Merge tag 'dma-mapping-5.13' of git://git.infradead.org/users/hch/dma-mapping
[linux-2.6-microblaze.git] / kernel / locking / rwsem.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* kernel/rwsem.c: R/W semaphores, public implementation
3  *
4  * Written by David Howells (dhowells@redhat.com).
5  * Derived from asm-i386/semaphore.h
6  *
7  * Writer lock-stealing by Alex Shi <alex.shi@intel.com>
8  * and Michel Lespinasse <walken@google.com>
9  *
10  * Optimistic spinning by Tim Chen <tim.c.chen@intel.com>
11  * and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes.
12  *
13  * Rwsem count bit fields re-definition and rwsem rearchitecture by
14  * Waiman Long <longman@redhat.com> and
15  * Peter Zijlstra <peterz@infradead.org>.
16  */
17
18 #include <linux/types.h>
19 #include <linux/kernel.h>
20 #include <linux/sched.h>
21 #include <linux/sched/rt.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/debug.h>
24 #include <linux/sched/wake_q.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/clock.h>
27 #include <linux/export.h>
28 #include <linux/rwsem.h>
29 #include <linux/atomic.h>
30
31 #include "lock_events.h"
32
33 /*
34  * The least significant 2 bits of the owner value has the following
35  * meanings when set.
36  *  - Bit 0: RWSEM_READER_OWNED - The rwsem is owned by readers
37  *  - Bit 1: RWSEM_NONSPINNABLE - Cannot spin on a reader-owned lock
38  *
39  * When the rwsem is reader-owned and a spinning writer has timed out,
40  * the nonspinnable bit will be set to disable optimistic spinning.
41
42  * When a writer acquires a rwsem, it puts its task_struct pointer
43  * into the owner field. It is cleared after an unlock.
44  *
45  * When a reader acquires a rwsem, it will also puts its task_struct
46  * pointer into the owner field with the RWSEM_READER_OWNED bit set.
47  * On unlock, the owner field will largely be left untouched. So
48  * for a free or reader-owned rwsem, the owner value may contain
49  * information about the last reader that acquires the rwsem.
50  *
51  * That information may be helpful in debugging cases where the system
52  * seems to hang on a reader owned rwsem especially if only one reader
53  * is involved. Ideally we would like to track all the readers that own
54  * a rwsem, but the overhead is simply too big.
55  *
56  * A fast path reader optimistic lock stealing is supported when the rwsem
57  * is previously owned by a writer and the following conditions are met:
58  *  - OSQ is empty
59  *  - rwsem is not currently writer owned
60  *  - the handoff isn't set.
61  */
62 #define RWSEM_READER_OWNED      (1UL << 0)
63 #define RWSEM_NONSPINNABLE      (1UL << 1)
64 #define RWSEM_OWNER_FLAGS_MASK  (RWSEM_READER_OWNED | RWSEM_NONSPINNABLE)
65
66 #ifdef CONFIG_DEBUG_RWSEMS
67 # define DEBUG_RWSEMS_WARN_ON(c, sem)   do {                    \
68         if (!debug_locks_silent &&                              \
69             WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, magic = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\
70                 #c, atomic_long_read(&(sem)->count),            \
71                 (unsigned long) sem->magic,                     \
72                 atomic_long_read(&(sem)->owner), (long)current, \
73                 list_empty(&(sem)->wait_list) ? "" : "not "))   \
74                         debug_locks_off();                      \
75         } while (0)
76 #else
77 # define DEBUG_RWSEMS_WARN_ON(c, sem)
78 #endif
79
80 /*
81  * On 64-bit architectures, the bit definitions of the count are:
82  *
83  * Bit  0    - writer locked bit
84  * Bit  1    - waiters present bit
85  * Bit  2    - lock handoff bit
86  * Bits 3-7  - reserved
87  * Bits 8-62 - 55-bit reader count
88  * Bit  63   - read fail bit
89  *
90  * On 32-bit architectures, the bit definitions of the count are:
91  *
92  * Bit  0    - writer locked bit
93  * Bit  1    - waiters present bit
94  * Bit  2    - lock handoff bit
95  * Bits 3-7  - reserved
96  * Bits 8-30 - 23-bit reader count
97  * Bit  31   - read fail bit
98  *
99  * It is not likely that the most significant bit (read fail bit) will ever
100  * be set. This guard bit is still checked anyway in the down_read() fastpath
101  * just in case we need to use up more of the reader bits for other purpose
102  * in the future.
103  *
104  * atomic_long_fetch_add() is used to obtain reader lock, whereas
105  * atomic_long_cmpxchg() will be used to obtain writer lock.
106  *
107  * There are three places where the lock handoff bit may be set or cleared.
108  * 1) rwsem_mark_wake() for readers.
109  * 2) rwsem_try_write_lock() for writers.
110  * 3) Error path of rwsem_down_write_slowpath().
111  *
112  * For all the above cases, wait_lock will be held. A writer must also
113  * be the first one in the wait_list to be eligible for setting the handoff
114  * bit. So concurrent setting/clearing of handoff bit is not possible.
115  */
116 #define RWSEM_WRITER_LOCKED     (1UL << 0)
117 #define RWSEM_FLAG_WAITERS      (1UL << 1)
118 #define RWSEM_FLAG_HANDOFF      (1UL << 2)
119 #define RWSEM_FLAG_READFAIL     (1UL << (BITS_PER_LONG - 1))
120
121 #define RWSEM_READER_SHIFT      8
122 #define RWSEM_READER_BIAS       (1UL << RWSEM_READER_SHIFT)
123 #define RWSEM_READER_MASK       (~(RWSEM_READER_BIAS - 1))
124 #define RWSEM_WRITER_MASK       RWSEM_WRITER_LOCKED
125 #define RWSEM_LOCK_MASK         (RWSEM_WRITER_MASK|RWSEM_READER_MASK)
126 #define RWSEM_READ_FAILED_MASK  (RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\
127                                  RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL)
128
129 /*
130  * All writes to owner are protected by WRITE_ONCE() to make sure that
131  * store tearing can't happen as optimistic spinners may read and use
132  * the owner value concurrently without lock. Read from owner, however,
133  * may not need READ_ONCE() as long as the pointer value is only used
134  * for comparison and isn't being dereferenced.
135  */
136 static inline void rwsem_set_owner(struct rw_semaphore *sem)
137 {
138         atomic_long_set(&sem->owner, (long)current);
139 }
140
141 static inline void rwsem_clear_owner(struct rw_semaphore *sem)
142 {
143         atomic_long_set(&sem->owner, 0);
144 }
145
146 /*
147  * Test the flags in the owner field.
148  */
149 static inline bool rwsem_test_oflags(struct rw_semaphore *sem, long flags)
150 {
151         return atomic_long_read(&sem->owner) & flags;
152 }
153
154 /*
155  * The task_struct pointer of the last owning reader will be left in
156  * the owner field.
