ceph: handle zero-length feature mask in session messages
[linux-2.6-microblaze.git] / kernel / relay.c
1 /*
2  * Public API and common code for kernel->userspace relay file support.
3  *
4  * See Documentation/filesystems/relay.rst for an overview.
5  *
6  * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7  * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
8  *
9  * Moved to kernel/relay.c by Paul Mundt, 2006.
10  * November 2006 - CPU hotplug support by Mathieu Desnoyers
11  *      (mathieu.desnoyers@polymtl.ca)
12  *
13  * This file is released under the GPL.
14  */
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/export.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/cpu.h>
24 #include <linux/splice.h>
25
26 /* list of open channels, for cpu hotplug */
27 static DEFINE_MUTEX(relay_channels_mutex);
28 static LIST_HEAD(relay_channels);
29
30 /*
31  * close() vm_op implementation for relay file mapping.
32  */
33 static void relay_file_mmap_close(struct vm_area_struct *vma)
34 {
35         struct rchan_buf *buf = vma->vm_private_data;
36         buf->chan->cb->buf_unmapped(buf, vma->vm_file);
37 }
38
39 /*
40  * fault() vm_op implementation for relay file mapping.
41  */
42 static vm_fault_t relay_buf_fault(struct vm_fault *vmf)
43 {
44         struct page *page;
45         struct rchan_buf *buf = vmf->vma->vm_private_data;
46         pgoff_t pgoff = vmf->pgoff;
47
48         if (!buf)
49                 return VM_FAULT_OOM;
50
51         page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
52         if (!page)
53                 return VM_FAULT_SIGBUS;
54         get_page(page);
55         vmf->page = page;
56
57         return 0;
58 }
59
60 /*
61  * vm_ops for relay file mappings.
62  */
63 static const struct vm_operations_struct relay_file_mmap_ops = {
64         .fault = relay_buf_fault,
65         .close = relay_file_mmap_close,
66 };
67
68 /*
69  * allocate an array of pointers of struct page
70  */
71 static struct page **relay_alloc_page_array(unsigned int n_pages)
72 {
73         const size_t pa_size = n_pages * sizeof(struct page *);
74         if (pa_size > PAGE_SIZE)
75                 return vzalloc(pa_size);
76         return kzalloc(pa_size, GFP_KERNEL);
77 }
78
79 /*
80  * free an array of pointers of struct page
81  */
82 static void relay_free_page_array(struct page **array)
83 {
84         kvfree(array);
85 }
86
87 /**
88  *      relay_mmap_buf: - mmap channel buffer to process address space
89  *      @buf: relay channel buffer
90  *      @vma: vm_area_struct describing memory to be mapped
91  *
92  *      Returns 0 if ok, negative on error
93  *
94  *      Caller should already have grabbed mmap_lock.
95  */
96 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
97 {
98         unsigned long length = vma->vm_end - vma->vm_start;
99         struct file *filp = vma->vm_file;
100
101         if (!buf)
102                 return -EBADF;
103
104         if (length != (unsigned long)buf->chan->alloc_size)
105                 return -EINVAL;
106
107         vma->vm_ops = &relay_file_mmap_ops;
108         vma->vm_flags |= VM_DONTEXPAND;
109         vma->vm_private_data = buf;
110         buf->chan->cb->buf_mapped(buf, filp);
111
112         return 0;
113 }
114
115 /**
116  *      relay_alloc_buf - allocate a channel buffer
117  *      @buf: the buffer struct
118  *      @size: total size of the buffer
119  *
120  *      Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
121  *      passed in size will get page aligned, if it isn't already.
122  */
123 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
124 {
125         void *mem;
126         unsigned int i, j, n_pages;
127
128         *size = PAGE_ALIGN(*size);
129         n_pages = *size >> PAGE_SHIFT;
130
131         buf->page_array = relay_alloc_page_array(n_pages);
132         if (!buf->page_array)
133                 return NULL;
134
135         for (i = 0; i < n_pages; i++) {
136                 buf->page_array[i] = alloc_page(GFP_KERNEL);
137                 if (unlikely(!buf->page_array[i]))
138                         goto depopulate;
139                 set_page_private(buf->page_array[i], (unsigned long)buf);
140         }
141         mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
142         if (!mem)
143                 goto depopulate;
144
145         memset(mem, 0, *size);
146         buf->page_count = n_pages;
147         return mem;
148
149 depopulate:
150         for (j = 0; j < i; j++)
151                 __free_page(buf->page_array[j]);
152         relay_free_page_array(buf->page_array);
153         return NULL;
154 }
155
156 /**
157  *      relay_create_buf - allocate and initialize a channel buffer
158  *      @chan: the relay channel
159  *
160  *      Returns channel buffer if successful, %NULL otherwise.
161  */
162 static struct rchan_buf *relay_create_buf(struct rchan *chan)
163 {
164         struct rchan_buf *buf;
165
166         if (chan->n_subbufs > KMALLOC_MAX_SIZE / sizeof(size_t *))
167                 return NULL;
168
169         buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
170         if (!buf)
171                 return NULL;
172         buf->padding = kmalloc_array(chan->n_subbufs, sizeof(size_t *),
173                                      GFP_KERNEL);
174         if (!buf->padding)
175                 goto free_buf;
176
177         buf->start = relay_alloc_buf(buf, &chan->alloc_size);
178         if (!buf->start)
179                 goto free_buf;
180
181         buf->chan = chan;
182         kref_get(&buf->chan->kref);
183         return buf;
184
185 free_buf:
186         kfree(buf->padding);
187         kfree(buf);
188         return NULL;
189 }
190
191 /**
192  *      relay_destroy_channel - free the channel struct
193  *      @kref: target kernel reference that contains the relay channel
194  *
195  *      Should only be called from kref_put().
