Merge branch 'for-5.14/dax' into libnvdimm-fixes
[linux-2.6-microblaze.git] / kernel / rcu / tree_plugin.h
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  * Internal non-public definitions that provide either classic
5  * or preemptible semantics.
6  *
7  * Copyright Red Hat, 2009
8  * Copyright IBM Corporation, 2009
9  *
10  * Author: Ingo Molnar <mingo@elte.hu>
11  *         Paul E. McKenney <paulmck@linux.ibm.com>
12  */
13
14 #include "../locking/rtmutex_common.h"
15
16 #ifdef CONFIG_RCU_NOCB_CPU
17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
18 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
19 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp)
20 {
21         return lockdep_is_held(&rdp->nocb_lock);
22 }
23
24 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
25 {
26         /* Race on early boot between thread creation and assignment */
27         if (!rdp->nocb_cb_kthread || !rdp->nocb_gp_kthread)
28                 return true;
29
30         if (current == rdp->nocb_cb_kthread || current == rdp->nocb_gp_kthread)
31                 if (in_task())
32                         return true;
33         return false;
34 }
35
36 #else
37 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp)
38 {
39         return 0;
40 }
41
42 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
43 {
44         return false;
45 }
46
47 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
48
49 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp)
50 {
51         /*
52          * In order to read the offloaded state of an rdp is a safe
53          * and stable way and prevent from its value to be changed
54          * under us, we must either hold the barrier mutex, the cpu
55          * hotplug lock (read or write) or the nocb lock. Local
56          * non-preemptible reads are also safe. NOCB kthreads and
57          * timers have their own means of synchronization against the
58          * offloaded state updaters.
59          */
60         RCU_LOCKDEP_WARN(
61                 !(lockdep_is_held(&rcu_state.barrier_mutex) ||
62                   (IS_ENABLED(CONFIG_HOTPLUG_CPU) && lockdep_is_cpus_held()) ||
63                   rcu_lockdep_is_held_nocb(rdp) ||
64                   (rdp == this_cpu_ptr(&rcu_data) &&
65                    !(IS_ENABLED(CONFIG_PREEMPT_COUNT) && preemptible())) ||
66                   rcu_current_is_nocb_kthread(rdp)),
67                 "Unsafe read of RCU_NOCB offloaded state"
68         );
69
70         return rcu_segcblist_is_offloaded(&rdp->cblist);
71 }
72
73 /*
74  * Check the RCU kernel configuration parameters and print informative
75  * messages about anything out of the ordinary.
76  */
77 static void __init rcu_bootup_announce_oddness(void)
78 {
79         if (IS_ENABLED(CONFIG_RCU_TRACE))
80                 pr_info("\tRCU event tracing is enabled.\n");
81         if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
82             (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
83                 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
84                         RCU_FANOUT);
85         if (rcu_fanout_exact)
86                 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
87         if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
88                 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
89         if (IS_ENABLED(CONFIG_PROVE_RCU))
90                 pr_info("\tRCU lockdep checking is enabled.\n");
91         if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
92                 pr_info("\tRCU strict (and thus non-scalable) grace periods enabled.\n");
93         if (RCU_NUM_LVLS >= 4)
94                 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
95         if (RCU_FANOUT_LEAF != 16)
96                 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
97                         RCU_FANOUT_LEAF);
98         if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
99                 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
100                         rcu_fanout_leaf);
101         if (nr_cpu_ids != NR_CPUS)
102                 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
103 #ifdef CONFIG_RCU_BOOST
104         pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
105                 kthread_prio, CONFIG_RCU_BOOST_DELAY);
106 #endif
107         if (blimit != DEFAULT_RCU_BLIMIT)
108                 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
109         if (qhimark != DEFAULT_RCU_QHIMARK)
110                 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
111         if (qlowmark != DEFAULT_RCU_QLOMARK)
112                 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
113         if (qovld != DEFAULT_RCU_QOVLD)
114                 pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld);
115         if (jiffies_till_first_fqs != ULONG_MAX)
116                 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
117         if (jiffies_till_next_fqs != ULONG_MAX)
118                 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
119         if (jiffies_till_sched_qs != ULONG_MAX)
120                 pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
121         if (rcu_kick_kthreads)
122                 pr_info("\tKick kthreads if too-long grace period.\n");
123         if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
124                 pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
125         if (gp_preinit_delay)
126                 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
127         if (gp_init_delay)
128                 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
129         if (gp_cleanup_delay)
130                 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
131         if (!use_softirq)
132                 pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
133         if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
134                 pr_info("\tRCU debug extended QS entry/exit.\n");
135         rcupdate_announce_bootup_oddness();
136 }
137
138 #ifdef CONFIG_PREEMPT_RCU
139
140 static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
141 static void rcu_read_unlock_special(struct task_struct *t);
142
143 /*
144  * Tell them what RCU they are running.
145  */
146 static void __init rcu_bootup_announce(void)
147 {
148         pr_info("Preemptible hierarchical RCU implementation.\n");
149         rcu_bootup_announce_oddness();
150 }
151
152 /* Flags for rcu_preempt_ctxt_queue() decision table. */
153 #define RCU_GP_TASKS    0x8
154 #define RCU_EXP_TASKS   0x4
155 #define RCU_GP_BLKD     0x2
156 #define RCU_EXP_BLKD    0x1
157
158 /*
159  * Queues a task preempted within an RCU-preempt read-side critical
160  * section into the appropriate location within the ->blkd_tasks list,
161  * depending on the states of any ongoing normal and expedited grace
162  * periods.  The ->gp_tasks pointer indicates which element the normal
163  * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
164  * indicates which element the expedited grace period is waiting on (again,
165  * NULL if none).  If a grace period is waiting on a given element in the
166  * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
167  * adding a task to the tail of the list blocks any grace period that is
168  * already waiting on one of the elements.  In contrast, adding a task
169  * to the head of the list won't block any grace period that is already
170  * waiting on one of the elements.
171  *
172  * This queuing is imprecise, and can sometimes make an ongoing grace
173  * period wait for a task that is not strictly speaking blocking it.
174  * Given the choice, we needlessly block a normal grace period rather than
175  * blocking an expedited grace period.
176  *
177  * Note that an endless sequence of expedited grace periods still cannot
178  * indefinitely postpone a normal grace period.  Eventually, all of the
179  * fixed number of preempted tasks blocking the normal grace period that are
180  * not also blocking the expedited grace period will resume and complete
181  * their RCU read-side critical sections.  At that point, the ->gp_tasks
182  * pointer will equal the ->exp_tasks pointer, at which point the end of
183  * the corresponding expedited grace period will also be the end of the
184  * normal grace period.
185  */
186 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
187         __releases(rnp->lock) /* But leaves rrupts disabled. */
188 {
189         int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
190                          (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
191                          (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
192                          (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
193         struct task_struct *t = current;
194
195         raw_lockdep_assert_held_rcu_node(rnp);
196         WARN_ON_ONCE(rdp->mynode != rnp);
197         WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
198         /* RCU better not be waiting on newly onlined CPUs! */
199         WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
200                      rdp->grpmask);
201
202         /*
203          * Decide where to queue the newly blocked task.  In theory,
204          * this could be an if-statement.  In practice, when I tried
205          * that, it was quite messy.
206          */
207         switch (blkd_state) {
208         case 0:
209         case                RCU_EXP_TASKS:
210         case                RCU_EXP_TASKS + RCU_GP_BLKD:
211         case RCU_GP_TASKS:
212         case RCU_GP_TASKS + RCU_EXP_TASKS:
213
214                 /*
215                  * Blocking neither GP, or first task blocking the normal
216                  * GP but not blocking the already-waiting expedited GP.
217                  * Queue at the head of the list to avoid unnecessarily
218                  * blocking the already-waiting GPs.
219                  */
220                 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
221                 break;
222
223         case                                              RCU_EXP_BLKD:
224         case                                RCU_GP_BLKD:
225         case                                RCU_GP_BLKD + RCU_EXP_BLKD:
226         case RCU_GP_TASKS +                               RCU_EXP_BLKD:
227         case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
228         case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
229
230                 /*
231                  * First task arriving that blocks either GP, or first task
232                  * arriving that blocks the expedited GP (with the normal
233                  * GP already waiting), or a task arriving that blocks
234                  * both GPs with both GPs already waiting.  Queue at the
235                  * tail of the list to avoid any GP waiting on any of the
236                  * already queued tasks that are not blocking it.
237                  */
238                 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
239                 break;
240
241         case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
242         case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
243         case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
244
245                 /*
246                  * Second or subsequent task blocking the expedited GP.
247                  * The task either does not block the normal GP, or is the
248                  * first task blocking the normal GP.  Queue just after
249                  * the first task blocking the expedited GP.
250                  */
251                 list_add(&t->rcu_node_entry, rnp->exp_tasks);
252                 break;
253
254         case RCU_GP_TASKS +                 RCU_GP_BLKD:
255         case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
256
257                 /*
258                  * Second or subsequent task blocking the normal GP.
259                  * The task does not block the expedited GP. Queue just
260                  * after the first task blocking the normal GP.
261                  */
262                 list_add(&t->rcu_node_entry, rnp->gp_tasks);
263                 break;
264
265         default:
266
267                 /* Yet another exercise in excessive paranoia. */
268                 WARN_ON_ONCE(1);
269                 break;
270         }
271
272         /*
273          * We have now queued the task.  If it was the first one to
274          * block either grace period, update the ->gp_tasks and/or
275          * ->exp_tasks pointers, respectively, to reference the newly
276          * blocked tasks.
277          */
278         if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
279                 WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
280                 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
281         }
282         if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
283                 WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry);
284         WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
285                      !(rnp->qsmask & rdp->grpmask));
286         WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
287                      !(rnp->expmask & rdp->grpmask));
288         raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
289
290         /*
291          * Report the quiescent state for the expedited GP.  This expedited
292          * GP should not be able to end until we report, so there should be
293          * no need to check for a subsequent expedited GP.  (Though we are
294          * still in a quiescent state in any case.)
295          */
296         if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs)
297                 rcu_report_exp_rdp(rdp);
298         else
299                 WARN_ON_ONCE(rdp->exp_deferred_qs);
300 }
301
302 /*
303  * Record a preemptible-RCU quiescent state for the specified CPU.
304  * Note that this does not necessarily mean that the task currently running
305  * on the CPU is in a quiescent state:  Instead, it means that the current
306  * grace period need not wait on any RCU read-side critical section that
307  * starts later on this CPU.  It also means that if the current task is
308  * in an RCU read-side critical section, it has already added itself to
309  * some leaf rcu_node structure's ->blkd_tasks list.  In addition to the
310  * current task, there might be any number of other tasks blocked while
311  * in an RCU read-side critical section.
312  *
313  * Callers to this function must disable preemption.
314  */
315 static void rcu_qs(void)
316 {
317         RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
318         if (__this_cpu_read(rcu_data.cpu_no_qs.s)) {
319                 trace_rcu_grace_period(TPS("rcu_preempt"),
320                                        __this_cpu_read(rcu_data.gp_seq),
321                                        TPS("cpuqs"));
322                 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
323                 barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
324                 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
325         }
326 }
327
328 /*
329  * We have entered the scheduler, and the current task might soon be
330  * context-switched away from.  If this task is in an RCU read-side
331  * critical section, we will no longer be able to rely on the CPU to
332  * record that fact, so we enqueue the task on the blkd_tasks list.
333  * The task will dequeue itself when it exits the outermost enclosing
334  * RCU read-side critical section.  Therefore, the current grace period
335  * cannot be permitted to complete until the blkd_tasks list entries
336  * predating the current grace period drain, in other words, until
337  * rnp->gp_tasks becomes NULL.
338  *
339  * Caller must disable interrupts.
340  */
341 void rcu_note_context_switch(bool preempt)
342 {
343         struct task_struct *t = current;
344         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
345         struct rcu_node *rnp;
346
347         trace_rcu_utilization(TPS("Start context switch"));
348         lockdep_assert_irqs_disabled();
349         WARN_ON_ONCE(!preempt && rcu_preempt_depth() > 0);
350         if (rcu_preempt_depth() > 0 &&
351             !t->rcu_read_unlock_special.b.blocked) {
352
353                 /* Possibly blocking in an RCU read-side critical section. */
354                 rnp = rdp->mynode;
355                 raw_spin_lock_rcu_node(rnp);
356                 t->rcu_read_unlock_special.b.blocked = true;
357                 t->rcu_blocked_node = rnp;
358
359                 /*
360                  * Verify the CPU's sanity, trace the preemption, and
361                  * then queue the task as required based on the states
362                  * of any ongoing and expedited grace periods.
