of a given process
4032  * into the user-space timespec buffer. A value of '0' means infinity.
4033  */
4034 asmlinkage
4035 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4036 {
4037         int retval = -EINVAL;
4038         struct timespec t;
4039         task_t *p;
4040
4041         if (pid < 0)
4042                 goto out_nounlock;
4043
4044         retval = -ESRCH;
4045         read_lock(&tasklist_lock);
4046         p = find_process_by_pid(pid);
4047         if (!p)
4048                 goto out_unlock;
4049
4050         retval = security_task_getscheduler(p);
4051         if (retval)
4052                 goto out_unlock;
4053
4054         jiffies_to_timespec(p->policy & SCHED_FIFO ?
4055                                 0 : task_timeslice(p), &t);
4056         read_unlock(&tasklist_lock);
4057         retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4058 out_nounlock:
4059         return retval;
4060 out_unlock:
4061         read_unlock(&tasklist_lock);
4062         return retval;
4063 }
4064
4065 static inline struct task_struct *eldest_child(struct task_struct *p)
4066 {
4067         if (list_empty(&p->children)) return NULL;
4068         return list_entry(p->children.next,struct task_struct,sibling);
4069 }
4070
4071 static inline struct task_struct *older_sibling(struct task_struct *p)
4072 {
4073         if (p->sibling.prev==&p->parent->children) return NULL;
4074         return list_entry(p->sibling.prev,struct task_struct,sibling);
4075 }
4076
4077 static inline struct task_struct *younger_sibling(struct task_struct *p)
4078 {
4079         if (p->sibling.next==&p->parent->children) return NULL;
4080         return list_entry(p->sibling.next,struct task_struct,sibling);
4081 }
4082
4083 static void show_task(task_t * p)
4084 {
4085         task_t *relative;
4086         unsigned state;
4087         unsigned long free = 0;
4088         static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4089
4090         printk("%-13.13s ", p->comm);
4091         state = p->state ? __ffs(p->state) + 1 : 0;
4092         if (state < ARRAY_SIZE(stat_nam))
4093                 printk(stat_nam[state]);
4094         else
4095                 printk("?");
4096 #if (BITS_PER_LONG == 32)
4097         if (state == TASK_RUNNING)
4098                 printk(" running ");
4099         else
4100                 printk(" %08lX ", thread_saved_pc(p));
4101 #else
4102         if (state == TASK_RUNNING)
4103                 printk("  running task   ");
4104         else
4105                 printk(" %016lx ", thread_saved_pc(p));
4106 #endif
4107 #ifdef CONFIG_DEBUG_STACK_USAGE
4108         {
4109                 unsigned long * n = (unsigned long *) (p->thread_info+1);
4110                 while (!*n)
4111                         n++;
4112                 free = (unsigned long) n - (unsigned long)(p->thread_info+1);
4113         }
4114 #endif
4115         printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4116         if ((relative = eldest_child(p)))
4117                 printk("%5d ", relative->pid);
4118         else
4119                 printk("      ");
4120         if ((relative = younger_sibling(p)))
4121                 printk("%7d", relative->pid);
4122         else
4123                 printk("       ");
4124         if ((relative = older_sibling(p)))
4125                 printk(" %5d", relative->pid);
4126         else
4127                 printk("      ");
4128         if (!p->mm)
4129                 printk(" (L-TLB)\n");
4130         else
4131                 printk(" (NOTLB)\n");
4132
4133         if (state != TASK_RUNNING)
4134                 show_stack(p, NULL);
4135 }
4136
4137 void show_state(void)
4138 {
4139         task_t *g, *p;
4140
4141 #if (BITS_PER_LONG == 32)
4142         printk("\n"
4143                "                                               sibling\n");
4144         printk("  task             PC      pid father child younger older\n");
4145 #else
4146         printk("\n"
4147                "                                                       sibling\n");
4148         printk("  task                 PC          pid father child younger older\n");
4149 #endif
4150         read_lock(&tasklist_lock);
4151         do_each_thread(g, p) {
4152                 /*
4153                  * reset the NMI-timeout, listing all files on a slow
4154                  * console might take alot of time:
4155                  */
4156                 touch_nmi_watchdog();
4157                 show_task(p);
4158         } while_each_thread(g, p);
4159
4160         read_unlock(&tasklist_lock);
4161 }
4162
4163 void __devinit init_idle(task_t *idle, int cpu)
4164 {
4165         runqueue_t *rq = cpu_rq(cpu);
4166         unsigned long flags;
4167
4168         idle->sleep_avg = 0;
4169         idle->array = NULL;
4170         idle->prio = MAX_PRIO;
4171         idle->state = TASK_RUNNING;
4172         idle->cpus_allowed = cpumask_of_cpu(cpu);
4173         set_task_cpu(idle, cpu);
4174
4175         spin_lock_irqsave(&rq->lock, flags);
4176         rq->curr = rq->idle = idle;
4177 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4178         idle->oncpu = 1;
4179 #endif
4180         set_tsk_need_resched(idle);
4181         spin_unlock_irqrestore(&rq->lock, flags);
4182
4183         /* Set the preempt count _outside_ the spinlocks! */
4184 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4185         idle->thread_info->preempt_count = (idle->lock_depth >= 0);
4186 #else
4187         idle->thread_info->preempt_count = 0;
4188 #endif
4189 }
4190
4191 /*
4192  * In a system that switches off the HZ timer nohz_cpu_mask
4193  * indicates which cpus entered this state. This is used
4194  * in the rcu update to wait only for active cpus. For system
4195  * which do not switch off the HZ timer nohz_cpu_mask should
4196  * always be CPU_MASK_NONE.