196  */
197 static void relay_destroy_channel(struct kref *kref)
198 {
199         struct rchan *chan = container_of(kref, struct rchan, kref);
200         kfree(chan);
201 }
202
203 /**
204  *      relay_destroy_buf - destroy an rchan_buf struct and associated buffer
205  *      @buf: the buffer struct
206  */
207 static void relay_destroy_buf(struct rchan_buf *buf)
208 {
209         struct rchan *chan = buf->chan;
210         unsigned int i;
211
212         if (likely(buf->start)) {
213                 vunmap(buf->start);
214                 for (i = 0; i < buf->page_count; i++)
215                         __free_page(buf->page_array[i]);
216                 relay_free_page_array(buf->page_array);
217         }
218         *per_cpu_ptr(chan->buf, buf->cpu) = NULL;
219         kfree(buf->padding);
220         kfree(buf);
221         kref_put(&chan->kref, relay_destroy_channel);
222 }
223
224 /**
225  *      relay_remove_buf - remove a channel buffer
226  *      @kref: target kernel reference that contains the relay buffer
227  *
228  *      Removes the file from the filesystem, which also frees the
229  *      rchan_buf_struct and the channel buffer.  Should only be called from
230  *      kref_put().
231  */
232 static void relay_remove_buf(struct kref *kref)
233 {
234         struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
235         relay_destroy_buf(buf);
236 }
237
238 /**
239  *      relay_buf_empty - boolean, is the channel buffer empty?
240  *      @buf: channel buffer
241  *
242  *      Returns 1 if the buffer is empty, 0 otherwise.
243  */
244 static int relay_buf_empty(struct rchan_buf *buf)
245 {
246         return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
247 }
248
249 /**
250  *      relay_buf_full - boolean, is the channel buffer full?
251  *      @buf: channel buffer
252  *
253  *      Returns 1 if the buffer is full, 0 otherwise.
254  */
255 int relay_buf_full(struct rchan_buf *buf)
256 {
257         size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
258         return (ready >= buf->chan->n_subbufs) ? 1 : 0;
259 }
260 EXPORT_SYMBOL_GPL(relay_buf_full);
261
262 /*
263  * High-level relay kernel API and associated functions.
264  */
265
266 /*
267  * rchan_callback implementations defining default channel behavior.  Used
268  * in place of corresponding NULL values in client callback struct.
269  */
270
271 /*
272  * subbuf_start() default callback.  Does nothing.
273  */
274 static int subbuf_start_default_callback (struct rchan_buf *buf,
275                                           void *subbuf,
276                                           void *prev_subbuf,
277                                           size_t prev_padding)
278 {
279         if (relay_buf_full(buf))
280                 return 0;
281
282         return 1;
283 }
284
285 /*
286  * buf_mapped() default callback.  Does nothing.
287  */
288 static void buf_mapped_default_callback(struct rchan_buf *buf,
289                                         struct file *filp)
290 {
291 }
292
293 /*
294  * buf_unmapped() default callback.  Does nothing.
295  */
296 static void buf_unmapped_default_callback(struct rchan_buf *buf,
297                                           struct file *filp)
298 {
299 }
300
301 /*
302  * create_buf_file_create() default callback.  Does nothing.
303  */
304 static struct dentry *create_buf_file_default_callback(const char *filename,
305                                                        struct dentry *parent,
306                                                        umode_t mode,
307                                                        struct rchan_buf *buf,
308                                                        int *is_global)
309 {
310         return NULL;
311 }
312
313 /*
314  * remove_buf_file() default callback.  Does nothing.
315  */
316 static int remove_buf_file_default_callback(struct dentry *dentry)
317 {
318         return -EINVAL;
319 }
320
321 /* relay channel default callbacks */
322 static struct rchan_callbacks default_channel_callbacks = {
323         .subbuf_start = subbuf_start_default_callback,
324         .buf_mapped = buf_mapped_default_callback,
325         .buf_unmapped = buf_unmapped_default_callback,
326         .create_buf_file = create_buf_file_default_callback,
327         .remove_buf_file = remove_buf_file_default_callback,
328 };
329
330 /**
331  *      wakeup_readers - wake up readers waiting on a channel
332  *      @work: contains the channel buffer
333  *
334  *      This is the function used to defer reader waking
335  */
336 static void wakeup_readers(struct irq_work *work)
337 {
338         struct rchan_buf *buf;
339
340         buf = container_of(work, struct rchan_buf, wakeup_work);
341         wake_up_interruptible(&buf->read_wait);
342 }
343
344 /**
345  *      __relay_reset - reset a channel buffer
346  *      @buf: the channel buffer
347  *      @init: 1 if this is a first-time initialization
348  *
349  *      See relay_reset() for description of effect.