157  *
158  * Note that the owner value just indicates the task has owned the rwsem
159  * previously, it may not be the real owner or one of the real owners
160  * anymore when that field is examined, so take it with a grain of salt.
161  *
162  * The reader non-spinnable bit is preserved.
163  */
164 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
165                                             struct task_struct *owner)
166 {
167         unsigned long val = (unsigned long)owner | RWSEM_READER_OWNED |
168                 (atomic_long_read(&sem->owner) & RWSEM_NONSPINNABLE);
169
170         atomic_long_set(&sem->owner, val);
171 }
172
173 static inline void rwsem_set_reader_owned(struct rw_semaphore *sem)
174 {
175         __rwsem_set_reader_owned(sem, current);
176 }
177
178 /*
179  * Return true if the rwsem is owned by a reader.
180  */
181 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
182 {
183 #ifdef CONFIG_DEBUG_RWSEMS
184         /*
185          * Check the count to see if it is write-locked.
186          */
187         long count = atomic_long_read(&sem->count);
188
189         if (count & RWSEM_WRITER_MASK)
190                 return false;
191 #endif
192         return rwsem_test_oflags(sem, RWSEM_READER_OWNED);
193 }
194
195 #ifdef CONFIG_DEBUG_RWSEMS
196 /*
197  * With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there
198  * is a task pointer in owner of a reader-owned rwsem, it will be the
199  * real owner or one of the real owners. The only exception is when the
200  * unlock is done by up_read_non_owner().
201  */
202 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
203 {
204         unsigned long val = atomic_long_read(&sem->owner);
205
206         while ((val & ~RWSEM_OWNER_FLAGS_MASK) == (unsigned long)current) {
207                 if (atomic_long_try_cmpxchg(&sem->owner, &val,
208                                             val & RWSEM_OWNER_FLAGS_MASK))
209                         return;
210         }
211 }
212 #else
213 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
214 {
215 }
216 #endif
217
218 /*
219  * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag
220  * remains set. Otherwise, the operation will be aborted.
221  */
222 static inline void rwsem_set_nonspinnable(struct rw_semaphore *sem)
223 {
224         unsigned long owner = atomic_long_read(&sem->owner);
225
226         do {
227                 if (!(owner & RWSEM_READER_OWNED))
228                         break;
229                 if (owner & RWSEM_NONSPINNABLE)
230                         break;
231         } while (!atomic_long_try_cmpxchg(&sem->owner, &owner,
232                                           owner | RWSEM_NONSPINNABLE));
233 }
234
235 static inline bool rwsem_read_trylock(struct rw_semaphore *sem, long *cntp)
236 {
237         *cntp = atomic_long_add_return_acquire(RWSEM_READER_BIAS, &sem->count);
238
239         if (WARN_ON_ONCE(*cntp < 0))
240                 rwsem_set_nonspinnable(sem);
241
242         if (!(*cntp & RWSEM_READ_FAILED_MASK)) {
243                 rwsem_set_reader_owned(sem);
244                 return true;
245         }
246
247         return false;
248 }
249
250 static inline bool rwsem_write_trylock(struct rw_semaphore *sem)
251 {
252         long tmp = RWSEM_UNLOCKED_VALUE;
253
254         if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, RWSEM_WRITER_LOCKED)) {
255                 rwsem_set_owner(sem);
256                 return true;
257         }
258
259         return false;
260 }
261
262 /*
263  * Return just the real task structure pointer of the owner
264  */
265 static inline struct task_struct *rwsem_owner(struct rw_semaphore *sem)
266 {
267         return (struct task_struct *)
268                 (atomic_long_read(&sem->owner) & ~RWSEM_OWNER_FLAGS_MASK);
269 }
270
271 /*
272  * Return the real task structure pointer of the owner and the embedded
273  * flags in the owner. pflags must be non-NULL.
274  */
275 static inline struct task_struct *
276 rwsem_owner_flags(struct rw_semaphore *sem, unsigned long *pflags)
277 {
278         unsigned long owner = atomic_long_read(&sem->owner);
279
280         *pflags = owner & RWSEM_OWNER_FLAGS_MASK;
281         return (struct task_struct *)(owner & ~RWSEM_OWNER_FLAGS_MASK);
282 }
283
284 /*
285  * Guide to the rw_semaphore's count field.
286  *
287  * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned
288  * by a writer.
289  *
290  * The lock is owned by readers when
291  * (1) the RWSEM_WRITER_LOCKED isn't set in count,
292  * (2) some of the reader bits are set in count, and
293  * (3) the owner field has RWSEM_READ_OWNED bit set.
294  *
295  * Having some reader bits set is not enough to guarantee a readers owned
296  * lock as the readers may be in the process of backing out from the count
297  * and a writer has just released the lock. So another writer may steal
298  * the lock immediately after that.
299  */
300
301 /*
302  * Initialize an rwsem:
303  */
304 void __init_rwsem(struct rw_semaphore *sem, const char *name,
305                   struct lock_class_key *key)
306 {
307 #ifdef CONFIG_DEBUG_LOCK_ALLOC
308         /*
309          * Make sure we are not reinitializing a held semaphore:
310          */
311         debug_check_no_locks_freed((void *)sem, sizeof(*sem));
312         lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
313 #endif
314 #ifdef CONFIG_DEBUG_RWSEMS
315         sem->magic = sem;
316 #endif
317         atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE);
318         raw_spin_lock_init(&sem->wait_lock);
319         INIT_LIST_HEAD(&sem->wait_list);
320         atomic_long_set(&sem->owner, 0L);
321 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
322         osq_lock_init(&sem->osq);
323 #endif
324 }
325 EXPORT_SYMBOL(__init_rwsem);
326
327 enum rwsem_waiter_type {
328         RWSEM_WAITING_FOR_WRITE,
329         RWSEM_WAITING_FOR_READ
330 };
331
332 struct rwsem_waiter {
333         struct list_head list;
334         struct task_struct *task;
335         enum rwsem_waiter_type type;
336         unsigned long timeout;
337 };
338 #define rwsem_first_waiter(sem) \
339         list_first_entry(&sem->wait_list, struct rwsem_waiter, list)
340
341 enum rwsem_wake_type {
342         RWSEM_WAKE_ANY,         /* Wake whatever's at head of wait list */
343         RWSEM_WAKE_READERS,     /* Wake readers only */
344         RWSEM_WAKE_READ_OWNED   /* Waker thread holds the read lock */
345 };
346
347 enum writer_wait_state {
348         WRITER_NOT_FIRST,       /* Writer is not first in wait list */
349         WRITER_FIRST,           /* Writer is first in wait list     */
350         WRITER_HANDOFF          /* Writer is first & handoff needed */
351 };
352
353 /*
354  * The typical HZ value is either 250 or 1000. So set the minimum waiting
355  * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait
356  * queue before initiating the handoff protocol.
