io_uring: don't assume mm is constant across submits
[linux-2.6-microblaze.git] / kernel / rcu / tree_plugin.h
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  * Internal non-public definitions that provide either classic
5  * or preemptible semantics.
6  *
7  * Copyright Red Hat, 2009
8  * Copyright IBM Corporation, 2009
9  *
10  * Author: Ingo Molnar <mingo@elte.hu>
11  *         Paul E. McKenney <paulmck@linux.ibm.com>
12  */
13
14 #include "../locking/rtmutex_common.h"
15
16 #ifdef CONFIG_RCU_NOCB_CPU
17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
18 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
19 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
20
21 /*
22  * Check the RCU kernel configuration parameters and print informative
23  * messages about anything out of the ordinary.
24  */
25 static void __init rcu_bootup_announce_oddness(void)
26 {
27         if (IS_ENABLED(CONFIG_RCU_TRACE))
28                 pr_info("\tRCU event tracing is enabled.\n");
29         if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
30             (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
31                 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
32                         RCU_FANOUT);
33         if (rcu_fanout_exact)
34                 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
35         if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
36                 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
37         if (IS_ENABLED(CONFIG_PROVE_RCU))
38                 pr_info("\tRCU lockdep checking is enabled.\n");
39         if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
40                 pr_info("\tRCU strict (and thus non-scalable) grace periods enabled.\n");
41         if (RCU_NUM_LVLS >= 4)
42                 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
43         if (RCU_FANOUT_LEAF != 16)
44                 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
45                         RCU_FANOUT_LEAF);
46         if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
47                 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
48                         rcu_fanout_leaf);
49         if (nr_cpu_ids != NR_CPUS)
50                 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
51 #ifdef CONFIG_RCU_BOOST
52         pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
53                 kthread_prio, CONFIG_RCU_BOOST_DELAY);
54 #endif
55         if (blimit != DEFAULT_RCU_BLIMIT)
56                 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
57         if (qhimark != DEFAULT_RCU_QHIMARK)
58                 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
59         if (qlowmark != DEFAULT_RCU_QLOMARK)
60                 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
61         if (qovld != DEFAULT_RCU_QOVLD)
62                 pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld);
63         if (jiffies_till_first_fqs != ULONG_MAX)
64                 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
65         if (jiffies_till_next_fqs != ULONG_MAX)
66                 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
67         if (jiffies_till_sched_qs != ULONG_MAX)
68                 pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
69         if (rcu_kick_kthreads)
70                 pr_info("\tKick kthreads if too-long grace period.\n");
71         if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
72                 pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
73         if (gp_preinit_delay)
74                 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
75         if (gp_init_delay)
76                 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
77         if (gp_cleanup_delay)
78                 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
79         if (!use_softirq)
80                 pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
81         if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
82                 pr_info("\tRCU debug extended QS entry/exit.\n");
83         rcupdate_announce_bootup_oddness();
84 }
85
86 #ifdef CONFIG_PREEMPT_RCU
87
88 static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
89 static void rcu_read_unlock_special(struct task_struct *t);
90
91 /*
92  * Tell them what RCU they are running.
93  */
94 static void __init rcu_bootup_announce(void)
95 {
96         pr_info("Preemptible hierarchical RCU implementation.\n");
97         rcu_bootup_announce_oddness();
98 }
99
100 /* Flags for rcu_preempt_ctxt_queue() decision table. */
101 #define RCU_GP_TASKS    0x8
102 #define RCU_EXP_TASKS   0x4
103 #define RCU_GP_BLKD     0x2
104 #define RCU_EXP_BLKD    0x1
105
106 /*
107  * Queues a task preempted within an RCU-preempt read-side critical
108  * section into the appropriate location within the ->blkd_tasks list,
109  * depending on the states of any ongoing normal and expedited grace
110  * periods.  The ->gp_tasks pointer indicates which element the normal
111  * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
112  * indicates which element the expedited grace period is waiting on (again,
113  * NULL if none).  If a grace period is waiting on a given element in the
114  * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
115  * adding a task to the tail of the list blocks any grace period that is
116  * already waiting on one of the elements.  In contrast, adding a task
117  * to the head of the list won't block any grace period that is already
118  * waiting on one of the elements.
119  *
120  * This queuing is imprecise, and can sometimes make an ongoing grace
121  * period wait for a task that is not strictly speaking blocking it.
122  * Given the choice, we needlessly block a normal grace period rather than
123  * blocking an expedited grace period.
124  *
125  * Note that an endless sequence of expedited grace periods still cannot
126  * indefinitely postpone a normal grace period.  Eventually, all of the
127  * fixed number of preempted tasks blocking the normal grace period that are
128  * not also blocking the expedited grace period will resume and complete
129  * their RCU read-side critical sections.  At that point, the ->gp_tasks
130  * pointer will equal the ->exp_tasks pointer, at which point the end of
131  * the corresponding expedited grace period will also be the end of the
132  * normal grace period.
133  */
134 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
135         __releases(rnp->lock) /* But leaves rrupts disabled. */
136 {
137         int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
138                          (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
139                          (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
140                          (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
141         struct task_struct *t = current;
142
143         raw_lockdep_assert_held_rcu_node(rnp);
144         WARN_ON_ONCE(rdp->mynode != rnp);
145         WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
146         /* RCU better not be waiting on newly onlined CPUs! */
147         WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
148                      rdp->grpmask);
149
150         /*
151          * Decide where to queue the newly blocked task.  In theory,
152          * this could be an if-statement.  In practice, when I tried
153          * that, it was quite messy.
154          */
155         switch (blkd_state) {
156         case 0:
157         case                RCU_EXP_TASKS:
158         case                RCU_EXP_TASKS + RCU_GP_BLKD:
159         case RCU_GP_TASKS:
160         case RCU_GP_TASKS + RCU_EXP_TASKS:
161
162                 /*
163                  * Blocking neither GP, or first task blocking the normal
164                  * GP but not blocking the already-waiting expedited GP.
165                  * Queue at the head of the list to avoid unnecessarily
166                  * blocking the already-waiting GPs.
167                  */
168                 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
169                 break;
170
171         case                                              RCU_EXP_BLKD:
172         case                                RCU_GP_BLKD:
173         case                                RCU_GP_BLKD + RCU_EXP_BLKD:
174         case RCU_GP_TASKS +                               RCU_EXP_BLKD:
175         case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
176         case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
177
178                 /*
179                  * First task arriving that blocks either GP, or first task
180                  * arriving that blocks the expedited GP (with the normal
181                  * GP already waiting), or a task arriving that blocks
182                  * both GPs with both GPs already waiting.  Queue at the
183                  * tail of the list to avoid any GP waiting on any of the
184                  * already queued tasks that are not blocking it.
185                  */
186                 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
187                 break;
188
189         case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
190         case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
191         case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
192
193                 /*
194                  * Second or subsequent task blocking the expedited GP.
195                  * The task either does not block the normal GP, or is the
196                  * first task blocking the normal GP.  Queue just after
197                  * the first task blocking the expedited GP.
198                  */
199                 list_add(&t->rcu_node_entry, rnp->exp_tasks);
200                 break;
201
202         case RCU_GP_TASKS +                 RCU_GP_BLKD:
203         case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
204
205                 /*
206                  * Second or subsequent task blocking the normal GP.
207                  * The task does not block the expedited GP. Queue just
208                  * after the first task blocking the normal GP.
209                  */
210                 list_add(&t->rcu_node_entry, rnp->gp_tasks);
211                 break;
212
213         default:
214
215                 /* Yet another exercise in excessive paranoia. */
216                 WARN_ON_ONCE(1);
217                 break;
218         }
219
220         /*
221          * We have now queued the task.  If it was the first one to
222          * block either grace period, update the ->gp_tasks and/or
223          * ->exp_tasks pointers, respectively, to reference the newly
224          * blocked tasks.
225          */
226         if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
227                 WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
228                 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
229         }
230         if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
231                 WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry);
232         WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
233                      !(rnp->qsmask & rdp->grpmask));
234         WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
235                      !(rnp->expmask & rdp->grpmask));
236         raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
237
238         /*
239          * Report the quiescent state for the expedited GP.  This expedited
240          * GP should not be able to end until we report, so there should be
241          * no need to check for a subsequent expedited GP.  (Though we are
242          * still in a quiescent state in any case.)
243          */
244         if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs)
245                 rcu_report_exp_rdp(rdp);
246         else
247                 WARN_ON_ONCE(rdp->exp_deferred_qs);
248 }
249
250 /*
251  * Record a preemptible-RCU quiescent state for the specified CPU.
252  * Note that this does not necessarily mean that the task currently running
253  * on the CPU is in a quiescent state:  Instead, it means that the current
254  * grace period need not wait on any RCU read-side critical section that
255  * starts later on this CPU.  It also means that if the current task is
256  * in an RCU read-side critical section, it has already added itself to
257  * some leaf rcu_node structure's ->blkd_tasks list.  In addition to the
258  * current task, there might be any number of other tasks blocked while
259  * in an RCU read-side critical section.
260  *
261  * Callers to this function must disable preemption.
262  */
263 static void rcu_qs(void)
264 {
265         RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
266         if (__this_cpu_read(rcu_data.cpu_no_qs.s)) {
267                 trace_rcu_grace_period(TPS("rcu_preempt"),
268                                        __this_cpu_read(rcu_data.gp_seq),
269                                        TPS("cpuqs"));
270                 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
271                 barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
272                 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
273         }
274 }
275
276 /*
277  * We have entered the scheduler, and the current task might soon be
278  * context-switched away from.  If this task is in an RCU read-side
279  * critical section, we will no longer be able to rely on the CPU to
280  * record that fact, so we enqueue the task on the blkd_tasks list.
281  * The task will dequeue itself when it exits the outermost enclosing
282  * RCU read-side critical section.  Therefore, the current grace period
283  * cannot be permitted to complete until the blkd_tasks list entries
284  * predating the current grace period drain, in other words, until
285  * rnp->gp_tasks becomes NULL.
286  *
287  * Caller must disable interrupts.
288  */
289 void rcu_note_context_switch(bool preempt)
290 {
291         struct task_struct *t = current;
292         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
293         struct rcu_node *rnp;
294
295         trace_rcu_utilization(TPS("Start context switch"));
296         lockdep_assert_irqs_disabled();
297         WARN_ON_ONCE(!preempt && rcu_preempt_depth() > 0);
298         if (rcu_preempt_depth() > 0 &&
299             !t->rcu_read_unlock_special.b.blocked) {
300
301                 /* Possibly blocking in an RCU read-side critical section. */
302                 rnp = rdp->mynode;
303                 raw_spin_lock_rcu_node(rnp);
304                 t->rcu_read_unlock_special.b.blocked = true;
305                 t->rcu_blocked_node = rnp;
306
307                 /*
308                  * Verify the CPU's sanity, trace the preemption, and
309                  * then queue the task as required based on the states
310                  * of any ongoing and expedited grace periods.