350  */
351 static void __relay_reset(struct rchan_buf *buf, unsigned int init)
352 {
353         size_t i;
354
355         if (init) {
356                 init_waitqueue_head(&buf->read_wait);
357                 kref_init(&buf->kref);
358                 init_irq_work(&buf->wakeup_work, wakeup_readers);
359         } else {
360                 irq_work_sync(&buf->wakeup_work);
361         }
362
363         buf->subbufs_produced = 0;
364         buf->subbufs_consumed = 0;
365         buf->bytes_consumed = 0;
366         buf->finalized = 0;
367         buf->data = buf->start;
368         buf->offset = 0;
369
370         for (i = 0; i < buf->chan->n_subbufs; i++)
371                 buf->padding[i] = 0;
372
373         buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
374 }
375
376 /**
377  *      relay_reset - reset the channel
378  *      @chan: the channel
379  *
380  *      This has the effect of erasing all data from all channel buffers
381  *      and restarting the channel in its initial state.  The buffers
382  *      are not freed, so any mappings are still in effect.
383  *
384  *      NOTE. Care should be taken that the channel isn't actually
385  *      being used by anything when this call is made.
386  */
387 void relay_reset(struct rchan *chan)
388 {
389         struct rchan_buf *buf;
390         unsigned int i;
391
392         if (!chan)
393                 return;
394
395         if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
396                 __relay_reset(buf, 0);
397                 return;
398         }
399
400         mutex_lock(&relay_channels_mutex);
401         for_each_possible_cpu(i)
402                 if ((buf = *per_cpu_ptr(chan->buf, i)))
403                         __relay_reset(buf, 0);
404         mutex_unlock(&relay_channels_mutex);
405 }
406 EXPORT_SYMBOL_GPL(relay_reset);
407
408 static inline void relay_set_buf_dentry(struct rchan_buf *buf,
409                                         struct dentry *dentry)
410 {
411         buf->dentry = dentry;
412         d_inode(buf->dentry)->i_size = buf->early_bytes;
413 }
414
415 static struct dentry *relay_create_buf_file(struct rchan *chan,
416                                             struct rchan_buf *buf,
417                                             unsigned int cpu)
418 {
419         struct dentry *dentry;
420         char *tmpname;
421
422         tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
423         if (!tmpname)
424                 return NULL;
425         snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
426
427         /* Create file in fs */
428         dentry = chan->cb->create_buf_file(tmpname, chan->parent,
429                                            S_IRUSR, buf,
430                                            &chan->is_global);
431         if (IS_ERR(dentry))
432                 dentry = NULL;
433
434         kfree(tmpname);
435
436         return dentry;
437 }
438
439 /*
440  *      relay_open_buf - create a new relay channel buffer
441  *
442  *      used by relay_open() and CPU hotplug.
443  */
444 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
445 {
446         struct rchan_buf *buf = NULL;
447         struct dentry *dentry;
448
449         if (chan->is_global)
450                 return *per_cpu_ptr(chan->buf, 0);
451
452         buf = relay_create_buf(chan);
453         if (!buf)
454                 return NULL;
455
456         if (chan->has_base_filename) {
457                 dentry = relay_create_buf_file(chan, buf, cpu);
458                 if (!dentry)
459                         goto free_buf;
460                 relay_set_buf_dentry(buf, dentry);
461         } else {
462                 /* Only retrieve global info, nothing more, nothing less */
463                 dentry = chan->cb->create_buf_file(NULL, NULL,
464                                                    S_IRUSR, buf,
465                                                    &chan->is_global);
466                 if (IS_ERR_OR_NULL(dentry))
467                         goto free_buf;
468         }
469
470         buf->cpu = cpu;
471         __relay_reset(buf, 1);
472
473         if(chan->is_global) {
474                 *per_cpu_ptr(chan->buf, 0) = buf;
475                 buf->cpu = 0;
476         }
477
478         return buf;
479
480 free_buf:
481         relay_destroy_buf(buf);
482         return NULL;
483 }
484
485 /**
486  *      relay_close_buf - close a channel buffer
487  *      @buf: channel buffer
488  *
489  *      Marks the buffer finalized and restores the default callbacks.
490  *      The channel buffer and channel buffer data structure are then freed
491  *      automatically when the last reference is given up.
492  */
493 static void relay_close_buf(struct rchan_buf *buf)
494 {
495         buf->finalized = 1;
496         irq_work_sync(&buf->wakeup_work);
497         buf->chan->cb->remove_buf_file(buf->dentry);
498         kref_put(&buf->kref, relay_remove_buf);
499 }
500
501 static void setup_callbacks(struct rchan *chan,
502                                    struct rchan_callbacks *cb)
503 {
504         if (!cb) {
505                 chan->cb = &default_channel_callbacks;
506                 return;
507         }
508
509         if (!cb->subbuf_start)
510                 cb->subbuf_start = subbuf_start_default_callback;
511         if (!cb->buf_mapped)
512                 cb->buf_mapped = buf_mapped_default_callback;
513         if (!cb->buf_unmapped)
514                 cb->buf_unmapped = buf_unmapped_default_callback;
515         if (!cb->create_buf_file)
516                 cb->create_buf_file = create_buf_file_default_callback;
517         if (!cb->remove_buf_file)
518                 cb->remove_buf_file = remove_buf_file_default_callback;
519         chan->cb = cb;
520 }
521
522 int relay_prepare_cpu(unsigned int cpu)
523 {
524         struct rchan *chan;
525         struct rchan_buf *buf;
526
527         mutex_lock(&relay_channels_mutex);
528         list_for_each_entry(chan, &relay_channels, list) {
529                 if ((buf = *per_cpu_ptr(chan->buf, cpu)))
530                         continue;
531                 buf = relay_open_buf(chan, cpu);
532                 if (!buf) {
533                         pr_err("relay: cpu %d buffer creation failed\n", cpu);
534                         mutex_unlock(&relay_channels_mutex);
535                         return -ENOMEM;
536                 }
537                 *per_cpu_ptr(chan->buf, cpu) = buf;
538         }
539         mutex_unlock(&relay_channels_mutex);
540         return 0;
541 }
542
543 /**
544  *      relay_open - create a new relay channel
545  *      @base_filename: base name of files to create, %NULL for buffering only
546  *      @parent: dentry of parent directory, %NULL for root directory or buffer
547  *      @subbuf_size: size of sub-buffers
548  *      @n_subbufs: number of sub-buffers
549  *      @cb: client callback functions
550  *      @private_data: user-defined data
551  *
552  *      Returns channel pointer if successful, %NULL otherwise.