357  */
358 #define RWSEM_WAIT_TIMEOUT      DIV_ROUND_UP(HZ, 250)
359
360 /*
361  * Magic number to batch-wakeup waiting readers, even when writers are
362  * also present in the queue. This both limits the amount of work the
363  * waking thread must do and also prevents any potential counter overflow,
364  * however unlikely.
365  */
366 #define MAX_READERS_WAKEUP      0x100
367
368 /*
369  * handle the lock release when processes blocked on it that can now run
370  * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must
371  *   have been set.
372  * - there must be someone on the queue
373  * - the wait_lock must be held by the caller
374  * - tasks are marked for wakeup, the caller must later invoke wake_up_q()
375  *   to actually wakeup the blocked task(s) and drop the reference count,
376  *   preferably when the wait_lock is released
377  * - woken process blocks are discarded from the list after having task zeroed
378  * - writers are only marked woken if downgrading is false
379  */
380 static void rwsem_mark_wake(struct rw_semaphore *sem,
381                             enum rwsem_wake_type wake_type,
382                             struct wake_q_head *wake_q)
383 {
384         struct rwsem_waiter *waiter, *tmp;
385         long oldcount, woken = 0, adjustment = 0;
386         struct list_head wlist;
387
388         lockdep_assert_held(&sem->wait_lock);
389
390         /*
391          * Take a peek at the queue head waiter such that we can determine
392          * the wakeup(s) to perform.
393          */
394         waiter = rwsem_first_waiter(sem);
395
396         if (waiter->type == RWSEM_WAITING_FOR_WRITE) {
397                 if (wake_type == RWSEM_WAKE_ANY) {
398                         /*
399                          * Mark writer at the front of the queue for wakeup.
400                          * Until the task is actually later awoken later by
401                          * the caller, other writers are able to steal it.
402                          * Readers, on the other hand, will block as they
403                          * will notice the queued writer.
404                          */
405                         wake_q_add(wake_q, waiter->task);
406                         lockevent_inc(rwsem_wake_writer);
407                 }
408
409                 return;
410         }
411
412         /*
413          * No reader wakeup if there are too many of them already.
414          */
415         if (unlikely(atomic_long_read(&sem->count) < 0))
416                 return;
417
418         /*
419          * Writers might steal the lock before we grant it to the next reader.
420          * We prefer to do the first reader grant before counting readers
421          * so we can bail out early if a writer stole the lock.
422          */
423         if (wake_type != RWSEM_WAKE_READ_OWNED) {
424                 struct task_struct *owner;
425
426                 adjustment = RWSEM_READER_BIAS;
427                 oldcount = atomic_long_fetch_add(adjustment, &sem->count);
428                 if (unlikely(oldcount & RWSEM_WRITER_MASK)) {
429                         /*
430                          * When we've been waiting "too" long (for writers
431                          * to give up the lock), request a HANDOFF to
432                          * force the issue.
433                          */
434                         if (!(oldcount & RWSEM_FLAG_HANDOFF) &&
435                             time_after(jiffies, waiter->timeout)) {
436                                 adjustment -= RWSEM_FLAG_HANDOFF;
437                                 lockevent_inc(rwsem_rlock_handoff);
438                         }
439
440                         atomic_long_add(-adjustment, &sem->count);
441                         return;
442                 }
443                 /*
444                  * Set it to reader-owned to give spinners an early
445                  * indication that readers now have the lock.
446                  * The reader nonspinnable bit seen at slowpath entry of
447                  * the reader is copied over.
448                  */
449                 owner = waiter->task;
450                 __rwsem_set_reader_owned(sem, owner);
451         }
452
453         /*
454          * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the
455          * queue. We know that the woken will be at least 1 as we accounted
456          * for above. Note we increment the 'active part' of the count by the
457          * number of readers before waking any processes up.
458          *
459          * This is an adaptation of the phase-fair R/W locks where at the
460          * reader phase (first waiter is a reader), all readers are eligible
461          * to acquire the lock at the same time irrespective of their order
462          * in the queue. The writers acquire the lock according to their
463          * order in the queue.
464          *
465          * We have to do wakeup in 2 passes to prevent the possibility that
466          * the reader count may be decremented before it is incremented. It
467          * is because the to-be-woken waiter may not have slept yet. So it
468          * may see waiter->task got cleared, finish its critical section and
469          * do an unlock before the reader count increment.
470          *
471          * 1) Collect the read-waiters in a separate list, count them and
472          *    fully increment the reader count in rwsem.
473          * 2) For each waiters in the new list, clear waiter->task and
474          *    put them into wake_q to be woken up later.
475          */
476         INIT_LIST_HEAD(&wlist);
477         list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) {
478                 if (waiter->type == RWSEM_WAITING_FOR_WRITE)
479                         continue;
480
481                 woken++;
482                 list_move_tail(&waiter->list, &wlist);
483
484                 /*
485                  * Limit # of readers that can be woken up per wakeup call.
486                  */
487                 if (woken >= MAX_READERS_WAKEUP)
488                         break;
489         }
490
491         adjustment = woken * RWSEM_READER_BIAS - adjustment;
492         lockevent_cond_inc(rwsem_wake_reader, woken);
493         if (list_empty(&sem->wait_list)) {
494                 /* hit end of list above */
495                 adjustment -= RWSEM_FLAG_WAITERS;
496         }
497
498         /*
499          * When we've woken a reader, we no longer need to force writers
500          * to give up the lock and we can clear HANDOFF.
501          */
502         if (woken && (atomic_long_read(&sem->count) & RWSEM_FLAG_HANDOFF))
503                 adjustment -= RWSEM_FLAG_HANDOFF;
504
505         if (adjustment)
506                 atomic_long_add(adjustment, &sem->count);
507
508         /* 2nd pass */
509         list_for_each_entry_safe(waiter, tmp, &wlist, list) {
510                 struct task_struct *tsk;
511
512                 tsk = waiter->task;
513                 get_task_struct(tsk);
514
515                 /*
516                  * Ensure calling get_task_struct() before setting the reader
517                  * waiter to nil such that rwsem_down_read_slowpath() cannot
518                  * race with do_exit() by always holding a reference count
519                  * to the task to wakeup.
520                  */
521                 smp_store_release(&waiter->task, NULL);
522                 /*
523                  * Ensure issuing the wakeup (either by us or someone else)
524                  * after setting the reader waiter to nil.
525                  */
526                 wake_q_add_safe(wake_q, tsk);
527         }
528 }
529
530 /*
531  * This function must be called with the sem->wait_lock held to prevent
532  * race conditions between checking the rwsem wait list and setting the
533  * sem->count accordingly.