363                  */
364                 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
365                 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
366                 trace_rcu_preempt_task(rcu_state.name,
367                                        t->pid,
368                                        (rnp->qsmask & rdp->grpmask)
369                                        ? rnp->gp_seq
370                                        : rcu_seq_snap(&rnp->gp_seq));
371                 rcu_preempt_ctxt_queue(rnp, rdp);
372         } else {
373                 rcu_preempt_deferred_qs(t);
374         }
375
376         /*
377          * Either we were not in an RCU read-side critical section to
378          * begin with, or we have now recorded that critical section
379          * globally.  Either way, we can now note a quiescent state
380          * for this CPU.  Again, if we were in an RCU read-side critical
381          * section, and if that critical section was blocking the current
382          * grace period, then the fact that the task has been enqueued
383          * means that we continue to block the current grace period.
384          */
385         rcu_qs();
386         if (rdp->exp_deferred_qs)
387                 rcu_report_exp_rdp(rdp);
388         rcu_tasks_qs(current, preempt);
389         trace_rcu_utilization(TPS("End context switch"));
390 }
391 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
392
393 /*
394  * Check for preempted RCU readers blocking the current grace period
395  * for the specified rcu_node structure.  If the caller needs a reliable
396  * answer, it must hold the rcu_node's ->lock.
397  */
398 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
399 {
400         return READ_ONCE(rnp->gp_tasks) != NULL;
401 }
402
403 /* limit value for ->rcu_read_lock_nesting. */
404 #define RCU_NEST_PMAX (INT_MAX / 2)
405
406 static void rcu_preempt_read_enter(void)
407 {
408         current->rcu_read_lock_nesting++;
409 }
410
411 static int rcu_preempt_read_exit(void)
412 {
413         return --current->rcu_read_lock_nesting;
414 }
415
416 static void rcu_preempt_depth_set(int val)
417 {
418         current->rcu_read_lock_nesting = val;
419 }
420
421 /*
422  * Preemptible RCU implementation for rcu_read_lock().
423  * Just increment ->rcu_read_lock_nesting, shared state will be updated
424  * if we block.
425  */
426 void __rcu_read_lock(void)
427 {
428         rcu_preempt_read_enter();
429         if (IS_ENABLED(CONFIG_PROVE_LOCKING))
430                 WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX);
431         if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && rcu_state.gp_kthread)
432                 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true);
433         barrier();  /* critical section after entry code. */
434 }
435 EXPORT_SYMBOL_GPL(__rcu_read_lock);
436
437 /*
438  * Preemptible RCU implementation for rcu_read_unlock().
439  * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
440  * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
441  * invoke rcu_read_unlock_special() to clean up after a context switch
442  * in an RCU read-side critical section and other special cases.
443  */
444 void __rcu_read_unlock(void)
445 {
446         struct task_struct *t = current;
447
448         barrier();  // critical section before exit code.
449         if (rcu_preempt_read_exit() == 0) {
450                 barrier();  // critical-section exit before .s check.
451                 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
452                         rcu_read_unlock_special(t);
453         }
454         if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
455                 int rrln = rcu_preempt_depth();
456
457                 WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX);
458         }
459 }
460 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
461
462 /*
463  * Advance a ->blkd_tasks-list pointer to the next entry, instead
464  * returning NULL if at the end of the list.
465  */
466 static struct list_head *rcu_next_node_entry(struct task_struct *t,
467                                              struct rcu_node *rnp)
468 {
469         struct list_head *np;
470
471         np = t->rcu_node_entry.next;
472         if (np == &rnp->blkd_tasks)
473                 np = NULL;
474         return np;
475 }
476
477 /*
478  * Return true if the specified rcu_node structure has tasks that were
479  * preempted within an RCU read-side critical section.
480  */
481 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
482 {
483         return !list_empty(&rnp->blkd_tasks);
484 }
485
486 /*
487  * Report deferred quiescent states.  The deferral time can
488  * be quite short, for example, in the case of the call from
489  * rcu_read_unlock_special().
490  */
491 static void
492 rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
493 {
494         bool empty_exp;
495         bool empty_norm;
496         bool empty_exp_now;
497         struct list_head *np;
498         bool drop_boost_mutex = false;
499         struct rcu_data *rdp;
500         struct rcu_node *rnp;
501         union rcu_special special;
502
503         /*
504          * If RCU core is waiting for this CPU to exit its critical section,
505          * report the fact that it has exited.  Because irqs are disabled,
506          * t->rcu_read_unlock_special cannot change.
507          */
508         special = t->rcu_read_unlock_special;
509         rdp = this_cpu_ptr(&rcu_data);
510         if (!special.s && !rdp->exp_deferred_qs) {
511                 local_irq_restore(flags);
512                 return;
513         }
514         t->rcu_read_unlock_special.s = 0;
515         if (special.b.need_qs) {
516                 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
517                         rcu_report_qs_rdp(rdp);
518                         udelay(rcu_unlock_delay);
519                 } else {
520                         rcu_qs();
521                 }
522         }
523
524         /*
525          * Respond to a request by an expedited grace period for a
526          * quiescent state from this CPU.  Note that requests from
527          * tasks are handled when removing the task from the
528          * blocked-tasks list below.
529          */
530         if (rdp->exp_deferred_qs)
531                 rcu_report_exp_rdp(rdp);
532
533         /* Clean up if blocked during RCU read-side critical section. */
534         if (special.b.blocked) {
535
536                 /*
537                  * Remove this task from the list it blocked on.  The task
538                  * now remains queued on the rcu_node corresponding to the
539                  * CPU it first blocked on, so there is no longer any need
540                  * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
541                  */
542                 rnp = t->rcu_blocked_node;
543                 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
544                 WARN_ON_ONCE(rnp != t->rcu_blocked_node);
545                 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
546                 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
547                 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
548                              (!empty_norm || rnp->qsmask));
549                 empty_exp = sync_rcu_exp_done(rnp);
550                 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
551                 np = rcu_next_node_entry(t, rnp);
552                 list_del_init(&t->rcu_node_entry);
553                 t->rcu_blocked_node = NULL;
554                 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
555                                                 rnp->gp_seq, t->pid);
556                 if (&t->rcu_node_entry == rnp->gp_tasks)
557                         WRITE_ONCE(rnp->gp_tasks, np);
558                 if (&t->rcu_node_entry == rnp->exp_tasks)
559                         WRITE_ONCE(rnp->exp_tasks, np);
560                 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
561                         /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
562                         drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
563                         if (&t->rcu_node_entry == rnp->boost_tasks)
564                                 WRITE_ONCE(rnp->boost_tasks, np);
565                 }
566
567                 /*
568                  * If this was the last task on the current list, and if
569                  * we aren't waiting on any CPUs, report the quiescent state.
570                  * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
571                  * so we must take a snapshot of the expedited state.
572                  */
573                 empty_exp_now = sync_rcu_exp_done(rnp);
574                 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
575                         trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
576                                                          rnp->gp_seq,
577                                                          0, rnp->qsmask,
578                                                          rnp->level,
579                                                          rnp->grplo,
580                                                          rnp->grphi,
581                                                          !!rnp->gp_tasks);
582                         rcu_report_unblock_qs_rnp(rnp, flags);
583                 } else {
584                         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
585                 }
586
587                 /* Unboost if we were boosted. */
588                 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
589                         rt_mutex_futex_unlock(&rnp->boost_mtx);
590
591                 /*
592                  * If this was the last task on the expedited lists,
593                  * then we need to report up the rcu_node hierarchy.
594                  */
595                 if (!empty_exp && empty_exp_now)
596                         rcu_report_exp_rnp(rnp, true);
597         } else {
598                 local_irq_restore(flags);
599         }
600 }
601
602 /*
603  * Is a deferred quiescent-state pending, and are we also not in
604  * an RCU read-side critical section?  It is the caller's responsibility
605  * to ensure it is otherwise safe to report any deferred quiescent
606  * states.  The reason for this is that it is safe to report a
607  * quiescent state during context switch even though preemption
608  * is disabled.  This function cannot be expected to understand these
609  * nuances, so the caller must handle them.
610  */
611 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
612 {
613         return (__this_cpu_read(rcu_data.exp_deferred_qs) ||
614                 READ_ONCE(t->rcu_read_unlock_special.s)) &&
615                rcu_preempt_depth() == 0;
616 }
617
618 /*
619  * Report a deferred quiescent state if needed and safe to do so.
620  * As with rcu_preempt_need_deferred_qs(), "safe" involves only
621  * not being in an RCU read-side critical section.  The caller must
622  * evaluate safety in terms of interrupt, softirq, and preemption
623  * disabling.
624  */
625 static void rcu_preempt_deferred_qs(struct task_struct *t)
626 {
627         unsigned long flags;
628
629         if (!rcu_preempt_need_deferred_qs(t))
630                 return;
631         local_irq_save(flags);
632         rcu_preempt_deferred_qs_irqrestore(t, flags);
633 }
634
635 /*
636  * Minimal handler to give the scheduler a chance to re-evaluate.
637  */
638 static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
639 {
640         struct rcu_data *rdp;
641
642         rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
643         rdp->defer_qs_iw_pending = false;
644 }
645
646 /*
647  * Handle special cases during rcu_read_unlock(), such as needing to
648  * notify RCU core processing or task having blocked during the RCU
649  * read-side critical section.
650  */
651 static void rcu_read_unlock_special(struct task_struct *t)
652 {
653         unsigned long flags;
654         bool irqs_were_disabled;
655         bool preempt_bh_were_disabled =
656                         !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
657
658         /* NMI handlers cannot block and cannot safely manipulate state. */
659         if (in_nmi())
660                 return;
661
662         local_irq_save(flags);
663         irqs_were_disabled = irqs_disabled_flags(flags);
664         if (preempt_bh_were_disabled || irqs_were_disabled) {
665                 bool expboost; // Expedited GP in flight or possible boosting.
666                 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
667                 struct rcu_node *rnp = rdp->mynode;
668
669                 expboost = (t->rcu_blocked_node && READ_ONCE(t->rcu_blocked_node->exp_tasks)) ||
670                            (rdp->grpmask & READ_ONCE(rnp->expmask)) ||
671                            IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ||
672                            (IS_ENABLED(CONFIG_RCU_BOOST) && irqs_were_disabled &&
673                             t->rcu_blocked_node);
674                 // Need to defer quiescent state until everything is enabled.
675                 if (use_softirq && (in_irq() || (expboost && !irqs_were_disabled))) {
676                         // Using softirq, safe to awaken, and either the
677                         // wakeup is free or there is either an expedited
678                         // GP in flight or a potential need to deboost.
679                         raise_softirq_irqoff(RCU_SOFTIRQ);
680                 } else {
681                         // Enabling BH or preempt does reschedule, so...
682                         // Also if no expediting and no possible deboosting,
683                         // slow is OK.  Plus nohz_full CPUs eventually get
684                         // tick enabled.
685                         set_tsk_need_resched(current);
686                         set_preempt_need_resched();
687                         if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
688                             expboost && !rdp->defer_qs_iw_pending && cpu_online(rdp->cpu)) {
689                                 // Get scheduler to re-evaluate and call hooks.
690                                 // If !IRQ_WORK, FQS scan will eventually IPI.
691                                 init_irq_work(&rdp->defer_qs_iw, rcu_preempt_deferred_qs_handler);
692                                 rdp->defer_qs_iw_pending = true;
693                                 irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
694                         }
695                 }
696                 local_irq_restore(flags);
697                 return;
698         }
699         rcu_preempt_deferred_qs_irqrestore(t, flags);
700 }
701
702 /*
703  * Check that the list of blocked tasks for the newly completed grace
704  * period is in fact empty.  It is a serious bug to complete a grace
705  * period that still has RCU readers blocked!  This function must be
706  * invoked -before- updating this rnp's ->gp_seq.
707  *
708  * Also, if there are blocked tasks on the list, they automatically
709  * block the newly created grace period, so set up ->gp_tasks accordingly.
710  */
711 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
712 {
713         struct task_struct *t;
714
715         RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
716         raw_lockdep_assert_held_rcu_node(rnp);
717         if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
718                 dump_blkd_tasks(rnp, 10);
719         if (rcu_preempt_has_tasks(rnp) &&
720             (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
721                 WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
722                 t = container_of(rnp->gp_tasks, struct task_struct,
723                                  rcu_node_entry);
724                 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
725                                                 rnp->gp_seq, t->pid);
726         }
727         WARN_ON_ONCE(rnp->qsmask);
728 }
729
730 /*
731  * Check for a quiescent state from the current CPU, including voluntary
732  * context switches for Tasks RCU.  When a task blocks, the task is
733  * recorded in the corresponding CPU's rcu_node structure, which is checked
734  * elsewhere, hence this function need only check for quiescent states
735  * related to the current CPU, not to those related to tasks.