311                  */
312                 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
313                 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
314                 trace_rcu_preempt_task(rcu_state.name,
315                                        t->pid,
316                                        (rnp->qsmask & rdp->grpmask)
317                                        ? rnp->gp_seq
318                                        : rcu_seq_snap(&rnp->gp_seq));
319                 rcu_preempt_ctxt_queue(rnp, rdp);
320         } else {
321                 rcu_preempt_deferred_qs(t);
322         }
323
324         /*
325          * Either we were not in an RCU read-side critical section to
326          * begin with, or we have now recorded that critical section
327          * globally.  Either way, we can now note a quiescent state
328          * for this CPU.  Again, if we were in an RCU read-side critical
329          * section, and if that critical section was blocking the current
330          * grace period, then the fact that the task has been enqueued
331          * means that we continue to block the current grace period.
332          */
333         rcu_qs();
334         if (rdp->exp_deferred_qs)
335                 rcu_report_exp_rdp(rdp);
336         rcu_tasks_qs(current, preempt);
337         trace_rcu_utilization(TPS("End context switch"));
338 }
339 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
340
341 /*
342  * Check for preempted RCU readers blocking the current grace period
343  * for the specified rcu_node structure.  If the caller needs a reliable
344  * answer, it must hold the rcu_node's ->lock.
345  */
346 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
347 {
348         return READ_ONCE(rnp->gp_tasks) != NULL;
349 }
350
351 /* limit value for ->rcu_read_lock_nesting. */
352 #define RCU_NEST_PMAX (INT_MAX / 2)
353
354 static void rcu_preempt_read_enter(void)
355 {
356         current->rcu_read_lock_nesting++;
357 }
358
359 static int rcu_preempt_read_exit(void)
360 {
361         return --current->rcu_read_lock_nesting;
362 }
363
364 static void rcu_preempt_depth_set(int val)
365 {
366         current->rcu_read_lock_nesting = val;
367 }
368
369 /*
370  * Preemptible RCU implementation for rcu_read_lock().
371  * Just increment ->rcu_read_lock_nesting, shared state will be updated
372  * if we block.
373  */
374 void __rcu_read_lock(void)
375 {
376         rcu_preempt_read_enter();
377         if (IS_ENABLED(CONFIG_PROVE_LOCKING))
378                 WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX);
379         if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && rcu_state.gp_kthread)
380                 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true);
381         barrier();  /* critical section after entry code. */
382 }
383 EXPORT_SYMBOL_GPL(__rcu_read_lock);
384
385 /*
386  * Preemptible RCU implementation for rcu_read_unlock().
387  * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
388  * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
389  * invoke rcu_read_unlock_special() to clean up after a context switch
390  * in an RCU read-side critical section and other special cases.
391  */
392 void __rcu_read_unlock(void)
393 {
394         struct task_struct *t = current;
395
396         if (rcu_preempt_read_exit() == 0) {
397                 barrier();  /* critical section before exit code. */
398                 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
399                         rcu_read_unlock_special(t);
400         }
401         if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
402                 int rrln = rcu_preempt_depth();
403
404                 WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX);
405         }
406 }
407 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
408
409 /*
410  * Advance a ->blkd_tasks-list pointer to the next entry, instead
411  * returning NULL if at the end of the list.
412  */
413 static struct list_head *rcu_next_node_entry(struct task_struct *t,
414                                              struct rcu_node *rnp)
415 {
416         struct list_head *np;
417
418         np = t->rcu_node_entry.next;
419         if (np == &rnp->blkd_tasks)
420                 np = NULL;
421         return np;
422 }
423
424 /*
425  * Return true if the specified rcu_node structure has tasks that were
426  * preempted within an RCU read-side critical section.
427  */
428 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
429 {
430         return !list_empty(&rnp->blkd_tasks);
431 }
432
433 /*
434  * Report deferred quiescent states.  The deferral time can
435  * be quite short, for example, in the case of the call from
436  * rcu_read_unlock_special().
437  */
438 static void
439 rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
440 {
441         bool empty_exp;
442         bool empty_norm;
443         bool empty_exp_now;
444         struct list_head *np;
445         bool drop_boost_mutex = false;
446         struct rcu_data *rdp;
447         struct rcu_node *rnp;
448         union rcu_special special;
449
450         /*
451          * If RCU core is waiting for this CPU to exit its critical section,
452          * report the fact that it has exited.  Because irqs are disabled,
453          * t->rcu_read_unlock_special cannot change.
454          */
455         special = t->rcu_read_unlock_special;
456         rdp = this_cpu_ptr(&rcu_data);
457         if (!special.s && !rdp->exp_deferred_qs) {
458                 local_irq_restore(flags);
459                 return;
460         }
461         t->rcu_read_unlock_special.s = 0;
462         if (special.b.need_qs) {
463                 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
464                         rcu_report_qs_rdp(rdp);
465                         udelay(rcu_unlock_delay);
466                 } else {
467                         rcu_qs();
468                 }
469         }
470
471         /*
472          * Respond to a request by an expedited grace period for a
473          * quiescent state from this CPU.  Note that requests from
474          * tasks are handled when removing the task from the
475          * blocked-tasks list below.
476          */
477         if (rdp->exp_deferred_qs)
478                 rcu_report_exp_rdp(rdp);
479
480         /* Clean up if blocked during RCU read-side critical section. */
481         if (special.b.blocked) {
482
483                 /*
484                  * Remove this task from the list it blocked on.  The task
485                  * now remains queued on the rcu_node corresponding to the
486                  * CPU it first blocked on, so there is no longer any need
487                  * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
488                  */
489                 rnp = t->rcu_blocked_node;
490                 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
491                 WARN_ON_ONCE(rnp != t->rcu_blocked_node);
492                 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
493                 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
494                 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
495                              (!empty_norm || rnp->qsmask));
496                 empty_exp = sync_rcu_exp_done(rnp);
497                 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
498                 np = rcu_next_node_entry(t, rnp);
499                 list_del_init(&t->rcu_node_entry);
500                 t->rcu_blocked_node = NULL;
501                 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
502                                                 rnp->gp_seq, t->pid);
503                 if (&t->rcu_node_entry == rnp->gp_tasks)
504                         WRITE_ONCE(rnp->gp_tasks, np);
505                 if (&t->rcu_node_entry == rnp->exp_tasks)
506                         WRITE_ONCE(rnp->exp_tasks, np);
507                 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
508                         /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
509                         drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
510                         if (&t->rcu_node_entry == rnp->boost_tasks)
511                                 WRITE_ONCE(rnp->boost_tasks, np);
512                 }
513
514                 /*
515                  * If this was the last task on the current list, and if
516                  * we aren't waiting on any CPUs, report the quiescent state.
517                  * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
518                  * so we must take a snapshot of the expedited state.
519                  */
520                 empty_exp_now = sync_rcu_exp_done(rnp);
521                 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
522                         trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
523                                                          rnp->gp_seq,
524                                                          0, rnp->qsmask,
525                                                          rnp->level,
526                                                          rnp->grplo,
527                                                          rnp->grphi,
528                                                          !!rnp->gp_tasks);
529                         rcu_report_unblock_qs_rnp(rnp, flags);
530                 } else {
531                         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
532                 }
533
534                 /* Unboost if we were boosted. */
535                 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
536                         rt_mutex_futex_unlock(&rnp->boost_mtx);
537
538                 /*
539                  * If this was the last task on the expedited lists,
540                  * then we need to report up the rcu_node hierarchy.
541                  */
542                 if (!empty_exp && empty_exp_now)
543                         rcu_report_exp_rnp(rnp, true);
544         } else {
545                 local_irq_restore(flags);
546         }
547 }
548
549 /*
550  * Is a deferred quiescent-state pending, and are we also not in
551  * an RCU read-side critical section?  It is the caller's responsibility
552  * to ensure it is otherwise safe to report any deferred quiescent
553  * states.  The reason for this is that it is safe to report a
554  * quiescent state during context switch even though preemption
555  * is disabled.  This function cannot be expected to understand these
556  * nuances, so the caller must handle them.
557  */
558 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
559 {
560         return (__this_cpu_read(rcu_data.exp_deferred_qs) ||
561                 READ_ONCE(t->rcu_read_unlock_special.s)) &&
562                rcu_preempt_depth() == 0;
563 }
564
565 /*
566  * Report a deferred quiescent state if needed and safe to do so.
567  * As with rcu_preempt_need_deferred_qs(), "safe" involves only
568  * not being in an RCU read-side critical section.  The caller must
569  * evaluate safety in terms of interrupt, softirq, and preemption
570  * disabling.
571  */
572 static void rcu_preempt_deferred_qs(struct task_struct *t)
573 {
574         unsigned long flags;
575
576         if (!rcu_preempt_need_deferred_qs(t))
577                 return;
578         local_irq_save(flags);
579         rcu_preempt_deferred_qs_irqrestore(t, flags);
580 }
581
582 /*
583  * Minimal handler to give the scheduler a chance to re-evaluate.
584  */
585 static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
586 {
587         struct rcu_data *rdp;
588
589         rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
590         rdp->defer_qs_iw_pending = false;
591 }
592
593 /*
594  * Handle special cases during rcu_read_unlock(), such as needing to
595  * notify RCU core processing or task having blocked during the RCU
596  * read-side critical section.
597  */
598 static void rcu_read_unlock_special(struct task_struct *t)
599 {
600         unsigned long flags;
601         bool preempt_bh_were_disabled =
602                         !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
603         bool irqs_were_disabled;
604
605         /* NMI handlers cannot block and cannot safely manipulate state. */
606         if (in_nmi())
607                 return;
608
609         local_irq_save(flags);
610         irqs_were_disabled = irqs_disabled_flags(flags);
611         if (preempt_bh_were_disabled || irqs_were_disabled) {
612                 bool exp;
613                 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
614                 struct rcu_node *rnp = rdp->mynode;
615
616                 exp = (t->rcu_blocked_node &&
617                        READ_ONCE(t->rcu_blocked_node->exp_tasks)) ||
618                       (rdp->grpmask & READ_ONCE(rnp->expmask));
619                 // Need to defer quiescent state until everything is enabled.
620                 if (use_softirq && (in_irq() || (exp && !irqs_were_disabled))) {
621                         // Using softirq, safe to awaken, and either the
622                         // wakeup is free or there is an expedited GP.
623                         raise_softirq_irqoff(RCU_SOFTIRQ);
624                 } else {
625                         // Enabling BH or preempt does reschedule, so...
626                         // Also if no expediting, slow is OK.
627                         // Plus nohz_full CPUs eventually get tick enabled.
628                         set_tsk_need_resched(current);
629                         set_preempt_need_resched();
630                         if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
631                             !rdp->defer_qs_iw_pending && exp && cpu_online(rdp->cpu)) {
632                                 // Get scheduler to re-evaluate and call hooks.
633                                 // If !IRQ_WORK, FQS scan will eventually IPI.