534  *
535  * If wstate is WRITER_HANDOFF, it will make sure that either the handoff
536  * bit is set or the lock is acquired with handoff bit cleared.
537  */
538 static inline bool rwsem_try_write_lock(struct rw_semaphore *sem,
539                                         enum writer_wait_state wstate)
540 {
541         long count, new;
542
543         lockdep_assert_held(&sem->wait_lock);
544
545         count = atomic_long_read(&sem->count);
546         do {
547                 bool has_handoff = !!(count & RWSEM_FLAG_HANDOFF);
548
549                 if (has_handoff && wstate == WRITER_NOT_FIRST)
550                         return false;
551
552                 new = count;
553
554                 if (count & RWSEM_LOCK_MASK) {
555                         if (has_handoff || (wstate != WRITER_HANDOFF))
556                                 return false;
557
558                         new |= RWSEM_FLAG_HANDOFF;
559                 } else {
560                         new |= RWSEM_WRITER_LOCKED;
561                         new &= ~RWSEM_FLAG_HANDOFF;
562
563                         if (list_is_singular(&sem->wait_list))
564                                 new &= ~RWSEM_FLAG_WAITERS;
565                 }
566         } while (!atomic_long_try_cmpxchg_acquire(&sem->count, &count, new));
567
568         /*
569          * We have either acquired the lock with handoff bit cleared or
570          * set the handoff bit.
571          */
572         if (new & RWSEM_FLAG_HANDOFF)
573                 return false;
574
575         rwsem_set_owner(sem);
576         return true;
577 }
578
579 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
580 /*
581  * Try to acquire write lock before the writer has been put on wait queue.
582  */
583 static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem)
584 {
585         long count = atomic_long_read(&sem->count);
586
587         while (!(count & (RWSEM_LOCK_MASK|RWSEM_FLAG_HANDOFF))) {
588                 if (atomic_long_try_cmpxchg_acquire(&sem->count, &count,
589                                         count | RWSEM_WRITER_LOCKED)) {
590                         rwsem_set_owner(sem);
591                         lockevent_inc(rwsem_opt_lock);
592                         return true;
593                 }
594         }
595         return false;
596 }
597
598 static inline bool owner_on_cpu(struct task_struct *owner)
599 {
600         /*
601          * As lock holder preemption issue, we both skip spinning if
602          * task is not on cpu or its cpu is preempted
603          */
604         return owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
605 }
606
607 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
608 {
609         struct task_struct *owner;
610         unsigned long flags;
611         bool ret = true;
612
613         if (need_resched()) {
614                 lockevent_inc(rwsem_opt_fail);
615                 return false;
616         }
617
618         preempt_disable();
619         rcu_read_lock();
620         owner = rwsem_owner_flags(sem, &flags);
621         /*
622          * Don't check the read-owner as the entry may be stale.
623          */
624         if ((flags & RWSEM_NONSPINNABLE) ||
625             (owner && !(flags & RWSEM_READER_OWNED) && !owner_on_cpu(owner)))
626                 ret = false;
627         rcu_read_unlock();
628         preempt_enable();
629
630         lockevent_cond_inc(rwsem_opt_fail, !ret);
631         return ret;
632 }
633
634 /*
635  * The rwsem_spin_on_owner() function returns the following 4 values
636  * depending on the lock owner state.
637  *   OWNER_NULL  : owner is currently NULL
638  *   OWNER_WRITER: when owner changes and is a writer
639  *   OWNER_READER: when owner changes and the new owner may be a reader.
640  *   OWNER_NONSPINNABLE:
641  *                 when optimistic spinning has to stop because either the
642  *                 owner stops running, is unknown, or its timeslice has
643  *                 been used up.
644  */
645 enum owner_state {
646         OWNER_NULL              = 1 << 0,
647         OWNER_WRITER            = 1 << 1,
648         OWNER_READER            = 1 << 2,
649         OWNER_NONSPINNABLE      = 1 << 3,
650 };
651 #define OWNER_SPINNABLE         (OWNER_NULL | OWNER_WRITER | OWNER_READER)
652
653 static inline enum owner_state
654 rwsem_owner_state(struct task_struct *owner, unsigned long flags)
655 {
656         if (flags & RWSEM_NONSPINNABLE)
657                 return OWNER_NONSPINNABLE;
658
659         if (flags & RWSEM_READER_OWNED)
660                 return OWNER_READER;
661
662         return owner ? OWNER_WRITER : OWNER_NULL;
663 }
664
665 static noinline enum owner_state
666 rwsem_spin_on_owner(struct rw_semaphore *sem)
667 {
668         struct task_struct *new, *owner;
669         unsigned long flags, new_flags;
670         enum owner_state state;
671
672         owner = rwsem_owner_flags(sem, &flags);
673         state = rwsem_owner_state(owner, flags);
674         if (state != OWNER_WRITER)
675                 return state;
676
677         rcu_read_lock();
678         for (;;) {
679                 /*
680                  * When a waiting writer set the handoff flag, it may spin
681                  * on the owner as well. Once that writer acquires the lock,
682                  * we can spin on it. So we don't need to quit even when the
683                  * handoff bit is set.
684                  */
685                 new = rwsem_owner_flags(sem, &new_flags);
686                 if ((new != owner) || (new_flags != flags)) {
687                         state = rwsem_owner_state(new, new_flags);
688                         break;
689                 }
690
691                 /*
692                  * Ensure we emit the owner->on_cpu, dereference _after_
693                  * checking sem->owner still matches owner, if that fails,
694                  * owner might point to free()d memory, if it still matches,
695                  * the rcu_read_lock() ensures the memory stays valid.
696                  */
697                 barrier();
698
699                 if (need_resched() || !owner_on_cpu(owner)) {
700                         state = OWNER_NONSPINNABLE;
701                         break;
702                 }
703
704                 cpu_relax();
705         }
706         rcu_read_unlock();
707
708         return state;
709 }
710
711 /*
712  * Calculate reader-owned rwsem spinning threshold for writer
713  *
714  * The more readers own the rwsem, the longer it will take for them to
715  * wind down and free the rwsem. So the empirical formula used to
716  * determine the actual spinning time limit here is:
717  *
718  *   Spinning threshold = (10 + nr_readers/2)us
719  *
720  * The limit is capped to a maximum of 25us (30 readers). This is just
721  * a heuristic and is subjected to change in the future.