4197  */
4198 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4199
4200 #ifdef CONFIG_SMP
4201 /*
4202  * This is how migration works:
4203  *
4204  * 1) we queue a migration_req_t structure in the source CPU's
4205  *    runqueue and wake up that CPU's migration thread.
4206  * 2) we down() the locked semaphore => thread blocks.
4207  * 3) migration thread wakes up (implicitly it forces the migrated
4208  *    thread off the CPU)
4209  * 4) it gets the migration request and checks whether the migrated
4210  *    task is still in the wrong runqueue.
4211  * 5) if it's in the wrong runqueue then the migration thread removes
4212  *    it and puts it into the right queue.
4213  * 6) migration thread up()s the semaphore.
4214  * 7) we wake up and the migration is done.
4215  */
4216
4217 /*
4218  * Change a given task's CPU affinity. Migrate the thread to a
4219  * proper CPU and schedule it away if the CPU it's executing on
4220  * is removed from the allowed bitmask.
4221  *
4222  * NOTE: the caller must have a valid reference to the task, the
4223  * task must not exit() & deallocate itself prematurely.  The
4224  * call is not atomic; no spinlocks may be held.
4225  */
4226 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4227 {
4228         unsigned long flags;
4229         int ret = 0;
4230         migration_req_t req;
4231         runqueue_t *rq;
4232
4233         rq = task_rq_lock(p, &flags);
4234         if (!cpus_intersects(new_mask, cpu_online_map)) {
4235                 ret = -EINVAL;
4236                 goto out;
4237         }
4238
4239         p->cpus_allowed = new_mask;
4240         /* Can the task run on the task's current CPU? If so, we're done */
4241         if (cpu_isset(task_cpu(p), new_mask))
4242                 goto out;
4243
4244         if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4245                 /* Need help from migration thread: drop lock and wait. */
4246                 task_rq_unlock(rq, &flags);
4247                 wake_up_process(rq->migration_thread);
4248                 wait_for_completion(&req.done);
4249                 tlb_migrate_finish(p->mm);
4250                 return 0;
4251         }
4252 out:
4253         task_rq_unlock(rq, &flags);
4254         return ret;
4255 }
4256
4257 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4258
4259 /*
4260  * Move (not current) task off this cpu, onto dest cpu.  We're doing
4261  * this because either it can't run here any more (set_cpus_allowed()
4262  * away from this CPU, or CPU going down), or because we're
4263  * attempting to rebalance this task on exec (sched_exec).
4264  *
4265  * So we race with normal scheduler movements, but that's OK, as long
4266  * as the task is no longer on this CPU.
4267  */
4268 static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4269 {
4270         runqueue_t *rq_dest, *rq_src;
4271
4272         if (unlikely(cpu_is_offline(dest_cpu)))
4273                 return;
4274
4275         rq_src = cpu_rq(src_cpu);
4276         rq_dest = cpu_rq(dest_cpu);
4277
4278         double_rq_lock(rq_src, rq_dest);
4279         /* Already moved. */
4280         if (task_cpu(p) != src_cpu)
4281                 goto out;
4282         /* Affinity changed (again). */
4283         if (!cpu_isset(dest_cpu, p->cpus_allowed))
4284                 goto out;
4285
4286         set_task_cpu(p, dest_cpu);
4287         if (p->array) {
4288                 /*
4289                  * Sync timestamp with rq_dest's before activating.
4290                  * The same thing could be achieved by doing this step
4291                  * afterwards, and pretending it was a local activate.
4292                  * This way is cleaner and logically correct.
4293                  */
4294                 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4295                                 + rq_dest->timestamp_last_tick;
4296                 deactivate_task(p, rq_src);
4297                 activate_task(p, rq_dest, 0);
4298                 if (TASK_PREEMPTS_CURR(p, rq_dest))
4299                         resched_task(rq_dest->curr);
4300         }
4301
4302 out:
4303         double_rq_unlock(rq_src, rq_dest);
4304 }
4305
4306 /*
4307  * migration_thread - this is a highprio system thread that performs
4308  * thread migration by bumping thread off CPU then 'pushing' onto
4309  * another runqueue.