736  */
737 static void rcu_flavor_sched_clock_irq(int user)
738 {
739         struct task_struct *t = current;
740
741         lockdep_assert_irqs_disabled();
742         if (user || rcu_is_cpu_rrupt_from_idle()) {
743                 rcu_note_voluntary_context_switch(current);
744         }
745         if (rcu_preempt_depth() > 0 ||
746             (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
747                 /* No QS, force context switch if deferred. */
748                 if (rcu_preempt_need_deferred_qs(t)) {
749                         set_tsk_need_resched(t);
750                         set_preempt_need_resched();
751                 }
752         } else if (rcu_preempt_need_deferred_qs(t)) {
753                 rcu_preempt_deferred_qs(t); /* Report deferred QS. */
754                 return;
755         } else if (!WARN_ON_ONCE(rcu_preempt_depth())) {
756                 rcu_qs(); /* Report immediate QS. */
757                 return;
758         }
759
760         /* If GP is oldish, ask for help from rcu_read_unlock_special(). */
761         if (rcu_preempt_depth() > 0 &&
762             __this_cpu_read(rcu_data.core_needs_qs) &&
763             __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
764             !t->rcu_read_unlock_special.b.need_qs &&
765             time_after(jiffies, rcu_state.gp_start + HZ))
766                 t->rcu_read_unlock_special.b.need_qs = true;
767 }
768
769 /*
770  * Check for a task exiting while in a preemptible-RCU read-side
771  * critical section, clean up if so.  No need to issue warnings, as
772  * debug_check_no_locks_held() already does this if lockdep is enabled.
773  * Besides, if this function does anything other than just immediately
774  * return, there was a bug of some sort.  Spewing warnings from this
775  * function is like as not to simply obscure important prior warnings.
776  */
777 void exit_rcu(void)
778 {
779         struct task_struct *t = current;
780
781         if (unlikely(!list_empty(&current->rcu_node_entry))) {
782                 rcu_preempt_depth_set(1);
783                 barrier();
784                 WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
785         } else if (unlikely(rcu_preempt_depth())) {
786                 rcu_preempt_depth_set(1);
787         } else {
788                 return;
789         }
790         __rcu_read_unlock();
791         rcu_preempt_deferred_qs(current);
792 }
793
794 /*
795  * Dump the blocked-tasks state, but limit the list dump to the
796  * specified number of elements.
797  */
798 static void
799 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
800 {
801         int cpu;
802         int i;
803         struct list_head *lhp;
804         bool onl;
805         struct rcu_data *rdp;
806         struct rcu_node *rnp1;
807
808         raw_lockdep_assert_held_rcu_node(rnp);
809         pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
810                 __func__, rnp->grplo, rnp->grphi, rnp->level,
811                 (long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs);
812         for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
813                 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
814                         __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
815         pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
816                 __func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks),
817                 READ_ONCE(rnp->exp_tasks));
818         pr_info("%s: ->blkd_tasks", __func__);
819         i = 0;
820         list_for_each(lhp, &rnp->blkd_tasks) {
821                 pr_cont(" %p", lhp);
822                 if (++i >= ncheck)
823                         break;
824         }
825         pr_cont("\n");
826         for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
827                 rdp = per_cpu_ptr(&rcu_data, cpu);
828                 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
829                 pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
830                         cpu, ".o"[onl],
831                         (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
832                         (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
833         }
834 }
835
836 #else /* #ifdef CONFIG_PREEMPT_RCU */
837
838 /*
839  * If strict grace periods are enabled, and if the calling
840  * __rcu_read_unlock() marks the beginning of a quiescent state, immediately
841  * report that quiescent state and, if requested, spin for a bit.
842  */
843 void rcu_read_unlock_strict(void)
844 {
845         struct rcu_data *rdp;
846
847         if (!IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ||
848            irqs_disabled() || preempt_count() || !rcu_state.gp_kthread)
849                 return;
850         rdp = this_cpu_ptr(&rcu_data);
851         rcu_report_qs_rdp(rdp);
852         udelay(rcu_unlock_delay);
853 }
854 EXPORT_SYMBOL_GPL(rcu_read_unlock_strict);
855
856 /*
857  * Tell them what RCU they are running.
858  */
859 static void __init rcu_bootup_announce(void)
860 {
861         pr_info("Hierarchical RCU implementation.\n");
862         rcu_bootup_announce_oddness();
863 }
864
865 /*
866  * Note a quiescent state for PREEMPTION=n.  Because we do not need to know
867  * how many quiescent states passed, just if there was at least one since
868  * the start of the grace period, this just sets a flag.  The caller must
869  * have disabled preemption.
870  */
871 static void rcu_qs(void)
872 {
873         RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
874         if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
875                 return;
876         trace_rcu_grace_period(TPS("rcu_sched"),
877                                __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
878         __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
879         if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
880                 return;
881         __this_cpu_write(rcu_data.cpu_no_qs.b.exp, false);
882         rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
883 }
884
885 /*
886  * Register an urgently needed quiescent state.  If there is an
887  * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
888  * dyntick-idle quiescent state visible to other CPUs, which will in
889  * some cases serve for expedited as well as normal grace periods.
890  * Either way, register a lightweight quiescent state.
891  */
892 void rcu_all_qs(void)
893 {
894         unsigned long flags;
895
896         if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
897                 return;
898         preempt_disable();
899         /* Load rcu_urgent_qs before other flags. */
900         if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
901                 preempt_enable();
902                 return;
903         }
904         this_cpu_write(rcu_data.rcu_urgent_qs, false);
905         if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
906                 local_irq_save(flags);
907                 rcu_momentary_dyntick_idle();
908                 local_irq_restore(flags);
909         }
910         rcu_qs();
911         preempt_enable();
912 }
913 EXPORT_SYMBOL_GPL(rcu_all_qs);
914
915 /*
916  * Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
917  */
918 void rcu_note_context_switch(bool preempt)
919 {
920         trace_rcu_utilization(TPS("Start context switch"));
921         rcu_qs();
922         /* Load rcu_urgent_qs before other flags. */
923         if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
924                 goto out;
925         this_cpu_write(rcu_data.rcu_urgent_qs, false);
926         if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
927                 rcu_momentary_dyntick_idle();
928         rcu_tasks_qs(current, preempt);
929 out:
930         trace_rcu_utilization(TPS("End context switch"));
931 }
932 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
933
934 /*
935  * Because preemptible RCU does not exist, there are never any preempted
936  * RCU readers.
937  */
938 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
939 {
940         return 0;
941 }
942
943 /*
944  * Because there is no preemptible RCU, there can be no readers blocked.
945  */
946 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
947 {
948         return false;
949 }
950
951 /*
952  * Because there is no preemptible RCU, there can be no deferred quiescent
953  * states.
954  */
955 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
956 {
957         return false;
958 }
959 static void rcu_preempt_deferred_qs(struct task_struct *t) { }
960
961 /*
962  * Because there is no preemptible RCU, there can be no readers blocked,
963  * so there is no need to check for blocked tasks.  So check only for
964  * bogus qsmask values.
965  */
966 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
967 {
968         WARN_ON_ONCE(rnp->qsmask);
969 }
970
971 /*
972  * Check to see if this CPU is in a non-context-switch quiescent state,
973  * namely user mode and idle loop.
974  */
975 static void rcu_flavor_sched_clock_irq(int user)
976 {
977         if (user || rcu_is_cpu_rrupt_from_idle()) {
978
979                 /*
980                  * Get here if this CPU took its interrupt from user
981                  * mode or from the idle loop, and if this is not a
982                  * nested interrupt.  In this case, the CPU is in
983                  * a quiescent state, so note it.
984                  *
985                  * No memory barrier is required here because rcu_qs()
986                  * references only CPU-local variables that other CPUs
987                  * neither access nor modify, at least not while the
988                  * corresponding CPU is online.
989                  */
990
991                 rcu_qs();
992         }
993 }
994
995 /*
996  * Because preemptible RCU does not exist, tasks cannot possibly exit
997  * while in preemptible RCU read-side critical sections.
998  */
999 void exit_rcu(void)
1000 {
1001 }
1002
1003 /*
1004  * Dump the guaranteed-empty blocked-tasks state.  Trust but verify.
1005  */
1006 static void
1007 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
1008 {
1009         WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
1010 }
1011
1012 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
1013
1014 /*
1015  * If boosting, set rcuc kthreads to realtime priority.
1016  */
1017 static void rcu_cpu_kthread_setup(unsigned int cpu)
1018 {
1019 #ifdef CONFIG_RCU_BOOST
1020         struct sched_param sp;
1021
1022         sp.sched_priority = kthread_prio;
1023         sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1024 #endif /* #ifdef CONFIG_RCU_BOOST */
1025 }
1026
1027 #ifdef CONFIG_RCU_BOOST
1028
1029 /*
1030  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1031  * or ->boost_tasks, advancing the pointer to the next task in the
1032  * ->blkd_tasks list.
1033  *
1034  * Note that irqs must be enabled: boosting the task can block.
1035  * Returns 1 if there are more tasks needing to be boosted.
1036  */
1037 static int rcu_boost(struct rcu_node *rnp)
1038 {
1039         unsigned long flags;
1040         struct task_struct *t;
1041         struct list_head *tb;
1042
1043         if (READ_ONCE(rnp->exp_tasks) == NULL &&
1044             READ_ONCE(rnp->boost_tasks) == NULL)
1045                 return 0;  /* Nothing left to boost. */
1046
1047         raw_spin_lock_irqsave_rcu_node(rnp, flags);
1048
1049         /*
1050          * Recheck under the lock: all tasks in need of boosting
1051          * might exit their RCU read-side critical sections on their own.
1052          */
1053         if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1054                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1055                 return 0;
1056         }
1057
1058         /*
1059          * Preferentially boost tasks blocking expedited grace periods.
1060          * This cannot starve the normal grace periods because a second
1061          * expedited grace period must boost all blocked tasks, including
1062          * those blocking the pre-existing normal grace period.
1063          */
1064         if (rnp->exp_tasks != NULL)
1065                 tb = rnp->exp_tasks;
1066         else
1067                 tb = rnp->boost_tasks;
1068
1069         /*
1070          * We boost task t by manufacturing an rt_mutex that appears to
1071          * be held by task t.  We leave a pointer to that rt_mutex where
1072          * task t can find it, and task t will release the mutex when it
1073          * exits its outermost RCU read-side critical section.  Then
1074          * simply acquiring this artificial rt_mutex will boost task
1075          * t's priority.  (Thanks to tglx for suggesting this approach!)
1076          *
1077          * Note that task t must acquire rnp->lock to remove itself from
1078          * the ->blkd_tasks list, which it will do from exit() if from
1079          * nowhere else.  We therefore are guaranteed that task t will
1080          * stay around at least until we drop rnp->lock.  Note that
1081          * rnp->lock also resolves races between our priority boosting
1082          * and task t's exiting its outermost RCU read-side critical
1083          * section.
1084          */
1085         t = container_of(tb, struct task_struct, rcu_node_entry);
1086         rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1087         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1088         /* Lock only for side effect: boosts task t's priority. */
1089         rt_mutex_lock(&rnp->boost_mtx);
1090         rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1091         rnp->n_boosts++;
1092
1093         return READ_ONCE(rnp->exp_tasks) != NULL ||
1094                READ_ONCE(rnp->boost_tasks) != NULL;
1095 }
1096
1097 /*
1098  * Priority-boosting kthread, one per leaf rcu_node.
1099  */
1100 static int rcu_boost_kthread(void *arg)
1101 {
1102         struct rcu_node *rnp = (struct rcu_node *)arg;
1103         int spincnt = 0;
1104         int more2boost;
1105
1106         trace_rcu_utilization(TPS("Start boost kthread@init"));
1107         for (;;) {
1108                 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING);
1109                 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1110                 rcu_wait(READ_ONCE(rnp->boost_tasks) ||
1111                          READ_ONCE(rnp->exp_tasks));
1112                 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1113                 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING);
1114                 more2boost = rcu_boost(rnp);
1115                 if (more2boost)
1116                         spincnt++;
1117                 else
1118                         spincnt = 0;
1119                 if (spincnt > 10) {
1120                         WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING);
1121                         trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1122                         schedule_timeout_idle(2);
1123                         trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1124                         spincnt = 0;
1125                 }
1126         }
1127         /* NOTREACHED */
1128         trace_rcu_utilization(TPS("End boost kthread@notreached"));
1129         return 0;
1130 }
1131
1132 /*
1133  * Check to see if it is time to start boosting RCU readers that are
1134  * blocking the current grace period, and, if so, tell the per-rcu_node
1135  * kthread to start boosting them.  If there is an expedited grace
1136  * period in progress, it is always time to boost.
1137  *
1138  * The caller must hold rnp->lock, which this function releases.
1139  * The ->boost_kthread_task is immortal, so we don't need to worry
1140  * about it going away.