722  */
723 static inline u64 rwsem_rspin_threshold(struct rw_semaphore *sem)
724 {
725         long count = atomic_long_read(&sem->count);
726         int readers = count >> RWSEM_READER_SHIFT;
727         u64 delta;
728
729         if (readers > 30)
730                 readers = 30;
731         delta = (20 + readers) * NSEC_PER_USEC / 2;
732
733         return sched_clock() + delta;
734 }
735
736 static bool rwsem_optimistic_spin(struct rw_semaphore *sem)
737 {
738         bool taken = false;
739         int prev_owner_state = OWNER_NULL;
740         int loop = 0;
741         u64 rspin_threshold = 0;
742
743         preempt_disable();
744
745         /* sem->wait_lock should not be held when doing optimistic spinning */
746         if (!osq_lock(&sem->osq))
747                 goto done;
748
749         /*
750          * Optimistically spin on the owner field and attempt to acquire the
751          * lock whenever the owner changes. Spinning will be stopped when:
752          *  1) the owning writer isn't running; or
753          *  2) readers own the lock and spinning time has exceeded limit.
754          */
755         for (;;) {
756                 enum owner_state owner_state;
757
758                 owner_state = rwsem_spin_on_owner(sem);
759                 if (!(owner_state & OWNER_SPINNABLE))
760                         break;
761
762                 /*
763                  * Try to acquire the lock
764                  */
765                 taken = rwsem_try_write_lock_unqueued(sem);
766
767                 if (taken)
768                         break;
769
770                 /*
771                  * Time-based reader-owned rwsem optimistic spinning
772                  */
773                 if (owner_state == OWNER_READER) {
774                         /*
775                          * Re-initialize rspin_threshold every time when
776                          * the owner state changes from non-reader to reader.
777                          * This allows a writer to steal the lock in between
778                          * 2 reader phases and have the threshold reset at
779                          * the beginning of the 2nd reader phase.
780                          */
781                         if (prev_owner_state != OWNER_READER) {
782                                 if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE))
783                                         break;
784                                 rspin_threshold = rwsem_rspin_threshold(sem);
785                                 loop = 0;
786                         }
787
788                         /*
789                          * Check time threshold once every 16 iterations to
790                          * avoid calling sched_clock() too frequently so
791                          * as to reduce the average latency between the times
792                          * when the lock becomes free and when the spinner
793                          * is ready to do a trylock.
794                          */
795                         else if (!(++loop & 0xf) && (sched_clock() > rspin_threshold)) {
796                                 rwsem_set_nonspinnable(sem);
797                                 lockevent_inc(rwsem_opt_nospin);
798                                 break;
799                         }
800                 }
801
802                 /*
803                  * An RT task cannot do optimistic spinning if it cannot
804                  * be sure the lock holder is running or live-lock may
805                  * happen if the current task and the lock holder happen
806                  * to run in the same CPU. However, aborting optimistic
807                  * spinning while a NULL owner is detected may miss some
808                  * opportunity where spinning can continue without causing
809                  * problem.
810                  *
811                  * There are 2 possible cases where an RT task may be able
812                  * to continue spinning.
813                  *
814                  * 1) The lock owner is in the process of releasing the
815                  *    lock, sem->owner is cleared but the lock has not
816                  *    been released yet.
817                  * 2) The lock was free and owner cleared, but another
818                  *    task just comes in and acquire the lock before
819                  *    we try to get it. The new owner may be a spinnable
820                  *    writer.
821                  *
822                  * To take advantage of two scenarios listed above, the RT
823                  * task is made to retry one more time to see if it can
824                  * acquire the lock or continue spinning on the new owning
825                  * writer. Of course, if the time lag is long enough or the
826                  * new owner is not a writer or spinnable, the RT task will
827                  * quit spinning.
828                  *
829                  * If the owner is a writer, the need_resched() check is
830                  * done inside rwsem_spin_on_owner(). If the owner is not
831                  * a writer, need_resched() check needs to be done here.
832                  */
833                 if (owner_state != OWNER_WRITER) {
834                         if (need_resched())
835                                 break;
836                         if (rt_task(current) &&
837                            (prev_owner_state != OWNER_WRITER))
838                                 break;
839                 }
840                 prev_owner_state = owner_state;
841
842                 /*
843                  * The cpu_relax() call is a compiler barrier which forces
844                  * everything in this loop to be re-loaded. We don't need
845                  * memory barriers as we'll eventually observe the right
846                  * values at the cost of a few extra spins.
847                  */
848                 cpu_relax();
849         }
850         osq_unlock(&sem->osq);
851 done:
852         preempt_enable();
853         lockevent_cond_inc(rwsem_opt_fail, !taken);
854         return taken;
855 }
856
857 /*
858  * Clear the owner's RWSEM_NONSPINNABLE bit if it is set. This should
859  * only be called when the reader count reaches 0.
860  */
861 static inline void clear_nonspinnable(struct rw_semaphore *sem)
862 {
863         if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE))
864                 atomic_long_andnot(RWSEM_NONSPINNABLE, &sem->owner);
865 }
866
867 #else
868 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
869 {
870         return false;
871 }
872
873 static inline bool rwsem_optimistic_spin(struct rw_semaphore *sem)
874 {
875         return false;
876 }
877
878 static inline void clear_nonspinnable(struct rw_semaphore *sem) { }
879
880 static inline int
881 rwsem_spin_on_owner(struct rw_semaphore *sem)
882 {
883         return 0;
884 }
885 #define OWNER_NULL      1
886 #endif
887
888 /*
889  * Wait for the read lock to be granted
890  */
891 static struct rw_semaphore __sched *
892 rwsem_down_read_slowpath(struct rw_semaphore *sem, long count, int state)
893 {
894         long adjustment = -RWSEM_READER_BIAS;
895         long rcnt = (count >> RWSEM_READER_SHIFT);
896         struct rwsem_waiter waiter;
897         DEFINE_WAKE_Q(wake_q);
898         bool wake = false;
899
900         /*
901          * To prevent a constant stream of readers from starving a sleeping
902          * waiter, don't attempt optimistic lock stealing if the lock is
903          * currently owned by readers.
904          */
905         if ((atomic_long_read(&sem->owner) & RWSEM_READER_OWNED) &&
906             (rcnt > 1) && !(count & RWSEM_WRITER_LOCKED))
907                 goto queue;
908
909         /*
910          * Reader optimistic lock stealing.
911          */
912         if (!(count & (RWSEM_WRITER_LOCKED | RWSEM_FLAG_HANDOFF))) {
913                 rwsem_set_reader_owned(sem);
914                 lockevent_inc(rwsem_rlock_steal);
915
916                 /*
917                  * Wake up other readers in the wait queue if it is
918                  * the first reader.