634                                 init_irq_work(&rdp->defer_qs_iw,
635                                               rcu_preempt_deferred_qs_handler);
636                                 rdp->defer_qs_iw_pending = true;
637                                 irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
638                         }
639                 }
640                 local_irq_restore(flags);
641                 return;
642         }
643         rcu_preempt_deferred_qs_irqrestore(t, flags);
644 }
645
646 /*
647  * Check that the list of blocked tasks for the newly completed grace
648  * period is in fact empty.  It is a serious bug to complete a grace
649  * period that still has RCU readers blocked!  This function must be
650  * invoked -before- updating this rnp's ->gp_seq.
651  *
652  * Also, if there are blocked tasks on the list, they automatically
653  * block the newly created grace period, so set up ->gp_tasks accordingly.
654  */
655 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
656 {
657         struct task_struct *t;
658
659         RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
660         raw_lockdep_assert_held_rcu_node(rnp);
661         if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
662                 dump_blkd_tasks(rnp, 10);
663         if (rcu_preempt_has_tasks(rnp) &&
664             (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
665                 WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
666                 t = container_of(rnp->gp_tasks, struct task_struct,
667                                  rcu_node_entry);
668                 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
669                                                 rnp->gp_seq, t->pid);
670         }
671         WARN_ON_ONCE(rnp->qsmask);
672 }
673
674 /*
675  * Check for a quiescent state from the current CPU, including voluntary
676  * context switches for Tasks RCU.  When a task blocks, the task is
677  * recorded in the corresponding CPU's rcu_node structure, which is checked
678  * elsewhere, hence this function need only check for quiescent states
679  * related to the current CPU, not to those related to tasks.
680  */
681 static void rcu_flavor_sched_clock_irq(int user)
682 {
683         struct task_struct *t = current;
684
685         if (user || rcu_is_cpu_rrupt_from_idle()) {
686                 rcu_note_voluntary_context_switch(current);
687         }
688         if (rcu_preempt_depth() > 0 ||
689             (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
690                 /* No QS, force context switch if deferred. */
691                 if (rcu_preempt_need_deferred_qs(t)) {
692                         set_tsk_need_resched(t);
693                         set_preempt_need_resched();
694                 }
695         } else if (rcu_preempt_need_deferred_qs(t)) {
696                 rcu_preempt_deferred_qs(t); /* Report deferred QS. */
697                 return;
698         } else if (!WARN_ON_ONCE(rcu_preempt_depth())) {
699                 rcu_qs(); /* Report immediate QS. */
700                 return;
701         }
702
703         /* If GP is oldish, ask for help from rcu_read_unlock_special(). */
704         if (rcu_preempt_depth() > 0 &&
705             __this_cpu_read(rcu_data.core_needs_qs) &&
706             __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
707             !t->rcu_read_unlock_special.b.need_qs &&
708             time_after(jiffies, rcu_state.gp_start + HZ))
709                 t->rcu_read_unlock_special.b.need_qs = true;
710 }
711
712 /*
713  * Check for a task exiting while in a preemptible-RCU read-side
714  * critical section, clean up if so.  No need to issue warnings, as
715  * debug_check_no_locks_held() already does this if lockdep is enabled.
716  * Besides, if this function does anything other than just immediately
717  * return, there was a bug of some sort.  Spewing warnings from this
718  * function is like as not to simply obscure important prior warnings.
719  */
720 void exit_rcu(void)
721 {
722         struct task_struct *t = current;
723
724         if (unlikely(!list_empty(&current->rcu_node_entry))) {
725                 rcu_preempt_depth_set(1);
726                 barrier();
727                 WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
728         } else if (unlikely(rcu_preempt_depth())) {
729                 rcu_preempt_depth_set(1);
730         } else {
731                 return;
732         }
733         __rcu_read_unlock();
734         rcu_preempt_deferred_qs(current);
735 }
736
737 /*
738  * Dump the blocked-tasks state, but limit the list dump to the
739  * specified number of elements.
740  */
741 static void
742 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
743 {
744         int cpu;
745         int i;
746         struct list_head *lhp;
747         bool onl;
748         struct rcu_data *rdp;
749         struct rcu_node *rnp1;
750
751         raw_lockdep_assert_held_rcu_node(rnp);
752         pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
753                 __func__, rnp->grplo, rnp->grphi, rnp->level,
754                 (long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs);
755         for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
756                 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
757                         __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
758         pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
759                 __func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks),
760                 READ_ONCE(rnp->exp_tasks));
761         pr_info("%s: ->blkd_tasks", __func__);
762         i = 0;
763         list_for_each(lhp, &rnp->blkd_tasks) {
764                 pr_cont(" %p", lhp);
765                 if (++i >= ncheck)
766                         break;
767         }
768         pr_cont("\n");
769         for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
770                 rdp = per_cpu_ptr(&rcu_data, cpu);
771                 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
772                 pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
773                         cpu, ".o"[onl],
774                         (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
775                         (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
776         }
777 }
778
779 #else /* #ifdef CONFIG_PREEMPT_RCU */
780
781 /*
782  * If strict grace periods are enabled, and if the calling
783  * __rcu_read_unlock() marks the beginning of a quiescent state, immediately
784  * report that quiescent state and, if requested, spin for a bit.
785  */
786 void rcu_read_unlock_strict(void)
787 {
788         struct rcu_data *rdp;
789
790         if (!IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ||
791            irqs_disabled() || preempt_count() || !rcu_state.gp_kthread)
792                 return;
793         rdp = this_cpu_ptr(&rcu_data);
794         rcu_report_qs_rdp(rdp);
795         udelay(rcu_unlock_delay);
796 }
797 EXPORT_SYMBOL_GPL(rcu_read_unlock_strict);
798
799 /*
800  * Tell them what RCU they are running.
801  */
802 static void __init rcu_bootup_announce(void)
803 {
804         pr_info("Hierarchical RCU implementation.\n");
805         rcu_bootup_announce_oddness();
806 }
807
808 /*
809  * Note a quiescent state for PREEMPTION=n.  Because we do not need to know
810  * how many quiescent states passed, just if there was at least one since
811  * the start of the grace period, this just sets a flag.  The caller must
812  * have disabled preemption.
813  */
814 static void rcu_qs(void)
815 {
816         RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
817         if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
818                 return;
819         trace_rcu_grace_period(TPS("rcu_sched"),
820                                __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
821         __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
822         if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
823                 return;
824         __this_cpu_write(rcu_data.cpu_no_qs.b.exp, false);
825         rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
826 }
827
828 /*
829  * Register an urgently needed quiescent state.  If there is an
830  * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
831  * dyntick-idle quiescent state visible to other CPUs, which will in
832  * some cases serve for expedited as well as normal grace periods.
833  * Either way, register a lightweight quiescent state.
834  */
835 void rcu_all_qs(void)
836 {
837         unsigned long flags;
838
839         if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
840                 return;
841         preempt_disable();
842         /* Load rcu_urgent_qs before other flags. */
843         if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
844                 preempt_enable();
845                 return;
846         }
847         this_cpu_write(rcu_data.rcu_urgent_qs, false);
848         if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
849                 local_irq_save(flags);
850                 rcu_momentary_dyntick_idle();
851                 local_irq_restore(flags);
852         }
853         rcu_qs();
854         preempt_enable();
855 }
856 EXPORT_SYMBOL_GPL(rcu_all_qs);
857
858 /*
859  * Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
860  */
861 void rcu_note_context_switch(bool preempt)
862 {
863         trace_rcu_utilization(TPS("Start context switch"));
864         rcu_qs();
865         /* Load rcu_urgent_qs before other flags. */
866         if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
867                 goto out;
868         this_cpu_write(rcu_data.rcu_urgent_qs, false);
869         if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
870                 rcu_momentary_dyntick_idle();
871         rcu_tasks_qs(current, preempt);
872 out:
873         trace_rcu_utilization(TPS("End context switch"));
874 }
875 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
876
877 /*
878  * Because preemptible RCU does not exist, there are never any preempted
879  * RCU readers.
880  */
881 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
882 {
883         return 0;
884 }
885
886 /*
887  * Because there is no preemptible RCU, there can be no readers blocked.
888  */
889 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
890 {
891         return false;
892 }
893
894 /*
895  * Because there is no preemptible RCU, there can be no deferred quiescent
896  * states.
897  */
898 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
899 {
900         return false;
901 }
902 static void rcu_preempt_deferred_qs(struct task_struct *t) { }
903
904 /*
905  * Because there is no preemptible RCU, there can be no readers blocked,
906  * so there is no need to check for blocked tasks.  So check only for
907  * bogus qsmask values.
908  */
909 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
910 {
911         WARN_ON_ONCE(rnp->qsmask);
912 }
913
914 /*
915  * Check to see if this CPU is in a non-context-switch quiescent state,
916  * namely user mode and idle loop.
917  */
918 static void rcu_flavor_sched_clock_irq(int user)
919 {
920         if (user || rcu_is_cpu_rrupt_from_idle()) {
921
922                 /*
923                  * Get here if this CPU took its interrupt from user
924                  * mode or from the idle loop, and if this is not a
925                  * nested interrupt.  In this case, the CPU is in
926                  * a quiescent state, so note it.
927                  *
928                  * No memory barrier is required here because rcu_qs()
929                  * references only CPU-local variables that other CPUs
930                  * neither access nor modify, at least not while the
931                  * corresponding CPU is online.
932                  */
933
934                 rcu_qs();
935         }
936 }
937
938 /*
939  * Because preemptible RCU does not exist, tasks cannot possibly exit
940  * while in preemptible RCU read-side critical sections.
941  */
942 void exit_rcu(void)
943 {
944 }
945
946 /*
947  * Dump the guaranteed-empty blocked-tasks state.  Trust but verify.
948  */
949 static void
950 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
951 {
952         WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
953 }
954
955 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
956
957 /*
958  * If boosting, set rcuc kthreads to realtime priority.
959  */
960 static void rcu_cpu_kthread_setup(unsigned int cpu)
961 {
962 #ifdef CONFIG_RCU_BOOST
963         struct sched_param sp;
964
965         sp.sched_priority = kthread_prio;
966         sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
967 #endif /* #ifdef CONFIG_RCU_BOOST */
968 }
969
970 #ifdef CONFIG_RCU_BOOST
971
972 /*
973  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
974  * or ->boost_tasks, advancing the pointer to the next task in the
975  * ->blkd_tasks list.
976  *
977  * Note that irqs must be enabled: boosting the task can block.
978  * Returns 1 if there are more tasks needing to be boosted.
979  */
980 static int rcu_boost(struct rcu_node *rnp)
981 {
982         unsigned long flags;
983         struct task_struct *t;
984         struct list_head *tb;
985
986         if (READ_ONCE(rnp->exp_tasks) == NULL &&
987             READ_ONCE(rnp->boost_tasks) == NULL)
988                 return 0;  /* Nothing left to boost. */
989
990         raw_spin_lock_irqsave_rcu_node(rnp, flags);
991
992         /*
993          * Recheck under the lock: all tasks in need of boosting
994          * might exit their RCU read-side critical sections on their own.