1141  */
1142 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1143         __releases(rnp->lock)
1144 {
1145         raw_lockdep_assert_held_rcu_node(rnp);
1146         if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1147                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1148                 return;
1149         }
1150         if (rnp->exp_tasks != NULL ||
1151             (rnp->gp_tasks != NULL &&
1152              rnp->boost_tasks == NULL &&
1153              rnp->qsmask == 0 &&
1154              (!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld))) {
1155                 if (rnp->exp_tasks == NULL)
1156                         WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks);
1157                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1158                 rcu_wake_cond(rnp->boost_kthread_task,
1159                               READ_ONCE(rnp->boost_kthread_status));
1160         } else {
1161                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1162         }
1163 }
1164
1165 /*
1166  * Is the current CPU running the RCU-callbacks kthread?
1167  * Caller must have preemption disabled.
1168  */
1169 static bool rcu_is_callbacks_kthread(void)
1170 {
1171         return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current;
1172 }
1173
1174 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1175
1176 /*
1177  * Do priority-boost accounting for the start of a new grace period.
1178  */
1179 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1180 {
1181         rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1182 }
1183
1184 /*
1185  * Create an RCU-boost kthread for the specified node if one does not
1186  * already exist.  We only create this kthread for preemptible RCU.
1187  * Returns zero if all is well, a negated errno otherwise.
1188  */
1189 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1190 {
1191         unsigned long flags;
1192         int rnp_index = rnp - rcu_get_root();
1193         struct sched_param sp;
1194         struct task_struct *t;
1195
1196         if (rnp->boost_kthread_task || !rcu_scheduler_fully_active)
1197                 return;
1198
1199         rcu_state.boost = 1;
1200
1201         t = kthread_create(rcu_boost_kthread, (void *)rnp,
1202                            "rcub/%d", rnp_index);
1203         if (WARN_ON_ONCE(IS_ERR(t)))
1204                 return;
1205
1206         raw_spin_lock_irqsave_rcu_node(rnp, flags);
1207         rnp->boost_kthread_task = t;
1208         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1209         sp.sched_priority = kthread_prio;
1210         sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1211         wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1212 }
1213
1214 /*
1215  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1216  * served by the rcu_node in question.  The CPU hotplug lock is still
1217  * held, so the value of rnp->qsmaskinit will be stable.
1218  *
1219  * We don't include outgoingcpu in the affinity set, use -1 if there is
1220  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1221  * this function allows the kthread to execute on any CPU.
1222  */
1223 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1224 {
1225         struct task_struct *t = rnp->boost_kthread_task;
1226         unsigned long mask = rcu_rnp_online_cpus(rnp);
1227         cpumask_var_t cm;
1228         int cpu;
1229
1230         if (!t)
1231                 return;
1232         if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1233                 return;
1234         for_each_leaf_node_possible_cpu(rnp, cpu)
1235                 if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1236                     cpu != outgoingcpu)
1237                         cpumask_set_cpu(cpu, cm);
1238         if (cpumask_weight(cm) == 0)
1239                 cpumask_setall(cm);
1240         set_cpus_allowed_ptr(t, cm);
1241         free_cpumask_var(cm);
1242 }
1243
1244 /*
1245  * Spawn boost kthreads -- called as soon as the scheduler is running.
1246  */
1247 static void __init rcu_spawn_boost_kthreads(void)
1248 {
1249         struct rcu_node *rnp;
1250
1251         rcu_for_each_leaf_node(rnp)
1252                 if (rcu_rnp_online_cpus(rnp))
1253                         rcu_spawn_one_boost_kthread(rnp);
1254 }
1255
1256 #else /* #ifdef CONFIG_RCU_BOOST */
1257
1258 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1259         __releases(rnp->lock)
1260 {
1261         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1262 }
1263
1264 static bool rcu_is_callbacks_kthread(void)
1265 {
1266         return false;
1267 }
1268
1269 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1270 {
1271 }
1272
1273 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1274 {
1275 }
1276
1277 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1278 {
1279 }
1280
1281 static void __init rcu_spawn_boost_kthreads(void)
1282 {
1283 }
1284
1285 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1286
1287 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1288
1289 /*
1290  * Check to see if any future non-offloaded RCU-related work will need
1291  * to be done by the current CPU, even if none need be done immediately,
1292  * returning 1 if so.  This function is part of the RCU implementation;
1293  * it is -not- an exported member of the RCU API.
1294  *
1295  * Because we not have RCU_FAST_NO_HZ, just check whether or not this
1296  * CPU has RCU callbacks queued.
1297  */
1298 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1299 {
1300         *nextevt = KTIME_MAX;
1301         return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
1302                 !rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data));
1303 }
1304
1305 /*
1306  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1307  * after it.
1308  */
1309 static void rcu_cleanup_after_idle(void)
1310 {
1311 }
1312
1313 /*
1314  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1315  * is nothing.
1316  */
1317 static void rcu_prepare_for_idle(void)
1318 {
1319 }
1320
1321 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1322
1323 /*
1324  * This code is invoked when a CPU goes idle, at which point we want
1325  * to have the CPU do everything required for RCU so that it can enter
1326  * the energy-efficient dyntick-idle mode.
1327  *
1328  * The following preprocessor symbol controls this:
1329  *
1330  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1331  *      to sleep in dyntick-idle mode with RCU callbacks pending.  This
1332  *      is sized to be roughly one RCU grace period.  Those energy-efficiency
1333  *      benchmarkers who might otherwise be tempted to set this to a large
1334  *      number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1335  *      system.  And if you are -that- concerned about energy efficiency,
1336  *      just power the system down and be done with it!
1337  *
1338  * The value below works well in practice.  If future workloads require
1339  * adjustment, they can be converted into kernel config parameters, though
1340  * making the state machine smarter might be a better option.
1341  */
1342 #define RCU_IDLE_GP_DELAY 4             /* Roughly one grace period. */
1343
1344 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1345 module_param(rcu_idle_gp_delay, int, 0644);
1346
1347 /*
1348  * Try to advance callbacks on the current CPU, but only if it has been
1349  * awhile since the last time we did so.  Afterwards, if there are any
1350  * callbacks ready for immediate invocation, return true.
1351  */
1352 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1353 {
1354         bool cbs_ready = false;
1355         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1356         struct rcu_node *rnp;
1357
1358         /* Exit early if we advanced recently. */
1359         if (jiffies == rdp->last_advance_all)
1360                 return false;
1361         rdp->last_advance_all = jiffies;
1362
1363         rnp = rdp->mynode;
1364
1365         /*
1366          * Don't bother checking unless a grace period has
1367          * completed since we last checked and there are
1368          * callbacks not yet ready to invoke.
1369          */
1370         if ((rcu_seq_completed_gp(rdp->gp_seq,
1371                                   rcu_seq_current(&rnp->gp_seq)) ||
1372              unlikely(READ_ONCE(rdp->gpwrap))) &&
1373             rcu_segcblist_pend_cbs(&rdp->cblist))
1374                 note_gp_changes(rdp);
1375
1376         if (rcu_segcblist_ready_cbs(&rdp->cblist))
1377                 cbs_ready = true;
1378         return cbs_ready;
1379 }
1380
1381 /*
1382  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1383  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1384  * caller about what to set the timeout.
1385  *
1386  * The caller must have disabled interrupts.
1387  */
1388 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1389 {
1390         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1391         unsigned long dj;
1392
1393         lockdep_assert_irqs_disabled();
1394
1395         /* If no non-offloaded callbacks, RCU doesn't need the CPU. */
1396         if (rcu_segcblist_empty(&rdp->cblist) ||
1397             rcu_rdp_is_offloaded(rdp)) {
1398                 *nextevt = KTIME_MAX;
1399                 return 0;
1400         }
1401
1402         /* Attempt to advance callbacks. */
1403         if (rcu_try_advance_all_cbs()) {
1404                 /* Some ready to invoke, so initiate later invocation. */
1405                 invoke_rcu_core();
1406                 return 1;
1407         }
1408         rdp->last_accelerate = jiffies;
1409
1410         /* Request timer and round. */
1411         dj = round_up(rcu_idle_gp_delay + jiffies, rcu_idle_gp_delay) - jiffies;
1412
1413         *nextevt = basemono + dj * TICK_NSEC;
1414         return 0;
1415 }
1416
1417 /*
1418  * Prepare a CPU for idle from an RCU perspective.  The first major task is to
1419  * sense whether nohz mode has been enabled or disabled via sysfs.  The second
1420  * major task is to accelerate (that is, assign grace-period numbers to) any
1421  * recently arrived callbacks.
1422  *
1423  * The caller must have disabled interrupts.
1424  */
1425 static void rcu_prepare_for_idle(void)
1426 {
1427         bool needwake;
1428         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1429         struct rcu_node *rnp;
1430         int tne;
1431
1432         lockdep_assert_irqs_disabled();
1433         if (rcu_rdp_is_offloaded(rdp))
1434                 return;
1435
1436         /* Handle nohz enablement switches conservatively. */
1437         tne = READ_ONCE(tick_nohz_active);
1438         if (tne != rdp->tick_nohz_enabled_snap) {
1439                 if (!rcu_segcblist_empty(&rdp->cblist))
1440                         invoke_rcu_core(); /* force nohz to see update. */
1441                 rdp->tick_nohz_enabled_snap = tne;
1442                 return;
1443         }
1444         if (!tne)
1445                 return;
1446
1447         /*
1448          * If we have not yet accelerated this jiffy, accelerate all
1449          * callbacks on this CPU.
1450          */
1451         if (rdp->last_accelerate == jiffies)
1452                 return;
1453         rdp->last_accelerate = jiffies;
1454         if (rcu_segcblist_pend_cbs(&rdp->cblist)) {
1455                 rnp = rdp->mynode;
1456                 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1457                 needwake = rcu_accelerate_cbs(rnp, rdp);
1458                 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1459                 if (needwake)
1460                         rcu_gp_kthread_wake();
1461         }
1462 }
1463
1464 /*
1465  * Clean up for exit from idle.  Attempt to advance callbacks based on
1466  * any grace periods that elapsed while the CPU was idle, and if any
1467  * callbacks are now ready to invoke, initiate invocation.
1468  */
1469 static void rcu_cleanup_after_idle(void)
1470 {
1471         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1472
1473         lockdep_assert_irqs_disabled();
1474         if (rcu_rdp_is_offloaded(rdp))
1475                 return;
1476         if (rcu_try_advance_all_cbs())
1477                 invoke_rcu_core();
1478 }
1479
1480 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1481
1482 #ifdef CONFIG_RCU_NOCB_CPU
1483
1484 /*
1485  * Offload callback processing from the boot-time-specified set of CPUs
1486  * specified by rcu_nocb_mask.  For the CPUs in the set, there are kthreads
1487  * created that pull the callbacks from the corresponding CPU, wait for
1488  * a grace period to elapse, and invoke the callbacks.  These kthreads
1489  * are organized into GP kthreads, which manage incoming callbacks, wait for
1490  * grace periods, and awaken CB kthreads, and the CB kthreads, which only
1491  * invoke callbacks.  Each GP kthread invokes its own CBs.  The no-CBs CPUs
1492  * do a wake_up() on their GP kthread when they insert a callback into any
1493  * empty list, unless the rcu_nocb_poll boot parameter has been specified,
1494  * in which case each kthread actively polls its CPU.  (Which isn't so great
1495  * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
1496  *
1497  * This is intended to be used in conjunction with Frederic Weisbecker's
1498  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1499  * running CPU-bound user-mode computations.
1500  *
1501  * Offloading of callbacks can also be used as an energy-efficiency
1502  * measure because CPUs with no RCU callbacks queued are more aggressive
1503  * about entering dyntick-idle mode.
1504  */
1505
1506
1507 /*
1508  * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
1509  * If the list is invalid, a warning is emitted and all CPUs are offloaded.
1510  */
1511 static int __init rcu_nocb_setup(char *str)
1512 {
1513         alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1514         if (cpulist_parse(str, rcu_nocb_mask)) {
1515                 pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
1516                 cpumask_setall(rcu_nocb_mask);
1517         }
1518         return 1;
1519 }
1520 __setup("rcu_nocbs=", rcu_nocb_setup);
1521
1522 static int __init parse_rcu_nocb_poll(char *arg)
1523 {
1524         rcu_nocb_poll = true;
1525         return 0;
1526 }
1527 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1528
1529 /*
1530  * Don't bother bypassing ->cblist if the call_rcu() rate is low.
1531  * After all, the main point of bypassing is to avoid lock contention
1532  * on ->nocb_lock, which only can happen at high call_rcu() rates.
1533  */
1534 static int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
1535 module_param(nocb_nobypass_lim_per_jiffy, int, 0);
1536
1537 /*
1538  * Acquire the specified rcu_data structure's ->nocb_bypass_lock.  If the
1539  * lock isn't immediately available, increment ->nocb_lock_contended to
1540  * flag the contention.