919                  */
920                 if ((rcnt == 1) && (count & RWSEM_FLAG_WAITERS)) {
921                         raw_spin_lock_irq(&sem->wait_lock);
922                         if (!list_empty(&sem->wait_list))
923                                 rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED,
924                                                 &wake_q);
925                         raw_spin_unlock_irq(&sem->wait_lock);
926                         wake_up_q(&wake_q);
927                 }
928                 return sem;
929         }
930
931 queue:
932         waiter.task = current;
933         waiter.type = RWSEM_WAITING_FOR_READ;
934         waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
935
936         raw_spin_lock_irq(&sem->wait_lock);
937         if (list_empty(&sem->wait_list)) {
938                 /*
939                  * In case the wait queue is empty and the lock isn't owned
940                  * by a writer or has the handoff bit set, this reader can
941                  * exit the slowpath and return immediately as its
942                  * RWSEM_READER_BIAS has already been set in the count.
943                  */
944                 if (!(atomic_long_read(&sem->count) &
945                      (RWSEM_WRITER_MASK | RWSEM_FLAG_HANDOFF))) {
946                         /* Provide lock ACQUIRE */
947                         smp_acquire__after_ctrl_dep();
948                         raw_spin_unlock_irq(&sem->wait_lock);
949                         rwsem_set_reader_owned(sem);
950                         lockevent_inc(rwsem_rlock_fast);
951                         return sem;
952                 }
953                 adjustment += RWSEM_FLAG_WAITERS;
954         }
955         list_add_tail(&waiter.list, &sem->wait_list);
956
957         /* we're now waiting on the lock, but no longer actively locking */
958         count = atomic_long_add_return(adjustment, &sem->count);
959
960         /*
961          * If there are no active locks, wake the front queued process(es).
962          *
963          * If there are no writers and we are first in the queue,
964          * wake our own waiter to join the existing active readers !
965          */
966         if (!(count & RWSEM_LOCK_MASK)) {
967                 clear_nonspinnable(sem);
968                 wake = true;
969         }
970         if (wake || (!(count & RWSEM_WRITER_MASK) &&
971                     (adjustment & RWSEM_FLAG_WAITERS)))
972                 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
973
974         raw_spin_unlock_irq(&sem->wait_lock);
975         wake_up_q(&wake_q);
976
977         /* wait to be given the lock */
978         for (;;) {
979                 set_current_state(state);
980                 if (!smp_load_acquire(&waiter.task)) {
981                         /* Matches rwsem_mark_wake()'s smp_store_release(). */
982                         break;
983                 }
984                 if (signal_pending_state(state, current)) {
985                         raw_spin_lock_irq(&sem->wait_lock);
986                         if (waiter.task)
987                                 goto out_nolock;
988                         raw_spin_unlock_irq(&sem->wait_lock);
989                         /* Ordered by sem->wait_lock against rwsem_mark_wake(). */
990                         break;
991                 }
992                 schedule();
993                 lockevent_inc(rwsem_sleep_reader);
994         }
995
996         __set_current_state(TASK_RUNNING);
997         lockevent_inc(rwsem_rlock);
998         return sem;
999
1000 out_nolock:
1001         list_del(&waiter.list);
1002         if (list_empty(&sem->wait_list)) {
1003                 atomic_long_andnot(RWSEM_FLAG_WAITERS|RWSEM_FLAG_HANDOFF,
1004                                    &sem->count);
1005         }
1006         raw_spin_unlock_irq(&sem->wait_lock);
1007         __set_current_state(TASK_RUNNING);
1008         lockevent_inc(rwsem_rlock_fail);
1009         return ERR_PTR(-EINTR);
1010 }
1011
1012 /*
1013  * Wait until we successfully acquire the write lock
1014  */
1015 static struct rw_semaphore *
1016 rwsem_down_write_slowpath(struct rw_semaphore *sem, int state)
1017 {
1018         long count;
1019         enum writer_wait_state wstate;
1020         struct rwsem_waiter waiter;
1021         struct rw_semaphore *ret = sem;
1022         DEFINE_WAKE_Q(wake_q);
1023
1024         /* do optimistic spinning and steal lock if possible */
1025         if (rwsem_can_spin_on_owner(sem) && rwsem_optimistic_spin(sem)) {
1026                 /* rwsem_optimistic_spin() implies ACQUIRE on success */
1027                 return sem;
1028         }
1029
1030         /*
1031          * Optimistic spinning failed, proceed to the slowpath
1032          * and block until we can acquire the sem.
1033          */
1034         waiter.task = current;
1035         waiter.type = RWSEM_WAITING_FOR_WRITE;
1036         waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
1037
1038         raw_spin_lock_irq(&sem->wait_lock);
1039
1040         /* account for this before adding a new element to the list */
1041         wstate = list_empty(&sem->wait_list) ? WRITER_FIRST : WRITER_NOT_FIRST;
1042
1043         list_add_tail(&waiter.list, &sem->wait_list);
1044
1045         /* we're now waiting on the lock */
1046         if (wstate == WRITER_NOT_FIRST) {
1047                 count = atomic_long_read(&sem->count);
1048
1049                 /*
1050                  * If there were already threads queued before us and:
1051                  *  1) there are no active locks, wake the front
1052                  *     queued process(es) as the handoff bit might be set.
1053                  *  2) there are no active writers and some readers, the lock
1054                  *     must be read owned; so we try to wake any read lock
1055                  *     waiters that were queued ahead of us.
1056                  */
1057                 if (count & RWSEM_WRITER_MASK)
1058                         goto wait;
1059
1060                 rwsem_mark_wake(sem, (count & RWSEM_READER_MASK)
1061                                         ? RWSEM_WAKE_READERS
1062                                         : RWSEM_WAKE_ANY, &wake_q);
1063
1064                 if (!wake_q_empty(&wake_q)) {
1065                         /*
1066                          * We want to minimize wait_lock hold time especially
1067                          * when a large number of readers are to be woken up.
1068                          */
1069                         raw_spin_unlock_irq(&sem->wait_lock);
1070                         wake_up_q(&wake_q);
1071                         wake_q_init(&wake_q);   /* Used again, reinit */
1072                         raw_spin_lock_irq(&sem->wait_lock);
1073                 }
1074         } else {
1075                 atomic_long_or(RWSEM_FLAG_WAITERS, &sem->count);
1076         }
1077
1078 wait:
1079         /* wait until we successfully acquire the lock */
1080         set_current_state(state);
1081         for (;;) {
1082                 if (rwsem_try_write_lock(sem, wstate)) {
1083                         /* rwsem_try_write_lock() implies ACQUIRE on success */
1084                         break;
1085                 }
1086
1087                 raw_spin_unlock_irq(&sem->wait_lock);
1088
1089                 /*
1090                  * After setting the handoff bit and failing to acquire
1091                  * the lock, attempt to spin on owner to accelerate lock
1092                  * transfer. If the previous owner is a on-cpu writer and it
1093                  * has just released the lock, OWNER_NULL will be returned.
1094                  * In this case, we attempt to acquire the lock again
1095                  * without sleeping.