553  *
554  *      Creates a channel buffer for each cpu using the sizes and
555  *      attributes specified.  The created channel buffer files
556  *      will be named base_filename0...base_filenameN-1.  File
557  *      permissions will be %S_IRUSR.
558  *
559  *      If opening a buffer (@parent = NULL) that you later wish to register
560  *      in a filesystem, call relay_late_setup_files() once the @parent dentry
561  *      is available.
562  */
563 struct rchan *relay_open(const char *base_filename,
564                          struct dentry *parent,
565                          size_t subbuf_size,
566                          size_t n_subbufs,
567                          struct rchan_callbacks *cb,
568                          void *private_data)
569 {
570         unsigned int i;
571         struct rchan *chan;
572         struct rchan_buf *buf;
573
574         if (!(subbuf_size && n_subbufs))
575                 return NULL;
576         if (subbuf_size > UINT_MAX / n_subbufs)
577                 return NULL;
578
579         chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
580         if (!chan)
581                 return NULL;
582
583         chan->buf = alloc_percpu(struct rchan_buf *);
584         if (!chan->buf) {
585                 kfree(chan);
586                 return NULL;
587         }
588
589         chan->version = RELAYFS_CHANNEL_VERSION;
590         chan->n_subbufs = n_subbufs;
591         chan->subbuf_size = subbuf_size;
592         chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs);
593         chan->parent = parent;
594         chan->private_data = private_data;
595         if (base_filename) {
596                 chan->has_base_filename = 1;
597                 strlcpy(chan->base_filename, base_filename, NAME_MAX);
598         }
599         setup_callbacks(chan, cb);
600         kref_init(&chan->kref);
601
602         mutex_lock(&relay_channels_mutex);
603         for_each_online_cpu(i) {
604                 buf = relay_open_buf(chan, i);
605                 if (!buf)
606                         goto free_bufs;
607                 *per_cpu_ptr(chan->buf, i) = buf;
608         }
609         list_add(&chan->list, &relay_channels);
610         mutex_unlock(&relay_channels_mutex);
611
612         return chan;
613
614 free_bufs:
615         for_each_possible_cpu(i) {
616                 if ((buf = *per_cpu_ptr(chan->buf, i)))
617                         relay_close_buf(buf);
618         }
619
620         kref_put(&chan->kref, relay_destroy_channel);
621         mutex_unlock(&relay_channels_mutex);
622         return NULL;
623 }
624 EXPORT_SYMBOL_GPL(relay_open);
625
626 struct rchan_percpu_buf_dispatcher {
627         struct rchan_buf *buf;
628         struct dentry *dentry;
629 };
630
631 /* Called in atomic context. */
632 static void __relay_set_buf_dentry(void *info)
633 {
634         struct rchan_percpu_buf_dispatcher *p = info;
635
636         relay_set_buf_dentry(p->buf, p->dentry);
637 }
638
639 /**
640  *      relay_late_setup_files - triggers file creation
641  *      @chan: channel to operate on
642  *      @base_filename: base name of files to create
643  *      @parent: dentry of parent directory, %NULL for root directory
644  *
645  *      Returns 0 if successful, non-zero otherwise.
646  *
647  *      Use to setup files for a previously buffer-only channel created
648  *      by relay_open() with a NULL parent dentry.
649  *
650  *      For example, this is useful for perfomring early tracing in kernel,
651  *      before VFS is up and then exposing the early results once the dentry
652  *      is available.
653  */
654 int relay_late_setup_files(struct rchan *chan,
655                            const char *base_filename,
656                            struct dentry *parent)
657 {
658         int err = 0;
659         unsigned int i, curr_cpu;
660         unsigned long flags;
661         struct dentry *dentry;
662         struct rchan_buf *buf;
663         struct rchan_percpu_buf_dispatcher disp;
664
665         if (!chan || !base_filename)
666                 return -EINVAL;
667
668         strlcpy(chan->base_filename, base_filename, NAME_MAX);
669
670         mutex_lock(&relay_channels_mutex);
671         /* Is chan already set up? */
672         if (unlikely(chan->has_base_filename)) {
673                 mutex_unlock(&relay_channels_mutex);
674                 return -EEXIST;
675         }
676         chan->has_base_filename = 1;
677         chan->parent = parent;
678
679         if (chan->is_global) {
680                 err = -EINVAL;
681                 buf = *per_cpu_ptr(chan->buf, 0);
682                 if (!WARN_ON_ONCE(!buf)) {
683                         dentry = relay_create_buf_file(chan, buf, 0);
684                         if (dentry && !WARN_ON_ONCE(!chan->is_global)) {
685                                 relay_set_buf_dentry(buf, dentry);
686                                 err = 0;
687                         }
688                 }
689                 mutex_unlock(&relay_channels_mutex);
690                 return err;
691         }
692
693         curr_cpu = get_cpu();
694         /*
695          * The CPU hotplug notifier ran before us and created buffers with
696          * no files associated. So it's safe to call relay_setup_buf_file()
697          * on all currently online CPUs.