4310  */
4311 static int migration_thread(void * data)
4312 {
4313         runqueue_t *rq;
4314         int cpu = (long)data;
4315
4316         rq = cpu_rq(cpu);
4317         BUG_ON(rq->migration_thread != current);
4318
4319         set_current_state(TASK_INTERRUPTIBLE);
4320         while (!kthread_should_stop()) {
4321                 struct list_head *head;
4322                 migration_req_t *req;
4323
4324                 if (current->flags & PF_FREEZE)
4325                         refrigerator(PF_FREEZE);
4326
4327                 spin_lock_irq(&rq->lock);
4328
4329                 if (cpu_is_offline(cpu)) {
4330                         spin_unlock_irq(&rq->lock);
4331                         goto wait_to_die;
4332                 }
4333
4334                 if (rq->active_balance) {
4335                         active_load_balance(rq, cpu);
4336                         rq->active_balance = 0;
4337                 }
4338
4339                 head = &rq->migration_queue;
4340
4341                 if (list_empty(head)) {
4342                         spin_unlock_irq(&rq->lock);
4343                         schedule();
4344                         set_current_state(TASK_INTERRUPTIBLE);
4345                         continue;
4346                 }
4347                 req = list_entry(head->next, migration_req_t, list);
4348                 list_del_init(head->next);
4349
4350                 if (req->type == REQ_MOVE_TASK) {
4351                         spin_unlock(&rq->lock);
4352                         __migrate_task(req->task, cpu, req->dest_cpu);
4353                         local_irq_enable();
4354                 } else if (req->type == REQ_SET_DOMAIN) {
4355                         rq->sd = req->sd;
4356                         spin_unlock_irq(&rq->lock);
4357                 } else {
4358                         spin_unlock_irq(&rq->lock);
4359                         WARN_ON(1);
4360                 }
4361
4362                 complete(&req->done);
4363         }
4364         __set_current_state(TASK_RUNNING);
4365         return 0;
4366
4367 wait_to_die:
4368         /* Wait for kthread_stop */
4369         set_current_state(TASK_INTERRUPTIBLE);
4370         while (!kthread_should_stop()) {
4371                 schedule();
4372                 set_current_state(TASK_INTERRUPTIBLE);
4373         }
4374         __set_current_state(TASK_RUNNING);
4375         return 0;
4376 }
4377
4378 #ifdef CONFIG_HOTPLUG_CPU
4379 /* Figure out where task on dead CPU should go, use force if neccessary. */
4380 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4381 {
4382         int dest_cpu;
4383         cpumask_t mask;
4384
4385         /* On same node? */
4386         mask = node_to_cpumask(cpu_to_node(dead_cpu));
4387         cpus_and(mask, mask, tsk->cpus_allowed);
4388         dest_cpu = any_online_cpu(mask);
4389
4390         /* On any allowed CPU? */
4391         if (dest_cpu == NR_CPUS)
4392                 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4393
4394         /* No more Mr. Nice Guy. */
4395         if (dest_cpu == NR_CPUS) {
4396                 cpus_setall(tsk->cpus_allowed);
4397                 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4398
4399                 /*
4400                  * Don't tell them about moving exiting tasks or
4401                  * kernel threads (both mm NULL), since they never
4402                  * leave kernel.
4403                  */
4404                 if (tsk->mm && printk_ratelimit())
4405                         printk(KERN_INFO "process %d (%s) no "
4406                                "longer affine to cpu%d\n",
4407                                tsk->pid, tsk->comm, dead_cpu);
4408         }
4409         __migrate_task(tsk, dead_cpu, dest_cpu);
4410 }
4411
4412 /*
4413  * While a dead CPU has no uninterruptible tasks queued at this point,
4414  * it might still have a nonzero ->nr_uninterruptible counter, because
4415  * for performance reasons the counter is not stricly tracking tasks to
4416  * their home CPUs. So we just add the counter to another CPU's counter,
4417  * to keep the global sum constant after CPU-down:
4418  */
4419 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4420 {
4421         runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4422         unsigned long flags;
4423
4424         local_irq_save(flags);
4425         double_rq_lock(rq_src, rq_dest);
4426         rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4427         rq_src->nr_uninterruptible = 0;
4428         double_rq_unlock(rq_src, rq_dest);
4429         local_irq_restore(flags);
4430 }
4431
4432 /* Run through task list and migrate tasks from the dead cpu. */
4433 static void migrate_live_tasks(int src_cpu)
4434 {
4435         struct task_struct *tsk, *t;
4436
4437         write_lock_irq(&tasklist_lock);
4438
4439         do_each_thread(t, tsk) {
4440                 if (tsk == current)
4441                         continue;
4442
4443                 if (task_cpu(tsk) == src_cpu)
4444                         move_task_off_dead_cpu(src_cpu, tsk);
4445         } while_each_thread(t, tsk);
4446
4447         write_unlock_irq(&tasklist_lock);
4448 }
4449
4450 /* Schedules idle task to be the next runnable task on current CPU.
4451  * It does so by boosting its priority to highest possible and adding it to
4452  * the _front_ of runqueue. Used by CPU offline code.
4453  */
4454 void sched_idle_next(void)
4455 {
4456         int cpu = smp_processor_id();
4457         runqueue_t *rq = this_rq();
4458         struct task_struct *p = rq->idle;
4459         unsigned long flags;
4460
4461         /* cpu has to be offline */
4462         BUG_ON(cpu_online(cpu));
4463
4464         /* Strictly not necessary since rest of the CPUs are stopped by now
4465          * and interrupts disabled on current cpu.
4466          */
4467         spin_lock_irqsave(&rq->lock, flags);
4468
4469         __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4470         /* Add idle task to _front_ of it's priority queue */
4471         __activate_idle_task(p, rq);
4472
4473         spin_unlock_irqrestore(&rq->lock, flags);
4474 }
4475
4476 /* Ensures that the idle task is using init_mm right before its cpu goes
4477  * offline.