995          */
996         if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
997                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
998                 return 0;
999         }
1000
1001         /*
1002          * Preferentially boost tasks blocking expedited grace periods.
1003          * This cannot starve the normal grace periods because a second
1004          * expedited grace period must boost all blocked tasks, including
1005          * those blocking the pre-existing normal grace period.
1006          */
1007         if (rnp->exp_tasks != NULL)
1008                 tb = rnp->exp_tasks;
1009         else
1010                 tb = rnp->boost_tasks;
1011
1012         /*
1013          * We boost task t by manufacturing an rt_mutex that appears to
1014          * be held by task t.  We leave a pointer to that rt_mutex where
1015          * task t can find it, and task t will release the mutex when it
1016          * exits its outermost RCU read-side critical section.  Then
1017          * simply acquiring this artificial rt_mutex will boost task
1018          * t's priority.  (Thanks to tglx for suggesting this approach!)
1019          *
1020          * Note that task t must acquire rnp->lock to remove itself from
1021          * the ->blkd_tasks list, which it will do from exit() if from
1022          * nowhere else.  We therefore are guaranteed that task t will
1023          * stay around at least until we drop rnp->lock.  Note that
1024          * rnp->lock also resolves races between our priority boosting
1025          * and task t's exiting its outermost RCU read-side critical
1026          * section.
1027          */
1028         t = container_of(tb, struct task_struct, rcu_node_entry);
1029         rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1030         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1031         /* Lock only for side effect: boosts task t's priority. */
1032         rt_mutex_lock(&rnp->boost_mtx);
1033         rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1034
1035         return READ_ONCE(rnp->exp_tasks) != NULL ||
1036                READ_ONCE(rnp->boost_tasks) != NULL;
1037 }
1038
1039 /*
1040  * Priority-boosting kthread, one per leaf rcu_node.
1041  */
1042 static int rcu_boost_kthread(void *arg)
1043 {
1044         struct rcu_node *rnp = (struct rcu_node *)arg;
1045         int spincnt = 0;
1046         int more2boost;
1047
1048         trace_rcu_utilization(TPS("Start boost kthread@init"));
1049         for (;;) {
1050                 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING);
1051                 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1052                 rcu_wait(READ_ONCE(rnp->boost_tasks) ||
1053                          READ_ONCE(rnp->exp_tasks));
1054                 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1055                 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING);
1056                 more2boost = rcu_boost(rnp);
1057                 if (more2boost)
1058                         spincnt++;
1059                 else
1060                         spincnt = 0;
1061                 if (spincnt > 10) {
1062                         WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING);
1063                         trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1064                         schedule_timeout_idle(2);
1065                         trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1066                         spincnt = 0;
1067                 }
1068         }
1069         /* NOTREACHED */
1070         trace_rcu_utilization(TPS("End boost kthread@notreached"));
1071         return 0;
1072 }
1073
1074 /*
1075  * Check to see if it is time to start boosting RCU readers that are
1076  * blocking the current grace period, and, if so, tell the per-rcu_node
1077  * kthread to start boosting them.  If there is an expedited grace
1078  * period in progress, it is always time to boost.
1079  *
1080  * The caller must hold rnp->lock, which this function releases.
1081  * The ->boost_kthread_task is immortal, so we don't need to worry
1082  * about it going away.
1083  */
1084 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1085         __releases(rnp->lock)
1086 {
1087         raw_lockdep_assert_held_rcu_node(rnp);
1088         if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1089                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1090                 return;
1091         }
1092         if (rnp->exp_tasks != NULL ||
1093             (rnp->gp_tasks != NULL &&
1094              rnp->boost_tasks == NULL &&
1095              rnp->qsmask == 0 &&
1096              (!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld))) {
1097                 if (rnp->exp_tasks == NULL)
1098                         WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks);
1099                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1100                 rcu_wake_cond(rnp->boost_kthread_task,
1101                               READ_ONCE(rnp->boost_kthread_status));
1102         } else {
1103                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1104         }
1105 }
1106
1107 /*
1108  * Is the current CPU running the RCU-callbacks kthread?
1109  * Caller must have preemption disabled.
1110  */
1111 static bool rcu_is_callbacks_kthread(void)
1112 {
1113         return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current;
1114 }
1115
1116 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1117
1118 /*
1119  * Do priority-boost accounting for the start of a new grace period.
1120  */
1121 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1122 {
1123         rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1124 }
1125
1126 /*
1127  * Create an RCU-boost kthread for the specified node if one does not
1128  * already exist.  We only create this kthread for preemptible RCU.
1129  * Returns zero if all is well, a negated errno otherwise.
1130  */
1131 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1132 {
1133         int rnp_index = rnp - rcu_get_root();
1134         unsigned long flags;
1135         struct sched_param sp;
1136         struct task_struct *t;
1137
1138         if (!IS_ENABLED(CONFIG_PREEMPT_RCU))
1139                 return;
1140
1141         if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1142                 return;
1143
1144         rcu_state.boost = 1;
1145
1146         if (rnp->boost_kthread_task != NULL)
1147                 return;
1148
1149         t = kthread_create(rcu_boost_kthread, (void *)rnp,
1150                            "rcub/%d", rnp_index);
1151         if (WARN_ON_ONCE(IS_ERR(t)))
1152                 return;
1153
1154         raw_spin_lock_irqsave_rcu_node(rnp, flags);
1155         rnp->boost_kthread_task = t;
1156         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1157         sp.sched_priority = kthread_prio;
1158         sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1159         wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1160 }
1161
1162 /*
1163  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1164  * served by the rcu_node in question.  The CPU hotplug lock is still
1165  * held, so the value of rnp->qsmaskinit will be stable.
1166  *
1167  * We don't include outgoingcpu in the affinity set, use -1 if there is
1168  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1169  * this function allows the kthread to execute on any CPU.
1170  */
1171 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1172 {
1173         struct task_struct *t = rnp->boost_kthread_task;
1174         unsigned long mask = rcu_rnp_online_cpus(rnp);
1175         cpumask_var_t cm;
1176         int cpu;
1177
1178         if (!t)
1179                 return;
1180         if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1181                 return;
1182         for_each_leaf_node_possible_cpu(rnp, cpu)
1183                 if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1184                     cpu != outgoingcpu)
1185                         cpumask_set_cpu(cpu, cm);
1186         if (cpumask_weight(cm) == 0)
1187                 cpumask_setall(cm);
1188         set_cpus_allowed_ptr(t, cm);
1189         free_cpumask_var(cm);
1190 }
1191
1192 /*
1193  * Spawn boost kthreads -- called as soon as the scheduler is running.
1194  */
1195 static void __init rcu_spawn_boost_kthreads(void)
1196 {
1197         struct rcu_node *rnp;
1198
1199         rcu_for_each_leaf_node(rnp)
1200                 rcu_spawn_one_boost_kthread(rnp);
1201 }
1202
1203 static void rcu_prepare_kthreads(int cpu)
1204 {
1205         struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1206         struct rcu_node *rnp = rdp->mynode;
1207
1208         /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1209         if (rcu_scheduler_fully_active)
1210                 rcu_spawn_one_boost_kthread(rnp);
1211 }
1212
1213 #else /* #ifdef CONFIG_RCU_BOOST */
1214
1215 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1216         __releases(rnp->lock)
1217 {
1218         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1219 }
1220
1221 static bool rcu_is_callbacks_kthread(void)
1222 {
1223         return false;
1224 }
1225
1226 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1227 {
1228 }
1229
1230 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1231 {
1232 }
1233
1234 static void __init rcu_spawn_boost_kthreads(void)
1235 {
1236 }
1237
1238 static void rcu_prepare_kthreads(int cpu)
1239 {
1240 }
1241
1242 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1243
1244 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1245
1246 /*
1247  * Check to see if any future non-offloaded RCU-related work will need
1248  * to be done by the current CPU, even if none need be done immediately,
1249  * returning 1 if so.  This function is part of the RCU implementation;
1250  * it is -not- an exported member of the RCU API.
1251  *
1252  * Because we not have RCU_FAST_NO_HZ, just check whether or not this
1253  * CPU has RCU callbacks queued.
1254  */
1255 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1256 {
1257         *nextevt = KTIME_MAX;
1258         return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
1259                !rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist);
1260 }
1261
1262 /*
1263  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1264  * after it.
1265  */
1266 static void rcu_cleanup_after_idle(void)
1267 {
1268 }
1269
1270 /*
1271  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1272  * is nothing.
1273  */
1274 static void rcu_prepare_for_idle(void)
1275 {
1276 }
1277
1278 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1279
1280 /*
1281  * This code is invoked when a CPU goes idle, at which point we want
1282  * to have the CPU do everything required for RCU so that it can enter
1283  * the energy-efficient dyntick-idle mode.
1284  *
1285  * The following preprocessor symbol controls this:
1286  *
1287  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1288  *      to sleep in dyntick-idle mode with RCU callbacks pending.  This
1289  *      is sized to be roughly one RCU grace period.  Those energy-efficiency
1290  *      benchmarkers who might otherwise be tempted to set this to a large
1291  *      number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1292  *      system.  And if you are -that- concerned about energy efficiency,
1293  *      just power the system down and be done with it!
1294  *
1295  * The value below works well in practice.  If future workloads require
1296  * adjustment, they can be converted into kernel config parameters, though
1297  * making the state machine smarter might be a better option.
1298  */
1299 #define RCU_IDLE_GP_DELAY 4             /* Roughly one grace period. */
1300
1301 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1302 module_param(rcu_idle_gp_delay, int, 0644);
1303
1304 /*
1305  * Try to advance callbacks on the current CPU, but only if it has been
1306  * awhile since the last time we did so.  Afterwards, if there are any
1307  * callbacks ready for immediate invocation, return true.
1308  */
1309 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1310 {
1311         bool cbs_ready = false;
1312         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1313         struct rcu_node *rnp;
1314
1315         /* Exit early if we advanced recently. */
1316         if (jiffies == rdp->last_advance_all)
1317                 return false;
1318         rdp->last_advance_all = jiffies;
1319
1320         rnp = rdp->mynode;
1321
1322         /*
1323          * Don't bother checking unless a grace period has
1324          * completed since we last checked and there are
1325          * callbacks not yet ready to invoke.
1326          */
1327         if ((rcu_seq_completed_gp(rdp->gp_seq,
1328                                   rcu_seq_current(&rnp->gp_seq)) ||
1329              unlikely(READ_ONCE(rdp->gpwrap))) &&
1330             rcu_segcblist_pend_cbs(&rdp->cblist))
1331                 note_gp_changes(rdp);
1332
1333         if (rcu_segcblist_ready_cbs(&rdp->cblist))
1334                 cbs_ready = true;
1335         return cbs_ready;
1336 }
1337
1338 /*
1339  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1340  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1341  * caller about what to set the timeout.
1342  *
1343  * The caller must have disabled interrupts.