1096                  */
1097                 if (wstate == WRITER_HANDOFF &&
1098                     rwsem_spin_on_owner(sem) == OWNER_NULL)
1099                         goto trylock_again;
1100
1101                 /* Block until there are no active lockers. */
1102                 for (;;) {
1103                         if (signal_pending_state(state, current))
1104                                 goto out_nolock;
1105
1106                         schedule();
1107                         lockevent_inc(rwsem_sleep_writer);
1108                         set_current_state(state);
1109                         /*
1110                          * If HANDOFF bit is set, unconditionally do
1111                          * a trylock.
1112                          */
1113                         if (wstate == WRITER_HANDOFF)
1114                                 break;
1115
1116                         if ((wstate == WRITER_NOT_FIRST) &&
1117                             (rwsem_first_waiter(sem) == &waiter))
1118                                 wstate = WRITER_FIRST;
1119
1120                         count = atomic_long_read(&sem->count);
1121                         if (!(count & RWSEM_LOCK_MASK))
1122                                 break;
1123
1124                         /*
1125                          * The setting of the handoff bit is deferred
1126                          * until rwsem_try_write_lock() is called.
1127                          */
1128                         if ((wstate == WRITER_FIRST) && (rt_task(current) ||
1129                             time_after(jiffies, waiter.timeout))) {
1130                                 wstate = WRITER_HANDOFF;
1131                                 lockevent_inc(rwsem_wlock_handoff);
1132                                 break;
1133                         }
1134                 }
1135 trylock_again:
1136                 raw_spin_lock_irq(&sem->wait_lock);
1137         }
1138         __set_current_state(TASK_RUNNING);
1139         list_del(&waiter.list);
1140         raw_spin_unlock_irq(&sem->wait_lock);
1141         lockevent_inc(rwsem_wlock);
1142
1143         return ret;
1144
1145 out_nolock:
1146         __set_current_state(TASK_RUNNING);
1147         raw_spin_lock_irq(&sem->wait_lock);
1148         list_del(&waiter.list);
1149
1150         if (unlikely(wstate == WRITER_HANDOFF))
1151                 atomic_long_add(-RWSEM_FLAG_HANDOFF,  &sem->count);
1152
1153         if (list_empty(&sem->wait_list))
1154                 atomic_long_andnot(RWSEM_FLAG_WAITERS, &sem->count);
1155         else
1156                 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1157         raw_spin_unlock_irq(&sem->wait_lock);
1158         wake_up_q(&wake_q);
1159         lockevent_inc(rwsem_wlock_fail);
1160
1161         return ERR_PTR(-EINTR);
1162 }
1163
1164 /*
1165  * handle waking up a waiter on the semaphore
1166  * - up_read/up_write has decremented the active part of count if we come here
1167  */
1168 static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem, long count)
1169 {
1170         unsigned long flags;
1171         DEFINE_WAKE_Q(wake_q);
1172
1173         raw_spin_lock_irqsave(&sem->wait_lock, flags);
1174
1175         if (!list_empty(&sem->wait_list))
1176                 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1177
1178         raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1179         wake_up_q(&wake_q);
1180
1181         return sem;
1182 }
1183
1184 /*
1185  * downgrade a write lock into a read lock
1186  * - caller incremented waiting part of count and discovered it still negative
1187  * - just wake up any readers at the front of the queue
1188  */
1189 static struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem)
1190 {
1191         unsigned long flags;
1192         DEFINE_WAKE_Q(wake_q);
1193
1194         raw_spin_lock_irqsave(&sem->wait_lock, flags);
1195
1196         if (!list_empty(&sem->wait_list))
1197                 rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q);
1198
1199         raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1200         wake_up_q(&wake_q);
1201
1202         return sem;
1203 }
1204
1205 /*
1206  * lock for reading
1207  */
1208 static inline int __down_read_common(struct rw_semaphore *sem, int state)
1209 {
1210         long count;
1211
1212         if (!rwsem_read_trylock(sem, &count)) {
1213                 if (IS_ERR(rwsem_down_read_slowpath(sem, count, state)))
1214                         return -EINTR;
1215                 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1216         }
1217         return 0;
1218 }
1219
1220 static inline void __down_read(struct rw_semaphore *sem)
1221 {
1222         __down_read_common(sem, TASK_UNINTERRUPTIBLE);
1223 }
1224
1225 static inline int __down_read_interruptible(struct rw_semaphore *sem)
1226 {
1227         return __down_read_common(sem, TASK_INTERRUPTIBLE);
1228 }
1229
1230 static inline int __down_read_killable(struct rw_semaphore *sem)
1231 {
1232         return __down_read_common(sem, TASK_KILLABLE);
1233 }
1234
1235 static inline int __down_read_trylock(struct rw_semaphore *sem)
1236 {
1237         long tmp;
1238
1239         DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1240
1241         /*
1242          * Optimize for the case when the rwsem is not locked at all.
1243          */
1244         tmp = RWSEM_UNLOCKED_VALUE;
1245         do {
1246                 if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
1247                                         tmp + RWSEM_READER_BIAS)) {
1248                         rwsem_set_reader_owned(sem);
1249                         return 1;
1250                 }
1251         } while (!(tmp & RWSEM_READ_FAILED_MASK));
1252         return 0;
1253 }
1254
1255 /*
1256  * lock for writing
1257  */
1258 static inline int __down_write_common(struct rw_semaphore *sem, int state)
1259 {
1260         if (unlikely(!rwsem_write_trylock(sem))) {
1261                 if (IS_ERR(rwsem_down_write_slowpath(sem, state)))
1262                         return -EINTR;
1263         }
1264
1265         return 0;
1266 }
1267
1268 static inline void __down_write(struct rw_semaphore *sem)
1269 {
1270         __down_write_common(sem, TASK_UNINTERRUPTIBLE);
1271 }
1272
1273 static inline int __down_write_killable(struct rw_semaphore *sem)
1274 {
1275         return __down_write_common(sem, TASK_KILLABLE);
1276 }
1277
1278 static inline int __down_write_trylock(struct rw_semaphore *sem)
1279 {
1280         DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1281         return rwsem_write_trylock(sem);
1282 }
1283
1284 /*
1285  * unlock after reading
1286  */
1287 static inline void __up_read(struct rw_semaphore *sem)
1288 {
1289         long tmp;
1290
1291         DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1292         DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1293
1294         rwsem_clear_reader_owned(sem);
1295         tmp = atomic_long_add_return_release(-RWSEM_READER_BIAS, &sem->count);
1296         DEBUG_RWSEMS_WARN_ON(tmp < 0, sem);
1297         if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) ==
1298                       RWSEM_FLAG_WAITERS)) {
1299                 clear_nonspinnable(sem);
1300                 rwsem_wake(sem, tmp);
1301         }
1302 }
1303
1304 /*
1305  * unlock after writing
1306  */
1307 static inline void __up_write(struct rw_semaphore *sem)
1308 {
1309         long tmp;
1310
1311         DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1312         /*
1313          * sem->owner may differ from current if the ownership is transferred
1314          * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits.