1541  */
1542 static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
1543         __acquires(&rdp->nocb_bypass_lock)
1544 {
1545         lockdep_assert_irqs_disabled();
1546         if (raw_spin_trylock(&rdp->nocb_bypass_lock))
1547                 return;
1548         atomic_inc(&rdp->nocb_lock_contended);
1549         WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1550         smp_mb__after_atomic(); /* atomic_inc() before lock. */
1551         raw_spin_lock(&rdp->nocb_bypass_lock);
1552         smp_mb__before_atomic(); /* atomic_dec() after lock. */
1553         atomic_dec(&rdp->nocb_lock_contended);
1554 }
1555
1556 /*
1557  * Spinwait until the specified rcu_data structure's ->nocb_lock is
1558  * not contended.  Please note that this is extremely special-purpose,
1559  * relying on the fact that at most two kthreads and one CPU contend for
1560  * this lock, and also that the two kthreads are guaranteed to have frequent
1561  * grace-period-duration time intervals between successive acquisitions
1562  * of the lock.  This allows us to use an extremely simple throttling
1563  * mechanism, and further to apply it only to the CPU doing floods of
1564  * call_rcu() invocations.  Don't try this at home!
1565  */
1566 static void rcu_nocb_wait_contended(struct rcu_data *rdp)
1567 {
1568         WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1569         while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
1570                 cpu_relax();
1571 }
1572
1573 /*
1574  * Conditionally acquire the specified rcu_data structure's
1575  * ->nocb_bypass_lock.
1576  */
1577 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
1578 {
1579         lockdep_assert_irqs_disabled();
1580         return raw_spin_trylock(&rdp->nocb_bypass_lock);
1581 }
1582
1583 /*
1584  * Release the specified rcu_data structure's ->nocb_bypass_lock.
1585  */
1586 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
1587         __releases(&rdp->nocb_bypass_lock)
1588 {
1589         lockdep_assert_irqs_disabled();
1590         raw_spin_unlock(&rdp->nocb_bypass_lock);
1591 }
1592
1593 /*
1594  * Acquire the specified rcu_data structure's ->nocb_lock, but only
1595  * if it corresponds to a no-CBs CPU.
1596  */
1597 static void rcu_nocb_lock(struct rcu_data *rdp)
1598 {
1599         lockdep_assert_irqs_disabled();
1600         if (!rcu_rdp_is_offloaded(rdp))
1601                 return;
1602         raw_spin_lock(&rdp->nocb_lock);
1603 }
1604
1605 /*
1606  * Release the specified rcu_data structure's ->nocb_lock, but only
1607  * if it corresponds to a no-CBs CPU.
1608  */
1609 static void rcu_nocb_unlock(struct rcu_data *rdp)
1610 {
1611         if (rcu_rdp_is_offloaded(rdp)) {
1612                 lockdep_assert_irqs_disabled();
1613                 raw_spin_unlock(&rdp->nocb_lock);
1614         }
1615 }
1616
1617 /*
1618  * Release the specified rcu_data structure's ->nocb_lock and restore
1619  * interrupts, but only if it corresponds to a no-CBs CPU.
1620  */
1621 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1622                                        unsigned long flags)
1623 {
1624         if (rcu_rdp_is_offloaded(rdp)) {
1625                 lockdep_assert_irqs_disabled();
1626                 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1627         } else {
1628                 local_irq_restore(flags);
1629         }
1630 }
1631
1632 /* Lockdep check that ->cblist may be safely accessed. */
1633 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1634 {
1635         lockdep_assert_irqs_disabled();
1636         if (rcu_rdp_is_offloaded(rdp))
1637                 lockdep_assert_held(&rdp->nocb_lock);
1638 }
1639
1640 /*
1641  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1642  * grace period.
1643  */
1644 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1645 {
1646         swake_up_all(sq);
1647 }
1648
1649 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1650 {
1651         return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
1652 }
1653
1654 static void rcu_init_one_nocb(struct rcu_node *rnp)
1655 {
1656         init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1657         init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1658 }
1659
1660 /* Is the specified CPU a no-CBs CPU? */
1661 bool rcu_is_nocb_cpu(int cpu)
1662 {
1663         if (cpumask_available(rcu_nocb_mask))
1664                 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1665         return false;
1666 }
1667
1668 static bool __wake_nocb_gp(struct rcu_data *rdp_gp,
1669                            struct rcu_data *rdp,
1670                            bool force, unsigned long flags)
1671         __releases(rdp_gp->nocb_gp_lock)
1672 {
1673         bool needwake = false;
1674
1675         if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
1676                 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1677                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1678                                     TPS("AlreadyAwake"));
1679                 return false;
1680         }
1681
1682         if (rdp_gp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
1683                 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
1684                 del_timer(&rdp_gp->nocb_timer);
1685         }
1686
1687         if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
1688                 WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
1689                 needwake = true;
1690         }
1691         raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1692         if (needwake) {
1693                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
1694                 wake_up_process(rdp_gp->nocb_gp_kthread);
1695         }
1696
1697         return needwake;
1698 }
1699
1700 /*
1701  * Kick the GP kthread for this NOCB group.
1702  */
1703 static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
1704 {
1705         unsigned long flags;
1706         struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1707
1708         raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1709         return __wake_nocb_gp(rdp_gp, rdp, force, flags);
1710 }
1711
1712 /*
1713  * Arrange to wake the GP kthread for this NOCB group at some future
1714  * time when it is safe to do so.
1715  */
1716 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
1717                                const char *reason)
1718 {
1719         unsigned long flags;
1720         struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1721
1722         raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1723
1724         /*
1725          * Bypass wakeup overrides previous deferments. In case
1726          * of callback storm, no need to wake up too early.
1727          */
1728         if (waketype == RCU_NOCB_WAKE_BYPASS) {
1729                 mod_timer(&rdp_gp->nocb_timer, jiffies + 2);
1730                 WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
1731         } else {
1732                 if (rdp_gp->nocb_defer_wakeup < RCU_NOCB_WAKE)
1733                         mod_timer(&rdp_gp->nocb_timer, jiffies + 1);
1734                 if (rdp_gp->nocb_defer_wakeup < waketype)
1735                         WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
1736         }
1737
1738         raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1739
1740         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
1741 }
1742
1743 /*
1744  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1745  * However, if there is a callback to be enqueued and if ->nocb_bypass
1746  * proves to be initially empty, just return false because the no-CB GP
1747  * kthread may need to be awakened in this case.
1748  *
1749  * Note that this function always returns true if rhp is NULL.
1750  */
1751 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1752                                      unsigned long j)
1753 {
1754         struct rcu_cblist rcl;
1755
1756         WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp));
1757         rcu_lockdep_assert_cblist_protected(rdp);
1758         lockdep_assert_held(&rdp->nocb_bypass_lock);
1759         if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
1760                 raw_spin_unlock(&rdp->nocb_bypass_lock);
1761                 return false;
1762         }
1763         /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
1764         if (rhp)
1765                 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1766         rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
1767         rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
1768         WRITE_ONCE(rdp->nocb_bypass_first, j);
1769         rcu_nocb_bypass_unlock(rdp);
1770         return true;
1771 }
1772
1773 /*
1774  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1775  * However, if there is a callback to be enqueued and if ->nocb_bypass
1776  * proves to be initially empty, just return false because the no-CB GP
1777  * kthread may need to be awakened in this case.
1778  *
1779  * Note that this function always returns true if rhp is NULL.
1780  */
1781 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1782                                   unsigned long j)
1783 {
1784         if (!rcu_rdp_is_offloaded(rdp))
1785                 return true;
1786         rcu_lockdep_assert_cblist_protected(rdp);
1787         rcu_nocb_bypass_lock(rdp);
1788         return rcu_nocb_do_flush_bypass(rdp, rhp, j);
1789 }
1790
1791 /*
1792  * If the ->nocb_bypass_lock is immediately available, flush the
1793  * ->nocb_bypass queue into ->cblist.
1794  */
1795 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
1796 {
1797         rcu_lockdep_assert_cblist_protected(rdp);
1798         if (!rcu_rdp_is_offloaded(rdp) ||
1799             !rcu_nocb_bypass_trylock(rdp))
1800                 return;
1801         WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
1802 }
1803
1804 /*
1805  * See whether it is appropriate to use the ->nocb_bypass list in order
1806  * to control contention on ->nocb_lock.  A limited number of direct
1807  * enqueues are permitted into ->cblist per jiffy.  If ->nocb_bypass
1808  * is non-empty, further callbacks must be placed into ->nocb_bypass,
1809  * otherwise rcu_barrier() breaks.  Use rcu_nocb_flush_bypass() to switch
1810  * back to direct use of ->cblist.  However, ->nocb_bypass should not be
1811  * used if ->cblist is empty, because otherwise callbacks can be stranded
1812  * on ->nocb_bypass because we cannot count on the current CPU ever again
1813  * invoking call_rcu().  The general rule is that if ->nocb_bypass is
1814  * non-empty, the corresponding no-CBs grace-period kthread must not be
1815  * in an indefinite sleep state.
1816  *
1817  * Finally, it is not permitted to use the bypass during early boot,
1818  * as doing so would confuse the auto-initialization code.  Besides
1819  * which, there is no point in worrying about lock contention while
1820  * there is only one CPU in operation.
1821  */
1822 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1823                                 bool *was_alldone, unsigned long flags)
1824 {
1825         unsigned long c;
1826         unsigned long cur_gp_seq;
1827         unsigned long j = jiffies;
1828         long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1829
1830         lockdep_assert_irqs_disabled();
1831
1832         // Pure softirq/rcuc based processing: no bypassing, no
1833         // locking.
1834         if (!rcu_rdp_is_offloaded(rdp)) {
1835                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1836                 return false;
1837         }
1838
1839         // In the process of (de-)offloading: no bypassing, but
1840         // locking.
1841         if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
1842                 rcu_nocb_lock(rdp);
1843                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1844                 return false; /* Not offloaded, no bypassing. */
1845         }
1846
1847         // Don't use ->nocb_bypass during early boot.
1848         if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
1849                 rcu_nocb_lock(rdp);
1850                 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1851                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1852                 return false;
1853         }
1854
1855         // If we have advanced to a new jiffy, reset counts to allow
1856         // moving back from ->nocb_bypass to ->cblist.
1857         if (j == rdp->nocb_nobypass_last) {
1858                 c = rdp->nocb_nobypass_count + 1;
1859         } else {
1860                 WRITE_ONCE(rdp->nocb_nobypass_last, j);
1861                 c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
1862                 if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
1863                                  nocb_nobypass_lim_per_jiffy))
1864                         c = 0;
1865                 else if (c > nocb_nobypass_lim_per_jiffy)
1866                         c = nocb_nobypass_lim_per_jiffy;
1867         }
1868         WRITE_ONCE(rdp->nocb_nobypass_count, c);
1869
1870         // If there hasn't yet been all that many ->cblist enqueues
1871         // this jiffy, tell the caller to enqueue onto ->cblist.  But flush
1872         // ->nocb_bypass first.
1873         if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
1874                 rcu_nocb_lock(rdp);
1875                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1876                 if (*was_alldone)
1877                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1878                                             TPS("FirstQ"));
1879                 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
1880                 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1881                 return false; // Caller must enqueue the callback.
1882         }
1883
1884         // If ->nocb_bypass has been used too long or is too full,
1885         // flush ->nocb_bypass to ->cblist.
1886         if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
1887             ncbs >= qhimark) {
1888                 rcu_nocb_lock(rdp);
1889                 if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
1890                         *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1891                         if (*was_alldone)
1892                                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1893                                                     TPS("FirstQ"));
1894                         WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1895                         return false; // Caller must enqueue the callback.
1896                 }
1897                 if (j != rdp->nocb_gp_adv_time &&
1898                     rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1899                     rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1900                         rcu_advance_cbs_nowake(rdp->mynode, rdp);
1901                         rdp->nocb_gp_adv_time = j;
1902                 }
1903                 rcu_nocb_unlock_irqrestore(rdp, flags);
1904                 return true; // Callback already enqueued.
1905         }
1906
1907         // We need to use the bypass.
1908         rcu_nocb_wait_contended(rdp);
1909         rcu_nocb_bypass_lock(rdp);
1910         ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1911         rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1912         rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
1913         if (!ncbs) {
1914                 WRITE_ONCE(rdp->nocb_bypass_first, j);
1915                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
1916         }
1917         rcu_nocb_bypass_unlock(rdp);
1918         smp_mb(); /* Order enqueue before wake. */
1919         if (ncbs) {
1920                 local_irq_restore(flags);
1921         } else {
1922                 // No-CBs GP kthread might be indefinitely asleep, if so, wake.