698          */
699         for_each_online_cpu(i) {
700                 buf = *per_cpu_ptr(chan->buf, i);
701                 if (unlikely(!buf)) {
702                         WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n");
703                         err = -EINVAL;
704                         break;
705                 }
706
707                 dentry = relay_create_buf_file(chan, buf, i);
708                 if (unlikely(!dentry)) {
709                         err = -EINVAL;
710                         break;
711                 }
712
713                 if (curr_cpu == i) {
714                         local_irq_save(flags);
715                         relay_set_buf_dentry(buf, dentry);
716                         local_irq_restore(flags);
717                 } else {
718                         disp.buf = buf;
719                         disp.dentry = dentry;
720                         smp_mb();
721                         /* relay_channels_mutex must be held, so wait. */
722                         err = smp_call_function_single(i,
723                                                        __relay_set_buf_dentry,
724                                                        &disp, 1);
725                 }
726                 if (unlikely(err))
727                         break;
728         }
729         put_cpu();
730         mutex_unlock(&relay_channels_mutex);
731
732         return err;
733 }
734 EXPORT_SYMBOL_GPL(relay_late_setup_files);
735
736 /**
737  *      relay_switch_subbuf - switch to a new sub-buffer
738  *      @buf: channel buffer
739  *      @length: size of current event
740  *
741  *      Returns either the length passed in or 0 if full.
742  *
743  *      Performs sub-buffer-switch tasks such as invoking callbacks,
744  *      updating padding counts, waking up readers, etc.
745  */
746 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
747 {
748         void *old, *new;
749         size_t old_subbuf, new_subbuf;
750
751         if (unlikely(length > buf->chan->subbuf_size))
752                 goto toobig;
753
754         if (buf->offset != buf->chan->subbuf_size + 1) {
755                 buf->prev_padding = buf->chan->subbuf_size - buf->offset;
756                 old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
757                 buf->padding[old_subbuf] = buf->prev_padding;
758                 buf->subbufs_produced++;
759                 if (buf->dentry)
760                         d_inode(buf->dentry)->i_size +=
761                                 buf->chan->subbuf_size -
762                                 buf->padding[old_subbuf];
763                 else
764                         buf->early_bytes += buf->chan->subbuf_size -
765                                             buf->padding[old_subbuf];
766                 smp_mb();
767                 if (waitqueue_active(&buf->read_wait)) {
768                         /*
769                          * Calling wake_up_interruptible() from here
770                          * will deadlock if we happen to be logging
771                          * from the scheduler (trying to re-grab
772                          * rq->lock), so defer it.
773                          */
774                         irq_work_queue(&buf->wakeup_work);
775                 }
776         }
777
778         old = buf->data;
779         new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
780         new = buf->start + new_subbuf * buf->chan->subbuf_size;
781         buf->offset = 0;
782         if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
783                 buf->offset = buf->chan->subbuf_size + 1;
784                 return 0;
785         }
786         buf->data = new;
787         buf->padding[new_subbuf] = 0;
788
789         if (unlikely(length + buf->offset > buf->chan->subbuf_size))
790                 goto toobig;
791
792         return length;
793
794 toobig:
795         buf->chan->last_toobig = length;
796         return 0;
797 }
798 EXPORT_SYMBOL_GPL(relay_switch_subbuf);
799
800 /**
801  *      relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
802  *      @chan: the channel
803  *      @cpu: the cpu associated with the channel buffer to update
804  *      @subbufs_consumed: number of sub-buffers to add to current buf's count
805  *
806  *      Adds to the channel buffer's consumed sub-buffer count.
807  *      subbufs_consumed should be the number of sub-buffers newly consumed,
808  *      not the total consumed.
809  *
810  *      NOTE. Kernel clients don't need to call this function if the channel
811  *      mode is 'overwrite'.
812  */
813 void relay_subbufs_consumed(struct rchan *chan,
814                             unsigned int cpu,
815                             size_t subbufs_consumed)
816 {
817         struct rchan_buf *buf;
818
819         if (!chan || cpu >= NR_CPUS)
820                 return;
821
822         buf = *per_cpu_ptr(chan->buf, cpu);
823         if (!buf || subbufs_consumed > chan->n_subbufs)
824                 return;
825
826         if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed)
827                 buf->subbufs_consumed = buf->subbufs_produced;
828         else
829                 buf->subbufs_consumed += subbufs_consumed;
830 }
831 EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
832
833 /**
834  *      relay_close - close the channel
835  *      @chan: the channel
836  *
837  *      Closes all channel buffers and frees the channel.