1344  */
1345 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1346 {
1347         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1348         unsigned long dj;
1349
1350         lockdep_assert_irqs_disabled();
1351
1352         /* If no non-offloaded callbacks, RCU doesn't need the CPU. */
1353         if (rcu_segcblist_empty(&rdp->cblist) ||
1354             rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist)) {
1355                 *nextevt = KTIME_MAX;
1356                 return 0;
1357         }
1358
1359         /* Attempt to advance callbacks. */
1360         if (rcu_try_advance_all_cbs()) {
1361                 /* Some ready to invoke, so initiate later invocation. */
1362                 invoke_rcu_core();
1363                 return 1;
1364         }
1365         rdp->last_accelerate = jiffies;
1366
1367         /* Request timer and round. */
1368         dj = round_up(rcu_idle_gp_delay + jiffies, rcu_idle_gp_delay) - jiffies;
1369
1370         *nextevt = basemono + dj * TICK_NSEC;
1371         return 0;
1372 }
1373
1374 /*
1375  * Prepare a CPU for idle from an RCU perspective.  The first major task is to
1376  * sense whether nohz mode has been enabled or disabled via sysfs.  The second
1377  * major task is to accelerate (that is, assign grace-period numbers to) any
1378  * recently arrived callbacks.
1379  *
1380  * The caller must have disabled interrupts.
1381  */
1382 static void rcu_prepare_for_idle(void)
1383 {
1384         bool needwake;
1385         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1386         struct rcu_node *rnp;
1387         int tne;
1388
1389         lockdep_assert_irqs_disabled();
1390         if (rcu_segcblist_is_offloaded(&rdp->cblist))
1391                 return;
1392
1393         /* Handle nohz enablement switches conservatively. */
1394         tne = READ_ONCE(tick_nohz_active);
1395         if (tne != rdp->tick_nohz_enabled_snap) {
1396                 if (!rcu_segcblist_empty(&rdp->cblist))
1397                         invoke_rcu_core(); /* force nohz to see update. */
1398                 rdp->tick_nohz_enabled_snap = tne;
1399                 return;
1400         }
1401         if (!tne)
1402                 return;
1403
1404         /*
1405          * If we have not yet accelerated this jiffy, accelerate all
1406          * callbacks on this CPU.
1407          */
1408         if (rdp->last_accelerate == jiffies)
1409                 return;
1410         rdp->last_accelerate = jiffies;
1411         if (rcu_segcblist_pend_cbs(&rdp->cblist)) {
1412                 rnp = rdp->mynode;
1413                 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1414                 needwake = rcu_accelerate_cbs(rnp, rdp);
1415                 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1416                 if (needwake)
1417                         rcu_gp_kthread_wake();
1418         }
1419 }
1420
1421 /*
1422  * Clean up for exit from idle.  Attempt to advance callbacks based on
1423  * any grace periods that elapsed while the CPU was idle, and if any
1424  * callbacks are now ready to invoke, initiate invocation.
1425  */
1426 static void rcu_cleanup_after_idle(void)
1427 {
1428         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1429
1430         lockdep_assert_irqs_disabled();
1431         if (rcu_segcblist_is_offloaded(&rdp->cblist))
1432                 return;
1433         if (rcu_try_advance_all_cbs())
1434                 invoke_rcu_core();
1435 }
1436
1437 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1438
1439 #ifdef CONFIG_RCU_NOCB_CPU
1440
1441 /*
1442  * Offload callback processing from the boot-time-specified set of CPUs
1443  * specified by rcu_nocb_mask.  For the CPUs in the set, there are kthreads
1444  * created that pull the callbacks from the corresponding CPU, wait for
1445  * a grace period to elapse, and invoke the callbacks.  These kthreads
1446  * are organized into GP kthreads, which manage incoming callbacks, wait for
1447  * grace periods, and awaken CB kthreads, and the CB kthreads, which only
1448  * invoke callbacks.  Each GP kthread invokes its own CBs.  The no-CBs CPUs
1449  * do a wake_up() on their GP kthread when they insert a callback into any
1450  * empty list, unless the rcu_nocb_poll boot parameter has been specified,
1451  * in which case each kthread actively polls its CPU.  (Which isn't so great
1452  * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
1453  *
1454  * This is intended to be used in conjunction with Frederic Weisbecker's
1455  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1456  * running CPU-bound user-mode computations.
1457  *
1458  * Offloading of callbacks can also be used as an energy-efficiency
1459  * measure because CPUs with no RCU callbacks queued are more aggressive
1460  * about entering dyntick-idle mode.
1461  */
1462
1463
1464 /*
1465  * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
1466  * The string after the "rcu_nocbs=" is either "all" for all CPUs, or a
1467  * comma-separated list of CPUs and/or CPU ranges.  If an invalid list is
1468  * given, a warning is emitted and all CPUs are offloaded.
1469  */
1470 static int __init rcu_nocb_setup(char *str)
1471 {
1472         alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1473         if (!strcasecmp(str, "all"))
1474                 cpumask_setall(rcu_nocb_mask);
1475         else
1476                 if (cpulist_parse(str, rcu_nocb_mask)) {
1477                         pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
1478                         cpumask_setall(rcu_nocb_mask);
1479                 }
1480         return 1;
1481 }
1482 __setup("rcu_nocbs=", rcu_nocb_setup);
1483
1484 static int __init parse_rcu_nocb_poll(char *arg)
1485 {
1486         rcu_nocb_poll = true;
1487         return 0;
1488 }
1489 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1490
1491 /*
1492  * Don't bother bypassing ->cblist if the call_rcu() rate is low.
1493  * After all, the main point of bypassing is to avoid lock contention
1494  * on ->nocb_lock, which only can happen at high call_rcu() rates.
1495  */
1496 int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
1497 module_param(nocb_nobypass_lim_per_jiffy, int, 0);
1498
1499 /*
1500  * Acquire the specified rcu_data structure's ->nocb_bypass_lock.  If the
1501  * lock isn't immediately available, increment ->nocb_lock_contended to
1502  * flag the contention.
1503  */
1504 static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
1505         __acquires(&rdp->nocb_bypass_lock)
1506 {
1507         lockdep_assert_irqs_disabled();
1508         if (raw_spin_trylock(&rdp->nocb_bypass_lock))
1509                 return;
1510         atomic_inc(&rdp->nocb_lock_contended);
1511         WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1512         smp_mb__after_atomic(); /* atomic_inc() before lock. */
1513         raw_spin_lock(&rdp->nocb_bypass_lock);
1514         smp_mb__before_atomic(); /* atomic_dec() after lock. */
1515         atomic_dec(&rdp->nocb_lock_contended);
1516 }
1517
1518 /*
1519  * Spinwait until the specified rcu_data structure's ->nocb_lock is
1520  * not contended.  Please note that this is extremely special-purpose,
1521  * relying on the fact that at most two kthreads and one CPU contend for
1522  * this lock, and also that the two kthreads are guaranteed to have frequent
1523  * grace-period-duration time intervals between successive acquisitions
1524  * of the lock.  This allows us to use an extremely simple throttling
1525  * mechanism, and further to apply it only to the CPU doing floods of
1526  * call_rcu() invocations.  Don't try this at home!
1527  */
1528 static void rcu_nocb_wait_contended(struct rcu_data *rdp)
1529 {
1530         WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1531         while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
1532                 cpu_relax();
1533 }
1534
1535 /*
1536  * Conditionally acquire the specified rcu_data structure's
1537  * ->nocb_bypass_lock.
1538  */
1539 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
1540 {
1541         lockdep_assert_irqs_disabled();
1542         return raw_spin_trylock(&rdp->nocb_bypass_lock);
1543 }
1544
1545 /*
1546  * Release the specified rcu_data structure's ->nocb_bypass_lock.
1547  */
1548 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
1549         __releases(&rdp->nocb_bypass_lock)
1550 {
1551         lockdep_assert_irqs_disabled();
1552         raw_spin_unlock(&rdp->nocb_bypass_lock);
1553 }
1554
1555 /*
1556  * Acquire the specified rcu_data structure's ->nocb_lock, but only
1557  * if it corresponds to a no-CBs CPU.
1558  */
1559 static void rcu_nocb_lock(struct rcu_data *rdp)
1560 {
1561         lockdep_assert_irqs_disabled();
1562         if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1563                 return;
1564         raw_spin_lock(&rdp->nocb_lock);
1565 }
1566
1567 /*
1568  * Release the specified rcu_data structure's ->nocb_lock, but only
1569  * if it corresponds to a no-CBs CPU.
1570  */
1571 static void rcu_nocb_unlock(struct rcu_data *rdp)
1572 {
1573         if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1574                 lockdep_assert_irqs_disabled();
1575                 raw_spin_unlock(&rdp->nocb_lock);
1576         }
1577 }
1578
1579 /*
1580  * Release the specified rcu_data structure's ->nocb_lock and restore
1581  * interrupts, but only if it corresponds to a no-CBs CPU.
1582  */
1583 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1584                                        unsigned long flags)
1585 {
1586         if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1587                 lockdep_assert_irqs_disabled();
1588                 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1589         } else {
1590                 local_irq_restore(flags);
1591         }
1592 }
1593
1594 /* Lockdep check that ->cblist may be safely accessed. */
1595 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1596 {
1597         lockdep_assert_irqs_disabled();
1598         if (rcu_segcblist_is_offloaded(&rdp->cblist))
1599                 lockdep_assert_held(&rdp->nocb_lock);
1600 }
1601
1602 /*
1603  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1604  * grace period.
1605  */
1606 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1607 {
1608         swake_up_all(sq);
1609 }
1610
1611 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1612 {
1613         return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
1614 }
1615
1616 static void rcu_init_one_nocb(struct rcu_node *rnp)
1617 {
1618         init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1619         init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1620 }
1621
1622 /* Is the specified CPU a no-CBs CPU? */
1623 bool rcu_is_nocb_cpu(int cpu)
1624 {
1625         if (cpumask_available(rcu_nocb_mask))
1626                 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1627         return false;
1628 }
1629
1630 /*
1631  * Kick the GP kthread for this NOCB group.  Caller holds ->nocb_lock
1632  * and this function releases it.
1633  */
1634 static void wake_nocb_gp(struct rcu_data *rdp, bool force,
1635                            unsigned long flags)
1636         __releases(rdp->nocb_lock)
1637 {
1638         bool needwake = false;
1639         struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1640
1641         lockdep_assert_held(&rdp->nocb_lock);
1642         if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
1643                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1644                                     TPS("AlreadyAwake"));
1645                 rcu_nocb_unlock_irqrestore(rdp, flags);
1646                 return;
1647         }
1648         del_timer(&rdp->nocb_timer);
1649         rcu_nocb_unlock_irqrestore(rdp, flags);
1650         raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1651         if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
1652                 WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
1653                 needwake = true;
1654                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
1655         }
1656         raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1657         if (needwake)
1658                 wake_up_process(rdp_gp->nocb_gp_kthread);
1659 }
1660
1661 /*
1662  * Arrange to wake the GP kthread for this NOCB group at some future
1663  * time when it is safe to do so.