1923                 rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
1924                 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
1925                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1926                                             TPS("FirstBQwake"));
1927                         __call_rcu_nocb_wake(rdp, true, flags);
1928                 } else {
1929                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1930                                             TPS("FirstBQnoWake"));
1931                         rcu_nocb_unlock_irqrestore(rdp, flags);
1932                 }
1933         }
1934         return true; // Callback already enqueued.
1935 }
1936
1937 /*
1938  * Awaken the no-CBs grace-period kthread if needed, either due to it
1939  * legitimately being asleep or due to overload conditions.
1940  *
1941  * If warranted, also wake up the kthread servicing this CPUs queues.
1942  */
1943 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
1944                                  unsigned long flags)
1945                                  __releases(rdp->nocb_lock)
1946 {
1947         unsigned long cur_gp_seq;
1948         unsigned long j;
1949         long len;
1950         struct task_struct *t;
1951
1952         // If we are being polled or there is no kthread, just leave.
1953         t = READ_ONCE(rdp->nocb_gp_kthread);
1954         if (rcu_nocb_poll || !t) {
1955                 rcu_nocb_unlock_irqrestore(rdp, flags);
1956                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1957                                     TPS("WakeNotPoll"));
1958                 return;
1959         }
1960         // Need to actually to a wakeup.
1961         len = rcu_segcblist_n_cbs(&rdp->cblist);
1962         if (was_alldone) {
1963                 rdp->qlen_last_fqs_check = len;
1964                 if (!irqs_disabled_flags(flags)) {
1965                         /* ... if queue was empty ... */
1966                         rcu_nocb_unlock_irqrestore(rdp, flags);
1967                         wake_nocb_gp(rdp, false);
1968                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1969                                             TPS("WakeEmpty"));
1970                 } else {
1971                         rcu_nocb_unlock_irqrestore(rdp, flags);
1972                         wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
1973                                            TPS("WakeEmptyIsDeferred"));
1974                 }
1975         } else if (len > rdp->qlen_last_fqs_check + qhimark) {
1976                 /* ... or if many callbacks queued. */
1977                 rdp->qlen_last_fqs_check = len;
1978                 j = jiffies;
1979                 if (j != rdp->nocb_gp_adv_time &&
1980                     rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1981                     rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1982                         rcu_advance_cbs_nowake(rdp->mynode, rdp);
1983                         rdp->nocb_gp_adv_time = j;
1984                 }
1985                 smp_mb(); /* Enqueue before timer_pending(). */
1986                 if ((rdp->nocb_cb_sleep ||
1987                      !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
1988                     !timer_pending(&rdp->nocb_timer)) {
1989                         rcu_nocb_unlock_irqrestore(rdp, flags);
1990                         wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
1991                                            TPS("WakeOvfIsDeferred"));
1992                 } else {
1993                         rcu_nocb_unlock_irqrestore(rdp, flags);
1994                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
1995                 }
1996         } else {
1997                 rcu_nocb_unlock_irqrestore(rdp, flags);
1998                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
1999         }
2000         return;
2001 }
2002
2003 /*
2004  * Check if we ignore this rdp.
2005  *
2006  * We check that without holding the nocb lock but
2007  * we make sure not to miss a freshly offloaded rdp
2008  * with the current ordering:
2009  *
2010  *  rdp_offload_toggle()        nocb_gp_enabled_cb()
2011  * -------------------------   ----------------------------
2012  *    WRITE flags                 LOCK nocb_gp_lock
2013  *    LOCK nocb_gp_lock           READ/WRITE nocb_gp_sleep
2014  *    READ/WRITE nocb_gp_sleep    UNLOCK nocb_gp_lock
2015  *    UNLOCK nocb_gp_lock         READ flags
2016  */
2017 static inline bool nocb_gp_enabled_cb(struct rcu_data *rdp)
2018 {
2019         u8 flags = SEGCBLIST_OFFLOADED | SEGCBLIST_KTHREAD_GP;
2020
2021         return rcu_segcblist_test_flags(&rdp->cblist, flags);
2022 }
2023
2024 static inline bool nocb_gp_update_state_deoffloading(struct rcu_data *rdp,
2025                                                      bool *needwake_state)
2026 {
2027         struct rcu_segcblist *cblist = &rdp->cblist;
2028
2029         if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) {
2030                 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) {
2031                         rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_GP);
2032                         if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB))
2033                                 *needwake_state = true;
2034                 }
2035                 return false;
2036         }
2037
2038         /*
2039          * De-offloading. Clear our flag and notify the de-offload worker.
2040          * We will ignore this rdp until it ever gets re-offloaded.
2041          */
2042         WARN_ON_ONCE(!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP));
2043         rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_GP);
2044         if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB))
2045                 *needwake_state = true;
2046         return true;
2047 }
2048
2049
2050 /*
2051  * No-CBs GP kthreads come here to wait for additional callbacks to show up
2052  * or for grace periods to end.
2053  */
2054 static void nocb_gp_wait(struct rcu_data *my_rdp)
2055 {
2056         bool bypass = false;
2057         long bypass_ncbs;
2058         int __maybe_unused cpu = my_rdp->cpu;
2059         unsigned long cur_gp_seq;
2060         unsigned long flags;
2061         bool gotcbs = false;
2062         unsigned long j = jiffies;
2063         bool needwait_gp = false; // This prevents actual uninitialized use.
2064         bool needwake;
2065         bool needwake_gp;
2066         struct rcu_data *rdp;
2067         struct rcu_node *rnp;
2068         unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
2069         bool wasempty = false;
2070
2071         /*
2072          * Each pass through the following loop checks for CBs and for the
2073          * nearest grace period (if any) to wait for next.  The CB kthreads
2074          * and the global grace-period kthread are awakened if needed.
2075          */
2076         WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp);
2077         for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) {
2078                 bool needwake_state = false;
2079
2080                 if (!nocb_gp_enabled_cb(rdp))
2081                         continue;
2082                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
2083                 rcu_nocb_lock_irqsave(rdp, flags);
2084                 if (nocb_gp_update_state_deoffloading(rdp, &needwake_state)) {
2085                         rcu_nocb_unlock_irqrestore(rdp, flags);
2086                         if (needwake_state)
2087                                 swake_up_one(&rdp->nocb_state_wq);
2088                         continue;
2089                 }
2090                 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
2091                 if (bypass_ncbs &&
2092                     (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
2093                      bypass_ncbs > 2 * qhimark)) {
2094                         // Bypass full or old, so flush it.
2095                         (void)rcu_nocb_try_flush_bypass(rdp, j);
2096                         bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
2097                 } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
2098                         rcu_nocb_unlock_irqrestore(rdp, flags);
2099                         if (needwake_state)
2100                                 swake_up_one(&rdp->nocb_state_wq);
2101                         continue; /* No callbacks here, try next. */
2102                 }
2103                 if (bypass_ncbs) {
2104                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
2105                                             TPS("Bypass"));
2106                         bypass = true;
2107                 }
2108                 rnp = rdp->mynode;
2109
2110                 // Advance callbacks if helpful and low contention.
2111                 needwake_gp = false;
2112                 if (!rcu_segcblist_restempty(&rdp->cblist,
2113                                              RCU_NEXT_READY_TAIL) ||
2114                     (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
2115                      rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
2116                         raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
2117                         needwake_gp = rcu_advance_cbs(rnp, rdp);
2118                         wasempty = rcu_segcblist_restempty(&rdp->cblist,
2119                                                            RCU_NEXT_READY_TAIL);
2120                         raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
2121                 }
2122                 // Need to wait on some grace period?
2123                 WARN_ON_ONCE(wasempty &&
2124                              !rcu_segcblist_restempty(&rdp->cblist,
2125                                                       RCU_NEXT_READY_TAIL));
2126                 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
2127                         if (!needwait_gp ||
2128                             ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
2129                                 wait_gp_seq = cur_gp_seq;
2130                         needwait_gp = true;
2131                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
2132                                             TPS("NeedWaitGP"));
2133                 }
2134                 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
2135                         needwake = rdp->nocb_cb_sleep;
2136                         WRITE_ONCE(rdp->nocb_cb_sleep, false);
2137                         smp_mb(); /* CB invocation -after- GP end. */
2138                 } else {
2139                         needwake = false;
2140                 }
2141                 rcu_nocb_unlock_irqrestore(rdp, flags);
2142                 if (needwake) {
2143                         swake_up_one(&rdp->nocb_cb_wq);
2144                         gotcbs = true;
2145                 }
2146                 if (needwake_gp)
2147                         rcu_gp_kthread_wake();
2148                 if (needwake_state)
2149                         swake_up_one(&rdp->nocb_state_wq);
2150         }
2151
2152         my_rdp->nocb_gp_bypass = bypass;
2153         my_rdp->nocb_gp_gp = needwait_gp;
2154         my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
2155
2156         if (bypass && !rcu_nocb_poll) {
2157                 // At least one child with non-empty ->nocb_bypass, so set
2158                 // timer in order to avoid stranding its callbacks.
2159                 wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_BYPASS,
2160                                    TPS("WakeBypassIsDeferred"));
2161         }
2162         if (rcu_nocb_poll) {
2163                 /* Polling, so trace if first poll in the series. */
2164                 if (gotcbs)
2165                         trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
2166                 schedule_timeout_idle(1);
2167         } else if (!needwait_gp) {
2168                 /* Wait for callbacks to appear. */
2169                 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
2170                 swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
2171                                 !READ_ONCE(my_rdp->nocb_gp_sleep));
2172                 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
2173         } else {
2174                 rnp = my_rdp->mynode;
2175                 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
2176                 swait_event_interruptible_exclusive(
2177                         rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
2178                         rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
2179                         !READ_ONCE(my_rdp->nocb_gp_sleep));
2180                 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
2181         }
2182         if (!rcu_nocb_poll) {
2183                 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2184                 if (my_rdp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
2185                         WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2186                         del_timer(&my_rdp->nocb_timer);
2187                 }
2188                 WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
2189                 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2190         }
2191         my_rdp->nocb_gp_seq = -1;
2192         WARN_ON(signal_pending(current));
2193 }
2194
2195 /*
2196  * No-CBs grace-period-wait kthread.  There is one of these per group
2197  * of CPUs, but only once at least one CPU in that group has come online
2198  * at least once since boot.  This kthread checks for newly posted
2199  * callbacks from any of the CPUs it is responsible for, waits for a
2200  * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
2201  * that then have callback-invocation work to do.
2202  */
2203 static int rcu_nocb_gp_kthread(void *arg)
2204 {
2205         struct rcu_data *rdp = arg;
2206
2207         for (;;) {
2208                 WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
2209                 nocb_gp_wait(rdp);
2210                 cond_resched_tasks_rcu_qs();
2211         }
2212         return 0;
2213 }
2214
2215 static inline bool nocb_cb_can_run(struct rcu_data *rdp)
2216 {
2217         u8 flags = SEGCBLIST_OFFLOADED | SEGCBLIST_KTHREAD_CB;
2218         return rcu_segcblist_test_flags(&rdp->cblist, flags);
2219 }
2220
2221 static inline bool nocb_cb_wait_cond(struct rcu_data *rdp)
2222 {
2223         return nocb_cb_can_run(rdp) && !READ_ONCE(rdp->nocb_cb_sleep);
2224 }
2225
2226 /*
2227  * Invoke any ready callbacks from the corresponding no-CBs CPU,
2228  * then, if there are no more, wait for more to appear.
2229  */
2230 static void nocb_cb_wait(struct rcu_data *rdp)
2231 {
2232         struct rcu_segcblist *cblist = &rdp->cblist;
2233         unsigned long cur_gp_seq;
2234         unsigned long flags;
2235         bool needwake_state = false;
2236         bool needwake_gp = false;
2237         bool can_sleep = true;
2238         struct rcu_node *rnp = rdp->mynode;
2239
2240         local_irq_save(flags);
2241         rcu_momentary_dyntick_idle();
2242         local_irq_restore(flags);
2243         /*
2244          * Disable BH to provide the expected environment.  Also, when
2245          * transitioning to/from NOCB mode, a self-requeuing callback might
2246          * be invoked from softirq.  A short grace period could cause both
2247          * instances of this callback would execute concurrently.
2248          */
2249         local_bh_disable();
2250         rcu_do_batch(rdp);
2251         local_bh_enable();
2252         lockdep_assert_irqs_enabled();
2253         rcu_nocb_lock_irqsave(rdp, flags);
2254         if (rcu_segcblist_nextgp(cblist, &cur_gp_seq) &&
2255             rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
2256             raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
2257                 needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
2258                 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2259         }
2260
2261         if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) {
2262                 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) {
2263                         rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_CB);
2264                         if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP))
2265                                 needwake_state = true;
2266                 }
2267                 if (rcu_segcblist_ready_cbs(cblist))
2268                         can_sleep = false;
2269         } else {
2270                 /*
2271                  * De-offloading. Clear our flag and notify the de-offload worker.