838  */
839 void relay_close(struct rchan *chan)
840 {
841         struct rchan_buf *buf;
842         unsigned int i;
843
844         if (!chan)
845                 return;
846
847         mutex_lock(&relay_channels_mutex);
848         if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0)))
849                 relay_close_buf(buf);
850         else
851                 for_each_possible_cpu(i)
852                         if ((buf = *per_cpu_ptr(chan->buf, i)))
853                                 relay_close_buf(buf);
854
855         if (chan->last_toobig)
856                 printk(KERN_WARNING "relay: one or more items not logged "
857                        "[item size (%zd) > sub-buffer size (%zd)]\n",
858                        chan->last_toobig, chan->subbuf_size);
859
860         list_del(&chan->list);
861         kref_put(&chan->kref, relay_destroy_channel);
862         mutex_unlock(&relay_channels_mutex);
863 }
864 EXPORT_SYMBOL_GPL(relay_close);
865
866 /**
867  *      relay_flush - close the channel
868  *      @chan: the channel
869  *
870  *      Flushes all channel buffers, i.e. forces buffer switch.
871  */
872 void relay_flush(struct rchan *chan)
873 {
874         struct rchan_buf *buf;
875         unsigned int i;
876
877         if (!chan)
878                 return;
879
880         if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
881                 relay_switch_subbuf(buf, 0);
882                 return;
883         }
884
885         mutex_lock(&relay_channels_mutex);
886         for_each_possible_cpu(i)
887                 if ((buf = *per_cpu_ptr(chan->buf, i)))
888                         relay_switch_subbuf(buf, 0);
889         mutex_unlock(&relay_channels_mutex);
890 }
891 EXPORT_SYMBOL_GPL(relay_flush);
892
893 /**
894  *      relay_file_open - open file op for relay files
895  *      @inode: the inode
896  *      @filp: the file
897  *
898  *      Increments the channel buffer refcount.
899  */
900 static int relay_file_open(struct inode *inode, struct file *filp)
901 {
902         struct rchan_buf *buf = inode->i_private;
903         kref_get(&buf->kref);
904         filp->private_data = buf;
905
906         return nonseekable_open(inode, filp);
907 }
908
909 /**
910  *      relay_file_mmap - mmap file op for relay files
911  *      @filp: the file
912  *      @vma: the vma describing what to map
913  *
914  *      Calls upon relay_mmap_buf() to map the file into user space.
915  */
916 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
917 {
918         struct rchan_buf *buf = filp->private_data;
919         return relay_mmap_buf(buf, vma);
920 }
921
922 /**
923  *      relay_file_poll - poll file op for relay files
924  *      @filp: the file
925  *      @wait: poll table
926  *
927  *      Poll implemention.
928  */
929 static __poll_t relay_file_poll(struct file *filp, poll_table *wait)
930 {
931         __poll_t mask = 0;
932         struct rchan_buf *buf = filp->private_data;
933
934         if (buf->finalized)
935                 return EPOLLERR;
936
937         if (filp->f_mode & FMODE_READ) {
938                 poll_wait(filp, &buf->read_wait, wait);
939                 if (!relay_buf_empty(buf))
940                         mask |= EPOLLIN | EPOLLRDNORM;
941         }
942
943         return mask;
944 }
945
946 /**
947  *      relay_file_release - release file op for relay files
948  *      @inode: the inode
949  *      @filp: the file
950  *
951  *      Decrements the channel refcount, as the filesystem is
952  *      no longer using it.
953  */
954 static int relay_file_release(struct inode *inode, struct file *filp)
955 {
956         struct rchan_buf *buf = filp->private_data;
957         kref_put(&buf->kref, relay_remove_buf);
958
959         return 0;
960 }
961
962 /*
963  *      relay_file_read_consume - update the consumed count for the buffer
964  */
965 static void relay_file_read_consume(struct rchan_buf *buf,
966                                     size_t read_pos,
967                                     size_t bytes_consumed)
968 {
969         size_t subbuf_size = buf->chan->subbuf_size;
970         size_t n_subbufs = buf->chan->n_subbufs;
971         size_t read_subbuf;
972
973         if (buf->subbufs_produced == buf->subbufs_consumed &&
974             buf->offset == buf->bytes_consumed)
975                 return;
976
977         if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
978                 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
979                 buf->bytes_consumed = 0;
980         }
981
982         buf->bytes_consumed += bytes_consumed;
983         if (!read_pos)
984                 read_subbuf = buf->subbufs_consumed % n_subbufs;
985         else
986                 read_subbuf = read_pos / buf->chan->subbuf_size;
987         if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
988                 if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
989                     (buf->offset == subbuf_size))
990                         return;
991                 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
992                 buf->bytes_consumed = 0;
993         }
994 }
995
996 /*
997  *      relay_file_read_avail - boolean, are there unconsumed bytes available?