1664  */
1665 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
1666                                const char *reason)
1667 {
1668         if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1669                 mod_timer(&rdp->nocb_timer, jiffies + 1);
1670         if (rdp->nocb_defer_wakeup < waketype)
1671                 WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
1672         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
1673 }
1674
1675 /*
1676  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1677  * However, if there is a callback to be enqueued and if ->nocb_bypass
1678  * proves to be initially empty, just return false because the no-CB GP
1679  * kthread may need to be awakened in this case.
1680  *
1681  * Note that this function always returns true if rhp is NULL.
1682  */
1683 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1684                                      unsigned long j)
1685 {
1686         struct rcu_cblist rcl;
1687
1688         WARN_ON_ONCE(!rcu_segcblist_is_offloaded(&rdp->cblist));
1689         rcu_lockdep_assert_cblist_protected(rdp);
1690         lockdep_assert_held(&rdp->nocb_bypass_lock);
1691         if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
1692                 raw_spin_unlock(&rdp->nocb_bypass_lock);
1693                 return false;
1694         }
1695         /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
1696         if (rhp)
1697                 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1698         rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
1699         rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
1700         WRITE_ONCE(rdp->nocb_bypass_first, j);
1701         rcu_nocb_bypass_unlock(rdp);
1702         return true;
1703 }
1704
1705 /*
1706  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1707  * However, if there is a callback to be enqueued and if ->nocb_bypass
1708  * proves to be initially empty, just return false because the no-CB GP
1709  * kthread may need to be awakened in this case.
1710  *
1711  * Note that this function always returns true if rhp is NULL.
1712  */
1713 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1714                                   unsigned long j)
1715 {
1716         if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1717                 return true;
1718         rcu_lockdep_assert_cblist_protected(rdp);
1719         rcu_nocb_bypass_lock(rdp);
1720         return rcu_nocb_do_flush_bypass(rdp, rhp, j);
1721 }
1722
1723 /*
1724  * If the ->nocb_bypass_lock is immediately available, flush the
1725  * ->nocb_bypass queue into ->cblist.
1726  */
1727 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
1728 {
1729         rcu_lockdep_assert_cblist_protected(rdp);
1730         if (!rcu_segcblist_is_offloaded(&rdp->cblist) ||
1731             !rcu_nocb_bypass_trylock(rdp))
1732                 return;
1733         WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
1734 }
1735
1736 /*
1737  * See whether it is appropriate to use the ->nocb_bypass list in order
1738  * to control contention on ->nocb_lock.  A limited number of direct
1739  * enqueues are permitted into ->cblist per jiffy.  If ->nocb_bypass
1740  * is non-empty, further callbacks must be placed into ->nocb_bypass,
1741  * otherwise rcu_barrier() breaks.  Use rcu_nocb_flush_bypass() to switch
1742  * back to direct use of ->cblist.  However, ->nocb_bypass should not be
1743  * used if ->cblist is empty, because otherwise callbacks can be stranded
1744  * on ->nocb_bypass because we cannot count on the current CPU ever again
1745  * invoking call_rcu().  The general rule is that if ->nocb_bypass is
1746  * non-empty, the corresponding no-CBs grace-period kthread must not be
1747  * in an indefinite sleep state.
1748  *
1749  * Finally, it is not permitted to use the bypass during early boot,
1750  * as doing so would confuse the auto-initialization code.  Besides
1751  * which, there is no point in worrying about lock contention while
1752  * there is only one CPU in operation.
1753  */
1754 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1755                                 bool *was_alldone, unsigned long flags)
1756 {
1757         unsigned long c;
1758         unsigned long cur_gp_seq;
1759         unsigned long j = jiffies;
1760         long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1761
1762         if (!rcu_segcblist_is_offloaded(&rdp->cblist)) {
1763                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1764                 return false; /* Not offloaded, no bypassing. */
1765         }
1766         lockdep_assert_irqs_disabled();
1767
1768         // Don't use ->nocb_bypass during early boot.
1769         if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
1770                 rcu_nocb_lock(rdp);
1771                 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1772                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1773                 return false;
1774         }
1775
1776         // If we have advanced to a new jiffy, reset counts to allow
1777         // moving back from ->nocb_bypass to ->cblist.
1778         if (j == rdp->nocb_nobypass_last) {
1779                 c = rdp->nocb_nobypass_count + 1;
1780         } else {
1781                 WRITE_ONCE(rdp->nocb_nobypass_last, j);
1782                 c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
1783                 if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
1784                                  nocb_nobypass_lim_per_jiffy))
1785                         c = 0;
1786                 else if (c > nocb_nobypass_lim_per_jiffy)
1787                         c = nocb_nobypass_lim_per_jiffy;
1788         }
1789         WRITE_ONCE(rdp->nocb_nobypass_count, c);
1790
1791         // If there hasn't yet been all that many ->cblist enqueues
1792         // this jiffy, tell the caller to enqueue onto ->cblist.  But flush
1793         // ->nocb_bypass first.
1794         if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
1795                 rcu_nocb_lock(rdp);
1796                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1797                 if (*was_alldone)
1798                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1799                                             TPS("FirstQ"));
1800                 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
1801                 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1802                 return false; // Caller must enqueue the callback.
1803         }
1804
1805         // If ->nocb_bypass has been used too long or is too full,
1806         // flush ->nocb_bypass to ->cblist.
1807         if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
1808             ncbs >= qhimark) {
1809                 rcu_nocb_lock(rdp);
1810                 if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
1811                         *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1812                         if (*was_alldone)
1813                                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1814                                                     TPS("FirstQ"));
1815                         WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1816                         return false; // Caller must enqueue the callback.
1817                 }
1818                 if (j != rdp->nocb_gp_adv_time &&
1819                     rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1820                     rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1821                         rcu_advance_cbs_nowake(rdp->mynode, rdp);
1822                         rdp->nocb_gp_adv_time = j;
1823                 }
1824                 rcu_nocb_unlock_irqrestore(rdp, flags);
1825                 return true; // Callback already enqueued.
1826         }
1827
1828         // We need to use the bypass.
1829         rcu_nocb_wait_contended(rdp);
1830         rcu_nocb_bypass_lock(rdp);
1831         ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1832         rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1833         rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
1834         if (!ncbs) {
1835                 WRITE_ONCE(rdp->nocb_bypass_first, j);
1836                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
1837         }
1838         rcu_nocb_bypass_unlock(rdp);
1839         smp_mb(); /* Order enqueue before wake. */
1840         if (ncbs) {
1841                 local_irq_restore(flags);
1842         } else {
1843                 // No-CBs GP kthread might be indefinitely asleep, if so, wake.
1844                 rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
1845                 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
1846                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1847                                             TPS("FirstBQwake"));
1848                         __call_rcu_nocb_wake(rdp, true, flags);
1849                 } else {
1850                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1851                                             TPS("FirstBQnoWake"));
1852                         rcu_nocb_unlock_irqrestore(rdp, flags);
1853                 }
1854         }
1855         return true; // Callback already enqueued.
1856 }
1857
1858 /*
1859  * Awaken the no-CBs grace-period kthead if needed, either due to it
1860  * legitimately being asleep or due to overload conditions.
1861  *
1862  * If warranted, also wake up the kthread servicing this CPUs queues.
1863  */
1864 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
1865                                  unsigned long flags)
1866                                  __releases(rdp->nocb_lock)
1867 {
1868         unsigned long cur_gp_seq;
1869         unsigned long j;
1870         long len;
1871         struct task_struct *t;
1872
1873         // If we are being polled or there is no kthread, just leave.
1874         t = READ_ONCE(rdp->nocb_gp_kthread);
1875         if (rcu_nocb_poll || !t) {
1876                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1877                                     TPS("WakeNotPoll"));
1878                 rcu_nocb_unlock_irqrestore(rdp, flags);
1879                 return;
1880         }
1881         // Need to actually to a wakeup.
1882         len = rcu_segcblist_n_cbs(&rdp->cblist);
1883         if (was_alldone) {
1884                 rdp->qlen_last_fqs_check = len;
1885                 if (!irqs_disabled_flags(flags)) {
1886                         /* ... if queue was empty ... */
1887                         wake_nocb_gp(rdp, false, flags);
1888                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1889                                             TPS("WakeEmpty"));
1890                 } else {
1891                         wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
1892                                            TPS("WakeEmptyIsDeferred"));
1893                         rcu_nocb_unlock_irqrestore(rdp, flags);
1894                 }
1895         } else if (len > rdp->qlen_last_fqs_check + qhimark) {
1896                 /* ... or if many callbacks queued. */
1897                 rdp->qlen_last_fqs_check = len;
1898                 j = jiffies;
1899                 if (j != rdp->nocb_gp_adv_time &&
1900                     rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1901                     rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1902                         rcu_advance_cbs_nowake(rdp->mynode, rdp);
1903                         rdp->nocb_gp_adv_time = j;
1904                 }
1905                 smp_mb(); /* Enqueue before timer_pending(). */
1906                 if ((rdp->nocb_cb_sleep ||
1907                      !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
1908                     !timer_pending(&rdp->nocb_bypass_timer))
1909                         wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
1910                                            TPS("WakeOvfIsDeferred"));
1911                 rcu_nocb_unlock_irqrestore(rdp, flags);
1912         } else {
1913                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
1914                 rcu_nocb_unlock_irqrestore(rdp, flags);
1915         }
1916         return;
1917 }
1918
1919 /* Wake up the no-CBs GP kthread to flush ->nocb_bypass. */
1920 static void do_nocb_bypass_wakeup_timer(struct timer_list *t)
1921 {
1922         unsigned long flags;
1923         struct rcu_data *rdp = from_timer(rdp, t, nocb_bypass_timer);
1924
1925         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
1926         rcu_nocb_lock_irqsave(rdp, flags);
1927         smp_mb__after_spinlock(); /* Timer expire before wakeup. */
1928         __call_rcu_nocb_wake(rdp, true, flags);
1929 }
1930
1931 /*
1932  * No-CBs GP kthreads come here to wait for additional callbacks to show up
1933  * or for grace periods to end.
1934  */
1935 static void nocb_gp_wait(struct rcu_data *my_rdp)
1936 {
1937         bool bypass = false;
1938         long bypass_ncbs;
1939         int __maybe_unused cpu = my_rdp->cpu;
1940         unsigned long cur_gp_seq;
1941         unsigned long flags;
1942         bool gotcbs = false;
1943         unsigned long j = jiffies;
1944         bool needwait_gp = false; // This prevents actual uninitialized use.
1945         bool needwake;
1946         bool needwake_gp;
1947         struct rcu_data *rdp;
1948         struct rcu_node *rnp;
1949         unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
1950         bool wasempty = false;
1951
1952         /*
1953          * Each pass through the following loop checks for CBs and for the
1954          * nearest grace period (if any) to wait for next.  The CB kthreads
1955          * and the global grace-period kthread are awakened if needed.
1956          */
1957         WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp);
1958         for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) {
1959                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
1960                 rcu_nocb_lock_irqsave(rdp, flags);
1961                 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1962                 if (bypass_ncbs &&
1963                     (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
1964                      bypass_ncbs > 2 * qhimark)) {
1965                         // Bypass full or old, so flush it.