4478  */
4479 void idle_task_exit(void)
4480 {
4481         struct mm_struct *mm = current->active_mm;
4482
4483         BUG_ON(cpu_online(smp_processor_id()));
4484
4485         if (mm != &init_mm)
4486                 switch_mm(mm, &init_mm, current);
4487         mmdrop(mm);
4488 }
4489
4490 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4491 {
4492         struct runqueue *rq = cpu_rq(dead_cpu);
4493
4494         /* Must be exiting, otherwise would be on tasklist. */
4495         BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4496
4497         /* Cannot have done final schedule yet: would have vanished. */
4498         BUG_ON(tsk->flags & PF_DEAD);
4499
4500         get_task_struct(tsk);
4501
4502         /*
4503          * Drop lock around migration; if someone else moves it,
4504          * that's OK.  No task can be added to this CPU, so iteration is
4505          * fine.
4506          */
4507         spin_unlock_irq(&rq->lock);
4508         move_task_off_dead_cpu(dead_cpu, tsk);
4509         spin_lock_irq(&rq->lock);
4510
4511         put_task_struct(tsk);
4512 }
4513
4514 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4515 static void migrate_dead_tasks(unsigned int dead_cpu)
4516 {
4517         unsigned arr, i;
4518         struct runqueue *rq = cpu_rq(dead_cpu);
4519
4520         for (arr = 0; arr < 2; arr++) {
4521                 for (i = 0; i < MAX_PRIO; i++) {
4522                         struct list_head *list = &rq->arrays[arr].queue[i];
4523                         while (!list_empty(list))
4524                                 migrate_dead(dead_cpu,
4525                                              list_entry(list->next, task_t,
4526                                                         run_list));
4527                 }
4528         }
4529 }
4530 #endif /* CONFIG_HOTPLUG_CPU */
4531
4532 /*
4533  * migration_call - callback that gets triggered when a CPU is added.
4534  * Here we can start up the necessary migration thread for the new CPU.
4535  */
4536 static int migration_call(struct notifier_block *nfb, unsigned long action,
4537                           void *hcpu)
4538 {
4539         int cpu = (long)hcpu;
4540         struct task_struct *p;
4541         struct runqueue *rq;
4542         unsigned long flags;
4543
4544         switch (action) {
4545         case CPU_UP_PREPARE:
4546                 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4547                 if (IS_ERR(p))
4548                         return NOTIFY_BAD;
4549                 p->flags |= PF_NOFREEZE;
4550                 kthread_bind(p, cpu);
4551                 /* Must be high prio: stop_machine expects to yield to it. */
4552                 rq = task_rq_lock(p, &flags);
4553                 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4554                 task_rq_unlock(rq, &flags);
4555                 cpu_rq(cpu)->migration_thread = p;
4556                 break;
4557         case CPU_ONLINE:
4558                 /* Strictly unneccessary, as first user will wake it. */
4559                 wake_up_process(cpu_rq(cpu)->migration_thread);
4560                 break;
4561 #ifdef CONFIG_HOTPLUG_CPU
4562         case CPU_UP_CANCELED:
4563                 /* Unbind it from offline cpu so it can run.  Fall thru. */
4564                 kthread_bind(cpu_rq(cpu)->migration_thread,smp_processor_id());
4565                 kthread_stop(cpu_rq(cpu)->migration_thread);
4566                 cpu_rq(cpu)->migration_thread = NULL;
4567                 break;
4568         case CPU_DEAD:
4569                 migrate_live_tasks(cpu);
4570                 rq = cpu_rq(cpu);
4571                 kthread_stop(rq->migration_thread);
4572                 rq->migration_thread = NULL;
4573                 /* Idle task back to normal (off runqueue, low prio) */
4574                 rq = task_rq_lock(rq->idle, &flags);
4575                 deactivate_task(rq->idle, rq);
4576                 rq->idle->static_prio = MAX_PRIO;
4577                 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4578                 migrate_dead_tasks(cpu);
4579                 task_rq_unlock(rq, &flags);
4580                 migrate_nr_uninterruptible(rq);
4581                 BUG_ON(rq->nr_running != 0);
4582
4583                 /* No need to migrate the tasks: it was best-effort if
4584                  * they didn't do lock_cpu_hotplug().  Just wake up
4585                  * the requestors. */
4586                 spin_lock_irq(&rq->lock);
4587                 while (!list_empty(&rq->migration_queue)) {
4588                         migration_req_t *req;
4589                         req = list_entry(rq->migration_queue.next,
4590                                          migration_req_t, list);
4591                         BUG_ON(req->type != REQ_MOVE_TASK);
4592                         list_del_init(&req->list);
4593                         complete(&req->done);
4594                 }
4595                 spin_unlock_irq(&rq->lock);
4596                 break;
4597 #endif
4598         }
4599         return NOTIFY_OK;
4600 }
4601
4602 /* Register at highest priority so that task migration (migrate_all_tasks)
4603  * happens before everything else.