2272                  * We won't touch the callbacks and keep sleeping until we ever
2273                  * get re-offloaded.
2274                  */
2275                 WARN_ON_ONCE(!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB));
2276                 rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_CB);
2277                 if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP))
2278                         needwake_state = true;
2279         }
2280
2281         WRITE_ONCE(rdp->nocb_cb_sleep, can_sleep);
2282
2283         if (rdp->nocb_cb_sleep)
2284                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
2285
2286         rcu_nocb_unlock_irqrestore(rdp, flags);
2287         if (needwake_gp)
2288                 rcu_gp_kthread_wake();
2289
2290         if (needwake_state)
2291                 swake_up_one(&rdp->nocb_state_wq);
2292
2293         do {
2294                 swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
2295                                                     nocb_cb_wait_cond(rdp));
2296
2297                 // VVV Ensure CB invocation follows _sleep test.
2298                 if (smp_load_acquire(&rdp->nocb_cb_sleep)) { // ^^^
2299                         WARN_ON(signal_pending(current));
2300                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
2301                 }
2302         } while (!nocb_cb_can_run(rdp));
2303 }
2304
2305 /*
2306  * Per-rcu_data kthread, but only for no-CBs CPUs.  Repeatedly invoke
2307  * nocb_cb_wait() to do the dirty work.
2308  */
2309 static int rcu_nocb_cb_kthread(void *arg)
2310 {
2311         struct rcu_data *rdp = arg;
2312
2313         // Each pass through this loop does one callback batch, and,
2314         // if there are no more ready callbacks, waits for them.
2315         for (;;) {
2316                 nocb_cb_wait(rdp);
2317                 cond_resched_tasks_rcu_qs();
2318         }
2319         return 0;
2320 }
2321
2322 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2323 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
2324 {
2325         return READ_ONCE(rdp->nocb_defer_wakeup) >= level;
2326 }
2327
2328 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2329 static bool do_nocb_deferred_wakeup_common(struct rcu_data *rdp_gp,
2330                                            struct rcu_data *rdp, int level,
2331                                            unsigned long flags)
2332         __releases(rdp_gp->nocb_gp_lock)
2333 {
2334         int ndw;
2335         int ret;
2336
2337         if (!rcu_nocb_need_deferred_wakeup(rdp_gp, level)) {
2338                 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
2339                 return false;
2340         }
2341
2342         ndw = rdp_gp->nocb_defer_wakeup;
2343         ret = __wake_nocb_gp(rdp_gp, rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2344         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
2345
2346         return ret;
2347 }
2348
2349 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2350 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
2351 {
2352         unsigned long flags;
2353         struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2354
2355         WARN_ON_ONCE(rdp->nocb_gp_rdp != rdp);
2356         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
2357
2358         raw_spin_lock_irqsave(&rdp->nocb_gp_lock, flags);
2359         smp_mb__after_spinlock(); /* Timer expire before wakeup. */
2360         do_nocb_deferred_wakeup_common(rdp, rdp, RCU_NOCB_WAKE_BYPASS, flags);
2361 }
2362
2363 /*
2364  * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2365  * This means we do an inexact common-case check.  Note that if
2366  * we miss, ->nocb_timer will eventually clean things up.
2367  */
2368 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
2369 {
2370         unsigned long flags;
2371         struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
2372
2373         if (!rdp_gp || !rcu_nocb_need_deferred_wakeup(rdp_gp, RCU_NOCB_WAKE))
2374                 return false;
2375
2376         raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
2377         return do_nocb_deferred_wakeup_common(rdp_gp, rdp, RCU_NOCB_WAKE, flags);
2378 }
2379
2380 void rcu_nocb_flush_deferred_wakeup(void)
2381 {
2382         do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data));
2383 }
2384 EXPORT_SYMBOL_GPL(rcu_nocb_flush_deferred_wakeup);
2385
2386 static int rdp_offload_toggle(struct rcu_data *rdp,
2387                                bool offload, unsigned long flags)
2388         __releases(rdp->nocb_lock)
2389 {
2390         struct rcu_segcblist *cblist = &rdp->cblist;
2391         struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
2392         bool wake_gp = false;
2393
2394         rcu_segcblist_offload(cblist, offload);
2395
2396         if (rdp->nocb_cb_sleep)
2397                 rdp->nocb_cb_sleep = false;
2398         rcu_nocb_unlock_irqrestore(rdp, flags);
2399
2400         /*
2401          * Ignore former value of nocb_cb_sleep and force wake up as it could
2402          * have been spuriously set to false already.
2403          */
2404         swake_up_one(&rdp->nocb_cb_wq);
2405
2406         raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
2407         if (rdp_gp->nocb_gp_sleep) {
2408                 rdp_gp->nocb_gp_sleep = false;
2409                 wake_gp = true;
2410         }
2411         raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
2412
2413         if (wake_gp)
2414                 wake_up_process(rdp_gp->nocb_gp_kthread);
2415
2416         return 0;
2417 }
2418
2419 static long rcu_nocb_rdp_deoffload(void *arg)
2420 {
2421         struct rcu_data *rdp = arg;
2422         struct rcu_segcblist *cblist = &rdp->cblist;
2423         unsigned long flags;
2424         int ret;
2425
2426         WARN_ON_ONCE(rdp->cpu != raw_smp_processor_id());
2427
2428         pr_info("De-offloading %d\n", rdp->cpu);
2429
2430         rcu_nocb_lock_irqsave(rdp, flags);
2431         /*
2432          * Flush once and for all now. This suffices because we are
2433          * running on the target CPU holding ->nocb_lock (thus having
2434          * interrupts disabled), and because rdp_offload_toggle()
2435          * invokes rcu_segcblist_offload(), which clears SEGCBLIST_OFFLOADED.
2436          * Thus future calls to rcu_segcblist_completely_offloaded() will
2437          * return false, which means that future calls to rcu_nocb_try_bypass()
2438          * will refuse to put anything into the bypass.
2439          */
2440         WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
2441         ret = rdp_offload_toggle(rdp, false, flags);
2442         swait_event_exclusive(rdp->nocb_state_wq,
2443                               !rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB |
2444                                                         SEGCBLIST_KTHREAD_GP));
2445         /*
2446          * Lock one last time to acquire latest callback updates from kthreads
2447          * so we can later handle callbacks locally without locking.
2448          */
2449         rcu_nocb_lock_irqsave(rdp, flags);
2450         /*
2451          * Theoretically we could set SEGCBLIST_SOFTIRQ_ONLY after the nocb
2452          * lock is released but how about being paranoid for once?
2453          */
2454         rcu_segcblist_set_flags(cblist, SEGCBLIST_SOFTIRQ_ONLY);
2455         /*
2456          * With SEGCBLIST_SOFTIRQ_ONLY, we can't use
2457          * rcu_nocb_unlock_irqrestore() anymore.
2458          */
2459         raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2460
2461         /* Sanity check */
2462         WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
2463
2464
2465         return ret;
2466 }
2467
2468 int rcu_nocb_cpu_deoffload(int cpu)
2469 {
2470         struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2471         int ret = 0;
2472
2473         mutex_lock(&rcu_state.barrier_mutex);
2474         cpus_read_lock();
2475         if (rcu_rdp_is_offloaded(rdp)) {
2476                 if (cpu_online(cpu)) {
2477                         ret = work_on_cpu(cpu, rcu_nocb_rdp_deoffload, rdp);
2478                         if (!ret)
2479                                 cpumask_clear_cpu(cpu, rcu_nocb_mask);
2480                 } else {
2481                         pr_info("NOCB: Can't CB-deoffload an offline CPU\n");
2482                         ret = -EINVAL;
2483                 }
2484         }
2485         cpus_read_unlock();
2486         mutex_unlock(&rcu_state.barrier_mutex);
2487
2488         return ret;
2489 }
2490 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_deoffload);
2491
2492 static long rcu_nocb_rdp_offload(void *arg)
2493 {
2494         struct rcu_data *rdp = arg;
2495         struct rcu_segcblist *cblist = &rdp->cblist;
2496         unsigned long flags;
2497         int ret;
2498
2499         WARN_ON_ONCE(rdp->cpu != raw_smp_processor_id());
2500         /*
2501          * For now we only support re-offload, ie: the rdp must have been
2502          * offloaded on boot first.
2503          */
2504         if (!rdp->nocb_gp_rdp)
2505                 return -EINVAL;
2506
2507         pr_info("Offloading %d\n", rdp->cpu);
2508         /*
2509          * Can't use rcu_nocb_lock_irqsave() while we are in
2510          * SEGCBLIST_SOFTIRQ_ONLY mode.
2511          */
2512         raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2513
2514         /*
2515          * We didn't take the nocb lock while working on the
2516          * rdp->cblist in SEGCBLIST_SOFTIRQ_ONLY mode.
2517          * Every modifications that have been done previously on
2518          * rdp->cblist must be visible remotely by the nocb kthreads
2519          * upon wake up after reading the cblist flags.
2520          *
2521          * The layout against nocb_lock enforces that ordering:
2522          *
2523          *  __rcu_nocb_rdp_offload()   nocb_cb_wait()/nocb_gp_wait()
2524          * -------------------------   ----------------------------
2525          *      WRITE callbacks           rcu_nocb_lock()
2526          *      rcu_nocb_lock()           READ flags
2527          *      WRITE flags               READ callbacks
2528          *      rcu_nocb_unlock()         rcu_nocb_unlock()
2529          */
2530         ret = rdp_offload_toggle(rdp, true, flags);
2531         swait_event_exclusive(rdp->nocb_state_wq,
2532                               rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB) &&
2533                               rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP));
2534
2535         return ret;
2536 }
2537
2538 int rcu_nocb_cpu_offload(int cpu)
2539 {
2540         struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2541         int ret = 0;
2542
2543         mutex_lock(&rcu_state.barrier_mutex);
2544         cpus_read_lock();
2545         if (!rcu_rdp_is_offloaded(rdp)) {
2546                 if (cpu_online(cpu)) {
2547                         ret = work_on_cpu(cpu, rcu_nocb_rdp_offload, rdp);
2548                         if (!ret)
2549                                 cpumask_set_cpu(cpu, rcu_nocb_mask);
2550                 } else {
2551                         pr_info("NOCB: Can't CB-offload an offline CPU\n");
2552                         ret = -EINVAL;
2553                 }
2554         }
2555         cpus_read_unlock();
2556         mutex_unlock(&rcu_state.barrier_mutex);
2557
2558         return ret;
2559 }
2560 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_offload);
2561
2562 void __init rcu_init_nohz(void)
2563 {
2564         int cpu;
2565         bool need_rcu_nocb_mask = false;
2566         struct rcu_data *rdp;
2567
2568 #if defined(CONFIG_NO_HZ_FULL)
2569         if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2570                 need_rcu_nocb_mask = true;
2571 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2572
2573         if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
2574                 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2575                         pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2576                         return;
2577                 }
2578         }
2579         if (!cpumask_available(rcu_nocb_mask))
2580                 return;
2581
2582 #if defined(CONFIG_NO_HZ_FULL)
2583         if (tick_nohz_full_running)
2584                 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2585 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2586
2587         if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2588                 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
2589                 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2590                             rcu_nocb_mask);
2591         }
2592         if (cpumask_empty(rcu_nocb_mask))
2593                 pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2594         else
2595                 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2596                         cpumask_pr_args(rcu_nocb_mask));
2597         if (rcu_nocb_poll)
2598                 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2599
2600         for_each_cpu(cpu, rcu_nocb_mask) {
2601                 rdp = per_cpu_ptr(&rcu_data, cpu);
2602                 if (rcu_segcblist_empty(&rdp->cblist))
2603                         rcu_segcblist_init(&rdp->cblist);
2604                 rcu_segcblist_offload(&rdp->cblist, true);
2605                 rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB);
2606                 rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_KTHREAD_GP);
2607         }
2608         rcu_organize_nocb_kthreads();
2609 }
2610
2611 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2612 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2613 {
2614         init_swait_queue_head(&rdp->nocb_cb_wq);
2615         init_swait_queue_head(&rdp->nocb_gp_wq);
2616         init_swait_queue_head(&rdp->nocb_state_wq);
2617         raw_spin_lock_init(&rdp->nocb_lock);
2618         raw_spin_lock_init(&rdp->nocb_bypass_lock);
2619         raw_spin_lock_init(&rdp->nocb_gp_lock);
2620         timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
2621         rcu_cblist_init(&rdp->nocb_bypass);
2622 }
2623
2624 /*
2625  * If the specified CPU is a no-CBs CPU that does not already have its
2626  * rcuo CB kthread, spawn it.  Additionally, if the rcuo GP kthread
2627  * for this CPU's group has not yet been created, spawn it as well.