1966                         (void)rcu_nocb_try_flush_bypass(rdp, j);
1967                         bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1968                 } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
1969                         rcu_nocb_unlock_irqrestore(rdp, flags);
1970                         continue; /* No callbacks here, try next. */
1971                 }
1972                 if (bypass_ncbs) {
1973                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1974                                             TPS("Bypass"));
1975                         bypass = true;
1976                 }
1977                 rnp = rdp->mynode;
1978                 if (bypass) {  // Avoid race with first bypass CB.
1979                         WRITE_ONCE(my_rdp->nocb_defer_wakeup,
1980                                    RCU_NOCB_WAKE_NOT);
1981                         del_timer(&my_rdp->nocb_timer);
1982                 }
1983                 // Advance callbacks if helpful and low contention.
1984                 needwake_gp = false;
1985                 if (!rcu_segcblist_restempty(&rdp->cblist,
1986                                              RCU_NEXT_READY_TAIL) ||
1987                     (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1988                      rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
1989                         raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
1990                         needwake_gp = rcu_advance_cbs(rnp, rdp);
1991                         wasempty = rcu_segcblist_restempty(&rdp->cblist,
1992                                                            RCU_NEXT_READY_TAIL);
1993                         raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
1994                 }
1995                 // Need to wait on some grace period?
1996                 WARN_ON_ONCE(wasempty &&
1997                              !rcu_segcblist_restempty(&rdp->cblist,
1998                                                       RCU_NEXT_READY_TAIL));
1999                 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
2000                         if (!needwait_gp ||
2001                             ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
2002                                 wait_gp_seq = cur_gp_seq;
2003                         needwait_gp = true;
2004                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
2005                                             TPS("NeedWaitGP"));
2006                 }
2007                 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
2008                         needwake = rdp->nocb_cb_sleep;
2009                         WRITE_ONCE(rdp->nocb_cb_sleep, false);
2010                         smp_mb(); /* CB invocation -after- GP end. */
2011                 } else {
2012                         needwake = false;
2013                 }
2014                 rcu_nocb_unlock_irqrestore(rdp, flags);
2015                 if (needwake) {
2016                         swake_up_one(&rdp->nocb_cb_wq);
2017                         gotcbs = true;
2018                 }
2019                 if (needwake_gp)
2020                         rcu_gp_kthread_wake();
2021         }
2022
2023         my_rdp->nocb_gp_bypass = bypass;
2024         my_rdp->nocb_gp_gp = needwait_gp;
2025         my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
2026         if (bypass && !rcu_nocb_poll) {
2027                 // At least one child with non-empty ->nocb_bypass, so set
2028                 // timer in order to avoid stranding its callbacks.
2029                 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2030                 mod_timer(&my_rdp->nocb_bypass_timer, j + 2);
2031                 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2032         }
2033         if (rcu_nocb_poll) {
2034                 /* Polling, so trace if first poll in the series. */
2035                 if (gotcbs)
2036                         trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
2037                 schedule_timeout_idle(1);
2038         } else if (!needwait_gp) {
2039                 /* Wait for callbacks to appear. */
2040                 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
2041                 swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
2042                                 !READ_ONCE(my_rdp->nocb_gp_sleep));
2043                 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
2044         } else {
2045                 rnp = my_rdp->mynode;
2046                 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
2047                 swait_event_interruptible_exclusive(
2048                         rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
2049                         rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
2050                         !READ_ONCE(my_rdp->nocb_gp_sleep));
2051                 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
2052         }
2053         if (!rcu_nocb_poll) {
2054                 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2055                 if (bypass)
2056                         del_timer(&my_rdp->nocb_bypass_timer);
2057                 WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
2058                 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2059         }
2060         my_rdp->nocb_gp_seq = -1;
2061         WARN_ON(signal_pending(current));
2062 }
2063
2064 /*
2065  * No-CBs grace-period-wait kthread.  There is one of these per group
2066  * of CPUs, but only once at least one CPU in that group has come online
2067  * at least once since boot.  This kthread checks for newly posted
2068  * callbacks from any of the CPUs it is responsible for, waits for a
2069  * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
2070  * that then have callback-invocation work to do.
2071  */
2072 static int rcu_nocb_gp_kthread(void *arg)
2073 {
2074         struct rcu_data *rdp = arg;
2075
2076         for (;;) {
2077                 WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
2078                 nocb_gp_wait(rdp);
2079                 cond_resched_tasks_rcu_qs();
2080         }
2081         return 0;
2082 }
2083
2084 /*
2085  * Invoke any ready callbacks from the corresponding no-CBs CPU,
2086  * then, if there are no more, wait for more to appear.
2087  */
2088 static void nocb_cb_wait(struct rcu_data *rdp)
2089 {
2090         unsigned long cur_gp_seq;
2091         unsigned long flags;
2092         bool needwake_gp = false;
2093         struct rcu_node *rnp = rdp->mynode;
2094
2095         local_irq_save(flags);
2096         rcu_momentary_dyntick_idle();
2097         local_irq_restore(flags);
2098         local_bh_disable();
2099         rcu_do_batch(rdp);
2100         local_bh_enable();
2101         lockdep_assert_irqs_enabled();
2102         rcu_nocb_lock_irqsave(rdp, flags);
2103         if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
2104             rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
2105             raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
2106                 needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
2107                 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2108         }
2109         if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
2110                 rcu_nocb_unlock_irqrestore(rdp, flags);
2111                 if (needwake_gp)
2112                         rcu_gp_kthread_wake();
2113                 return;
2114         }
2115
2116         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
2117         WRITE_ONCE(rdp->nocb_cb_sleep, true);
2118         rcu_nocb_unlock_irqrestore(rdp, flags);
2119         if (needwake_gp)
2120                 rcu_gp_kthread_wake();
2121         swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
2122                                  !READ_ONCE(rdp->nocb_cb_sleep));
2123         if (!smp_load_acquire(&rdp->nocb_cb_sleep)) { /* VVV */
2124                 /* ^^^ Ensure CB invocation follows _sleep test. */
2125                 return;
2126         }
2127         WARN_ON(signal_pending(current));
2128         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
2129 }
2130
2131 /*
2132  * Per-rcu_data kthread, but only for no-CBs CPUs.  Repeatedly invoke
2133  * nocb_cb_wait() to do the dirty work.
2134  */
2135 static int rcu_nocb_cb_kthread(void *arg)
2136 {
2137         struct rcu_data *rdp = arg;
2138
2139         // Each pass through this loop does one callback batch, and,
2140         // if there are no more ready callbacks, waits for them.
2141         for (;;) {
2142                 nocb_cb_wait(rdp);
2143                 cond_resched_tasks_rcu_qs();
2144         }
2145         return 0;
2146 }
2147
2148 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2149 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2150 {
2151         return READ_ONCE(rdp->nocb_defer_wakeup);
2152 }
2153
2154 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2155 static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
2156 {
2157         unsigned long flags;
2158         int ndw;
2159
2160         rcu_nocb_lock_irqsave(rdp, flags);
2161         if (!rcu_nocb_need_deferred_wakeup(rdp)) {
2162                 rcu_nocb_unlock_irqrestore(rdp, flags);
2163                 return;
2164         }
2165         ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2166         WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2167         wake_nocb_gp(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2168         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
2169 }
2170
2171 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2172 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
2173 {
2174         struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2175
2176         do_nocb_deferred_wakeup_common(rdp);
2177 }
2178
2179 /*
2180  * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2181  * This means we do an inexact common-case check.  Note that if
2182  * we miss, ->nocb_timer will eventually clean things up.
2183  */
2184 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2185 {
2186         if (rcu_nocb_need_deferred_wakeup(rdp))
2187                 do_nocb_deferred_wakeup_common(rdp);
2188 }
2189
2190 void __init rcu_init_nohz(void)
2191 {
2192         int cpu;
2193         bool need_rcu_nocb_mask = false;
2194         struct rcu_data *rdp;
2195
2196 #if defined(CONFIG_NO_HZ_FULL)
2197         if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2198                 need_rcu_nocb_mask = true;
2199 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2200
2201         if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
2202                 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2203                         pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2204                         return;
2205                 }
2206         }
2207         if (!cpumask_available(rcu_nocb_mask))
2208                 return;
2209
2210 #if defined(CONFIG_NO_HZ_FULL)
2211         if (tick_nohz_full_running)
2212                 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2213 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2214
2215         if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2216                 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
2217                 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2218                             rcu_nocb_mask);
2219         }
2220         if (cpumask_empty(rcu_nocb_mask))
2221                 pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2222         else
2223                 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2224                         cpumask_pr_args(rcu_nocb_mask));
2225         if (rcu_nocb_poll)
2226                 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2227
2228         for_each_cpu(cpu, rcu_nocb_mask) {
2229                 rdp = per_cpu_ptr(&rcu_data, cpu);
2230                 if (rcu_segcblist_empty(&rdp->cblist))
2231                         rcu_segcblist_init(&rdp->cblist);
2232                 rcu_segcblist_offload(&rdp->cblist);
2233         }
2234         rcu_organize_nocb_kthreads();
2235 }
2236
2237 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2238 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2239 {
2240         init_swait_queue_head(&rdp->nocb_cb_wq);
2241         init_swait_queue_head(&rdp->nocb_gp_wq);
2242         raw_spin_lock_init(&rdp->nocb_lock);
2243         raw_spin_lock_init(&rdp->nocb_bypass_lock);
2244         raw_spin_lock_init(&rdp->nocb_gp_lock);
2245         timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
2246         timer_setup(&rdp->nocb_bypass_timer, do_nocb_bypass_wakeup_timer, 0);
2247         rcu_cblist_init(&rdp->nocb_bypass);
2248 }
2249
2250 /*
2251  * If the specified CPU is a no-CBs CPU that does not already have its
2252  * rcuo CB kthread, spawn it.  Additionally, if the rcuo GP kthread
2253  * for this CPU's group has not yet been created, spawn it as well.
2254  */
2255 static void rcu_spawn_one_nocb_kthread(int cpu)
2256 {
2257         struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2258         struct rcu_data *rdp_gp;
2259         struct task_struct *t;
2260
2261         /*
2262          * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2263          * then nothing to do.
2264          */
2265         if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread)
2266                 return;
2267
2268         /* If we didn't spawn the GP kthread first, reorganize! */
2269         rdp_gp = rdp->nocb_gp_rdp;
2270         if (!rdp_gp->nocb_gp_kthread) {
2271                 t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
2272                                 "rcuog/%d", rdp_gp->cpu);
2273                 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__))
2274                         return;
2275                 WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
2276         }
2277
2278         /* Spawn the kthread for this CPU. */
2279         t = kthread_run(rcu_nocb_cb_kthread, rdp,
2280                         "rcuo%c/%d", rcu_state.abbr, cpu);
2281         if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
2282                 return;
2283         WRITE_ONCE(rdp->nocb_cb_kthread, t);
2284         WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
2285 }
2286
2287 /*
2288  * If the specified CPU is a no-CBs CPU that does not already have its
2289  * rcuo kthread, spawn it.