4604  */
4605 static struct notifier_block __devinitdata migration_notifier = {
4606         .notifier_call = migration_call,
4607         .priority = 10
4608 };
4609
4610 int __init migration_init(void)
4611 {
4612         void *cpu = (void *)(long)smp_processor_id();
4613         /* Start one for boot CPU. */
4614         migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4615         migration_call(&migration_notifier, CPU_ONLINE, cpu);
4616         register_cpu_notifier(&migration_notifier);
4617         return 0;
4618 }
4619 #endif
4620
4621 #ifdef CONFIG_SMP
4622 #define SCHED_DOMAIN_DEBUG
4623 #ifdef SCHED_DOMAIN_DEBUG
4624 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4625 {
4626         int level = 0;
4627
4628         if (!sd) {
4629                 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4630                 return;
4631         }
4632
4633         printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4634
4635         do {
4636                 int i;
4637                 char str[NR_CPUS];
4638                 struct sched_group *group = sd->groups;
4639                 cpumask_t groupmask;
4640
4641                 cpumask_scnprintf(str, NR_CPUS, sd->span);
4642                 cpus_clear(groupmask);
4643
4644                 printk(KERN_DEBUG);
4645                 for (i = 0; i < level + 1; i++)
4646                         printk(" ");
4647                 printk("domain %d: ", level);
4648
4649                 if (!(sd->flags & SD_LOAD_BALANCE)) {
4650                         printk("does not load-balance\n");
4651                         if (sd->parent)
4652                                 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4653                         break;
4654                 }
4655
4656                 printk("span %s\n", str);
4657
4658                 if (!cpu_isset(cpu, sd->span))
4659                         printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4660                 if (!cpu_isset(cpu, group->cpumask))
4661                         printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4662
4663                 printk(KERN_DEBUG);
4664                 for (i = 0; i < level + 2; i++)
4665                         printk(" ");
4666                 printk("groups:");
4667                 do {
4668                         if (!group) {
4669                                 printk("\n");
4670                                 printk(KERN_ERR "ERROR: group is NULL\n");
4671                                 break;
4672                         }
4673
4674                         if (!group->cpu_power) {
4675                                 printk("\n");
4676                                 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4677                         }
4678
4679                         if (!cpus_weight(group->cpumask)) {
4680                                 printk("\n");
4681                                 printk(KERN_ERR "ERROR: empty group\n");
4682                         }
4683
4684                         if (cpus_intersects(groupmask, group->cpumask)) {
4685                                 printk("\n");
4686                                 printk(KERN_ERR "ERROR: repeated CPUs\n");
4687                         }
4688
4689                         cpus_or(groupmask, groupmask, group->cpumask);
4690
4691                         cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4692                         printk(" %s", str);
4693
4694                         group = group->next;
4695                 } while (group != sd->groups);
4696                 printk("\n");
4697
4698                 if (!cpus_equal(sd->span, groupmask))
4699                         printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4700
4701                 level++;
4702                 sd = sd->parent;
4703
4704                 if (sd) {
4705                         if (!cpus_subset(groupmask, sd->span))
4706                                 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4707                 }
4708
4709         } while (sd);
4710 }
4711 #else
4712 #define sched_domain_debug(sd, cpu) {}
4713 #endif
4714
4715 static int __devinit sd_degenerate(struct sched_domain *sd)
4716 {
4717         if (cpus_weight(sd->span) == 1)
4718                 return 1;
4719
4720         /* Following flags need at least 2 groups */
4721         if (sd->flags & (SD_LOAD_BALANCE |
4722                          SD_BALANCE_NEWIDLE |
4723                          SD_BALANCE_FORK |
4724                          SD_BALANCE_EXEC)) {
4725                 if (sd->groups != sd->groups->next)
4726                         return 0;
4727         }
4728
4729         /* Following flags don't use groups */
4730         if (sd->flags & (SD_WAKE_IDLE |
4731                          SD_WAKE_AFFINE |
4732                          SD_WAKE_BALANCE))
4733                 return 0;
4734
4735         return 1;
4736 }
4737
4738 static int __devinit sd_parent_degenerate(struct sched_domain *sd,
4739                                                 struct sched_domain *parent)
4740 {
4741         unsigned long cflags = sd->flags, pflags = parent->flags;
4742
4743         if (sd_degenerate(parent))
4744                 return 1;
4745
4746         if (!cpus_equal(sd->span, parent->span))
4747                 return 0;
4748
4749         /* Does parent contain flags not in child? */
4750         /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4751         if (cflags & SD_WAKE_AFFINE)
4752                 pflags &= ~SD_WAKE_BALANCE;
4753         /* Flags needing groups don't count if only 1 group in parent */
4754         if (parent->groups == parent->groups->next) {
4755                 pflags &= ~(SD_LOAD_BALANCE |
4756                                 SD_BALANCE_NEWIDLE |
4757                                 SD_BALANCE_FORK |
4758                                 SD_BALANCE_EXEC);
4759         }
4760         if (~cflags & pflags)
4761                 return 0;
4762
4763         return 1;
4764 }
4765
4766 /*
4767  * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
4768  * hold the hotplug lock.