998  */
999 static int relay_file_read_avail(struct rchan_buf *buf)
1000 {
1001         size_t subbuf_size = buf->chan->subbuf_size;
1002         size_t n_subbufs = buf->chan->n_subbufs;
1003         size_t produced = buf->subbufs_produced;
1004         size_t consumed = buf->subbufs_consumed;
1005
1006         relay_file_read_consume(buf, 0, 0);
1007
1008         consumed = buf->subbufs_consumed;
1009
1010         if (unlikely(buf->offset > subbuf_size)) {
1011                 if (produced == consumed)
1012                         return 0;
1013                 return 1;
1014         }
1015
1016         if (unlikely(produced - consumed >= n_subbufs)) {
1017                 consumed = produced - n_subbufs + 1;
1018                 buf->subbufs_consumed = consumed;
1019                 buf->bytes_consumed = 0;
1020         }
1021
1022         produced = (produced % n_subbufs) * subbuf_size + buf->offset;
1023         consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
1024
1025         if (consumed > produced)
1026                 produced += n_subbufs * subbuf_size;
1027
1028         if (consumed == produced) {
1029                 if (buf->offset == subbuf_size &&
1030                     buf->subbufs_produced > buf->subbufs_consumed)
1031                         return 1;
1032                 return 0;
1033         }
1034
1035         return 1;
1036 }
1037
1038 /**
1039  *      relay_file_read_subbuf_avail - return bytes available in sub-buffer
1040  *      @read_pos: file read position
1041  *      @buf: relay channel buffer
1042  */
1043 static size_t relay_file_read_subbuf_avail(size_t read_pos,
1044                                            struct rchan_buf *buf)
1045 {
1046         size_t padding, avail = 0;
1047         size_t read_subbuf, read_offset, write_subbuf, write_offset;
1048         size_t subbuf_size = buf->chan->subbuf_size;
1049
1050         write_subbuf = (buf->data - buf->start) / subbuf_size;
1051         write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
1052         read_subbuf = read_pos / subbuf_size;
1053         read_offset = read_pos % subbuf_size;
1054         padding = buf->padding[read_subbuf];
1055
1056         if (read_subbuf == write_subbuf) {
1057                 if (read_offset + padding < write_offset)
1058                         avail = write_offset - (read_offset + padding);
1059         } else
1060                 avail = (subbuf_size - padding) - read_offset;
1061
1062         return avail;
1063 }
1064
1065 /**
1066  *      relay_file_read_start_pos - find the first available byte to read
1067  *      @buf: relay channel buffer
1068  *
1069  *      If the read_pos is in the middle of padding, return the
1070  *      position of the first actually available byte, otherwise
1071  *      return the original value.
1072  */
1073 static size_t relay_file_read_start_pos(struct rchan_buf *buf)
1074 {
1075         size_t read_subbuf, padding, padding_start, padding_end;
1076         size_t subbuf_size = buf->chan->subbuf_size;
1077         size_t n_subbufs = buf->chan->n_subbufs;
1078         size_t consumed = buf->subbufs_consumed % n_subbufs;
1079         size_t read_pos = consumed * subbuf_size + buf->bytes_consumed;
1080
1081         read_subbuf = read_pos / subbuf_size;
1082         padding = buf->padding[read_subbuf];
1083         padding_start = (read_subbuf + 1) * subbuf_size - padding;
1084         padding_end = (read_subbuf + 1) * subbuf_size;
1085         if (read_pos >= padding_start && read_pos < padding_end) {
1086                 read_subbuf = (read_subbuf + 1) % n_subbufs;
1087                 read_pos = read_subbuf * subbuf_size;
1088         }
1089
1090         return read_pos;
1091 }
1092
1093 /**
1094  *      relay_file_read_end_pos - return the new read position
1095  *      @read_pos: file read position
1096  *      @buf: relay channel buffer
1097  *      @count: number of bytes to be read
1098  */
1099 static size_t relay_file_read_end_pos(struct rchan_buf *buf,
1100                                       size_t read_pos,
1101                                       size_t count)
1102 {
1103         size_t read_subbuf, padding, end_pos;
1104         size_t subbuf_size = buf->chan->subbuf_size;
1105         size_t n_subbufs = buf->chan->n_subbufs;
1106
1107         read_subbuf = read_pos / subbuf_size;
1108         padding = buf->padding[read_subbuf];
1109         if (read_pos % subbuf_size + count + padding == subbuf_size)
1110                 end_pos = (read_subbuf + 1) * subbuf_size;
1111         else
1112                 end_pos = read_pos + count;
1113         if (end_pos >= subbuf_size * n_subbufs)
1114                 end_pos = 0;
1115
1116         return end_pos;
1117 }
1118
1119 static ssize_t relay_file_read(struct file *filp,
1120                                char __user *buffer,
1121                                size_t count,
1122                                loff_t *ppos)
1123 {
1124         struct rchan_buf *buf = filp->private_data;
1125         size_t read_start, avail;
1126         size_t written = 0;
1127         int ret;
1128
1129         if (!count)
1130                 return 0;
1131
1132         inode_lock(file_inode(filp));
1133         do {
1134                 void *from;
1135
1136                 if (!relay_file_read_avail(buf))
1137                         break;
1138
1139                 read_start = relay_file_read_start_pos(buf);
1140                 avail = relay_file_read_subbuf_avail(read_start, buf);
1141                 if (!avail)
1142                         break;
1143
1144                 avail = min(count, avail);
1145                 from = buf->start + read_start;
1146                 ret = avail;
1147                 if (copy_to_user(buffer, from, avail))
1148                         break;
1149
1150                 buffer += ret;
1151                 written += ret;
1152                 count -= ret;
1153
1154                 relay_file_read_consume(buf, read_start, ret);
1155                 *ppos = relay_file_read_end_pos(buf, read_start, ret);
1156         } while (count);
1157         inode_unlock(file_inode(filp));
1158
1159         return written;
1160 }
1161
1162 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1163 {
1164         rbuf->bytes_consumed += bytes_consumed;
1165