2290  */
2291 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2292 {
2293         if (rcu_scheduler_fully_active)
2294                 rcu_spawn_one_nocb_kthread(cpu);
2295 }
2296
2297 /*
2298  * Once the scheduler is running, spawn rcuo kthreads for all online
2299  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2300  * non-boot CPUs come online -- if this changes, we will need to add
2301  * some mutual exclusion.
2302  */
2303 static void __init rcu_spawn_nocb_kthreads(void)
2304 {
2305         int cpu;
2306
2307         for_each_online_cpu(cpu)
2308                 rcu_spawn_cpu_nocb_kthread(cpu);
2309 }
2310
2311 /* How many CB CPU IDs per GP kthread?  Default of -1 for sqrt(nr_cpu_ids). */
2312 static int rcu_nocb_gp_stride = -1;
2313 module_param(rcu_nocb_gp_stride, int, 0444);
2314
2315 /*
2316  * Initialize GP-CB relationships for all no-CBs CPU.
2317  */
2318 static void __init rcu_organize_nocb_kthreads(void)
2319 {
2320         int cpu;
2321         bool firsttime = true;
2322         bool gotnocbs = false;
2323         bool gotnocbscbs = true;
2324         int ls = rcu_nocb_gp_stride;
2325         int nl = 0;  /* Next GP kthread. */
2326         struct rcu_data *rdp;
2327         struct rcu_data *rdp_gp = NULL;  /* Suppress misguided gcc warn. */
2328         struct rcu_data *rdp_prev = NULL;
2329
2330         if (!cpumask_available(rcu_nocb_mask))
2331                 return;
2332         if (ls == -1) {
2333                 ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
2334                 rcu_nocb_gp_stride = ls;
2335         }
2336
2337         /*
2338          * Each pass through this loop sets up one rcu_data structure.
2339          * Should the corresponding CPU come online in the future, then
2340          * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2341          */
2342         for_each_cpu(cpu, rcu_nocb_mask) {
2343                 rdp = per_cpu_ptr(&rcu_data, cpu);
2344                 if (rdp->cpu >= nl) {
2345                         /* New GP kthread, set up for CBs & next GP. */
2346                         gotnocbs = true;
2347                         nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2348                         rdp->nocb_gp_rdp = rdp;
2349                         rdp_gp = rdp;
2350                         if (dump_tree) {
2351                                 if (!firsttime)
2352                                         pr_cont("%s\n", gotnocbscbs
2353                                                         ? "" : " (self only)");
2354                                 gotnocbscbs = false;
2355                                 firsttime = false;
2356                                 pr_alert("%s: No-CB GP kthread CPU %d:",
2357                                          __func__, cpu);
2358                         }
2359                 } else {
2360                         /* Another CB kthread, link to previous GP kthread. */
2361                         gotnocbscbs = true;
2362                         rdp->nocb_gp_rdp = rdp_gp;
2363                         rdp_prev->nocb_next_cb_rdp = rdp;
2364                         if (dump_tree)
2365                                 pr_cont(" %d", cpu);
2366                 }
2367                 rdp_prev = rdp;
2368         }
2369         if (gotnocbs && dump_tree)
2370                 pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
2371 }
2372
2373 /*
2374  * Bind the current task to the offloaded CPUs.  If there are no offloaded
2375  * CPUs, leave the task unbound.  Splat if the bind attempt fails.
2376  */
2377 void rcu_bind_current_to_nocb(void)
2378 {
2379         if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
2380                 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
2381 }
2382 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
2383
2384 /*
2385  * Dump out nocb grace-period kthread state for the specified rcu_data
2386  * structure.
2387  */
2388 static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
2389 {
2390         struct rcu_node *rnp = rdp->mynode;
2391
2392         pr_info("nocb GP %d %c%c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu\n",
2393                 rdp->cpu,
2394                 "kK"[!!rdp->nocb_gp_kthread],
2395                 "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
2396                 "dD"[!!rdp->nocb_defer_wakeup],
2397                 "tT"[timer_pending(&rdp->nocb_timer)],
2398                 "bB"[timer_pending(&rdp->nocb_bypass_timer)],
2399                 "sS"[!!rdp->nocb_gp_sleep],
2400                 ".W"[swait_active(&rdp->nocb_gp_wq)],
2401                 ".W"[swait_active(&rnp->nocb_gp_wq[0])],
2402                 ".W"[swait_active(&rnp->nocb_gp_wq[1])],
2403                 ".B"[!!rdp->nocb_gp_bypass],
2404                 ".G"[!!rdp->nocb_gp_gp],
2405                 (long)rdp->nocb_gp_seq,
2406                 rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops));
2407 }
2408
2409 /* Dump out nocb kthread state for the specified rcu_data structure. */
2410 static void show_rcu_nocb_state(struct rcu_data *rdp)
2411 {
2412         struct rcu_segcblist *rsclp = &rdp->cblist;
2413         bool waslocked;
2414         bool wastimer;
2415         bool wassleep;
2416
2417         if (rdp->nocb_gp_rdp == rdp)
2418                 show_rcu_nocb_gp_state(rdp);
2419
2420         pr_info("   CB %d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%c%c%c q%ld\n",
2421                 rdp->cpu, rdp->nocb_gp_rdp->cpu,
2422                 "kK"[!!rdp->nocb_cb_kthread],
2423                 "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
2424                 "cC"[!!atomic_read(&rdp->nocb_lock_contended)],
2425                 "lL"[raw_spin_is_locked(&rdp->nocb_lock)],
2426                 "sS"[!!rdp->nocb_cb_sleep],
2427                 ".W"[swait_active(&rdp->nocb_cb_wq)],
2428                 jiffies - rdp->nocb_bypass_first,
2429                 jiffies - rdp->nocb_nobypass_last,
2430                 rdp->nocb_nobypass_count,
2431                 ".D"[rcu_segcblist_ready_cbs(rsclp)],
2432                 ".W"[!rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL)],
2433                 ".R"[!rcu_segcblist_restempty(rsclp, RCU_WAIT_TAIL)],
2434                 ".N"[!rcu_segcblist_restempty(rsclp, RCU_NEXT_READY_TAIL)],
2435                 ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
2436                 rcu_segcblist_n_cbs(&rdp->cblist));
2437
2438         /* It is OK for GP kthreads to have GP state. */
2439         if (rdp->nocb_gp_rdp == rdp)
2440                 return;
2441
2442         waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
2443         wastimer = timer_pending(&rdp->nocb_bypass_timer);
2444         wassleep = swait_active(&rdp->nocb_gp_wq);
2445         if (!rdp->nocb_gp_sleep && !waslocked && !wastimer && !wassleep)
2446                 return;  /* Nothing untowards. */
2447
2448         pr_info("   nocb GP activity on CB-only CPU!!! %c%c%c%c %c\n",
2449                 "lL"[waslocked],
2450                 "dD"[!!rdp->nocb_defer_wakeup],
2451                 "tT"[wastimer],
2452                 "sS"[!!rdp->nocb_gp_sleep],
2453                 ".W"[wassleep]);
2454 }
2455
2456 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2457
2458 /* No ->nocb_lock to acquire.  */
2459 static void rcu_nocb_lock(struct rcu_data *rdp)
2460 {
2461 }
2462
2463 /* No ->nocb_lock to release.  */
2464 static void rcu_nocb_unlock(struct rcu_data *rdp)
2465 {
2466 }
2467
2468 /* No ->nocb_lock to release.  */
2469 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
2470                                        unsigned long flags)
2471 {
2472         local_irq_restore(flags);
2473 }
2474
2475 /* Lockdep check that ->cblist may be safely accessed. */
2476 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
2477 {
2478         lockdep_assert_irqs_disabled();
2479 }
2480
2481 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2482 {
2483 }
2484
2485 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2486 {
2487         return NULL;
2488 }
2489
2490 static void rcu_init_one_nocb(struct rcu_node *rnp)
2491 {
2492 }
2493
2494 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2495                                   unsigned long j)
2496 {
2497         return true;
2498 }
2499
2500 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2501                                 bool *was_alldone, unsigned long flags)
2502 {
2503         return false;
2504 }
2505
2506 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
2507                                  unsigned long flags)
2508 {
2509         WARN_ON_ONCE(1);  /* Should be dead code! */
2510 }
2511
2512 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2513 {
2514 }
2515
2516 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2517 {
2518         return false;
2519 }
2520
2521 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2522 {
2523 }
2524
2525 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2526 {
2527 }
2528
2529 static void __init rcu_spawn_nocb_kthreads(void)
2530 {
2531 }
2532
2533 static void show_rcu_nocb_state(struct rcu_data *rdp)
2534 {
2535 }
2536
2537 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2538
2539 /*
2540  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2541  * grace-period kthread will do force_quiescent_state() processing?
2542  * The idea is to avoid waking up RCU core processing on such a
2543  * CPU unless the grace period has extended for too long.
2544  *
2545  * This code relies on the fact that all NO_HZ_FULL CPUs are also
2546  * CONFIG_RCU_NOCB_CPU CPUs.
2547  */
2548 static bool rcu_nohz_full_cpu(void)
2549 {
2550 #ifdef CONFIG_NO_HZ_FULL
2551         if (tick_nohz_full_cpu(smp_processor_id()) &&
2552             (!rcu_gp_in_progress() ||
2553              time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
2554                 return true;
2555 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2556         return false;
2557 }
2558
2559 /*
2560  * Bind the RCU grace-period kthreads to the housekeeping CPU.
2561  */
2562 static void rcu_bind_gp_kthread(void)
2563 {
2564         if (!tick_nohz_full_enabled())
2565                 return;
2566         housekeeping_affine(current, HK_FLAG_RCU);
2567 }
2568
2569 /* Record the current task on dyntick-idle entry. */
2570 static void noinstr rcu_dynticks_task_enter(void)
2571 {
2572 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2573         WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2574 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2575 }
2576
2577 /* Record no current task on dyntick-idle exit. */
2578 static void noinstr rcu_dynticks_task_exit(void)
2579 {
2580 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2581         WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2582 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2583 }
2584
2585 /* Turn on heavyweight RCU tasks trace readers on idle/user entry. */
2586 static void rcu_dynticks_task_trace_enter(void)
2587 {
2588 #ifdef CONFIG_TASKS_RCU_TRACE
2589         if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
2590                 current->trc_reader_special.b.need_mb = true;
2591 #endif /* #ifdef CONFIG_TASKS_RCU_TRACE */
2592 }
2593
2594 /* Turn off heavyweight RCU tasks trace readers on idle/user exit. */
2595 static void rcu_dynticks_task_trace_exit(void)
2596 {
2597 #ifdef CONFIG_TASKS_RCU_TRACE
2598         if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
2599                 current->trc_reader_special.b.need_mb = false;
2600 #endif /* #ifdef CONFIG_TASKS_RCU_TRACE */
2601 }