4769  */
4770 void __devinit cpu_attach_domain(struct sched_domain *sd, int cpu)
4771 {
4772         migration_req_t req;
4773         unsigned long flags;
4774         runqueue_t *rq = cpu_rq(cpu);
4775         int local = 1;
4776         struct sched_domain *tmp;
4777
4778         /* Remove the sched domains which do not contribute to scheduling. */
4779         for (tmp = sd; tmp; tmp = tmp->parent) {
4780                 struct sched_domain *parent = tmp->parent;
4781                 if (!parent)
4782                         break;
4783                 if (sd_parent_degenerate(tmp, parent))
4784                         tmp->parent = parent->parent;
4785         }
4786
4787         if (sd && sd_degenerate(sd))
4788                 sd = sd->parent;
4789
4790         sched_domain_debug(sd, cpu);
4791
4792         spin_lock_irqsave(&rq->lock, flags);
4793
4794         if (cpu == smp_processor_id() || !cpu_online(cpu)) {
4795                 rq->sd = sd;
4796         } else {
4797                 init_completion(&req.done);
4798                 req.type = REQ_SET_DOMAIN;
4799                 req.sd = sd;
4800                 list_add(&req.list, &rq->migration_queue);
4801                 local = 0;
4802         }
4803
4804         spin_unlock_irqrestore(&rq->lock, flags);
4805
4806         if (!local) {
4807                 wake_up_process(rq->migration_thread);
4808                 wait_for_completion(&req.done);
4809         }
4810 }
4811
4812 /* cpus with isolated domains */
4813 cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
4814
4815 /* Setup the mask of cpus configured for isolated domains */
4816 static int __init isolated_cpu_setup(char *str)
4817 {
4818         int ints[NR_CPUS], i;
4819
4820         str = get_options(str, ARRAY_SIZE(ints), ints);
4821         cpus_clear(cpu_isolated_map);
4822         for (i = 1; i <= ints[0]; i++)
4823                 if (ints[i] < NR_CPUS)
4824                         cpu_set(ints[i], cpu_isolated_map);
4825         return 1;
4826 }
4827
4828 __setup ("isolcpus=", isolated_cpu_setup);
4829
4830 /*
4831  * init_sched_build_groups takes an array of groups, the cpumask we wish
4832  * to span, and a pointer to a function which identifies what group a CPU
4833  * belongs to. The return value of group_fn must be a valid index into the
4834  * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
4835  * keep track of groups covered with a cpumask_t).
4836  *
4837  * init_sched_build_groups will build a circular linked list of the groups
4838  * covered by the given span, and will set each group's ->cpumask correctly,
4839  * and ->cpu_power to 0.
4840  */
4841 void __devinit init_sched_build_groups(struct sched_group groups[],
4842                         cpumask_t span, int (*group_fn)(int cpu))
4843 {
4844         struct sched_group *first = NULL, *last = NULL;
4845         cpumask_t covered = CPU_MASK_NONE;
4846         int i;
4847
4848         for_each_cpu_mask(i, span) {
4849                 int group = group_fn(i);
4850                 struct sched_group *sg = &groups[group];
4851                 int j;
4852
4853                 if (cpu_isset(i, covered))
4854                         continue;
4855
4856                 sg->cpumask = CPU_MASK_NONE;
4857                 sg->cpu_power = 0;
4858
4859                 for_each_cpu_mask(j, span) {
4860                         if (group_fn(j) != group)
4861                                 continue;
4862
4863                         cpu_set(j, covered);
4864                         cpu_set(j, sg->cpumask);
4865                 }
4866                 if (!first)
4867                         first = sg;
4868                 if (last)
4869                         last->next = sg;
4870                 last = sg;
4871         }
4872         last->next = first;
4873 }
4874
4875
4876 #ifdef ARCH_HAS_SCHED_DOMAIN
4877 extern void __devinit arch_init_sched_domains(void);
4878 extern void __devinit arch_destroy_sched_domains(void);
4879 #else
4880 #ifdef CONFIG_SCHED_SMT
4881 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
4882 static struct sched_group sched_group_cpus[NR_CPUS];
4883 static int __devinit cpu_to_cpu_group(int cpu)
4884 {
4885         return cpu;
4886 }
4887 #endif
4888
4889 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
4890 static struct sched_group sched_group_phys[NR_CPUS];
4891 static int __devinit cpu_to_phys_group(int cpu)
4892 {
4893 #ifdef CONFIG_SCHED_SMT
4894         return first_cpu(cpu_sibling_map[cpu]);
4895 #else
4896         return cpu;
4897 #endif
4898 }
4899
4900 #ifdef CONFIG_NUMA
4901
4902 static DEFINE_PER_CPU(struct sched_domain, node_domains);
4903 static struct sched_group sched_group_nodes[MAX_NUMNODES];
4904 static int __devinit cpu_to_node_group(int cpu)
4905 {
4906         return cpu_to_node(cpu);
4907 }
4908 #endif
4909
4910 #if defined(CONFIG_SCHED_SMT) && defined(CONFIG_NUMA)
4911 /*
4912  * The domains setup code relies on siblings not spanning
4913  * multiple nodes. Make sure the architecture has a proper
4914  * siblings map:
4915  */
4916 static void check_sibling_maps(void)
4917 {
4918         int i, j;
4919
4920         for_each_online_cpu(i) {
4921                 for_each_cpu_mask(j, cpu_sibling_map[i]) {
4922                         if (cpu_to_node(i) != cpu_to_node(j)) {
4923                                 printk(KERN_INFO "warning: CPU %d siblings map "
4924                                         "to different node - isolating "
4925                                         "them.\n", i);
4926                                 cpu_sibling_map[i] = cpumask_of_cpu(i);
4927                                 break;
4928                         }
4929                 }
4930         }
4931 }
4932 #endif
4933
4934 /*
4935  * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
4936  */
4937 static void __devinit arch_init_sched_domains(void)
4938 {
4939         int i;
4940         cpumask_t cpu_default_map;
4941
4942 #if defined(CONFIG_SCHED_SMT) && defined(CONFIG_NUMA)
4943         check_sibling_maps();
4944 #endif
4945         /*
4946          * Setup mask for cpus without special case scheduling requirements.