2628  */
2629 static void rcu_spawn_one_nocb_kthread(int cpu)
2630 {
2631         struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2632         struct rcu_data *rdp_gp;
2633         struct task_struct *t;
2634
2635         /*
2636          * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2637          * then nothing to do.
2638          */
2639         if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread)
2640                 return;
2641
2642         /* If we didn't spawn the GP kthread first, reorganize! */
2643         rdp_gp = rdp->nocb_gp_rdp;
2644         if (!rdp_gp->nocb_gp_kthread) {
2645                 t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
2646                                 "rcuog/%d", rdp_gp->cpu);
2647                 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__))
2648                         return;
2649                 WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
2650         }
2651
2652         /* Spawn the kthread for this CPU. */
2653         t = kthread_run(rcu_nocb_cb_kthread, rdp,
2654                         "rcuo%c/%d", rcu_state.abbr, cpu);
2655         if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
2656                 return;
2657         WRITE_ONCE(rdp->nocb_cb_kthread, t);
2658         WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
2659 }
2660
2661 /*
2662  * If the specified CPU is a no-CBs CPU that does not already have its
2663  * rcuo kthread, spawn it.
2664  */
2665 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2666 {
2667         if (rcu_scheduler_fully_active)
2668                 rcu_spawn_one_nocb_kthread(cpu);
2669 }
2670
2671 /*
2672  * Once the scheduler is running, spawn rcuo kthreads for all online
2673  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2674  * non-boot CPUs come online -- if this changes, we will need to add
2675  * some mutual exclusion.
2676  */
2677 static void __init rcu_spawn_nocb_kthreads(void)
2678 {
2679         int cpu;
2680
2681         for_each_online_cpu(cpu)
2682                 rcu_spawn_cpu_nocb_kthread(cpu);
2683 }
2684
2685 /* How many CB CPU IDs per GP kthread?  Default of -1 for sqrt(nr_cpu_ids). */
2686 static int rcu_nocb_gp_stride = -1;
2687 module_param(rcu_nocb_gp_stride, int, 0444);
2688
2689 /*
2690  * Initialize GP-CB relationships for all no-CBs CPU.
2691  */
2692 static void __init rcu_organize_nocb_kthreads(void)
2693 {
2694         int cpu;
2695         bool firsttime = true;
2696         bool gotnocbs = false;
2697         bool gotnocbscbs = true;
2698         int ls = rcu_nocb_gp_stride;
2699         int nl = 0;  /* Next GP kthread. */
2700         struct rcu_data *rdp;
2701         struct rcu_data *rdp_gp = NULL;  /* Suppress misguided gcc warn. */
2702         struct rcu_data *rdp_prev = NULL;
2703
2704         if (!cpumask_available(rcu_nocb_mask))
2705                 return;
2706         if (ls == -1) {
2707                 ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
2708                 rcu_nocb_gp_stride = ls;
2709         }
2710
2711         /*
2712          * Each pass through this loop sets up one rcu_data structure.
2713          * Should the corresponding CPU come online in the future, then
2714          * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2715          */
2716         for_each_cpu(cpu, rcu_nocb_mask) {
2717                 rdp = per_cpu_ptr(&rcu_data, cpu);
2718                 if (rdp->cpu >= nl) {
2719                         /* New GP kthread, set up for CBs & next GP. */
2720                         gotnocbs = true;
2721                         nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2722                         rdp->nocb_gp_rdp = rdp;
2723                         rdp_gp = rdp;
2724                         if (dump_tree) {
2725                                 if (!firsttime)
2726                                         pr_cont("%s\n", gotnocbscbs
2727                                                         ? "" : " (self only)");
2728                                 gotnocbscbs = false;
2729                                 firsttime = false;
2730                                 pr_alert("%s: No-CB GP kthread CPU %d:",
2731                                          __func__, cpu);
2732                         }
2733                 } else {
2734                         /* Another CB kthread, link to previous GP kthread. */
2735                         gotnocbscbs = true;
2736                         rdp->nocb_gp_rdp = rdp_gp;
2737                         rdp_prev->nocb_next_cb_rdp = rdp;
2738                         if (dump_tree)
2739                                 pr_cont(" %d", cpu);
2740                 }
2741                 rdp_prev = rdp;
2742         }
2743         if (gotnocbs && dump_tree)
2744                 pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
2745 }
2746
2747 /*
2748  * Bind the current task to the offloaded CPUs.  If there are no offloaded
2749  * CPUs, leave the task unbound.  Splat if the bind attempt fails.
2750  */
2751 void rcu_bind_current_to_nocb(void)
2752 {
2753         if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
2754                 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
2755 }
2756 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
2757
2758 // The ->on_cpu field is available only in CONFIG_SMP=y, so...
2759 #ifdef CONFIG_SMP
2760 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
2761 {
2762         return tsp && task_is_running(tsp) && !tsp->on_cpu ? "!" : "";
2763 }
2764 #else // #ifdef CONFIG_SMP
2765 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
2766 {
2767         return "";
2768 }
2769 #endif // #else #ifdef CONFIG_SMP
2770
2771 /*
2772  * Dump out nocb grace-period kthread state for the specified rcu_data
2773  * structure.
2774  */
2775 static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
2776 {
2777         struct rcu_node *rnp = rdp->mynode;
2778
2779         pr_info("nocb GP %d %c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu %c CPU %d%s\n",
2780                 rdp->cpu,
2781                 "kK"[!!rdp->nocb_gp_kthread],
2782                 "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
2783                 "dD"[!!rdp->nocb_defer_wakeup],
2784                 "tT"[timer_pending(&rdp->nocb_timer)],
2785                 "sS"[!!rdp->nocb_gp_sleep],
2786                 ".W"[swait_active(&rdp->nocb_gp_wq)],
2787                 ".W"[swait_active(&rnp->nocb_gp_wq[0])],
2788                 ".W"[swait_active(&rnp->nocb_gp_wq[1])],
2789                 ".B"[!!rdp->nocb_gp_bypass],
2790                 ".G"[!!rdp->nocb_gp_gp],
2791                 (long)rdp->nocb_gp_seq,
2792                 rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops),
2793                 rdp->nocb_gp_kthread ? task_state_to_char(rdp->nocb_gp_kthread) : '.',
2794                 rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1,
2795                 show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread));
2796 }
2797
2798 /* Dump out nocb kthread state for the specified rcu_data structure. */
2799 static void show_rcu_nocb_state(struct rcu_data *rdp)
2800 {
2801         char bufw[20];
2802         char bufr[20];
2803         struct rcu_segcblist *rsclp = &rdp->cblist;
2804         bool waslocked;
2805         bool wassleep;
2806
2807         if (rdp->nocb_gp_rdp == rdp)
2808                 show_rcu_nocb_gp_state(rdp);
2809
2810         sprintf(bufw, "%ld", rsclp->gp_seq[RCU_WAIT_TAIL]);
2811         sprintf(bufr, "%ld", rsclp->gp_seq[RCU_NEXT_READY_TAIL]);
2812         pr_info("   CB %d^%d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%s%c%s%c%c q%ld %c CPU %d%s\n",
2813                 rdp->cpu, rdp->nocb_gp_rdp->cpu,
2814                 rdp->nocb_next_cb_rdp ? rdp->nocb_next_cb_rdp->cpu : -1,
2815                 "kK"[!!rdp->nocb_cb_kthread],
2816                 "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
2817                 "cC"[!!atomic_read(&rdp->nocb_lock_contended)],
2818                 "lL"[raw_spin_is_locked(&rdp->nocb_lock)],
2819                 "sS"[!!rdp->nocb_cb_sleep],
2820                 ".W"[swait_active(&rdp->nocb_cb_wq)],
2821                 jiffies - rdp->nocb_bypass_first,
2822                 jiffies - rdp->nocb_nobypass_last,
2823                 rdp->nocb_nobypass_count,
2824                 ".D"[rcu_segcblist_ready_cbs(rsclp)],
2825                 ".W"[!rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL)],
2826                 rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL) ? "" : bufw,
2827                 ".R"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL)],
2828                 rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL) ? "" : bufr,
2829                 ".N"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_TAIL)],
2830                 ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
2831                 rcu_segcblist_n_cbs(&rdp->cblist),
2832                 rdp->nocb_cb_kthread ? task_state_to_char(rdp->nocb_cb_kthread) : '.',
2833                 rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1,
2834                 show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread));
2835
2836         /* It is OK for GP kthreads to have GP state. */
2837         if (rdp->nocb_gp_rdp == rdp)
2838                 return;
2839
2840         waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
2841         wassleep = swait_active(&rdp->nocb_gp_wq);
2842         if (!rdp->nocb_gp_sleep && !waslocked && !wassleep)
2843                 return;  /* Nothing untoward. */
2844
2845         pr_info("   nocb GP activity on CB-only CPU!!! %c%c%c %c\n",
2846                 "lL"[waslocked],
2847                 "dD"[!!rdp->nocb_defer_wakeup],
2848                 "sS"[!!rdp->nocb_gp_sleep],
2849                 ".W"[wassleep]);
2850 }
2851
2852 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2853
2854 /* No ->nocb_lock to acquire.  */
2855 static void rcu_nocb_lock(struct rcu_data *rdp)
2856 {
2857 }
2858
2859 /* No ->nocb_lock to release.  */
2860 static void rcu_nocb_unlock(struct rcu_data *rdp)
2861 {
2862 }
2863
2864 /* No ->nocb_lock to release.  */
2865 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
2866                                        unsigned long flags)
2867 {
2868         local_irq_restore(flags);
2869 }
2870
2871 /* Lockdep check that ->cblist may be safely accessed. */
2872 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
2873 {
2874         lockdep_assert_irqs_disabled();
2875 }
2876
2877 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2878 {
2879 }
2880
2881 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2882 {
2883         return NULL;
2884 }
2885
2886 static void rcu_init_one_nocb(struct rcu_node *rnp)
2887 {
2888 }
2889
2890 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2891                                   unsigned long j)
2892 {
2893         return true;
2894 }
2895
2896 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2897                                 bool *was_alldone, unsigned long flags)
2898 {
2899         return false;
2900 }
2901
2902 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
2903                                  unsigned long flags)
2904 {
2905         WARN_ON_ONCE(1);  /* Should be dead code! */
2906 }
2907
2908 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2909 {
2910 }
2911
2912 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
2913 {
2914         return false;
2915 }
2916
2917 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
2918 {
2919         return false;
2920 }
2921
2922 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2923 {
2924 }
2925
2926 static void __init rcu_spawn_nocb_kthreads(void)
2927 {
2928 }
2929
2930 static void show_rcu_nocb_state(struct rcu_data *rdp)
2931 {
2932 }
2933
2934 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2935
2936 /*
2937  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2938  * grace-period kthread will do force_quiescent_state() processing?
2939  * The idea is to avoid waking up RCU core processing on such a
2940  * CPU unless the grace period has extended for too long.
2941  *
2942  * This code relies on the fact that all NO_HZ_FULL CPUs are also
2943  * CONFIG_RCU_NOCB_CPU CPUs.
2944  */
2945 static bool rcu_nohz_full_cpu(void)
2946 {
2947 #ifdef CONFIG_NO_HZ_FULL
2948         if (tick_nohz_full_cpu(smp_processor_id()) &&
2949             (!rcu_gp_in_progress() ||
2950              time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
2951                 return true;
2952 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2953         return false;
2954 }
2955
2956 /*
2957  * Bind the RCU grace-period kthreads to the housekeeping CPU.
2958  */
2959 static void rcu_bind_gp_kthread(void)
2960 {
2961         if (!tick_nohz_full_enabled())
2962                 return;
2963         housekeeping_affine(current, HK_FLAG_RCU);
2964 }
2965
2966 /* Record the current task on dyntick-idle entry. */
2967 static void noinstr rcu_dynticks_task_enter(void)
2968 {
2969 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2970         WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2971 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2972 }
2973
2974 /* Record no current task on dyntick-idle exit. */
2975 static void noinstr rcu_dynticks_task_exit(void)
2976 {
2977 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2978         WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2979 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2980 }
2981
2982 /* Turn on heavyweight RCU tasks trace readers on idle/user entry. */
2983 static void rcu_dynticks_task_trace_enter(void)
2984 {
2985 #ifdef CONFIG_TASKS_RCU_TRACE
2986         if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
2987                 current->trc_reader_special.b.need_mb = true;
2988 #endif /* #ifdef CONFIG_TASKS_RCU_TRACE */
2989 }
2990
2991 /* Turn off heavyweight RCU tasks trace readers on idle/user exit. */
2992 static void rcu_dynticks_task_trace_exit(void)
2993 {
2994 #ifdef CONFIG_TASKS_RCU_TRACE
2995         if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
2996                 current->trc_reader_special.b.need_mb = false;
2997 #endif /* #ifdef CONFIG_TASKS_RCU_TRACE */
2998 }