1315          */
1316         DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem) != current) &&
1317                             !rwsem_test_oflags(sem, RWSEM_NONSPINNABLE), sem);
1318
1319         rwsem_clear_owner(sem);
1320         tmp = atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, &sem->count);
1321         if (unlikely(tmp & RWSEM_FLAG_WAITERS))
1322                 rwsem_wake(sem, tmp);
1323 }
1324
1325 /*
1326  * downgrade write lock to read lock
1327  */
1328 static inline void __downgrade_write(struct rw_semaphore *sem)
1329 {
1330         long tmp;
1331
1332         /*
1333          * When downgrading from exclusive to shared ownership,
1334          * anything inside the write-locked region cannot leak
1335          * into the read side. In contrast, anything in the
1336          * read-locked region is ok to be re-ordered into the
1337          * write side. As such, rely on RELEASE semantics.
1338          */
1339         DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem) != current, sem);
1340         tmp = atomic_long_fetch_add_release(
1341                 -RWSEM_WRITER_LOCKED+RWSEM_READER_BIAS, &sem->count);
1342         rwsem_set_reader_owned(sem);
1343         if (tmp & RWSEM_FLAG_WAITERS)
1344                 rwsem_downgrade_wake(sem);
1345 }
1346
1347 /*
1348  * lock for reading
1349  */
1350 void __sched down_read(struct rw_semaphore *sem)
1351 {
1352         might_sleep();
1353         rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1354
1355         LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1356 }
1357 EXPORT_SYMBOL(down_read);
1358
1359 int __sched down_read_interruptible(struct rw_semaphore *sem)
1360 {
1361         might_sleep();
1362         rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1363
1364         if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_interruptible)) {
1365                 rwsem_release(&sem->dep_map, _RET_IP_);
1366                 return -EINTR;
1367         }
1368
1369         return 0;
1370 }
1371 EXPORT_SYMBOL(down_read_interruptible);
1372
1373 int __sched down_read_killable(struct rw_semaphore *sem)
1374 {
1375         might_sleep();
1376         rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1377
1378         if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1379                 rwsem_release(&sem->dep_map, _RET_IP_);
1380                 return -EINTR;
1381         }
1382
1383         return 0;
1384 }
1385 EXPORT_SYMBOL(down_read_killable);
1386
1387 /*
1388  * trylock for reading -- returns 1 if successful, 0 if contention
1389  */
1390 int down_read_trylock(struct rw_semaphore *sem)
1391 {
1392         int ret = __down_read_trylock(sem);
1393
1394         if (ret == 1)
1395                 rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_);
1396         return ret;
1397 }
1398 EXPORT_SYMBOL(down_read_trylock);
1399
1400 /*
1401  * lock for writing
1402  */
1403 void __sched down_write(struct rw_semaphore *sem)
1404 {
1405         might_sleep();
1406         rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1407         LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1408 }
1409 EXPORT_SYMBOL(down_write);
1410
1411 /*
1412  * lock for writing
1413  */
1414 int __sched down_write_killable(struct rw_semaphore *sem)
1415 {
1416         might_sleep();
1417         rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1418
1419         if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1420                                   __down_write_killable)) {
1421                 rwsem_release(&sem->dep_map, _RET_IP_);
1422                 return -EINTR;
1423         }
1424
1425         return 0;
1426 }
1427 EXPORT_SYMBOL(down_write_killable);
1428
1429 /*
1430  * trylock for writing -- returns 1 if successful, 0 if contention
1431  */
1432 int down_write_trylock(struct rw_semaphore *sem)
1433 {
1434         int ret = __down_write_trylock(sem);
1435
1436         if (ret == 1)
1437                 rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_);
1438
1439         return ret;
1440 }
1441 EXPORT_SYMBOL(down_write_trylock);
1442
1443 /*
1444  * release a read lock
1445  */
1446 void up_read(struct rw_semaphore *sem)
1447 {
1448         rwsem_release(&sem->dep_map, _RET_IP_);
1449         __up_read(sem);
1450 }
1451 EXPORT_SYMBOL(up_read);
1452
1453 /*
1454  * release a write lock
1455  */
1456 void up_write(struct rw_semaphore *sem)
1457 {
1458         rwsem_release(&sem->dep_map, _RET_IP_);
1459         __up_write(sem);
1460 }
1461 EXPORT_SYMBOL(up_write);
1462
1463 /*
1464  * downgrade write lock to read lock
1465  */
1466 void downgrade_write(struct rw_semaphore *sem)
1467 {
1468         lock_downgrade(&sem->dep_map, _RET_IP_);
1469         __downgrade_write(sem);
1470 }
1471 EXPORT_SYMBOL(downgrade_write);
1472
1473 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1474
1475 void down_read_nested(struct rw_semaphore *sem, int subclass)
1476 {
1477         might_sleep();
1478         rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1479         LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1480 }
1481 EXPORT_SYMBOL(down_read_nested);
1482
1483 int down_read_killable_nested(struct rw_semaphore *sem, int subclass)
1484 {
1485         might_sleep();
1486         rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1487
1488         if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1489                 rwsem_release(&sem->dep_map, _RET_IP_);
1490                 return -EINTR;
1491         }
1492
1493         return 0;
1494 }
1495 EXPORT_SYMBOL(down_read_killable_nested);
1496
1497 void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest)
1498 {
1499         might_sleep();
1500         rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_);
1501         LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1502 }
1503 EXPORT_SYMBOL(_down_write_nest_lock);
1504
1505 void down_read_non_owner(struct rw_semaphore *sem)
1506 {
1507         might_sleep();
1508         __down_read(sem);
1509         __rwsem_set_reader_owned(sem, NULL);
1510 }
1511 EXPORT_SYMBOL(down_read_non_owner);
1512
1513 void down_write_nested(struct rw_semaphore *sem, int subclass)
1514 {
1515         might_sleep();
1516         rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1517         LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1518 }
1519 EXPORT_SYMBOL(down_write_nested);
1520
1521 int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass)
1522 {
1523         might_sleep();
1524         rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1525
1526         if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1527                                   __down_write_killable)) {
1528                 rwsem_release(&sem->dep_map, _RET_IP_);
1529                 return -EINTR;
1530         }
1531
1532         return 0;
1533 }
1534 EXPORT_SYMBOL(down_write_killable_nested);
1535
1536 void up_read_non_owner(struct rw_semaphore *sem)
1537 {
1538         DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1539         __up_read(sem);
1540 }
1541 EXPORT_SYMBOL(up_read_non_owner);
1542
1543 #endif