4947          * For now this just excludes isolated cpus, but could be used to
4948          * exclude other special cases in the future.
4949          */
4950         cpus_complement(cpu_default_map, cpu_isolated_map);
4951         cpus_and(cpu_default_map, cpu_default_map, cpu_online_map);
4952
4953         /*
4954          * Set up domains. Isolated domains just stay on the NULL domain.
4955          */
4956         for_each_cpu_mask(i, cpu_default_map) {
4957                 int group;
4958                 struct sched_domain *sd = NULL, *p;
4959                 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
4960
4961                 cpus_and(nodemask, nodemask, cpu_default_map);
4962
4963 #ifdef CONFIG_NUMA
4964                 sd = &per_cpu(node_domains, i);
4965                 group = cpu_to_node_group(i);
4966                 *sd = SD_NODE_INIT;
4967                 sd->span = cpu_default_map;
4968                 sd->groups = &sched_group_nodes[group];
4969 #endif
4970
4971                 p = sd;
4972                 sd = &per_cpu(phys_domains, i);
4973                 group = cpu_to_phys_group(i);
4974                 *sd = SD_CPU_INIT;
4975                 sd->span = nodemask;
4976                 sd->parent = p;
4977                 sd->groups = &sched_group_phys[group];
4978
4979 #ifdef CONFIG_SCHED_SMT
4980                 p = sd;
4981                 sd = &per_cpu(cpu_domains, i);
4982                 group = cpu_to_cpu_group(i);
4983                 *sd = SD_SIBLING_INIT;
4984                 sd->span = cpu_sibling_map[i];
4985                 cpus_and(sd->span, sd->span, cpu_default_map);
4986                 sd->parent = p;
4987                 sd->groups = &sched_group_cpus[group];
4988 #endif
4989         }
4990
4991 #ifdef CONFIG_SCHED_SMT
4992         /* Set up CPU (sibling) groups */
4993         for_each_online_cpu(i) {
4994                 cpumask_t this_sibling_map = cpu_sibling_map[i];
4995                 cpus_and(this_sibling_map, this_sibling_map, cpu_default_map);
4996                 if (i != first_cpu(this_sibling_map))
4997                         continue;
4998
4999                 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5000                                                 &cpu_to_cpu_group);
5001         }
5002 #endif
5003
5004         /* Set up physical groups */
5005         for (i = 0; i < MAX_NUMNODES; i++) {
5006                 cpumask_t nodemask = node_to_cpumask(i);
5007
5008                 cpus_and(nodemask, nodemask, cpu_default_map);
5009                 if (cpus_empty(nodemask))
5010                         continue;
5011
5012                 init_sched_build_groups(sched_group_phys, nodemask,
5013                                                 &cpu_to_phys_group);
5014         }
5015
5016 #ifdef CONFIG_NUMA
5017         /* Set up node groups */
5018         init_sched_build_groups(sched_group_nodes, cpu_default_map,
5019                                         &cpu_to_node_group);
5020 #endif
5021
5022         /* Calculate CPU power for physical packages and nodes */
5023         for_each_cpu_mask(i, cpu_default_map) {
5024                 int power;
5025                 struct sched_domain *sd;
5026 #ifdef CONFIG_SCHED_SMT
5027                 sd = &per_cpu(cpu_domains, i);
5028                 power = SCHED_LOAD_SCALE;
5029                 sd->groups->cpu_power = power;
5030 #endif
5031
5032                 sd = &per_cpu(phys_domains, i);
5033                 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5034                                 (cpus_weight(sd->groups->cpumask)-1) / 10;
5035                 sd->groups->cpu_power = power;
5036
5037 #ifdef CONFIG_NUMA
5038                 if (i == first_cpu(sd->groups->cpumask)) {
5039                         /* Only add "power" once for each physical package. */
5040                         sd = &per_cpu(node_domains, i);
5041                         sd->groups->cpu_power += power;
5042                 }
5043 #endif
5044         }
5045
5046         /* Attach the domains */
5047         for_each_online_cpu(i) {
5048                 struct sched_domain *sd;
5049 #ifdef CONFIG_SCHED_SMT
5050                 sd = &per_cpu(cpu_domains, i);
5051 #else
5052                 sd = &per_cpu(phys_domains, i);
5053 #endif
5054                 cpu_attach_domain(sd, i);
5055         }
5056 }
5057
5058 #ifdef CONFIG_HOTPLUG_CPU
5059 static void __devinit arch_destroy_sched_domains(void)
5060 {
5061         /* Do nothing: everything is statically allocated. */
5062 }
5063 #endif
5064
5065 #endif /* ARCH_HAS_SCHED_DOMAIN */
5066
5067 #ifdef CONFIG_HOTPLUG_CPU
5068 /*
5069  * Force a reinitialization of the sched domains hierarchy.  The domains
5070  * and groups cannot be updated in place without racing with the balancing
5071  * code, so we temporarily attach all running cpus to the NULL domain
5072  * which will prevent rebalancing while the sched domains are recalculated.