1166         if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1167                 relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1168                 rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1169         }
1170 }
1171
1172 static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1173                                    struct pipe_buffer *buf)
1174 {
1175         struct rchan_buf *rbuf;
1176
1177         rbuf = (struct rchan_buf *)page_private(buf->page);
1178         relay_consume_bytes(rbuf, buf->private);
1179 }
1180
1181 static const struct pipe_buf_operations relay_pipe_buf_ops = {
1182         .release        = relay_pipe_buf_release,
1183         .try_steal      = generic_pipe_buf_try_steal,
1184         .get            = generic_pipe_buf_get,
1185 };
1186
1187 static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1188 {
1189 }
1190
1191 /*
1192  *      subbuf_splice_actor - splice up to one subbuf's worth of data
1193  */
1194 static ssize_t subbuf_splice_actor(struct file *in,
1195                                loff_t *ppos,
1196                                struct pipe_inode_info *pipe,
1197                                size_t len,
1198                                unsigned int flags,
1199                                int *nonpad_ret)
1200 {
1201         unsigned int pidx, poff, total_len, subbuf_pages, nr_pages;
1202         struct rchan_buf *rbuf = in->private_data;
1203         unsigned int subbuf_size = rbuf->chan->subbuf_size;
1204         uint64_t pos = (uint64_t) *ppos;
1205         uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1206         size_t read_start = (size_t) do_div(pos, alloc_size);
1207         size_t read_subbuf = read_start / subbuf_size;
1208         size_t padding = rbuf->padding[read_subbuf];
1209         size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1210         struct page *pages[PIPE_DEF_BUFFERS];
1211         struct partial_page partial[PIPE_DEF_BUFFERS];
1212         struct splice_pipe_desc spd = {
1213                 .pages = pages,
1214                 .nr_pages = 0,
1215                 .nr_pages_max = PIPE_DEF_BUFFERS,
1216                 .partial = partial,
1217                 .ops = &relay_pipe_buf_ops,
1218                 .spd_release = relay_page_release,
1219         };
1220         ssize_t ret;
1221
1222         if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1223                 return 0;
1224         if (splice_grow_spd(pipe, &spd))
1225                 return -ENOMEM;
1226
1227         /*
1228          * Adjust read len, if longer than what is available
1229          */
1230         if (len > (subbuf_size - read_start % subbuf_size))
1231                 len = subbuf_size - read_start % subbuf_size;
1232
1233         subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1234         pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1235         poff = read_start & ~PAGE_MASK;
1236         nr_pages = min_t(unsigned int, subbuf_pages, spd.nr_pages_max);
1237
1238         for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1239                 unsigned int this_len, this_end, private;
1240                 unsigned int cur_pos = read_start + total_len;
1241
1242                 if (!len)
1243                         break;
1244
1245                 this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1246                 private = this_len;
1247
1248                 spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1249                 spd.partial[spd.nr_pages].offset = poff;
1250
1251                 this_end = cur_pos + this_len;
1252                 if (this_end >= nonpad_end) {
1253                         this_len = nonpad_end - cur_pos;
1254                         private = this_len + padding;
1255                 }
1256                 spd.partial[spd.nr_pages].len = this_len;
1257                 spd.partial[spd.nr_pages].private = private;
1258
1259                 len -= this_len;
1260                 total_len += this_len;
1261                 poff = 0;
1262                 pidx = (pidx + 1) % subbuf_pages;
1263
1264                 if (this_end >= nonpad_end) {
1265                         spd.nr_pages++;
1266                         break;
1267                 }
1268         }
1269
1270         ret = 0;
1271         if (!spd.nr_pages)
1272                 goto out;
1273
1274         ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1275         if (ret < 0 || ret < total_len)
1276                 goto out;
1277
1278         if (read_start + ret == nonpad_end)
1279                 ret += padding;
1280
1281 out:
1282         splice_shrink_spd(&spd);
1283         return ret;
1284 }
1285
1286 static ssize_t relay_file_splice_read(struct file *in,
1287                                       loff_t *ppos,
1288                                       struct pipe_inode_info *pipe,
1289                                       size_t len,
1290                                       unsigned int flags)
1291 {
1292         ssize_t spliced;
1293         int ret;
1294         int nonpad_ret = 0;
1295
1296         ret = 0;
1297         spliced = 0;
1298
1299         while (len && !spliced) {
1300                 ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1301                 if (ret < 0)
1302                         break;
1303                 else if (!ret) {
1304                         if (flags & SPLICE_F_NONBLOCK)
1305                                 ret = -EAGAIN;
1306                         break;
1307                 }
1308
1309                 *ppos += ret;
1310                 if (ret > len)
1311                         len = 0;
1312                 else
1313                         len -= ret;
1314                 spliced += nonpad_ret;
1315                 nonpad_ret = 0;
1316         }
1317
1318         if (spliced)
1319                 return spliced;
1320
1321         return ret;
1322 }
1323
1324 const struct file_operations relay_file_operations = {
1325         .open           = relay_file_open,
1326         .poll           = relay_file_poll,
1327         .mmap           = relay_file_mmap,
1328         .read           = relay_file_read,
1329         .llseek         = no_llseek,
1330         .release        = relay_file_release,
1331         .splice_read    = relay_file_splice_read,
1332 };
1333 EXPORT_SYMBOL_GPL(relay_file_operations);