5073  */
5074 static int update_sched_domains(struct notifier_block *nfb,
5075                                 unsigned long action, void *hcpu)
5076 {
5077         int i;
5078
5079         switch (action) {
5080         case CPU_UP_PREPARE:
5081         case CPU_DOWN_PREPARE:
5082                 for_each_online_cpu(i)
5083                         cpu_attach_domain(NULL, i);
5084                 arch_destroy_sched_domains();
5085                 return NOTIFY_OK;
5086
5087         case CPU_UP_CANCELED:
5088         case CPU_DOWN_FAILED:
5089         case CPU_ONLINE:
5090         case CPU_DEAD:
5091                 /*
5092                  * Fall through and re-initialise the domains.
5093                  */
5094                 break;
5095         default:
5096                 return NOTIFY_DONE;
5097         }
5098
5099         /* The hotplug lock is already held by cpu_up/cpu_down */
5100         arch_init_sched_domains();
5101
5102         return NOTIFY_OK;
5103 }
5104 #endif
5105
5106 void __init sched_init_smp(void)
5107 {
5108         lock_cpu_hotplug();
5109         arch_init_sched_domains();
5110         unlock_cpu_hotplug();
5111         /* XXX: Theoretical race here - CPU may be hotplugged now */
5112         hotcpu_notifier(update_sched_domains, 0);
5113 }
5114 #else
5115 void __init sched_init_smp(void)
5116 {
5117 }
5118 #endif /* CONFIG_SMP */
5119
5120 int in_sched_functions(unsigned long addr)
5121 {
5122         /* Linker adds these: start and end of __sched functions */
5123         extern char __sched_text_start[], __sched_text_end[];
5124         return in_lock_functions(addr) ||
5125                 (addr >= (unsigned long)__sched_text_start
5126                 && addr < (unsigned long)__sched_text_end);
5127 }
5128
5129 void __init sched_init(void)
5130 {
5131         runqueue_t *rq;
5132         int i, j, k;
5133
5134         for (i = 0; i < NR_CPUS; i++) {
5135                 prio_array_t *array;
5136
5137                 rq = cpu_rq(i);
5138                 spin_lock_init(&rq->lock);
5139                 rq->nr_running = 0;
5140                 rq->active = rq->arrays;
5141                 rq->expired = rq->arrays + 1;
5142                 rq->best_expired_prio = MAX_PRIO;
5143
5144 #ifdef CONFIG_SMP
5145                 rq->sd = NULL;
5146                 for (j = 1; j < 3; j++)
5147                         rq->cpu_load[j] = 0;
5148                 rq->active_balance = 0;
5149                 rq->push_cpu = 0;
5150                 rq->migration_thread = NULL;
5151                 INIT_LIST_HEAD(&rq->migration_queue);
5152 #endif
5153                 atomic_set(&rq->nr_iowait, 0);
5154
5155                 for (j = 0; j < 2; j++) {
5156                         array = rq->arrays + j;
5157                         for (k = 0; k < MAX_PRIO; k++) {
5158                                 INIT_LIST_HEAD(array->queue + k);
5159                                 __clear_bit(k, array->bitmap);
5160                         }
5161                         // delimiter for bitsearch
5162                         __set_bit(MAX_PRIO, array->bitmap);
5163                 }
5164         }
5165
5166         /*
5167          * The boot idle thread does lazy MMU switching as well:
5168          */
5169         atomic_inc(&init_mm.mm_count);
5170         enter_lazy_tlb(&init_mm, current);
5171
5172         /*
5173          * Make us the idle thread. Technically, schedule() should not be
5174          * called from this thread, however somewhere below it might be,
5175          * but because we are the idle thread, we just pick up running again
5176          * when this runqueue becomes "idle".
5177          */
5178         init_idle(current, smp_processor_id());
5179 }
5180
5181 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5182 void __might_sleep(char *file, int line)
5183 {
5184 #if defined(in_atomic)
5185         static unsigned long prev_jiffy;        /* ratelimiting */
5186
5187         if ((in_atomic() || irqs_disabled()) &&
5188             system_state == SYSTEM_RUNNING && !oops_in_progress) {
5189                 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
5190                         return;
5191                 prev_jiffy = jiffies;
5192                 printk(KERN_ERR "Debug: sleeping function called from invalid"
5193                                 " context at %s:%d\n", file, line);
5194                 printk("in_atomic():%d, irqs_disabled():%d\n",
5195                         in_atomic(), irqs_disabled());
5196                 dump_stack();
5197         }
5198 #endif
5199 }
5200 EXPORT_SYMBOL(__might_sleep);
5201 #endif
5202
5203 #ifdef CONFIG_MAGIC_SYSRQ
5204 void normalize_rt_tasks(void)
5205 {
5206         struct task_struct *p;
5207         prio_array_t *array;
5208         unsigned long flags;
5209         runqueue_t *rq;
5210
5211         read_lock_irq(&tasklist_lock);
5212         for_each_process (p) {
5213                 if (!rt_task(p))
5214                         continue;
5215
5216                 rq = task_rq_lock(p, &flags);
5217
5218                 array = p->array;
5219                 if (array)
5220                         deactivate_task(p, task_rq(p));
5221                 __setscheduler(p, SCHED_NORMAL, 0);
5222                 if (array) {
5223                         __activate_task(p, task_rq(p));
5224                         resched_task(rq->curr);
5225                 }
5226
5227                 task_rq_unlock(rq, &flags);
5228         }
5229         read_unlock_irq(&tasklist_lock);
5230 }
5231
5232 #endif /* CONFIG_MAGIC_SYSRQ */